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Background: Acute kidney injury (AKI) is a life-threatening complication in
patients with acute myocardial infarction (AMI), leading to increased morbidity
and mortality. Early prediction of high-risk patients remains a clinical challenge.
Methods: We developed and validated a predictive model for AKI using data from
two large critical care databases: MIMIC-IV (n = 1,227) and elCU (n = 1,954). Least
absolute shrinkage and selection operator (LASSO) regression and multivariable
logistic regression were applied to identify independent predictors. A nomogram
was constructed incorporating the triglyceride-glucose (TyG) index and
clinical variables.

Results: Seven predictors were included in the final model: TyG index, blood
urea nitrogen (BUN), SOFA score, age, serum sodium, serum albumin and
systolic  blood pressure (SBP). The model demonstrated excellent
discrimination with area under the curve (AUC) values of 0.85 in the training
cohort, 0.83 in the internal validation cohort and 0.81 in the external
validation cohort. Decision curve analysis showed clinical usefulness across a
wide range of risk thresholds (22%—-45%). The TyG index was independently
associated with increased AKI risk (odds ratio 1.31; 95% ClI: 1.07-1.60). The
model also showed improved risk reclassification (net reclassification index:
0.22; p<0.001).

Conclusion: The TyG-based nomogram provides a practical and accurate tool
for early prediction of AKI in AMI patients. By integrating metabolic,
hemodynamic, and organ dysfunction markers, this model enables
multidimensional risk stratification and may support timely preventive
strategies in the ICU setting.
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1 Introduction

Despite significant advancements in pharmacological and
interventional therapies over the past decades, acute myocardial
infarction (AMI) remains a leading cause of morbidity and
mortality worldwide (1). Acute kidney injury (AKI) is a common
and serious complication in patients with acute myocardial
infarction (AMI), with an incidence reaching 59% in hospitalized
patients (2). The development of AKI in patients with AMI not
only prolongs hospitalization and increases healthcare costs, but
also independently associated with higher short- and long-term
mortality (3, 4). Moreover, AKI may cause lasting renal
dysfunction and even progress to chronic kidney disease, thereby
increasing the long-term healthcare burden, even in patients who
initial event (5).
diagnostic criteria for AKI often require either baseline serum

recover from the However, the current
creatinine levels or urine output monitoring over a minimum of
6 h, both of which may delay diagnosis in acute care settings. As
a result, patients frequently miss the optimal window for
therapeutic intervention. Therefore, early identification of high-
risk patients and implementation of preventive interventions are
crucial for reducing AKI incidence and improving clinical
outcomes in AMI patients. The development of predictive
models based on novel biomarkers or machine learning
algorithms represents a critical breakthrough for early AKI
in AMI Although

pathophysiological mechanisms underlying AKI in patients with

identification patients. the underlying
acute myocardial infarction (AMI) are not yet fully elucidated,
emerging evidence suggests that the triglyceride-glucose (TyG)
index may offer new perspectives for AKI prediction.

TyG index serves as a clinically validated surrogate marker for
insulin resistance (IR), which is pathophysiologically defined as a
state of diminished insulin sensitivity in key metabolic tissues
including the liver, skeletal muscle, and adipose tissue, ultimately
leading to impaired glucose uptake and utilization (6). Beyond its
established role in diabetes prediction where it outperforms
conventional blood glucose measurements (7), this metabolic
disturbance exerts broader systemic effects by disrupting
homeostatic balance. Specifically, IR contributes to cardiovascular
and renal pathophysiology through multiple interconnected
mechanisms such as chronic low-grade inflammation, endothelial
cell dysfunction, and dysregulated lipid metabolism (8, 9). These
observations provide a mechanistic foundation for investigating
the TyG index as a potential predictor of AKI risk in the AMI
population. In recent vyears, the TyG index has garnered
significant attention due to its outstanding predictive capabilities,
particularly in identifying risks associated with metabolic and
cardiovascular conditions, as well as its ability to stratify
mortality risk in critically ill patients across diverse clinical
scenarios (10-12). However, despite the growing interest in the
TyG index, there is still a lack of comprehensive, clinically
applicable tools for predicting AKI in AMI patients. Insulin
resistance, as quantified by the TyG index, is influenced by
multiple interacting factors including metabolic abnormalities
such as renal

dyslipidemia, hemodynamic alterations like

hypoperfusion, and systemic inflammation. This complex
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pathophysiology is supported by recent mechanistic studies (13).
Although previous studies have evaluated effect modification by
hypertension, diabetes, age, and sex through stratified analyses
(10), residual confounding may persist due to unadjusted factors
such as medication use and comorbidities. These limitations
highlight the need for broader validation across diverse clinical
populations. Furthermore, although a TyG index value exceeding
9.2 has demonstrated prognostic significance in observational
studies (14), this dichotomous cutoff has limited clinical utility.
In practice, clinicians require probabilistic risk estimation rather
than binary classification, as the same TyG value may correspond
to different absolute AKI risks depending on additional factors
such as left ventricular function and baseline kidney status.
Therefore, there is a pressing need to integrate multiple clinical
factors with biomarkers like the TyG index to develop a more
accurate and practical predictive model.

This study aims to develop and validate a nomogram for
predicting AKI in acute myocardial infarction patients using the
TyG index in combination with other clinical variables. By
incorporating both easily accessible clinical factors and the TyG
index, this model could provide clinicians with a valuable tool
for early risk stratification, allowing for timely interventions and
potentially improving patient outcomes. Using data from the
MIMIC-IV database of critically ill patients, we will employ
advanced statistical techniques to develop and validate the
nomogram, ensuring its robustness and clinical applicability. The
development of a TyG-enhanced nomogram could improve
clinical practice by providing a more accurate and user-friendly
tool for early AKI prediction, ultimately reducing the incidence
of AKI and improving patient outcomes.

