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Objective: Use our advanced, physiologically inspired cardiac CT perfusion 
(CCTP) software to distinguish ischemia due to obstructive disease vs. 
microvascular disease (MVD).
Background: Previously validated advanced CCTP methods were used. We 
interpreted results to identify flow-limiting stenosis [i.e., obstructive-lesion & 
low myocardial blood flow (MBF)] vs. microvascular disease (i.e., no- 
obstructive-lesion & low-MBF).
Methods: We retrospectively evaluated 104 patients with suspected CAD, 
including 18 with diabetes, who underwent CCTA + CCTP. Whole heart and 
territorial MBF was assessed using our automated pipeline for CCTP analysis 
that included beam hardening correction; temporal scan registration; 
automated segmentation; fast, accurate, robust MBF estimation; and 
visualization. Stenosis severity was scored using the CCTA coronary-artery- 
disease-reporting-and-data-system (CAD-RADS), with obstructive stenosis 
deemed as CAD-RADS ≥ 3.
Results: We established a threshold MBF (MBF = 200-mL/min-100 g) for normal 
perfusion. In patients with CAD-RADS ≥ 3 (obstructive disease), 28/37(76%) 
patients showed ischemia in the corresponding territory. On a per-vessel 
basis (n = 256), MBF showed a significant difference between territories with 
and without obstructive stenosis (165 ± 61 mL/min−100 g vs. 274 ± 62 mL/min 
−100 g, p < 0.05). A significant negative rank correlation (ρ = −0.53, p < 0.05) 
between territory MBF and CAD-RADS was seen. Two patients with 
obstructive disease had normal perfusion, suggesting collaterals and/or 
hemodynamically insignificant stenosis. Among diabetics, 10 of 18 (56%) 
demonstrated diffuse ischemia consistent with MVD. Among non-diabetics, 
only 6% had MVD. Sex-specific prevalence of MVD was 21%/24% (M/F).
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Conclusion: CCTA in conjunction with a new automated quantitative CCTP 
approach can determine the distinction of ischemia due to obstructive lesions 
vs. MVD.

KEYWORDS

cardiac CT perfusion, deep learning, image processing, coronary CT angiography, flow- 

limiting stenosis, microvascular disease

1 Introduction

Current imaging options for coronary artery disease are 

expensive, incomplete, and may often require multiple 

modalities to confirm functionally significant coronary artery 

disease (CAD). Invasive coronary angiography (ICA) is the 

clinical standard for detecting anatomical obstructive CAD, but 

its correlation with myocardial ischemia is poor, leading to the 

use of pressure wire functional "ow reserve (FFR) (1). The 2024 

chest pain guidelines suggest documenting anatomy with a 

coronary CT angiography (CCTA) exam when less obstructive 

CAD is suspected. If obstructive CAD is suspected, confirmation 

of ischemia with a non-invasive function test (e.g., stress 

echocardiography, SPECT, PET, or cardiac MRI) for additional 

validation is recommended (2). Many ICAs are negative for 

obstructive CAD, with over 60% of elective ICAs showing no 

hemodynamically significant obstructive disease (3). With ≈1M 

ICAs in the US every year, an improved, non-invasive 

“gatekeeper strategy” could reduce many unnecessary ICAs. 

Many patients have been noted to have diffuse coronary 

microvascular disease or dysfunction (MVD) resulting in 

reduced "ow in the absence of a functionally relevant stenosis 

(4–6). Noted risk factors include diabetes, hypertension, and 

post-menopause. A recent systematic review noted a significant 

percentage (41%) of MVD in patients with non-obstructive 

CAD, necessitating careful differentiation as this condition does 

not warrant an interventional approach (6). An ideal gatekeeper 

evaluation should enable accurate and simultaneous delineation 

and distinction of functionally significant stenosis from MVD.

CCTA is a highly sensitive tool for detecting and excluding 

coronary artery stenosis. The use of CT-derived FFR methods 

(e.g., FFRCT from HeartFlow) has improved discrimination of 

hemodynamically significant CAD (7, 8). Studies combining 

CCTP with CCTA show benefits as compared to CCTA alone 

(9, 10). The additional advantage of a combined CCTP + CCTA 

approach is that this combination can be used to identify 

microvascular disease (11) when there is ischemia but no 

obstructive disease. Increased acceptability of stress CCTP will 

require key technical elements: appropriate scanner availability, 

methods to correct beam hardening artifacts, low-dose imaging, 

automated and pragmatic tools for scan registration and 

segmentation, and accurate MBF estimation.

