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Background: Acute kidney injury (AKI) is a life-threatening complication in

patients with acute myocardial infarction (AMI), leading to increased morbidity

and mortality. Early prediction of high-risk patients remains a clinical challenge.

Methods:We developed and validated a predictive model for AKI using data from

two large critical care databases: MIMIC-IV (n= 1,227) and eICU (n= 1,954). Least

absolute shrinkage and selection operator (LASSO) regression and multivariable

logistic regression were applied to identify independent predictors. A nomogram

was constructed incorporating the triglyceride-glucose (TyG) index and

clinical variables.

Results: Seven predictors were included in the final model: TyG index, blood

urea nitrogen (BUN), SOFA score, age, serum sodium, serum albumin and

systolic blood pressure (SBP). The model demonstrated excellent

discrimination with area under the curve (AUC) values of 0.85 in the training

cohort, 0.83 in the internal validation cohort and 0.81 in the external

validation cohort. Decision curve analysis showed clinical usefulness across a

wide range of risk thresholds (22%–45%). The TyG index was independently

associated with increased AKI risk (odds ratio 1.31; 95% CI: 1.07–1.60). The

model also showed improved risk reclassification (net reclassification index:

0.22; p < 0.001).

Conclusion: The TyG-based nomogram provides a practical and accurate tool

for early prediction of AKI in AMI patients. By integrating metabolic,

hemodynamic, and organ dysfunction markers, this model enables

multidimensional risk stratification and may support timely preventive

strategies in the ICU setting.
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1 Introduction

Despite significant advancements in pharmacological and

interventional therapies over the past decades, acute myocardial

infarction (AMI) remains a leading cause of morbidity and

mortality worldwide (1). Acute kidney injury (AKI) is a common

and serious complication in patients with acute myocardial

infarction (AMI), with an incidence reaching 59% in hospitalized

patients (2). The development of AKI in patients with AMI not

only prolongs hospitalization and increases healthcare costs, but

also independently associated with higher short- and long-term

mortality (3, 4). Moreover, AKI may cause lasting renal

dysfunction and even progress to chronic kidney disease, thereby

increasing the long-term healthcare burden, even in patients who

recover from the initial event (5). However, the current

diagnostic criteria for AKI often require either baseline serum

creatinine levels or urine output monitoring over a minimum of

6 h, both of which may delay diagnosis in acute care settings. As

a result, patients frequently miss the optimal window for

therapeutic intervention. Therefore, early identification of high-

risk patients and implementation of preventive interventions are

crucial for reducing AKI incidence and improving clinical

outcomes in AMI patients. The development of predictive

models based on novel biomarkers or machine learning

algorithms represents a critical breakthrough for early AKI

identification in AMI patients. Although the underlying

pathophysiological mechanisms underlying AKI in patients with

acute myocardial infarction (AMI) are not yet fully elucidated,

emerging evidence suggests that the triglyceride-glucose (TyG)

index may offer new perspectives for AKI prediction.

TyG index serves as a clinically validated surrogate marker for

insulin resistance (IR), which is pathophysiologically defined as a

state of diminished insulin sensitivity in key metabolic tissues

including the liver, skeletal muscle, and adipose tissue, ultimately

leading to impaired glucose uptake and utilization (6). Beyond its

established role in diabetes prediction where it outperforms

conventional blood glucose measurements (7), this metabolic

disturbance exerts broader systemic effects by disrupting

homeostatic balance. Specifically, IR contributes to cardiovascular

and renal pathophysiology through multiple interconnected

mechanisms such as chronic low-grade inflammation, endothelial

cell dysfunction, and dysregulated lipid metabolism (8, 9). These

observations provide a mechanistic foundation for investigating

the TyG index as a potential predictor of AKI risk in the AMI

population. In recent years, the TyG index has garnered

significant attention due to its outstanding predictive capabilities,

particularly in identifying risks associated with metabolic and

cardiovascular conditions, as well as its ability to stratify

mortality risk in critically ill patients across diverse clinical

scenarios (10–12). However, despite the growing interest in the

TyG index, there is still a lack of comprehensive, clinically

applicable tools for predicting AKI in AMI patients. Insulin

resistance, as quantified by the TyG index, is influenced by

multiple interacting factors including metabolic abnormalities

such as dyslipidemia, hemodynamic alterations like renal

hypoperfusion, and systemic inflammation. This complex

pathophysiology is supported by recent mechanistic studies (13).

Although previous studies have evaluated effect modification by

hypertension, diabetes, age, and sex through stratified analyses

(10), residual confounding may persist due to unadjusted factors

such as medication use and comorbidities. These limitations

highlight the need for broader validation across diverse clinical

populations. Furthermore, although a TyG index value exceeding

9.2 has demonstrated prognostic significance in observational

studies (14), this dichotomous cutoff has limited clinical utility.

In practice, clinicians require probabilistic risk estimation rather

than binary classification, as the same TyG value may correspond

to different absolute AKI risks depending on additional factors

such as left ventricular function and baseline kidney status.

Therefore, there is a pressing need to integrate multiple clinical

factors with biomarkers like the TyG index to develop a more

accurate and practical predictive model.

This study aims to develop and validate a nomogram for

predicting AKI in acute myocardial infarction patients using the

TyG index in combination with other clinical variables. By

incorporating both easily accessible clinical factors and the TyG

index, this model could provide clinicians with a valuable tool

for early risk stratification, allowing for timely interventions and

potentially improving patient outcomes. Using data from the

MIMIC-IV database of critically ill patients, we will employ

advanced statistical techniques to develop and validate the

nomogram, ensuring its robustness and clinical applicability. The

development of a TyG-enhanced nomogram could improve

clinical practice by providing a more accurate and user-friendly

tool for early AKI prediction, ultimately reducing the incidence

of AKI and improving patient outcomes.

