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Research advances on artificial
intelligence assisted diagnosis
and risk assessment in
cardiovascular disease using
retinal imaging
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Medical University, Luzhou, China, 2Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern
Medical University, Shenzhen, China

Objective: Cardiovascular disease (CVD) is the leading cause of death
worldwide, and early prediction and prevention are essential to reduce its
incidence. In recent years, Artificial Intelligence (Al) techniques have made
significant progress in medical imaging analysis, especially in predicting CVD
risk from retinal imaging.

Methods: As of August 2025, we searched using several electronic databases
including PubMed, Web Of Science Core Collection. Screening was
performed based on inclusion and exclusion criteria, and 43 papers were
finally selected.

Results: Al shows great potential in predicting CVD risk from retinal imaging
[optical coherence tomography (OCT), optical coherence tomography
angiography (OCTA), and color fundus photography (CFP)]. Non-invasive eye
examinations combined with Al analysis offer the potential for mass
screening and early warning.

Conclusions: Al has made significant progress in the field of CVD assisted
diagnosis and risk assessment using retinal imaging. Single-modality models
have achieved high accuracy, while multimodal models have further
enhanced performance. However, challenges remain, including reliance on
single-center data and insufficient generalization capabilities. Future steps
include building multi-center datasets, developing dynamic risk models, and
promoting portable devices for underserved regions. While promising for
early CVD prevention, interdisciplinary collaboration is needed to improve
generalizability, standardization, and interpretability for higher clinical value.
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1 Introduction

Cardiovascular disease (CVD) encompasses a range of conditions affecting the heart
and blood vessels, including coronary artery disease and peripheral artery disease (PAD)
(1). As the most prevalent form of CVD, ischemic heart disease is a leading global cause
of disability and mortality and can result in acute myocardial infarction (MI) (2).
According to the 2019 Global Burden of Disease report, global CVD-related morbidity
and mortality have nearly doubled over the past three decades, with an increasing
burden observed among adolescents and young adults (2, 3). This trend underscores
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the substantial societal and economic impact of CVD (2, 4).
Clinical studies indicate that early intervention in high-risk
individuals can delay disease progression and improve
outcomes. Therefore, early diagnosis, risk prediction, and risk
stratification are critical in CVD management. These efforts rely
on biomarkers—such as troponin, C-reactive protein, and
B-type natriuretic peptide—and functional imaging modalities,
including computed tomography and magnetic resonance
imaging, which play vital roles in assisting diagnosis, predicting
risk, and stratifying patients (5, 6). However, many current CVD
assessments are invasive, time-consuming, and primarily geared
toward diagnosis rather than prospective risk evaluation. Their
results can be influenced by operator experience and clinical
expertise (7). Moreover, resource-limited settings often lack the
infrastructure for precise diagnosis and effective risk
stratification, highlighting the need for more accessible and
standardized tools.

Artificial intelligence (AI) has garnered significant interest in
healthcare due to its increasing sophistication and expanding
applications  (8-10).

demonstrated the ability to predict systemic disease risks from

In ophthalmology, AI models have
retinal imaging, enabling risk stratification and opening new
avenues for personalized prevention strategies (11). This progress
is driven by three key factors: the widespread clinical adoption of
high-resolution,  non-invasive  ophthalmic  imaging; the
accumulation of large-scale datasets for correlation analysis; and
the development of novel analytical methods, including AI (11).
Besides, its use in healthcare has great potential to enhance the
quality of service to patients (12, 13). Retinal imaging-based Al,
in particular, shows broad applicability across various systemic
diseases, including endocrine, cardiovascular, neurological, renal,
autoimmune, and hematological disorders (14-16). Furthermore,
studies indicate that AI can assist in diagnosing CVD such as
atrial fibrillation and hypertrophic cardiomyopathy, facilitate
disease stratification and phenotyping, and predict clinical
outcomes by integrating multimodal medical data (7, 17, 18).
Advanced

coherence tomography (OCT), optical coherence tomography

retinal  imaging techniques—including  optical
angiography (OCTA), and color fundus photography (CFP)—
generate high-resolution images. By training on these images, Al
can develop powerful predictive models to help clinicians identify
at-risk individuals earlier and optimize interventions.

This review examines the latest applications of Al in assisted
diagnosing, assessing, and stratifying CVD risk based on retinal
imaging. Furthermore, it evaluates the current landscape,
including the strengths and limitations of this approach, and
discusses future perspectives on using the retina as a window

for CVD prediction via Al

2 Method

To ensure the systematicity and reproducibility of this review,
the search and selection of literature were conducted following the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines, with a predefined strategy.
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2.1 Search strategy

A systematic literature search was performed in August 2025
using the following electronic databases: PubMed and Web of
Science Core Collection. The search strategy incorporated
Boolean operators (AND, OR) and combined keywords related
to artificial intelligence (AI), retinal imaging, and cardiovascular
disease (CVD). The search query used in PubMed is provided
below as an example: (“artificial intelligence” OR AI OR “deep
learning” OR “machine learning”) AND (retina OR fundus OR
“retinal imaging”) AND (“cardiovascular disease” OR CVD OR
“heart disease” OR “cardiovascular risk”).

2.2 Inclusion and exclusion criteria

2.2.1 Inclusion criteria

1. Primary research articles;

2. Human subjects;

3. Focus on AI models applied to retinal imaging (e.g., CFP,
OCT/OCTA) for CVD prediction, risk stratification, or
clinical assistance;

. Full text available in English;
5. Publication date between January 1, 2018, and August 1, 2025.

2.2.2 Exclusion criteria

1. Animal studies;

2. Reviews, commentaries, conference abstracts, or book
chapters;

3. Studies not focused on CVD (e.g., diabetic retinopathy only)
or not employing Al models;

4. Articles for which full text was unavailable.

2.3 Study selection process

All identified records were imported into EndNote for duplicate
removal. The screening process consisted of two phases: Initial
Screening: Two investigators independently reviewed the titles and
abstracts of all retrieved articles to exclude clearly irrelevant
studies. Full-Text Review: The full texts of potentially eligible
articles were obtained and assessed independently by the same
two investigators against the inclusion and exclusion criteria. Any
disagreements were resolved through discussion or, when
necessary, by a third reviewer. Additionally, the reference lists of
included articles were manually screened to identify any

additional relevant publications.

2.4 Results of study selection

The initial database search yielded 1,642 records. After
removing 16 duplicates, 912 records were excluded based on
publication year, and 37 were excluded due to unavailability of
full text. Following the application of exclusion criteria, 634
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articles were further excluded. Ultimately, 43 studies met all
eligibility criteria and were included in this review. A detailed
flowchart of the study selection process is provided in
accordance with the PRISMA guidelines (Figure 1).

3 Current status of research on Al for
assisted diagnosis, prediction, and
stratification of CVD risk using retinal
imaging

Deep learning (DL), a key branch of Al is extensively
employed in medicine to analyze complex biomedical data (19).
Al algorithms used in healthcare, primarily encompassing
machine learning (ML) and DL, are designed not only to
process large-scale datasets but also to assist clinicians in
identifying and monitoring disease risk (20-22). At the same
time, a substantial number of studies have proposed the
implementation of Al for the domain of CVD imaging (23, 24).
The retina provides a unique window for non-invasive
assessment of the human microvasculature. High-definition
ophthalmic imaging techniques—such as OCT, OCTA, and CFP
detailed

Consequently, Al-driven analysis of retinal imaging has emerged

—allow visualization —of retinal  architecture.
as a promising tool for predicting CVD risk. Evidence indicates
that such analysis can identify CVD risk factors, predict clinical
events, and detect associated biomarkers (25). For instance, Al
models can estimate CVD parameters with accuracy comparable
to expert graders, demonstrating significant associations between
retinal vessel caliber and risk factors like hypertension, body
(26).
measurements have not only been correlated with these risk
factors but also linked to incident CVD events (26). A study in
Kenya highlighted that while the accuracy of ML-based

parameter estimation was slightly lower than in trained

mass index, and cholesterol levels Retinal vascular

reference populations, it represents a critical step toward
accessible, early CVD screening in resource-limited settings (27).
This approach thus provides a non-invasive and convenient
method for
information from retinal imaging. However, the field remains in

risk assessment by leveraging microvascular

its early stages, facing challenges such as limited dataset size and
insufficient model generalizability.

