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Objective: To evaluate the diagnostic and prognostic predictive value of the 

pan-immune-inflammation value (PIV) and triglyceride-glucose (TyG) index in 

premature coronary artery disease (PCAD).

Methods: This study analyzed data from 26,883 patients admitted with chest 

pain at Liuzhou People’s Hospital (January 2014 to December 2020), with 

5,653 patients included after screening. Multiple machine learning algorithms, 

including Gradient Boosting Machine (GBM), Extreme Gradient Boosting 

(XGBoost), Support Vector Machine (SVM), Lasso regression, Random Forest 

(RF), and logistic regression, were applied to identify PCAD-related variables, 

which were integrated into a decision tree model. Propensity score matching 

(PSM) ensured cohort comparability. The Mime1 package facilitated ensemble 

feature selection and visualization, while optimal PIV and TyG cutoff values 

were determined via Receiver Operating Characteristic (ROC) analysis for 

36-month survival subgroup analysis.

Results: Logistic regression identified PIV [odds ratio [OR] 2.651, 95% CI [to be 

specified], P < 0.001] and TyG [OR 1.003, 95% CI (to be specified), P < 0.001] as 

PCAD risk factors. The decision tree model, incorporating PIV, TyG, and white 

blood cell count (WBC), achieved an accuracy of 0.88 and an area under the 

ROC curve (AUC) of 0.86 for PCAD diagnosis. Survival analysis over 36 

months revealed that low PIV and TyG levels were associated with reduced 

all-cause mortality, whereas elevated levels correlated with poorer prognosis 

(P < 0.001), with TyG showing a pronounced effect.

Conclusion: The combined evaluation of PIV, TyG, and WBC offers robust 

diagnostic and prognostic value for PCAD, with elevated PIV and TyG levels 

indicating a poor prognosis, underscoring their potential as clinical biomarkers.

KEYWORDS

premature coronary artery disease, pan-Immune-Inflammation value, triglyceride- 

glucose index, machine learning, diagnostic model, prognostic model, survival analysis

1 Introduction

Coronary artery disease (CAD) remains the leading cause of morbidity and mortality 

worldwide, despite advances in prevention and treatment strategie (1, 2). Premature 

coronary artery disease (PCAD), defined as CAD occurring in men younger than 55 

years and women younger than 65 years, represents a distinct clinical entity. 
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Compared with CAD in older individuals, PCAD often presents 

more acutely, carries a higher lifetime risk of recurrent events, 

and imposes a substantial socioeconomic burden (3, 4).

Traditional risk factors such as smoking, hypertension, 

dyslipidemia, and diabetes contribute to PCAD development, 

but emerging evidence highlights the role of in(ammation and 

metabolic dysregulation (5–7). Atherosclerosis is increasingly 

recognized as a chronic in(ammatory condition driven by 

endothelial injury, lipid accumulation, and immune responses 

(8, 9). Consequently, in(ammatory and metabolic biomarkers 

have attracted interest for risk stratification in younger 

CAD populations.

The pan-immune-in(ammation value (PIV), derived from 

neutrophil, platelet, monocyte, and lymphocyte counts, has been 

validated as a prognostic marker in cancer and cardiovascular 

disease (10–12). Similarly, the triglyceride-glucose (TyG) index, 

an established surrogate of insulin resistance, has been shown to 

predict cardiovascular events across diverse populations (13, 14). 

Both markers are readily obtainable from routine laboratory 

tests, making them practical for clinical application.

However, limited studies have examined the combined 

prognostic value of PIV and TyG in patients with PCAD. Given 

the unique metabolic and in(ammatory profile of younger 

patients, evaluating these indices may provide insights into risk 

stratification and prognosis.

2 Method

2.1 Research design

This study was designed to investigate risk factors linked to 

premature coronary artery disease (PCAD) and their prognostic 

importance through the application of multiple machine 

learning approaches. The analysis utilized a comprehensive 

dataset of clinical records to provide a foundation for early 

screening and primary prevention strategies. A schematic 

overview of the study work(ow is shown in Figure 1, depicting 

the sequential process of data acquisition, variable selection, 

model development, and validation.