In this report, we refined and applied a highly automated 

pipeline with multiple innovations developed by our group to 

quantitatively analyze CCTP images (12–16). To correct for 

beam hardening artifacts, we used a previously described 

image-based automated beam hardening correction (ABHC) 

(12). We used a robust, physiology-based perfusion model 

(RPM1), which proved to be more accurate than eight other 

approaches with realistic simulated data (13). To reduce the 

effects of noise and obtain better MBF estimates, we developed 

the simple linear iterative clustering algorithm with robust 

perfusion quantification (SLICR) method (14). Here, we used 

these methods to analyze patients with both dynamic CCTP and 

CCTA images, where the latter were evaluated using the 

Coronary Artery Disease-Reporting and Data System 

(CAD-RADS) (17). CCTP assessments were evaluated with 

consideration to the presence or absence of obstructive disease 

as determined from CAD-RADS on a coronary territory basis. 

Effects of gender and diabetes were analyzed.

2 Materials and methods

2.1 Dataset

This study was approved as a retrospective study of de- 

identified data by the institutional review board of Mackay 

Memorial Hospital, Taiwan (19MMHIS275e 08/01/2019). Images 

were acquired starting in 2013 at Mackay Memorial Hospital, 

Taipei, Taiwan, as part of clinical protocol and shared under a 

data use agreement. The population consisted of 148 patients 

with suspected CAD who underwent CCTA and stress CCTP. 

We excluded 44 patients based on the following criteria: (1) age 

<20 years, (2) coronary artery bypass grafting, (3) acute or old 

myocardial infarction, (4) complete left bundle branch block, 

and (5) inadequate datasets such as poor image quality of CCTA 

or insufficient CCTP analysis. Sequential CCTA and stress 

dynamic CCTP were performed.

All patients underwent a dual-source CT system (Somatom 

Definition Flash; Siemens Healthineer, Forchheim, Germany) 

with a 128-slice detector. CCTA and CCTP acquisitions are 

described as follows: A non-contrast scout image was followed 

by a timing bolus acquisition at the aortic root using 15-mL of 

contrast (Iopamidol 370; Bracco) at 5 mL/sec, plus 20-mL saline 

via a dual-syringe injector. The CCTA acquisition started 

8-seconds after peak contrast enhancement in the ascending 

aorta with 50-mL of contrast medium, followed by 40-mL of 

saline, injected at 5.0-mL/sec. A stress CCTP was performed 

10-minutes after completing the CCTA scan. The dual-source 

scan was performed for 30-seconds, starting 6-seconds after the 

power injector started to administer the contrast medium. 
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Dipyridamole (0.56-mg/kg) was administered over 4-minutes, 

with the stress dynamic CCTP conducted 6-minutes after 

starting the dipyridamole infusion. A total of 50-mL of contrast 

medium was injected, followed by 60-mL of saline, both at a 

rate of 5.0-mL/sec, using the same power injector. Post-stress 

CCTP, aminophylline (3-mg/kg) was administered intravenously 

over 2-minutes. Details of the CT acquisition/reconstruction 

settings are provided in the supplementary material.

2.2 CCTA image analysis

The CCTA images were evaluated by two experienced readers 

(CHY, WMH, with 16 and 6 years of cardiac CT experience, 

respectively). Readers were blinded to the subject’s clinical 

presentation and history. Any disagreement was solved by 

consensus. On a per vessel basis, stenoses were classified as the 

expert consensus document of the Society of Cardiovascular 

Computed Tomography: CAD-RADS = 0 (0% luminal diameter 

stenosis), CAD-RADS = 1 (1%–24% stenosis), CAD-RADS = 2 

(25%–49% stenosis), CAD-RADS = 3 (50%–69% stenosis), 

CAD-RADS = 4 (70%–99% stenosis), and CAD-RADS = 5 

(100% stenosis). CAD-RADS ≥ 3 was considered as obstructive 

stenosis (17).