2 Methods
2.1 Data source

We utilized data from two large, open-source databases:
Medical Information Mart for Intensive Care IV (MIMIC-IV)
version 3.1 (15) and eICU-Collaborative Research database
(eICU-CRD) version 2.0 (16). MIMIC-IV 3.1 extends its
predecessor (version 2.0) by including ICU admissions from
2020 to 2022, expanding the total patient population to over
94,000. Maintained by the Beth Israel Deaconess Medical Center,
this database has become a widely utilized resource in critical
care research (17). The eICU Collaborative Research Database is
a multi-center database comprising deidentified health data
associated with over 200,000 admissions to ICUs across the
United States between 2014 and 2015. The author (Qiang Meng)
completed the National Institutes of Health (NIH) web-based
training course, “Protecting Human Research Participants”
(certification number: 56251014), as required for data access.
Ethical approval was obtained from the Institutional Review
Boards of the Massachusetts Institute of Technology (Cambridge,
MA, USA) and the Beth Israel Deaconess Medical Center, with a
waiver of informed consent due to the retrospective nature of the
study and the use of deidentified data.
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2.2 Patient selection

Patients were included if they met the following criteria: (1)
Admission to the intensive care unit (ICU) with a primary
diagnosis of acute myocardial infarction (AMI); (2) Availability
of fasting triglyceride and glucose measurements within 24 h of
ICU admission for TyG index calculation, using the formula:
TyG index = an; (3) Age >18 years; (4) ICU
length of stay >24 h. Patients were excluded if they met any of
the following criteria: (1) End-stage renal disease (ESRD) or
chronic dialysis; (2) Missing data required for TyG index
calculation or AKI diagnosis. (3) Multiple ICU admissions (only
the first ICU stay was included).

2.3 Data extraction and definition

Data were extracted using Structured Query Language (SQL) in
Navicat Premium (version 15.0.12). Patients with acute myocardial
infarction (AMI) were identified from the database using ICD-9
(International Classification of Diseases, 9th Revision; codes
41000-41092) and ICD-10 (codes 121-I219). Data extracted
within the first 24 h of ICU admission included demographic
information, clinical parameters, vital

signs, laboratory

parameters, severity scores, comorbidities, and therapies.
Demographic information comprised gender, age, body mass
index (BMI), and race. Clinical parameters included length of
stay (LOS) in the intensive care unit (ICU) and LOS in the
hospital. Vital signs consisted of heart rate (HR), systolic blood
pressure (SBP), diastolic blood pressure (DBP), and respiratory
rate (RR). Laboratory parameters encompassed white blood cell
count (WBC), red blood cell count (RBC), platelet count,
hemoglobin level, serum creatinine (SCr), blood urea nitrogen
(BUN), creatine kinase-MB (CK-MB), albumin, fasting blood
glucose (FBQG), sodium, serum potassium,
chloride, total (TG),
normalized ratio (INR), partial thromboplastin time (PTT),
(ALT), aspartate
(AST), and alkaline phosphatase (ALP). Severity at admission

was assessed using the Simplified Acute Physiological Score II

serum calcium,

bicarbonate, triglyceride international

alanine aminotransferase aminotransferase

(SAPS 1I), Systemic Inflammatory Response Syndrome (SIRS)
score, Acute Physiology Score IIT (APS III), and the Sequential
Organ Failure Assessment (SOFA) score. Comorbidities included
chronic kidney disease (CKD), chronic pulmonary disease, liver
diabetes,
percutaneous coronary intervention (PCI), coronary artery bypass
grafting (CABG), and renal replacement therapy (RRT). To
address missing data, a systematic and stratified approach was

disease, and hypertension. Therapies comprised

implemented based on the extent of missingness. For variables
with less than 20% missing values, the missForest algorithm in
R software was utilized for multiple imputation. For variables
with missing values in the range of 20%-50%, specifically CK-
MB, a strategy was adopted,
converting these variables into dummy indicators to avoid the

categorical transformation

potential biases introduced by direct imputation (18). Variables
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with more than 50% missing data, including B-type natriuretic
peptide (BNP), C-reactive protein (CRP), and cardiac troponin I
(cTNI) were excluded from the analysis to ensure the reliability
and validity of the results. This approach not only maintains
dataset integrity but also reduces potential bias, thereby
strengthening the robustness of the findings.

To evaluate potential bias introduced by data exclusion, we
conducted two additional analyses. First, to assess the impact of
excluding patients with missing triglyceride or glucose values, we
compared baseline characteristics between the final study cohort
and those excluded after removal of duplicate records. Second, to
examine the influence of early in-hospital mortality on model
performance, we performed a sensitivity analysis by excluding
patients who died before the onset of AKI, and reassessed model
discrimination in the adjusted cohort.

The endpoint was AKI developing within 7 days following ICU
admission. The diagnosis of AKI was based on the latest
international clinical practice guidelines for AKI (19), and
accordance to any of the following three criteria: (1) creatinine
rose > 0.3 mg/dl within 0 h; (2) serum creatinine elevation >50%
above baseline within 7 days; and (3) urine output < 0.5 ml/kg/h
over 6 h.

2.4 Model development and validation

The dataset extracted from the MIMIC-IV database was
randomly partitioned into training and internal validation
cohorts using a 7:3 ratio. Specifically, 70% of the data were
allocated for model training, while the remaining 30% were
reserved for internal validation. This stratified randomization
balanced of  clinical

approach  ensured

characteristics across both subsets. The eI[CU-CRD served as an

representation

external validation cohort, enabling assessment of model
generalizability across diverse healthcare settings.

Feature selection was conducted through a sequential analytical
approach. Prior to modeling, all continuous variables were
standardized to ensure comparability. Least Absolute Shrinkage
and Selection Operator (LASSO) regression with 5-fold cross-
validation was then applied for preliminary feature selection by
shrinking the coefficients of less relevant variables to zero,
thereby addressing potential multicollinearity and reducing
dimensionality. Subsequently, univariate logistic regression was
conducted on the LASSO-selected features, and variables with
p<0.05 were included in a multivariate logistic regression to
identify independent predictors. Finally, multivariate logistic
regression was performed to identify independent predictors,
with statistically significant variables (p <0.05) assessed for their
effect size using odds ratios (OR) and corresponding 95%
confidence intervals.