2 Methods

2.1 Data source

We utilized data from two large, open-source databases:

Medical Information Mart for Intensive Care IV (MIMIC-IV)

version 3.1 (15) and eICU-Collaborative Research database

(eICU-CRD) version 2.0 (16). MIMIC-IV 3.1 extends its

predecessor (version 2.0) by including ICU admissions from

2020 to 2022, expanding the total patient population to over

94,000. Maintained by the Beth Israel Deaconess Medical Center,

this database has become a widely utilized resource in critical

care research (17). The eICU Collaborative Research Database is

a multi-center database comprising deidentified health data

associated with over 200,000 admissions to ICUs across the

United States between 2014 and 2015. The author (Qiang Meng)

completed the National Institutes of Health (NIH) web-based

training course, “Protecting Human Research Participants”

(certification number: 56251014), as required for data access.

Ethical approval was obtained from the Institutional Review

Boards of the Massachusetts Institute of Technology (Cambridge,

MA, USA) and the Beth Israel Deaconess Medical Center, with a

waiver of informed consent due to the retrospective nature of the

study and the use of deidentified data.
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2.2 Patient selection

Patients were included if they met the following criteria: (1)

Admission to the intensive care unit (ICU) with a primary

diagnosis of acute myocardial infarction (AMI); (2) Availability

of fasting triglyceride and glucose measurements within 24 h of

ICU admission for TyG index calculation, using the formula:

TyG index ¼ Ln
TG(mg=dL)�FBG(mg=dL)

2
; (3) Age ≥18 years; (4) ICU

length of stay ≥24 h. Patients were excluded if they met any of

the following criteria: (1) End-stage renal disease (ESRD) or

chronic dialysis; (2) Missing data required for TyG index

calculation or AKI diagnosis. (3) Multiple ICU admissions (only

the first ICU stay was included).

2.3 Data extraction and definition

Data were extracted using Structured Query Language (SQL) in

Navicat Premium (version 15.0.12). Patients with acute myocardial

infarction (AMI) were identified from the database using ICD-9

(International Classification of Diseases, 9th Revision; codes

41000–41092) and ICD-10 (codes I21–I219). Data extracted

within the first 24 h of ICU admission included demographic

information, clinical parameters, vital signs, laboratory

parameters, severity scores, comorbidities, and therapies.

Demographic information comprised gender, age, body mass

index (BMI), and race. Clinical parameters included length of

stay (LOS) in the intensive care unit (ICU) and LOS in the

hospital. Vital signs consisted of heart rate (HR), systolic blood

pressure (SBP), diastolic blood pressure (DBP), and respiratory

rate (RR). Laboratory parameters encompassed white blood cell

count (WBC), red blood cell count (RBC), platelet count,

hemoglobin level, serum creatinine (SCr), blood urea nitrogen

(BUN), creatine kinase-MB (CK-MB), albumin, fasting blood

glucose (FBG), serum sodium, serum potassium, calcium,

chloride, bicarbonate, total triglyceride (TG), international

normalized ratio (INR), partial thromboplastin time (PTT),

alanine aminotransferase (ALT), aspartate aminotransferase

(AST), and alkaline phosphatase (ALP). Severity at admission

was assessed using the Simplified Acute Physiological Score II

(SAPS II), Systemic Inflammatory Response Syndrome (SIRS)

score, Acute Physiology Score III (APS III), and the Sequential

Organ Failure Assessment (SOFA) score. Comorbidities included

chronic kidney disease (CKD), chronic pulmonary disease, liver

disease, diabetes, and hypertension. Therapies comprised

percutaneous coronary intervention (PCI), coronary artery bypass

grafting (CABG), and renal replacement therapy (RRT). To

address missing data, a systematic and stratified approach was

implemented based on the extent of missingness. For variables

with less than 20% missing values, the missForest algorithm in

R software was utilized for multiple imputation. For variables

with missing values in the range of 20%–50%, specifically CK-

MB, a categorical transformation strategy was adopted,

converting these variables into dummy indicators to avoid the

potential biases introduced by direct imputation (18). Variables

with more than 50% missing data, including B-type natriuretic

peptide (BNP), C-reactive protein (CRP), and cardiac troponin I

(cTNI) were excluded from the analysis to ensure the reliability

and validity of the results. This approach not only maintains

dataset integrity but also reduces potential bias, thereby

strengthening the robustness of the findings.

To evaluate potential bias introduced by data exclusion, we

conducted two additional analyses. First, to assess the impact of

excluding patients with missing triglyceride or glucose values, we

compared baseline characteristics between the final study cohort

and those excluded after removal of duplicate records. Second, to

examine the influence of early in-hospital mortality on model

performance, we performed a sensitivity analysis by excluding

patients who died before the onset of AKI, and reassessed model

discrimination in the adjusted cohort.

The endpoint was AKI developing within 7 days following ICU

admission. The diagnosis of AKI was based on the latest

international clinical practice guidelines for AKI (19), and

accordance to any of the following three criteria: (1) creatinine

rose≥ 0.3 mg/dl within 0 h; (2) serum creatinine elevation ≥50%

above baseline within 7 days; and (3) urine output < 0.5 ml/kg/h

over 6 h.

2.4 Model development and validation

The dataset extracted from the MIMIC-IV database was

randomly partitioned into training and internal validation

cohorts using a 7:3 ratio. Specifically, 70% of the data were

allocated for model training, while the remaining 30% were

reserved for internal validation. This stratified randomization

approach ensured balanced representation of clinical

characteristics across both subsets. The eICU-CRD served as an

external validation cohort, enabling assessment of model

generalizability across diverse healthcare settings.

Feature selection was conducted through a sequential analytical

approach. Prior to modeling, all continuous variables were

standardized to ensure comparability. Least Absolute Shrinkage

and Selection Operator (LASSO) regression with 5-fold cross-

validation was then applied for preliminary feature selection by

shrinking the coefficients of less relevant variables to zero,

thereby addressing potential multicollinearity and reducing

dimensionality. Subsequently, univariate logistic regression was

conducted on the LASSO-selected features, and variables with

p < 0.05 were included in a multivariate logistic regression to

identify independent predictors. Finally, multivariate logistic

regression was performed to identify independent predictors,

with statistically significant variables (p < 0.05) assessed for their

effect size using odds ratios (OR) and corresponding 95%

confidence intervals.

