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Objective: Cardiovascular disease (CVD) is the leading cause of death 

worldwide, and early prediction and prevention are essential to reduce its 

incidence. In recent years, Artificial Intelligence (AI) techniques have made 

significant progress in medical imaging analysis, especially in predicting CVD 

risk from retinal imaging.

Methods: As of August 2025, we searched using several electronic databases 

including PubMed, Web Of Science Core Collection. Screening was 

performed based on inclusion and exclusion criteria, and 43 papers were 

finally selected.

Results: AI shows great potential in predicting CVD risk from retinal imaging 

[optical coherence tomography (OCT), optical coherence tomography 

angiography (OCTA), and color fundus photography (CFP)]. Non-invasive eye 

examinations combined with AI analysis offer the potential for mass 

screening and early warning.

Conclusions: AI has made significant progress in the field of CVD assisted 

diagnosis and risk assessment using retinal imaging. Single-modality models 

have achieved high accuracy, while multimodal models have further 

enhanced performance. However, challenges remain, including reliance on 

single-center data and insufficient generalization capabilities. Future steps 

include building multi-center datasets, developing dynamic risk models, and 

promoting portable devices for underserved regions. While promising for 

early CVD prevention, interdisciplinary collaboration is needed to improve 

generalizability, standardization, and interpretability for higher clinical value.
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1 Introduction

Cardiovascular disease (CVD) encompasses a range of conditions affecting the heart 

and blood vessels, including coronary artery disease and peripheral artery disease (PAD) 

(1). As the most prevalent form of CVD, ischemic heart disease is a leading global cause 

of disability and mortality and can result in acute myocardial infarction (MI) (2). 

According to the 2019 Global Burden of Disease report, global CVD-related morbidity 

and mortality have nearly doubled over the past three decades, with an increasing 

burden observed among adolescents and young adults (2, 3). This trend underscores 
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the substantial societal and economic impact of CVD (2, 4). 

Clinical studies indicate that early intervention in high-risk 

individuals can delay disease progression and improve 

outcomes. Therefore, early diagnosis, risk prediction, and risk 

stratification are critical in CVD management. These efforts rely 

on biomarkers—such as troponin, C-reactive protein, and 

B-type natriuretic peptide—and functional imaging modalities, 

including computed tomography and magnetic resonance 

imaging, which play vital roles in assisting diagnosis, predicting 

risk, and stratifying patients (5, 6). However, many current CVD 

assessments are invasive, time-consuming, and primarily geared 

toward diagnosis rather than prospective risk evaluation. Their 

results can be in2uenced by operator experience and clinical 

expertise (7). Moreover, resource-limited settings often lack the 

infrastructure for precise diagnosis and effective risk 

stratification, highlighting the need for more accessible and 

standardized tools.

Artificial intelligence (AI) has garnered significant interest in 

healthcare due to its increasing sophistication and expanding 

applications (8–10). In ophthalmology, AI models have 

demonstrated the ability to predict systemic disease risks from 

retinal imaging, enabling risk stratification and opening new 

avenues for personalized prevention strategies (11). This progress 

is driven by three key factors: the widespread clinical adoption of 

high-resolution, non-invasive ophthalmic imaging; the 

accumulation of large-scale datasets for correlation analysis; and 

the development of novel analytical methods, including AI (11). 

Besides, its use in healthcare has great potential to enhance the 

quality of service to patients (12, 13). Retinal imaging-based AI, 

in particular, shows broad applicability across various systemic 

diseases, including endocrine, cardiovascular, neurological, renal, 

autoimmune, and hematological disorders (14–16). Furthermore, 

studies indicate that AI can assist in diagnosing CVD such as 

atrial fibrillation and hypertrophic cardiomyopathy, facilitate 

disease stratification and phenotyping, and predict clinical 

outcomes by integrating multimodal medical data (7, 17, 18). 

Advanced retinal imaging techniques—including optical 

coherence tomography (OCT), optical coherence tomography 

angiography (OCTA), and color fundus photography (CFP)— 

generate high-resolution images. By training on these images, AI 

can develop powerful predictive models to help clinicians identify 

at-risk individuals earlier and optimize interventions.

This review examines the latest applications of AI in assisted 

diagnosing, assessing, and stratifying CVD risk based on retinal 

imaging. Furthermore, it evaluates the current landscape, 

including the strengths and limitations of this approach, and 

discusses future perspectives on using the retina as a window 

for CVD prediction via AI.

2 Method

To ensure the systematicity and reproducibility of this review, 

the search and selection of literature were conducted following the 

Preferred Reporting Items for Systematic Reviews and Meta- 

Analyses (PRISMA) guidelines, with a predefined strategy.

2.1 Search strategy

A systematic literature search was performed in August 2025 

using the following electronic databases: PubMed and Web of 

Science Core Collection. The search strategy incorporated 

Boolean operators (AND, OR) and combined keywords related 

to artificial intelligence (AI), retinal imaging, and cardiovascular 

disease (CVD). The search query used in PubMed is provided 

below as an example: (“artificial intelligence” OR AI OR “deep 

learning” OR “machine learning”) AND (retina OR fundus OR 

“retinal imaging”) AND (“cardiovascular disease” OR CVD OR 

“heart disease” OR “cardiovascular risk”).

2.2 Inclusion and exclusion criteria

2.2.1 Inclusion criteria

1. Primary research articles;

2. Human subjects;

3. Focus on AI models applied to retinal imaging (e.g., CFP, 

OCT/OCTA) for CVD prediction, risk stratification, or 

clinical assistance;

4. Full text available in English;

5. Publication date between January 1, 2018, and August 1, 2025.

2.2.2 Exclusion criteria

1. Animal studies;

2. Reviews, commentaries, conference abstracts, or book 

chapters;

3. Studies not focused on CVD (e.g., diabetic retinopathy only) 

or not employing AI models;

4. Articles for which full text was unavailable.

2.3 Study selection process

All identified records were imported into EndNote for duplicate 

removal. The screening process consisted of two phases: Initial 

Screening: Two investigators independently reviewed the titles and 

abstracts of all retrieved articles to exclude clearly irrelevant 

studies. Full-Text Review: The full texts of potentially eligible 

articles were obtained and assessed independently by the same 

two investigators against the inclusion and exclusion criteria. Any 

disagreements were resolved through discussion or, when 

necessary, by a third reviewer. Additionally, the reference lists of 

included articles were manually screened to identify any 

additional relevant publications.

2.4 Results of study selection

The initial database search yielded 1,642 records. After 

removing 16 duplicates, 912 records were excluded based on 

publication year, and 37 were excluded due to unavailability of 

full text. Following the application of exclusion criteria, 634 
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articles were further excluded. Ultimately, 43 studies met all 

eligibility criteria and were included in this review. A detailed 

2owchart of the study selection process is provided in 

accordance with the PRISMA guidelines (Figure 1).

3 Current status of research on AI for 
assisted diagnosis, prediction, and 
stratification of CVD risk using retinal 
imaging

Deep learning (DL), a key branch of AI, is extensively 

employed in medicine to analyze complex biomedical data (19). 

AI algorithms used in healthcare, primarily encompassing 

machine learning (ML) and DL, are designed not only to 

process large-scale datasets but also to assist clinicians in 

identifying and monitoring disease risk (20–22). At the same 

time, a substantial number of studies have proposed the 

implementation of AI for the domain of CVD imaging (23, 24). 

The retina provides a unique window for non-invasive 

assessment of the human microvasculature. High-definition 

ophthalmic imaging techniques—such as OCT, OCTA, and CFP 

—allow detailed visualization of retinal architecture. 

Consequently, AI-driven analysis of retinal imaging has emerged 

as a promising tool for predicting CVD risk. Evidence indicates 

that such analysis can identify CVD risk factors, predict clinical 

events, and detect associated biomarkers (25). For instance, AI 

models can estimate CVD parameters with accuracy comparable 

to expert graders, demonstrating significant associations between 

retinal vessel caliber and risk factors like hypertension, body 

mass index, and cholesterol levels (26). Retinal vascular 

measurements have not only been correlated with these risk 

factors but also linked to incident CVD events (26). A study in 

Kenya highlighted that while the accuracy of ML-based 

parameter estimation was slightly lower than in trained 

reference populations, it represents a critical step toward 

accessible, early CVD screening in resource-limited settings (27). 

