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Coronary microvascular dysfunction (CMD) can lead to a variety of severe adverse 

cardiovascular events. CMD represents the primary cause of recurrent angina 

pectoris following percutaneous coronary intervention (PCI). The etiology of 

post-PCI CMD is complex and largely occult, which significantly impairs the 

therapeutic efficacy of PCI. This article reviews the physiological functions of 

the coronary microcirculation, as well as the latest research progress on the 

pathogenesis, diagnosis, and treatment of CMD after PCI. Finally, it highlights 

the scientific issues that urgently need to be addressed regarding CMD after PCI 

and proposes future research directions, with the aim of providing forward- 

looking insights for the prevention and treatment of CMD after PCI in the future.
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1 Introduction

Ischemic heart disease is the leading cause of death worldwide (1, 2), with 18 million 

people dying from cardiovascular diseases each year. It is projected that by 2030, the 

number of people dying from cardiovascular-related diseases globally each year will reach 

24 million, averaging over 66,000 people per day, and the total global cost will exceed 1 

trillion US dollars (1). Due to its advantages such as safety, minimal invasiveness, and 

high efficiency, PCI has become the most important treatment method for opening 

diseased blood vessels and restoring myocardial blood supply (3). However, after PCI, 

some patients experience recurrent angina pectoris. Studies have shown that the incidence 

of recurrent angina pectoris after PCI is as high as 18%–34% (4). Recurrent angina 

pectoris arises from multiple causes, with coronary microvascular dysfunction (CMD) 

being the most prevalent (5). Currently, direct visualization of coronary microvascular 

perfusion remains unachievable, rendering the diagnosis of CMD considerably 

challenging. Commonly, functional parameters such as coronary 3ow reserve (CFR), 

index of microcirculatory resistance (IMR), and fractional 3ow reserve (FFR) are used to 

indirectly diagnose CMD. There are numerous causes of CMD after PCI, which can be 

affected by various factors before, during, and after PCI. In response to these 
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mechanisms, the incidence of CMD after PCI can be reduced and 

the prognosis of patients can be improved through measures such 

as controlling risk factors and implementing interventions before, 

during, and after PCI. This article first summarizes the 

pathophysiological mechanisms of CMD and reviews the specific 

mechanisms by which factors before, during, and after PCI lead to 

the occurrence of CMD. Subsequently, we summarize the invasive 

and non-invasive diagnostic methods for CMD and compare the 

advantages and disadvantages of various diagnostic methods. In 

addition, we also introduce the latest treatment methods. Finally, 

we put forward the scientific issues that urgently need to be 

resolved for CMD after PCI and outline the future research 

directions. It is anticipated that this review will offer valuable 

insights for the clinical management of post-PCI CMD.

2 Pathophysiology of coronary 
microcirculation

The coronary artery system of the heart is divided into the 

epicardial coronary artery segment and the coronary 

microcirculation segment. The epicardial artery segment has a 

lumen diameter ranging from 0.5 to 5 mm, primarily responsible 

for blood transportation. It is the main site prone to atherosclerosis 

and can be visualized by coronary angiography. The coronary 

microcirculation segment can be further classified into pre-arterioles 

and arterioles (6). Pre-arterioles, with a lumen diameter of 0.1– 

0.5 mm, are pressure-sensitive arteries. When the blood supply 

from the epicardial artery segment changes, the diameter of pre- 

arterioles also adjusts, thereby stabilizing the blood supply to the 

myocardium. Arterioles, with a diameter less than 0.1 mm, are 

mainly in3uenced by local myocardial metabolites. When local 

myocardial metabolites accumulate excessively, the diameter of 

arterioles expands, reducing coronary vascular resistance and 

increasing myocardial blood supply (7). Pre-arterioles and arterioles 

serve as the primary resistance vessels of the coronary arteries and 

the sites of myocardial metabolism. They play a crucial role in 

regulating coronary blood 3ow (CBF). At rest, myocardial oxygen 

uptake is already near its maximum capacity; therefore, the 

potential for enhancing myocardial oxygen delivery relies almost 

entirely on increased coronary blood 3ow (8) (Figure 1).

Pre-arterioles and arterioles are not detectable via 

coronary angiography, presenting substantial obstacles to the 

diagnosis and management of coronary microcirculatory disorders. 

FIGURE 1 

Coronary artery anatomy and CMD classification. PCI, percutaneous coronary intervention; CMD, coronary microvascular dysfunction; CABG, 

coronary artery bypass grafting.
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Clinically, coronary 3ow reserve (CFR), index of microcirculatory 

resistance (IMR), and fractional 3ow reserve (FFR) are important 

indicators re3ecting the function of coronary microvessels (9). 

Under physiological conditions, factors such as blood pressure, 

oxygen content, and metabolite accumulation can regulate the 

constriction and dilation of coronary microvessels, thereby 

modulating CFR. However, under pathological conditions, due to 

factors such as intimal thickening, abnormal production and release 

of nitric oxide, microthrombus embolism, myocardial hypertrophy, 

or severe stenosis of the epicardial coronary artery segment, the 

function of coronary microvessels is impaired, leading to the 

occurrence of coronary microvascular dysfunction (CMD). CMD 

manifests as clinical symptoms such as chest tightness, angina 

pectoris, exertional dyspnea, and decreased exercise tolerance (10). 

Based on clinical characteristics and causative factors, coronary 

microcirculation diseases can be classified into four categories: (1) 

Non-obstructive CMD, commonly seen in individuals with smoking 

habits, hyperlipidemia, and diabetes; (2) Cardiomyopathic CMD, 

often associated with hypertrophic cardiomyopathy, dilated 

cardiomyopathy, hypertension, and aortic stenosis; (3) Obstructive 

CMD, typically found in patients with stable and unstable coronary 

heart disease; (4) Iatrogenic CMD, observed in patients with no- 

re3ow phenomenon after percutaneous coronary intervention (PCI) 

or coronary artery bypass grafting (CABG) (11). Clinical practice 

and literature reviews indicate that the incidence of recurrent angina 

pectoris following PCI ranges from 18% to 34%. Among these 

recurrent cases, iatrogenic CMD accounts for a significant 

proportion, severely affecting the doctor-patient relationship and 

patient prognosis (4). Therefore, exploring the pathogenesis, 

diagnosis, and treatment strategies of CMD after PCI is of 

great significance.

3 PCI and CMD

PCI, which can rapidly unclog narrowed or occluded lumens 

and restore blood 3ow, is the preferred treatment for opening 

diseased blood vessels in patients with STEMI. However, CMD— 

also referred to as the “no-re3ow phenomenon”—still occurs in a 

subset of patients following PCI (12). The occurrence of CMD 

after PCI is associated with multiple factors. First, patients with 

pre-PCI risk factors for CMD are more prone to developing 

severe myocardial ischemia symptoms after the procedure. 