Al models have shown promise in assisted diagnosing and
predicting risks for specific CVDs using retinal imaging,
including MI, hypertensive heart disease, carotid atherosclerosis,
heart failure, coronary heart disease, and PAD, as summarized.

3.1 Al use CFP to assist in the diagnosis and
prediction of CVD and to stratify CVD risk

Al models assist in diagnosing CVD, predicting patient risk,
and stratifying patients by analyzing CFP to identify abnormal
retinal features, such as variations in vascular caliber and
morphology. The predictive accuracy of these models, as
measured by area under the curve (AUC), typically exceeds 0.9,
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with some outperforming or usefully complementing traditional
risk scores. For instance, a hybrid Inception V3-VGG16 model
has demonstrated a high accuracy of 99.5% in predicting CVD
risk from CFP. Nevertheless, most developments stem from
single-center studies, limiting their generalizability. Furthermore,
while some models offer a degree of interpretability, the
decision-making mechanisms of many remain opaque. Future
should
validation and clinical translation to enhance practical utility

research therefore prioritize multi-center external

and robustness, ultimately facilitating their deployment in
Detailed
supporting studies are summarized in Table 1.

resource-limited  settings. characteristics of the

3.1.1 Al predicts CVD risk using CFP

Recent advances in Al have significantly improved CVD risk
prediction using CFP. Evidence indicates that CFP captures
biomarkers predictive of future CVD risk, with DL-derived risk
scores independently associated with CVD events (43-45).
Retinal
subretinal drusen-like deposits, and microvascular metrics such

features—including ischemic perivascular lesions,
as vessel density, caliber, tortuosity, and fractal dimension—have
been established as clinically useful indicators for systemic
disease assessment (46, 47). For example, a U-Net-based DL
model demonstrated a significant association between retinal
microvascular density and fractal dimensions with congestive
heart failure, reinforcing the retina’s role as a window into
cardiovascular health (47).

Several studies have developed specific DL models for CVD
prediction. A model based on the Inception-v3 architecture
predicted high coronary artery calcium scores (CACS >100)
from CFP using vascular and macular features, achieving an
area under the receiver operating characteristic curve (AUROC)
of 83.2%—outperforming single clinical parameters and
(28). Another
developed to estimate 10-year ischemic cardiovascular disease
(ICVD) risk showed strong performance (AUC 0.85-0.97) and

was trained on a large dataset of nearly 400,000 participants,

comparable to age-based indicators model

enhancing its generalizability (29). Wang et al. introduced a DL-
based retinal aging score (Reti-aging score) that efficiently
predicts vascular aging and CVD risk from CFP, with an AUC
of 0.779-0.826, outperforming both single clinical parameters
(e.g., age, hypertension) and specialist physicians (30). The same
model also predicted new-onset hypertension and carotid artery
plaque with AUC values of 0.703 and 0.705, respectively (30).
Several advanced AI models have been developed to predict
hypertension-related CVD risk using retinal imaging. Srilakshmi
et al. introduced a deep neuro-fuzzy network combined with a
fractional calculus-based optimization algorithm, achieving an
accuracy of 91.6%, sensitivity of 92.3%, and specificity of 91.9%,
(31).
Singapore I Vessel Assessment-Deep Learning System (SIVA-

outperforming conventional models Similarly, the
DLS) automates retinal vessel diameter measurement, showing
high agreement with expert graders (intraclass correlation
coefficient: 0.82-0.95) (26). Other approaches include a hybrid
computer vision and DL model with 87.5% accuracy (32), a

convolutional neural network that integrates multi-feature fusion
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FIGURE 1
The literature screening process of this review.

to capture microvascular abnormalities (33), and an osprey gannet
reaching 92.1% (33).
Additional high-performing frameworks include a fractional

optimization-based model accuracy
chef-based optimization algorithm combined with SpinalNet
(accuracy: 91.3%) (34), a Dense Spiking Forward Fractional
Network exceeding 90% accuracy in multi-center datasets (35),
and a hybrid Inception V3-VGG16 model achieving 99.5%
accuracy by leveraging both global and fine-grained retinal

Frontiers in Cardiovascular Medicine

features (36). The latter also offers rapid processing, making it
suitable for elderly screening in resource-limited settings (36).

In summary, most CFP-based AI models demonstrate high
predictive accuracy (>90%), often with screening times under
one minute. Integration of retinal microvascular features with
clinical data further improves performance. These non-invasive,
cost-effective tools show particular promise for early CVD risk
in underserved populations. Nevertheless,

screening many
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TABLE 1 Al use CFP to assist in the diagnosis of CVD, predict CVD risk, and stratify patients.

Al algorithm

Country

Dataset

Year

Device used

Disease
type

Imaging
type

10.3389/fcvm.2025.1615857

Model performance

Learning (42)

Fundus Imaging
System

Inception-v3 (28) Korea 20,130 2020 | Canon CR6-45NM, Predict CACS CFP The model AUROC reached 83.2%,
individuals Kowa nonmyd7 outperforming single clinical parameters.
Inception-ResNet- | China 412,827 2022 | Not detailed Predict ICVD CFP This model predicts the 10-year risk of
V2 (29) individuals 10-year risk ICVD with an AUC of 0.85-0.971.
Reti-aging score China 4,376 2024 | Canon CR-2 Digital Predict CVD risk | CFP This model can efficiently predict vascular
(30) individuals Retinal Camera, Canon aging and CVD risk through CFP, with an
CR-2 AF Digital AUC of 0.779-0.826. It outperforms single
Retinal Camera clinical parameters (such as age,
hypertension, etc.) and specialist
physicians.
FCHOA-based Greece 1,000 2022 | Nidek AFC-210 fundus | Predict CVD risk | CFP The model predicted CVD risk with an
DNEN (31) images camera accuracy rate of 91.6%, a sensitivity of
92.3%, and a specificity of 91.9%, which was
superior to traditional models.
SIVA-DLS (26) Singapore, New 70,000 2020 | Canon CR-DGi 10D, Predict CVD risk | CFP The model’s ability to predict CVD risk had
Zealand, Australia, | images Canon CR6-45NM, an intraclass correlation coefficient of 0.82—
China, Korea, UK Topcon 3D OCT-1000 0.95 with expert scores.
Mark II
EfficitNetB0 (32) India 6,026 2024 | Snethra Classic HD Predict CVD risk | CFP The model’s accuracy in predicting CVD
individuals risk is 87.5%.
CNNss based on Many country 210,494 2024 | Not detailed Predict CVD risk | CFP The model predicted CVD risk with an
transfer learning images accuracy rate of 92.1%.
(33)
FCBOA-SpinalNet | China 1,000 2024 | Not detailed Predict CVD risk | CFP The model achieved a CVD risk prediction
(34) images accuracy of 0.913, significantly
outperforming traditional models.
DenSFFNet (35) Many country 1,860 2025 | Not detailed Predict CVD risk | CFP The model achieved an accuracy rate of
images over 90% in predicting CVD risk in a
multicenter dataset.
Hybrid Inception | China 1,433 2024 | Not detailed Predict CVD risk | CFP The model predicts CVD risk with an
V3-VGG16 (36) images accuracy rate of up to 99.5%.
rpCVD (37) Australia 27,595 2025 | Mediworks FC162 Predict 10-year CFP The AUC of the model for predicting
individuals CVD risk 10-year CVD risk was 0.672, which was
comparable to the WHO CVD risk score
(AUC =0.693).
An ordinal UK, Australia 35,053 2025 | Topcon 3D OCT 1000 | Predict 10-year CFP The model predicts 10-year CVD risk and
regression DL individuals Mark 1II, Topcon CVD risk stratifies it using CFP, solving the problem
model (38) TRCNWS, Mediworks of underestimation of retinal scores.
FC-162
RetiCAC (39) Korea, Singapore, | 216,152 2021 | Not detailed Predict CVD risk | CFP The model significantly improved the
UK images and stratification predictive ability of the pooled cohort
equation (PCE) for moderate-risk and
marginal-risk groups. As a complementary
tool to PCE, it optimized decision-making
for moderate-risk groups (e.g., 7.5%-20%
10-year risk).
Reti-CVD (40) UK 48,260 2023 | Topcon 3D OCT-1000 | Refine CVD risk | CFP For individuals with QRISK3
individuals Mark II, AFP-210, stratification Cardiovascular Risk Algorithm scores in
TRC-NW8, Nonmyd the borderline risk range (7.5%-10%),
A-D further stratification analysis can be
performed.
DL-FAS (41) Korea 37,523 2020 | Canon CR-2 Predict carotid CFP The model predicted an AUROC of 0.713
individuals atherosclerosis for carotid atherosclerosis, with an accuracy
of 0.583 and a sensitivity of 0.891.
RetiCAC (39) Korea, Singapore, | 216,152 2021 | Not detailed Predict CAC CFP The model predicted an AUC of 0.742 for
UK images CAC, which was superior to single clinical
parameters such as age and blood glucose
levels.
Attention-based Germany 135 2022 | EIDON Wide Field Diagnosis of PAD | CFP The AUC of this model for diagnosing PAD
Multiple Instance individuals True Color Confocal is 0.89.
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models rely on single-center, limited-sample datasets, constraining
generalizability, and further validation in diverse cohorts is needed
before broad clinical adoption.