2.3 Quantitative CT perfusion pipeline

We refined a highly automated prototype software to 

quantitatively analyze CCTP data based on our previous works 

(12–16). The processing pipeline is shown in Figures 1A,B. The 

quantitative CT perfusion pipeline includes: (i) aorta region of 

interest (ROI) detection from unregistered data, (ii) temporal 

scan registration, (iii) myocardium and aorta segmentation, (iv) 

automatic beam hardening correction, (v) MBF computation on 

axial images, (vi) MBF polar map conversion, and (vii) 

generating American Heart Association (AHA) segment report 

(18). Myocardial blood "ow (MBF) was estimated using the 

Robust Physiological Model (RPM1), a simplified Johnson- 

Wilson model with three free parameters (time delay, MBF, and 

decay constant), which we have previously validated against 

other approaches (13). We excluded a segment from the AHA 

model if the number of pixels on the polar map was less than 

30% of the segment area. To determine the representative 

absolute MBF for each coronary territory (LAD, RCA, and 

LCX), we evaluated all pairs of spatially adjacent AHA segments 

within the territory and selected the pair with the lowest average 

MBF to represent the characteristic MBF of that territory. For 

instance, in the LAD territory, the adjacent segment 

combinations were [1, 2], [1, 7], [1, 8], [2, 7] [2, 8], [7, 8], [13, 

14], [7, 13], [8, 13], and [8, 14]. The pair with the lowest mean 

MBF was used as the representative LAD MBF. The relative 

MBF for each AHA segment was then calculated by normalizing 

to the coronary territory with the highest representative average 

MBF. This approach reduces the effect of local noise and 

improves robustness compared to using a single segment. 

Details are in the supplemental document.

We trained two convolutional neural networks, one for 

myocardium and aorta segmentation, and one for landmarks 

(interventricular septum and center of left ventricle) detection in 

short-axis data for MBF polar map conversion, respectively. Two 

analysts manually annotated the CCTP images. The 

myocardium and aorta were segmented on peak enhancement 

volume in axial images. The landmarks for polar map 

conversion were labeled in short-axis volume with peak 

enhancement. Analyst1 labeled the entire dataset, including 104 

patients, to train the two convolutional neural networks. 

Analyst2 labeled 15 patients to perform an inter-observer study 

and evaluate the performance of the pipeline. The details of 

each step are in supplementary material.

2.4 Statistical analysis

We used the MATLAB statistic toolbox for statistical analysis 

(19). Continuous variables were expressed as means ± standard 

deviations while categorical variables were expressed as 

frequency and ratio (%). The unpaired Student’s t-test was used 

for normally distributed variables to compare the means 

between the two groups. The Spearman’s rank correlation 

coefficient (ρ) evaluated correlations between continuous MBF 

and ordinal CAD-RADS. To identify optimal stress MBF cutoffs 

on a per-territory basis, we restricted the ROC analysis to 

unequivocal cases (CAD-RADS = 0 or 4) to minimize 

misclassification. CAD-RADS = 3 cases were excluded because 

intermediate stenosis may not always correspond to abnormal 

"ow. A bootstrap-corrected Receiver Operating Characteristic 

(ROC) curve analysis with 1,000 bootstrapped samples was 

performed, and the mean Youden index was used to determine 

optimal stress MBF cutoffs on a per-territory basis (20, 21). The 

optimal MBF threshold was 200 mL/min−100 g. Differences 

were statistically significant at P < 0.05.

3 Results

3.1 Software validation

We quantitatively evaluated each intermediate and final 

output of our software. Segmentation and landmark 

identification for AHA segments were acceptable as now 

described. The automated segmentation module for the 

myocardium and aorta had average Dice scores of 0.90 ± 0.04 

and 0.92 ± 0.02, respectively. Mis-segmentation mainly occurred 

around the apex in patients with thinner myocardium. In our 

modified AHA-16 model, the apical cap was excluded from 

MBF analysis. Euclidean distances were 2.3 ± 1.9 mm, 

2.9 ± 4.1 mm, and 3.8 ± 2.7 mm for the center of LV, upper 

septum, and bottom septum, respectively. We compared results 

of automatic and manual segmentation on territory MBF 

(Supplementary Figures S4, S5). Agreement between analysts 
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was excellent (R = 0.99, p < 0.001), with the automatic method 

showing similar agreement (R = 0.98, p < 0.001 for both 

analysts). Details are in the supplemental document.

3.2 Clinical image data analysis

The characteristics of the 104 patients are presented in Table 1. 