This approach thus provides a non-invasive and convenient 

method for risk assessment by leveraging microvascular 

information from retinal imaging. However, the field remains in 

its early stages, facing challenges such as limited dataset size and 

insufficient model generalizability.

AI models have shown promise in assisted diagnosing and 

predicting risks for specific CVDs using retinal imaging, 

including MI, hypertensive heart disease, carotid atherosclerosis, 

heart failure, coronary heart disease, and PAD, as summarized.

3.1 AI use CFP to assist in the diagnosis and 
prediction of CVD and to stratify CVD risk

AI models assist in diagnosing CVD, predicting patient risk, 

and stratifying patients by analyzing CFP to identify abnormal 

retinal features, such as variations in vascular caliber and 

morphology. The predictive accuracy of these models, as 

measured by area under the curve (AUC), typically exceeds 0.9, 

with some outperforming or usefully complementing traditional 

risk scores. For instance, a hybrid Inception V3-VGG16 model 

has demonstrated a high accuracy of 99.5% in predicting CVD 

risk from CFP. Nevertheless, most developments stem from 

single-center studies, limiting their generalizability. Furthermore, 

while some models offer a degree of interpretability, the 

decision-making mechanisms of many remain opaque. Future 

research should therefore prioritize multi-center external 

validation and clinical translation to enhance practical utility 

and robustness, ultimately facilitating their deployment in 

resource-limited settings. Detailed characteristics of the 

supporting studies are summarized in Table 1.

3.1.1 AI predicts CVD risk using CFP

Recent advances in AI have significantly improved CVD risk 

prediction using CFP. Evidence indicates that CFP captures 

biomarkers predictive of future CVD risk, with DL-derived risk 

scores independently associated with CVD events (43–45). 

Retinal features—including ischemic perivascular lesions, 

subretinal drusen-like deposits, and microvascular metrics such 

as vessel density, caliber, tortuosity, and fractal dimension—have 

been established as clinically useful indicators for systemic 

disease assessment (46, 47). For example, a U-Net-based DL 

model demonstrated a significant association between retinal 

microvascular density and fractal dimensions with congestive 

heart failure, reinforcing the retina’s role as a window into 

cardiovascular health (47).

Several studies have developed specific DL models for CVD 

prediction. A model based on the Inception-v3 architecture 

predicted high coronary artery calcium scores (CACS >100) 

from CFP using vascular and macular features, achieving an 

area under the receiver operating characteristic curve (AUROC) 

of 83.2%—outperforming single clinical parameters and 

comparable to age-based indicators (28). Another model 

developed to estimate 10-year ischemic cardiovascular disease 

(ICVD) risk showed strong performance (AUC 0.85–0.97) and 

was trained on a large dataset of nearly 400,000 participants, 

enhancing its generalizability (29). Wang et al. introduced a DL- 

based retinal aging score (Reti-aging score) that efficiently 

predicts vascular aging and CVD risk from CFP, with an AUC 

of 0.779–0.826, outperforming both single clinical parameters 

(e.g., age, hypertension) and specialist physicians (30). The same 

model also predicted new-onset hypertension and carotid artery 

plaque with AUC values of 0.703 and 0.705, respectively (30).

Several advanced AI models have been developed to predict 

hypertension-related CVD risk using retinal imaging. Srilakshmi 

et al. introduced a deep neuro-fuzzy network combined with a 

fractional calculus-based optimization algorithm, achieving an 

accuracy of 91.6%, sensitivity of 92.3%, and specificity of 91.9%, 

outperforming conventional models (31). Similarly, the 

Singapore I Vessel Assessment-Deep Learning System (SIVA- 

DLS) automates retinal vessel diameter measurement, showing 

high agreement with expert graders (intraclass correlation 

coefficient: 0.82–0.95) (26). Other approaches include a hybrid 

computer vision and DL model with 87.5% accuracy (32), a 

convolutional neural network that integrates multi-feature fusion 
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to capture microvascular abnormalities (33), and an osprey gannet 

optimization-based model reaching 92.1% accuracy (33). 

Additional high-performing frameworks include a fractional 

chef-based optimization algorithm combined with SpinalNet 

(accuracy: 91.3%) (34), a Dense Spiking Forward Fractional 

Network exceeding 90% accuracy in multi-center datasets (35), 

and a hybrid Inception V3-VGG16 model achieving 99.5% 

accuracy by leveraging both global and fine-grained retinal 

features (36). The latter also offers rapid processing, making it 

suitable for elderly screening in resource-limited settings (36).

In summary, most CFP-based AI models demonstrate high 

predictive accuracy (>90%), often with screening times under 

one minute. Integration of retinal microvascular features with 

clinical data further improves performance. These non-invasive, 

cost-effective tools show particular promise for early CVD risk 

screening in underserved populations. Nevertheless, many 

FIGURE 1 

The literature screening process of this review.
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TABLE 1 AI use CFP to assist in the diagnosis of CVD, predict CVD risk, and stratify patients.

Al algorithm Country Dataset Year Device used Disease 
type

Imaging 
type

Model performance

Inception-v3 (28) Korea 20,130 

individuals

2020 Canon CR6-45NM, 

Kowa nonmyd7

Predict CACS CFP The model AUROC reached 83.2%, 

outperforming single clinical parameters.

Inception-ResNet- 

V2 (29)

China 412,827 

individuals

2022 Not detailed Predict ICVD 

10-year risk

CFP This model predicts the 10-year risk of 

ICVD with an AUC of 0.85–0.971.

Reti-aging score 

(30)

China 4,376 

individuals

2024 Canon CR-2 Digital 

Retinal Camera, Canon 

CR-2 AF Digital 

Retinal Camera

Predict CVD risk CFP This model can efficiently predict vascular 

aging and CVD risk through CFP, with an 

AUC of 0.779–0.826. It outperforms single 

clinical parameters (such as age, 

hypertension, etc.) and specialist 

physicians.

FCHOA-based 

DNFN (31)

Greece 1,000 

images

2022 Nidek AFC-210 fundus 

camera

Predict CVD risk CFP The model predicted CVD risk with an 

accuracy rate of 91.6%, a sensitivity of 

92.3%, and a specificity of 91.9%, which was 

superior to traditional models.

SIVA-DLS (26) Singapore, New 

Zealand, Australia, 

China, Korea, UK

70,000 

images

2020 Canon CR-DGi 10D, 

Canon CR6-45NM, 

Topcon 3D OCT-1000 

Mark II

Predict CVD risk CFP The model’s ability to predict CVD risk had 

an intraclass correlation coefficient of 0.82– 

0.95 with expert scores.

EfficitNetB0 (32) India 6,026 

individuals

2024 Snethra Classic HD Predict CVD risk CFP The model’s accuracy in predicting CVD 

risk is 87.5%.

CNNs based on 

transfer learning 

(33)

Many country 210,494 

images

2024 Not detailed Predict CVD risk CFP The model predicted CVD risk with an 

accuracy rate of 92.1%.

FCBOA-SpinalNet 

(34)

China 1,000 

images

2024 Not detailed Predict CVD risk CFP The model achieved a CVD risk prediction 

accuracy of 0.913, significantly 

outperforming traditional models.

DenSFFNet (35) Many country 1,860 

images

2025 Not detailed Predict CVD risk CFP The model achieved an accuracy rate of 

over 90% in predicting CVD risk in a 

multicenter dataset.

Hybrid Inception 

V3-VGG16 (36)

China 1,433 

images

2024 Not detailed Predict CVD risk CFP The model predicts CVD risk with an 

accuracy rate of up to 99.5%.

rpCVD (37) Australia 27,595 

individuals

2025 Mediworks FC162 Predict 10-year 

CVD risk

CFP The AUC of the model for predicting 

10-year CVD risk was 0.672, which was 

comparable to the WHO CVD risk score 

(AUC = 0.693).

An ordinal 

regression DL 

model (38)

UK, Australia 35,053 

individuals

2025 Topcon 3D OCT 1000 

Mark II, Topcon 

TRCNWS, Mediworks 

FC-162

Predict 10-year 

CVD risk

CFP The model predicts 10-year CVD risk and 

stratifies it using CFP, solving the problem 

of underestimation of retinal scores.