The final selected variables were utilized to construct a
predictive nomogram using the “rms” package in R software. To
evaluate the
operating characteristic (ROC) curves were generated and the
the curve (AUC) was calculated. Additional

performance metrics—including F1 score, recall, precision, and

model’s discriminative performance, receiver

area under
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accuracy—were reported for a more comprehensive assessment. To
further evaluate the added predictive value of the TyG index, two
logistic regression models were developed based on the selected
features: a full model incorporating the TyG index (TyG model),
and a nested model excluding the TyG (non-TyG model). These
models were applied to the training, internal validation, and
external validation cohorts for performance comparison.
Calibration curves were generated using the “rms” package with
1,000 bootstrap resamples to assess the agreement between
predicted probabilities and observed outcomes. To quantify the
improvement in risk prediction brought by the TyG index, net
reclassification improvement (NRI) and integrated discrimination
improvement (IDI) were calculated. Finally, the clinical utility of
the model was assessed using decision curve analysis (DCA),
which compares the net benefit of each model across a range of
threshold probabilities (0-1, increment=0.2), relative to the
default “treat-all” and “treat-none” strategies.

To explore potential nonlinear relationships between the TyG
index and the outcome in the final multivariate model, restricted
cubic spline (RCS) analysis was conducted post hoc using the
rms package in R software. The analysis focused on TyG without
additional adjustment for other covariates, as its functional form
within the final model was of primary interest. Four equally
spaced knots were set to divide the TyG distribution into four
equal parts. The linearity assumption was evaluated using a
likelihood

spline terms.

ratio test comparing models with linear and

2.5 Statistical analysis

Descriptive statistics were computed for all categorical and
continuous variables. Continuous variables were expressed as
mean * standard deviation (SD) or median (interquartile range,
IQR), and categorical variables were expressed as frequencies
(percentages). The chi-squared test or Fisher’s exact test was
used to compare categorical variables, and Student’s t-test or
Mann-Whitney U test was applied for continuous variables, as
appropriate.
R software (v 4.2.0), with a two-sided p value <0.05 considered

All statistical analyses were performed using

statistically significant.

3 Results
3.1 Study population

A total of 9,042 patients diagnosed with acute myocardial
infarction (AMI) and admitted to the ICU were initially
identified from the MIMIC-IV database.
duplicate ICU admissions, patients aged <18 years, those with

After excluding

ICU stays <48 h, and cases lacking triglyceride or fasting blood
glucose data, 1,227 eligible patients were included in the final
cohort. Among them, 878 (71.5%) patients developed acute
kidney injury (AKI). The MIMIC-IV dataset was randomly
divided into a training cohort (n=858) and an internal
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validation cohort (n = 369), while the eICU database served as an
external validation cohort evaluate the generalizability of the
model, where 1,545 (79.1%) patients experienced AKI (Figure 1).
Baseline characteristics were compared between the training
cohort and internal validation cohort (Table 1). The baseline
characteristics of the external validation cohort are presented in
Supplementary Table S1.

Among the 9,042 patients initially identified with AMI, 2,927
were removed as duplicates, and 4,888 (54.1%) were excluded
due to missing triglyceride or glucose values. To evaluate the
impact of these exclusions, we compared key baseline variables
between the included and excluded cohorts. Although some
variables showed statistically significant differences (p <0.05), all
standardized mean differences (SMDs) were <0.1, suggesting
minimal practical imbalance. For example, the mean SOFA
score differed by only 0.31 points on average, which is
unlikely to affect clinical interpretation. These results suggest a
low risk of selection bias, with details are presented in
Supplementary Table S2.

3.2 Feature selection

Feature selection was performed using LASSO regression with
5-fold cross-validation to identify the most relevant predictors
from the initial set of 43 variables. The optimal regularization
parameter (lambda) was selected based on the minimum cross-
validated (lambda =0.02). This
variables with non-zero coefficients, including clinical scores
(LODS, OASIS, SOFA), treatment procedures (CABG), vital signs
(DBP, SBP, heart rate), laboratory parameters (ALP, AST,
albumin, creatinine, glucose, sodium, BUN, hemoglobin), and
demographic/clinical ~ characteristics (age, BMI, LOS in
ICU, CKD, hypertension, TyG index) (Figure 2). The
corresponding coefficients for these predictors are presented in

error process retained 17

Supplementary Table S3.

Univariate logistic regression analysis of these variables
revealed that 12 variables were significantly associated with AKI
risk  (p <0.05).
analysis identified 8 independent predictors of AKI, including
TyG index, BUN, SOFA score, LOS in ICU, age, albumin,
sodium, and SBP (Table 2). Among these, the TyG index
demonstrated the strongest association with AKI risk, with each
unit increase associated with a 31% higher risk of AKI (OR: 1.31,
95% CI: 1.07-1.60, p=0.01). The full results of the multivariate
analysis, including odds ratios (ORs) and 95% confidence

Subsequent multivariate logistic ~regression

intervals (CIs) for all predictors, are presented in Table 2.

To evaluate the relationship between the TyG index and the
risk of AKI, restricted cubic spline (RCS) analysis with four
equally spaced knots was performed. The likelihood ratio test
comparing the linear and spline models showed no evidence of
nonlinearity (P for nonlinearity =0.5094), indicating a linear
association between TyG and AKI risk. Therefore, TyG was
modeled as a continuous linear variable in the final prediction
model (Supplementary Figure S1).
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A Patients with acute myocardial B Patients with acute myocardial
infarction from the MIMIC-IV infarction from the eICU database,
database, aged >18 years (n=9,042) aged >18 years (n=27,533)
First ICU admission First ICU admission
records (n=6,115) records (n=9,821)
Excluded patients within 48h of
ICU admission or missing
triglyceride and glucose data on
the first day - —
Excluded patients within 48h of
. B ICU admission or missing
Analysis Cohort (n=1,227) triglyceride and glucose data on
| the first day
Training cohort Internal validation External validation
(n=858) cohort (n=369) cohort (n=1,954)
Non-AKI AKI Non-AKI AKI Non-AKI AKI
(n=250) (n=608) (n=99) (n=270) (n=409) (n=1,545)
FIGURE 1
Study population flowchart and cohort selection. (A) Patients select from MIMIC-IV databases for model training and internal validation sets. (B)
Patients select from e-ICU database for external validation set. MIMIC-IV, medical information mart for intensive care-1V; elCU-CRD, elCU-
Collaborative Research database.