Secondly, the operations during PCI and the eluting drugs of PCI 

stents can also promote the occurrence of CMD, affecting patient 

prognosis. Finally, after PCI, the rapidly restored coronary blood 

3ow can lead to ultrastructural and functional changes at the 

microvascular level, including platelet aggregation, microvascular 

spasm, in3ammatory response, endothelial cell ischemia, and 

reperfusion injury, (Figure 2; Table 1).

3.1 Mechanisms of CMD

All stages (early, middle, and late) of atherosclerosis can affect 

the coronary microcirculation and induce the occurrence of CMD. 

Even in patients with only risk factors for coronary heart disease 

(such as diabetes and hypertension), CFR is impaired (13).

3.1.1 Atherosclerosis

Coronary artery stenosis in the epicardial segment caused by 

atherosclerosis can lead to CMD. When the epicardial coronary 

artery is stenosed, the reduction in coronary perfusion pressure 

leads to changes in shear stress. Shear stress can affect the 

morphology, intimal proliferation, differentiation, metabolism, 

and cell signaling of endothelial cells (14). Under physiological 

conditions, changes in 3uid shear stress can control the 

contraction and dilation of blood vessels by in3uencing the 

release of NO from endothelial cells (15). In this process, 

Kruppel-like factor 2 (KLF2) in endothelial cells plays a critical 

role. Under normal physiological shear stress, KLF2 is activated, 

which in turn upregulates the expression of nitric oxide synthase 

(eNOS) and inhibits the production of adhesion molecules. 

In contrast, excessive reduction of shear stress leads to 

downregulated KLF2 expression, increasing the exposure of 

endothelial adhesion molecules (such as ICAM-1 and VCAM-1). 

This accelerates the recruitment and infiltration of monocytes, 

thereby initiating the microvascular in3ammatory response (16).

Moreover, when the 3uid shear stress is excessively reduced, the 

permeability of endothelial cells to ox-LDL and in3ammatory cells 

increases, inducing endothelial cell apoptosis and the progression of 

in3ammation (17, 18). After ox-LDL enters endothelial cells, it can 

activate the toll-like receptor 4 (TLR4)/myeloid differentiation 

factor 88 (MyD88) signaling pathway, promoting the nuclear 

translocation of nuclear factor κB (NF-κB). This regulates the 

secretion of pro-in3ammatory cytokines such as tumor necrosis 

factor-α (TNF-α) and interleukin-6 (IL-6), further exacerbating 

microvascular endothelial injury and in3ammatory infiltration 

(19). Meanwhile, ox-LDL can also inhibit the proliferation and 

migration capabilities of endothelial progenitor cells, impairing 

the self-repair function of microvessels (20).

When the 3uid shear stress is increased, it can affect 

endothelial function through mechanical and biochemical 

means. The mechanical effect is to induce endothelial cell 

exfoliation and trigger endothelial cell death, while the 

biochemical effects include increasing NO production and 

affecting the activation of growth factors and von Willebrand 

factor (21). High shear stress can additionally activate the 

mitogen-activated protein kinase (MAPK) pathway, promoting 

the abnormal proliferation of vascular smooth muscle cells and 

their migration to the intima. This results in thickening of the 

microvascular wall, luminal stenosis, and accelerated progression 

of CMD (22).

3.1.2 Type 2 diabetes

Type 2 diabetes and the pre-diabetic state of type 2 diabetes 

can significantly increase the incidence of CMD. Firstly, 

endothelial dysfunction and its associated adverse consequences 

are widely recognized as results of diabetes (23). A long-term 

hyperglycemic environment damages mitochondrial function 

within endothelial cells, thereby inhibiting angiogenesis and 

leading to oxidative stress and metabolic disorders (24). 
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Impaired mitochondrial function leads to abnormalities in the 

electron transport chain, triggering the massive production of 

reactive oxygen species (ROS). ROS can reduce the activity of 

eNOS through oxidative modification, decreasing NO synthesis. 

Simultaneously, it activates the p38 mitogen-activated protein 

kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) 

signaling pathways, accelerating endothelial cell apoptosis (25).

Secondly, studies have shown that in the cardiac tissues of 

diabetic mice, the expression of miRNAs in the miR-30d family 

is significantly elevated, resulting in reduced myocardial 

microvascular density and CMD (26). miR-30d can directly 

target and regulate the expression of vascular endothelial growth 

factor (VEGF). As a key factor in maintaining microvascular 

integrity and promoting angiogenesis, reduced VEGF expression 

hinders endothelial cell proliferation, impairs vascular formation 

capacity, and ultimately leads to a decrease in microvascular 

density (27). Additionally, hyperglycemia promotes the 

formation of advanced glycation end products (AGEs), which 

exacerbate oxidative stress through the hexosamine, polyol, and 

protein kinase C pathways, leading to cellular and tissue damage 

(28). When the polyol pathway is activated, aldose reductase 

converts glucose into sorbitol. Due to sorbitol’s poor 

permeability across cell membranes, it accumulates 

intracellularly, increasing intracellular osmotic pressure and 

inducing endothelial cell edema (29). After activation of protein 

kinase C, it can inhibit eNOS activity and promote the 

FIGURE 2 

Mechanism of CMD occurrence after PCI. DES, drug-eluting stents; ROS, reactive oxygen species; REDD1, DNA damage response regulator 1; TXNIP, 

thioredoxin-interacting protein; NLRP3, NOD-like receptor thermal protein domain associated protein 3; SOD2, superoxide dismutase 2; mtDNA, 

mitochondrial DNA; MAO-A, monoamine oxidase A; TLR-9, toll-like receptor 9; NF-κB, nuclear factor kappa-B; ONOO-, peroxynitrite; BH4, 

tetrahydrobiopterin; eNO, endothelial nitric oxide synthase; AS, Atherosclerosis.
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production of vasoconstrictive substances such as thromboxane 

A2 and angiotensin II (Ang II), resulting in microvascular 

vasomotor dysfunction. Additionally, it can stimulate the release 

of platelet-activating factor, inducing a hypercoagulable state 

and microthrombus formation (29).

AGEs can also activate signaling pathways within endothelial 

cells, triggering apoptosis, in3ammatory responses, and 

microthrombosis (30). The specific mechanism involves the 

binding of AGEs to their receptor RAGE, which continuously 

activates the ROS generation system and amplifies in3ammatory 

signaling pathways. This promotes the release of pro- 

in3ammatory cytokines such as TNF-α and IL-6, forming a 

vicious cycle of oxidative stress and chronic in3ammation 

that disrupts microvascular homeostasis (31). Meanwhile, 

this signaling pathway can also activate plasminogen activator 

inhibitor-1, inhibiting fibrinolysis and accelerating 

microthrombus formation (32). Cardiovascular autonomic 

neuropathy (CAN) is a complication of diabetes, and it can 

affect the autonomic control of the diameter of pre-arterioles, 

thereby inducing CMD (33). The autonomic nerve imbalance 

caused by cardiovascular autonomic neuropathy (CAN) further 

leads to abnormally increased sympathetic nerve excitability. 

