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Backgrounds: Heart failure (HF) is a major health concern associated with poor
prognosis, and there is an urgent clinical need for an easy and accurate method
for screening HF. This multicenter study aims to validate a novel Al-based
phono-electrocardiogram algorithm (AlI-PECG) in early HF detection.
Methods: A total of 1,017 individuals were grouped into a training cohort and an
external validating cohort, with a ratio of 8:2. In the training cohort, data of
patients were further split into training set and test set randomly with the 8:2
ratio. The least absolute shrinkage and selection operator with five-fold
cross-validation was utilized for dimensionality reduction and selection of
features for model construction from clinical variables, phonocardiogram
(PCG) parameters and electrocardiogram (ECG) parameters. Five machine
learning (ML) algorithms were then carried out to choose a classifier model
with the optimal recognition of HF, including logistic regression, random
forest, eXtreme Gradient Boosting, Category Boosting (CatBoost), and Naive
Bayes. The importance of ranking predicted factors was calculated in the final
screening model using the SHapley Additive exPlanations analysis.

Results: Among eligible participants, 302 reported HF. Totally 17 variables were
selected to conduct the screening models. In the training set, the area under
the curve (AUC) of the CatBoost model was 0.998 [95% confidence interval
(Cl): 0.996-1.000], which was higher compared to that of other ML models.
The sensitivity and specificity of CatBoost model was 0.989 (95% CI: 0.978-
0.996) and 0.989 (95% Cl: 0.979-0.999). In the screening model, top 5
factors in terms of importance were EMAT, lymphocyte, LVST, CRP, and platelet.
Conclusion: The ML model incorporating general data alongside ECG and PCG
features carried out good detection performance for HF. This had the potential
to be an available tool for clinicians to screen HF patients as early as possible for
further clinical interventions.
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Introduction

Heart failure (HF), compounded by late diagnosis, remains a
major contributor to high morbidity and mortality (1, 2). In China,
nearly 12.1 million people are affected by HF, with approximately 3
million new cases each year (3). Despite new medical therapy
improved clinical outcomes for patients with HF, the 5-year
mortality rate is still nearly 50% (4). Early detection of HF can
delay the progression and improve long-term prognosis (5). The
12-lead electrocardiogram (ECG) and phonocardiogram (PCG)
are common initial screening tools for cardiac disease in clinical
practice due to their rapid, simple, and non-invasive nature,
providing important insights into heart structure and hemodynamic
parameters (6, 7). However, the early-stage symptoms and signs of
HF often show insufficient sensitivity and specificity when screened
only using ECG or PCG (8, 9), leading to a limited accuracy (10).
Therefore, integrating ECG and PCG signals may offer clinical value
in detecting complex cardiac diseases (11), which may have
potential clinical value in the detection of HF in untested populations.

Advancements in artificial intelligence (AI) technology are being
utilized to detect cardiovascular diseases through biomedical signal
analysis (12-14). A prospective, observational, multicenter study in
the UK indicated that AI-ECG have the potential to be inexpensive,
noninvasive, and workflow-adapted for earlier HF detection (14).
This inspired a novel approach that combines Al algorithm with the
integrated features of heart sounds and cardiac electrical activity,
which enables interpreting any adequate quality ECG and PCG
signals and produces a prediction model for HF diagnosis. Al-based
phono-electrocardiogram algorithm (AI-PECG) is a new technique
that utilizes AI algorithms to collect and analyze the signals of
cardiac electrical activity and heart sounds simultaneously during
routine auscultation. It can create a graph of cardiac electrical
activity and heart sound murmurs by using a miniature sensor
during a heart cycle, offering an earlier detection reference for
complex heart diseases (15). The emergence of AI-PECG presents
an opportunity to leverage the combined features of ECGs and
PCGs for simultaneous initial screening of HF, while also facilitating
the development of a screening tool based on machine learning
(ML) models by using the combined features. Tools based on ML
models for screening cardiac diseases have been developed (16, 17),
but those specifically designed for HF remain limited.