3.1.2 Al stratifies CVD risk using CFP

CVD risk stratification is crucial for the prevention and
management of CVD (48). AI models using CFP can not only
predict CVD risk, but also stratify CVD risk. A study found that
only 25.8% of participants had undergone CVD risk assessment
(37). This method not only identifies high-risk and borderline-
risk groups but also facilitates more precise early intervention,
thereby improving patient survival rates. Retinal vessels, due to
their anatomical specificity, have emerged as a potential tool for
CVD risk (48).
number of research and development efforts are focused on

stratification Consequently, an increasing
developing AI models for CVD risk stratification using CFP.
Research has found that AI models based on CFP [Residual
Neural Network 18 (ResNet 18)/Multiple Instance Learning] can
be used for screening and grading diabetic cardiac autonomic
neuropathy (49). Several AI models demonstrate the potential of
CFP for CVD risk stratification. One rpCVD model achieved an
AUC of 0.672 in predicting 10-year CVD risk, performing
comparably to the World Health Organization (WHO) risk
score (AUC=0.693) (37). Risk classifications (low/moderate/
high) were consistent with the WHO score in 63.4% of
participants, and both patients (92.5%) and general practitioners
(87.5%) reported high satisfaction with the tool (37). This model
can be incorporated into primary care workflows to help address
the limited coverage of conventional risk assessment methods
(37). An ordered regression DL model has also been developed
to predict and stratify 10-year CVD risk based on CFP (38). By
integrating significance analysis and imaging decomposition
techniques—such as vessel or macula removal experiments—the
model provides interpretable predictions by identifying key
retinal features influencing risk stratification (38). The Retinal
Imaging-Based CVD (Reti-CVD) tool identified a 10-year CVD
risk of 13.1% in its high-risk group (40). Compared to QRISK3,
the current UK standard, Reti-CVD improved stratification of
borderline-risk individuals and detected high-risk patients
missed by QRISK3 (e.g., 8.6% of the high-risk group had a
QRISK3 score of only 0%-5%) (40). These findings support its
use as a non-invasive aid for clinical decision-making, such as
initiating statin therapy (40).

In summary, Al-enhanced retinal imaging allows more precise
and comprehensive CVD risk stratification, which may facilitate
personalized early intervention and slow disease progression.
However, few CFP-based stratification models currently exist,
most are derived from single-center studies, and clinical
practicality remains limited.

3.1.3 Al assisted diagnoses CVD using CFP

In addition to risk prediction, AI has also demonstrated
diagnostic potential for specific CVD subtypes. The DL-
funduscopic atherosclerosis score (DL-FAS) model enhances
the predictive capability of cardiovascular mortality risk based
on the (FRS),

Framingham Risk Score demonstrating
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significant value particularly in risk stratification among
individuals with moderate risk (FRS 10%-19%) (41). This
model holds promise as an adjunct tool for CVD risk
stratification (41). Additionally, by quantifying atherosclerotic
features in carotid angiography, the model achieved an
AUROC of 0.713 for predicting carotid atherosclerosis, along
with an accuracy of 0.583 and a sensitivity of 0.891 (41).
A multicenter, large-scale study found that retinal imaging of
coronary artery calcium (RetiCAC) is comparable to computed
tomography-measured coronary artery calcium (CAC) in terms
of risk (39).
significantly improves the predictive ability of the pooled

stratification  performance Furthermore, it
cohort equation (PCE) for intermediate-risk and borderline-
risk groups, serving as a complementary tool to PCE to
optimize decision-making for intermediate-risk groups (e.g.,
7.5%-20% 10-year risk) (39). Besides, this model predicts CAC
achieved an AUC of 0.742, outperforming single clinical
parameters such as age and blood glucose levels (39). This aids
in the early assisted diagnosis and management of CAC.
Furthermore, an attention-based multi-instance learning model
has been validated for its feasibility in the early assisted
diagnosis of PAD (42). By leveraging microvascular changes in
the optic disc and temporal vascular arcade, this model offers
a novel perspective for the systematic assessment of
atherosclerosis (42). Currently, there is limited literature on the
assisted diagnosis of CVD using CFP, and it lacks clinical
practicality. In the future, more attempts can be made to
develop models for diagnosing CVD by combining clinical

data, population information, and other factors.

3.2 Al predicts and stratifies CVD risk using
OCT/OCTA

Al models utilizing OCT and OCTA can identify vascular and
retinal abnormalities to predict CVD risk and stratify patients.
These models generally demonstrate high predictive accuracy,
with
conventional risk scores. Approaches such as extreme gradient

some outperforming or usefully complementing
boosting (XGBoost), convolutional neural networks (CNN), and
anatomy-sensitive inference networks (ASI-Net) have further
improved the accuracy of automated analysis and prediction.
However, challenges related to data standardization, clinical
translatability, and the limited number of available models
remain. Future work should prioritize the integration of
data—combining OCT, OCTA, and

information—as well as prospective validation in cohort studies

multimodal clinical
to support the translation of these technologies into clinical
practice. A detailed summary of the included studies is provided
in Table 2.

3.2.1 Al predicts CVD risk using OCT/OCTA

OCT is a high-resolution imaging technique capable of
capturing the layered structure of the retina. Studies have shown
that changes in retinal thickness and structure are associated
with CVD. The risk monitoring and healthcare assistance
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TABLE 2 Al predicts and stratifies CVD risk using OCT/OCTA.

