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Objective: To evaluate the diagnostic and prognostic predictive value of the
pan-immune-inflammation value (PIV) and triglyceride-glucose (TyG) index in
premature coronary artery disease (PCAD).

Methods: This study analyzed data from 26,883 patients admitted with chest
pain at Liuzhou People’'s Hospital (January 2014 to December 2020), with
5,653 patients included after screening. Multiple machine learning algorithms,
including Gradient Boosting Machine (GBM), Extreme Gradient Boosting
(XGBoost), Support Vector Machine (SVM), Lasso regression, Random Forest
(RF), and logistic regression, were applied to identify PCAD-related variables,
which were integrated into a decision tree model. Propensity score matching
(PSM) ensured cohort comparability. The Mimel package facilitated ensemble
feature selection and visualization, while optimal PIV and TyG cutoff values
were determined via Receiver Operating Characteristic (ROC) analysis for
36-month survival subgroup analysis.

Results: Logistic regression identified PIV [odds ratio [OR] 2.651, 95% CI [to be
specified], P<0.001] and TyG [OR 1.003, 95% ClI (to be specified), P<0.001] as
PCAD risk factors. The decision tree model, incorporating PIV, TyG, and white
blood cell count (WBC), achieved an accuracy of 0.88 and an area under the
ROC curve (AUC) of 0.86 for PCAD diagnosis. Survival analysis over 36
months revealed that low PIV and TyG levels were associated with reduced
all-cause mortality, whereas elevated levels correlated with poorer prognosis
(P<0.001), with TyG showing a pronounced effect.

Conclusion: The combined evaluation of PIV, TyG, and WBC offers robust
diagnostic and prognostic value for PCAD, with elevated PIV and TyG levels
indicating a poor prognosis, underscoring their potential as clinical biomarkers.

KEYWORDS

premature coronary artery disease, pan-Immune-Inflammation value, triglyceride-
glucose index, machine learning, diagnostic model, prognostic model, survival analysis

1 Introduction

Coronary artery disease (CAD) remains the leading cause of morbidity and mortality
worldwide, despite advances in prevention and treatment strategie (1, 2). Premature
coronary artery disease (PCAD), defined as CAD occurring in men younger than 55
years and women younger than 65 years, represents a distinct clinical entity.
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Compared with CAD in older individuals, PCAD often presents
more acutely, carries a higher lifetime risk of recurrent events,
and imposes a substantial socioeconomic burden (3, 4).

Traditional risk factors such as smoking, hypertension,
dyslipidemia, and diabetes contribute to PCAD development,
but emerging evidence highlights the role of inflammation and
metabolic dysregulation (5-7). Atherosclerosis is increasingly
recognized as a chronic inflammatory condition driven by
endothelial injury, lipid accumulation, and immune responses
(8, 9). Consequently, inflammatory and metabolic biomarkers
have attracted interest for risk stratification in younger
CAD populations.

The pan-immune-inflammation value (PIV), derived from
neutrophil, platelet, monocyte, and lymphocyte counts, has been
validated as a prognostic marker in cancer and cardiovascular
disease (10-12). Similarly, the triglyceride-glucose (TyG) index,
an established surrogate of insulin resistance, has been shown to
predict cardiovascular events across diverse populations (13, 14).
Both markers are readily obtainable from routine laboratory
tests, making them practical for clinical application.

However, limited studies have examined the combined
prognostic value of PIV and TyG in patients with PCAD. Given
the unique metabolic and inflammatory profile of younger
patients, evaluating these indices may provide insights into risk

stratification and prognosis.

10.3389/fcvm.2025.1611709

2 Method
2.1 Research design

This study was designed to investigate risk factors linked to
premature coronary artery disease (PCAD) and their prognostic
importance through the application of multiple machine
learning approaches. The analysis utilized a comprehensive
dataset of clinical records to provide a foundation for early
screening and primary prevention strategies. A schematic
overview of the study workflow is shown in Figure 1, depicting
the sequential process of data acquisition, variable selection,

model development, and validation.

2.2 Study population

This study evaluated clinical data from 26,883 patients
consecutively admitted to Liuzhou People’s Hospital from
January 2014 to December 2020. Patients were eligible for
inclusion if they met the following criteria: (1) presented with
chest pain and underwent coronary angiography; (2) were males
younger than 55 years or females younger than 65 years; and (3)
were diagnosed with coronary artery disease (CAD) based on
>50% stenosis in at least one major coronary artery (left main,

Data Collection & Processing ]

Collect data on patients admitted for chest pain from 2014 to 2020.