3.3 Model development and validation

Based on the results of multivariate logistic regression, a
nomogram was constructed to estimate the risk of acute kidney
injury (AKI) in ICU patients. The initial model incorporated
eight independent predictors, including age, Sodium, albumin,
LOS_ICU, heart rate, BUN, SBP, and the TyG index. To avoid
LOS_ICU and the
development of AKI, since AKI may itself prolong ICU stay, we
excluded LOS_ICU from the final predictive model. To assess the
potential impact of excluding LOS_ICU, we compared the

potential reverse causality between

predictive performance of the final model with and without this
variable. The results showed no statistically significant difference
in AUC across training, internal validation, and external
validation cohorts. Detailed comparison results are provided in
Supplementary Table S4. Each variable was assigned a point
value proportional to its contribution, and the total score was
mapped to the corresponding probability of AKI. This graphical
tool provides an intuitive and practical means for individualized
risk assessment and clinical decision-making (Figure 3). To
further facilitate clinical use, we plan to convert the content of
Figure 3 into a list of point values and include it in the
Supplementary Table S5.

The predictive performance of the TyG model was evaluated
using the area under the receiver operating characteristic curve
(AUC). In the training cohort, the model exhibited excellent
discrimination, with an AUC of 0.85 (95% CI: 0.82-0.88). This

Frontiers in Cardiovascular Medicine

performance was maintained in the internal validation cohort,
with an AUC of 0.83 (95% CI: 0.78-0.87), and further confirmed
in the external validation cohort, achieving an AUC of 0.81 (95%
CI: 0.78-0.83), indicating good generalizability (Figure 4). The
detailed classification performance of the TyG model across
different cohorts is presented in Table 3. In the training cohort,
the model demonstrated robust predictive capability, achieving a
recall of 0.88, precision of 0.83, and an F1 score of 0.85, with an
overall accuracy of 0.79. These performance metrics remained
consistent in the internal validation cohort (recall=0.87, F1
score = 0.86, precision =0.84) and the external validation cohort
(recall =0.84, F1 score=0.86, precision =0.84), indicating stable
performance across different populations.

The calibration curve was used to assess the agreement
between predicted probabilities and observed outcomes. In the
training set (n=858), the mean absolute error (MAE) was
0.024 with a (p =0.749),
indicating no significant deviation from perfect calibration.

Hosmer-Lemeshow % =5.07

This was confirmed in the validation cohorts (internal:
MAE =0.015, y>=2.74, p=0.783; external: MAE =0.023,
x> =442, p=0.357) (Figure 5).

Twelve patients were identified who died before the onset of
AKI. After excluding these patients, the model was re-applied,
and AUC values showed no significant change (Training cohort:
0.854 vs. Adjusted cohort: 0.849, p=0.7921). This indicates the
model’s discrimination was not sensitive to early mortality bias
(shown in Supplementary Table S6).
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TABLE 1 Baseline characteristics in the training and internal validation cohort.

10.3389/fcvm.2025.1620664

Variables Training cohort Internal validation cohort
Non-AKI AKI p-value Total Non-AKI AKI p-value
(n = 250) (n =608) (n=369) (n=99) (n =270)

Demographic
Age, year 67.21+12.32 66.34+12.43 67.57 +12.27 0.186 67.18 +13.26 65.18+12.92 67.91+13.34 0.076
Gender, n (%) 0.201 0.596
Female 262 (31) 68 (27) 194 (32) 114 (31) 28 (28) 86 (32)
Male 596 (69) 182 (73) 414 (68) 255 (69) 71 (72) 184 (68)
BMI, kg/m? 29.35 +6.92 2824 +596 29.81+7.23 0.001 29.42+6.33 28.87 +5.46 0.266
Race, n (%) 0.06 0.655
White 483 (56) 147 (59) 336 (55) 221 (60) 57 (58) 164 (61)
Black 47 (5) 13 (5) 34 (6) 21 (6) 8 (8) 13 (5)
Asian 32 (4) 15 (6) 17 (3) 5 (1) 1(1) 4 (1)
Other 296 (34) 75 (30) 221 (36) 122 (33) 33 (33) 89 (33)
Vital sign
Heart rate, b/s 82.87 +14.83 80.33 + 14.04 83.92 +15.02 <0.001 82.09 +13.55 82.52+13.71 81.94 +13.52 0.721
SBP, mmHg 113.98 +15.35 11762+ 15.28 11249 + 15.14 <0.001 113.99+15.05 | 115.95+15.88 113.27 + 14.7 0.144
DBP, mmHg 64.25+10.87 66.99 + 11.06 63.12+10.59 <0.001 63.31+11.22 66.13+10.51 6228 +11.31 0.003
Laboratory tests
Tg, mg/dl 115 (84, 168.75) 108.5 (80, 160.75) 117 (85, 171) 0.031 114 (82, 169) | 114 (76, 169.5) | 115.5 (83.5, 168.5) 0.697
Glucose, mg/dl 139 (112, 190) 126 (107, 162.75) 146 (115, 198) <0.001 141 (114, 203) | 132 (106, 164) 144 (117, 210) 0.013
TyG, (mg/dl)® 9.12+0.77 8.95 +0.69 9.2+0.79 <0.001 9.13+0.79 9+0.77 9.1840.79 0.059
Creatinine, mg/dl 1.0 (0.8, 1.5) 0.9 (0.8, 1.2) 1.1 (08, 1.7) <0.001 1.1 (0.8, 1.4) 0.9 (0.8, 1.3) 1.1 (0.9, 1.5) 0.024
BUN, mg/dl 19 (14, 30) 17 (13, 23) 20 (15, 32) <0.001 20 (15, 30) 18 (13.5, 30) 20 (15.25, 30) 0.09
Albumin, g/dl 3.48 +0.6 3.73 +0.44 3.38+0.63 <0.001 3.49 +0.58 3.7+0.47 3.41+0.6 < 0.001
INR, s 12 (1.1, 1.4) 12 (1.1, 1.4) 12 (1.1, 1.4) 0.027 1.2 (1.1, 15) 12 (1.1, 1.4) 1.3 (1.1, 1.5) 0.134
PT, s 134 (12.3,155) | 13.1 (12.22, 14.78) | 13.55 (12.4, 15.7) 0.013 135 (12.5,16.1) | 13.3 (12.35, 15) | 13.75 (12.5, 16.38) 0.101
PTT, s 37.4 (29.42, 62.27) | 382 (30, 60.95) 37.15 (29, 62.73) 0.526 37.2 (29, 61.5) | 37.2 (29.75, 62.6) | 37.15 (28.9, 61.45) 0.753
ALT, IU/L 33 (22, 66) 30 (22, 55) 34 (22, 76.25) 0.01 33 (22, 65) 30 (23.5, 48) 34 (22, 89) 0.066
AST, TU/L 62 (33, 147) 56 (32.25, 103.75) 62 (33, 174) 0.047 65 (32, 134) 54 (32, 98) 72 (33, 164.75) 0.011
ALP, IU/L 76 (63, 99.75) 74 (60, 85) 78 (64, 106.25) 0.002 76 (63, 99) 76 (62, 89.5) 77.5 (64, 104.75) 0.117
CK-MB, n (%) 0.046 0.348
<3 40 (5) 8 (3) 32 (5) 19 (5) 4(4) 15 (6)
>18 326 (38) 108 (43) 218 (36) 150 (41) 36 (36) 114 (42)
3-6 72 (8) 12 (5) 60 (10) 39 (11) 12 (12) 27 (10)
6-18 129 (15) 39 (16) 90 (15) 44 (12) 17 (17) 27 (10)
Missing 291 (34) 83 (33) 208 (34) 117 (32) 30 (30) 87 (32)
Sodium, mEq/L 138 (135, 140) 137.5 (135,139) 138 (135, 141) 0.015 138 (136, 140) | 138 (135, 139) 138 (136, 140) 0.106
Calcium, mEq/L 8.52+0.8 8.67 +0.72 8.46 +0.82 <0.001 8.5+1.03 8.64+0.77 8.44+1.11 0.056
Chloride, mEq/L 102.97 +5.46 102.81 +4.74 103.03 +5.74 0.564 102.49 +5.87 101.99 + 5.41 102.67 + 6.02 0.304
Potassium, mEq/L 431+0.66 423+0.61 4.34+0.67 0.026 43+0.71 426+0.72 43107 0.549
Bicarbonate, mmol/ 22.06 +4.29 22.65+3.34 21.82+46 0.003 2244+ 4.65 229+3.87 2227+49 0.198
L
WBC, K/ul 13.17 £5.79 12.18 +5.86 13.59 +5.72 0.001 13.57 +15.24 11.78 +3.91 1422 +17.62 0.033
RBC, K/ul 3.79+£0.73 3.9+0.7 3.75 £0.74 0.004 3.79+0.75 3.97 £0.77 3.73+0.73 0.008
Hemoglobin, g/dl 11.39 £2.17 11.66 + 2.09 11.28 +2.19 0.017 11.4+222 11.79 +2.27 11.26 +2.19 0.044
Platelet, K/ul 192.4 (149.57, 204.8 (171.62, 186.5 (144.5, <0.001 | 199 (149, 246.5) 209 (171.5, 194.6 (145.25, 0.032