Al algorithm Country | Dataset Year Device used Disease type | Imaging Model performance
type
ML models and DL France 491 2024 | PLEX Elite 9000 Predict OCTA ML Model: SVM achieved the best
models individuals Neurocardiovascular performance with an AUC of 0.98
(EfficientNetV2-B3) (50) Risk and an accuracy of 85%. DL Model:
EfficientNetV2-B3 demonstrated a
balanced accuracy of 68%.
Supervised ML model France 144 2021 | TRC NWe8, Predict CVD risk CFP, OCTA | The model’s accuracy in predicting
(51) individuals CIRRUS HD-OCT CVD risk ranges from 75.64% to
96.53%.
RET Found (52) UK, China, 1,640,612 2023 | Topcon 3DOCT- PredictMI and heart CFP, OCT The model predicted AUROC values
France, Spain, images 2000SA, Canon CR1/ | failure of 0.737 and 0.794 for MI and heart
South Korea, OGI/CR2, Topcon failure, respectively.
India NW, SPECTRALIS
CNN and Mobile Australia 247 2023 | Carl Zeiss CIRRUS Predict congestive OCTA The AUC for predicting congestive
Network Version 2 (53) individuals HD-OCT Model heart failure risk heart failure risk was 0.61.
5000
k-Nearest Neighbors, France, 120 2025 | Not Detailed Predict coronary artery | OCTA The accuracy of the model in
Naive Bayes Classifier Luxembourg individuals disease risk predicting coronary artery disease
(54) risk (up to 86%) is significantly
higher than that of traditional logistic
regression models (78.7%).
ML model (55) UK 2,824 2025 | Topcon 3D OCT Classification of heart | OCT The ML model analyzes retinal OCT
individuals 1000 Mk II failure subtypes features and achieves the best-
performing non-invasive
classification of heart failure subtypes
(AUC 0.70) for the first time.
Cardiac Risk Assessment | UK 33,370 2024 | Topcon 3D OCT CVD risk stratification | OCT The model can accurately distinguish
DL Model (56) individuals 1000 Mark II between high-risk and low-risk
individuals, consistent with known
CVD risk trends.
system model identified certain retinal fundus features in OCT  of systemic diseases such as CVD (66). A prospective

retinal imaging that were significantly associated with the
development of aortic aneurysms and adverse aortic events (57).
This suggests that OCT may be a promising tool for the early
detection and intervention of aortic aneurysms and adverse
aortic events (57). A model based on interactive ML technology
has, for the first time, enabled automated detection of reticular
(RIPLs) and
drusenoid deposits (SDDs) using a small-scale OCT dataset
(58). Its efficiency (6-hour training) and high specificity (>90%)
provide a new tool for studying retinal biomarkers of CVD (58).
OCTA is a high-resolution vascular imaging technique. By

intraretinal  perivascular lesions subretinal

enhancing the visualization of deep capillary networks and the
choroid, it facilitates the identification of different types of
retinal capillary networks and provides detailed imaging of
retinal microvascular structures (59-63). OCTA can detect early
changes in retinal microvasculature, which may be early
biomarkers of CVD (50, 51, 53, 64). A prospective cross-
sectional study found that the density of the superficial retinal
capillary plexus measured by OCT-A correlates with CVD risk
profiles and impaired left ventricular ejection fraction in patients
with high-risk CVD status (65). Therefore, quantitative retinal
microvascular data can be considered a valid surrogate for CVD
risk profiles and may enhance CVD risk assessment. This
represents the first evidence linking OCT-A metrics to CVD risk
(65). Studies have shown a significant correlation between
retinal capillary density and markers of adverse cardiac
remodeling, providing a new perspective for predicting the risk

Frontiers in Cardiovascular Medicine

observational cohort study demonstrated that preoperative
retinal hypoperfusion independently predicted an elevated risk
of perioperative adverse cardiovascular events in patients with
coronary heart disease, highlighting retinal microcirculation
assessment as a non-invasive biomarker to inform cardiac
surgical prognostication and guide personalized therapeutic
strategies (67). Supervised ML models combining CFP and
OCTA data demonstrated high accuracy (up to 96.53%) in
predicting CVD risk (51). The retinal foundation model
(RETFound) model achieved AUROC values of 0.737 and 0.794
when using CFP and OCT imaging to predict MI and heart
failure, respectively (52).

The AUC of the CNN model for predicting congestive heart
failure risk under 3 x3 mm high-resolution OCTA imaging
scanning was 0.61 (53). The scanning performance significantly
decreased under 6x6 mm resolution OCTA images and
8 x 8 mm resolution OCTA images (AUC <0.5) (53). Based on
retinal OCT-A patient images from the open-source RASTA
dataset, a study evaluated the accuracy of ML and DL
algorithms in predicting CHA,DS,-VASC neurocardiovascular
risk scores (50). The findings revealed that EfficientNetV2-B3 is
a suitable DL model for retinal OCT-A imaging, correctly
predicting risk in 68% of cases (50). This contributes to the
assessment of future neurocardiovascular characteristics (50).
A study combining traditional cardiovascular risk factors
employed multiple ML algorithms (such as k-nearest neighbors,
naive bayes classifier, support vector machines, etc.) to predict
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the risk of coronary artery disease. The classification accuracy of
the ML algorithms (up to 86%) was significantly higher than
that of traditional logistic regression models (78.7%) (54). As a
non-invasive diagnostic method, OCTA holds promise as a new
biomarker for CVD (54).

These findings underscore the potential of OCT and OCTA as
non-invasive tools for retinal

powerful, detecting

microstructural and microvascular changes linked to CVD,

early

offering insights beyond traditional risk assessment methods.
The integration of Al-driven analysis with high-resolution
retinal imaging enhances predictive accuracy, enabling more
precise CVD risk stratification and early intervention strategies.
Future research should focus on standardizing imaging protocols
and expanding multicenter datasets to further validate these
innovative biomarkers for clinical adoption.

3.2.2 Al assisted diagnose CVD and stratify risk
using OCT/OCTA imaging

OCTA serves as a critical tool for assisted diagnosis,
progression tracking, and guiding therapeutic decision-making
for a wide range of systemic health conditions. Retinal OCTA-
derived biomarkers enable non-invasive quantification of
microvascular pathology, offering actionable insights to refine
clinical decision-making (68). At the same time, Ultra Wide-
Field OCTA has been shown to provide reliable performance for
microvascular

detecting neovascularization and intraretinal

abnormalities achieving similar accuracy to fluorescein
angiography (69). Traditional assessment methods rely on
clinical indicators and patient history, but may suffer from a
lack of accuracy and timeliness, especially in areas with relatively
scarce resources. Therefore, it is important to explore new, non-
invasive assessment methods. Studies have shown that a
reduction in the thickness of inner segment/outer segment
junction of the retinal pigment epithelium and inner nuclear
layer to external limiting membrane is significantly associated
with heart failure (55). This study analyzed retinal OCT features
using ML models (XGBoost, etc.) and achieved the first non-
invasive classification of heart failure subtypes with the best
performance (AUC 0.70) (55).

It has been shown that increased CVD risk is inversely related to
leukocyte telomere length, whether assessed by traditional
biomarkers, CVD risk scores, or our DL heart biological age
(BioAge) CVD risk model (56). Shortened leukocyte telomere
length serves as an alternative biomarker for increased CVD risk.
This model reliably captures this CVD risk biomarker and
accurately distinguishes between high and low risk individuals,
consistent with known CVD risk trends.
facilitate rapid and accurate screening for CVD risk (56). The
ASI-Net model study demonstrates the applicability of Al-
enhanced OCTA imaging analysis in the detection of ischemic
stroke and its subtype classification (68). Collectively, these

advances position OCTA and Al-enhanced retinal analysis as

Therefore, it can

transformative approaches for systemic disease management,
bridging critical gaps in early detection, risk stratification, and
personalized therapeutic planning across cardiovascular conditions.
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3.3 Al use multimodal methods to assist in
the diagnosis of CVD, predict CVD risk, and
stratify patients

AI models use multimodal analysis to identify vascular and
of CVD,
prediction of CVD risk, and stratification. Compared to single-

retinal abnormalities for the assisted diagnosis
modal AI models, these models collect more comprehensive
information and exhibit higher accuracy. However, the clinical
utility of these models remains to be improved. Future research
should prioritize large-scale validation of these AI models across
different populations and clinical settings to bridge the gap
between experimental performance and real-world
implementation, ultimately enabling precise CVD prevention

strategies. For specific details on each article, please refer to Table 3.