RetiCAC (39) Korea, Singapore, 

UK

216,152 

images

2021 Not detailed Predict CVD risk 

and stratification

CFP The model significantly improved the 

predictive ability of the pooled cohort 

equation (PCE) for moderate-risk and 

marginal-risk groups. As a complementary 

tool to PCE, it optimized decision-making 

for moderate-risk groups (e.g., 7.5%-20% 

10-year risk).

Reti-CVD (40) UK 48,260 

individuals

2023 Topcon 3D OCT-1000 

Mark II, AFP-210, 

TRC-NW8, Nonmyd 

A-D

Refine CVD risk 

stratification

CFP For individuals with QRISK3 

Cardiovascular Risk Algorithm scores in 

the borderline risk range (7.5%–10%), 

further stratification analysis can be 

performed.

DL-FAS (41) Korea 37,523 

individuals

2020 Canon CR-2 Predict carotid 

atherosclerosis

CFP The model predicted an AUROC of 0.713 

for carotid atherosclerosis, with an accuracy 

of 0.583 and a sensitivity of 0.891.

RetiCAC (39) Korea, Singapore, 

UK

216,152 

images

2021 Not detailed Predict CAC CFP The model predicted an AUC of 0.742 for 

CAC, which was superior to single clinical 

parameters such as age and blood glucose 

levels.

Attention-based 

Multiple Instance 

Learning (42)

Germany 135 

individuals

2022 EIDON Wide Field 

True Color Confocal 

Fundus Imaging 

System

Diagnosis of PAD CFP The AUC of this model for diagnosing PAD 

is 0.89.
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models rely on single-center, limited-sample datasets, constraining 

generalizability, and further validation in diverse cohorts is needed 

before broad clinical adoption.

3.1.2 AI stratifies CVD risk using CFP
CVD risk stratification is crucial for the prevention and 

management of CVD (48). AI models using CFP can not only 

predict CVD risk, but also stratify CVD risk. A study found that 

only 25.8% of participants had undergone CVD risk assessment 

(37). This method not only identifies high-risk and borderline- 

risk groups but also facilitates more precise early intervention, 

thereby improving patient survival rates. Retinal vessels, due to 

their anatomical specificity, have emerged as a potential tool for 

CVD risk stratification (48). Consequently, an increasing 

number of research and development efforts are focused on 

developing AI models for CVD risk stratification using CFP. 

Research has found that AI models based on CFP [Residual 

Neural Network 18 (ResNet 18)/Multiple Instance Learning] can 

be used for screening and grading diabetic cardiac autonomic 

neuropathy (49). Several AI models demonstrate the potential of 

CFP for CVD risk stratification. One rpCVD model achieved an 

AUC of 0.672 in predicting 10-year CVD risk, performing 

comparably to the World Health Organization (WHO) risk 

score (AUC = 0.693) (37). Risk classifications (low/moderate/ 

high) were consistent with the WHO score in 63.4% of 

participants, and both patients (92.5%) and general practitioners 

(87.5%) reported high satisfaction with the tool (37). This model 

can be incorporated into primary care work2ows to help address 

the limited coverage of conventional risk assessment methods 

(37). An ordered regression DL model has also been developed 

to predict and stratify 10-year CVD risk based on CFP (38). By 

integrating significance analysis and imaging decomposition 

techniques—such as vessel or macula removal experiments—the 

model provides interpretable predictions by identifying key 

retinal features in2uencing risk stratification (38). The Retinal 

Imaging-Based CVD (Reti-CVD) tool identified a 10-year CVD 

risk of 13.1% in its high-risk group (40). Compared to QRISK3, 

the current UK standard, Reti-CVD improved stratification of 

borderline-risk individuals and detected high-risk patients 

missed by QRISK3 (e.g., 8.6% of the high-risk group had a 

QRISK3 score of only 0%–5%) (40). These findings support its 

use as a non-invasive aid for clinical decision-making, such as 

initiating statin therapy (40).

In summary, AI-enhanced retinal imaging allows more precise 

and comprehensive CVD risk stratification, which may facilitate 

personalized early intervention and slow disease progression. 

However, few CFP-based stratification models currently exist, 

most are derived from single-center studies, and clinical 

practicality remains limited.

3.1.3 AI assisted diagnoses CVD using CFP

In addition to risk prediction, AI has also demonstrated 

diagnostic potential for specific CVD subtypes. The DL- 

funduscopic atherosclerosis score (DL-FAS) model enhances 

the predictive capability of cardiovascular mortality risk based 

on the Framingham Risk Score (FRS), demonstrating 

significant value particularly in risk stratification among 

individuals with moderate risk (FRS 10%–19%) (41). This 

model holds promise as an adjunct tool for CVD risk 

stratification (41). Additionally, by quantifying atherosclerotic 

features in carotid angiography, the model achieved an 

AUROC of 0.713 for predicting carotid atherosclerosis, along 

with an accuracy of 0.583 and a sensitivity of 0.891 (41). 

A multicenter, large-scale study found that retinal imaging of 

coronary artery calcium (RetiCAC) is comparable to computed 

tomography-measured coronary artery calcium (CAC) in terms 

of risk stratification performance (39). Furthermore, it 

significantly improves the predictive ability of the pooled 

cohort equation (PCE) for intermediate-risk and borderline- 

risk groups, serving as a complementary tool to PCE to 

optimize decision-making for intermediate-risk groups (e.g., 

7.5%–20% 10-year risk) (39). Besides, this model predicts CAC 

achieved an AUC of 0.742, outperforming single clinical 

parameters such as age and blood glucose levels (39). This aids 

in the early assisted diagnosis and management of CAC. 

Furthermore, an attention-based multi-instance learning model 

has been validated for its feasibility in the early assisted 

diagnosis of PAD (42). By leveraging microvascular changes in 

the optic disc and temporal vascular arcade, this model offers 

a novel perspective for the systematic assessment of 

atherosclerosis (42). Currently, there is limited literature on the 

assisted diagnosis of CVD using CFP, and it lacks clinical 

practicality. In the future, more attempts can be made to 

develop models for diagnosing CVD by combining clinical 

data, population information, and other factors.

3.2 AI predicts and stratifies CVD risk using 
OCT/OCTA

AI models utilizing OCT and OCTA can identify vascular and 

retinal abnormalities to predict CVD risk and stratify patients. 

These models generally demonstrate high predictive accuracy, 

with some outperforming or usefully complementing 

conventional risk scores. Approaches such as extreme gradient 

boosting (XGBoost), convolutional neural networks (CNN), and 

anatomy-sensitive inference networks (ASI-Net) have further 

improved the accuracy of automated analysis and prediction. 

However, challenges related to data standardization, clinical 

translatability, and the limited number of available models 

remain. Future work should prioritize the integration of 

multimodal data—combining OCT, OCTA, and clinical 

information—as well as prospective validation in cohort studies 

to support the translation of these technologies into clinical 

practice. A detailed summary of the included studies is provided 

in Table 2.

3.2.1 AI predicts CVD risk using OCT/OCTA
OCT is a high-resolution imaging technique capable of 

capturing the layered structure of the retina. Studies have shown 

that changes in retinal thickness and structure are associated 

with CVD. The risk monitoring and healthcare assistance 
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system model identified certain retinal fundus features in OCT 

retinal imaging that were significantly associated with the 

development of aortic aneurysms and adverse aortic events (57). 

This suggests that OCT may be a promising tool for the early 

detection and intervention of aortic aneurysms and adverse 

aortic events (57). A model based on interactive ML technology 

has, for the first time, enabled automated detection of reticular 

intraretinal perivascular lesions (RIPLs) and subretinal 

drusenoid deposits (SDDs) using a small-scale OCT dataset 

(58). Its efficiency (6-hour training) and high specificity (>90%) 

provide a new tool for studying retinal biomarkers of CVD (58). 

