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Backgrounds: Heart failure (HF) is a major health concern associated with poor 

prognosis, and there is an urgent clinical need for an easy and accurate method 

for screening HF. This multicenter study aims to validate a novel AI-based 

phono-electrocardiogram algorithm (AI-PECG) in early HF detection.

Methods: A total of 1,017 individuals were grouped into a training cohort and an 

external validating cohort, with a ratio of 8:2. In the training cohort, data of 

patients were further split into training set and test set randomly with the 8:2 

ratio. The least absolute shrinkage and selection operator with five-fold 

cross-validation was utilized for dimensionality reduction and selection of 

features for model construction from clinical variables, phonocardiogram 

(PCG) parameters and electrocardiogram (ECG) parameters. Five machine 

learning (ML) algorithms were then carried out to choose a classifier model 

with the optimal recognition of HF, including logistic regression, random 

forest, eXtreme Gradient Boosting, Category Boosting (CatBoost), and Naive 

Bayes. The importance of ranking predicted factors was calculated in the final 

screening model using the SHapley Additive exPlanations analysis.

Results: Among eligible participants, 302 reported HF. Totally 17 variables were 

selected to conduct the screening models. In the training set, the area under 

the curve (AUC) of the CatBoost model was 0.998 [95% confidence interval 

(CI): 0.996–1.000], which was higher compared to that of other ML models. 

The sensitivity and specificity of CatBoost model was 0.989 (95% CI: 0.978– 

0.996) and 0.989 (95% CI: 0.979–0.999). In the screening model, top 5 

factors in terms of importance were EMAT, lymphocyte, LVST, CRP, and platelet.

Conclusion: The ML model incorporating general data alongside ECG and PCG 

features carried out good detection performance for HF. This had the potential 

to be an available tool for clinicians to screen HF patients as early as possible for 

further clinical interventions.
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Introduction

Heart failure (HF), compounded by late diagnosis, remains a 

major contributor to high morbidity and mortality (1, 2). In China, 

nearly 12.1 million people are affected by HF, with approximately 3 

million new cases each year (3). Despite new medical therapy 

improved clinical outcomes for patients with HF, the 5-year 

mortality rate is still nearly 50% (4). Early detection of HF can 

delay the progression and improve long-term prognosis (5). The 

12-lead electrocardiogram (ECG) and phonocardiogram (PCG) 

are common initial screening tools for cardiac disease in clinical 

practice due to their rapid, simple, and non-invasive nature, 

providing important insights into heart structure and hemodynamic 

parameters (6, 7). However, the early-stage symptoms and signs of 

HF often show insufficient sensitivity and specificity when screened 

only using ECG or PCG (8, 9), leading to a limited accuracy (10). 

Therefore, integrating ECG and PCG signals may offer clinical value 

in detecting complex cardiac diseases (11), which may have 

potential clinical value in the detection of HF in untested populations.

Advancements in artificial intelligence (AI) technology are being 

utilized to detect cardiovascular diseases through biomedical signal 

analysis (12–14). A prospective, observational, multicenter study in 

the UK indicated that AI-ECG have the potential to be inexpensive, 

noninvasive, and work9ow-adapted for earlier HF detection (14). 

This inspired a novel approach that combines AI algorithm with the 

integrated features of heart sounds and cardiac electrical activity, 

which enables interpreting any adequate quality ECG and PCG 

signals and produces a prediction model for HF diagnosis. AI-based 

phono-electrocardiogram algorithm (AI-PECG) is a new technique 

that utilizes AI algorithms to collect and analyze the signals of 

cardiac electrical activity and heart sounds simultaneously during 

routine auscultation. It can create a graph of cardiac electrical 

activity and heart sound murmurs by using a miniature sensor 

during a heart cycle, offering an earlier detection reference for 

complex heart diseases (15). The emergence of AI-PECG presents 

an opportunity to leverage the combined features of ECGs and 

PCGs for simultaneous initial screening of HF, while also facilitating 

the development of a screening tool based on machine learning 

(ML) models by using the combined features. Tools based on ML 

models for screening cardiac diseases have been developed (16, 17), 

but those specifically designed for HF remain limited.