Through the release of norepinephrine to activate α1-adrenergic 

receptors, it induces sustained contraction of microvascular 

smooth muscle. At the same time, it inhibits NO release from 

endothelial cells, further exacerbating increased microvascular 

resistance and insufficient perfusion (34).

3.1.3 Hypertension

Hypertension causes damage to small arterioles earlier than 

other arteries and is a significant high-risk factor for CMD. 

Firstly, hypertension directly damages microvessels, leading to a 

reduction in their number and a narrowing of their diameter, 

thereby increasing cardiac afterload and reducing the myocardial 

perfusion ratio (35). Chronic exposure to high pressure activates 

the mechanosensitive ion channel TRPV4 in microvascular 

endothelial cells, triggering calcium ion in3ux. This further 

activates the calcineurin (CaN)/nuclear factor of activated T-cells 

(NFAT) signaling pathway, promoting the endothelial-to- 

mesenchymal transition of endothelial cells. This process can 

lead to fibrosis of the microvascular wall and luminal stenosis 

(36). Secondly, hypertension can cause myocardial hypertrophy; 

the increased oxygen demand of excessively thickened 

myocardium can compress microvessels and increase 

microvascular resistance (37). During myocardial hypertrophy, 

hypertrophic cardiomyocytes secrete transforming growth factor- 

β1 (TGF-β1). By activating the Smad2/3 signaling pathway, 

TGF-β1 promotes the proliferation of perivascular fibroblasts 

TABLE 1 Pathophysiological mechanisms of CMD after PCI.

Period Category Specific 
mechanism

Key molecules/processes Pathological consequences

Pre-PCI Vascular Structural & 

Functional 

Abnormalities

Epicardial artery stenosis 

caused by atherosclerosis

Low shear stress Increased endothelial permeability to ox-LDL and 

in3ammatory cells, inducing endothelial cell 

apoptosis and in3ammation (13–18)

Vascular Structural & 

Functional 

Abnormalities

Hypertension Myocardial hypertrophy, small artery remodeling, 

over-activation of the RAAS, increased sympathetic 

nervous activity

Microvascular compression and rarefaction, 

increased microvascular resistance, endothelial 

dysfunction (25–28)

Metabolic & 

Endocrine 

Abnormalities

Type 2 diabetes Hyperglycemia, AGEs, elevated expression of 

miRNAs in the miR-30d family, oxidative stress, 

CAN

Endothelial dysfunction, inhibition of angiogenesis, 

reduced myocardial microvascular density, impaired 

vasodilation regulation (19–24)

Intra- 

PCI

Device & Procedural 

Injury

Local toxicity of drug- 

eluting stents (DES)

Sirolimus and other stent-eluting drugs, enhanced 

expression of NADPH oxidase, stimulation of 

mitochondrial free radicals, reduced eNOS 

phosphorylation

Local endothelial dysfunction and apoptosis, delayed 

healing, excessive release of oxygen free radicals 

reducing NO bioavailability (30–38)

Embolization & 

Mechanical 

Obstruction

Dislodgement of 

microthrombi or plaque 

debris

Platelet aggregation, activation of the coagulation 

system

Mechanical obstruction of distal microvessels, focal 

myocardial infarction, release of vasoconstrictors 

(e.g., endothelin, thromboxane A2) (39–42)

Post-PCI Oxidative Stress eNOS uncoupling BH4, excessive production of ROS Reduced NO synthesis, formation of superoxide 

anions and peroxynitrite (ONOO−) (50–53, 56)

Oxidative Stress NO consumption and 

signaling inhibition

Reaction of O2⁻ with NO to form ONOO⁻, 

inhibition of SOD2 activity

Loss of NO-mediated vasodilation, impaired 

antioxidant defense system, vicious cycle (51, 52)

In3ammatory 

Response

NLRP3 in3ammasome 

activation

ROS/REDD1/TXNIP pathway, mtDNA leakage 

activating TLR9/NF-κB

Caspase-1 activation, release of pro-in3ammatory 

cytokines IL-1β and IL-18, exacerbating 

in3ammation and pyroptosis (57–61)

In3ammatory 

Response

Systemic in3ammatory 

marker

hs-CRP Complement activation, expansion of infarct area, 

positive correlation with microvascular resistance 

(66, 67)

Apoptosis & Cell 

Death

Mitochondrial apoptotic 

pathway activation

ROS-induced release of cytochrome c and AIF, Ca2⁺ 
in3ux activating calpain-1 and caspase

Apoptosis of endothelial cells and vascular smooth 

muscle cells, disruption of microvascular integrity 

(62–65)

Leukocyte & Platelet 

Activation

Platelet aggregation and 

adhesion

Loss of endothelial anticoagulant function in the 

reperfused area

Microthrombosis, further obstruction of 

microvessels (6, 107)

Leukocyte & Platelet 

Activation

Neutrophil infiltration Release of chemokines from ischemic myocardium Capillary obstruction, release of ROS and proteases, 

causing “bystander” damage (124)
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and collagen deposition. This results in compression and 

deformation of microvessels, impeding blood perfusion (38).

Additionally, increased sympathetic nervous activity in 

hypertensive patients can lead to cardiac remodeling and 

excessive constriction of pre-arterioles, resulting in increased 

microvascular resistance (39). Hypertension can also damage 

endothelial cells by reducing the release of nitric oxide (NO), 

promoting over-activation of the renin-angiotensin-aldosterone 

system (RAAS), increasing homocysteine (Hcy) levels, and 

enhancing in3ammatory responses (40). Following activation of 

the RAAS, Ang II binds to the AT1 receptor, which activates 

NADPH oxidase to generate large amounts of reactive oxygen 

species (ROS). ROS oxidatively modifies endothelial nitric oxide 

synthase (eNOS), causing its uncoupling and reducing NO 

synthesis. Meanwhile, Ang II also promotes the activation of 

NF-κB, upregulating the expression of adhesion molecules and 

pro-in3ammatory cytokines, thereby exacerbating microvascular 

in3ammatory injury (41).Elevated homocysteine (Hcy) levels 

induce microvascular endothelial dysfunction and increase the 

risk of thrombosis by inhibiting eNOS activity, promoting ROS 

production, and activating coagulation factor VIII (42). 

Additionally, in the context of hypertension, reduced erythrocyte 

deformability and increased erythrocyte aggregation lead to 

elevated blood viscosity, which further impairs microcirculation 

and accelerates microvascular damage (43).

3.2 Mechanisms leading to CMD during PCI

In addition to the pre-PCI risk factors and atherosclerosis, the 

PCI procedure itself can also lead to the occurrence of CMD. 

Firstly, drug-eluting stents (DES) used during PCI can cause 

significant endothelial damage and in3ammatory responses. 

Moreover, the PCI procedure can lead to plaque rupture or 

microthrombus formation, and these microthrombi can obstruct 

downstream microvessels and induce perivascular in3ammatory 

reactions (44).

