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Introduction: Aortic principal wall strain is a biomechanical parameter 

correlated with aneurysm growth rate that affects abdominal aortic aneurysm 

(AAA) stability. Characterize changes in pressure-normalized maximum mean 

aortic principal wall strain (1r+/PP) using ultrasound elastography (USE).

Methods: Axial ultrasound images of patient AAAs were collected at two 

consecutive clinic visits. The 1r+/PP for each image was calculated using a 

novel finite element mesh technique. The cohort was separated by index 

1r+/PP terciles, and the rate of strain change, growth, intervention, and 

rupture were compared.

Results: 31 patients with a median age of 72.0 [65.0, 77.5] at index visits were 

included, with follow-up imaging taken at an average interval of 6.2 [6.0, 8.3] 

months. For the whole cohort, maximum 1r+/PP decreased from 2.1 [1.1, 2.7] 

%/mmHg to 1.9 [1.3, 2.6] %/mmHg (p = 0.08), and maximum AAA diameter 

increased from a median of 4.3 [4.0, 4.7] cm to 4.4 [4.1, 4.9] cm (p = 0.04). The 

“high-strain” tercile was associated with a strain reduction of −1.3 [−2.5, −1.1] 

%/mmHg between index and follow-up imaging, as compared to the 

“low-strain” (−0.1 [−0.6, 0.5] %/mmHg, p < 0.01) and “intermediate-strain” 

(−0.4 [−0.5, −0.3] %/mmHg, p = 0.04) terciles. There was no difference in the 

rate of AAA growth, intervention, or rupture between terciles.

Discussion: The present findings indicate that 1r+/PP at baseline predicts the 

degree and direction of 1r+/PP change in AAAs over time. These findings 

offer insight into the natural history of AAA tissue mechanics and 

demonstrate the potential for a novel ultrasound technique to quantify 

biomechanical changes in the aortic wall. These findings may aid in the 

development of patient-specific risk stratification tools informed by 

biomechanical data in addition to conventional size-based criteria.
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Introduction

Over one million adults in the United States are estimated to have an abdominal 

aortic aneurysm (AAA) (1). Clinically defined as a regional dilation of the abdominal 

aorta greater than 50% or a maximum aortic diameter ≥3 cm, this disease process is 

largely asymptomatic while the aneurysm grows (1–3). AAAs have a significant risk of 
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rupture, associated with an 80% mortality rate (4). This fatal 

presentation is the leading cause of mortality in the U.S., with 

4,500 deaths per year (2).

This disease process is typically silent until catastrophic 

rupture. Therefore, appropriate management for patients with 

an AAA depends on timely diagnosis and serial monitoring 

(4–8). Ultrasound imaging has emerged as a convenient and 

cost-effective diagnostic tool for AAAs and is validated as an 

accurate and reliable method for screening (1, 9–11). There is 

extensive literature supporting the utility of AAA diameter and 

AAA growth rate as corollaries for rupture risk (12–15). 

As such, ultrasound-based morphometric analyses currently 

guide clinical decision-making. The Society for Vascular Surgery 

(SVS) recommends surgical intervention for women with AAA 

diameter ≥5.0 cm and men ≥5.5 cm, interval growth ≥0.5 cm in 

6 months, or growth ≥1 cm in 1 year (1).

These screening thresholds are effective, but a sizable burden 

of ruptured AAAs on the U.S. healthcare system remains. Many 

patients experience rupture below the established size and 

growth thresholds, while others remain asymptomatic far 

beyond. It is estimated that 43% of fatal ruptures between 1999 

and 2016 did not meet screening criteria for intervention (16).

The study of aortic biomechanics seeks to understand the 

tissue properties and hemodynamic conditions contributing to 

AAA degeneration, tissue failure, and rupture. Modern 

approaches to studying aortic tissue mechanics employ advanced 

computational techniques and non-invasive in vivo imaging 

technology to accurately incorporate complex geometrical and 

heterogeneous tissue data into their assessments (17–20). These 

studies have shown that high wall stress due to pathologic 

changes in strain and elastic modulus (wall stiffness) predict 

aneurysm rupture based on the mathematical relationship 

stress = elastic modulus × strain (17–23).