Patient age was 58 ± 12 years, and 41 (39%) were female. Of the 

104 patients, 22 (17%) showed CAR-RADS ≥ 3 in one vessel, 13 

(12%) showed CAR-RADS ≥ 3 in two vessels, and 2 (2%) 

showed CAR-RADS ≥ 3 in all three vessels. Example image 

analyses are shown in Figures 2, 3. In a patient with CAD- 

RADS = 0 (Figure 2), MBF was uniformly high on all views 

from apical to basal slices (d, e, and f) and on the polar map 

and the AHA-16 displays (h and i, respectively). In Figure 3, we 

show a patient with CAD-RADS = 4 with high-grade stenosis in 

the LAD and D1. The patient has concordant reduced MBF in 

the LAD territory.

3.3 MBF cutoff

The optimal stress MBF threshold for abnormal "ow was 

200 mL/min−100 g (95% CI: 179.2–220.8 mL/min−100 g). 

Differences were statistically significant at P < 0.05. 

(Supplementary Figure S6). To address potential clustering of 

coronary territories within the same patient, we additionally 

performed patient-level stratified bootstrap analysis. Results were 

consistent, with the optimal threshold remaining 200 mL/min 

−100 g (95% CI: 174.3–221.2 mL/min−100 g).

3.4 Perfusion patterns as a function of 
CAD-RADS and presence of diabetes

When polar maps of all 104 patients were categorized into 

sub-groups, several observations were evident (Figure 4). 

TABLE 1 Baseline characteristics of the patients.

Parameters All patients (n = 104)

Demographic parameters

Age—means ± SD 58 ± 12

Female—no./total no. (%) 41/104 (39)

Cardiovascular risk factors—no./total no. (%)

Angina 82/104 (78)

Hypertension 55/104 (52)

Dyslipidemia 58/104 (55)

Current or former smoking 16/104 (15)

Diabetes 18/104 (17)

CCTA findings—no./total no. (%)

CAD-RADS < 3 67/104 (64)

1 vessel CAD-RADS ≥ 3 22/104 (21)

2 vessel CAD-RADS ≥ 3 13/104 (12)

3 vessel CAD-RADS ≥ 3 2/104 (2)

FIGURE 1 

Pipeline of combinatory CCTP&CCTA analysis. In (A, B), a highly automatic prototype software analyzed the CCTP data and produced a polar map 
then mapped to AHA segments. Vessel-wised CAD-RADS were measured in CCTA (C). Patients were then separated into different subgroups and 
analyzed based on different conditions (D, E).
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FIGURE 2 

CCTA and CCTP analysis of a 47-year-old male patient with typical angina chest pain. CCTA (a–c) showed no luminal stenosis for all arteries. CCTP 
showed a normal stress MBF for all territories (d–i). The AHA sectors in (i) had a stress MBF of 320 ± 30 mL/min−100 g. The map between AHA 
segments and the corresponding coronary artery is shown in (j).

FIGURE 3 

A 60-year-old male patient with typical angina chest pain. CCTA (a–c) showed >70% luminal narrowing of the LAD (1-vessel disease). CCTP showed a 
perfusion defect with an abnormal stress MBF of 178 mL/min−100 g in the territory supplied by the LAD (d–i). The map between AHA segments and 
the corresponding coronary artery is shown in (j).
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Focusing on patients without diabetes mellitus (DM) in columns 

1, 3, and 4), who have a lower prevalence of MVD, stenosis 

severity agreed well with MBF. In column 1, for such patients 

with CAD-RADS < 3, 50 out of 55 (90%) showed normal global 

MBF. Four of the remaining 5 showed reduced "ow in one 

territory despite having CAD-RADS of 1 or 2. One patient 

demonstrated global, severely low MBF, suggestive of diffuse 

MVD. For those with CAD-RADS ≥ 3 in one vessel, 11 out of 

18 (61%) patients showed an abnormally low MBF territory that 

corresponded to the obstructed vessel. For CAD-RADS ≥ 3 in 

multiple vessels, 12 out of 13 (93%) patients had at least one 

territory with abnormal MBF corresponding to an obstructed 

vessel. Notably, global abnormal MBF was more common in the 

multi-vessel group than in the 1-vessel group (10 vs. 1, 

respectively), with lower mean global MBF in the multi-vessel 

group (158 ± 47 mL/min−100 g) as compared to the 1-vessel 

group (209 ± 68 mL/min−100 g, p < 0.05).