Therefore, we developed ML-based HF detection models by 

using ECG and PCG parameters as well as conventional HF risk 

factors. The study aims to arrive at a final model that 

outperforms the existing HF screening model through different 

ML-based models trained and tested on cohorts and to validate 

the potential of AI-PECG for HF early detection.

Method

Study design and population

This is a multicenter, retrospective cohort study designed to 

construct and evaluate an HF detection model reliant on electronic 

health records and PECG data. A total of 1,017 patients received 

PECG examination in three hospitals in two provinces of China 

between January 2023 and December 2023 were recruited. 

Exclusion criteria based on age or diagnosed disorder were applied, 

meaning that patients aged ≥18 years, without HF history and 

other severe heart disease history that will in9uence the 

interpretation of ECG or PCG were included. Also, patients with 

incomplete AI-PECG features and missing important health record 

data were excluded because their records were not suitable for the 

training and test model. HF was diagnosed based on the American 

College of Cardiology (ACC) and American Heart Association 

(AHA) guidelines for the management of HF (18).

The independent reviewer extracted patients’ demographic 

information, medical contact details, and final diagnoses from 

electronic health records, and the features of both ECG and PCG 

were identified from the AI-PECG system. The AI-PECG features as 

well as health records data were merged by the unique ID of patients. 

Adjudications were made by independent reviewers at each local site 

after reviewing all available medical records, and the reviewers were 

blinded from all feature analyses and models’ predictions.

ECG and PCG parameters management

The parameters of ECG and PCG were acquired from patients 

upon their initial contact with the hospital using AI-PECG devices. 

Patients assumed a quiet supine position for approximately 5– 

10 min, maintaining stable respiration throughout. The AI-PECG 

devices were connected to the chest and limb leads following the 

conventional 12-lead ECG method, with V3 and V4 leads positioned 

with dual receptors for both ECG and PCG, allowing synchronous 

recording of signals for a duration of 2 min. Each patient had at least 

three consecutive records obtained. Digital PECG files were exported 

in.xml format and stored on a secondary server at each local site. AI- 

PECG images were de-identified and manually annotated by 

independent reviewers or research specialists. AI-PECG recordings 

with poor quality or missing leads were excluded. Subsequently, 

digital (with.xml format) files were analyzed of9ine.

Features selection

Participants were randomly divided into a training cohort and an 

external validating cohort first, with an 8:2 ratio. Then, data of 

patients in the training cohort were further split into training sets 

and test sets randomly also with the 8:2 ratio. All feature selection 

processes were conducted within the training set. To mitigate 

omitted feature bias, we adopted a data-driven approach [5-fold 

least absolute shrinkage and selection operator (LASSO)] for 

feature selection. Initially, features of conventional risk factors 

[including sex, age, hypertension, hypotension, coronary artery 

disease (CAD), heart rate (HR), hemoglobin (HB), lymphocyte, 

platelet, total cholesterol (TC), triglyceride (TG), C-reactive protein 

(CRP)], PCG parameters [electro mechanical activation time 

(EMAT)/left ventricular systolic time (LVST), EMAT (%, the 

EMAT to RR ratio), LVST, first heart sound (S1), second heart 

Bian et al.                                                                                                                                                                10.3389/fcvm.2025.1613577 

Frontiers in Cardiovascular Medicine 02 frontiersin.org



sound (S2), third heart sound (S3), and fourth heart sound (S4)], and 

ECG parameters [including Axes, P wave duration (PD), PR interval 

duration (PRD), QRS complex duration (QRSD), QT interval 

duration (QTD), V5 lead R-wave amplitude plus V1 lead S-wave 

amplitude (RV5_SV1)] were all included. S1 is the first sound in 

the heart sound cycle, indicating the beginning of ventricular 

contraction and is produced by the closure of the mitral and 

tricuspid valves due to the pressure difference between the atria 

and ventricles. S2 indicates the beginning of the ventricular diastole 

and is mainly generated by the vibrations when the aortic valve and 

pulmonary valve close. The EMAT is the time between the Q peak 

and the beginning of the S1 signal. The LVST indicates the time 

duration between the peak of the S1 sound and that of S2 sound. 