3.3.1 Al predicts CVD risk using multimodal

As research on AI models predicting CVD through retinal
imaging continues to deepen, more and more models are
combining clinical data, genomic data, metabolomic data, and
other information to comprehensively predict CVD risk and
improve model efficiency (89, 90). The study used DL models
and metabolomics technology to reveal the molecular link
between retinal aging and CVD, establishing a novel biomarker
called the metabolomic signature of retinal aging (MSRA) (70).
It also verified that MSRA has statistical significance in
predicting CVD (p<0.05) (70). A multimodal DL model
combining CNN and deep neural network (DNN) significantly
improved the predictive performance of CVD by combining
CFP and traditional risk factors (such as age, blood pressure,
cholesterol, etc.) (71). The model performed well in both
internal and external validation and was able to identify high-
risk patients for future CVD events (71). The efficientnet-base
model variant 3 (EfficientNet-B3) multimodal model achieves
high-precision prediction of CVD risk (AUC-ROC 96.3%) by
integrating CFP with clinical data, significantly outperforming
traditional models such as residual neural network with 50
layers (ResNet-50) and VGGI16 (72). Its core advantage lies in
combining clinical data to overcome the limitations of single
data sources, thereby enhancing the comprehensiveness of
predictions (72). On the other hand, it uses gradient-weighted
class activation mapping (Grad-CAM) to generate heatmaps,
visualizing the model’s focus on critical retinal regions (such as
areas with vascular abnormalities), thereby enhancing the
model’s credibility (72). A study achieved high-precision
prediction of CVD risk based on CFP (AUC-ROC 90.41%)
through the fusion of multimodal data with the siamese
squeeze-and-excitation resnext (Siamese SE-ResNeXt) model
(73). The dataset used for this model is “China-Fundus-Carotid
Intima-Media Thickness (CIMT) dataset”. This dataset is an
integration of retinal and carotid intima-media thickness data to
provide a reference for the creation of new datasets in the
future. Moreover, it is also an important resource for the
development and validation of Al-based early CVD screening
models using retinal imaging (73). Research has found that by
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TABLE 3 Al models use multimodal methods to assist in the diagnosis of CVD, predict CVD risk, and stratify patients.

Al algorithm

Country

Dataset

Year

Device used

Disease type

Imaging

Model performance

type

patients with type 2
diabetes

DL based Algorithm | UK, China 111,360 2024 500-MHz Bruker Predict CVD CFP The model combines CFP,
(70) individuals AVANCE III HD NMR, metabolomics data, clinical and
600-MHz Bruker demographic data, and genetic data to
AVANCE III HD NMR predict CVD with statistical significance
(p<0.05).
Multimodal DL Korea, UK | 14,816 2023 | TRC-SODX Retinal Predict CVD risk CFP The model combines CFP and
model combining individuals Camera traditional risk factors, significantly
CNN and DNN (71) improving the predictive performance
of CVD. The model performed well in
both internal and external validation.
EfficientNet-B3 (72) | US 8,969 2025 | Not Detailed Predict CVD risk CFP EfficientNet-B3 multimodal model
individuals achieves high-precision prediction of
CVD risk (AUC-ROC 96.3%) by
combining CFP with clinical data,
significantly outperforming traditional
models such as ResNet-50 and VGG16.
Siamese SE ResNeXt | China 2,903 2025 | Canon CR-2 PLUS AF | Predict CVD risk CFP Siamese SE ResNeXt model combined
(73) individuals with CFP and clinical data to predict
CVD risk AUC-ROC 90.41%.
Multimodal model UK 30,398 2018 Topcon 3D OCT-1000 | Predict CVD risk CFP By combining traditional risk factors
combining CNN and individuals Mark IT and retinal features, the model
DNN (74) demonstrates high accuracy in
predicting the risk of coronary artery
disease in HIV-infected individuals
(AUC close to 0.99).
Multimodal CNN India 112 individuals | 2025 | ZEISS VISUSCOUT Predict CVD risk CFP The accuracy rate of multimodal AI
model (75) 100 Handheld Fundus models combining ECG and CFP to
Camera predict CVD risk reached 84%.
ECG and CFP model | Spanish 242 individuals | 2025 | SD-OCT, EDI-OCT Predict CVD risk OCT The AUC for predicting carotid plaque
(76) risk using the model was 0.82-0.85.
EfficientNet-B2 UK 6,127individuals | 2025 | Not Detailed Predict the 10-year | CFP The model effectively predicts the
network (77) MACE risk 10-year MACE risk in patients with type
2 diabetes using CFP, with performance
comparable to traditional clinical scores
(PCE).
UKBiobank-based Europe, UK | 95,463 2022 | Topcon 3D-OCT 1000 | Predicting MI risk | CFP The model combines CFP, clinical data,
prognostic models individuals Mark IT and genomic data, achieving
(78) performance comparable to or slightly
better than the traditional FRS in
predicting myocardial infarction risk.
Multimodal model | UK 30,398 2018 | Topcon 3D OCT-1000 | Predict the 5-year CFP The model achieved an AUC of 0.70
combining CNN and individuals Mark IT MACE risk from retinal fundus images alone,
DNN (79) comparable to the AUC of 0.72 for the
European SCORE risk calculator.
Multimodal model | UK, US 8,673 2020 | Topcon 3D OCT-1000 | Predict MI risk CFP A multimodal AT model combining
combining CMR and individuals Mark II CFP, CMR imaging, and demographic
CFP (80) data performs comparably to traditional
CVD risk models (such as the
Framingham score) in predicting MI
risk.
Photoreceptor UK, China | 124,812 2025 | Topcon 3D OCT-1000 | Predict MI risk OCT A model combining OCT,
Metabolic Window individuals Mk II/DRI OCT Triton metabolomics, and clinical data
(81) significantly improved the prediction of
MI risk.
L1-regularised UK 3,891 2019 | Not Detailed StratifyMACE risk in | CFP Multimodal models integrating retinal,
logistic regression individuals patients with type 2 genomic, and clinical data can predict
lasso, VAMPIRE 3.1 diabetes MACE risk in patients with type 2
(82) diabetes and effectively distinguish
between high-risk and low-risk patients.
VAMPIRE (83) UK 5,152 2022 | Not detailed Stratify 10-year CFP The model effectively predicts and
individuals MACE risk in stratifies the 10-year MACE risk of type

2 diabetes patients by combining CFP
with genomic data.
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TABLE 3 Continued

Al algorithm Country | Dataset |Year Device used Disease type

Reti-CVD (84) Republic of | 1,106 2024 | Visucam NM/FA
Korea individuals
SIVA-DLS (85) Asia 860 individuals | 2023 | Canon CR-1 Mark-II
Non-mydriatic Digital
Retinal Camera
CLAIR (86) UK, US 53,145 2024 Not detailed
individuals
VGG, ResNet (18) Spanish 152 images 2022 | Not detailed
M2AI-CVD (87) UK, Korea | over 573 2024 | Not detailed
individuals
DXA Model and Qatar 1,805 images 2022 | Topcon TRC-NW6S

Retinal Image Model retinal camera

(88)

combining traditional risk factors and retinal characteristics, Al
models demonstrate high accuracy in predicting the risk of
coronary artery disease in human immunodeficiency virus
(HIV)-infected individuals (AUC close to 0.99) (74).

A study used a multimodal AI model [Electrocardiogram
(ECG) + CFP] to fuse spatiotemporal features using fast fourier
transform + earth mover’s distance, achieving an 84% accuracy
rate in predicting CVD risk, with a particular strength in
identifying early microvascular lesions (75). A study combining
ML and OCT technology confirmed that reduced choroidal
thickness in patients with type 1 diabetes is significantly
associated with carotid plaque (76). Its AUC for predicting
carotid plaque was 0.82-0.85 (76). Research has found that DL
models based on efficientnet-base model variant 2 (EfficientNet-
B2) can
cardiovascular events (MACE) risk of type 2 diabetes patients

efficiently predict the 10-year major adverse
through CFP, with performance comparable to traditional
clinical scores (PCE) (77).