245.75) 253.7) 241.77) 264.5) 237.4)
Severity scores
SAPS I 38.17+15.15 30.58 + 11.02 4129 +1551 <0.001 37.14+14.78 30.17 +12.67 39.7 +14.7 < 0.001
SOFA 49+3.66 2.86 +2.67 5.74+3.68 <0.001 48+3.64 3+2.88 5.47 +3.67 < 0.001
SIRS 2.61+0.94 2.33+0.99 2.73+0.89 <0.001 2.6 6+0.94 2.42+0.99 2.75+0.91 0.003
APS 1II 44.85 +23.36 33.7+15.86 49.43 +24.4 <0.001 45.47 +23.83 36.74+19.18 48.67 +24.59 < 0.001
QASIS 32.13+9.21 27.05+6.99 34224921 <0.001 3237489 28.02+7.83 33.96 + 8.74 <0.001
LODS 4.99+3.36 2.99+2.27 5.82 +3.39 <0.001 496+3.18 3.3 +241 5.56 +3.22 <0.001
Comorbidities
CKD, 1 (%) 229 (27) 54 (22) 175 (29) 0.038 102 (28) 22 (22) 80 (30) 0.201
COPD, 1 (%) 88 (10) 16 (6) 72 (12) 0.024 48 (13) 10 (10) 38 (14) 0.406

(Continued)
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TABLE 1 Continued

10.3389/fcvm.2025.1620664

Variables Training cohort Internal validation cohort
Non-AKI AKI p-value Total Non-AKI AKI p-value
(n =250) (n=608) (n=369) (n=99) (n =270)
Hypertension, 458 (53) 138 (55) 320 (53) 0.542 187 (51) 53 (54) 134 (50) 0.584
n (%)
Diabetes, 1 (%) 270 (31) 65 (26) 205 (34) 0.033 135 (37) 37 (37) 98 (36) 0.945
Treatment measures
PCL 1 (%) 65 (8) 24 (10) 41 (7) 0.195 21 (6) 5 (5) 16 (6) 0.946
CABG, 1 (%) 232 (27) 64 (26) 168 (28) 0.6 88 (24) 20 (20) 68 (25) 0.391
RRT, 7 (%) 95 (11) 10 (4) 85 (14) <0.001 37 (10) 7 (7) 30 (11) 0.342
Outcome
LOS in hospital 9.8 (497, 17.68) | 6.16 (2.98,10.87) | 11.71 (6.84, 20.22) | <0.001 | 9.6 (5.38,15.69) | 7.53 (3.1, 11.84) | 10.46 (6, 17.36) <0.001
LOS in ICU 2.64 (131, 5.92) 1.21 (0.88, 1.94) 3.66 (2.01, 8.54) <0.001 | 2.87(1.32,671) | 1.21 (0.94,2.22) | 4.04 (1.98, 8.12) <0.001
28-death, 1 (%) 134 (16) 12 (5) 122 (20) <0.001 57 (15) 7.(7) 50 (19) 0.010

Values are mean + SD, n (%), or median (IQR). RBC, red blood cell; WBC, white blood cell; ALT, aspartate aminotransferase; AST, aspartate aminotransferase; CK-MB, Creatine kinase
isoenzyme MB; ALP, Alkaline phosphatase; BUN, blood urea nitrogen; FBG, fasting blood glucose; TG, triglyceride; INR, International Normalized Ratio; PT, prothrombin time; PTT,
partial prothrombin time. BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease;