Subsequently, the LASSO with five-fold cross-validation was 

employed for dimensionality reduction and selection of these 

features. The final variables used for model construction were 

selected based on the smallest mean square error (MSE) for each 

penalty coefficient λ.

Prediction modeling and evaluation

Five ML algorithms were carried out to choose a classifier 

model with the optimal recognition of HF, including logistic 

regression (LR), random forest (RF), eXtreme Gradient Boosting 

(XGBoost), Category Boosting (CatBoost), and Naive Bayes 

(NB). Features for model construction were selected utilizing the 

five ML algorithms with the five-fold cross-validation. In the 

training set, data were divided into five subsets, four of which 

were served as the training set and the other as the validation 

set. Five iterations were then performed, and the means of the 

cross-validations and the best performance fold were taken as 

the final classification results to screen the optimal screening 

model. The screening ability of the final model was further 

validated by the test set. The 9ow chart of model development 

and validation is presented in Figure 1.

Model interpretation

To evaluate the prediction value and accuracy of various ML 

models, we calculated and compared areas under the curve (AUC) 

of the receiver operating characteristic curve (ROC), sensitivity, and 

specificity. The SHapley Additive exPlanation (SHAP) values were 

used to provide consistent and locally accurate attribution values 

for each feature within each prediction model, which is a unified 

approach for explaining the outcome of any ML model. All SHAP 

values were computed using the training set.

Statistical analysis

All statistical analyses were performed using R software (version 

4.3.3, R Foundation for Statistical Computing, Vienna, Austria). 

Continuous data were presented as mean ± standard deviation (SD) 

and categorical data were presented as numbers with percentages 

[n (%)]. Differences in continuous data were compared using the t- 

test or Wilcoxon rank-sum test, and differences in categorical data 

were compared using the χ2 test or Fisher’s exact test. The fitting of 

the final model was evaluated by plotting ROC curves, calibration 

curve, and decision curve analysis (DCA) curves. The importance 

of ranking predicted factors was calculated in the final screening 

model using the SHAP analysis (shapviz package available on 

CRAN). The correlations of the detection factors with HF were 

FIGURE 1 

The flow chat of model development and validation.
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further assessed. P-value < 0.05 was considered as the 

statistical significance.

Results

Characteristics of participants

Among 1,017 eligible patients, 302 patients reported HF 

(Table 1). Of the overall samples, the mean age was 68.16 

(10.44) years and 523 (51.43%) were female; 326 (32.06%) had 

hypertension and 522 (51.33%) had CAD; 432 (42.48%) 

reported S3 heart sound and 88 (8.65%) reported heart sound 

S4. Compared to non-HF group, the HF group had higher levels 

of HR (74.44 vs. 71.02, P < 0.001), CRP (9.88 Mg/L vs. 7.93 Mg/ 

L, P < 0.001), EMAT/LVST (0.40 vs. 0.30, P < 0.001), EMAT 

(13.97 ms vs. 10.84 ms, P < 0.001), S2 (48.36 ms vs. 41.31 ms, 

P < 0.001), PRD (142.51 vs. 131.57, P = 0.021), QRSD (82.87 vs. 

77.45, P = 0.024) and RV5_SV1 (7.34 vs. 1.68, P < 0.001). No 

significant difference has been observed between these two 

groups in other characteristics (all P > 0.05).

Model construction with different machine 
learning methods

Utilizing the Five-fold cross-validation approach, we identified 

17 predictors comprising four conventional risk factors (age, CRP, 

HR, HB), seven PCG features (EMAT, LVST, S1 heart sound, S2 

heart sound, S3 heart sound, S4 heart sound, S3 and S4 heart 

sound), and six ECG features (QTD, PRD, PD, RV5_SV1, QRSD, 

Axes) for construction of the screening models (Table 1). Figure 2

showed the performance of different ML classifiers in detection HF 

within the training and test datasets, respectively. According to 

the mean values of AUC of 5-fold cross validation, the CAT 

classifier exhibited the best performance, demonstrating robust 

generalizability to both the training set and the test set.