Numerous studies have shown that endothelial dysfunction is 

more severe after the implantation of DES compared to bare-metal 

stents (BMS). This evidence suggests that the drugs eluted from 

DES are likely to cause endothelial damage and the occurrence 

of CMD (45–49). Drugs eluted from DES are typically fully 

released within one month, yet the impairment of endothelial 

function can persist for an extended period. Additionally, 

studies have shown that the stent-eluting agents can cause 

microvascular dysfunction in distal organs such as the liver and 

kidneys (50). Therefore, investigating the causes of endothelial 

dysfunction induced by stent-eluting agents has become an 

important research direction. It is currently believed that DES 

leads to endothelial dysfunction by promoting the production 

and release of superoxide. The eluting agents can enhance the 

expression of NADPH oxidase and stimulate the release of 

mitochondrial free radicals; the excessive release of oxygen free 

radicals can directly damage the mitochondrial function of 

vascular endothelium, creating a vicious cycle that ultimately 

leads to endothelial cell apoptosis (51). Furthermore, other 

experiments have shown that the stent-eluting agent sirolimus 

can increase protein kinase C-mediated phosphorylation of 

endothelial nitric oxide synthase, leading to reduced production 

of vascular nitric oxide (NO) and endothelial dysfunction (52). 

There is also a view that DES leads to endothelial dysfunction 

due to acute or delayed hypersensitivity reactions. As foreign 

materials, stents can be attacked by the host immune system, 

inducing vascular in3ammatory reactions and causing adverse 

outcomes (53).

Microvascular obstruction is the first step in the initiation of 

microcirculatory dysfunction. In patients with acute myocardial 

infarction (AMI), coronary microthrombi mainly originate from 

the shedding of vulnerable atherosclerotic plaques and mural 

thrombi, causing microembolism and activating the coagulation 

system, which is often underdiagnosed and underestimated 

clinically (54). During PCI, some microthrombi may dislodge 

and block downstream microvessels (55). Myocardial focal 

infarction caused by microthrombi is difficult to identify by 

routine diagnostic methods in a short time. The site of 

myocardial infarction may progress from the infarction core to 

the epicardium, and the likelihood of re-infarction in non- 

infarcted areas significantly increases (56). PCI-related 

microthrombus obstruction not only leads to focal myocardial 

infarction but also promotes the release of vasoconstrictors and 

coagulation substances, such as endothelin and thromboxane 

A2, further aggravating local tissue damage (57).

3.3 Mechanisms leading to CMD after PCI

After PCI rapidly reopens the diseased vessel, the downstream 

vessels and tissues in the myocardial infarction area undergo 

severe ischemia-reperfusion injury, leading to further disruption 

of the microcirculation. During this process, oxidative stress is 

the core pathological process; it damages endothelial cell 

function by reducing the synthesis, release, and bioavailability of 

nitric oxide (NO) (58). Additionally, oxidative stress can interact 

with in3ammatory responses, causing further damage to or even 

death of endothelial cells. The death of endothelial cells, due to 

the loss of their barrier and anticoagulant functions, can lead to 

microthrombosis and microvascular obstruction, reducing 

microvascular density and ultimately resulting in severe 

CMD (59–63).

The synthesis and release of NO by endothelial cells are key 

regulators of endothelium-dependent vasodilation. Moreover, 

NO has functions in inhibiting platelet aggregation and 

adhesion, preventing thrombosis, and regulating the 

proliferation of vascular smooth muscle cells (64). The synthesis 

of NO in endothelial cells depends on endothelial nitric oxide 

synthase (eNOS) in its coupled form. ROS can significantly 

reduce eNOS expression and phosphorylation, thereby 

decreasing NO production (65). Furthermore, superoxide anions 

generated by oxidative stress during reperfusion can react with 

NO to form peroxynitrite (ONOO-), which induces nitrosative 

modification of myocardial proteins, leading to myocardial 

damage (66). This reaction can also competitively inhibit the 
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activity of superoxide dismutase 2 (SOD2) with ROS, reducing 

ROS clearance, creating a vicious cycle that continuously lowers 

NO levels in endothelial cells (67). Peroxynitrite (ONOO-) also 

induces the oxidation of tetrahydrobiopterin (BH4), a cofactor 

for eNOS, leading to eNOS uncoupling and its conversion into 

a pro-oxidant, which further stimulates ROS production, causing 

cellular damage (68). ROS can also indirectly affect NO 

production through multiple pathways: by activating the 

phosphorylation of the c-Jun N-terminal kinase (JNK)/p38 

MAPK pathway, inhibiting eNOS expression and activity (69); 

by decreasing the expression of asymmetric dimethylarginine 

(ADMA) and increasing the expression and activity of 

dimethylarginine dimethylaminohydrolase II (DDAH II), which 

inhibits eNOS phosphorylation (70); and by inhibiting 

nicotinamide nucleotide transhydrogenase (NNT) activity, which 

also inhibits eNOS phosphorylation (71).

Reactive oxygen species (ROS) can activate DNA damage 

response regulator 1 (REDD1), which is an in3ammation 

initiator. REDD1 can activate downstream thioredoxin-interacting 

protein (TXNIP), a ROS-sensitive protein that can directly bind 

to nucleotide-binding oligomerization NOD-like receptor thermal 

protein domain associated protein 3 (NLRP3) in3ammasome and 

promote its activation (72). The integrated stress response of 

endothelial cells activated by ROS also participates in the 

activation of NLRP3 (73). NLRP3 induces cellular in3ammatory 

responses and apoptosis by recruiting and activating apoptotic 

factor caspase and pro-in3ammatory cytokines IL-1β and IL-18, 

while also inhibiting the activity of superoxide dismutase 2 

(SOD2), leading to severe cellular damage (74).

Additionally, ROS can cause mitochondrial DNA (mtDNA) to 

leak into the cytoplasm, activating toll-like receptor 9 (TLR-9), 

which recognizes unmethylated CpG dinucleotides within cells. 

TLR-9 induces the activation and translocation of NF-κB, 

leading to an in3ammatory response (75). ROS can also activate 

monoamine oxidase A (MAO-A) in the inner mitochondrial 

membrane, which catalyzes the degradation of serotonin and is 

also involved in the activation of TLR-9 (76). Furthermore, ROS 

can cause the release of Ca2+ from the endoplasmic reticulum 

into the cytoplasm, activating calpain-1. Calpain-1 induces the 

release of cytochrome c from the mitochondria into the 

cytoplasm, where it activates caspase-3 and promotes the 

activation and translocation of the pro-apoptotic protein Bax to 

the mitochondria, leading to apoptosis (77). ROS-activated p38 

mitogen-activated protein kinase (p38MAPK) also participates 

in the activation of Bax and caspase-3 (78).

Studies have found that ROS can directly induce the release of 

cytochrome c and apoptosis-inducing factor (AIF) from the 

mitochondria into the cytoplasm, triggering in3ammatory 

responses, and simultaneously activating the mitochondrial 

apoptotic pathway through caspase-9, leading to cell apoptosis 

(79, 80). Furthermore, research indicates that high-sensitivity 

C-reactive protein (hs-CRP), an important in3ammatory 

marker, is closely associated with CMD. Hs-CRP is involved in 

the pathophysiological changes following myocardial infarction, 

can activate complement, further promote in3ammatory 

responses, and thus expand the infarct area. Studies have shown 

that patients with high hs-CRP levels in acute myocardial 

infarction generally have a poorer prognosis (81).