Niestrawska et al. combined mechanical testing with histologic 

and structural data to develop a three-stage model for the 

histopathologic progression of AAAs (24). In this model, there 

is (1) a loss of stiffness and dilation of the aortic wall due to 

degradation of the extracellular matrix (ECM) and elastic 

lamina; (2) an increase in aortic wall compliance in the setting 

of in:ammatory cell infiltrate; (3) gradual stiffening of the 

aneurysm as in:ammatory collagen deposition forms a thick 

“neo-adventitia”. This model categorizes stage 3 aneurysms into 

one of two phenotypes. The first is the “stable aneurysm” 

phenotype, in which a thick, protective collagen neo-adventitia 

forms with minimal in:ammation and adipocyte infiltration. 

The second is the “vulnerable aneurysm” phenotype, which 

demonstrates persistent in:ammatory cell and adipocyte 

infiltration in the wall.

Mix et al. have developed an ultrasound elastography (USE) 

technique that utilizes a novel non-rigid image-based 

registration algorithm to evaluate axial and circumferential 

strain data from B-mode ultrasound images, then used to 

calculate patient-specific values of maximum mean principal 

wall strain (1rþ) normalized to patient pulse pressure (PP), a 

unit denoted as 1rþ=PP (25–27). Zottola et al. applied this novel 

USE technique to measure the aortic wall 1rþ=PP of 113 

patients with AAAs. They found that patients with AAAs 

demonstrating “intermediate” 1rþ=PP values between 0.0251 

and 0.038%/mmHg were associated with increased AAA growth 

rate (27). Zottola et al. hypothesized that “intermediate strain” 

AAAs in their study comprised the vulnerable phenotype of 

aneurysms, experiencing a rapid growth rate due to continued 

in:ammation and increasing wall compliance rather than 

forming a stiff neo-adventitia (24–27). Their findings highlight 

the need to understand the natural history of AAA tissue 

mechanics as a prerequisite to developing biomechanical 

parameters that can effectively risk-stratify patients.

Research on the dynamic changes in aortic wall biomechanics 

over time is limited. Derwich et al. imaged patients over an 

average 24.5-month follow-up period with a 3D speckle tracking 

technique to measure changes in mean circumferential aortic 

strain (MCS) (28). They found that MCS increased 

independently of AAA diameter over time, though there was no 

significant change in peak circumferential strain. A subgroup 

analysis revealed two cohorts of aneurysms: those that 

experienced an increase in MCS and a decrease in spatial 

heterogeneity and those with no change in MCS and increasing 

spatial heterogeneity. The authors hypothesized that these 

subgroups were consistent with the “stable” and vulnerable 

phenotypes that Niestrawska et al. had described (28).

The natural history of AAA wall biomechanics is poorly 

understood, and given the limitations of current AAA screening 

tools, there is a critical need to explore biomechanical markers 

that re:ect aneurysm progression. The present study aimed to 

characterize changes in 1rþ=PP over time using the USE 

technique described by Mix et al. and Zottola et al. (25–27). The 

hypothesis was that the changes in 1rþ=PP would differ between 

AAA strain terciles, with aneurysms experiencing an increase or 

decrease in 1rþ=PP based on their progression along the 

proposed natural history of histopathologic aneurysmal 

degeneration. The findings of this study may inform the 

development of biomechanical parameters to predict AAA 

rupture risk accurately.

Materials and methods

The present study is a retrospective cohort study of 

prospectively collected US data of patients with AAAs at the 

University of Rochester Medical Center (URMC) between 2015 

and 2016. Patients were recruited for their baseline or “index” 

US scan if they were older than 18 with known, unrepaired 

AAAs. The exclusion criteria consisted of patients without 

follow-up imaging and patients who underwent surgical repair 

before follow-up. Index and follow-up US scans were visually 

inspected and screened for image quality. The cohort was 

divided into terciles based on the 1rþ=PP measured at the 

index visit, using cutoff values of 0.0251% and 0.038%/mmHg 

that Zottola et al. identified in their study of the same patient 

cohort (27). The cohort selection process is illustrated in 

Figure 1. Additional clinical and imaging data was collected 

from patients’ electronic records. The URMC Research 
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Subjects Review Board reviewed and approved the study and 

informed consent process.