Model validating and explainability

Table 2 presented the performance of the CatBoost model in 

screening HF across the training, test, and validating datasets. The 

AUCs of the CatBoost model in the training and test sets were 

TABLE 1 Patients’ characteristics included in the HF screening model.

Variables All (n = 1,017) non-HF (n = 715) HF (n = 302) P-value

Sex, n (%) 0.565

Male 494 (48.57) 352 (49.23) 142 (47.02)

Female 523 (51.43) 363 (50.77) 160 (52.98)

Age, Mean (SD) 68.16 (10.44) 68.60 (10.37) 67.11 (10.55) 0.115

Hypertension, n (%) 326 (32.06) 226 (31.61) 100 (33.11) 0.692

Hypotension, n (%) 147 (14.45) 101 (14.13) 46 (15.23) 0.718

CAD, n (%) 522 (51.33) 375 (52.45) 147 (48.68) 0.303

HR, mean (SD) 72.03 (13.13) 71.02 (12.64) 74.44 (13.97) <0.001

Biochemical indicators, mean (SD)

HB, g/L 124.12 (21.35) 124.21 (20.84) 123.89 (22.54) 0.977

Lymphocyte, 10 /L 1.59 (0.66) 1.59 (0.75) 1.60 (0.37) 0.976

Platelet, 10 /L 169.68 (21.98) 170.00 (23.32) 168.94 (18.43) 0.782

TC, mmol/L 3.56 (1.49) 3.57 (1.41) 3.54 (1.68) 0.954

TG, mmol/L 1.09 (0.34) 1.09 (0.33) 1.09 (0.35) 0.984

CRP, Mg/L 8.51 (6.55) 7.93 (6.23) 9.88 (7.06) <0.001

PCG, mean (SD)

EMAT/LVST 0.33 (0.07) 0.30 (0.05) 0.40 (0.08) <0.001

EMAT, ms, mean (SD) 11.77 (3.10) 10.84 (2.32) 13.97 (3.57) <0.001

LVST, ms, mean (SD) 0.33 (0.07) 0.30 (0.05) 0.40 (0.08) 0.157

S1, ms 50.91 (23.61) 51.08 (22.01) 50.50 (27.05) 0.938

S2, ms 43.41 (26.03) 41.31 (23.58) 48.36 (30.56) <0.001

Visibility of S3, n (%) 432 (42.48) 254 (35.52) 178 (58.94) <0.001

Visibility of S4, n (%) 140 (13.77) 100 (13.99) 40 (13.25) 0.831

Visibility of S3 and S4, n (%) 88 (8.65) 57 (7.97) 31 (10.26) 0.286

ECG, mean (SD)

Axes 32.90 (52.14) 34.39 (49.49) 29.36 (57.87) 0.372

PD 88.11 (35.23) 87.21 (37.03) 90.24 (30.47) 0.455

PRD 134.8 (57.58) 131.57 (60.01) 142.51 (50.64) 0.021

QRSD 79.06 (29.03) 77.45 (29.35) 82.87 (27.93) 0.024

QTD 407.22 (43.61) 406.42 (39.69) 409.11 (51.73) 0.668

RV5_SV1 3.36 (19.98) 1.68 (0.72) 7.34 (36.37) <0.001

HF, heart failure; SD, standard deviation; HR, heart rate; Hb, hemoglobin; TC, total cholesterol; TG, triglyceride; CRP, C-reactive protein; CAD, coronary artery disease; EMAT, electro 

mechanical activation time; LVST, left ventricular systolic time; S1, first heart sound; S2, second heart sound; S3, third heart sound; S4, fourth heart sound; PD, P wave duration; PRD, 

PR interval duration; QRSD, QRS complex duration; QTD, QT interval duration; RV5 SV1, V5 lead R-wave amplitude plus V1 lead S-wave amplitude.
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0.998 (95%CI: 0.996–1.000) and 0.992 (95%CI: 0.984–1.000), 

respectively. In the validating dataset, the AUC of the CatBoost 

model was 0.994 (95%CI: 0.984–1.000). The sensitivity of the 

model in the training set, test set and validating set was 0.989 (95% 

CI: 0.979–0.999), 0.958 (95%CI: 0.923–0.994) and 0.972 (95%CI: 