The final selected variables were utilized to construct a

predictive nomogram using the “rms” package in R software. To

evaluate the model’s discriminative performance, receiver

operating characteristic (ROC) curves were generated and the

area under the curve (AUC) was calculated. Additional

performance metrics—including F1 score, recall, precision, and
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accuracy—were reported for a more comprehensive assessment. To

further evaluate the added predictive value of the TyG index, two

logistic regression models were developed based on the selected

features: a full model incorporating the TyG index (TyG model),

and a nested model excluding the TyG (non-TyG model). These

models were applied to the training, internal validation, and

external validation cohorts for performance comparison.

Calibration curves were generated using the “rms” package with

1,000 bootstrap resamples to assess the agreement between

predicted probabilities and observed outcomes. To quantify the

improvement in risk prediction brought by the TyG index, net

reclassification improvement (NRI) and integrated discrimination

improvement (IDI) were calculated. Finally, the clinical utility of

the model was assessed using decision curve analysis (DCA),

which compares the net benefit of each model across a range of

threshold probabilities (0–1, increment = 0.2), relative to the

default “treat-all” and “treat-none” strategies.

To explore potential nonlinear relationships between the TyG

index and the outcome in the final multivariate model, restricted

cubic spline (RCS) analysis was conducted post hoc using the

rms package in R software. The analysis focused on TyG without

additional adjustment for other covariates, as its functional form

within the final model was of primary interest. Four equally

spaced knots were set to divide the TyG distribution into four

equal parts. The linearity assumption was evaluated using a

likelihood ratio test comparing models with linear and

spline terms.

2.5 Statistical analysis

Descriptive statistics were computed for all categorical and

continuous variables. Continuous variables were expressed as

mean ± standard deviation (SD) or median (interquartile range,

IQR), and categorical variables were expressed as frequencies

(percentages). The chi-squared test or Fisher’s exact test was

used to compare categorical variables, and Student’s t-test or

Mann–Whitney U test was applied for continuous variables, as

appropriate. All statistical analyses were performed using

R software (v 4.2.0), with a two-sided p value < 0.05 considered

statistically significant.

3 Results

3.1 Study population

A total of 9,042 patients diagnosed with acute myocardial

infarction (AMI) and admitted to the ICU were initially

identified from the MIMIC-IV database. After excluding

duplicate ICU admissions, patients aged ≤18 years, those with

ICU stays <48 h, and cases lacking triglyceride or fasting blood

glucose data, 1,227 eligible patients were included in the final

cohort. Among them, 878 (71.5%) patients developed acute

kidney injury (AKI). The MIMIC-IV dataset was randomly

divided into a training cohort (n = 858) and an internal

validation cohort (n = 369), while the eICU database served as an

external validation cohort evaluate the generalizability of the

model, where 1,545 (79.1%) patients experienced AKI (Figure 1).

Baseline characteristics were compared between the training

cohort and internal validation cohort (Table 1). The baseline

characteristics of the external validation cohort are presented in

Supplementary Table S1.

Among the 9,042 patients initially identified with AMI, 2,927

were removed as duplicates, and 4,888 (54.1%) were excluded

due to missing triglyceride or glucose values. To evaluate the

impact of these exclusions, we compared key baseline variables

between the included and excluded cohorts. Although some

variables showed statistically significant differences (p < 0.05), all

standardized mean differences (SMDs) were < 0.1, suggesting

minimal practical imbalance. For example, the mean SOFA

score differed by only 0.31 points on average, which is

unlikely to affect clinical interpretation. These results suggest a

low risk of selection bias, with details are presented in

Supplementary Table S2.

3.2 Feature selection

Feature selection was performed using LASSO regression with

5-fold cross-validation to identify the most relevant predictors

from the initial set of 43 variables. The optimal regularization

parameter (lambda) was selected based on the minimum cross-

validated error (lambda = 0.02). This process retained 17

variables with non-zero coefficients, including clinical scores

(LODS, OASIS, SOFA), treatment procedures (CABG), vital signs

(DBP, SBP, heart rate), laboratory parameters (ALP, AST,

albumin, creatinine, glucose, sodium, BUN, hemoglobin), and

demographic/clinical characteristics (age, BMI, LOS in

ICU, CKD, hypertension, TyG index) (Figure 2). The

corresponding coefficients for these predictors are presented in

Supplementary Table S3.

Univariate logistic regression analysis of these variables

revealed that 12 variables were significantly associated with AKI

risk (p < 0.05). Subsequent multivariate logistic regression

analysis identified 8 independent predictors of AKI, including

TyG index, BUN, SOFA score, LOS in ICU, age, albumin,

sodium, and SBP (Table 2). Among these, the TyG index

demonstrated the strongest association with AKI risk, with each

unit increase associated with a 31% higher risk of AKI (OR: 1.31,

95% CI: 1.07–1.60, p = 0.01). The full results of the multivariate

analysis, including odds ratios (ORs) and 95% confidence

intervals (CIs) for all predictors, are presented in Table 2.

To evaluate the relationship between the TyG index and the

risk of AKI, restricted cubic spline (RCS) analysis with four

equally spaced knots was performed. The likelihood ratio test

comparing the linear and spline models showed no evidence of

nonlinearity (P for nonlinearity = 0.5094), indicating a linear

association between TyG and AKI risk. Therefore, TyG was

modeled as a continuous linear variable in the final prediction

model (Supplementary Figure S1).
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3.3 Model development and validation

Based on the results of multivariate logistic regression, a

nomogram was constructed to estimate the risk of acute kidney

injury (AKI) in ICU patients. The initial model incorporated

eight independent predictors, including age, Sodium, albumin,

LOS_ICU, heart rate, BUN, SBP, and the TyG index. To avoid

potential reverse causality between LOS_ICU and the

development of AKI, since AKI may itself prolong ICU stay, we

excluded LOS_ICU from the final predictive model. To assess the

potential impact of excluding LOS_ICU, we compared the

predictive performance of the final model with and without this

variable. The results showed no statistically significant difference

in AUC across training, internal validation, and external

validation cohorts. Detailed comparison results are provided in

Supplementary Table S4. Each variable was assigned a point

value proportional to its contribution, and the total score was

mapped to the corresponding probability of AKI. This graphical

tool provides an intuitive and practical means for individualized

risk assessment and clinical decision-making (Figure 3). To

further facilitate clinical use, we plan to convert the content of

Figure 3 into a list of point values and include it in the

Supplementary Table S5.