Therefore, we developed ML-based HF detection models by
using ECG and PCG parameters as well as conventional HF risk
factors. The study aims to arrive at a final model that
outperforms the existing HF screening model through different
ML-based models trained and tested on cohorts and to validate
the potential of AI-PECG for HF early detection.

Method
Study design and population

This is a multicenter, retrospective cohort study designed to
construct and evaluate an HF detection model reliant on electronic
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health records and PECG data. A total of 1,017 patients received
PECG examination in three hospitals in two provinces of China
between January 2023 and December 2023 were recruited.
Exclusion criteria based on age or diagnosed disorder were applied,
meaning that patients aged >18 years, without HF history and
other severe heart disease history that will influence the
interpretation of ECG or PCG were included. Also, patients with
incomplete AI-PECG features and missing important health record
data were excluded because their records were not suitable for the
training and test model. HF was diagnosed based on the American
College of Cardiology (ACC) and American Heart Association
(AHA) guidelines for the management of HF (18).

The independent reviewer extracted patients’ demographic
information, medical contact details, and final diagnoses from
electronic health records, and the features of both ECG and PCG
were identified from the AI-PECG system. The AI-PECG features as
well as health records data were merged by the unique ID of patients.
Adjudications were made by independent reviewers at each local site
after reviewing all available medical records, and the reviewers were
blinded from all feature analyses and models’ predictions.

ECG and PCG parameters management

The parameters of ECG and PCG were acquired from patients
upon their initial contact with the hospital using AI-PECG devices.
Patients assumed a quiet supine position for approximately 5-
10 min, maintaining stable respiration throughout. The AI-PECG
devices were connected to the chest and limb leads following the
conventional 12-lead ECG method, with V3 and V4 leads positioned
with dual receptors for both ECG and PCG, allowing synchronous
recording of signals for a duration of 2 min. Each patient had at least
three consecutive records obtained. Digital PECG files were exported
in.xml format and stored on a secondary server at each local site. AI-
PECG images were de-identified and manually annotated by
independent reviewers or research specialists. AI-PECG recordings
with poor quality or missing leads were excluded. Subsequently,
digital (with.xml format) files were analyzed offline.

Features selection

Participants were randomly divided into a training cohort and an
external validating cohort first, with an 8:2 ratio. Then, data of
patients in the training cohort were further split into training sets
and test sets randomly also with the 8:2 ratio. All feature selection
processes were conducted within the training set. To mitigate
omitted feature bias, we adopted a data-driven approach [5-fold
least absolute shrinkage and selection operator (LASSO)] for
feature selection. Initially, features of conventional risk factors
[including sex, age, hypertension, hypotension, coronary artery
disease (CAD), heart rate (HR), hemoglobin (HB), lymphocyte,
platelet, total cholesterol (TC), triglyceride (TG), C-reactive protein
(CRP)], PCG parameters [electro mechanical activation time
(EMAT)/left ventricular systolic time (LVST), EMAT (%, the
EMAT to RR ratio), LVST, first heart sound (S1), second heart
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sound (S2), third heart sound (S3), and fourth heart sound (S4)], and
ECG parameters [including Axes, P wave duration (PD), PR interval
duration (PRD), QRS complex duration (QRSD), QT interval
duration (QTD), V5 lead R-wave amplitude plus V1 lead S-wave
amplitude (RV5_SV1)] were all included. S1 is the first sound in
the heart sound cycle, indicating the beginning of ventricular
contraction and is produced by the closure of the mitral and
tricuspid valves due to the pressure difference between the atria
and ventricles. S2 indicates the beginning of the ventricular diastole
and is mainly generated by the vibrations when the aortic valve and
pulmonary valve close. The EMAT is the time between the Q peak
and the beginning of the S1 signal. The LVST indicates the time
duration between the peak of the S1 sound and that of S2 sound.
Subsequently, the LASSO with five-fold cross-validation was
employed for dimensionality reduction and selection of these
features. The final variables used for model construction were
selected based on the smallest mean square error (MSE) for each
penalty coefficient A.