2.2 Study population

This study evaluated clinical data from 26,883 patients 

consecutively admitted to Liuzhou People’s Hospital from 

January 2014 to December 2020. Patients were eligible for 

inclusion if they met the following criteria: (1) presented with 

chest pain and underwent coronary angiography; (2) were males 

younger than 55 years or females younger than 65 years; and (3) 

were diagnosed with coronary artery disease (CAD) based on 

≥50% stenosis in at least one major coronary artery (left main, 

FIGURE 1 

Model development and validation flowchart. PCAD, premature coronary artery disease; PIV, pan-immune inflammatory value; TyG, triglyceride- 

glucose index; WBC, white blood cell count; PSM, propensity score matching; GBM, gradient boosting machine; XGboost, extreme gradient 

boosting; SVM, support vector machine; RF, random forest; RSF, random survival forest; ROC, receiver operating characteristic.
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left anterior descending, circum(ex, or right coronary artery). 

Patients were classified into premature CAD (PCAD) or non- 

PCAD groups according to coronary angiographic results. 

Patients were excluded if they met any of the following criteria: 

(1) had conditions anticipated to limit life expectancy to less 

than one year (e.g., severe hepatic or renal insufficiency, 

malignant neoplasms); (2) lacked essential clinical data; (3) 

exhibited abnormal bone marrow hematopoietic function or 

severe infections (e.g., sepsis, septic shock, rheumatoid arthritis); 

or (4) were pregnant or lactating. Ultimately, 4,983 PCAD 

patients and 670 non-PCAD patients were enrolled. Patients 

were followed up regularly at 3, 6, 9, and 12 months after 

enrollment through telephone follow-up, readmission follow-up, 

and outpatient follow-up. The total follow-up period was 36 

months. The observational endpoint was defined as all-cause 

mortality, including cardiovascular death (death due to 

myocardial infarction, heart failure, arrhythmias, or other 

cardiovascular causes), with follow-up concluding at the time of 

death. All-cause mortality served as the measure of prognosis.

2.3 Data collection

A comprehensive dataset was constructed from patient 

medical records, encompassing baseline characteristics including 

sex, age, body mass index (BMI), blood pressure, history of 

smoking and alcohol consumption, and fasting blood glucose 

concentrations. Furthermore, the initial blood sample collected 

upon admission was assessed for a range of biomarkers and 

indices, including white blood cell count (WBC), red blood cell 

count (RBC), hemoglobin (Hb), platelet (PLT), hematocrit 

(Hct), eosinophil count, lymphocyte, monocyte, basophil, 

neutrophil, total cholesterol (TC), triglycerides (TG), low-density 

lipoprotein cholesterol (LDL-C), high-density lipoprotein 

cholesterol (HDL-C), creatinine (Scr), urea nitrogen (BUN), 

homocysteine (Hcy), aspartate aminotransferase (AST), alanine 

aminotransferase (ALT), waistline(WC), glycated hemoglobin 

(HbA1), triglyceride-to-HDL ratio (THR),triglyceride-glucose 

index (TyG), PIV, Charlson Comorbidity Index (CCI), Body 

Roundness Index (BRI), Visceral Adiposity Index (VAI), and 

Castelli Risk Indices 1 and 2 (CRI-1, CRI-2). The TyG index 

was calculated as ln[fasting triglycerides (mg/dl) × fasting 

glucose (mg/dl)/2], and the PIV as (neutrophil count × platelet 

count × monocyte count)/lymphocyte count.

2.4 Statistical analysis

All statistical analyses were performed using R software. 

Continuous variables are presented as means ± standard 

deviations, with between-group comparisons conducted using 

analysis of variance (ANOVA). Categorical variables are 

reported as counts and percentages, with group differences 

evaluated using the chi-square test or Fisher’s exact test, 

depending on applicability. A P-value < 0.05 was deemed 

statistically significant. Propensity score matching (PSM) was 

employed to adjust for potential confounders and ensure 

comparability between the premature coronary artery disease 

(PCAD) and non-PCAD cohorts. Variables predictive of PCAD 

diagnosis were determined using a range of machine learning 

methods, including gradient boosting machine (GBM), extreme 

gradient boosting (XGBoost), support vector machine (SVM), 

Lasso regression, random forest, and logistic regression. 

A decision tree model was subsequently developed to formulate 

a diagnostic algorithm for PCAD. For patients fulfilling the 

PCAD diagnostic criteria, receiver operating characteristic 

(ROC) curves were used to establish optimal cutoff values for 

the PIV and the TyG index. These cutoff values were used to 

stratify the population into four subgroups: low PIV, high PIV, 

low TyG, and high TyG. Kaplan–Meier survival curves 

were constructed to assess prognostic differences among 

these subgroups.

3 Result

3.1 Patient characteristics

A total of 26,683 patients admitted with chest pain were 

enrolled. Of these, 21,030 patients were excluded for not 

meeting the inclusion criteria. Consequently, 5,653 patients were 

included in the final analysis.