4 Diagnostic techniques

Currently, there is no method available for directly observing 

the structure of the coronary microcirculation. Therefore, existing 

evaluation methods rely on certain functional parameters. 

According to internationally recognized diagnostic criteria, the 

primary functional indicators for diagnosing CMD are:

Coronary Flow Reserve (CFR): This is the ratio of coronary 

blood 3ow in a maximally dilated state to the baseline coronary 

blood 3ow. It comprehensively re3ects the potential blood 

supply capacity of both the epicardial coronary arteries and the 

coronary microcirculation. Drugs such as adenosine, 

dipyridamole, acetylcholine, regadenoson, and nicorandil can be 

used to achieve maximal dilation of the coronary arteries. The 

normal value of CFR is 3–5, and clinically, a CFR of less than 

2.0 is recommended as the threshold for identifying 

microvascular dysfunction.

Index of Microcirculatory Resistance (IMR): Defined as the 

ratio of pressure (Pd) at the distal end of a stenotic lesion to 1/ 

T under coronary hyperemic conditions, where pressure (Pd) 

and 3ow time (T) can be measured using a pressure wire 

equipped with a temperature sensor (82). IMR is independent of 

the function of epicardial vessels and can specifically assess the 

microvascular function at the distal end of a stenotic lesion with 

good reproducibility. An IMR of 25 or greater indicates 

microvascular dysfunction (82, 83).

Fractional Flow Reserve (FFR): This is the ratio of the 

maximum achievable blood 3ow to the myocardial region 

supplied by a stenotic artery to the theoretical maximum blood 

3ow achievable under normal conditions in the same region. It 

is calculated as the ratio of the mean pressure (Pd) in the 

coronary artery distal to the stenosis to the mean aortic pressure 

(Pa) at the coronary orifice during maximal myocardial 

hyperemia. An FFR of 0.8 or less indicates myocardial ischemia, 

and an FFR of less than 0.75 suggests that the patient may 

benefit from revascularization.

Additionally, some indicators suggest the presence of CMD 

after PCI: (1) TIMI 3ow grade 0–2 post-PCI. (2) TIMI 

myocardial perfusion grade 0–2 post-PCI. (3) Less than 50% 

resolution of the ST-segment elevation at 90 min post- 

procedure. (4) Single-photon emission computed tomography 

(SPECT) showing areas of myocardial perfusion defects before 

discharge (84) (Table 2).

4.1 Invasive testing

Invasive testing mainly includes coronary angiography, bolus 

thermodilution method, continuous thermodilution method, and 

intracoronary Doppler 3ow velocity method.

Coronary angiography can be used to analyze the patency of 

the epicardial coronary arteries using the TIMI (Thrombolysis 
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in Myocardial Infarction) 3ow grade and TIMI frame count 

methods, indirectly evaluating coronary microcirculation blood 

3ow. However, the results are not precise and do not clearly 

identify the location or cause of the lesion (85). Currently, 

coronary microvascular function is often assessed through 

myocardial contrast enhancement speed, with specific indicators 

including the TIMI myocardial contrast enhancement grade, 

myocardial contrast density grade, and TIMI myocardial 

perfusion frame count method. TIMI myocardial contrast 

enhancement analysis and myocardial contrast density grading 

can classify coronary microcirculation into three levels, serving 

as semi-quantitative indicators for evaluating microcirculatory 

perfusion (86). The TIMI myocardial perfusion frame count 

method evaluates the patient’s microcirculation based on the 

number of frames from myocardial contrast appearance to 

clearance, and studies have used this indicator to assess CMD 

after PCI (87).

The advantages of coronary angiography are that it allows 

immediate assessment of coronary microvascular function post- 

PCI and is straightforward to analyze. However, its limitations 

include the inability to measure CFR (coronary 3ow reserve), as 

the results are only semi-quantitative, and the analyzed 

indicators are easily in3uenced by heart rate and blood pressure.

Bolus Thermodilution Method involves injecting cold saline 

with a known temperature and injection rate into the coronary 

artery at its opening and measuring the degree of blood 

temperature drop. The extent of the temperature decrease 

re3ects the microcirculatory perfusion, and the results are 

directly proportional to coronary blood 3ow (CBF) (88). 

Additionally, a temperature dilution curve can be constructed to 

calculate the mean transit time (T) of saline from the injection 

site to the sensor. By recording the ratio of T values under 

maximum and baseline conditions, CFR can be obtained. Its 

advantages include simplicity of operation and the ability to 

quantitatively analyze coronary microcirculatory blood 3ow. 

However, its disadvantages are that the manual operation of 

saline injection introduces variability, which can easily lead to 

overestimation of CFR values. Furthermore, the results are 

affected by factors such as heart rate, blood pressure, saline 

injection speed, and temperature, leading to some degree of 

variability in the measurement outcomes.

Continuous Thermodilution Method eliminates the in3uence of 

manual operation and saline injection speed on the test results by 

using a specialized monorail infusion catheter to inject room- 

temperature saline at a constant speed of 15–25 ml/min. 

A temperature-sensing wire first measures the blood temperature 

downstream and then measures the saline temperature at the distal 

end of the infusion catheter, allowing for the calculation of blood 

3ow and resistance values. This method avoids the vascular 

stimulation caused by cold saline and reduces adverse reactions in 

patients (89, 90). Experiments have shown that the CFR values 

obtained by this method correlate well with those measured by 

PET (positron emission tomography) (91). However, the method 

still has limitations; an abnormal CFR detected by this method 

cannot distinguish whether the dysfunction is due to CMD or 

stenosis in the epicardial coronary arteries.

TABLE 2 Treatment methods for CMD after PCI.