PCI, percutaneous coronary intervention; CABG, coronary artery bypass grafting; RRT, renal replacement therapy; LOS, length of stay.
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LASSO regression for variable selection with 5-fold cross-validation. (A) LASSO regression cross-validation curve. The optimal A value was selected
using 5-fold cross-validation in training cohort. (B) Path diagram of the LASSO coefficients. Each curve illustrates the trajectory of the coefficients
for each variable as 1 changes. The vertical axis represents the coefficient values, the lower horizontal axis shows log(1), and the upper horizontal
axis indicates the number of non-zero variables included in the model at each A value.
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3.4 Comparative analysis of TyG and non-
TyG models

The incremental predictive value of the TyG model was
assessed using both the net reclassification index (NRI) and
integrated discrimination improvement (IDI). In the training
cohort, the model demonstrated substantial improvements, with
an NRI of 0.224 (95% CI: 0.160-0.287) and IDI of 0.112 (95%
CL  0.094-0.129). These improvements remained statistically
significant in the internal validation cohort (NRI=0.183, 95%
CI: 0.083-0.282; IDI=0.087, 95% CI: 0.062-0.112). The TyG
model demonstrated statistically significant incremental predictive
value compared to the non-TyG model in the external validation
cohort (NRI=0.033, 95% CI: 0.013-0.054; IDI=0.006, 95% CI:

Frontiers in Cardiovascular Medicine 07

0.003-0.008), with smaller effect sizes than observed in the
training cohort. The complete results are presented in Table 4.
The TyG model demonstrated
incremental predictive value compared to the non-TyG model
across all evaluation cohorts. In the training cohort, the AUC
improved from 0.77 (95% CIL: 0.73-0.80) to 0.85 (0.82-0.88;
p <0.001), with corresponding enhancements in recall (0.90 vs.

statistically ~significant

0.85) and precision (0.84 vs. 0.78). This performance advantage
persisted in internal validation (AUC 0.83 vs. 0.76, p < 0.001) and
remained statistically significant in external validation (AUC 0.81
vs. 076, p=0.032), though with attenuated effect
(Figures 6A-C; Table 3).

Decision curve analysis revealed differential net benefit profiles
between the models across cohorts (Figures 6D-F). In the training

sizes
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cohort, the TyG model demonstrated superior net benefit at lower
risk thresholds (22%-45% probability range), while both models
achieved comparable utility above 45% risk probability. This

10.3389/fcvm.2025.1620664

pattern persisted in internal validation, with the TyG model
maintaining an advantage in the 25%-45% threshold range.
Notably, in external validation, the net benefit curves of both

TABLE 2 Univariate and multivariate regression analysis of
screening variables. ROC curve
o
Variables Univariate analysis Multivariate analysis -
OR | 95% CI P value | OR 95% CIl | P value
Age 1.01 1-1.02 0.037 1.01 1-1.03 0.036 g n
Sodium 1.03 1-1.06 0.025 1.06 1-1.17 0.041
Creatinine 1.06 | 0.97-1.16 0.202
Albumin 0.31 | 0.24-0.41 <0.001 0.82 | 0.78-0.98 0.042 g g —
BUN 1.01 1-1.02 0.005 1.21 | 1.08-1.32 <0.001 g
AST 1.01 1.01-1.03 <0.001 1.01 | 0.91-1.05 0.184 E
ALP 1.02 | 0.98-1.04 0.45 S =4
o
Heart rate 1.01 1-1.02 0.01 0.97 | 0.95-1.01 0.109
SBP 0.98 | 0.97-0.99 <0.001 0.99 0.98-1.0 0.104
Hemoglobin 091 | 0.86-0.97 0.002 1.05 | 0.97-1.15 0.215 [V
SOFA 1.33 1.27-14 <0.001 1.11 1.03-1.2 0.006 e Training: 0.85 (CI:0.82, 0.88)
— Internal validation: 0.83 (CI:0.78, 0.87)
OASIS 1.11 1.09-1.13 <0.001 1.02 | 0.99-1.05 0.145 —— External validationn: 0.81 (CI:0.78,0.83)
LODS 142 | 1.34-151 <0.001 1.15 | 1.04-1.27 0.008 o
CKD 1.47 1.1-1.97 0.01 141 | 0.97-2.06 0.074 e 9 T T T T T
CABG 1.16 | 0.87-1.55 0.312 0.0 0.2 04 0.6 0.8 1.0
Hypertension | 0.89 | 0.69-1.14 0.339 1-Specicicities
TyG 149 | 1.25-1.76 <0.001 1.32 | 1.06-1.64 0.012
Glucose 101 | 1-102 0044 | 091 | 0.86-1.07 | 0.195 FIGURE 4
- . : . = - ROC analysis of the nomogram model in training, internal validation,
LOSinICU | 1.67 | 152-184 | <0001 | 153 | 1.39-17 |  <0.001 and external validation cohorts.
OR, odds ratio; CI, confidence interval.
0 10 20 30 40 50 60 70 80 90 100
Points L 1 1 1 1 1 1 1 1 1 J
TYG T T T T T T T T T T T 1
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FIGURE 3
Nomogram for predicting the risk of AKI in patients with AMI.
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TABLE 3 Performance comparison of TyG and non-TyG models across training, internal validation and external validation cohorts.

Model Cohorts AUC Recall F1 score Accuracy Precision P value
TyG Training 0.85 0.88 0.85 0.79 0.83 <0.001
Internal validation 0.83 0.87 0.86 0.79 0.84 <0.001
External validation 0.81 0.84 0.86 0.78 0.84 0.032
non-TyG Training 0.77 0.89 0.83 0.75 0.78 -
Internal validation 0.76 0.86 0.86 0.77 0.78 -
External validation 0.76 0.85 0.83 0.76 0.80 -
A Training cohort B Internal validation cohort [¢] External validation cohort
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FIGURE 5
Calibration curves of the predictive model for AKI in AMI patients. (A) Training cohort, (B) Internal validation cohort, (C) External validation cohort. The
closer the calibration curve is to the diagonal line, the better the agreement between predicted and observed outcomes.

models converged completely, showing identical clinical utility
across all decision thresholds (55%-100%).