Exclusion Criteria:

(1) had conditions anticipated to limit life expectancy to less than one year (e.g.,
severe hepatic or renal insufficiency, malignant neoplasms);

(2) lacked essential clinical data;

(3) exhibited abnormal bone marrow hematopoietic function or severe
infections (e.g., sepss, septic shock, rheumatoid arthritis);

(4) were pregnant or lactating.
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FIGURE 1

Model development and validation flowchart. PCAD, premature coronary artery disease; PIV, pan-immune inflammatory value; TyG, triglyceride-
glucose index; WBC, white blood cell count; PSM, propensity score matching; GBM, gradient boosting machine; XGboost, extreme gradient
boosting; SVM, support vector machine; RF, random forest; RSF, random survival forest; ROC, receiver operating characteristic.
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left anterior descending, circumflex, or right coronary artery).
Patients were classified into premature CAD (PCAD) or non-
PCAD groups according to coronary angiographic results.
Patients were excluded if they met any of the following criteria:
(1) had conditions anticipated to limit life expectancy to less
than one year (e.g, severe hepatic or renal insufficiency,
malignant neoplasms); (2) lacked essential clinical data; (3)
exhibited abnormal bone marrow hematopoietic function or
severe infections (e.g., sepsis, septic shock, rheumatoid arthritis);
or (4) were pregnant or lactating. Ultimately, 4,983 PCAD
patients and 670 non-PCAD patients were enrolled. Patients
were followed up regularly at 3, 6, 9, and 12 months after
enrollment through telephone follow-up, readmission follow-up,
and outpatient follow-up. The total follow-up period was 36
months. The observational endpoint was defined as all-cause
death (death due to
myocardial infarction, heart failure, arrhythmias, or other

mortality, including cardiovascular
cardiovascular causes), with follow-up concluding at the time of

death. All-cause mortality served as the measure of prognosis.

2.3 Data collection

A comprehensive dataset was constructed from patient
medical records, encompassing baseline characteristics including
sex, age, body mass index (BMI), blood pressure, history of
smoking and alcohol consumption, and fasting blood glucose
concentrations. Furthermore, the initial blood sample collected
upon admission was assessed for a range of biomarkers and
indices, including white blood cell count (WBC), red blood cell
count (RBC), hemoglobin (Hb), platelet (PLT), hematocrit
(Hct), lymphocyte,
neutrophil, total cholesterol (TC), triglycerides (TG), low-density
lipoprotein (LDL-C), high-density lipoprotein
cholesterol (HDL-C), creatinine (Scr), urea nitrogen (BUN),
homocysteine (Hcy), aspartate aminotransferase (AST), alanine

eosinophil count, monocyte, basophil,

cholesterol

aminotransferase (ALT), waistline(WC), glycated hemoglobin
(HbA1), triglyceride-to-HDL ratio (THR),triglyceride-glucose
index (TyG), PIV, Charlson Comorbidity Index (CCI), Body
Roundness Index (BRI), Visceral Adiposity Index (VAI), and
Castelli Risk Indices 1 and 2 (CRI-1, CRI-2). The TyG index
was calculated as In[fasting triglycerides (mg/dl) x fasting
glucose (mg/dl)/2], and the PIV as (neutrophil count x platelet

count x monocyte count)/lymphocyte count.

2.4 Statistical analysis

All statistical analyses were performed using R software.

Continuous variables are presented as means * standard
deviations, with between-group comparisons conducted using
(ANOVA).

reported as counts and percentages, with group differences

analysis of variance Categorical variables are
evaluated using the chi-square test or Fisher’s exact test,
depending on applicability. A P-value<0.05 was deemed

statistically significant. Propensity score matching (PSM) was
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employed to adjust for potential confounders and ensure
comparability between the premature coronary artery disease
(PCAD) and non-PCAD cohorts. Variables predictive of PCAD
diagnosis were determined using a range of machine learning
methods, including gradient boosting machine (GBM), extreme
gradient boosting (XGBoost), support vector machine (SVM),
Lasso regression, random forest, and logistic regression.
A decision tree model was subsequently developed to formulate
a diagnostic algorithm for PCAD. For patients fulfilling the
PCAD diagnostic criteria, receiver operating characteristic
(ROC) curves were used to establish optimal cutoff values for
the PIV and the TyG index. These cutoff values were used to
stratify the population into four subgroups: low PIV, high PIV,
low TyG, and high TyG. Kaplan-Meier

were constructed to assess

survival curves

prognostic  differences among

these subgroups.

3 Result
3.1 Patient characteristics

A total of 26,683 patients admitted with chest pain were
enrolled. Of these, 21,030 patients were excluded for not
meeting the inclusion criteria. Consequently, 5,653 patients were
included in the final analysis.

3.2 Initial search for characteristic variables

The study comprised 5,653 participants, including 4,983
patients with PCAD and 670 with non-PCAD. Following PSM,
the cohorts were balanced, yielding 654 participants per group.
Before PSM, significant differences emerged between the PCAD
and non-PCAD groups for numerous variables (all P <0.001),
including sex, white WBC, RBC, Hb, Hct, eosinophil count,
lymphocyte count, PLT, CRP, HDL-C, CRI-1, CRI-2, PIV, CCI,
TG, LDL-C, BRI and THR. After PSM, differences remained
significant for a subset of variables (all P <0.001), WBC, RBC,
Hb, neutrophil count, PLT, CRP, TyG, PIV, and CCI. Notably,
the TyG index, PIV, and WBC consistently differed between the
PCAD and non-PCAD groups both before and after PSM. These
that these contribute to

results indicate variables

PCAD (Table 1).

may

3.3 Filtering feature variables through
machine learning

Machine learning analyses were performed on the 37
previously described feature variables using R.