The authors have previously developed and reported on a novel 

USE imaging technique that derives strain data by estimating aortic 

wall deformation over one cardiac cycle using a non-rigid image- 

based registration algorithm (25–27). In short, this technique uses 

single-focus, RF ultrasound images to measure and accumulate 

2D displacement fields of the aorta in a cross-section, localized at 

the maximum diameter of the aneurysm. A non-rigid registration 

technique is used to maintain measurement accuracy over the 

cardiac cycle. The total accumulated principal strain is calculated 

from the displacement measurements corresponding to the 

frames of minimum diastolic to maximum systolic pressure. 

These principal strain values are then normalized by an 

independently measured pulse pressure, acquired using a brachial 

pressure cuff, to obtain our quantitative metric of vessel stiffness.

For the present work, USE imaging was conducted at the 

vascular surgery outpatient clinic using the Ultrasonix Sonix- 

Tablet (B.K. Medical, Burlington, MA) or Ultrasonix Sonix- 

Touch US systems and an Ultrasonix C7-3/50 convex 

transducer. Axial B-mode images of the aneurysm were taken at 

the point of maximal diameter. All ultrasound images were 

captured at a frequency of 5 MHz. Sector and depth settings 

were adjusted to achieve a recorded frame rate ≥50 frames per 

second. Image gain was adjusted per user judgment. Patients 

maintained a 10-second breath-hold during image collection to 

reduce motion artifacts. The scans were stored as radiofrequency 

(R.F.) data. Manual blood pressure measurements collected 

during the clinic encounter were recorded to calculate the 

patient’s pulse pressure at the time of the scan. The authors’ 

MATLAB algorithm processed R.F. data for each image (2019b, 

Natick, Massachusetts, MathWorks Inc., RRID: SCR_001622) to 

calculate 1rþ. This USE algorithm has been validated and 

described in detail by Mix et al. in previous studies (25, 26).

A trained reviewer visually analyzed all RF files as B-mode 

cine loops and identified frame ranges spanning exactly one 

cardiac cycle from end-diastole to end-diastole. The first frame 

was then manually segmented by the reviewer to define a 

FIGURE 1 

Flow diagram depicting the process for cohort selection.
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polygonal region of interest (ROI) that included the inner and 

outer aorta and delineated the boundaries between aortic tissue 

from the lumen and the external environment (Figure 2A). 

A four-node, quadrilateral finite element discretization was 

applied and placed over the segmented ROI (Figure 2B). A non- 

rigid image registration-based displacement estimation algorithm 

was used to track the frame-to-frame displacement of each 

element over the cardiac cycle (26).

The mean average displacement of each element was used to 

calculate the mean average principal wall strain in each frame. 

The strain measurements of each frame in the cardiac cycle were 

graphed to visualize and identify the point of 1rþ in the selected 

cardiac cycle (Figure 2C). Parametric imaging was applied to the 

B-mode images to visualize the dynamic changes in strain during 

the cycle (Figure 2D). The size of the AAA was determined by 

measuring from outer wall to outer wall at the aneurysm’s 

maximum diameter in the axial plane at the end of the diastole.

The primary outcome was net change in 1rþ=PP, rate of 

1rþ=PP change (%/mmHg/year), and growth rate (cm/year) 

between index and follow-up visits by strain tercile. Secondary 

outcomes included growth rate and rate of rupture or 

intervention within 1 and 5 years of index scan. Differences in 

patient characteristics between the index and follow-up scans 

were assessed using Fisher’s exact tests and Mann–Whitney U 

tests as appropriate. Spearman’s rank correlations were used to 

test for linear associations between the rate of strain change 

with index strain, index AAA diameter, and AAA growth rate.