Therapeutic 
Category

Treatment 
Strategy

Specific Drugs/Methods Mechanism of Action/Therapeutic Goal 
(References)

Risk Factor Control Hypertension Control ACEIs, ARBs, Calcium Channel 

Blockers, β-Blockers

Improve microvascular perfusion, slow disease progression (96–98)

Hyperlipidemia Control Statins, PCSK9 Inhibitors (e.g., 

Evolocumab, Alirocumab)

Improve endothelial function, inhibit in3ammatory response and oxidative 

stress, increase CFR (100–105)

Diabetes Control Metformin, Ticagrelor Protect endothelial cells, improve insulin resistance; Antiplatelet, anti- 

in3ammatory, and microvascular dilation effects (106–109)

Pre-PCI Prevention Antiplatelet Therapy Aspirin + Ticagrelor (or Clopidogrel) Prevent microthrombus formation, reduce CMD occurrence (110)

Statin Pretreatment Statins Improve coronary microvascular perfusion after revascularization in ACS 

patients (111)

Chinese Medicine 

Pretreatment

Tongxinluo Reduce intraoperative no-re3ow phenomenon and myocardial infarction 

area (112)

Intra-PCI Intervention Antiplatelet Drugs Tirofiban, Abciximab, Eptifibatide Reduce coronary microvascular obstruction, improve myocardial perfusion 

(113)

Vasodilators Adenosine, Nicorandil, Nitroprusside, 

Verapamil, Diltiazem

Improve coronary microcirculatory perfusion, reduce no-re3ow (114–118)

Non-Pharmacological 

Therapy

Thrombus Aspiration, Excimer Laser 

Ablation, Delayed Stent Implantation

For patients with high thrombus burden, reduce microvascular obstruction 

(119–121)

Post-PCI Treatment Inhibit In3ammatory 

Response

Iron Chelators, β-Blockers Reduce myocardial oxidative stress, inhibit neutrophil activation (123–125)

Dilate Microvessels Adenosine, Nitroprusside, Nicorandil, 

Atrial Natriuretic Peptide (ANP)

Relax vascular smooth muscle, reduce microvascular resistance, increase 

perfusion (126–129)

Antiplatelet Therapy Ticagrelor, Tirofiban Inhibit platelet aggregation, prevent microthrombosis; Ticagrelor dilates 

microvessels via the adenosine pathway (6, 130)

Non-Pharmacological 

Therapy

Ischemic Conditioning, Remote Ischemic 

Preconditioning

Induce the body’s protective response against ischemia-reperfusion injury, 

reduce coronary microvascular obstruction, promote recovery (131–133)

Chinese Medicine 

Therapy

Integrated Chinese & 

Western Medicine

Shexiang Baoxin Pill, Qishen Yiqi 

Dripping Pill, Tongxinluo Capsule

Regulate in3ammatory response and oxidative stress, reduce endothelial 

cell damage, improve microcirculatory function and quality of life through 

multiple mechanisms (134–140)
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Intracoronary Doppler Flow Velocity Method records the 

coronary blood 3ow velocity at both baseline and hyperemic 

states. By calculating the ratio of 3ow velocities under these 

conditions, the CFR value is obtained. Additionally, this 

technique can use a pressure wire to measure the average blood 

3ow velocity and pressure in the distal microvessels during 

maximal hyperemia, thereby determining the hyperemic 

microvascular resistance. Hyperemic microvascular resistance is 

calculated as the mean pressure divided by the mean velocity. 

When this value exceeds 1.7 mmHg/cm/s, and CFR is less than 

2.5, CMD can be diagnosed (92). Studies have shown that 

hyperemic microvascular resistance is well correlated with 

clinical outcomes (93).

However, the drawback of this technique is its complexity in 

operation, and an abnormal CFR obtained does not definitively 

determine whether the cause is CMD or stenosis in the 

epicardial coronary arteries.

4.2 Non-Invasive testing

Non-invasive testing mainly includes techniques such as 

transthoracic coronary artery Doppler imaging, myocardial 

contrast echocardiography, single-photon emission computed 

tomography (SPECT), positron emission tomography (PET), 

cardiac magnetic resonance imaging (CMR), and computed 

tomography perfusion imaging (CTP).

Transthoracic color Doppler ultrasound, when using contrast 

agents, can visualize nearly 100% of the left anterior descending 

(LAD) artery and 54%–86% of the posterior descending artery 

(94). After fully dilating the coronary arteries using vasodilators, 

this method measures the peak diastolic 3ow velocity of the 

epicardial coronary arteries and compares it with the velocity at 

rest, obtaining the coronary 3ow velocity reserve (CFVR). CFVR 

has a high correlation with CFR and can generally be used 

interchangeably (95). A CFVR of ≤2.0 indicates the presence of 

coronary microvascular dysfunction (96).

The advantages of this method are that it is non-invasive, 

repeatable, highly feasible, has good patient compliance, is 

relatively inexpensive, and does not involve radiation exposure. 

However, the method’s limitations include a high dependency 

on the operator’s expertise and the precision of ultrasound 

imaging. Therefore, it is only suitable for clearly visualizing the 

LAD and its distal microvessels and is not applicable to 

branches, such as the circum3ex artery, that cannot be clearly 

imaged (97).

Myocardial Contrast Echocardiography (MCE) primarily 

detects myocardial backscatter signals after intravenous injection 

of microbubble contrast agents. These backscatter signals can 

display myocardial blood 3ow (MBF) (98). By measuring MBF 

before and after the administration of vasodilator drugs, the 

myocardial CFR level of the patient can be obtained, directly 

quantifying the coronary microcirculation function. Clinical 

studies have shown that MBF measured by MCE is highly 

consistent with MBF obtained through PET (99). The 

advantages of MCE include the absence of radiation, simplicity 

of operation, and low cost. However, its quality is highly 

dependent on the operator’s skill and can be easily affected by 

factors such as breathing and body position.

SPECT measures myocardial perfusion by recording the 

amount of radioactive tracers in the myocardium at rest and 

under stress, making it suitable for patients without epicardial 

coronary artery stenosis (100). SPECT/CT, when combined with 

low-dose CT scans, can co-localize perfusion with cardiac 

structures and correct for volume effects (101). The advantage 

of SPECT is its high sensitivity, making it an excellent negative 

predictive indicator. However, the limitations are that current 

routine SPECT cannot quantitatively measure CFR, and, given 

its radiation exposure, it has low spatial resolution, posing 

challenges for widespread clinical use.

PET calculates myocardial blood 3ow (MBF) per gram of 

myocardium per minute by detecting the radioactivity of 

radiotracer isotopes within the myocardium and constructing 

time-radioactivity curves for the left ventricular chamber and 

myocardium. By comparing MBF values before and after the 

administration of vasodilators, the coronary 3ow reserve (CFR) 

can be calculated. Currently, MBF and CFR measured by PET 

are considered the gold standard for diagnosing myocardial 

ischemia among non-invasive techniques (102, 103). Recently, 

combining PET with CT or MRI has overcome the attenuation 

effects of standalone PET imaging (104).

The advantages of PET are that it can accurately quantify MBF 

and CFR at rest and during stress, providing a precise assessment 

of myocardial perfusion. However, its disadvantages include high 

costs, long testing times, and radiation exposure. Additionally, 

when not combined with CT or MRI scans, PET has limited 

spatial resolution.