0.945–0.999) respectively (Figure 3). The specificity of the model in 

the training set, test set and validating set was 0.990 (95%CI: 0.977– 

1.000), 0.905 (95%CI: 0.816–0.994), and 0.966 (95%CI: 0.920– 

1.000), respectively. The fitting of the final model was illustrated by 

calibration curves (Supplementary Figure S1) and DCA curves 

(Supplementary Figure S2). Moreover, comparation on mean 

AUCs between the final model and model that was constructed by 

ECG and PCG features showed a similar performance on HF 

detection (Supplementary Figure S3).

The SHAP summary plot of CatBoost showed the most 

in9uential features in the final screening model, revealing that 

the top 5 important features were EMAT, lymphocyte, LVST, 

CRP, and platelet (Figure 4). This plot illustrated the 

relationship between feature values and SHAP values in the 

training dataset, with higher SHAP values indicating a greater 

likelihood of HF. Additionally, the SHAP dependence plot 

offered insight into how individual ECG features (Figure 5A) 

and PCG features (Figure 5B) impact the CatBoost model’s 

output. This visualization demonstrated how the attributed 

importance of a feature changes as its value 9uctuates.

Discussion

To our knowledge, this was the first clinical study that 

validated and tested the performance of ML-based models to 

detect HF using the simultaneous features of PCG and ECG 

collected from AI-PECG. The ML-based HF detection model 

was trained and validated on 1,017 participants from three 

hospitals demonstrated a strong identification performance, with 

an AUC of 0.998, a sensitivity of 0.989, and a specificity of 

FIGURE 2 

The mean AUCs of the five-fold cross-validation for different machine learning models in training set and test set, respectively.

TABLE 2 The detection performance of the catBoots model.

Sets AUC Accuracy Sensitivity Specificity PPV NPV

Training set 0.998 (0.996–1.000) 0.989 (0.978–0.996) 0.989 (0.979–0.999) 0.990 (0.977–1.000) 0.995 (0.989–1.000) 0.976 (0.956–0.997)

Test set 0.992 (0.984–1.000) 0.944 (0.897–0.974) 0.958 (0.923–0.994) 0.905 (0.816–0.994) 0.966 (0.934–0.999) 0.884 (0.788–0.980)

Validation set 0.994 (0.984–1.000) 0.970 (0.937–0.989) 0.972 (0.945–0.999) 0.966 (0.920–1.000) 0.986 (0.967–1.000) 0.934 (0.872–0.997)

AUC, the area under the curve; PPV, positive prediction value; NPV, negative prediction value.
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0.990. These findings indicated that this model combined features 

of PCG and ECG with conventional risk factors have the potential 

to apply in early screening of HF in clinical. Moreover, this model 

was dominated by relatively few predictors, making it possible 

to predict with very high and fast detection based on only a 

few predictors.

According to the study results, using a clinical detection 

support tool based on the simultaneous features of PCG and 

ECG, when combined with the conventional risk factors, could 

be imperative for improving the accuracy of detecting HF. This 

estimate was quite similar to the current literature that used the 

joint data of PCGs, ECGs, and conventional risk factors to 

predict cardiac diseases (19–22). However, the development of 

such models in HF is still limited due to the absence of relevant 

datasets for training and validation. In the existing algorithms, 

most of them have only used ECGs or electronic health records, 

and few studies have applied PCGs. The accuracy range of the 

existing algorithm by only using ECGs for predicting HF was 

about 80.0%–98.9% (23–25), while the models using electronic 

health record with a sensitivity of 83%–95.3% (26, 27). For the 

models using PCGs, the accuracy was about 82.6%–88.2% (28). 