Prediction modeling and evaluation

Five ML algorithms were carried out to choose a classifier
model with the optimal recognition of HF, including logistic
regression (LR), random forest (RF), eXtreme Gradient Boosting
(XGBoost), Category Boosting (CatBoost), and Naive Bayes
(NB). Features for model construction were selected utilizing the
five ML algorithms with the five-fold cross-validation. In the
training set, data were divided into five subsets, four of which
were served as the training set and the other as the validation
set. Five iterations were then performed, and the means of the
cross-validations and the best performance fold were taken as

10.3389/fcvm.2025.1613577

the final classification results to screen the optimal screening
model. The screening ability of the final model was further
validated by the test set. The flow chart of model development
and validation is presented in Figure 1.

Model interpretation

To evaluate the prediction value and accuracy of various ML
models, we calculated and compared areas under the curve (AUC)
of the receiver operating characteristic curve (ROC), sensitivity, and
specificity. The SHapley Additive exPlanation (SHAP) values were
used to provide consistent and locally accurate attribution values
for each feature within each prediction model, which is a unified
approach for explaining the outcome of any ML model. All SHAP
values were computed using the training set.

Statistical analysis

All statistical analyses were performed using R software (version
4.3.3, R Foundation for Statistical Computing, Vienna, Austria).
Continuous data were presented as mean * standard deviation (SD)
and categorical data were presented as numbers with percentages
[n (%)]. Differences in continuous data were compared using the t-
test or Wilcoxon rank-sum test, and differences in categorical data
were compared using the y” test or Fisher’s exact test. The fitting of
the final model was evaluated by plotting ROC curves, calibration
curve, and decision curve analysis (DCA) curves. The importance
of ranking predicted factors was calculated in the final screening
model using the SHAP analysis (shapviz package available on
CRAN). The correlations of the detection factors with HF were

80%

5-fold LASSO

> Feature

Feature selection

5-fold cross validation
Training set: 80% Logistic regression Testing Training
Random froest Training | Testing Training
Validation set: 20% XGBoosting Training Testing Training
CatBoosting Training Testing | Training
SVM Training Testing
Optimized model

FIGURE 1
The flow chat of model development and validation.
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further
statistical significance.

assessed. P-value<0.05 was considered as the

Results
Characteristics of participants

Among 1,017 eligible patients, 302 patients reported HF
(Table 1). Of the overall samples, the mean age was 68.16
(10.44) years and 523 (51.43%) were female; 326 (32.06%) had
hypertension and 522 (51.33%) had CAD; 432 (42.48%)
reported S3 heart sound and 88 (8.65%) reported heart sound
S4. Compared to non-HF group, the HF group had higher levels
of HR (74.44 vs. 71.02, P<0.001), CRP (9.88 Mg/L vs. 7.93 Mg/
L, P<0.001), EMAT/LVST (0.40 vs. 0.30, P<0.001), EMAT
(13.97 ms vs. 10.84 ms, P<0.001), S2 (48.36 ms vs. 41.31 ms,
P<0.001), PRD (142.51 vs. 131.57, P=0.021), QRSD (82.87 vs.
77.45, P=0.024) and RV5_SV1 (7.34 vs. 1.68, P<0.001). No
significant difference has been observed between these two
groups in other characteristics (all P> 0.05).

TABLE 1 Patients’ characteristics included in the HF screening model.

10.3389/fcvm.2025.1613577

Model construction with different machine
learning methods

Utilizing the Five-fold cross-validation approach, we identified
17 predictors comprising four conventional risk factors (age, CRP,
HR, HB), seven PCG features (EMAT, LVST, S1 heart sound, S2
heart sound, S3 heart sound, S4 heart sound, S3 and S4 heart
sound), and six ECG features (QTD, PRD, PD, RV5_SV1, QRSD,
Axes) for construction of the screening models (Table 1). Figure 2
showed the performance of different ML classifiers in detection HF
within the training and test datasets, respectively. According to
the mean values of AUC of 5-fold cross validation, the CAT
classifier exhibited the best performance, demonstrating robust
generalizability to both the training set and the test set.