The predictive performance of the TyG model was evaluated

using the area under the receiver operating characteristic curve

(AUC). In the training cohort, the model exhibited excellent

discrimination, with an AUC of 0.85 (95% CI: 0.82–0.88). This

performance was maintained in the internal validation cohort,

with an AUC of 0.83 (95% CI: 0.78–0.87), and further confirmed

in the external validation cohort, achieving an AUC of 0.81 (95%

CI: 0.78–0.83), indicating good generalizability (Figure 4). The

detailed classification performance of the TyG model across

different cohorts is presented in Table 3. In the training cohort,

the model demonstrated robust predictive capability, achieving a

recall of 0.88, precision of 0.83, and an F1 score of 0.85, with an

overall accuracy of 0.79. These performance metrics remained

consistent in the internal validation cohort (recall = 0.87, F1

score = 0.86, precision = 0.84) and the external validation cohort

(recall = 0.84, F1 score = 0.86, precision = 0.84), indicating stable

performance across different populations.

The calibration curve was used to assess the agreement

between predicted probabilities and observed outcomes. In the

training set (n = 858), the mean absolute error (MAE) was

0.024 with a Hosmer-Lemeshow χ2 = 5.07 (p = 0.749),

indicating no significant deviation from perfect calibration.

This was confirmed in the validation cohorts (internal:

MAE = 0.015, χ
2 = 2.74, p = 0.783; external: MAE = 0.023,

χ2 = 4.42, p = 0.357) (Figure 5).

Twelve patients were identified who died before the onset of

AKI. After excluding these patients, the model was re-applied,

and AUC values showed no significant change (Training cohort:

0.854 vs. Adjusted cohort: 0.849, p = 0.7921). This indicates the

model’s discrimination was not sensitive to early mortality bias

(shown in Supplementary Table S6).

FIGURE 1

Study population flowchart and cohort selection. (A) Patients select from MIMIC-IV databases for model training and internal validation sets. (B)

Patients select from e-ICU database for external validation set. MIMIC-IV, medical information mart for intensive care-IV; eICU-CRD, eICU-

Collaborative Research database.
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TABLE 1 Baseline characteristics in the training and internal validation cohort.

Variables Training cohort Internal validation cohort

Total
(n = 858)

Non-AKI
(n = 250)

AKI
(n = 608)

p-value Total
(n = 369)

Non-AKI
(n = 99)

AKI
(n = 270)

p-value

Demographic

Age, year 67.21 ± 12.32 66.34 ± 12.43 67.57 ± 12.27 0.186 67.18 ± 13.26 65.18 ± 12.92 67.91 ± 13.34 0.076

Gender, n (%) 0.201 0.596

Female 262 (31) 68 (27) 194 (32) 114 (31) 28 (28) 86 (32)

Male 596 (69) 182 (73) 414 (68) 255 (69) 71 (72) 184 (68)

BMI, kg/m2 29.35 ± 6.92 28.24 ± 5.96 29.81 ± 7.23 0.001 29.42 ± 6.33 28.87 ± 5.46 0.266

Race, n (%) 0.06 0.655

White 483 (56) 147 (59) 336 (55) 221 (60) 57 (58) 164 (61)

Black 47 (5) 13 (5) 34 (6) 21 (6) 8 (8) 13 (5)

Asian 32 (4) 15 (6) 17 (3) 5 (1) 1 (1) 4 (1)

Other 296 (34) 75 (30) 221 (36) 122 (33) 33 (33) 89 (33)

Vital sign

Heart rate, b/s 82.87 ± 14.83 80.33 ± 14.04 83.92 ± 15.02 <0.001 82.09 ± 13.55 82.52 ± 13.71 81.94 ± 13.52 0.721

SBP, mmHg 113.98 ± 15.35 117.62 ± 15.28 112.49 ± 15.14 <0.001 113.99 ± 15.05 115.95 ± 15.88 113.27 ± 14.7 0.144

DBP, mmHg 64.25 ± 10.87 66.99 ± 11.06 63.12 ± 10.59 <0.001 63.31 ± 11.22 66.13 ± 10.51 62.28 ± 11.31 0.003

Laboratory tests

Tg, mg/dl 115 (84, 168.75) 108.5 (80, 160.75) 117 (85, 171) 0.031 114 (82, 169) 114 (76, 169.5) 115.5 (83.5, 168.5) 0.697

Glucose, mg/dl 139 (112, 190) 126 (107, 162.75) 146 (115, 198) <0.001 141 (114, 203) 132 (106, 164) 144 (117, 210) 0.013

TyG, (mg/dl)2 9.12 ± 0.77 8.95 ± 0.69 9.2 ± 0.79 <0.001 9.13 ± 0.79 9 ± 0.77 9.18 ± 0.79 0.059

Creatinine, mg/dl 1.0 (0.8, 1.5) 0.9 (0.8, 1.2) 1.1 (0.8, 1.7) <0.001 1.1 (0.8, 1.4) 0.9 (0.8, 1.3) 1.1 (0.9, 1.5) 0.024

BUN, mg/dl 19 (14, 30) 17 (13, 23) 20 (15, 32) <0.001 20 (15, 30) 18 (13.5, 30) 20 (15.25, 30) 0.09

Albumin, g/dl 3.48 ± 0.6 3.73 ± 0.44 3.38 ± 0.63 <0.001 3.49 ± 0.58 3.7 ± 0.47 3.41 ± 0.6 < 0.001

INR, s 1.2 (1.1, 1.4) 1.2 (1.1, 1.4) 1.2 (1.1, 1.4) 0.027 1.2 (1.1, 1.5) 1.2 (1.1, 1.4) 1.3 (1.1, 1.5) 0.134

PT, s 13.4 (12.3, 15.5) 13.1 (12.22, 14.78) 13.55 (12.4, 15.7) 0.013 13.5 (12.5, 16.1) 13.3 (12.35, 15) 13.75 (12.5, 16.38) 0.101

PTT, s 37.4 (29.42, 62.27) 38.2 (30, 60.95) 37.15 (29, 62.73) 0.526 37.2 (29, 61.5) 37.2 (29.75, 62.6) 37.15 (28.9, 61.45) 0.753