A new AI model combines retinal imaging, clinical data, and
genomic data to achieve performance comparable to or slightly
better than the traditional FRS in predicting the risk of MI (78).
The combination of CFP and DL technology has enabled 5-year
risk prediction for MACE, with an AUC of 0.7 (79). The AUC is
comparable to the AUC of 0.72 for the European SCORE risk
calculator (79). Multimodal AI models, combining CFP, cardiac
magnetic resonance (CMR) images, and demographic data, perform
as well as traditional CVD risk models (such as the Framingham
score) in predicting MI risk, while being less expensive and more
accessible (80). The Al-driven photoreceptor metabolic window
model integrates OCT, metabolomics, and DL. This model
significantly improves the prediction of MI risk and reveals the
metabolic basis of the relationship between photoreceptor layer
thickness and the risk of multisystem diseases (81).
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Imaging
type

Predict 5-year CVD | CFP

risk and stratify

Model performance

The model predicts and stratifies 5-year
CVD risk by combining CFP, clinical
data, and other biomarkers. Its
predictive accuracy is 0.751, and the risk
ratio of the three estimated CVD risk
groups is 2.02.

Predict CVD risk CFP
and stratification

Research supports retinal microvascular
assessment as a low-cost, noninvasive
CVD risk stratification tool.

Predict 10-year CFP
ASCVD risk and
stratification

CAC risk CFP
stratification in

patients with

diabetes

Predict CVD risk CFP

The model combines CFP and clinical
data to achieve stratified 10-year
ASCVD risk.

The model integrates CFP and clinical
data, with an accuracy rate of 72% for
stratifying CAC risk in diabetic patients.

Combining CFP and clinical data, high-
precision (95.89%) CVD risk prediction
was achieved.

Diagnose CVD CFP A multimodal DL model combining

CFP and DXA data achieved an
accuracy rate of 78.3% in diagnosing
CVD.

In summary, currently, there are relatively more studies
combining clinical data and genomics with AI models based on
CFP, and their predictive performance has improved to a certain
extent. However, there are fewer multi-modal AI models based on
OCT and OCTA, but their performance is better than that of
single-modal models. Multi-modal models combining OCT, CFP,
OCTA and other clinical data have great potential in predicting
CVD risk and are worth further research. This shows that in the
future we can try to integrate OCT, OCTA, CFP and other
prediction methods. This will not only improve the prediction rate
of CVD risk, but also refine the risk stratification more. This helps
with early management.

3.3.2 Al stratifies CVD risk using multimodal

Early detection and risk stratification of CVD are crucial for
prevention and treatment. The accuracy of predicting CVD risk
and stratification using single imaging or assisted examinations
needs to be improved, while multimodal fusion technology can
significantly improve predictive accuracy. A multimodal AI model
integrating retinal, genomic, and clinical data can predict the risk
of MACE in patients with type 2 diabetes and effectively
distinguish between high-risk and low-risk patients (82).
Compared with DL models, the features selected by Lasso
regression in this model have clear clinical significance, enhancing
the interpretability of the model (82). By analyzing vascular
parameters in CFP and combining them with genomic data, the
AI model vascular mapping and perfusion imaging reconstruction
(VAMPIRE) can effectively predict and stratify the 10-year MACE
risk in patients with type 2 diabetes (83). The model’s AUC for
predicting MACE is 0.663, comparable to the traditional PCE risk
score (AUC 0.658) (83). When combined with retinal parameters
and a polygenic risk score, the AUC improves to 0.686,
significantly outperforming the PCE risk score (83).
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The AI algorithm based on DL (Reti-CVD) combines CFP,
clinical data, and other biomarkers to predict 5-year CVD risk
and stratify it. Its predictive accuracy is 0.751, and the risk ratio
for the estimated three CVD risk groups (low, medium, and high
risk) is 2.02 (84). This model is equivalent to CAC scoring, but is
less costly and easier to operate (84). The SIVA-DLS model
combines retinal vascular parameters and clinical data to achieve
an AUC of 0.760 for predicting CVD risk (compared to an AUC
of 0.720 for traditional risk factors) (85). The study also supports
retinal microvascular assessment as a low-cost, non-invasive CVD
risk stratification tool, particularly suitable for resource-limited
areas (85). The CLAIR model uses CFP and limited demographic
data to predict and stratify 10-year atherosclerotic CVD risk (86).
The AUROC for predicting atherosclerotic CVD (ASCVD) risk is
0.89-0.9. Its risk stratification ability is consistent with traditional
ASCVD risk assessment (86).

In summary, multimodal AI models that integrate retinal
imaging, genomics, and clinical data demonstrate superior
predictive performance for CVD risk stratification compared to
traditional methods like PCE risk score, while also offering cost-
efficiency and scalability. These advancements highlight the
potential of Al-driven, interpretable risk assessment tools to
enhance early CVD detection and personalized prevention
strategies in high-risk populations, such as type 2 diabetes patients.

3.3.3 Al assisted diagnoses CVD using multimodal

The AI model combining VGG16 and transfer learning
integrates CFP and clinical data to determine CAC in diabetic
patients and stratify CAC risk (with an accuracy rate of 72%)
(18). It also innovatively combines clinical data to optimize
predictions (with an accuracy rate of 91%) (18). The M2AI-
CVD system combines CFP with clinical data and improves
model performance through entropy-optimized segmentation
and genetic algorithm feature selection (87). It achieves high-
precision (95.89%) CVD risk prediction (87). This provides a
promising solution for the accurate and early detection of
CVD (87). This study is the first to propose a multimodal DL
model combining CFP and dual-energy x-ray absorptiometry
(DXA) data for non-invasive CVD assisted diagnosis, with an
accuracy rate of 78.3% (88). Despite data limitations and
generalization challenges, its non-invasive, efficient, and
interpretable nature offers new insights for early CVD screening
(88). In the future, by expanding the dataset and conducting
clinical validation, it is expected to become a powerful tool for

rapid CVD screening in primary care.

4 Discussion

4.1 Current status of Al using retinal
imaging to predict CVD

In recent years, there has been an increasing number of
applications based on AI to automate imaging processing (91).
Significant progress has also been made in the application of Al
to medical imaging analysis, especially in predicting and
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evaluating CVD through retinal imaging (92). Research shows
that Al-based identification of retinal biomarkers has great
potential in predicting CVD (47, 93). A study found that retinal
blood vessels may be a potential biomarker for coronary artery
(94). Through DL,
networks, and other methods, Al technology is able to extract

atherosclerosis convolutional neural
biomarkers associated with CVD from retinal imaging. This
provides new tools for early assisted diagnosis, risk assessment
and prognosis prediction of CVD. Currently, there are many Al
models based on CFP, but few based on OCT and OCTA.
Multimodal models typically combine retinal imaging with
clinical data, demographic data, metabolomics, genomics, ECG,
CMR, DXA, and other information. Overall, multimodal models
can collect more comprehensive information and have better
predictive performance, making them an important direction for
future research.

With the increasing application of Al in the medical field,
CVD risk prediction technology based on CFP has developed
rapidly. Traditional CFP analysis relies on the experience of
doctors, which is subjective and time-consuming. Through DL
models, AI technology can quickly and accurately identify subtle
changes in CFP (95, 96). Research indicates that CFP contains
information about future CVD risk, and retinal microvascular
features (such as ischemic perivascular lesions, density, and
vessel diameter) can serve as assessment criteria for systemic
diseases (97). For example, Al models can predict the risk of
CVD such as hypertension and atherosclerosis by analyzing
retinal vessel diameter, curvature, and branching angle (26, 39).
The U-Net57 model revealed the association between the retina
and congestive heart failure by analyzing microvascular density
and fractal dimension, while the model based on the Inception-
v3 architecture achieved an AUC of 83.2% in predicting high
coronary artery calcium scores (CACS>100), outperforming
single clinical parameters. Additionally, multi-feature fusion
models (e.g., Hybrid Inception V3-VGG16) achieve accuracy as
high as 99.5%, combining efficiency and non-invasiveness,
making them particularly suitable for early screening in
resource-limited regions. In terms of risk stratification, Al
models such as rpCVD (AUC=10.672) and Reti-CVD (10-year
CVD of 13.1% in the
stratification capabilities comparable to WHO scores and
QRISK3 through CFP, and could even identify high-risk
populations missed by traditional tools. The DL-FAS model

risk high-risk group) achieved

optimizes decision support for moderate-risk populations by
quantifying retinal atherosclerosis features (AUROC=0.713)
(41). While existing models generally exhibit high accuracy,
most rely on single-center, small-sample data, limiting their
generalization capabilities. Additionally, Al has demonstrated
potential in exploratory diagnostics for specific CVD subtypes
(e.g., carotid atherosclerosis, peripheral artery disease), but its
clinical utility remains to be validated.