Model validating and explainability

Table 2 presented the performance of the CatBoost model in
screening HF across the training, test, and validating datasets. The
AUCGCs of the CatBoost model in the training and test sets were

Variables All (n=1,017) non-HF (n =715) HF (n =302) P-value
Sex, n (%) 0.565
Male 494 (48.57) 352 (49.23) 142 (47.02)

Female 523 (51.43) 363 (50.77) 160 (52.98)

Age, Mean (SD) 68.16 (10.44) 68.60 (10.37) 67.11 (10.55) 0.115
Hypertension, 1 (%) 326 (32.06) 226 (31.61) 100 (33.11) 0.692
Hypotension, n (%) 147 (14.45) 101 (14.13) 46 (15.23) 0.718
CAD, n (%) 522 (51.33) 375 (52.45) 147 (48.68) 0.303
HR, mean (SD) 72.03 (13.13) 71.02 (12.64) 74.44 (13.97) <0.001
Biochemical indicators, mean (SD)

HB, g/L 124.12 (21.35) 124.21 (20.84) 123.89 (22.54) 0.977
Lymphocyte, 10 /L 1.59 (0.66) 1.59 (0.75) 1.60 (0.37) 0.976
Platelet, 10 /L 169.68 (21.98) 170.00 (23.32) 168.94 (18.43) 0.782
TC, mmol/L 3.56 (1.49) 3.57 (1.41) 3.54 (1.68) 0.954
TG, mmol/L 1.09 (0.34) 1.09 (0.33) 1.09 (0.35) 0.984
CRP, Mg/L 8.51 (6.55) 7.93 (6.23) 9.88 (7.06) <0.001
PCG, mean (SD)

EMAT/LVST 0.33 (0.07) 0.30 (0.05) 0.40 (0.08) <0.001
EMAT, ms, mean (SD) 11.77 (3.10) 10.84 (2.32) 13.97 (3.57) <0.001
LVST, ms, mean (SD) 0.33 (0.07) 0.30 (0.05) 0.40 (0.08) 0.157
S1, ms 50.91 (23.61) 51.08 (22.01) 50.50 (27.05) 0.938
S$2, ms 43.41 (26.03) 41.31 (23.58) 48.36 (30.56) <0.001
Visibility of S3, n (%) 432 (42.48) 254 (35.52) 178 (58.94) <0.001
Visibility of S4, n (%) 140 (13.77) 100 (13.99) 40 (13.25) 0.831
Visibility of S3 and $4, n (%) 88 (8.65) 57 (7.97) 31 (10.26) 0.286
ECG, mean (SD)

Axes 32.90 (52.14) 34.39 (49.49) 29.36 (57.87) 0.372
PD 88.11 (35.23) 87.21 (37.03) 90.24 (30.47) 0.455
PRD 134.8 (57.58) 131.57 (60.01) 142.51 (50.64) 0.021
QRSD 79.06 (29.03) 77.45 (29.35) 82.87 (27.93) 0.024
QTD 407.22 (43.61) 406.42 (39.69) 409.11 (51.73) 0.668
RV5_SV1 3.36 (19.98) 1.68 (0.72) 7.34 (36.37) <0.001

HF, heart failure; SD, standard deviation; HR, heart rate; Hb, hemoglobin; TC, total cholesterol; TG, triglyceride; CRP, C-reactive protein; CAD, coronary artery disease; EMAT, electro
mechanical activation time; LVST, left ventricular systolic time; S1, first heart sound; S2, second heart sound; S3, third heart sound; S4, fourth heart sound; PD, P wave duration; PRD,
PR interval duration; QRSD, QRS complex duration; QTD, QT interval duration; RV5 SV1, V5 lead R-wave amplitude plus V1 lead S-wave amplitude.
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The mean AUCs of the five-fold cross-validation for different machine learning models in training set and test set, respectively.

TABLE 2 The detection performance of the catBoots model.