4 Discussion

AKI is one of the most frequent complications of AMI, often
occurring early during hospitalization and significantly worsening
both short- and long-term outcomes (20). However, current
diagnostic criteria rely on delayed changes in serum creatinine or
urine output, limiting timely clinical intervention. Therefore,
accurate and early clinical prediction models are urgently needed
to guide risk stratification in AMI patients.

In this study, we developed and validated a prognostic
nomogram to predict AKI risk in patients with AMI. To our
knowledge, this is the first study to incorporate the TyG index
into an AKI prediction model specifically designed for AMI
patients. This novel integration highlights the potential clinical
utility of TyG as an early metabolic marker for renal risk
stratification in the setting of acute cardiovascular events. As a
novel and practical surrogate marker of insulin resistance (IR),
the TyG index may capture early metabolic disturbances that
precede overt renal dysfunction.

IR is increasingly recognized as a central pathophysiological
factor linking cardiometabolic disorders with renal impairment
(8, 9). It contributes to atherogenic dyslipidemia, characterized
by elevated triglycerides, reduced high-density lipoprotein (HDL),
increased small

and dense low-density lipoprotein (LDL)
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TABLE 4 Comparison of the non-TyG and TyG models through NRI and
IDI.

Cohorts NRI | 95% CI P IDI | 95% CI P
value value

Trainning 0.224 0.160, <0.01 0.112 0.094, <0.01
validation 0.287 0.129

Internal 0.183 0.083, <0.01 0.087 0.064, <0.01
validation 0.282 0.112

External 0.033 0.013, 0.001 0.006 0.003, <0.01
validation 0.054 0.008

particles. These lipid abnormalities promote oxidative stress and
endothelial dysfunction, impairing vasodilatory capacity and
facilitating vascular inflammation (21). Endothelial dysfunction
subsequently disrupts the regulation of renal perfusion and

filtration, increasing the susceptibility to AKI during
hemodynamic insults such as AML
Additionally, IR-induced hyperglycemia upregulates the

expression of angiotensinogen, angiotensin-converting enzyme
(ACE), and angiotensin II, leading to overactivation of the renin—

angiotensin-aldosterone  system  (RAAS). This activation
promotes systemic vasoconstriction, sodium retention, and
intraglomerular  hypertension,  thereby increasing  renal

hemodynamic stress and accelerating nephron injury (22). In
parallel, concurrent hyperinsulinemia further stimulates the
mitogen-activated protein kinase (MAPK) signaling pathway,
which exacerbates local inflammation, vascular remodeling, and
tubular injury in renal tissues (23). These converging processes
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FIGURE 6
Comparison of TyG and non-TyG models using ROC and DCA across datasets. (A—C) ROC curve comparisons between the TyG model and the non-
TyG model in the training cohort (A), internal validation cohort (B), and external validation cohort (C—F) DCA comparing the net clinical benefits of the
TyG model and non-TyG model across varying threshold probabilities in the training (D), internal validation (E), and external validation (F) cohorts.

create a pro-inflammatory and pro-fibrotic milieu that underlies
both acute and chronic kidney injury.

these
pathophysiological foundation for the role of IR in endothelial
injury, and the development of AKI,
particularly in patients with AMI. Although the homeostasis

Together, mechanisms  provide a  robust

organ dysfunction,

model assessment of insulin resistance (HOMA-IR) is widely
used to estimate insulin resistance in clinical and research
settings, its application is limited by the need for fasting insulin

(24).
and more

measurements and relatively complex procedures In
the TyG

reproducible surrogate, with multiple studies demonstrating

contrast, index provides a simpler
comparable predictive performance to HOMA-IR in assessing
metabolic and cardiovascular risks (25-27). These advantages
make the TyG index a practical alternative for routine clinical use.

In this study, we implemented LASSO-based predictor
selection to identify robust clinical variables from high-
dimensional data, followed by univariate and multivariate
validation. This process selected the TyG index and seven
additional clinically interpretable predictors for the final model.
Our with

demonstrating the TyG index’s predictive value for AKI across

findings align numerous multicenter  studies

clinical scenarios. Recent analyses validate elevated AKI risks
with higher TyG levels in diabetic and hypertensive critically ill
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populations (28, 29). Similarly, Zhang et al. (30). demonstrated
that higher TyG index significantly increased AKI risk in 1,501
coronary artery disease patients (HR 1.62, 95% CI 1.15-2.27),
with even stronger associations in non-diabetic subgroups. In
addition, a large cohort study of 1,426 septic patients further
supported the prognostic value of TyG, showing significant
associations with both sepsis-associated AKI risk (OR 1.40, 95%
CI 1.14-1.73) and extended length of hospital stay (8=1.79
days) (29). Given the consistent evidence linking elevated TyG
levels with AKI risk in diverse populations, including patients
with diabetes, coronary artery disease, and sepsis, the inclusion
of the TyG index in our predictive model is both biologically
plausible and clinically justified. In our study cohort of AMI
patients, the TyG index remained an independent predictor of
AKI after adjustment for confounding factors, suggesting that its
predictive value extends beyond its role as a marker of metabolic
dysfunction. These results provide a strong rationale for selecting
the TyG index as a key variable in predictive model construction.

In addition to the TyG index, our model incorporates seven
other variables that have demonstrated independent associations
with AKI in prior studies. These predictors were selected not
only for their statistical significance, but also for their established
links to renal pathophysiology. Each variable reflects a distinct
clinical domain relevant to AKI risk and has been previously
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associated with adverse renal outcomes in critically ill or
cardiovascular populations. Elevated blood urea nitrogen (BUN)
is a well marker of renal dysfunction, reflecting impaired
nitrogenous waste excretion and reduced glomerular filtration
rate (31). In patients with myocardial infarction, sustained renal
hypoperfusion due to low cardiac output or hypotension leads to
acute kidney injury (32), where BUN elevation may better reflect
the severity of renal dysfunction compared to serum creatinine
or eGFR measurements (33). Low albumin has been consistently
identified as an independent risk factor for AKI, as it contributes
to reduced oncotic pressure, increased vascular permeability, and
systemic inflammation, thereby promoting renal hypoperfusion
and tubular injury (13, 34). The Sequential Organ Failure
Assessment (SOFA) score reflects the overall severity of organ
dysfunction. Its association with AKI has been widely reported,
with higher scores indicating an increased systemic burden and a
higher risk of renal impairment in AMI (13, 35). Length of ICU
stay (LOS_ICU) reflects illness severity and is associated with
prolonged exposure to nephrotoxic medications, hemodynamic
instability, and cumulative intervention burden, all of which are
established risk factors for AKI development (5). Serum sodium
the
dysnatremia, have been associated with poor renal outcomes.