Continuing with the analysis of patients without diabetes, 

there are some interesting discordances between CAD-RADS 

and MBF. For CAD-RADS ≥ 3 (columns 3 and 4), we found 

that 8 out of 31 (26%) patients showed normal global MBF. In 

particular, there were 4 cases with CAD-RADS = 4 with normal 

MBFs. Surprisingly, one case of multivessel CAD-RADS ≥ 3 

(column 4) showed very high perfusion without a deficit in the 

stress test. These discordant cases with preserved perfusion 

despite obstructive CCTA stenosis suggest that some lesions 

may be hemodynamically insignificant, potentially due to 

collateral supply or overestimation of severity by CCTA. 

Functional perfusion imaging provides important 

complementary information in such cases.

Patients with diabetes mellitus (columns 2 and 5) are analyzed 

separately, given the frequent association of MVD with diabetes. 

Among diabetic patients without obstructive disease (CAD- 

RADS < 3, column 2), 10 of 12 had low MBF, 1 had marginal 

MBF, and one had high MBF. The difference between column 2 

(with DM) and column 1 (no DM) is extremely striking. In 

column 2, the low MBF (blue to blue-green color) often appears 

to surround the polar map, suggesting a global effect. These 

FIGURE 4 

Polar maps of myocardial blood flow (MBF) for 104 patients, divided into five groups based on diabetes status and the number of arteries with 
obstructive stenosis. (a) No diabetes, no obstructive stenosis (CAD-RADS < 3). (b) Diabetes, no obstructive stenosis (DM-CAD-RADS < 3). (c) No 
diabetes, obstructive stenosis in one vessel (1-vessel-CAD-RADS ≥ 3). (d) No diabetes, obstructive stenosis in multiple vessels (multi-vessel-CAD- 
RADS ≥ 3). (e) Diabetes, obstructive stenosis (DM-CAD-RADS ≥ 3). The green dashed line indicates the abnormal MBF threshold (200 mL/min 
−100 g). Polar maps are consistent with patient groupings. (See text for details.).
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observations are highly suggestive of diffuse MVD. In patients 

with obstructive disease (CAD-RADS ≥ 3, column 5), 5 of 6 

patients had low MBF, and 1 had high MBF. We should point 

out that the duration of diabetes diagnosis was unknown.

Given that being female is thought to be a risk factor for 

MVD, we analyzed gender as a variable. We identified 15 

patients with low MBF and CAD-RADS < 3 as having MVD, 

regardless of diabetes. Among our study participants, 21% of 

males and 24% of females had MVD. A larger sample size is 

needed for a more thorough analysis.

For this cohort, for non-diabetic patients, MVD can nearly be 

excluded. That is, of the 55 non-diabetic patients with CAD- 

RADS < 3, only 5 had low MBF, and only one had a severely 

low MBF (<100 mL/min−100 g).

3.5 Territory analyses

To further analyze the spatial distribution of MBF in diabetic 

patients on a per-territory basis (Figure 5). MBF distribution in 

each of the polar maps was evaluated for ischemia when below 

the red dashed line threshold. In total, 12 out of 18 (67%) 

diabetic patients were deemed to have diffuse ischemia, 

corresponding to a low, tight distribution of MBFs. Among 

those without obstructive disease (green, n = 12), 8 showed 

diffuse ischemia in over half of the segments, with global mean 

MBF below the optimal cutoff. Two showed ischemia in one 

territory, and two showed no ischemia. For diabetic patients 

with obstructive stenosis (purple, n = 6), four showed diffuse 

ischemia in multiple territories, one showed ischemia in one 

territory, and one showed no ischemia. Altogether, the patients 

with diabetes tended to have low MBF regardless of the 

presence of obstructive disease.

To learn the relationship between MBF and stenosis severity in 

patients without diabetes, we continued with the territory analysis 

(Figure 6). Before excluding diabetic patients, mean MBFs were 

259 ± 65 mL/min−100 g and 184 ± 58 mL/min−100 g in non- 

obstructed and obstructed territories, respectively, p < 0.001. 

After excluding diabetic patients, mean MBFs were 274 ± 62 mL/ 

min−100 g and 165 ± 61 mL/min−100 g, respectively, p < 0.001. 