Gradient Boosting Machine (GBM): GBM, an ensemble
learning algorithm, sequentially integrates multiple weak
learners to reduce prediction error. Using GBM, variable
importance was assessed, identifying the top five variables as the

CCI, WBC, sex, PIV, and TyG (Figure 2A).
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TABLE 1 General characteristics of patients before and after PSM.

Parameter Before After
Non-PCAD (n=4,983) PCAD (n=670) P value Non-PCAD (n=654) PCAD (n=654) P value

Age 40.29 (12.15) 39.75 (11.81) 0.277 40.06 (11.81) 39.79 (11.79) 0.67
Gender = Male 2,127 (42.7) 338 (50.4) <0.001 337 (51.5) 328 (50.2) 0.658
WBC 4.74 (0.49) 4.52 (0.40) <0.001 4.78 (0.51) 4.52 (0.40) <0.001
RBC 4.66 (0.49) 4.50 (0.56) <0.001 4.65 (0.53) 4.50 (0.56) <0.001
Hb 14.05 (1.54) 13.67 (1.64) <0.001 14.07 (1.57) 13.68 (1.63) <0.001
Het 41.48 (4.27) 40.53 (4.66) <0.001 41.52 (4.43) 40.56 (4.64) <0.001
Eosinophil 0.18 (0.17) 0.22 (0.23) <0.001 0.21 (0.18) 0.22 (0.23) 0.303
Lymphocyte 2.01 (0.99) 1.86 (1.63) 0.001 2.03 (1.34) 1.86 (1.65) 0.042
Monocyte 0.50 (0.24) 0.55 (0.28) <0.001 0.53 (0.23) 0.54 (0.28) 0.532
Basophil 0.04 (0.06) 0.04 (0.07) 0.116 0.04 (0.06) 0.04 (0.08) 0.967
Neutrophil 2.84 (0.30) 2.94 (0.26) <0.001 2.87 (0.31) 2.94 (0.26) <0.001
PLT 254.94 (67.51) 237.50 (71.79) <0.001 253.24 (73.67) 237.52 (71.74) <0.001
Alt 26.66 (20.57) 28.32 (75.34) 0.213 26.87 (19.19) 28.21 (76.13) 0.662
Ast 25.39 (18.82) 24.83 (15.85) 0.463 24.89 (14.71) 24.81 (15.98) 0.923
BUN 4.34 (1.63) 4.34 (1.58) 0.918 4.32 (1.41) 4.34 (1.59) 0.798
Scr 103.47 (18.80) 104.16 (19.75) 0.379 103.09 (18.15) 104.00 (19.83) 0.387
Hey 0.78 (2.81) 1.00 (3.76) 0.069 0.88 (2.89) 1.02 (3.80) 0.438
CRP 0.23 (0.61) 0.39 (0.90) <0.001 0.25 (0.58) 0.40 (0.91) <0.001
HDL 1.38 (0.41) 1.30 (0.39) <0.001 1.29 (0.36) 1.30 (0.39) 0.39
LDL 2.96 (0.93) 3.06 (0.91) 0.008 3.10 (0.94) 3.06 (0.92) 0.412
TC 5.01 (1.05) 5.03 (1.08) 0.611 5.09 (1.04) 5.03 (1.08) 0.338
TG 1.36 (0.80) 1.46 (0.84) 0.003 1.50 (0.86) 1.46 (0.84) 0.361
Glu 104.07 (30.41) 104.01 (31.57) 0.957 104.18 (29.90) 103.99 (31.87) 0.912
HbAlc 5.55 (0.98) 5.56 (0.99) 0.933 5.57 (0.98) 5.56 (1.00) 0.858
SBP 118.84 (15.70) 119.54 (16.18) 0.279 119.19 (15.60) 119.57 (16.18) 0.664
DBP 70.98 (11.55) 70.89 (11.65) 0.856 72.07 (11.85) 70.98 (11.74) 0.093
BMI 28.87 (6.81) 28.90 (6.92) 0.908 29.00 (6.61) 28.95 (6.94) 0.897
wcC 97.76 (16.28) 97.60 (16.78) 0.821 98.45 (16.05) 97.70 (16.84) 0.413
Smoke = Yes (%) 2,396 (48.1) 324 (48.4) 0.926 322 (49.2) 316 (48.3) 0.782
Drink = Yes (%) 806 (16.2) 110 (16.4) 0.917 118 (18.0) 105 (16.1) 0.378
CRI1 3.90 (1.27) 4.20 (1.56) <0.001 4.23 (1.38) 4.19 (1.54) 0.555
CRI2 2.33 (1.00) 2.58 (1.16) <0.001 2.60 (1.09) 2.57 (1.14) 0.588
THR 1.15 (0.92) 1.33 (1.16) <0.001 1.35 (1.06) 1.33 (1.14) 0.66
TyG 4.08 (0.62) 4.17 (0.58) 0.001 4.09 (0.63) 4.17 (0.58) 0.004
BRI 5.40 (2.22) 5.15 (2.33) 0.007 5.15 (2.04) 5.16 (2.33) 0.928
PIV 176.11 (111.33) 209.69 (149.0) <0.001 201.37 (158.93) 208.68 (149.78) 0.007
ccl 0.82 (1.27) 2.58 (1.98) <0.001 245 (1.93) 247 (1.85) 0.826