Although some of these models performed well with high AUC 

and sensitivity, the size and nature of these databases limited 

their application to clinical practice. The major challenge in the 

clinical application of ECG or PCG to HF detection may be that 

the abnormal symptoms of patients are inconspicuous or even 

absent in some cases. As the first study to use a ML approach 

for HF detection, our findings indicated that joint analysis of 

ECG and PCG could be a good solution to the above issue since 

ECG and PCG signals can re9ect the electrical and mechanical 

activities of the heart respectively, which provides more reliable 

and complete evidence for early detection.

Furthermore, SHAP values were used to uncover the black box 

of ML and to facilitate the model interpretation. In the present 

study, the top 5 most in9uential features contributing to this 

model were EMAT, lymphocyte, LVST, CRP, and platelet. These 

factors have all been proven associated with the occurrence of 

HF. EMAT, defined as the period from the onset of the Q wave 

to the first peak of S1, re9ecting the timing of electrical 

excitation and mechanical movement in the heart. Early studies 

have indicated that this timing is prolonged in HF patients. Li 

et al. (11) have reported that the heart sound and ECG signal 

index EMAT contributes to the diagnosis of ejection fraction 

<50%. Trabelsi et al. (29) found that HF patients exhibited 

higher EMAT and lower LVET compared to non-HF patients. 

The incidence of HF is linked to chronic systemic in9ammation. 

FIGURE 3 

The ROC curve of the catBoost model.
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We observed that elevated CRP levels are associated with an 

increased likelihood of HF occurrence. Burger et al. (30) 

similarly identified CRP as an independent risk factor for HF in 

patients with cardiovascular diseases. In summary, this research 

yielded results consistent with those obtained through 

traditional statistical analysis and ML-model studies, providing 

further validation of our findings.

Our findings have significant clinical implications. The 

performance of our final model was robust, indicating its potential 

utility in detecting early signs of HF in clinical settings. This could 

provide valuable support for implementing early risk management 

among patients with HF. Compared to traditional evaluation 

methods, the high sensitivity of ML-based detection tool could 

substantially improve HF early identification by reducing 

unnecessary hospitalizations and examinations, leading to 

significant time and cost savings. Our detection model boasted 

real-time applicability and scalability, as it can be automated and 

directly integrated into AI-PECG machines without requiring 

additional clinical data inputs (31). This suggested its practical 

utility in various healthcare settings, particularly in primary 

healthcare organizations where access to more invasive diagnostics 

may be limited. Additionally, the clinical decision support function 

of our HF detection model had immense practical value for non- 

professionals with limited experience in interpreting ECGs and 

PCGs. In clinical practice, non-professionals often encounter 

challenges in swiftly and accurately interpreting complex ECGs and 

PCGs. Our model addressed this issue by automatically analyzing 

ECG and PCG characteristics, delivering accurate HF risk 

prediction results promptly, and aiding in quick clinical decision- 

making. This capability had the potential to enhance the accuracy 

FIGURE 4 

The rank of the importance of features in the catBoost model for HF screening.
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FIGURE 5 

The SHAP dependence plot of the catBoost model. (A) ECG parameters; (B) PCG parameters.
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and efficiency of early HF detection, while also mitigating the risk of 

misdiagnosis or missed diagnoses attributable to imprecise 

judgments and human error.

Several limitations should be cautious to explain the findings. 

First, development of the HF detection model depended on 

features of ECGs and PCGs extracted from manufacturer- 

specific software. This implied that it requires retraining because 

of the variations in ECG and PCG signal pre-processing among 

different manufacturers when utilizing alternative software for 

signal processing. Second, although the selected features by 

data-driven technique had a positive effect on our model, a 

mixed strategy for feature selection needs to be future assessed. 

Third, despite analyzing data from three hospitals, our study 

encompassed only 1,017 patients, and the ML algorithm’s 

performance could differ when applied to larger datasets with 

varying distributions of patient characteristics and across 

different institutions.

Conclusion

In this study, we used the capabilities of ML to create a novel 

screening tool with high performance for HF, intended for 

clinicians’ use. Our findings indicated that integrating the analysis 

of PCG and ECG features markedly enhances the accuracy of HF 

screening, may surpassing traditional evaluation tools that rely 

solely on ECG or PCG features. Moreover, since this model aided 

early HF detection, it may further provide effective information on 

risk management strategies in HF patients.
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