3.2 Initial search for characteristic variables

The study comprised 5,653 participants, including 4,983 

patients with PCAD and 670 with non-PCAD. Following PSM, 

the cohorts were balanced, yielding 654 participants per group. 

Before PSM, significant differences emerged between the PCAD 

and non-PCAD groups for numerous variables (all P < 0.001), 

including sex, white WBC, RBC, Hb, Hct, eosinophil count, 

lymphocyte count, PLT, CRP, HDL-C, CRI-1, CRI-2, PIV, CCI, 

TG, LDL-C, BRI and THR. After PSM, differences remained 

significant for a subset of variables (all P < 0.001), WBC, RBC, 

Hb, neutrophil count, PLT, CRP, TyG, PIV, and CCI. Notably, 

the TyG index, PIV, and WBC consistently differed between the 

PCAD and non-PCAD groups both before and after PSM. These 

results indicate that these variables may contribute to 

PCAD (Table 1).

3.3 Filtering feature variables through 
machine learning

Machine learning analyses were performed on the 37 

previously described feature variables using R.

Gradient Boosting Machine (GBM): GBM, an ensemble 

learning algorithm, sequentially integrates multiple weak 

learners to reduce prediction error. Using GBM, variable 

importance was assessed, identifying the top five variables as the 

CCI, WBC, sex, PIV, and TyG (Figure 2A).
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Lasso Regression: Lasso regression was applied for feature 

selection and model regularization. With an optimal lambda 

value of −7.48, key variables were identified and ranked in 

descending order of importance: age, alanine aminotransferase 

(ALT), aspartate aminotransferase (AST), BMI, BRI, blood urea 

nitrogen (BUN), CCI, CRI-1, CRI-2, CRP, diastolic blood 

pressure (DBP), alcohol consumption, sex, glucose (Glu), Hb, 

glycated hemoglobin (HbA1c), Hct, homocysteine (Hcy), 

HDL-C, LDL-C, PIV, PLT, RBC, systolic blood pressure (SBP), 

serum creatinine (Scr), smoking status, TC, TG, THR, TyG, 

WBC, and waist circumference (WC) (Figure 2B).

Random Forest (RF): The RF algorithm improves prediction 

accuracy, generalization, and resistance to overfitting 

through the aggregation of multiple decision trees (via 

averaging for regression or majority voting for classification). 

Risk factors for PCAD were evaluated for importance, 

with higher values denoting greater significance. The top five 

variables identified were the CCI, WBC, PIV, TyG, and PLT 

(Figure 2C).

Support Vector Machine (SVM): The SVM classification 

algorithm was applied to classify the data. Iterative model 

training and sequential removal of less significant variables 

enabled the identification of the most predictive features. The 

model was optimized by minimizing root mean squared error 

(RMSE), resulting in the selection of 21 variables, with the top 

five being the CCI, WBC, RBC, PIV, and TyG (Figure 2D).

TABLE 1 General characteristics of patients before and after PSM.

Parameter Before After

Non-PCAD (n = 4,983) PCAD (n = 670) P value Non-PCAD (n = 654) PCAD (n = 654) P value