OCTA is a high-resolution vascular imaging technique. By 

enhancing the visualization of deep capillary networks and the 

choroid, it facilitates the identification of different types of 

retinal capillary networks and provides detailed imaging of 

retinal microvascular structures (59–63). OCTA can detect early 

changes in retinal microvasculature, which may be early 

biomarkers of CVD (50, 51, 53, 64). A prospective cross- 

sectional study found that the density of the superficial retinal 

capillary plexus measured by OCT-A correlates with CVD risk 

profiles and impaired left ventricular ejection fraction in patients 

with high-risk CVD status (65). Therefore, quantitative retinal 

microvascular data can be considered a valid surrogate for CVD 

risk profiles and may enhance CVD risk assessment. This 

represents the first evidence linking OCT-A metrics to CVD risk 

(65). Studies have shown a significant correlation between 

retinal capillary density and markers of adverse cardiac 

remodeling, providing a new perspective for predicting the risk 

of systemic diseases such as CVD (66). A prospective 

observational cohort study demonstrated that preoperative 

retinal hypoperfusion independently predicted an elevated risk 

of perioperative adverse cardiovascular events in patients with 

coronary heart disease, highlighting retinal microcirculation 

assessment as a non-invasive biomarker to inform cardiac 

surgical prognostication and guide personalized therapeutic 

strategies (67). Supervised ML models combining CFP and 

OCTA data demonstrated high accuracy (up to 96.53%) in 

predicting CVD risk (51). The retinal foundation model 

(RETFound) model achieved AUROC values of 0.737 and 0.794 

when using CFP and OCT imaging to predict MI and heart 

failure, respectively (52).

The AUC of the CNN model for predicting congestive heart 

failure risk under 3 × 3 mm high-resolution OCTA imaging 

scanning was 0.61 (53). The scanning performance significantly 

decreased under 6 × 6 mm resolution OCTA images and 

8 × 8 mm resolution OCTA images (AUC ≤ 0.5) (53). Based on 

retinal OCT-A patient images from the open-source RASTA 

dataset, a study evaluated the accuracy of ML and DL 

algorithms in predicting CHA2DS2-VASC neurocardiovascular 

risk scores (50). The findings revealed that EfficientNetV2-B3 is 

a suitable DL model for retinal OCT-A imaging, correctly 

predicting risk in 68% of cases (50). This contributes to the 

assessment of future neurocardiovascular characteristics (50). 

A study combining traditional cardiovascular risk factors 

employed multiple ML algorithms (such as k-nearest neighbors, 

naive bayes classifier, support vector machines, etc.) to predict 

TABLE 2 AI predicts and stratifies CVD risk using OCT/OCTA.

Al algorithm Country Dataset Year Device used Disease type Imaging 
type

Model performance

ML models and DL 

models 

(EfficientNetV2-B3) (50)

France 491 

individuals

2024 PLEX Elite 9000 Predict 

Neurocardiovascular 

Risk

OCTA ML Model: SVM achieved the best 

performance with an AUC of 0.98 

and an accuracy of 85%. DL Model: 

EfficientNetV2-B3 demonstrated a 

balanced accuracy of 68%.

Supervised ML model 

(51)

France 144 

individuals

2021 TRC NW68, 

CIRRUS HD-OCT

Predict CVD risk CFP, OCTA The model’s accuracy in predicting 

CVD risk ranges from 75.64% to 

96.53%.

RET Found (52) UK, China, 

France, Spain, 

South Korea, 

India

1,640,612 

images

2023 Topcon 3DOCT- 

2000SA, Canon CR1/ 

OGI/CR2, Topcon 

NW, SPECTRALIS

PredictMI and heart 

failure

CFP, OCT The model predicted AUROC values 

of 0.737 and 0.794 for MI and heart 

failure, respectively.

CNN and Mobile 

Network Version 2 (53)

Australia 247 

individuals

2023 Carl Zeiss CIRRUS 

HD-OCT Model 

5000

Predict congestive 

heart failure risk

OCTA The AUC for predicting congestive 

heart failure risk was 0.61.

k-Nearest Neighbors, 

Naive Bayes Classifier 

(54)

France, 

Luxembourg

120 

individuals

2025 Not Detailed Predict coronary artery 

disease risk

OCTA The accuracy of the model in 

predicting coronary artery disease 

risk (up to 86%) is significantly 

higher than that of traditional logistic 

regression models (78.7%).

ML model (55) UK 2,824 

individuals

2025 Topcon 3D OCT 

1000 Mk II

Classification of heart 

failure subtypes

OCT The ML model analyzes retinal OCT 

features and achieves the best- 

performing non-invasive 

classification of heart failure subtypes 

(AUC 0.70) for the first time.

Cardiac Risk Assessment 

DL Model (56)

UK 33,370 

individuals

2024 Topcon 3D OCT 

1000 Mark II

CVD risk stratification OCT The model can accurately distinguish 

between high-risk and low-risk 

individuals, consistent with known 

CVD risk trends.
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the risk of coronary artery disease. The classification accuracy of 

the ML algorithms (up to 86%) was significantly higher than 

that of traditional logistic regression models (78.7%) (54). As a 

non-invasive diagnostic method, OCTA holds promise as a new 

biomarker for CVD (54).

These findings underscore the potential of OCT and OCTA as 

powerful, non-invasive tools for detecting early retinal 

microstructural and microvascular changes linked to CVD, 

offering insights beyond traditional risk assessment methods. 

The integration of AI-driven analysis with high-resolution 

retinal imaging enhances predictive accuracy, enabling more 

precise CVD risk stratification and early intervention strategies. 

Future research should focus on standardizing imaging protocols 

and expanding multicenter datasets to further validate these 

innovative biomarkers for clinical adoption.

3.2.2 AI assisted diagnose CVD and stratify risk 

using OCT/OCTA imaging
OCTA serves as a critical tool for assisted diagnosis, 

progression tracking, and guiding therapeutic decision-making 

for a wide range of systemic health conditions. Retinal OCTA- 

derived biomarkers enable non-invasive quantification of 

microvascular pathology, offering actionable insights to refine 

clinical decision-making (68). At the same time, Ultra Wide- 

Field OCTA has been shown to provide reliable performance for 

detecting neovascularization and intraretinal microvascular 

abnormalities achieving similar accuracy to 2uorescein 

angiography (69). Traditional assessment methods rely on 

clinical indicators and patient history, but may suffer from a 

lack of accuracy and timeliness, especially in areas with relatively 

scarce resources. Therefore, it is important to explore new, non- 

invasive assessment methods. Studies have shown that a 

reduction in the thickness of inner segment/outer segment 

junction of the retinal pigment epithelium and inner nuclear 

layer to external limiting membrane is significantly associated 

with heart failure (55). This study analyzed retinal OCT features 

using ML models (XGBoost, etc.) and achieved the first non- 

invasive classification of heart failure subtypes with the best 

performance (AUC 0.70) (55).

It has been shown that increased CVD risk is inversely related to 

leukocyte telomere length, whether assessed by traditional 

biomarkers, CVD risk scores, or our DL heart biological age 

(BioAge) CVD risk model (56). Shortened leukocyte telomere 

length serves as an alternative biomarker for increased CVD risk. 

This model reliably captures this CVD risk biomarker and 

accurately distinguishes between high and low risk individuals, 

consistent with known CVD risk trends. Therefore, it can 

facilitate rapid and accurate screening for CVD risk (56). The 

ASI-Net model study demonstrates the applicability of AI- 

enhanced OCTA imaging analysis in the detection of ischemic 

stroke and its subtype classification (68). Collectively, these 

advances position OCTA and AI-enhanced retinal analysis as 

transformative approaches for systemic disease management, 

bridging critical gaps in early detection, risk stratification, and 

personalized therapeutic planning across cardiovascular conditions.

3.3 AI use multimodal methods to assist in 
the diagnosis of CVD, predict CVD risk, and 
stratify patients

AI models use multimodal analysis to identify vascular and 

retinal abnormalities for the assisted diagnosis of CVD, 

prediction of CVD risk, and stratification. Compared to single- 

modal AI models, these models collect more comprehensive 

information and exhibit higher accuracy. However, the clinical 

utility of these models remains to be improved. Future research 

should prioritize large-scale validation of these AI models across 

different populations and clinical settings to bridge the gap 

between experimental performance and real-world 

implementation, ultimately enabling precise CVD prevention 

strategies. For specific details on each article, please refer to Table 3.

3.3.1 AI predicts CVD risk using multimodal

As research on AI models predicting CVD through retinal 

imaging continues to deepen, more and more models are 

combining clinical data, genomic data, metabolomic data, and 

other information to comprehensively predict CVD risk and 

improve model efficiency (89, 90). The study used DL models 

and metabolomics technology to reveal the molecular link 

between retinal aging and CVD, establishing a novel biomarker 

called the metabolomic signature of retinal aging (MSRA) (70). 