CMR enables simultaneous assessment of cardiac anatomy, 

myocardial function, and myocardial perfusion, while also 

providing a semi-quantitative myocardial perfusion reserve 

index (MPRI). A reduced MPRI indicates either the presence of 

CMD or increased resting myocardial perfusion (105). Recently, 

a study on a CMR respiratory motion correction myocardial 

perfusion measurement sequence demonstrated that MBF could 

be quantified, and CFR calculated while allowing the patient to 

breathe freely. The MBF values obtained by CMR are highly 

consistent with those measured by PET, confirming its 

diagnostic effectiveness (106). CMR can also assess myocardial 

perfusion using Dynamic Contrast-Enhanced Myocardial 

Perfusion Imaging. After intravenous injection of paramagnetic 

contrast agents, CMR can track the distribution and clearance 

process of contrast agents in the myocardium and blood vessels, 

and re3ect the myocardial blood 3ow perfusion status through 

changes in signal intensity. Changes in signal intensity are used 

to re3ect the state of myocardial blood perfusion. This method 

not only enables precise localization of perfusion defects by 

identifying areas with impaired perfusion but also calculates the 

extent of these defects through quantitative analysis, directly 

correlating with the coronary artery branches that are 

insufficiently supplying blood (107).

Furthermore, CMR can detect the presence of Microvascular 

Obstruction (MVO) in the coronary microvasculature. MVO 
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leads to abnormal myocardial reperfusion in patients, affecting 

cardiac structure, function, and prognosis—manifestations 

include increased myocardial infarction size, reduced systolic 

function, poor recovery of systolic function, and heightened risk 

of adverse ventricular remodeling (108). Both early and late 

gadolinium enhancement sequences in CMR can visualize 

MVO. Since gadolinium-based contrast agents cannot pass 

through obstructed microvessels to enter myocardial tissue, 

MVO appears as a non-enhancing dark region on Late 

Gadolinium Enhancement (LGE) images. Notably, this dark 

region is located within the enhanced area of myocardial 

infarction, forming a characteristic pattern where the infarcted 

region surrounds the MVO. Studies have demonstrated that the 

presence or absence of early MVO following myocardial 

infarction in patients with STEMI is a crucial prognostic factor 

for revascularization outcomes in these patients (109).

The advantages of CMR are its high controllability, high 

spatial resolution, and ability to simultaneously measure 

function, morphology, and perfusion. This technique has 

gradually become the gold standard among non-invasive 

imaging techniques for diagnosing CMD (106, 110, 111). 

However, its drawbacks include the presence of artifacts in the 

subendocardial region, which can affect the calculation results. 

Additionally, the gadolinium-based contrast agents used in CMR 

have adverse effects on renal function, making it unsuitable for 

patients with renal impairment.

Computed Tomography Perfusion (CTP) is a myocardial 

functional imaging technique based on coronary computed 

tomography angiography (CTA). It is the only non- 

invasive technique that can simultaneously assess both the 

epicardial coronary artery and microcirculatory function (112). 

CTP has two scanning modes: the rest scan mode, which evaluates 

the stenosis of the epicardial coronary arteries, and the 

pharmacological stress scan mode, which allows for qualitative and 

quantitative evaluation of myocardial blood 3ow (113).

The capability of CTP to identify CMD is comparable to that of 

SPECT, and it can be performed alongside CTA, making it relatively 

low-cost with good patient compliance. This makes CTP particularly 

suitable for post-PCI patients. However, the drawbacks of CTP 

include higher radiation exposure and the inability to precisely 

quantify MBF and CFR. Additionally, there is no universally 

accepted diagnostic threshold, which limits its clinical application.

5 Treatment strategies

Firstly, since post-PCI CMD is often induced by the risk 

factors associated with atherosclerosis (AS), controlling the 

progression of diseases such as hypertension, hyperlipidemia, 

and diabetes is crucial for preventing and managing CMD. 

Secondly, preventive measures, including both pharmacological 

and non-pharmacological treatments, can be employed before 

and during PCI to address the causes of post-procedural CMD. 

Finally, for patients who develop CMD after PCI, a series of 

pharmacological and non-pharmacological treatments can be 

administered to improve their prognosis.

5.1 Risk factor control

Early and sustained control of blood pressure in patients with 

hypertension and CMD is crucial for slowing disease progression 

and improving patient prognosis. Studies have shown that 

antihypertensive drugs such as angiotensin-converting enzyme 

inhibitors (ACEIs), angiotensin receptor blockers (ARBs), calcium 

channel blockers, and β-blockers significantly improve 

microvascular perfusion (114–116). Trials have indicated that renal 

denervation therapy has a positive effect on patients with 

hypertension-related CMD, but previous research results have 

been controversial (116). In recent years, interventional procedures 

for treating microvascular angina have been under development, 

and the implantation of coronary sinus reducers has shown a 

positive impact on relieving angina symptoms in CMD patients by 

significantly reducing subendocardial vascular resistance (117).

For patients with hyperlipidemia and CMD, several small- 

scale studies have demonstrated that statins significantly increase 

exercise tolerance and CFR, improve exercise-induced poor 

tissue perfusion, and enhance the quality of life (118–121). 

The use of proprotein convertase subtilisin/kexin type 9 

(PCSK9) inhibitors, such as evolocumab or alirocumab, not 

only lowers low-density lipoprotein cholesterol (LDL-C) but 

also significantly improves endothelial function, inhibits 

in3ammatory responses, and reduces oxidative stress (122, 123).

Diabetic patients exhibit poorer post-PCI prognosis compared to 

non-diabetic patients (124), likely due to vascular endothelial 

damage induced by hyperglycemia, which promotes platelet 

adhesion, activation, and aggregation, ultimately leading to 

thrombus formation. Consequently, antiplatelet agents such as 

ticagrelor can alleviate myocardial ischemia symptoms in diabetic 

patients with CMD. In addition to its anti-in3ammatory and 

antiplatelet functions, ticagrelor can also protect the myocardium 

from ischemia and reperfusion injury through its potent 

vasodilatory effects (125). A study on patients with ST-segment 

elevation acute coronary syndrome demonstrated that myocardial 

microcirculatory perfusion levels were significantly higher in 

diabetic patients treated with ticagrelor than with clopidogrel (126, 

127). Furthermore, studies have shown that the antihyperglycemic 

agent metformin, in addition to reducing hepatic glucose output 

and improving insulin resistance, also exerts a protective effect on 

endothelial cells in diabetic patients, making it an ideal treatment 

for diabetes combined with CMD (128).

5.2 Prevention before and during PCI

Studies have shown that dual antiplatelet therapy before PCI 

can effectively prevent the occurrence of CMD. Currently, 

ticagrelor combined with aspirin is commonly used for 

antiplatelet therapy. For patients intolerant to ticagrelor or at 

high risk of bleeding, ticagrelor can be replaced with clopidogrel 

(129). Myocardial contrast echocardiography has shown that the 

use of statins before revascularization in patients with acute 

coronary syndrome can significantly improve coronary 

microvascular perfusion (6). In addition to Western medicine, 
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taking a loading dose of the traditional Chinese medicine 

Tongxinluo before PCI in STEMI patients can significantly 

reduce the occurrence of intraoperative no-re3ow and the 

myocardial infarction area 6 months post-procedure, although it 

does not significantly impact postoperative cardiovascular 

events (130).