ALT, IU/L 33 (22, 66) 30 (22, 55) 34 (22, 76.25) 0.01 33 (22, 65) 30 (23.5, 48) 34 (22, 89) 0.066

AST, IU/L 62 (33, 147) 56 (32.25, 103.75) 62 (33, 174) 0.047 65 (32, 134) 54 (32, 98) 72 (33, 164.75) 0.011

ALP, IU/L 76 (63, 99.75) 74 (60, 85) 78 (64, 106.25) 0.002 76 (63, 99) 76 (62, 89.5) 77.5 (64, 104.75) 0.117

CK-MB, n (%) 0.046 0.348

<3 40 (5) 8 (3) 32 (5) 19 (5) 4 (4) 15 (6)

>18 326 (38) 108 (43) 218 (36) 150 (41) 36 (36) 114 (42)

3–6 72 (8) 12 (5) 60 (10) 39 (11) 12 (12) 27 (10)

6–18 129 (15) 39 (16) 90 (15) 44 (12) 17 (17) 27 (10)

Missing 291 (34) 83 (33) 208 (34) 117 (32) 30 (30) 87 (32)

Sodium, mEq/L 138 (135, 140) 137.5 (135,139) 138 (135, 141) 0.015 138 (136, 140) 138 (135, 139) 138 (136, 140) 0.106

Calcium, mEq/L 8.52 ± 0.8 8.67 ± 0.72 8.46 ± 0.82 <0.001 8.5 ± 1.03 8.64 ± 0.77 8.44 ± 1.11 0.056

Chloride, mEq/L 102.97 ± 5.46 102.81 ± 4.74 103.03 ± 5.74 0.564 102.49 ± 5.87 101.99 ± 5.41 102.67 ± 6.02 0.304

Potassium, mEq/L 4.31 ± 0.66 4.23 ± 0.61 4.34 ± 0.67 0.026 4.3 ± 0.71 4.26 ± 0.72 4.31 ± 0.7 0.549

Bicarbonate, mmol/

L

22.06 ± 4.29 22.65 ± 3.34 21.82 ± 4.6 0.003 22.44 ± 4.65 22.9 ± 3.87 22.27 ± 4.9 0.198

WBC, K/μl 13.17 ± 5.79 12.18 ± 5.86 13.59 ± 5.72 0.001 13.57 ± 15.24 11.78 ± 3.91 14.22 ± 17.62 0.033

RBC, K/μl 3.79 ± 0.73 3.9 ± 0.7 3.75 ± 0.74 0.004 3.79 ± 0.75 3.97 ± 0.77 3.73 ± 0.73 0.008

Hemoglobin, g/dl 11.39 ± 2.17 11.66 ± 2.09 11.28 ± 2.19 0.017 11.4 ± 2.22 11.79 ± 2.27 11.26 ± 2.19 0.044

Platelet, K/μl 192.4 (149.57,

245.75)

204.8 (171.62,

253.7)

186.5 (144.5,

241.77)

<0.001 199 (149, 246.5) 209 (171.5,

264.5)

194.6 (145.25,

237.4)

0.032

Severity scores

SAPS II 38.17 ± 15.15 30.58 ± 11.02 41.29 ± 15.51 <0.001 37.14 ± 14.78 30.17 ± 12.67 39.7 ± 14.7 < 0.001

SOFA 4.9 ± 3.66 2.86 ± 2.67 5.74 ± 3.68 <0.001 4.8 ± 3.64 3 ± 2.88 5.47 ± 3.67 < 0.001

SIRS 2.61 ± 0.94 2.33 ± 0.99 2.73 ± 0.89 <0.001 2.6 6 ± 0.94 2.42 ± 0.99 2.75 ± 0.91 0.003

APS III 44.85 ± 23.36 33.7 ± 15.86 49.43 ± 24.4 <0.001 45.47 ± 23.83 36.74 ± 19.18 48.67 ± 24.59 < 0.001

OASIS 32.13 ± 9.21 27.05 ± 6.99 34.22 ± 9.21 <0.001 32.37 ± 8.9 28.02 ± 7.83 33.96 ± 8.74 <0.001

LODS 4.99 ± 3.36 2.99 ± 2.27 5.82 ± 3.39 <0.001 4.96 ± 3.18 3.3 ± 2.41 5.56 ± 3.22 <0.001

Comorbidities

CKD, n (%) 229 (27) 54 (22) 175 (29) 0.038 102 (28) 22 (22) 80 (30) 0.201

COPD, n (%) 88 (10) 16 (6) 72 (12) 0.024 48 (13) 10 (10) 38 (14) 0.406

(Continued)
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3.4 Comparative analysis of TyG and non-
TyG models

The incremental predictive value of the TyG model was

assessed using both the net reclassification index (NRI) and

integrated discrimination improvement (IDI). In the training

cohort, the model demonstrated substantial improvements, with

an NRI of 0.224 (95% CI: 0.160–0.287) and IDI of 0.112 (95%

CI: 0.094–0.129). These improvements remained statistically

significant in the internal validation cohort (NRI = 0.183, 95%

CI: 0.083–0.282; IDI = 0.087, 95% CI: 0.062–0.112). The TyG

model demonstrated statistically significant incremental predictive

value compared to the non-TyG model in the external validation

cohort (NRI = 0.033, 95% CI: 0.013–0.054; IDI = 0.006, 95% CI:

0.003–0.008), with smaller effect sizes than observed in the

training cohort. The complete results are presented in Table 4.

The TyG model demonstrated statistically significant

incremental predictive value compared to the non-TyG model

across all evaluation cohorts. In the training cohort, the AUC

improved from 0.77 (95% CI: 0.73–0.80) to 0.85 (0.82–0.88;

p < 0.001), with corresponding enhancements in recall (0.90 vs.

0.85) and precision (0.84 vs. 0.78). This performance advantage

persisted in internal validation (AUC 0.83 vs. 0.76, p < 0.001) and

remained statistically significant in external validation (AUC 0.81

vs. 0.76, p = 0.032), though with attenuated effect sizes

(Figures 6A–C; Table 3).