PCAD, premature coronary artery disease; WBC, white blood cell count; RBC, red blood cell count; Hb, hemoglobin; Hct, hematocrit; PLT, platelets; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; BUN, urea nitrogen; Scr, creatinine; Hcy, homocysteine; CRP, c-reactive protein; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein
cholesterol; TC, total cholesterol; TG, triglycerides; Glu, blood glucose; HbAlc, glycated hemoglobin; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index;
WC, waistline; CRIland CRI2, castelli risk index 1 and 2; THR, triglyceride-to-HDL ratio; TyG, triglyceride-glucose index; BRI, body roundness index; PIV, pan-immunoinflammatory

value; CCI, Charleston comorbidity index.

Lasso Regression: Lasso regression was applied for feature
selection and model regularization. With an optimal lambda
value of —7.48, key variables were identified and ranked in
descending order of importance: age, alanine aminotransferase
(ALT), aspartate aminotransferase (AST), BMI, BRI, blood urea
nitrogen (BUN), CCI, CRI-1, CRI-2, CRP, diastolic blood
pressure (DBP), alcohol consumption, sex, glucose (Glu), Hb,
glycated hemoglobin (HbAlc), Hct, homocysteine (Hcy),
HDL-C, LDL-C, PIV, PLT, RBC, systolic blood pressure (SBP),
serum creatinine (Scr), smoking status, TC, TG, THR, TyG,
WBC, and waist circumference (WC) (Figure 2B).

Random Forest (RF): The RF algorithm improves prediction
accuracy, generalization, and resistance to overfitting

Frontiers in Cardiovascular Medicine

through the aggregation of multiple decision trees (via
averaging for regression or majority voting for classification).
Risk factors for PCAD were evaluated for importance,
with higher values denoting greater significance. The top five
variables identified were the CCI, WBC, PIV, TyG, and PLT
(Figure 2C).

Support Vector Machine (SVM): The SVM classification
algorithm was applied to classify the data. Iterative model
training and sequential removal of less significant variables
enabled the identification of the most predictive features. The
model was optimized by minimizing root mean squared error
(RMSE), resulting in the selection of 21 variables, with the top
five being the CCI, WBC, RBC, PIV, and TyG (Figure 2D).
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FIGURE 2
Multiple machine learning results. (A) Gradient Boosting Machine (GBM): The top five feature variables based on relative importance ranking are CCl,

WBC, Gender, PIV, and TyG. (B) Lasso regression: at the optimal lambda value (lambda = —7.48), 32 variables were retained, including TyG, PIV, and
WBC. (C) Random forest: based on Gini importance evaluation, the five most important features are CCl, WBC, PIV, TyG, and PLT. (D) Support vector
machines (SVM): The model achieved the lowest Root Mean Square Error (RMSE) of 0.3027, indicating optimal performance, with the top five
contributing variables being CCI, WBC, RBC, PIV, and TyG. (E) Extreme Gradient boosting (XGBoost): Based on the feature importance scores,

the variables are ranked as follows: PIV (0.80), WBC (0.18), and TyG (0.02).

TyG>4.85 and WBC>4.165x 10’ /L: (a) TyG>5.13 indicates
PCAD; (b) 4.85 < TyG < 5.03 with WBC >4.165 x 10°/L indicates
PCAD. (2) If 3.56 < TyG < 4.85: (a) PIV >368.56 suggests PCAD.
(3) If TyG<485 and PIV<36856: (a) WBC>562x 10°/L
suggests PCAD. The model's diagnostic performance was
evaluated, demonstrating an accuracy of 0.88 and an area under
the receiver operating characteristic curve (AUC) of 0.86.
A schematic of the decision tree is presented in Figure 3.

Logistic Regression: Logistic regression was employed to
model the binary classification of PCAD diagnosis (PCAD =1,
non-PCAD =0). A stepwise method was used to select variables,
yielding a final model with nine key predictors: RBC, WBC,
PLT, PIV, TyG, sex, Hb, Hct and CRP (Table 2).

Extreme Gradient Boosting (XGBoost): The XGBoost
algorithm was applied to evaluate the relative importance of
feature variables, identifying the top three as the PIV, TyG, and
WBC (Figure 2E).