The cohort was divided into terciles based on the 1rþ=PP 

values measured at each patient’s index visit. To account for the 

small sample size and non-normal distribution as confirmed by 

Shapiro–Wilk tests, non-parametric statistical testing was used. 

Demographic, clinical, and imaging data were compared 

between terciles using non-parametric Kruskal–Wallis tests. 

Variables identified as significant were subsequently evaluated 

with Dunn’s pairwise multiple comparison tests to evaluate 

differences between cohorts. An alpha of 0.05 was selected as 

the significance threshold for all statistical tests. Data cleaning 

and statistical analyses were done using the R Statistical 

Software (R Version 2022.12.0 + 353, R Foundation for Statistical 

136 Computing).

FIGURE 2 

Example of the ultrasound elastography algorithm applied to a patient scan, dimensions: 1,920 × 963 pixels. (A) a B-mode ultrasound cine loop of a 

patient’s AAA is captured over one cardiac cycle; (B) the inner and outer walls of the aortic aneurysm are manually identified; (C) four-node finite 

element discretization is applied over the user-defined region of interest; (D) parametric image is generated to visually depict the regions of 

variable strain over on cardiac cycle.
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Results

During our study period, 120 patients received index USE 

scans. The inclusion and exclusion criteria yielded 31 patients 

with index and follow-up USE scans. The median time between 

index and follow-up scans was 6.2 [6.0, 8.3] months. Most 

patients were of male sex and white race and had a pre-existing 

diagnosis of hypertension prior to the index scan. Table 1

summarizes key patient characteristics and comorbidities for the 

entire cohort.

Evaluating changes in strain over time

Across the entire cohort, the maximum AAA diameter 

increased at a rate of 0.19 [−0.10, 0.47] cm/year, from a median 

of 4.3 [4.0, 4.7] cm at the index visit to 4.4 [4.1, 4.9] cm at 

follow-up (p = 0.04). The 1rþ=PP decreased at a rate of −0.58 

[−2.2, 0.27] %/mmHg/year, from 2.1 [1.7, 2.7] %/mmHg at index 

visit to 1.9 [1.3, 2.6] %/mmHg (p = 0.076). Figure 3 illustrates the 

changes in AAA diameter and 1rþ=PP across the entire cohort.

An association between aneurysm growth rate and “strain tercile” 

has been described previously by our group, with aneurysms 

demonstrating “intermediate-strain” growing faster than “high” and 

“low-strain” aneurysms (27). This difference in growth rate was 

hypothesized to re:ect the differing histopathologic processes 

occurring in each tercile. The cohort in the present study was 

divided into the terciles established in our prior work, using index 

1rþ=PP values of 0.025% and 0.038%/mmHg as cutoffs (27).

Spearman’s rank correlation test noted an association of −0.57 

(p < 0.01) between the rate of 1rþ=PP change and the index 

1rþ=PP measurement. The “high-strain” tercile was associated 

with a median 1rþ=PP reduction of −1.3 [−2.5, −1.1] %/mmHg 

between index and follow-up imaging, as compared to the “low- 

strain” tercile (−0.082 [−0.61, 0.46] %/mmHg, p < 0.01) and 

“intermediate-strain” tercile (−0.42 [−0.53, −0.30] %/mmHg, 

p = 0.043) terciles (Figure 4A). The rate of 1rþ=PP change in the 

high-strain tercile was −4.8 [−5.3, −4.2] %/mmHg/year vs. the 

low-strain tercile (−0.073 [−1.6, 0.93] %/mmHg/year, p = 0.004) 

and intermediate-strain tercile (−0.58 [−1.0, −0.40] %/mmHg/ 

TABLE 1 Baseline demographic characteristics of all patients included in 
the study at the time of the index scan.