It also verified that MSRA has statistical significance in 

predicting CVD (p < 0.05) (70). A multimodal DL model 

combining CNN and deep neural network (DNN) significantly 

improved the predictive performance of CVD by combining 

CFP and traditional risk factors (such as age, blood pressure, 

cholesterol, etc.) (71). The model performed well in both 

internal and external validation and was able to identify high- 

risk patients for future CVD events (71). The efficientnet-base 

model variant 3 (EfficientNet-B3) multimodal model achieves 

high-precision prediction of CVD risk (AUC-ROC 96.3%) by 

integrating CFP with clinical data, significantly outperforming 

traditional models such as residual neural network with 50 

layers (ResNet-50) and VGG16 (72). Its core advantage lies in 

combining clinical data to overcome the limitations of single 

data sources, thereby enhancing the comprehensiveness of 

predictions (72). On the other hand, it uses gradient-weighted 

class activation mapping (Grad-CAM) to generate heatmaps, 

visualizing the model’s focus on critical retinal regions (such as 

areas with vascular abnormalities), thereby enhancing the 

model’s credibility (72). A study achieved high-precision 

prediction of CVD risk based on CFP (AUC-ROC 90.41%) 

through the fusion of multimodal data with the siamese 

squeeze-and-excitation resnext (Siamese SE-ResNeXt) model 

(73). The dataset used for this model is “China-Fundus-Carotid 

Intima-Media Thickness (CIMT) dataset”. This dataset is an 

integration of retinal and carotid intima-media thickness data to 

provide a reference for the creation of new datasets in the 

future. Moreover, it is also an important resource for the 

development and validation of AI-based early CVD screening 

models using retinal imaging (73). Research has found that by 
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TABLE 3 AI models use multimodal methods to assist in the diagnosis of CVD, predict CVD risk, and stratify patients.

Al algorithm Country Dataset Year Device used Disease type Imaging 
type

Model performance

DL based Algorithm 

(70)

UK, China 111,360 

individuals

2024 500-MHz Bruker 

AVANCE III HD NMR, 

600-MHz Bruker 

AVANCE III HD NMR

Predict CVD CFP The model combines CFP, 

metabolomics data, clinical and 

demographic data, and genetic data to 

predict CVD with statistical significance 

(p < 0.05).

Multimodal DL 

model combining 

CNN and DNN (71)

Korea, UK 14,816 

individuals

2023 TRC-SODX Retinal 

Camera

Predict CVD risk CFP The model combines CFP and 

traditional risk factors, significantly 

improving the predictive performance 

of CVD. The model performed well in 

both internal and external validation.

EfficientNet-B3 (72) US 8,969 

individuals

2025 Not Detailed Predict CVD risk CFP EfficientNet-B3 multimodal model 

achieves high-precision prediction of 

CVD risk (AUC-ROC 96.3%) by 

combining CFP with clinical data, 

significantly outperforming traditional 

models such as ResNet-50 and VGG16.

Siamese SE ResNeXt 

(73)

China 2,903 

individuals

2025 Canon CR-2 PLUS AF Predict CVD risk CFP Siamese SE ResNeXt model combined 

with CFP and clinical data to predict 

CVD risk AUC-ROC 90.41%.

Multimodal model 

combining CNN and 

DNN (74)

UK 30,398 

individuals

2018 Topcon 3D OCT-1000 

Mark II

Predict CVD risk CFP By combining traditional risk factors 

and retinal features, the model 

demonstrates high accuracy in 

predicting the risk of coronary artery 

disease in HIV-infected individuals 

(AUC close to 0.99).

Multimodal CNN 

model (75)

India 112 individuals 2025 ZEISS VISUSCOUT 

100 Handheld Fundus 

Camera

Predict CVD risk CFP The accuracy rate of multimodal AI 

models combining ECG and CFP to 

predict CVD risk reached 84%.

ECG and CFP model 

(76)

Spanish 242 individuals 2025 SD-OCT, EDI-OCT Predict CVD risk OCT The AUC for predicting carotid plaque 

risk using the model was 0.82–0.85.

EfficientNet-B2 

network (77)

UK 6,127individuals 2025 Not Detailed Predict the 10-year 

MACE risk

CFP The model effectively predicts the 

10-year MACE risk in patients with type 

2 diabetes using CFP, with performance 

comparable to traditional clinical scores 

(PCE).

UKBiobank-based 

prognostic models 

(78)

Europe, UK 95,463 

individuals

2022 Topcon 3D-OCT 1000 

Mark II

Predicting MI risk CFP The model combines CFP, clinical data, 

and genomic data, achieving 

performance comparable to or slightly 

better than the traditional FRS in 

predicting myocardial infarction risk.

Multimodal model 

combining CNN and 

DNN (79)

UK 30,398 

individuals

2018 Topcon 3D OCT-1000 

Mark II

Predict the 5-year 

MACE risk

CFP The model achieved an AUC of 0.70 

from retinal fundus images alone, 

comparable to the AUC of 0.72 for the 

European SCORE risk calculator.

Multimodal model 

combining CMR and 

CFP (80)

UK, US 8,673 

individuals

2020 Topcon 3D OCT-1000 

Mark II

Predict MI risk CFP A multimodal AI model combining 

CFP, CMR imaging, and demographic 

data performs comparably to traditional 

CVD risk models (such as the 

Framingham score) in predicting MI 

risk.

Photoreceptor 

Metabolic Window 

(81)

UK, China 124,812 

individuals

2025 Topcon 3D OCT-1000 

Mk II/DRI OCT Triton

Predict MI risk OCT A model combining OCT, 

metabolomics, and clinical data 

significantly improved the prediction of 

MI risk.

L1-regularised 

logistic regression 

lasso, VAMPIRE 3.1 

(82)

UK 3,891 

individuals

2019 Not Detailed StratifyMACE risk in 

patients with type 2 

diabetes

CFP Multimodal models integrating retinal, 

genomic, and clinical data can predict 

MACE risk in patients with type 2 

diabetes and effectively distinguish 

between high-risk and low-risk patients.

VAMPIRE (83) UK 5,152 

individuals

2022 Not detailed Stratify 10-year 

MACE risk in 

patients with type 2 

diabetes

CFP The model effectively predicts and 

stratifies the 10-year MACE risk of type 

2 diabetes patients by combining CFP 

with genomic data.

(Continued) 
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combining traditional risk factors and retinal characteristics, AI 

models demonstrate high accuracy in predicting the risk of 

coronary artery disease in human immunodeficiency virus 

(HIV)-infected individuals (AUC close to 0.99) (74).

A study used a multimodal AI model [Electrocardiogram 

(ECG) + CFP] to fuse spatiotemporal features using fast fourier 

transform + earth mover’s distance, achieving an 84% accuracy 

rate in predicting CVD risk, with a particular strength in 

identifying early microvascular lesions (75). A study combining 

ML and OCT technology confirmed that reduced choroidal 

thickness in patients with type 1 diabetes is significantly 

associated with carotid plaque (76). Its AUC for predicting 

carotid plaque was 0.82–0.85 (76). Research has found that DL 

models based on efficientnet-base model variant 2 (EfficientNet- 

B2) can efficiently predict the 10-year major adverse 

cardiovascular events (MACE) risk of type 2 diabetes patients 

through CFP, with performance comparable to traditional 

clinical scores (PCE) (77).

A new AI model combines retinal imaging, clinical data, and 

genomic data to achieve performance comparable to or slightly 

better than the traditional FRS in predicting the risk of MI (78). 

The combination of CFP and DL technology has enabled 5-year 

risk prediction for MACE, with an AUC of 0.7 (79). The AUC is 

comparable to the AUC of 0.72 for the European SCORE risk 

calculator (79). Multimodal AI models, combining CFP, cardiac 

magnetic resonance (CMR) images, and demographic data, perform 

as well as traditional CVD risk models (such as the Framingham 

score) in predicting MI risk, while being less expensive and more 

accessible (80). The AI-driven photoreceptor metabolic window 

model integrates OCT, metabolomics, and DL. This model 

significantly improves the prediction of MI risk and reveals the 

metabolic basis of the relationship between photoreceptor layer 

thickness and the risk of multisystem diseases (81).