These machine learning results are presented in Figure 2.
Notably, the consistent prominence of the feature variables—
specifically the TyG, PIV and WBC—corresponds with their
observed differences between the PCAD and non-PCAD groups

both before and after PSM.

3.5 Feature variable selection via machine
learning

Machine learning, bolstered by computational advancements,
is widely utilized in medical research for analyzing complex
datasets (15-17). Ensemble machine learning models constitute
a notable advance, offering robust tools for predicting patient
prognosis based on input variables and cohort data. These
models substantially alleviate the burden on researchers by
automating feature variable selection for prognostic modeling.

In this study, the Mimel package in R was used to construct an
ensemble model for predicting the prognosis of PCAD. More than

3.4 Diagnostic prediction model

A decision tree model was constructed to predict PCAD based on
key feature variables namely, the PIV, WBC and TyG identified
through multiple machine learning algorithms. The decision tree
applies conditional rules to classify PCAD, outlined as follows: (1) If
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TABLE 2 Logistic regression.

10.3389/fcvm.2025.1611709

[Parameter ___SMD____OR_____Ppualue _Parameter __SMD____OR__Pualue _
Age Hcy

1.262 1.002 0.665 0.014 1.012 0.395
Gender 0.005 0.419 <0.001 CRP 0.057 1.388 <0.001
WBC 0.109 0.254 <0.001 HDL 0.332 1.499 0.222
RBC 0.103 0.403 <0.001 LDL 0.151 1.074 0.634
Hb 0.157 0.513 <0.001 TC 0.159 0.814 0.196
Hect 0.115 1.267 <0.001 TG 0.332 0.483 0.029
Eosinophil 0.048 1.590 0.133 Glu 0.002 0.993 0.015
Lymphocyte 0.012 5.275 0.444 HbAlc 0.060 0.994 0.931
Monocyte 0.175 3.871 0.213 SBP 0.003 1.006 0.046
Basophil 0.094 4.244 0.304 DBP 0.004 0.992 0.101
Neutrophil 0.103 6.816 0.429 BMI 0.0,170 1.019 0.261
PLT 0.001 0.993 <0.001 wC 0.007 0.988 0.111
Alt 0.001 0.999 0.806 Smoke 0.093 0.960 0.661
Ast 0.003 0.997 0.423 Drink 0.125 0.959 0.742
BUN 0.032 1.017 0.591 CRI1 0.179 1.278 0.172
Scr 0.032 1.002 0.417 CRI2 0.172 1.046 0.793
TyG 0.287 2.6511 <0.001 BRI 0.021 0.952 0.019
PIV 0.004 1.0037 <0.001 THR 0.236 1.162 0.523

WBC, white blood cell count; RBC, red blood cell count; Hb, hemoglobin; Hct, hematocrit; PLT, platelets; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, urea
nitrogen; Scr, creatinine; TyG, triglyceride-glucose index; PIV, pan-immunoinflammatory value; Hcy, homocysteine; CRP, c-reactive protein; HDL, high-density lipoprotein cholesterol;
LDL, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides; Glu, blood glucose; HbAlc, glycated hemoglobin; SBP, systolic blood pressure; DBP, diastolic blood
pressure; BMI, body mass index; WC, waistline; CRIland CRI2, castelli risk index 1 and 2, BRI, body roundness index; THR, triglyceride-to-HDL ratio; SMD, standardized mean

difference; OR, odds ratio.

100 predictive models were developed within a k-fold cross-
validation framework, with the concordance index (C-index)
computed for each model across validation datasets (Figure 4).
Among these models, the StepCox [forward]-RSF ensemble model
exhibited the highest mean C-index (0.99) across both training and
validation cohorts, establishing it as the optimal model.

The 37 feature variables were subsequently evaluated using
machine learning methods implemented in R. The Random
Survival Forest (RSF) ranked the top five variables as LDL-C,
TyG, PIV, CRI-1 and CRI-2, in descending order of importance
(Figure 5). Furthermore, the StepCox [forward] method
identified 10 key feature variables: PLT, Scr, Hcy, Glu, Smoke,
TyG, PIV, CCI, WBC and CRP (Table 3). The consistent
identification of TyG and PIV across both methods indicates
their strong association with the prognosis of PCAD.

3.6 ROC analysis to determine optimal
cutoff value

ROC curve analysis was conducted to determine optimal
cutoff values for the PIV and TyG index, key predictors of
prognosis in patients with PCAD. These cut-off values were
established to optimize the prognostic model’s sensitivity and
specificity, delineating thresholds beyond which mortality risk in
PCAD patients markedly rises. For PIV, the optimal cutoff value
was determined as 229.5. At this threshold, the prognostic
model achieved a specificity of 65.9% and a sensitivity of 68.9%
(Figure 6A). Likewise, for the TyG index, the optimal cutoff
value was established at 4.9, with a specificity of 92.1% and a
sensitivity of 52.2% (Figure 6B). These results underscore that
PIV and TyG serve as effective biomarkers for stratifying
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mortality risk in PCAD patients, with the established thresholds
balancing diagnostic precision and clinical applicability.