Sets

Training set

AUC
0.998 (0.996-1.000)

Accuracy
0.989 (0.978-0.996)

Sensitivity
0.989 (0.979-0.999)

Specificity
0.990 (0.977-1.000)

PPV
0.995 (0.989-1.000)

NPV
0.976 (0.956-0.997)

Test set

0.992 (0.984-1.000)

0.944 (0.897-0.974)

0.958 (0.923-0.994)

0.905 (0.816-0.994)

0.966 (0.934-0.999)

0.884 (0.788-0.980)

Validation set

0.994 (0.984-1.000)

0.970 (0.937-0.989)

0.972 (0.945-0.999)

0.966 (0.920-1.000)

0.986 (0.967-1.000)

0.934 (0.872-0.997)

AUC, the area under the curve; PPV, positive prediction value; NPV, negative prediction value.

0.998 (95%CI: 0.996-1.000) and 0.992 (95%CIL: 0.984-1.000),
respectively. In the validating dataset, the AUC of the CatBoost
model was 0.994 (95%CIL: 0.984-1.000). The sensitivity of the
model in the training set, test set and validating set was 0.989 (95%
CI: 0.979-0.999), 0.958 (95%CI: 0.923-0.994) and 0.972 (95%CI:
0.945-0.999) respectively (Figure 3). The specificity of the model in
the training set, test set and validating set was 0.990 (95%CI: 0.977-
1.000), 0.905 (95%CI: 0.816-0.994), and 0.966 (95%CI: 0.920-
1.000), respectively. The fitting of the final model was illustrated by
calibration curves (Supplementary Figure S1) and DCA curves
(Supplementary Figure S2). Moreover, comparation on mean
AUC:s between the final model and model that was constructed by
ECG and PCG features showed a similar performance on HF
detection (Supplementary Figure S3).

The SHAP summary plot of CatBoost showed the most
influential features in the final screening model, revealing that
the top 5 important features were EMAT, lymphocyte, LVST,

CRP, and platelet (Figure 4). This plot illustrated the
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relationship between feature values and SHAP values in the
training dataset, with higher SHAP values indicating a greater
likelihood of HF. Additionally, the SHAP dependence plot
offered insight into how individual ECG features (Figure 5A)
and PCG features (Figure 5B) impact the CatBoost model’s
output. This visualization demonstrated how the attributed
importance of a feature changes as its value fluctuates.

Discussion

To our knowledge, this was the first clinical study that
validated and tested the performance of ML-based models to
detect HF using the simultaneous features of PCG and ECG
collected from AI-PECG. The ML-based HF detection model
was trained and validated on 1,017 participants from three
hospitals demonstrated a strong identification performance, with
an AUC of 0.998, a sensitivity of 0.989, and a specificity of
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FIGURE 3
The ROC curve of the catBoost model.

0.990. These findings indicated that this model combined features
of PCG and ECG with conventional risk factors have the potential
to apply in early screening of HF in clinical. Moreover, this model
was dominated by relatively few predictors, making it possible
to predict with very high and fast detection based on only a
few predictors.

According to the study results, using a clinical detection
support tool based on the simultaneous features of PCG and
ECG, when combined with the conventional risk factors, could
be imperative for improving the accuracy of detecting HF. This
estimate was quite similar to the current literature that used the
joint data of PCGs, ECGs, and conventional risk factors to
predict cardiac diseases (19-22). However, the development of
such models in HF is still limited due to the absence of relevant
datasets for training and validation. In the existing algorithms,
most of them have only used ECGs or electronic health records,
and few studies have applied PCGs. The accuracy range of the
existing algorithm by only using ECGs for predicting HF was
about 80.0%-98.9% (23-25), while the models using electronic
health record with a sensitivity of 83%-95.3% (26, 27). For the
models using PCGs, the accuracy was about 82.6%-88.2% (28).
Although some of these models performed well with high AUC
and sensitivity, the size and nature of these databases limited
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their application to clinical practice. The major challenge in the
clinical application of ECG or PCG to HF detection may be that
the abnormal symptoms of patients are inconspicuous or even
absent in some cases. As the first study to use a ML approach
for HF detection, our findings indicated that joint analysis of
ECG and PCG could be a good solution to the above issue since
ECG and PCG signals can reflect the electrical and mechanical
activities of the heart respectively, which provides more reliable
and complete evidence for early detection.