Age 40.29 (12.15) 39.75 (11.81) 0.277 40.06 (11.81) 39.79 (11.79) 0.67

Gender = Male 2,127 (42.7) 338 (50.4) <0.001 337 (51.5) 328 (50.2) 0.658

WBC 4.74 (0.49) 4.52 (0.40) <0.001 4.78 (0.51) 4.52 (0.40) <0.001

RBC 4.66 (0.49) 4.50 (0.56) <0.001 4.65 (0.53) 4.50 (0.56) <0.001

Hb 14.05 (1.54) 13.67 (1.64) <0.001 14.07 (1.57) 13.68 (1.63) <0.001

Hct 41.48 (4.27) 40.53 (4.66) <0.001 41.52 (4.43) 40.56 (4.64) <0.001

Eosinophil 0.18 (0.17) 0.22 (0.23) <0.001 0.21 (0.18) 0.22 (0.23) 0.303

Lymphocyte 2.01 (0.99) 1.86 (1.63) 0.001 2.03 (1.34) 1.86 (1.65) 0.042

Monocyte 0.50 (0.24) 0.55 (0.28) <0.001 0.53 (0.23) 0.54 (0.28) 0.532

Basophil 0.04 (0.06) 0.04 (0.07) 0.116 0.04 (0.06) 0.04 (0.08) 0.967

Neutrophil 2.84 (0.30) 2.94 (0.26) <0.001 2.87 (0.31) 2.94 (0.26) <0.001

PLT 254.94 (67.51) 237.50 (71.79) <0.001 253.24 (73.67) 237.52 (71.74) <0.001

Alt 26.66 (20.57) 28.32 (75.34) 0.213 26.87 (19.19) 28.21 (76.13) 0.662

Ast 25.39 (18.82) 24.83 (15.85) 0.463 24.89 (14.71) 24.81 (15.98) 0.923

BUN 4.34 (1.63) 4.34 (1.58) 0.918 4.32 (1.41) 4.34 (1.59) 0.798

Scr 103.47 (18.80) 104.16 (19.75) 0.379 103.09 (18.15) 104.00 (19.83) 0.387

Hcy 0.78 (2.81) 1.00 (3.76) 0.069 0.88 (2.89) 1.02 (3.80) 0.438

CRP 0.23 (0.61) 0.39 (0.90) <0.001 0.25 (0.58) 0.40 (0.91) <0.001

HDL 1.38 (0.41) 1.30 (0.39) <0.001 1.29 (0.36) 1.30 (0.39) 0.39

LDL 2.96 (0.93) 3.06 (0.91) 0.008 3.10 (0.94) 3.06 (0.92) 0.412

TC 5.01 (1.05) 5.03 (1.08) 0.611 5.09 (1.04) 5.03 (1.08) 0.338

TG 1.36 (0.80) 1.46 (0.84) 0.003 1.50 (0.86) 1.46 (0.84) 0.361

Glu 104.07 (30.41) 104.01 (31.57) 0.957 104.18 (29.90) 103.99 (31.87) 0.912

HbA1c 5.55 (0.98) 5.56 (0.99) 0.933 5.57 (0.98) 5.56 (1.00) 0.858

SBP 118.84 (15.70) 119.54 (16.18) 0.279 119.19 (15.60) 119.57 (16.18) 0.664

DBP 70.98 (11.55) 70.89 (11.65) 0.856 72.07 (11.85) 70.98 (11.74) 0.093

BMI 28.87 (6.81) 28.90 (6.92) 0.908 29.00 (6.61) 28.95 (6.94) 0.897

WC 97.76 (16.28) 97.60 (16.78) 0.821 98.45 (16.05) 97.70 (16.84) 0.413

Smoke = Yes (%) 2,396 (48.1) 324 (48.4) 0.926 322 (49.2) 316 (48.3) 0.782

Drink = Yes (%) 806 (16.2) 110 (16.4) 0.917 118 (18.0) 105 (16.1) 0.378

CRI1 3.90 (1.27) 4.20 (1.56) <0.001 4.23 (1.38) 4.19 (1.54) 0.555

CRI2 2.33 (1.00) 2.58 (1.16) <0.001 2.60 (1.09) 2.57 (1.14) 0.588

THR 1.15 (0.92) 1.33 (1.16) <0.001 1.35 (1.06) 1.33 (1.14) 0.66

TyG 4.08 (0.62) 4.17 (0.58) 0.001 4.09 (0.63) 4.17 (0.58) 0.004

BRI 5.40 (2.22) 5.15 (2.33) 0.007 5.15 (2.04) 5.16 (2.33) 0.928

PIV 176.11 (111.33) 209.69 (149.0) <0.001 201.37 (158.93) 208.68 (149.78) 0.007

CCI 0.82 (1.27) 2.58 (1.98) <0.001 2.45 (1.93) 2.47 (1.85) 0.826

PCAD, premature coronary artery disease; WBC, white blood cell count; RBC, red blood cell count; Hb, hemoglobin; Hct, hematocrit; PLT, platelets; ALT, alanine aminotransferase; AST, 

aspartate aminotransferase; BUN, urea nitrogen; Scr, creatinine; Hcy, homocysteine; CRP, c-reactive protein; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein 

cholesterol; TC, total cholesterol; TG, triglycerides; Glu, blood glucose; HbA1c, glycated hemoglobin; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; 

WC, waistline; CRI1and CRI2, castelli risk index 1 and 2; THR, triglyceride-to-HDL ratio; TyG, triglyceride-glucose index; BRI, body roundness index; PIV, pan-immunoin(ammatory 

value; CCI, Charleston comorbidity index.
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Logistic Regression: Logistic regression was employed to 

model the binary classification of PCAD diagnosis (PCAD = 1, 

non-PCAD = 0). A stepwise method was used to select variables, 

yielding a final model with nine key predictors: RBC, WBC, 

PLT, PIV, TyG, sex, Hb, Hct and CRP (Table 2).