Multimodal AI models based on retinal imaging have seen
rapid development in the field of CVD risk prediction. The core
breakthrough lies in the integration of multimodal data and the
improvement of model interpretability. Research shows that by
integrating clinical data (such as age and blood pressure),
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genomics (polygenic risk scores), and metabolomics (such as
retinal aging metabolic markers MSRA), the model performance
significantly outperforms traditional risk assessment tools. For
example, the EfficientNet-B3 model (AUC 96.3%) and the
Siamese SE-ResNeXt model (AUC 90.41%) outperform ResNet-
50 and the Framingham score, respectively, by combining CFP
with clinical features.

Notably, the multimodal strategy demonstrated unique
advantages: after integrating CFP vascular parameters with
genomic data, the VAMPIRE model improved MACE prediction
AUC from 0.663 to 0.686. While the photoreceptor metabolic
window model, which combines OCT, CFP, and metabolomics,
revealed the metabolic mechanisms linking retinal thickness to
the risk of multisystem diseases. In terms of risk stratification,
the Reti-CVD model achieved a risk ratio of 2.02 across low,
medium, and high-risk groups through 5-year risk prediction
(accuracy of 0.751), with performance comparable to CACS but
at lower cost; the CLAIiR model achieved an AUROC of 0.89-
0.9 using CFP and basic demographic data, validating the
potential of retinal imaging to replace complex examinations.
Current challenges include limited research on OCT/OCTA
multimodal models and reliance on single-center data (e.g., the
China-Fundus-CIMT dataset) for some models.

4.2 Comparison of models based on
different retinal imaging

Current evidence suggests that AT models using CFP generally
achieve higher predictive accuracy for CVD risk than those based
on OCT or OCTA. CFP-based models also benefit from larger
training and validation datasets, enhancing their reliability.
Nonetheless, OCT/OCTA-based models show high accuracy in
predicting MI risk. Multimodal approaches, which integrate
demographic data, retinal imaging, and other clinical variables,
can effectively predict CVD, MI, and MACE, with some models
performing comparably to the PCE risk score and even
surpassing the FRS.

Although relatively few AI models are designed specifically for
CVD risk stratification, several show promising performance. For
example, the CFP-based rpCVD model achieved 63.4% agreement
with WHO risk categories, and its use of a large dataset enhances
credibility. Similarly, multimodal models can stratify risks for
MACE, CVD, and ASCVD with accuracy comparable to or
exceeding PCE scores. However, these models often rely on
datasets with selection bias, underscoring the need for improved
internal and external validation. As AI technology advances, a
growing number of retinal imaging-based models are being
developed for CVD diagnosis. CFP-based approaches have
shown utility in diagnosing carotid atherosclerosis, CAC, and
PAD, often outperforming single clinical parameters such as age
or blood glucose levels. In contrast, multimodal models are
currently limited to assisting in the diagnosis of CAC and
general CVD. Moreover, their constrained dataset availability
results in lower accuracy,

reliability, and generalizability

compared to CFP-based models.

Frontiers in Cardiovascular Medicine

10.3389/fcvm.2025.1615857

In summary, AI models based on CFP are more extensively
developed and typically utilize larger datasets than those
employing other imaging modalities. Several CFP-based models
both
demonstrating stable accuracy and robust generalizability. In
contrast, the use of OCT and OCTA for CVD risk prediction
and stratification represents an emerging field, with relatively

have undergone internal and external validation,

few models available and their diagnostic utility still under
investigation. Recent research has increasingly focused on
multimodal AI approaches, which integrate retinal imaging with
demographic and clinical data to achieve superior predictive and
stratification performance. These models are likely to become a
their
capabilities. However, their development is constrained by the

major focus of future research due to enhanced
need for large, complex datasets and advanced technical
infrastructure, making them currently less suitable for resource-
CFP-based AI models—

cameras—offer

limited settings. In comparison,

compatible with portable fundus greater
scalability for large-scale screening in underserved populations.
A detailed comparison of AI models based on CFP, OCT,

OCTA, and multimodal data is provided in Table 4.

4.3 Clinical utility of Al models

Al models relying exclusively on CFP demonstrate high
predictive accuracy for CVD, with performance comparable to
or exceeding that of established risk assessment tools. For
example, the CNN-based Singapore I Vessel Assessment-Deep
Learning System (SIVA-DLS) model showed strong agreement
with expert evaluations, achieving an intraclass correlation
coefficient of 0.82-0.95 for CVD risk factor prediction (26).
Similarly, the RetiCAC model yielded an AUC of 0.742 for
predicting CAC and significantly improved the predictive
capacity of the PCE score in intermediate- and borderline-risk
groups (39). The rpCVD model achieved an AUC of 0.672,
comparable to the WHO CVD risk
(AUC=0.693), with 63.4% of participants showing consistent
(low/moderate/high)
approaches (37). Additionally, incorporating the DL-based

which s score

risk  stratification between the two
feature augmentation strategy (DL-FAS) model alongside the
FRS improved concordance by 0.0266 compared to using FRS
alone (41).

Current multimodal models are frequently benchmarked
against established risk scores such as the PCE and FRS. Studies
indicate that the EfficientNet-B2 model achieved an AUC of
0.697 for predicting MACE, comparable to the PCE score; when
integrated with a polygenic risk score for coronary artery disease
and PCE, performance improved to an AUC of 0.728 (77).
Similarly, the VAMPIRE model yielded an AUC of 0.663 for
MACE prediction—on par with PCE (AUC 0.658)—and reached
0.686 when augmented with retinal parameters and genetic risk
data, significantly surpassing PCE alone (83). The CLAiR model
also demonstrated predictive capability for ASCVD events
comparable to that of PCE (86). A multimodal achieved an
AUC of 0.7 for MACE prediction, comparable to the European
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SCORE risk calculator (79). In external validation, a model
integrating CFP, CMR imaging, and demographic data attained
an AUC of 070 for MI prediction, approaching the
performance of FRS (80). The QUARTZ model has also been
reported to perform comparably or slightly better than FRS in
predicting MI (78). Overall, multimodal models generally exhibit
CVD
approaches, with many matching or exceeding conventional risk

stronger predictive ability for risk than unimodal
tools. Integrating monomodal AI models with PCE scores can
further enhance risk assessment accuracy, underscoring a key
advantage of Al-enhanced retinal imaging in CVD prediction.
Al models based on retinal imaging offer a promising approach
for large-scale cardiovascular screening due to their non-invasive
nature, operational efficiency, and strong scalability (39, 65).
These attributes make such models particularly suitable for
regions with limited medical resources (75). The screening
process requires only retinal imaging, eliminating the need for
blood draws or complex examinations, which enhances patient
acceptability (87). The procedure is highly efficient, with a
median imaging time of approximately one minute and 47 s per
eye and a 93.9% image quality pass rate, while certain models
achieve predictive accuracies as high as 99.5% (29, 36, 37). The
workflow—from image preprocessing to risk classification—is
skill
increasing reproducibility (32). In healthcare systems where

fully automated, reducing reliance on operator and
fundus examination is already part of routine checkups, DL
models such as DL-FAS can be applied directly to existing images
without incurring additional examination costs (41). Architectures
such as EfficientNet-B3, which have fewer parameters and lower
computational demands, are especially suitable for low-resource
clinical environments (72). The widespread availability of fundus
cameras in primary care and ophthalmology clinics further
supports the scalability of these tools (78, 84). Nevertheless, the
clinical translation of retinal imaging-based AI models continues
to face challenges. These include limited and often imbalanced
training datasets, the lack of unified image quality standards,
limited model interpretability, and insufficient validation of
performance stability—all of which hinder broad implementation.