By excluding diabetic patients, we reduced the confounding 

effect of MVD on territory MBF and increased the difference 

between non-obstructed and obstructed territories from 75 to 

109 mL/min−100 g, creating a clearer demarcation between 

territories with and without obstructive disease.

The agreement of territory-specific MBF and CAD-RADS 

stenosis severity was investigated with diabetic patients excluded 

to reduce any effect of MVD (Figure 7). We found a significant 

and negative correlation between the CAD-RADS of a vessel 

and the absolute MBF of the corresponding territory. MBF was 

highest in CAD-RADS = 0 (286 ± 59 mL/min−100 g) and lowest 

in CAD-RADS = 4 (156 ± 51 mL/min−100 g), with statistical 

significance (p < 0.05). When Spearman rank correlation was 

computed, there was a stronger correlation using absolute MBF 

FIGURE 5 

Polar map distribution of diabetic patients. Diabetic patients without and with obstructive disease are in green and purple, respectively. Ischemia is 
indicated when MBF distribution falls below the red dashed line. Patients 9, 11, and 14 showed normal MBF, while patients 1, 5, and 17 had local 
ischemia. The remaining 12 patients exhibited diffuse ischemia. Polar maps allow easy visual interpretation.
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than with relative MBF. A student t-test between groups of relative 

MBF measurements showed insignificant differences between 

most groups. When we included patients having diabetes, there 

was even a poorer correlation (ρ = −0.38, p < 0.05) between 

relative MBF and CAD-RADS (not shown), suggesting that the 

presence of diffuse MVD can confound the usage of relative MBF.

Further analyses of territories are done in the Supplemental 

document. The percentage of ischemic territories 

(MBF < 200 mL/min−100 g, blue color) increased with 

CAD-RADS, particularly for vessels with CAD-RADS = 3 and 4, 

where 49% and 13% did not show downstream ischemia, 

respectively (Supplementary Figure S7). For CAD-RADS = 1 and 

2, there are still 21%, and 20% showed downstream ischemia, 

suggesting a microvascular disease. Finally, we analyzed the 

percentage of territories as a function of different MBF levels 

(Supplementary Figure S7), again excluding diabetic patients to 

limit the confounding effect of MVD on MBF. As described in 

the figure legend, there was good consistency between CAD- 

RADS scores and territory MBF.

4 Discussion

Our study demonstrates a new methodology for distinguishing 

"ow-limiting stenosis from microvascular disease (MVD). We 

refined an automated pipeline for quantitative MBF in CCTP, 

incorporating beam hardening correction, temporal scan 

registration, segmentation, and a novel method for MBF 

assessment (12–16). Our enhanced automated pipeline facilitated 

precise MBF analysis using CCTP images, incorporating 

accurate myocardium and aorta segmentation for beam 

hardening correction and MBF computation, and automatic 

landmark localization for polar map generation from short-axis 

views. The automated results closely matched manual results 

(Supplementary Figures S4, S5).

FIGURE 6 

MBF distribution of individual territories without obstructive stenosis 
and with obstructive stenosis before and after excluding territories 
from diabetic patients. The red dashed line is the optimal MBF 
cutoff (200 mL/min−100 g). The blue asterisk is the median value 
of each distribution. The blue solid line is the mean value of 
each distribution.

FIGURE 7 

Association of stress MBF and CAD-RADS, analyzed per territories. (a) There is a moderate Spearman’s rank correlation between absolute MBF and 
CAD-RADS score (ρ = −0.53, p < 0.05). (b) There is a weaker Spearman’s rank correlation between relative MBF and CAD-RADS (ρ = −0.43, p < 0.05). 
The relative MBF was calculated by normalizing each AHA segment with the territory with the highest average MBF. Between groups, t-tests are 
performed with an asterisk indicating P < 0.05.
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We now review our MBF cut-off for ischemia (200 mL/min 

−100 g) to values reported in the literature for stress MBF for 

different modalities. PET scans, considered highly accurate, use 

values from 185 to 250 mL/min−100 g for obstructive stenosis 

(22, 23). Cardiovascular magnetic resonance (CMR) studies have 

cutoffs from 129 to 194 mL/min−100 g (24, 25). In our study, 

the optimal cutoff for CAD-RADS = 4 was 200 mL/min−100 g. 