Decision curve analysis revealed differential net benefit profiles

between the models across cohorts (Figures 6D–F). In the training

TABLE 1 Continued

Variables Training cohort Internal validation cohort

Total
(n = 858)

Non-AKI
(n = 250)

AKI
(n = 608)

p-value Total
(n = 369)

Non-AKI
(n = 99)

AKI
(n = 270)

p-value

Hypertension,

n (%)

458 (53) 138 (55) 320 (53) 0.542 187 (51) 53 (54) 134 (50) 0.584

Diabetes, n (%) 270 (31) 65 (26) 205 (34) 0.033 135 (37) 37 (37) 98 (36) 0.945

Treatment measures

PCI, n (%) 65 (8) 24 (10) 41 (7) 0.195 21 (6) 5 (5) 16 (6) 0.946

CABG, n (%) 232 (27) 64 (26) 168 (28) 0.6 88 (24) 20 (20) 68 (25) 0.391

RRT, n (%) 95 (11) 10 (4) 85 (14) <0.001 37 (10) 7 (7) 30 (11) 0.342

Outcome

LOS in hospital 9.8 (4.97, 17.68) 6.16 (2.98, 10.87) 11.71 (6.84, 20.22) <0.001 9.6 (5.38, 15.69) 7.53 (3.1, 11.84) 10.46 (6, 17.36) <0.001

LOS in ICU 2.64 (1.31, 5.92) 1.21 (0.88, 1.94) 3.66 (2.01, 8.54) <0.001 2.87 (1.32, 6.71) 1.21 (0.94, 2.22) 4.04 (1.98, 8.12) <0.001

28-death, n (%) 134 (16) 12 (5) 122 (20) <0.001 57 (15) 7 (7) 50 (19) 0.010

Values are mean ± SD, n (%), or median (IQR). RBC, red blood cell; WBC, white blood cell; ALT, aspartate aminotransferase; AST, aspartate aminotransferase; CK-MB, Creatine kinase

isoenzyme MB; ALP, Alkaline phosphatase; BUN, blood urea nitrogen; FBG, fasting blood glucose; TG, triglyceride; INR, International Normalized Ratio; PT, prothrombin time; PTT,

partial prothrombin time. BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease;

PCI, percutaneous coronary intervention; CABG, coronary artery bypass grafting; RRT, renal replacement therapy; LOS, length of stay.

FIGURE 2

LASSO regression for variable selection with 5-fold cross-validation. (A) LASSO regression cross-validation curve. The optimal λ value was selected

using 5-fold cross-validation in training cohort. (B) Path diagram of the LASSO coefficients. Each curve illustrates the trajectory of the coefficients

for each variable as λ changes. The vertical axis represents the coefficient values, the lower horizontal axis shows log(λ), and the upper horizontal

axis indicates the number of non-zero variables included in the model at each λ value.
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cohort, the TyG model demonstrated superior net benefit at lower

risk thresholds (22%–45% probability range), while both models

achieved comparable utility above 45% risk probability. This

pattern persisted in internal validation, with the TyG model

maintaining an advantage in the 25%–45% threshold range.

Notably, in external validation, the net benefit curves of both

TABLE 2 Univariate and multivariate regression analysis of
screening variables.

Variables Univariate analysis Multivariate analysis

OR 95% CI P value OR 95% CI P value

Age 1.01 1–1.02 0.037 1.01 1–1.03 0.036

Sodium 1.03 1–1.06 0.025 1.06 1–1.17 0.041

Creatinine 1.06 0.97–1.16 0.202

Albumin 0.31 0.24–0.41 <0.001 0.82 0.78–0.98 0.042

BUN 1.01 1–1.02 0.005 1.21 1.08–1.32 <0.001

AST 1.01 1.01–1.03 <0.001 1.01 0.91–1.05 0.184

ALP 1.02 0.98–1.04 0.45

Heart rate 1.01 1–1.02 0.01 0.97 0.95–1.01 0.109

SBP 0.98 0.97–0.99 <0.001 0.99 0.98–1.0 0.104

Hemoglobin 0.91 0.86–0.97 0.002 1.05 0.97–1.15 0.215

SOFA 1.33 1.27–1.4 <0.001 1.11 1.03–1.2 0.006

OASIS 1.11 1.09–1.13 <0.001 1.02 0.99–1.05 0.145

LODS 1.42 1.34–1.51 <0.001 1.15 1.04–1.27 0.008

CKD 1.47 1.1–1.97 0.01 1.41 0.97–2.06 0.074

CABG 1.16 0.87–1.55 0.312

Hypertension 0.89 0.69–1.14 0.339

TyG 1.49 1.25–1.76 <0.001 1.32 1.06–1.64 0.012

Glucose 1.01 1–1.02 0.044 0.91 0.86–1.07 0.195

LOS in ICU 1.67 1.52–1.84 <0.001 1.53 1.39–1.7 <0.001

OR, odds ratio; CI, confidence interval.

FIGURE 3

Nomogram for predicting the risk of AKI in patients with AMI.

FIGURE 4

ROC analysis of the nomogram model in training, internal validation,

and external validation cohorts.
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models converged completely, showing identical clinical utility

across all decision thresholds (55%–100%).

4 Discussion

AKI is one of the most frequent complications of AMI, often

occurring early during hospitalization and significantly worsening

both short- and long-term outcomes (20). However, current

diagnostic criteria rely on delayed changes in serum creatinine or

urine output, limiting timely clinical intervention. Therefore,

accurate and early clinical prediction models are urgently needed

to guide risk stratification in AMI patients.

In this study, we developed and validated a prognostic

nomogram to predict AKI risk in patients with AMI. To our

knowledge, this is the first study to incorporate the TyG index

into an AKI prediction model specifically designed for AMI

patients. This novel integration highlights the potential clinical

utility of TyG as an early metabolic marker for renal risk

stratification in the setting of acute cardiovascular events. As a

novel and practical surrogate marker of insulin resistance (IR),

the TyG index may capture early metabolic disturbances that

precede overt renal dysfunction.