4.4 Limitations and shortcomings

Despite the increasing number of AI models being developed
and validated, current research still faces many challenges.

4.4.1 Population limitations and insufficient
generalization ability

Existing models are primarily developed for specific
populations (e.g., diabetic patients), and their generalization
ability across populations and races has not been sufficiently
validated. Moreover, the diversity and quality of datasets vary

significantly, affecting the stability of model performance.
4.4.2 Technical limitations

On the one hand, microvascular changes observed through
retinal imaging may lack specificity for certain diseases. On the
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other hand, differences in imaging quality and parameters
among different retinal imaging devices lead to inconsistent
model performance across devices. Additionally, the lack of a
unified database of normal values and imaging acquisition
protocols hinders the comparability of results. Furthermore,
motion artifacts or signal attenuation may also interfere with the
accuracy of analysis.

4.4.3 Model interpretability and public
acceptability

Due to the lack of clear AI decision-making processes and
quantitative metrics or standards, Al is often viewed as a “black
box” (98). This can lead to skepticism among doctors and
patients regarding the results. Additionally, the data-driven
nature of the model makes it susceptible to biases in the
training data. This further exacerbates public distrust of Al

4.5 Future prospects

4.5.1 Deepening multimodal fusion technology
Compared with single-modal models, multimodal models have
better predictive performance. On the one hand, they can integrate
technologies for identifying various types of retinal imaging. The
synergistic application of multiple retinal imaging technologies,
such as CFP, OCT, and OCTA, can be explored and combined
with computer vision technology and self-supervised learning
models (32, 99) to improve predictive accuracy. On the other
hand, cross-modal data fusion can be conducted. By integrating
genomic and metabolomic data (e.g., the photoreceptor metabolic
window model), the specificity and clinical value of the model
can be enhanced. Additionally, the model can be deployed in
clinical settings for validation. Referencing models combining
ECG with retinal imaging (75) and studies combining OCTA
parameters with carotid artery stenosis (100), the validation of
multimodal models in real clinical scenarios can be advanced.

4.5.2 Improving model interpretability

The lack of interpretability in AI models significantly impacts
the trust doctors and patients have in them. On the one hand,
Visualization techniques should be used as much as possible to
identify retinal imaging. For example, gradient-weighted class
activation mapping (Grad-CAM) heatmaps (28, 32, 49) and
shapley additive explanations (SHAP) models (101) can be used
to visually demonstrate the key retinal regions the model focuses
on (such as blood vessels, the macula, and the optic disc).
Analyze the anatomical structures relied upon by the model
using attention weights to enhance clinical credibility (80). On
the other hand, mathematical modeling methods can be
explored to improve interpretability. Develop interpretable
algorithms such as adaptive elliptical templates (102) to
maintain robustness under conditions of abundant lesions or
low contrast, thereby addressing the “black box” challenge of Al.
Research suggests that explainable AI (XAI) technology can
reveal black-box ML models, enhancing model credibility and
reliability (103). One study incorporated SHAP analysis into Al
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models to achieve better model understanding (101, 104). Future
Al models may incorporate XAI technology and SHAP analysis
to improve model credibility (101, 103, 104). Additionally, the
model combines multi-scale feature extraction and fusion
techniques with a dual attention mechanism, which promotes
the extraction of multi-scale vascular features and may help
improve the model’s interpretability (105). In addition, a pilot
study evaluating HbAlc demonstrated the potential and
considerations required to develop reliable AI in the oculomics
pilot, which contributes to the transparency of Al models (106).

4.5.3 Standardized database construction and
generalization capability optimization

Current Al models for CVD screening are predominantly
trained on limited, single-center datasets, which restricts their
generalizability and clinical applicability. There is a pressing need
to develop large-scale, multi-center, and multi-ethnic datasets to
enhance model robustness and performance across diverse
populations. For instance, the Retinal OCT Angiography and
Status  (RASTA)
microvascular imaging from 499 patients, featuring 814 vascular

Cardiovascular dataset includes retinal
cuboids and 2,005 facial images, and represents the only publicly
with imaging data from both healthy
individuals and high-risk CVD populations (107). This dataset is
expected to facilitate the development of universal screening
models using OCT-A imaging (107). Similarly, the mBRSET

dataset—the first publicly available diabetic retinopathy resource—

available resource

contains 5,164 retinal images from 1,291 ethnically diverse
patients, all acquired using handheld cameras, thereby addressing
data scarcity in low- and middle-income settings (108). A related
study outlines steps for constructing a large-scale online retinal
imaging database in India, offering a replicable framework for
cost-effective, Al-based diagnostic tool development (109).

To improve model generalizability, future efforts should
standardized, that
incorporate varied imaging devices (e.g., portable cameras) and

prioritize multi-institutional ~ datasets
population characteristics. External validation across diverse
datasets—such as the UK Biobank and Eye Picture Archive
Communication System (PACS), as performed for the CLAiR
model—is also essential. One study reported a DL model capable
of predicting glaucoma progression with varying accuracy across
ethnic groups (76.9% in Caucasians, 14.6% in African Americans,
and 8.5% in Asians), highlighting the importance of ethnically
balanced training data (22). Insights from such studies can inform
the design of more generalizable AI systems (13, 22). Finally,
establishing unified data annotation standards will be critical to
supporting reproducible and scalable model development.

4.5.4 Clinical application translation strategies
Due to the non-invasive, efficient, and convenient nature of
retinal imaging, they are particularly suitable for primary care
settings and resource-limited regions. Therefore, future efforts
could focus on designing portable devices to enhance clinical
practicality. A study comparing automated and semi-automated
methods for measuring retinal microvascular biomarkers found
good correlation between the two approaches in assessing
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vascular complexity and vessel diameter measurements, with
consistent clinical relevance (110). However, the automated
model exhibited a higher rejection rate within the dataset (110).
Before transitioning from semi-automated to automated
algorithms in retinal microvascular biomarker analysis, further
comparative research is warranted (110). Additionally, dynamic
risk assessment models could be developed to integrate long-
term follow-up data on retinal changes and CVD progression

for personalized management.

5 Conclusion

In recent years, Al technology based on retinal imaging has
made significant breakthroughs in the fields of assisted diagnosis
and CVD risk assessment. Single-modality models based on CFP/
OCT/OCTA have achieved high-precision predictions and support
risk stratification. Multimodal models that integrate genomic,
and ECG data have
performance. Grad-CAM heatmaps and SHAP analysis are

metabolomic, significantly ~improved
gradually unraveling the “black box” of AI, enhancing clinical
credibility. However, some issues remain, such as models heavily
relying on single-center data, insufficient validation across
populations/devices, and room for improvement in generalization.
Differences in device parameters and imaging artifacts affect result
comparability, and there is a lack of a unified database. In the
future, we can draw on the experience of the Indian retinal
database and mobile brazilian retinal dataset to build multi-center,
multi-ethnic standardized datasets. Additionally, we can develop
dynamic risk assessment models that integrate long-term retinal
changes with CVD progression. We can also develop and
devices, resource-limited

promote portable

regions. Retinal imaging AI holds promise for advancing early

particularly for
CVD prevention and control systems, but interdisciplinary
collaboration is needed to address issues of generalizability,

standardization, and interpretability, thereby achieving a transition
from “high-precision prediction” to “high clinical value”.
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