While >50% stenosis is typically considered hemodynamically 

significant, we chose CAD-RADS = 4 to ensure unequivocal 

cases when deriving the MBF cutoff. The SPECIFIC study found 

an optimal MBF threshold of 142 mL/min−100 g for detecting 

obstructive CAD with CCTP (26). Our previous work showed 

this method significantly underestimates MBF in both simulated 

and in vivo studies (13), unlike our preferred method. Similarly, 

low MRI values may depend on the computational method used.

Our results show that in stress CCTP, the absolute MBF is 

better correlated to CAD-RADs than relative MBF (ρ = −0.53 vs. 

ρ = −0.43). Previous studies generally support higher diagnostic 

accuracy by using relative MBF than absolute MBF in stress 

CCTP (27, 28). However, Kajander et al. reported a higher 

diagnostic accuracy by using absolute MBF than relative MBF 

with positron emission tomography (PET) (29). Another PET 

study by Stuijfzand et al. did not find significant improvement 

in detecting hemodynamically significant stenosis with relative 

MBF compared to absolute MBF alone (30). Possible 

explanations include subclinical atherosclerosis in reference 

territories, presence of diffuse ischemia in patients with multi- 

vessel disease, and the inherent noise and variations associated 

with ratio measurements of relative MBF. We found particularly 

poor correlation between relative MBF and CAD-RADS when 

we included patients having diabetes, suggesting that the 

presence of diffuse MVD can confound usage of relative MBF.

Using these methods, we identified a high prevalence of 

ischemia in patients without obstructive CAD, especially among 

diabetic patients (Figures 4,5). We found that in patients without 

obstructive stenosis, 15 out of 67 (22%) showed reduced MBF, 

suggesting an opportunity for deeper analysis. In Figure 5, for the 

12 diabetic patients without obstructive stenosis (DM-CAD- 

RADS < 3), 10 had reduced MBF (indicating MVD) in one or 

more territories (83%) compared 5 patients (6%) in those without 

diabetes. MVD Studies show that MVD is prevalent in patients 

with symptoms of CAD (31, 32). In the ISCHEMIA trial, 13% of 

patients with moderate or severe ischemia confirmed by core lab 

did not show evidence of obstructive CAD on CCTA (31). 

A recent study also showed hyperemic MBF is significantly lower 

in territories with MVD, as confirmed by the index of 

microcirculatory resistance (33). Murthy et al. used PET to assess 

myocardial ischemia in 1,218 symptomatic patients without 

obstructive CAD and showed that 51% of men and 54% of 

women had MVD (32). From the MBF spatial distribution for 

patients with diabetes (Figure 5), 12/18 diabetic patients showed 

diffuse ischemia. Our finding confirmed that MVD is prevalent in 

diabetics, as identified by other quantitative methods (34, 35). 

The significantly lower MBF in patients with diabetes compared 

to normal patients was demonstrated in PET (34). Using 

intracoronary thermodilution technique, Gallinoro et al. showed 

higher microvascular resistance in patients with diabetes as 

compared to those without diabetes (35).

Our study has several limitations. It was conducted at a single 

site with a modest sample size (104 patients after exclusions), 

which may reduce generalizability. AHA segments were assigned 

assuming a right-dominant coronary distribution, which may not 

re"ect individual variations in coronary anatomy and could 

introduce minor inaccuracies in per-territory MBF assessment. 

CAD-RADS was an anatomical grading system and used as the 

reference standard. Lesions with CAD-RADS ≥3 may not always 

be hemodynamically significant. To reduce this limitation, ROC 

analyses were restricted to unequivocal cases (CAD-RADS 0 

and 4). However, invasive physiological validation remains the 

gold standard for identifying "ow-limiting stenoses. Validation of 

CCTP against invasive testing will be essential in future studies. 

CT-derived FFR was not available and should be evaluated in 

future studies. The diabetic subgroup was limited, and detailed 

clinical data, such as diabetes duration, were unavailable, which 

may affect interpretation. Despite these limitations, combining 

MBF from CCTP with stenosis assessment from CCTA provides 

a comprehensive non-invasive evaluation, enabling better 

distinction between obstructive and microvascular disease.

5 Conclusion

Combining CCTA with a new automated quantitative CCTP 

approach enhances CAD interpretation, enabling differentiation 

between ischemia caused by obstructive lesions and 

microvascular disease.
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