Variable Patient characteristics (n = 31)

Median [IQR]/Frequency (%)

Age at baseline 72.0 [65.0, 77.5]

Age at follow-up 72.0 [65.0, 77.5]

Race, Caucasian 30 (96.8)

Sex, male 26 (83.9)

Hypertension 19 (61.3)

Active smoker 9 (29.0)

Type 2 diabetes mellitus 7 (22.6)

Atrial fibrillation 4 (12.9)

CKD 6 (19.4)

COPD 3 (9.7)

Neoplasm 7 (22.6)

Chronic anticoagulation 5 (16.1)

ACE-inhibitor 12 (38.7)

Statin 26 (83.9)

Beta-blocker 16 (51.6)

Tacrolimus 1 (3.2)

Cyclosporine 1 (3.2)

All continuous variables are described as median values with associated interquartile 

ranges (IQR).

FIGURE 3 

Box-and-whisker plot depicting the median 1rþ=PP and maximum abdominal aortic aneurysm diameter across the entire study cohort at index and 

follow-up scan. The box plot depicts the median, first and third quartile values, and the whiskers depict the upper and lower extremes. Outliers are 

depicted as singular points on the graph. (A) Median AAA 1rþ=PP at index and follow-up scan; (B) median maximum AAA diameter at index and 

follow-up scan.
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year, p = 0.047) (Figure 4B). There was no difference in patient 

demographics or comorbidities between terciles (Table 2).

Proof of concept: correlating changes in 
strain over time with key clinical outcomes

Spearman’s rank correlation tests showed no linear association 

between the rate of 1rþ=PP change, AAA growth, rupture, 

intervention, or AAA-related mortality. These clinical outcomes 

were compared between patients who experienced an increase in 

1rþ=PP over time vs. a decrease in 1rþ=PP (Table 3). The 

decreasing 1rþ=PP cohort had an annual growth rate of 0.21 

[−0.096, 0.79] cm/year vs. 0.17 [−0.12, 0.30] cm/year in the 

increasing 1rþ=PP cohort though this was not significant 

(p = 0.42). One rupture and subsequent AAA-related mortality 

occurred in the decreasing 1rþ=PP cohort, while none occurred 

in the increasing 1rþ=PP cohort. Both groups had similar 

intervention rates at 1 year (29%/1 year in the decreasing strain 

cohort vs. 30%/1 year in the increasing strain cohort) and 5 

years (62%/5 years vs. 60%/5 years).

Discussion

The present study used USE to characterize changes in AAA 

1rþ=PP over time. The 1rþ=PP decreased by 0.43% across the 

entire cohort (p = 0.076). This is consistent with multiple 

imaging-based in-vivo studies that have demonstrated that AAA 

walls are stiffer than normal aortic tissue (26, 29, 30). 

Furthermore, this finding aligns with the model of AAA 

degeneration proposed by Niestrawska et al., which predicts an 

increase in aneurysm wall stiffness and reduction in strain 

as collagen deposition occurs and a neo-adventitia forms in 

later-stage aneurysms. There was a concurrent increase in AAA 

diameter of 0.16 [−0.070, 0.23] cm (p = 0.042), but no linear 

association was observed between the changes in strain and 

changes in diameter.

The literature regarding the relationship between AAA 

diameter and the biomechanical properties of the aortic wall is 

con:icting. Studies published by Wilson et al. and van 

Disseldorp et al. report a positive correlation between AAA 

diameter and tissue stiffness (30, 31). However, studies by Long 

et al. and Dong et al. demonstrate no correlation between these 

two parameters (32, 33). With no consistent linear correlation 

reported between 1rþ=PP and AAA diameter, it is likely that the 

relationship between AAA size and its biomechanical properties 

is multifactorial. When understood in the context of the 

histopathologic changes occurring in the aneurysm wall, the 

association between 1rþ=PP and diameter changes is likely 

in:uenced by patient-specific remodeling patterns and the stage 

of degeneration at which these parameters are measured. This 

helps to explain the inconsistent reporting on how the 

biomechanical and morphometric properties of AAAs are 

correlated (27). For example, patients with similar AAA 

diameters may be at different stages in the in:ammatory 

remodeling process, leading to discrepant elastin and collagen 

contents. The aortic walls of these patients would, therefore, 

have different biomechanical properties despite similar 

morphology. Without appropriately stratifying patients based on 

FIGURE 4 

Box-and-whisker plot depicting change in AAA 1rþ=PP from index scan to follow-up scan stratified by patients’ strain tercile at the index visit. The box plot 