IR is increasingly recognized as a central pathophysiological

factor linking cardiometabolic disorders with renal impairment

(8, 9). It contributes to atherogenic dyslipidemia, characterized

by elevated triglycerides, reduced high-density lipoprotein (HDL),

and increased small dense low-density lipoprotein (LDL)

particles. These lipid abnormalities promote oxidative stress and

endothelial dysfunction, impairing vasodilatory capacity and

facilitating vascular inflammation (21). Endothelial dysfunction

subsequently disrupts the regulation of renal perfusion and

filtration, increasing the susceptibility to AKI during

hemodynamic insults such as AMI.

Additionally, IR-induced hyperglycemia upregulates the

expression of angiotensinogen, angiotensin-converting enzyme

(ACE), and angiotensin II, leading to overactivation of the renin–

angiotensin–aldosterone system (RAAS). This activation

promotes systemic vasoconstriction, sodium retention, and

intraglomerular hypertension, thereby increasing renal

hemodynamic stress and accelerating nephron injury (22). In

parallel, concurrent hyperinsulinemia further stimulates the

mitogen-activated protein kinase (MAPK) signaling pathway,

which exacerbates local inflammation, vascular remodeling, and

tubular injury in renal tissues (23). These converging processes

TABLE 3 Performance comparison of TyG and non-TyG models across training, internal validation and external validation cohorts.

Model Cohorts AUC Recall F1 score Accuracy Precision P value

TyG Training 0.85 0.88 0.85 0.79 0.83 <0.001

Internal validation 0.83 0.87 0.86 0.79 0.84 <0.001

External validation 0.81 0.84 0.86 0.78 0.84 0.032

non-TyG Training 0.77 0.89 0.83 0.75 0.78 -

Internal validation 0.76 0.86 0.86 0.77 0.78 -

External validation 0.76 0.85 0.83 0.76 0.80 -

FIGURE 5

Calibration curves of the predictive model for AKI in AMI patients. (A) Training cohort, (B) Internal validation cohort, (C) External validation cohort. The

closer the calibration curve is to the diagonal line, the better the agreement between predicted and observed outcomes.

TABLE 4 Comparison of the non-TyG and TyG models through NRI and
IDI.

Cohorts NRI 95% CI P
value

IDI 95% CI P
value

Trainning

validation

0.224 0.160,

0.287

<0.01 0.112 0.094,

0.129

<0.01

Internal

validation

0.183 0.083,

0.282

<0.01 0.087 0.064,

0.112

<0.01

External

validation

0.033 0.013,

0.054

0.001 0.006 0.003,

0.008

<0.01
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create a pro-inflammatory and pro-fibrotic milieu that underlies

both acute and chronic kidney injury.

Together, these mechanisms provide a robust

pathophysiological foundation for the role of IR in endothelial

injury, organ dysfunction, and the development of AKI,

particularly in patients with AMI. Although the homeostasis

model assessment of insulin resistance (HOMA-IR) is widely

used to estimate insulin resistance in clinical and research

settings, its application is limited by the need for fasting insulin

measurements and relatively complex procedures (24). In

contrast, the TyG index provides a simpler and more

reproducible surrogate, with multiple studies demonstrating

comparable predictive performance to HOMA-IR in assessing

metabolic and cardiovascular risks (25–27). These advantages

make the TyG index a practical alternative for routine clinical use.

In this study, we implemented LASSO-based predictor

selection to identify robust clinical variables from high-

dimensional data, followed by univariate and multivariate

validation. This process selected the TyG index and seven

additional clinically interpretable predictors for the final model.

Our findings align with numerous multicenter studies

demonstrating the TyG index’s predictive value for AKI across

clinical scenarios. Recent analyses validate elevated AKI risks

with higher TyG levels in diabetic and hypertensive critically ill

populations (28, 29). Similarly, Zhang et al. (30). demonstrated

that higher TyG index significantly increased AKI risk in 1,501

coronary artery disease patients (HR 1.62, 95% CI 1.15–2.27),

with even stronger associations in non-diabetic subgroups. In

addition, a large cohort study of 1,426 septic patients further

supported the prognostic value of TyG, showing significant

associations with both sepsis-associated AKI risk (OR 1.40, 95%

CI 1.14–1.73) and extended length of hospital stay (β = 1.79

days) (29). Given the consistent evidence linking elevated TyG

levels with AKI risk in diverse populations, including patients

with diabetes, coronary artery disease, and sepsis, the inclusion

of the TyG index in our predictive model is both biologically

plausible and clinically justified. In our study cohort of AMI

patients, the TyG index remained an independent predictor of

AKI after adjustment for confounding factors, suggesting that its

predictive value extends beyond its role as a marker of metabolic

dysfunction. These results provide a strong rationale for selecting

the TyG index as a key variable in predictive model construction.

In addition to the TyG index, our model incorporates seven

other variables that have demonstrated independent associations

with AKI in prior studies. These predictors were selected not

only for their statistical significance, but also for their established

links to renal pathophysiology. Each variable reflects a distinct

clinical domain relevant to AKI risk and has been previously

FIGURE 6

Comparison of TyG and non-TyG models using ROC and DCA across datasets. (A–C) ROC curve comparisons between the TyG model and the non-

TyG model in the training cohort (A), internal validation cohort (B), and external validation cohort (C–F) DCA comparing the net clinical benefits of the

TyG model and non-TyG model across varying threshold probabilities in the training (D), internal validation (E), and external validation (F) cohorts.
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associated with adverse renal outcomes in critically ill or

cardiovascular populations. Elevated blood urea nitrogen (BUN)

is a well marker of renal dysfunction, reflecting impaired

nitrogenous waste excretion and reduced glomerular filtration

rate (31). In patients with myocardial infarction, sustained renal

hypoperfusion due to low cardiac output or hypotension leads to

acute kidney injury (32), where BUN elevation may better reflect

the severity of renal dysfunction compared to serum creatinine

or eGFR measurements (33). Low albumin has been consistently

identified as an independent risk factor for AKI, as it contributes

to reduced oncotic pressure, increased vascular permeability, and

systemic inflammation, thereby promoting renal hypoperfusion

and tubular injury (13, 34). The Sequential Organ Failure

Assessment (SOFA) score reflects the overall severity of organ

dysfunction. Its association with AKI has been widely reported,

with higher scores indicating an increased systemic burden and a

higher risk of renal impairment in AMI (13, 35). Length of ICU

stay (LOS_ICU) reflects illness severity and is associated with

prolonged exposure to nephrotoxic medications, hemodynamic

instability, and cumulative intervention burden, all of which are

established risk factors for AKI development (5). Serum sodium

levels, particularly in the context of hyponatremia or

dysnatremia, have been associated with poor renal outcomes.