In summary, currently, there are relatively more studies 

combining clinical data and genomics with AI models based on 

CFP, and their predictive performance has improved to a certain 

extent. However, there are fewer multi-modal AI models based on 

OCT and OCTA, but their performance is better than that of 

single-modal models. Multi-modal models combining OCT, CFP, 

OCTA and other clinical data have great potential in predicting 

CVD risk and are worth further research. This shows that in the 

future we can try to integrate OCT, OCTA, CFP and other 

prediction methods. This will not only improve the prediction rate 

of CVD risk, but also refine the risk stratification more. This helps 

with early management.

3.3.2 AI stratifies CVD risk using multimodal

Early detection and risk stratification of CVD are crucial for 

prevention and treatment. The accuracy of predicting CVD risk 

and stratification using single imaging or assisted examinations 

needs to be improved, while multimodal fusion technology can 

significantly improve predictive accuracy. A multimodal AI model 

integrating retinal, genomic, and clinical data can predict the risk 

of MACE in patients with type 2 diabetes and effectively 

distinguish between high-risk and low-risk patients (82). 

Compared with DL models, the features selected by Lasso 

regression in this model have clear clinical significance, enhancing 

the interpretability of the model (82). By analyzing vascular 

parameters in CFP and combining them with genomic data, the 

AI model vascular mapping and perfusion imaging reconstruction 

(VAMPIRE) can effectively predict and stratify the 10-year MACE 

risk in patients with type 2 diabetes (83). The model’s AUC for 

predicting MACE is 0.663, comparable to the traditional PCE risk 

score (AUC 0.658) (83). When combined with retinal parameters 

and a polygenic risk score, the AUC improves to 0.686, 

significantly outperforming the PCE risk score (83).

TABLE 3 Continued

Al algorithm Country Dataset Year Device used Disease type Imaging 
type

Model performance

Reti-CVD (84) Republic of 

Korea

1,106 

individuals

2024 Visucam NM/FA Predict 5-year CVD 

risk and stratify

CFP The model predicts and stratifies 5-year 

CVD risk by combining CFP, clinical 

data, and other biomarkers. Its 

predictive accuracy is 0.751, and the risk 

ratio of the three estimated CVD risk 

groups is 2.02.

SIVA-DLS (85) Asia 860 individuals 2023 Canon CR-1 Mark-II 

Non-mydriatic Digital 

Retinal Camera

Predict CVD risk 

and stratification

CFP Research supports retinal microvascular 

assessment as a low-cost, noninvasive 

CVD risk stratification tool.

CLAiR (86) UK, US 53,145 

individuals

2024 Not detailed Predict 10-year 

ASCVD risk and 

stratification

CFP The model combines CFP and clinical 

data to achieve stratified 10-year 

ASCVD risk.

VGG, ResNet (18) Spanish 152 images 2022 Not detailed CAC risk 

stratification in 

patients with 

diabetes

CFP The model integrates CFP and clinical 

data, with an accuracy rate of 72% for 

stratifying CAC risk in diabetic patients.

M2AI-CVD (87) UK, Korea over 573 

individuals

2024 Not detailed Predict CVD risk CFP Combining CFP and clinical data, high- 

precision (95.89%) CVD risk prediction 

was achieved.

DXA Model and 

Retinal Image Model 

(88)

Qatar 1,805 images 2022 Topcon TRC-NW6S 

retinal camera

Diagnose CVD CFP A multimodal DL model combining 

CFP and DXA data achieved an 

accuracy rate of 78.3% in diagnosing 

CVD.
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The AI algorithm based on DL (Reti-CVD) combines CFP, 

clinical data, and other biomarkers to predict 5-year CVD risk 

and stratify it. Its predictive accuracy is 0.751, and the risk ratio 

for the estimated three CVD risk groups (low, medium, and high 

risk) is 2.02 (84). This model is equivalent to CAC scoring, but is 

less costly and easier to operate (84). The SIVA-DLS model 

combines retinal vascular parameters and clinical data to achieve 

an AUC of 0.760 for predicting CVD risk (compared to an AUC 

of 0.720 for traditional risk factors) (85). The study also supports 

retinal microvascular assessment as a low-cost, non-invasive CVD 

risk stratification tool, particularly suitable for resource-limited 

areas (85). The CLAiR model uses CFP and limited demographic 

data to predict and stratify 10-year atherosclerotic CVD risk (86). 

The AUROC for predicting atherosclerotic CVD (ASCVD) risk is 

0.89–0.9. Its risk stratification ability is consistent with traditional 

ASCVD risk assessment (86).

In summary, multimodal AI models that integrate retinal 

imaging, genomics, and clinical data demonstrate superior 

predictive performance for CVD risk stratification compared to 

traditional methods like PCE risk score, while also offering cost- 

efficiency and scalability. These advancements highlight the 

potential of AI-driven, interpretable risk assessment tools to 

enhance early CVD detection and personalized prevention 

strategies in high-risk populations, such as type 2 diabetes patients.

3.3.3 AI assisted diagnoses CVD using multimodal

The AI model combining VGG16 and transfer learning 

integrates CFP and clinical data to determine CAC in diabetic 

patients and stratify CAC risk (with an accuracy rate of 72%) 

(18). It also innovatively combines clinical data to optimize 

predictions (with an accuracy rate of 91%) (18). The M2AI- 

CVD system combines CFP with clinical data and improves 

model performance through entropy-optimized segmentation 

and genetic algorithm feature selection (87). It achieves high- 

precision (95.89%) CVD risk prediction (87). This provides a 

promising solution for the accurate and early detection of 

CVD (87). This study is the first to propose a multimodal DL 

model combining CFP and dual-energy x-ray absorptiometry 

(DXA) data for non-invasive CVD assisted diagnosis, with an 

accuracy rate of 78.3% (88). Despite data limitations and 

generalization challenges, its non-invasive, efficient, and 

interpretable nature offers new insights for early CVD screening 

(88). In the future, by expanding the dataset and conducting 

clinical validation, it is expected to become a powerful tool for 

rapid CVD screening in primary care.

4 Discussion

4.1 Current status of AI using retinal 
imaging to predict CVD

In recent years, there has been an increasing number of 

applications based on AI to automate imaging processing (91). 

Significant progress has also been made in the application of AI 

to medical imaging analysis, especially in predicting and 

evaluating CVD through retinal imaging (92). Research shows 

that AI-based identification of retinal biomarkers has great 

potential in predicting CVD (47, 93). A study found that retinal 

blood vessels may be a potential biomarker for coronary artery 

atherosclerosis (94). Through DL, convolutional neural 

networks, and other methods, AI technology is able to extract 

biomarkers associated with CVD from retinal imaging. This 

provides new tools for early assisted diagnosis, risk assessment 

and prognosis prediction of CVD. Currently, there are many AI 

models based on CFP, but few based on OCT and OCTA. 

Multimodal models typically combine retinal imaging with 

clinical data, demographic data, metabolomics, genomics, ECG, 

CMR, DXA, and other information. Overall, multimodal models 

can collect more comprehensive information and have better 

predictive performance, making them an important direction for 

future research.

With the increasing application of AI in the medical field, 

CVD risk prediction technology based on CFP has developed 

rapidly. Traditional CFP analysis relies on the experience of 

doctors, which is subjective and time-consuming. Through DL 

models, AI technology can quickly and accurately identify subtle 

changes in CFP (95, 96). Research indicates that CFP contains 

information about future CVD risk, and retinal microvascular 

features (such as ischemic perivascular lesions, density, and 

vessel diameter) can serve as assessment criteria for systemic 

diseases (97). For example, AI models can predict the risk of 

CVD such as hypertension and atherosclerosis by analyzing 

retinal vessel diameter, curvature, and branching angle (26, 39). 