depicts the median, first and third quartile values, and the whiskers depict the upper and lower extremes. Outliers are depicted as singular points on the 

graph. (A) The net change in AAA 1rþ=PP from index to follow-up scan; (B) the rate of change in AAA 1rþ=PP per year as measured between index to 

follow-up scan.
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their stage of aneurysm progression, the utility of morphometric 

measures such as diameter and growth rate is limited as 

predictors of aneurysm rupture.

Dividing the cohort into terciles based on the index 1rþ=PP 

allowed for separation and comparison of AAAs at different 

stages in the histopathologic remodeling process. The high-strain 

tercile demonstrated a statistically greater decrease in 1rþ=PP as 

compared to the low and intermediate-strain terciles, implying a 

greater rate of stiffening of these AAAs over the follow-up period. 

The low-strain and intermediate-strain cohorts also decreased in 

strain but at significantly lower rates. These findings are consistent 

with the three-stage model for AAA degeneration effectively 

demonstrating the dynamic biological changes that occur in the 

aneurysm wall through biomechanical measurements captured via 

non-invasive imaging. The authors hypothesize that aneurysms 

that presented with high strain at the index visit had completed 

stage two of remodeling, characterized by in:ammatory 

infiltration and increased wall compliance, and had transitioned to 

stage three by the follow-up visit with increased collagen 

deposition and formation of a neo-adventitia during the interval. 

The aneurysms that presented as low or intermediate strain 

terciles at the index visit were earlier in the remodeling process 

and experienced continued in:ammatory cell-mediated ECM 

degradation during the follow-up period.

The differences in key clinical outcomes between strain terciles, 

including growth rate, surgical intervention, and time to repair, 

were evaluated in the study of the larger cohort by Zottola et al. 

(27). As the present study analyzed a smaller subset of the same 

study cohort, we did not repeat the comparison of clinical 

outcomes between strain terciles. Instead, we compared the clinical 

outcomes between AAAs that increased and decreased strain. We 

found no differences in growth, rupture, or intervention rates 

between these two groups. Two ruptures occurred in the group 

with decreasing strain, but this was not significant. Given the small 

sample size, a type 2 error may have occurred, and a relationship 

between strain changes and key clinical outcomes may be 

uncovered from a larger cohort study.

Aneurysmal degeneration, rupture, and the surgical decision 

to intervene are complex, multifactorial processes. This study 

aimed to characterize the natural history of AAA tissue 

mechanics in vivo using USE to understand how aneurysms 

degenerate over time. Our ultrasound imaging findings support 

the three-stage model for AAA degeneration proposed by prior 

histopathological studies, and demonstrate that non-invasive 

techniques such as ultrasound elastography can quantify changes 

in the AAA wall over time.

The development of novel tools and technologies to aid in the 

diagnosis and monitoring of AAAs is critical to improving the 

outcomes of this patient population. Furthermore, the 

TABLE 3 Key clinical outcomes in patients stratified by directionality of 
strain change from index to follow-up scan.

Variable Strain change p-value

Median IQR/Frequency (%)

Decrease 
(n = 21)

Increase 
(n = 10)

Growth (cm/year) 0.21 [−0.10, 0.79] 0.17 [−0.12, 0.30] 0.41

Rupture 1 (4.8) 0 (0.0) 1

1-Year intervention 6 (28.6) 3 (30.0) 1

5-Year intervention 13 (61.9) 6 (60.0) 1

1-Year AAA-related 

mortality

0 (0.0) 0 (0.0) N.A.

5-Year AAA-related 

mortality

1 (4.8) 0 (0.0) 1

All continuous variables are described as median values with associated interquartile ranges 

(IQR).