levels, particularly in context of hyponatremia or
These disturbances may reflect underlying fluid imbalance,
neurohormonal dysregulation, or renal salt-wasting, all of which
are relevant to AKI pathogenesis (36). Our model consistently
identified age as an independent predictor of AKI, aligning with
established of risk

populations (37). This association likely reflects progressive age-

clinical evidence increased in older

related declines in renal functional reserve and vascular
compliance. Consistent with our findings, several studies have
established the relationship between SBP and AKI occurrence
across various clinical contexts (32, 38). This underscores the
importance of maintaining optimal perfusion pressure in

critically ill patients. Transient hypotensive episodes may
compromise renal perfusion, initiating a cascade of events that
(39).

these clinically relevant and biologically plausible variables, our

ultimately lead to AKI development By integrating
model adopts a multidimensional perspective that encompasses
metabolic, immune status, hemodynamic, and organ function
domains. This comprehensive approach enhances its clinical
utility for early identification of patients at risk for AKI
following AMI,
targeted interventions.

allowing timely preventive strategies and

Our model incorporating the TyG index demonstrated strong
discriminative performance, with AUC values of 0.85 in the
training cohort, 0.83 in the internal validation cohort, and 0.80
in the external validation cohort. The slight decrease in AUC in
the external cohort (0.80 vs. 0.83 in internal validation) may
reflect inherent heterogeneity between populations, such as
differences in baseline characteristics, regional treatment
protocols, or data collection methods. Future studies should
further explore these factors to enhance model generalizability.
Several existing models have attempted to predict AKI following
AMI, but most are limited by either lack of external validation or

reliance on late-occurring variables. For instance, the study by
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Xun W et al. (40) developed a model incorporating eGFR,
hemoglobin, sodium, bicarbonate, total bilirubin, age, diabetes,
and heart failure, achieving a relatively high AUC of 0.86.
However, the model was developed and validated in a single-
center cohort without external validation, raising concerns about
its generalizability. Similarly, the widely used Mehran score (41)
was specifically designed for PCI populations and includes post-
procedural variables such as contrast volume and hypotension,
limiting its applicability in AMI patients who do not undergo
PCI or require early risk stratification. In contrast, the model
proposed by Bo X et al. (42), with an AUC of 0.76, included
factors such as in-hospital shock and maximum furosemide
dosage, which occur later during hospitalization and are thus less
suitable for early AKI prediction.

To evaluate the incremental predictive performance of the TyG
index, we compared the TyG and non-TyG models across the
training, internal validation, and external validation cohorts. The
TyG model consistently demonstrated superior discriminative
ability, with significantly higher AUC values across all cohorts
(p<0.05). To further quantify the
prediction, we performed Net Reclassification Improvement
(NRI) (IDI1)
analyses. The TyG model yielded significantly positive NRI and

improvement in risk

and Integrated Discrimination Improvement
IDI values in all cohorts, particularly in the training (NRI:
0.2238; IDI: 0.1115) and internal validation (NRIL: 0.1421; IDI:
0.0949) cohorts, indicating substantial improvements in risk
classification and discrimination. Although the NRI and IDI
remained statistically significant in the external validation cohort,
the magnitude of improvement (NRIL 0.0302; IDI: 0.0058) was
modest. In accordance with these results, decision curve analysis
(DCA) demonstrated greater clinical net benefit for the TyG-
based model in the training and internal validation sets, whereas
the benefit was less pronounced in the external cohort. These
results underscore the added value of the TyG index in early
AKI risk stratification, but also highlight the need for further
external validation in diverse populations and prospective
to confirm its and real-world

settings generalizability

clinical utility.

5 Study limitation

This study has several limitations. First, due to its retrospective
design, residual confounding cannot be entirely ruled out, despite
adjustment for multiple clinically relevant variables. Some
important factors such as nephrotoxic drug exposure, fluid
balance, and medication use were not consistently available in
the databases. Second, the TyG index was calculated from a
single fasting measurement upon ICU admission, which may not
fully reflect dynamic metabolic changes during hospitalization.
Third, the use of enteral or parenteral nutrition during
hospitalization may influence lipid and glucose metabolism,
potentially resulting in an elevated TyG index. Although this
effect cannot be entirely excluded, the large sample size in our
study likely attenuates its overall impact. Further investigations
are needed to elucidate the mechanisms linking insulin resistance
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to acute kidney injury in patients with acute myocardial infarction.
Fourth, CK-MB, a clinically important marker of myocardial
infarction severity, had a missing rate of 33.3%. We categorized
CK-MB into clinically meaningful intervals and treated missing
values as a separate category rather than performing multiple
While  this
predictive value without unverifiable assumptions about the

imputation. approach preserved the variable’s
missing data mechanism, it may still introduce residual bias.
Future studies with more complete data are warranted to address
this issue. Fifth, the AKI assessments in the MIMIC-IV database
begin at ICU admission, and no pre-ICU AKI status was
recorded. Thus, we could not determine whether some patients
had already developed AKI before ICU entry, which may have
introduced misclassification bias. Additionally, the possibility of
pseudo-worsening of renal function in AKI patients cannot be
excluded. This is often related to the use of nephrotoxic drugs or
negative fluid balance, which were not fully captured in our
These AKI
misclassification and residual confounding, and should be taken

dataset. factors may have contributed to
into consideration when interpreting our findings. Finally, while
the model showed good discrimination and calibration across all
cohorts, its real-world clinical utility remains to be validated in

prospective settings.

6 Conclusion

Our study developed and externally validated a novel
nomogram incorporating the TyG index for predicting AKI in
with  AMIL  The
discriminative ability, strong clinical

patients model demonstrated robust

utility, and excellent
generalizability across multiple cohorts. The integration of the
TyG index as a surrogate of insulin resistance highlights its
potential role in early AKI risk stratification and personalized

patient management.
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