The U-Net57 model revealed the association between the retina 

and congestive heart failure by analyzing microvascular density 

and fractal dimension, while the model based on the Inception- 

v3 architecture achieved an AUC of 83.2% in predicting high 

coronary artery calcium scores (CACS > 100), outperforming 

single clinical parameters. Additionally, multi-feature fusion 

models (e.g., Hybrid Inception V3-VGG16) achieve accuracy as 

high as 99.5%, combining efficiency and non-invasiveness, 

making them particularly suitable for early screening in 

resource-limited regions. In terms of risk stratification, AI 

models such as rpCVD (AUC = 0.672) and Reti-CVD (10-year 

CVD risk of 13.1% in the high-risk group) achieved 

stratification capabilities comparable to WHO scores and 

QRISK3 through CFP, and could even identify high-risk 

populations missed by traditional tools. The DL-FAS model 

optimizes decision support for moderate-risk populations by 

quantifying retinal atherosclerosis features (AUROC = 0.713) 

(41). While existing models generally exhibit high accuracy, 

most rely on single-center, small-sample data, limiting their 

generalization capabilities. Additionally, AI has demonstrated 

potential in exploratory diagnostics for specific CVD subtypes 

(e.g., carotid atherosclerosis, peripheral artery disease), but its 

clinical utility remains to be validated.

Multimodal AI models based on retinal imaging have seen 

rapid development in the field of CVD risk prediction. The core 

breakthrough lies in the integration of multimodal data and the 

improvement of model interpretability. Research shows that by 

integrating clinical data (such as age and blood pressure), 
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genomics (polygenic risk scores), and metabolomics (such as 

retinal aging metabolic markers MSRA), the model performance 

significantly outperforms traditional risk assessment tools. For 

example, the EfficientNet-B3 model (AUC 96.3%) and the 

Siamese SE-ResNeXt model (AUC 90.41%) outperform ResNet- 

50 and the Framingham score, respectively, by combining CFP 

with clinical features.

Notably, the multimodal strategy demonstrated unique 

advantages: after integrating CFP vascular parameters with 

genomic data, the VAMPIRE model improved MACE prediction 

AUC from 0.663 to 0.686. While the photoreceptor metabolic 

window model, which combines OCT, CFP, and metabolomics, 

revealed the metabolic mechanisms linking retinal thickness to 

the risk of multisystem diseases. In terms of risk stratification, 

the Reti-CVD model achieved a risk ratio of 2.02 across low, 

medium, and high-risk groups through 5-year risk prediction 

(accuracy of 0.751), with performance comparable to CACS but 

at lower cost; the CLAiR model achieved an AUROC of 0.89– 

0.9 using CFP and basic demographic data, validating the 

potential of retinal imaging to replace complex examinations. 

Current challenges include limited research on OCT/OCTA 

multimodal models and reliance on single-center data (e.g., the 

China-Fundus-CIMT dataset) for some models.

4.2 Comparison of models based on 
different retinal imaging

Current evidence suggests that AI models using CFP generally 

achieve higher predictive accuracy for CVD risk than those based 

on OCT or OCTA. CFP-based models also benefit from larger 

training and validation datasets, enhancing their reliability. 

Nonetheless, OCT/OCTA-based models show high accuracy in 

predicting MI risk. Multimodal approaches, which integrate 

demographic data, retinal imaging, and other clinical variables, 

can effectively predict CVD, MI, and MACE, with some models 

performing comparably to the PCE risk score and even 

surpassing the FRS.

Although relatively few AI models are designed specifically for 

CVD risk stratification, several show promising performance. For 

example, the CFP-based rpCVD model achieved 63.4% agreement 

with WHO risk categories, and its use of a large dataset enhances 

credibility. Similarly, multimodal models can stratify risks for 

MACE, CVD, and ASCVD with accuracy comparable to or 

exceeding PCE scores. However, these models often rely on 

datasets with selection bias, underscoring the need for improved 

internal and external validation. As AI technology advances, a 

growing number of retinal imaging-based models are being 

developed for CVD diagnosis. CFP-based approaches have 

shown utility in diagnosing carotid atherosclerosis, CAC, and 

PAD, often outperforming single clinical parameters such as age 

or blood glucose levels. In contrast, multimodal models are 

currently limited to assisting in the diagnosis of CAC and 

general CVD. Moreover, their constrained dataset availability 

results in lower accuracy, reliability, and generalizability 

compared to CFP-based models.

In summary, AI models based on CFP are more extensively 

developed and typically utilize larger datasets than those 

employing other imaging modalities. Several CFP-based models 

have undergone both internal and external validation, 

demonstrating stable accuracy and robust generalizability. In 

contrast, the use of OCT and OCTA for CVD risk prediction 

and stratification represents an emerging field, with relatively 

few models available and their diagnostic utility still under 

investigation. Recent research has increasingly focused on 

multimodal AI approaches, which integrate retinal imaging with 

demographic and clinical data to achieve superior predictive and 

stratification performance. These models are likely to become a 

major focus of future research due to their enhanced 

capabilities. However, their development is constrained by the 

need for large, complex datasets and advanced technical 

infrastructure, making them currently less suitable for resource- 

limited settings. In comparison, CFP-based AI models— 

compatible with portable fundus cameras—offer greater 

scalability for large-scale screening in underserved populations. 

A detailed comparison of AI models based on CFP, OCT, 

OCTA, and multimodal data is provided in Table 4.

4.3 Clinical utility of AI models

AI models relying exclusively on CFP demonstrate high 

predictive accuracy for CVD, with performance comparable to 

or exceeding that of established risk assessment tools. For 

example, the CNN-based Singapore I Vessel Assessment–Deep 

Learning System (SIVA-DLS) model showed strong agreement 

with expert evaluations, achieving an intraclass correlation 

coefficient of 0.82–0.95 for CVD risk factor prediction (26). 

Similarly, the RetiCAC model yielded an AUC of 0.742 for 

predicting CAC and significantly improved the predictive 

capacity of the PCE score in intermediate- and borderline-risk 

groups (39). The rpCVD model achieved an AUC of 0.672, 

which is comparable to the WHO CVD risk score 

(AUC = 0.693), with 63.4% of participants showing consistent 

risk stratification (low/moderate/high) between the two 

approaches (37). Additionally, incorporating the DL–based 

feature augmentation strategy (DL-FAS) model alongside the 

FRS improved concordance by 0.0266 compared to using FRS 

alone (41).

Current multimodal models are frequently benchmarked 

against established risk scores such as the PCE and FRS. Studies 

indicate that the EfficientNet-B2 model achieved an AUC of 

0.697 for predicting MACE, comparable to the PCE score; when 

integrated with a polygenic risk score for coronary artery disease 

and PCE, performance improved to an AUC of 0.728 (77). 

Similarly, the VAMPIRE model yielded an AUC of 0.663 for 

MACE prediction—on par with PCE (AUC 0.658)—and reached 

0.686 when augmented with retinal parameters and genetic risk 

data, significantly surpassing PCE alone (83). The CLAiR model 

also demonstrated predictive capability for ASCVD events 

comparable to that of PCE (86). A multimodal achieved an 

AUC of 0.7 for MACE prediction, comparable to the European 
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SCORE risk calculator (79). In external validation, a model 

integrating CFP, CMR imaging, and demographic data attained 

an AUC of 0.70 for MI prediction, approaching the 

performance of FRS (80). The QUARTZ model has also been 

reported to perform comparably or slightly better than FRS in 

predicting MI (78). Overall, multimodal models generally exhibit 

stronger predictive ability for CVD risk than unimodal 

approaches, with many matching or exceeding conventional risk 

tools. Integrating monomodal AI models with PCE scores can 

further enhance risk assessment accuracy, underscoring a key 

advantage of AI-enhanced retinal imaging in CVD prediction.

AI models based on retinal imaging offer a promising approach 

for large-scale cardiovascular screening due to their non-invasive 

nature, operational efficiency, and strong scalability (39, 65). 

These attributes make such models particularly suitable for 

regions with limited medical resources (75). The screening 

process requires only retinal imaging, eliminating the need for 

blood draws or complex examinations, which enhances patient 

acceptability (87). The procedure is highly efficient, with a 

median imaging time of approximately one minute and 47 s per 

eye and a 93.9% image quality pass rate, while certain models 

achieve predictive accuracies as high as 99.5% (29, 36, 37). The 

work2ow—from image preprocessing to risk classification—is 

fully automated, reducing reliance on operator skill and 

increasing reproducibility (32). In healthcare systems where 

fundus examination is already part of routine checkups, DL 

models such as DL-FAS can be applied directly to existing images 

without incurring additional examination costs (41). Architectures 

such as EfficientNet-B3, which have fewer parameters and lower 

computational demands, are especially suitable for low-resource 

clinical environments (72). The widespread availability of fundus 

cameras in primary care and ophthalmology clinics further 

supports the scalability of these tools (78, 84). Nevertheless, the 

clinical translation of retinal imaging-based AI models continues 

to face challenges. These include limited and often imbalanced 

training datasets, the lack of unified image quality standards, 

limited model interpretability, and insufficient validation of 

performance stability—all of which hinder broad implementation.