Furthermore, SHAP values were used to uncover the black box
of ML and to facilitate the model interpretation. In the present
study, the top 5 most influential features contributing to this
model were EMAT, lymphocyte, LVST, CRP, and platelet. These
factors have all been proven associated with the occurrence of
HEF. EMAT, defined as the period from the onset of the Q wave
to the first peak of SI, reflecting the timing of electrical
excitation and mechanical movement in the heart. Early studies
have indicated that this timing is prolonged in HF patients. Li
et al. (11) have reported that the heart sound and ECG signal
index EMAT contributes to the diagnosis of ejection fraction
<50%. Trabelsi et al. (29) found that HF patients exhibited
higher EMAT and lower LVET compared to non-HF patients.
The incidence of HF is linked to chronic systemic inflammation.
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The rank of the importance of features in the catBoost model for HF screening.

We observed that elevated CRP levels are associated with an
increased likelihood of HF occurrence. Burger et al. (30)
similarly identified CRP as an independent risk factor for HF in
patients with cardiovascular diseases. In summary, this research
yielded with
traditional statistical analysis and ML-model studies, providing

results  consistent those obtained through
further validation of our findings.

Our findings have significant clinical implications. The
performance of our final model was robust, indicating its potential
utility in detecting early signs of HF in clinical settings. This could
provide valuable support for implementing early risk management
among patients with HF. Compared to traditional evaluation
methods, the high sensitivity of ML-based detection tool could
substantially improve HF early identification by reducing
and examinations, to

unnecessary hospitalizations leading

Frontiers in Cardiovascular Medicine

significant time and cost savings. Our detection model boasted
real-time applicability and scalability, as it can be automated and
directly integrated into AI-PECG machines without requiring
additional clinical data inputs (31). This suggested its practical
utility in various healthcare settings, particularly in primary
healthcare organizations where access to more invasive diagnostics
may be limited. Additionally, the clinical decision support function
of our HF detection model had immense practical value for non-
professionals with limited experience in interpreting ECGs and
PCGs. In clinical practice, non-professionals often encounter
challenges in swiftly and accurately interpreting complex ECGs and
PCGs. Our model addressed this issue by automatically analyzing
ECG and PCG characteristics, delivering accurate HF risk
prediction results promptly, and aiding in quick clinical decision-
making. This capability had the potential to enhance the accuracy
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FIGURE 5
The SHAP dependence plot of the catBoost model. (A) ECG parameters; (B) PCG parameters.
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and efficiency of early HF detection, while also mitigating the risk of
misdiagnosis or missed diagnoses attributable to imprecise
judgments and human error.

Several limitations should be cautious to explain the findings.
First, development of the HF detection model depended on
features of ECGs and PCGs extracted from manufacturer-
specific software. This implied that it requires retraining because
of the variations in ECG and PCG signal pre-processing among
different manufacturers when utilizing alternative software for
signal processing. Second, although the selected features by
data-driven technique had a positive effect on our model, a
mixed strategy for feature selection needs to be future assessed.
Third, despite analyzing data from three hospitals, our study
encompassed only 1,017 patients, and the ML algorithm’s
performance could differ when applied to larger datasets with
varying distributions of patient characteristics and across
different institutions.

Conclusion

In this study, we used the capabilities of ML to create a novel
screening tool with high performance for HF, intended for
clinicians’ use. Our findings indicated that integrating the analysis
of PCG and ECG features markedly enhances the accuracy of HF
screening, may surpassing traditional evaluation tools that rely
solely on ECG or PCG features. Moreover, since this model aided
early HF detection, it may further provide effective information on
risk management strategies in HF patients.
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