3.7 Kaplan—Meier survival analysis

This analysis assessed the impact of varying TyG and PIV
levels on the survival outcomes of patients with PCAD over
three years. The study population was divided into groups based
on cutoff values of 229.5 for PIV and 4.9 for TyG.

Analysis by PIV Levels: The population was categorized into
two groups according to the PIV threshold of 229.5: (1) Low
PIV group (PIV<229.5); (2) High PIV group (PIV >229.5).
Kaplan-Meier survival curves (Figure 7A) demonstrated a
markedly lower survival rate in the high PIV group compared to
the low PIV group over three years. This indicates that elevated
PIV levels correlate with a poorer prognosis in PCAD patients.

Analysis by TyG Levels: Likewise, the population was divided
into two groups based on the TyG threshold of 4.9: (1) Low TyG
group (TyG<4.9); (2) High TyG group (TyG >4.9). Figure 7B
shows that the high TyG group exhibited a lower survival rate
than the low TyG group, suggesting that elevated TyG levels are
linked to heightened mortality risk in PCAD.

Combined effects of PIV and TyG: The combined influence of
PIV and TyG levels on survival rates was examined, with
outcomes stratified by gender (Figure 7C). Four groups were
evaluated: (1) High PIV + High TyG: This group displayed the
lowest survival rates across genders, highlighting the heightened
risk associated with elevated levels of both indices. (2) Low
PIV + Low TyG: Conversely, this group exhibited the highest
survival rates, indicating a protective effect when both indices
fall below their thresholds. (3) High PIV +Low TyG and (4)
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Low PIV+High TyG: The high PIV+low TyG group
demonstrated a higher survival rate than the low PIV +high
TyG group. This suggests that the TyG index is a stronger
prognostic indicator in PCAD, with lower TyG levels mitigating
the adverse effects of elevated PIV.

Gender-Specific Survival Trends: In the low PIV +low TyG
group, gender differences emerged: (1) Females
exhibited higher survival rates than males in the early three-year

modest

period; (2) Subsequently, female survival rates decreased, falling
below male rates in later stages. The reasons for this gender-
specific trend are addressed in the discussion section.
Kaplan-Meier survival analysis revealed that elevated PIV and TyG
levels correlate with reduced survival in PCAD patients. The high
PIV + high TyG combination yielded the poorest outcomes, whereas
the low PIV +low TyG combination was associated with the most
favorable prognosis. Notably, the TyG index exerts a greater influence
on survival, as demonstrated by the superior outcomes in the high
PIV +low TyG group compared to the low PIV +high TyG group.
These results, alongside gender-specific patterns, provide critical
insights for risk stratification and prognostic evaluation in PCAD.

4 Discussion

The prevalence of PCAD has risen in recent years, with a
worse prognosis than CAD in older adults. In contrast to CAD
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PCAD
conventional risk factors yet manifests more acutely, often as an

in older populations, is characterized by fewer
initial acute coronary syndrome in most patients. This acute
onset elevates mortality rates among affected individuals.
Moreover, the prolonged life expectancy of younger patients
increases the likelihood of long-term complications, including
heart Thus,

identifying reliable prognostic indicators, implementing effective

recurrent cardiovascular events or failure.
prevention strategies, and developing targeted early interventions
are critical to improving survival rates and quality of life for
PCAD patients.

This study employs diverse machine learning algorithms to
examine risk factors linked to PCAD and their prognostic
impact, providing a foundation for early detection and primary
prevention. A predictive model was constructed using various
machine learning algorithms to forecast both the diagnosis and
prognosis of PCAD. The diagnostic model attained an accuracy
of 0.88, indicating robust performance in identifying PCAD.
Furthermore, the PIV and TyG index emerged as key prognostic
indicators for PCAD. Receiver operating characteristic (ROC)
curve analysis established optimal cutoff values for these indices
(PIV>229.5, TyG>4.9) and evaluated their sensitivity and
specificity for prognostic stratification in PCAD. Survival
analysis confirmed that elevated PIV and TyG levels correlate
with a poorer prognosis, with the TyG index exhibiting a
notably strong association.
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FIGURE 4
An ensemble model for the prognosis of PCAD. The StepCox[forward]-RSF ensemble model exhibited the highest mean C-index (0.99) across both
training and validation cohorts. RSF, random survival forest.
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Random survival forest. (A) Show that the error rate of the model stabilizes when the number of classification trees exceeds 200. (B) RSF: Based on
Gini importance evaluation, the five most important features are LDL, TyG, PIV, CRI1, and CRI2. RSF, random survival forest; LDL, low-density
lipoprotein cholesterol; TyG, triglyceride-glucose index; PIV, pan-immunoinflammatory value; CRIland CRI2, castelli risk index 1 and 2.

TABLE 3 Univariate regression analysis of PCAD.