4.4 Limitations and shortcomings

Despite the increasing number of AI models being developed 

and validated, current research still faces many challenges.

4.4.1 Population limitations and insufficient 

generalization ability
Existing models are primarily developed for specific 

populations (e.g., diabetic patients), and their generalization 

ability across populations and races has not been sufficiently 

validated. Moreover, the diversity and quality of datasets vary 

significantly, affecting the stability of model performance.

4.4.2 Technical limitations
On the one hand, microvascular changes observed through 

retinal imaging may lack specificity for certain diseases. On the 

other hand, differences in imaging quality and parameters 

among different retinal imaging devices lead to inconsistent 

model performance across devices. Additionally, the lack of a 

unified database of normal values and imaging acquisition 

protocols hinders the comparability of results. Furthermore, 

motion artifacts or signal attenuation may also interfere with the 

accuracy of analysis.

4.4.3 Model interpretability and public 
acceptability

Due to the lack of clear AI decision-making processes and 

quantitative metrics or standards, AI is often viewed as a “black 

box” (98). This can lead to skepticism among doctors and 

patients regarding the results. Additionally, the data-driven 

nature of the model makes it susceptible to biases in the 

training data. This further exacerbates public distrust of AI.

4.5 Future prospects

4.5.1 Deepening multimodal fusion technology

Compared with single-modal models, multimodal models have 

better predictive performance. On the one hand, they can integrate 

technologies for identifying various types of retinal imaging. The 

synergistic application of multiple retinal imaging technologies, 

such as CFP, OCT, and OCTA, can be explored and combined 

with computer vision technology and self-supervised learning 

models (32, 99) to improve predictive accuracy. On the other 

hand, cross-modal data fusion can be conducted. By integrating 

genomic and metabolomic data (e.g., the photoreceptor metabolic 

window model), the specificity and clinical value of the model 

can be enhanced. Additionally, the model can be deployed in 

clinical settings for validation. Referencing models combining 

ECG with retinal imaging (75) and studies combining OCTA 

parameters with carotid artery stenosis (100), the validation of 

multimodal models in real clinical scenarios can be advanced.

4.5.2 Improving model interpretability
The lack of interpretability in AI models significantly impacts 

the trust doctors and patients have in them. On the one hand, 

Visualization techniques should be used as much as possible to 

identify retinal imaging. For example, gradient-weighted class 

activation mapping (Grad-CAM) heatmaps (28, 32, 49) and 

shapley additive explanations (SHAP) models (101) can be used 

to visually demonstrate the key retinal regions the model focuses 

on (such as blood vessels, the macula, and the optic disc). 

Analyze the anatomical structures relied upon by the model 

using attention weights to enhance clinical credibility (80). On 

the other hand, mathematical modeling methods can be 

explored to improve interpretability. Develop interpretable 

algorithms such as adaptive elliptical templates (102) to 

maintain robustness under conditions of abundant lesions or 

low contrast, thereby addressing the “black box” challenge of AI. 

Research suggests that explainable AI (XAI) technology can 

reveal black-box ML models, enhancing model credibility and 

reliability (103). One study incorporated SHAP analysis into AI 

Wang et al.                                                                                                                                                              10.3389/fcvm.2025.1615857 

Frontiers in Cardiovascular Medicine 15 frontiersin.org



models to achieve better model understanding (101, 104). Future 

AI models may incorporate XAI technology and SHAP analysis 

to improve model credibility (101, 103, 104). Additionally, the 

model combines multi-scale feature extraction and fusion 

techniques with a dual attention mechanism, which promotes 

the extraction of multi-scale vascular features and may help 

improve the model’s interpretability (105). In addition, a pilot 

study evaluating HbA1c demonstrated the potential and 

considerations required to develop reliable AI in the oculomics 

pilot, which contributes to the transparency of AI models (106).

4.5.3 Standardized database construction and 

generalization capability optimization
Current AI models for CVD screening are predominantly 

trained on limited, single-center datasets, which restricts their 

generalizability and clinical applicability. There is a pressing need 

to develop large-scale, multi-center, and multi-ethnic datasets to 

enhance model robustness and performance across diverse 

populations. For instance, the Retinal OCT Angiography and 

Cardiovascular Status (RASTA) dataset includes retinal 

microvascular imaging from 499 patients, featuring 814 vascular 

cuboids and 2,005 facial images, and represents the only publicly 

available resource with imaging data from both healthy 

individuals and high-risk CVD populations (107). This dataset is 

expected to facilitate the development of universal screening 

models using OCT-A imaging (107). Similarly, the mBRSET 

dataset—the first publicly available diabetic retinopathy resource— 

contains 5,164 retinal images from 1,291 ethnically diverse 

patients, all acquired using handheld cameras, thereby addressing 

data scarcity in low- and middle-income settings (108). A related 

study outlines steps for constructing a large-scale online retinal 

imaging database in India, offering a replicable framework for 

cost-effective, AI-based diagnostic tool development (109).

To improve model generalizability, future efforts should 

prioritize standardized, multi-institutional datasets that 

incorporate varied imaging devices (e.g., portable cameras) and 

population characteristics. External validation across diverse 

datasets—such as the UK Biobank and Eye Picture Archive 

Communication System (PACS), as performed for the CLAiR 

model—is also essential. One study reported a DL model capable 

of predicting glaucoma progression with varying accuracy across 

ethnic groups (76.9% in Caucasians, 14.6% in African Americans, 

and 8.5% in Asians), highlighting the importance of ethnically 

balanced training data (22). Insights from such studies can inform 

the design of more generalizable AI systems (13, 22). Finally, 

establishing unified data annotation standards will be critical to 

supporting reproducible and scalable model development.

4.5.4 Clinical application translation strategies

Due to the non-invasive, efficient, and convenient nature of 

retinal imaging, they are particularly suitable for primary care 

settings and resource-limited regions. Therefore, future efforts 

could focus on designing portable devices to enhance clinical 

practicality. A study comparing automated and semi-automated 

methods for measuring retinal microvascular biomarkers found 

good correlation between the two approaches in assessing 

vascular complexity and vessel diameter measurements, with 

consistent clinical relevance (110). However, the automated 

model exhibited a higher rejection rate within the dataset (110). 

Before transitioning from semi-automated to automated 

algorithms in retinal microvascular biomarker analysis, further 

comparative research is warranted (110). Additionally, dynamic 

risk assessment models could be developed to integrate long- 

term follow-up data on retinal changes and CVD progression 

for personalized management.

5 Conclusion

In recent years, AI technology based on retinal imaging has 

made significant breakthroughs in the fields of assisted diagnosis 

and CVD risk assessment. Single-modality models based on CFP/ 

OCT/OCTA have achieved high-precision predictions and support 

risk stratification. Multimodal models that integrate genomic, 

metabolomic, and ECG data have significantly improved 

performance. Grad-CAM heatmaps and SHAP analysis are 

gradually unraveling the “black box” of AI, enhancing clinical 

credibility. However, some issues remain, such as models heavily 

relying on single-center data, insufficient validation across 

populations/devices, and room for improvement in generalization. 

Differences in device parameters and imaging artifacts affect result 

comparability, and there is a lack of a unified database. In the 

future, we can draw on the experience of the Indian retinal 

database and mobile brazilian retinal dataset to build multi-center, 

multi-ethnic standardized datasets. Additionally, we can develop 

dynamic risk assessment models that integrate long-term retinal 

changes with CVD progression. We can also develop and 

promote portable devices, particularly for resource-limited 

regions. Retinal imaging AI holds promise for advancing early 

CVD prevention and control systems, but interdisciplinary 

collaboration is needed to address issues of generalizability, 

standardization, and interpretability, thereby achieving a transition 

from “high-precision prediction” to “high clinical value”.
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