TABLE 2 Baseline demographic characteristics of all patients included in the study at the time of the index scan, stratified by strain tercile at the 
index visit.

Variable Patient characteristics p-value

Median [IQR]/Frequency (%)

Low-strain (n = 21) Intermediate-strain (n = 5) High-strain (n = 5)

Age at baseline 74.00 [68.00, 78.00] 69.00 [63.00, 84.00] 65.00 [65.00, 68.00] 0.294

Age at follow-up 74.00 [68.00, 78.00] 70.00 [64.00, 84.00] 65.00 [65.00, 68.00] 0.247

Sex, male 18 (85.7) 4 (80.0) 4 (80.0) 0.921

Race, Caucasian 21 (100.0) 4 (80.0) 5 (100.0) 0.068

Hypertension 13 (61.9) 3 (60.0) 3 (60.0) 0.995

Active smoker 5 (23.8) 2 (40.0) 2 (40.0) 0.650

Type 2 diabetes mellitus 5 (23.8) 1 (20.0) 1 (20.0) 0.972

Atrial fibrillation 3 (14.3) 1 (20.0) 0 (0.0) 0.606

CKD 4 (19.0) 2 (40.0) 0 (0.0) 0.277

COPD 2 (9.5) 1 (20.0) 0 (0.0) 0.564

Neoplasm 5 (23.8) 0 (0.0) 2 (40.0) 0.310

Chronic anticoagulation 4 (19.0) 1 (20.0) 0 (0.0) 0.563

ACE-inhibitor 9 (42.9) 1 (20.0) 2 (40.0) 0.640

Statin 18 (85.7) 4 (80.0) 4 (80.0) 0.921

Beta-blocker 9 (42.9) 4 (80.0) 3 (60.0) 0.301

Tacrolimums 1 (4.8) 0 (0.0) 0 (0.0) 0.782

Cyclosporine 0 (0.0) 1 (20.0) 0 (0.0) 0.068

All continuous variables are described as median values with associated interquartile ranges (IQR).
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technological landscape of medical imaging is constantly evolving. 

Novel displacement tracking algorithms based in regularized- 

optimization and deep learning-based methods may more 

reliably estimate vessel wall strain than non-rigid registration- 

based techniques such as ours (34–37). Although the feasibility 

of their implementation in routine clinical settings has yet to be 

determined, these techniques hold tremendous promise in 

advancing the role of aortic wall biomechanics in patient 

monitoring. The data derived from these technologies and 

techniques may 1 day inform physicians’ clinical decision- 

making and allow them to tailor their treatment strategies to the 

unique disease process of each patient.

Limitations

The small sample size and the short follow-up period may 

contribute to type 2 errors, considering the literature estimates the 

effect size of strain change in AAA to be small. The study’s 

retrospective design and specific patient selection criteria, notably 

excluding patients who underwent endovascular aneurysm repair 

prior to follow-up, may introduce selection bias, as patients with 

clinically significant changes in their aneurysm morphology and 

biomechanics may have been excluded. The study population is 

also homogenous in that the participants were largely white 

males. These demographic characteristics limit the generalizability 

of our findings to patients not requiring intervention, and patients 

in other demographic sectors of the broader population. 

Furthermore, the findings of the present study were not cross- 

validated against other imaging modalities or evaluated for inter- 

operator reproducibility which limits their reliability. Future work 

should focus on expanding the cohort size and heterogeneity, 

extend follow-up length, and employ cross-validation techniques 

for more robust and generalizable data.

Conclusion

The present study utilized a novel ultrasound elastography 

technique to characterize changes in AAA pressure-normalized 

wall strain over time, providing insight into the natural history 

of aneurysm wall tissue mechanics. The findings of this non- 

invasive technique is consistent with histopathologic models for 

aneurysm degeneration. This technique presents a promising 

avenue for improving the monitoring and management of 

AAAs, as evaluating biomechanical changes over time may help 

delineate the histologic progression of patients’ disease 

independent of AAA diameter and growth rate.
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