During PCI, platelet glycoprotein IIb/IIIa receptor antagonists 

such as tirofiban, abciximab, or eptifibatide can be used to prevent 

post-PCI CMD. For PCI patients with a high thrombus burden, 

the use of platelet glycoprotein IIb/IIIa receptor antagonists either 

intracoronarily or intravenously can reduce the incidence of 

coronary microvascular obstruction, decrease myocardial infarction 

size, improve myocardial perfusion, and reduce rates of 

reinfarction and mortality (131). Additionally, multiple studies 

have demonstrated that using specific plasminogen activators, 

adenosine, nicorandil, nitroprusside, verapamil, and diltiazem 

during PCI can improve coronary microcirculatory perfusion and 

reduce the incidence of no-re3ow post-procedure (132–136).

Non-pharmacological measures, such as thrombus aspiration, 

excimer laser ablation, and delayed stent implantation, can also be 

used to prevent post-PCI CMD. These non-pharmacological 

treatments are not routinely recommended, but for patients with 

a high thrombus burden, thrombus aspiration or excimer laser 

ablation can reduce coronary microvascular obstruction and 

improve myocardial microcirculation and perfusion (137, 138). 

Studies have shown that after thrombus aspiration or balloon 

dilation, achieving TIMI grade 3 3ow and delaying stent 

implantation for 4 to 16 h can result in a lower incidence of no- 

re3ow compared to direct PCI (139).

5.3 Post-PCI treatment

The ultimate goal of PCI is to reduce myocardial ischemia, 

protect cardiac function, and improve patient prognosis. Therefore, 

reopening the infarcted vessel is only the first step; subsequent 

treatment targeting CMD is of utmost importance. Post-PCI 

treatment mainly focuses on inhibiting in3ammatory responses, 

dilating microvessels, and preventing platelet aggregation (140).

Due to tissue necrosis and ischemia-reperfusion injury, PCI 

patients often experience severe in3ammatory responses. 

Experimental studies have demonstrated that several drugs can 

treat post-PCI in3ammatory reactions. First, due to myocardial 

ischemia and intramyocardial hemorrhage, excessive iron 

deposition occurs in the myocardial interstitium. Research has 

found that administering iron chelators to post-PCI patients can 

significantly improve serum iron levels, reduce myocardial 

oxidative stress, and improve patient prognosis (141). Second, 

β-blockers can inhibit neutrophil activation (142). Studies have 

shown that, after β-blocker administration, patients with STEMI 

exhibit significantly improved left ventricular ejection fraction 

and microcirculatory perfusion, reduced myocardial infarct size, 

and notably better prognosis (143).

Excessive microvascular constriction is a crucial factor in the 

development of CMD, and treatments such as adenosine, 

nitroprusside, nicorandil, and atrial natriuretic peptide can be 

used. Adenosine relaxes vascular smooth muscle and helps to 

increase coronary microcirculatory perfusion. Studies have 

indicated that using adenosine during and after PCI can 

significantly reduce myocardial infarct size (144). Nicorandil, a 

nitrate drug and ATP-sensitive potassium channel opener, can 

dilate epicardial and coronary microvessels. A meta-analysis 

showed that perioperative use of nicorandil improves coronary 

blood 3ow, cardiac contractile function, and prognosis in 

STEMI patients undergoing initial PCI (145). Atrial natriuretic 

peptide (ANP) can reduce coronary microvascular obstruction 

by inhibiting endothelin-1 (146). Studies have found that 

administering ANP to STEMI patients before PCI significantly 

reduces myocardial infarct size (147).

Platelet aggregation is a major cause of microthrombus 

formation, and antiplatelet therapy is the first-line treatment for 

preventing and managing post-PCI CMD. Studies have shown 

that the antiplatelet drug ticagrelor not only inhibits platelet 

aggregation but also dilates microvessels via the adenosine 

pathway, thereby improving microcirculatory perfusion (148). 

Additionally, other studies have demonstrated that the use of 

the antiplatelet drug tirofiban can reduce microvascular damage 

and improve clinical outcomes (149).

Moreover, non-pharmacological treatments also play an 

important role in combating post-PCI CMD. Currently, clinical 

practice often employs ischemic conditioning to induce the 

body’s protective response against ischemia-reperfusion injury 

after PCI. Ischemic conditioning involves repeatedly and brie3y 

occluding the coronary artery with a balloon before PCI to 

cause transient myocardial ischemia, thereby reducing the 

occurrence of coronary microvascular obstruction and 

promoting left ventricular function recovery (150).

In addition, remote ischemic preconditioning involves 

using a cuff to repeatedly in3ate and de3ate the upper limb 

after PCI, inducing brief ischemia, which leads to the 

production of myocardial protective substances locally, 

thereby promoting myocardial survival (151). Research has 

shown that remote ischemic preconditioning can reduce 

myocardial infarct size, although it does not improve 

coronary blood 3ow. Follow-up studies have found that the 

group receiving remote ischemic preconditioning experienced 

significant reductions in all-cause mortality, cardiovascular 

events, and cerebrovascular events (152).

6 Summary and outlook

In summary, the occurrence of CMD after PCI significantly 

affects patient prognosis. Mechanistically, ischemia-reperfusion 

injury is the most critical factor contributing to post-PCI CMD. 

Reperfusion of ischemic myocardium induces severe oxidative 

stress, in3ammatory responses, and endothelial dysfunction. Due 

to the small diameter of the vessels, current imaging techniques 

cannot directly observe the specific morphology of the coronary 

microcirculation and can only indirectly assess microcirculatory 

function through functional indicators. The commonly used 

diagnostic methods each have their advantages and 
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disadvantages, but due to the limitations of these indirect 

indicators, these methods cannot effectively determine the exact 

location and cause of the lesions, let alone observe the 

progression of the disease.

Early detection and management of post-PCI CMD are crucial 

for improving patient outcomes. Therefore, identifying a simpler 

and more accessible method for post-PCI CMD detection is a 

key focus of future research in this field. Currently, the 

treatment strategies for post-PCI CMD mainly include risk 

factor control and pre-, intra-, and post-PCI interventions. 

However, these treatment strategies lack high-quality, large-scale, 

multicenter, randomized controlled clinical trials, and the 

specific therapeutic effects and molecular mechanisms are not 

yet fully understood.

Moreover, in clinical practice, numerous studies have 

demonstrated that traditional Chinese medicine (TCM) has 

good therapeutic and preventive effects on CMD after PCI. 

TCM can regulate post-PCI in3ammatory responses, oxidative 

stress, and reduce endothelial cell damage through multiple 

mechanisms and pathways, thereby improving microcirculatory 

function, in3ammation markers, and quality of life in post-PCI 

patients (153–158). Studies have shown that combining Chinese 

and Western medicine can significantly reduce the incidence of 

adverse cardiovascular events after PCI compared to Western 

medicine alone (159). However, due to the numerous 

components, pathways, and targets of TCM, exploring its 

specific active ingredients and mechanisms is challenging. 

Therefore, it is recommended to conduct more high-quality, 

large-sample, multicenter clinical studies while using advanced 

multi-omics analysis techniques to comprehensively and 

systematically study the specific mechanisms and effects of TCM.
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