Parameter HR (95%Cl) P value Parameter HR (95%Cl) P value
Age 1.01 (0.97-1.05) 0.59 TG 3.60 (0.61-21.34) 0.15
Genderl 1.24 (0.57-2.70) 0.58 Glu 1.01 (1.01-1.03) <0.01
WBC 0.78 (0.33-1.86) 0.58 HbAlc 1.24 (0.93-1.65) 0.14
RBC 1.37 (0.46-4.16) 0.56 SBP 1.00 (0.98-1.03) 0.58
Hb 1.98 (0.79-5.00) 0.14 DBP 0.99 (0.96-1.03) 0.67
Hct 0.74 (0.50-1.49) 0.13 BMI 0.98 (0.83-1.16) 0.82
PLT 0.99 (0.98-1.00) <0.01 WwC 1.01 (0.94-1.08) 0.69
Alt 1.00 (0.99-1.00) 0.33 Smokel 5.5 (2.41-12.82) <0.01
Ast 1.00 (0.99-1.02) 0.18 Drink1 0.62 (0.24-1.66) 0.35
BUN 0.88 (0.70-1.13) 0.34 CRI1 0.95 (0.34-2.65) 0.92
Scr 0.96 (0.94-0.98) <0.01 CRI2 1.07 (0.42-2.77) 0.87
Hcy 0.87 (0.77-0.97) 0.01 THR 1.30 (0.41-4.13) 0.64
CRP 0.92 (0.71-1.20) 0.56 TyG 0.08 (0.01-0.71) 0.02
HDL 1.04 (0.11-9.35) 0.96 BRI 0.94 (0.55-1.61) 0.83
LDL 0.97 (0.38-2.50) 0.95 PIV 1.00 (1.00-1.00) <0.01
TC 1.00 (0.37-2.74) 0.98 CCI 1.21 (1.02-1.44) 0.02

PCAD, premature coronary artery disease; Genderl, gender = men; WBC, white blood cell count; RBC, red blood cell count; Hb, hemoglobin; Hct, hematocrit; PLT, platelets; ALT, alanine
aminotransferase; AST, aspartate aminotransferase; BUN, urea nitrogen; Scr, creatinine; Hcy, homocysteine; CRP, c-reactive protein; HDL, high-density lipoprotein cholesterol; LDL, low-
density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides; Glu, blood glucose; HbAlc, glycated hemoglobin; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI,
body mass index; WC, waistline; Smokel, smoke = yes; Drinkl, drink1 = yes; CRI1and CRI2, castelli risk index 1 and 2; THR, triglyceride-to-HDL ratio; TyG, triglyceride-glucose index; BRI,
body roundness index; PIV, pan-immunoinflammatory value; CCI, Charleston comorbidity index.

Extensive research has established atherosclerosis as a low-
grade, non-infectious inflammatory condition (18-21). This
condition is characterized by inflammation-induced endothelial
dysfunction, Lipoprotein
accumulation beneath the impaired endothelium; (2) Leukocyte

initiating key  processes: (1)

recruitment to the inflammatory site; (3) Increased vascular
permeability, worsening the condition. Recruited monocytes
differentiate into macrophages, adopting pro-inflammatory or
phenotypes  based on  the
microenvironment. The balance between these phenotypes

anti-inflammatory local

critically governs atherosclerosis progression or resolution (22).
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Systemic and localized inflammation, affecting the entire body
and specific vessels respectively, are pivotal in the development
and progression of cardiovascular disease. Thus, early and
precise detection of inflammation, combined with timely
intervention, is crucial for enhancing outcomes in patients
with PCAD.

Although single biomarkers provide limited predictive value
for cardiovascular risk assessment, recent focus has shifted to
multi-biomarker These
demonstrate substantial potential for improving the precision of

panels. biomarker combinations

cardiovascular disease outcome predictions.
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and sensitivity of the PCAD prognostic model were 65.9% and 68.9%. (B) The optimal critical value of the TyG index predicts that the PCAD
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The PIV is a systemic inflammation biomarker derived from
specific blood cell subgroup counts. It combines neutrophil,
monocyte, lymphocyte, and platelet counts—cell types integral
to inflammation—to yield a composite measure of immune-
inflammatory status (23-25). PIV is increasingly valued for its
prognostic  utility across conditions such as cancers,
cardiovascular diseases, and metabolic syndrome (15, 16, 26).
Given the established inflammation-CAD link, PIV’s ability to
predict CAD has

considerable interest. Ayse Irem Demirtola et al. (17) reported

severity and complications attracted
that elevated PIV levels correlate with increased atherosclerotic
lesion severity in CAD patients. Likewise, Bektas Murat et al.
(20) noted that higher PIV levels correlate with elevated long-
term mortality in ST-elevation myocardial infarction (STEMI)
patients, although no significant association emerged with in-
hospital mortality. These results support the notion that
systemic inflammation drives CAD progression. Moreover, PIV
outperforms other inflammatory indices—such as the systemic
immune-inflammation index (SII), platelet-to-lymphocyte ratio
(PLR), and neutrophil-to-lymphocyte ratio (NLR)—in predicting
post-percutaneous coronary intervention (PCI) prognosis and
coronary artery stenosis extent in STEMI patients (21).