These disturbances may reflect underlying fluid imbalance,

neurohormonal dysregulation, or renal salt-wasting, all of which

are relevant to AKI pathogenesis (36). Our model consistently

identified age as an independent predictor of AKI, aligning with

established clinical evidence of increased risk in older

populations (37). This association likely reflects progressive age-

related declines in renal functional reserve and vascular

compliance. Consistent with our findings, several studies have

established the relationship between SBP and AKI occurrence

across various clinical contexts (32, 38). This underscores the

importance of maintaining optimal perfusion pressure in

critically ill patients. Transient hypotensive episodes may

compromise renal perfusion, initiating a cascade of events that

ultimately lead to AKI development (39). By integrating

these clinically relevant and biologically plausible variables, our

model adopts a multidimensional perspective that encompasses

metabolic, immune status, hemodynamic, and organ function

domains. This comprehensive approach enhances its clinical

utility for early identification of patients at risk for AKI

following AMI, allowing timely preventive strategies and

targeted interventions.

Our model incorporating the TyG index demonstrated strong

discriminative performance, with AUC values of 0.85 in the

training cohort, 0.83 in the internal validation cohort, and 0.80

in the external validation cohort. The slight decrease in AUC in

the external cohort (0.80 vs. 0.83 in internal validation) may

reflect inherent heterogeneity between populations, such as

differences in baseline characteristics, regional treatment

protocols, or data collection methods. Future studies should

further explore these factors to enhance model generalizability.

Several existing models have attempted to predict AKI following

AMI, but most are limited by either lack of external validation or

reliance on late-occurring variables. For instance, the study by

Xun W et al. (40) developed a model incorporating eGFR,

hemoglobin, sodium, bicarbonate, total bilirubin, age, diabetes,

and heart failure, achieving a relatively high AUC of 0.86.

However, the model was developed and validated in a single-

center cohort without external validation, raising concerns about

its generalizability. Similarly, the widely used Mehran score (41)

was specifically designed for PCI populations and includes post-

procedural variables such as contrast volume and hypotension,

limiting its applicability in AMI patients who do not undergo

PCI or require early risk stratification. In contrast, the model

proposed by Bo X et al. (42), with an AUC of 0.76, included

factors such as in-hospital shock and maximum furosemide

dosage, which occur later during hospitalization and are thus less

suitable for early AKI prediction.

To evaluate the incremental predictive performance of the TyG

index, we compared the TyG and non-TyG models across the

training, internal validation, and external validation cohorts. The

TyG model consistently demonstrated superior discriminative

ability, with significantly higher AUC values across all cohorts

(p < 0.05). To further quantify the improvement in risk

prediction, we performed Net Reclassification Improvement

(NRI) and Integrated Discrimination Improvement (IDI)

analyses. The TyG model yielded significantly positive NRI and

IDI values in all cohorts, particularly in the training (NRI:

0.2238; IDI: 0.1115) and internal validation (NRI: 0.1421; IDI:

0.0949) cohorts, indicating substantial improvements in risk

classification and discrimination. Although the NRI and IDI

remained statistically significant in the external validation cohort,

the magnitude of improvement (NRI: 0.0302; IDI: 0.0058) was

modest. In accordance with these results, decision curve analysis

(DCA) demonstrated greater clinical net benefit for the TyG-

based model in the training and internal validation sets, whereas

the benefit was less pronounced in the external cohort. These

results underscore the added value of the TyG index in early

AKI risk stratification, but also highlight the need for further

external validation in diverse populations and prospective

settings to confirm its generalizability and real-world

clinical utility.

5 Study limitation

This study has several limitations. First, due to its retrospective

design, residual confounding cannot be entirely ruled out, despite

adjustment for multiple clinically relevant variables. Some

important factors such as nephrotoxic drug exposure, fluid

balance, and medication use were not consistently available in

the databases. Second, the TyG index was calculated from a

single fasting measurement upon ICU admission, which may not

fully reflect dynamic metabolic changes during hospitalization.

Third, the use of enteral or parenteral nutrition during

hospitalization may influence lipid and glucose metabolism,

potentially resulting in an elevated TyG index. Although this

effect cannot be entirely excluded, the large sample size in our

study likely attenuates its overall impact. Further investigations

are needed to elucidate the mechanisms linking insulin resistance
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to acute kidney injury in patients with acute myocardial infarction.

Fourth, CK-MB, a clinically important marker of myocardial

infarction severity, had a missing rate of 33.3%. We categorized

CK-MB into clinically meaningful intervals and treated missing

values as a separate category rather than performing multiple

imputation. While this approach preserved the variable’s

predictive value without unverifiable assumptions about the

missing data mechanism, it may still introduce residual bias.

Future studies with more complete data are warranted to address

this issue. Fifth, the AKI assessments in the MIMIC-IV database

begin at ICU admission, and no pre-ICU AKI status was

recorded. Thus, we could not determine whether some patients

had already developed AKI before ICU entry, which may have

introduced misclassification bias. Additionally, the possibility of

pseudo-worsening of renal function in AKI patients cannot be

excluded. This is often related to the use of nephrotoxic drugs or

negative fluid balance, which were not fully captured in our

dataset. These factors may have contributed to AKI

misclassification and residual confounding, and should be taken

into consideration when interpreting our findings. Finally, while

the model showed good discrimination and calibration across all

cohorts, its real-world clinical utility remains to be validated in

prospective settings.

6 Conclusion

Our study developed and externally validated a novel

nomogram incorporating the TyG index for predicting AKI in

patients with AMI. The model demonstrated robust

discriminative ability, strong clinical utility, and excellent

generalizability across multiple cohorts. The integration of the

TyG index as a surrogate of insulin resistance highlights its

potential role in early AKI risk stratification and personalized

patient management.
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