Despite these insights, PIV’s role in PCAD, a CAD subset in
younger individuals, remains largely unexamined. Current
studies have not fully explored the PIV-PCAD relationship,
underscoring a significant literature gap. Given PCAD’s distinct
profile—fewer conventional risk factors yet a more acute
course—examining PIV’s predictive utility in this population
could provide critical prognostic and therapeutic insights.

The TyG index, derived from plasma triglycerides and fasting
glucose levels, offers a simple, non-invasive method to assess
insulin resistance (IR). It is widely applied to evaluate IR, predict
metabolic dysregulation, and assess cardiovascular disease (CVD)
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risk. Hyperglycemia and hypertriglyceridemia are established
of CVD, endothelial dysfunction,
inflammation, atherosclerosis—central

drivers contributing to

and mechanisms  in
cardiovascular complications. In healthy individuals, insulin
regulates glucose and lipid metabolism by facilitating glucose
uptake, promoting glycolysis, and maintaining lipid homeostasis.
However, in IR, these processes falter, leading to impaired glucose
uptake, reduced glycolysis, and dyslipidemia, which are closely
tied to adverse cardiovascular outcomes (27). The TyG index
provides a practical alternative to traditional IR measures like the
hyper insulinemic-euglycemic clamp or HOMA-IR (28). Studies
consistently link a higher TyG index to increased risks of
myocardial infarction, stroke, and heart failure, even after
adjusting for conventional risk factors such as age, smoking, and
hypertension. Its integration of triglycerides and glucose enhances
its robustness in predicting CVD risk, particularly in metabolic
syndrome, where it often outperforms other IR markers.

Despite its established role in CVD (29-32), the TyG index’s
association with PCAD remains underexplored. Given PCAD’s
unique metabolic and inflammatory profile, investigating the
TyG index in this context could refine risk stratification and
guide early interventions.

The advent of machine learning (ML) has transformed vast
datasets into actionable models, significantly enhancing
diagnostic precision. While ML models for cardiovascular
disease likelihood and prognosis are emerging (33, 34), many
are limited by small sample sizes or a focus on older
populations, with few large-scale studies addressing PCAD. Our
study bridges this gap by developing a diagnosis and prognosis
model tailored to PCAD patients. We employed multiple ML
methods with cross-validation to select key variables, diverging
from traditional training-validation splits. Our findings confirm

a significant association between PIV, the TyG index, and
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PCAD occurrence, with elevated levels linked to poorer prognosis,
reinforcing inflammation’s foundational role in atherosclerosis.
Notably, in the low PIV +low TyG cohort, women exhibited
lower survival rates than men over time, possibly due to post-
menopausal estrogen decline reducing atherosclerosis resistance.

5 Conclusions

The combined evaluation of PIV, TyG, and WBC offers robust
diagnostic and prognostic value for PCAD, with elevated PIV and
TyG levels indicating a poor prognosis, underscoring their
potential as clinical biomarkers.
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6 Limitations

Despite these advances, limitations persist. A limitation of our
study is that our definition of PCAD was based on angiographic
stenosis >50%, which may not capture patients with early
subclinical atherosclerosis. Future studies should aim to establish
a consensus definition to improve comparability. This study was
conducted based on data from a single center, which may limit
the generalizability of our findings and raises the possibility of
overfitting in the predictive model. Although the internal
performance was robust, external validation using multicenter or
publicly available datasets is warranted to confirm the reliability
and broader applicability of the model in different populations
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and clinical settings. To enhance clinical applicability, it is worth
noting that the components of PIV and TyG are typically part of
routine laboratory tests, available within a short time frame in
their
integration into clinical decision-making pathways is feasible in

most emergency or outpatient settings. Therefore,

many healthcare systems. Nonetheless, in resource-limited
environments or when immediate lab access is not possible,
simplified models based on clinical features or point-of-care tests
may be explored, though potentially at the expense of diagnostic
accuracy. Further studies are needed to validate such surrogate
models. Minor CommentsSingle-time-point measurements of
glucose and lipid levels overlook temporal variations, and the
retrospective design may introduce confounding and bias.
Futhermore, the follow-up information in this retrospective study
was restricted to all-cause mortality, and detailed coronary events
such as PCI, re-PCI, or myocardial infarction were not uniformly
available. In addition, data on peripheral atherosclerosis and
related vascular events were lacking. These factors may have
limited our ability to comprehensively evaluate cardiovascular
with
standardized collection of interventional and peripheral vascular

outcomes. Future prospective multicenter studies
events are needed to validate and extend our findings. Future
research should leverage larger, multicenter cohorts, extended
controlled trials to enhance

follow-ups, and randomized

predictive accuracy and validate these findings.
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