Extreme Gradient Boosting (XGBoost): The XGBoost 

algorithm was applied to evaluate the relative importance of 

feature variables, identifying the top three as the PIV, TyG, and 

WBC (Figure 2E).

These machine learning results are presented in Figure 2. 

Notably, the consistent prominence of the feature variables— 

specifically the TyG, PIV and WBC—corresponds with their 

observed differences between the PCAD and non-PCAD groups 

both before and after PSM.

3.4 Diagnostic prediction model

A decision tree model was constructed to predict PCAD based on 

key feature variables namely, the PIV, WBC and TyG identified 

through multiple machine learning algorithms. The decision tree 

applies conditional rules to classify PCAD, outlined as follows: (1) If 

TyG ≥ 4.85 and WBC > 4.165 × 109 /L: (a) TyG > 5.13 indicates 

PCAD; (b) 4.85 ≤ TyG ≤ 5.03 with WBC > 4.165 × 109/L indicates 

PCAD. (2) If 3.56 < TyG < 4.85: (a) PIV > 368.56 suggests PCAD. 

(3) If TyG < 4.85 and PIV < 368.56: (a) WBC > 5.62 × 109/L 

suggests PCAD. The model’s diagnostic performance was 

evaluated, demonstrating an accuracy of 0.88 and an area under 

the receiver operating characteristic curve (AUC) of 0.86. 

A schematic of the decision tree is presented in Figure 3.

3.5 Feature variable selection via machine 
learning

Machine learning, bolstered by computational advancements, 

is widely utilized in medical research for analyzing complex 

datasets (15–17). Ensemble machine learning models constitute 

a notable advance, offering robust tools for predicting patient 

prognosis based on input variables and cohort data. These 

models substantially alleviate the burden on researchers by 

automating feature variable selection for prognostic modeling.

In this study, the Mime1 package in R was used to construct an 

ensemble model for predicting the prognosis of PCAD. More than 

FIGURE 2 

Multiple machine learning results. (A) Gradient Boosting Machine (GBM): The top five feature variables based on relative importance ranking are CCI, 

WBC, Gender, PIV, and TyG. (B) Lasso regression: at the optimal lambda value (lambda = −7.48), 32 variables were retained, including TyG, PIV, and 

WBC. (C) Random forest: based on Gini importance evaluation, the five most important features are CCI, WBC, PIV, TyG, and PLT. (D) Support vector 

machines (SVM): The model achieved the lowest Root Mean Square Error (RMSE) of 0.3027, indicating optimal performance, with the top five 

contributing variables being CCI, WBC, RBC, PIV, and TyG. (E) Extreme Gradient boosting (XGBoost): Based on the feature importance scores, 

the variables are ranked as follows: PIV (0.80), WBC (0.18), and TyG (0.02).
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100 predictive models were developed within a k-fold cross- 

validation framework, with the concordance index (C-index) 

computed for each model across validation datasets (Figure 4). 

Among these models, the StepCox [forward]-RSF ensemble model 

exhibited the highest mean C-index (0.99) across both training and 

validation cohorts, establishing it as the optimal model.

The 37 feature variables were subsequently evaluated using 

machine learning methods implemented in R. The Random 

Survival Forest (RSF) ranked the top five variables as LDL-C, 

TyG, PIV, CRI-1 and CRI-2, in descending order of importance 

(Figure 5). Furthermore, the StepCox [forward] method 

identified 10 key feature variables: PLT, Scr, Hcy, Glu, Smoke, 

TyG, PIV, CCI, WBC and CRP (Table 3). The consistent 

identification of TyG and PIV across both methods indicates 

their strong association with the prognosis of PCAD.

3.6 ROC analysis to determine optimal 
cutoff value

ROC curve analysis was conducted to determine optimal 

cutoff values for the PIV and TyG index, key predictors of 

prognosis in patients with PCAD. These cut-off values were 

established to optimize the prognostic model’s sensitivity and 

specificity, delineating thresholds beyond which mortality risk in 

PCAD patients markedly rises. For PIV, the optimal cutoff value 

was determined as 229.5. At this threshold, the prognostic 

model achieved a specificity of 65.9% and a sensitivity of 68.9% 

(Figure 6A). Likewise, for the TyG index, the optimal cutoff 

value was established at 4.9, with a specificity of 92.1% and a 

sensitivity of 52.2% (Figure 6B). These results underscore that 

PIV and TyG serve as effective biomarkers for stratifying 

mortality risk in PCAD patients, with the established thresholds 

balancing diagnostic precision and clinical applicability.

3.7 Kaplan–Meier survival analysis

This analysis assessed the impact of varying TyG and PIV 

levels on the survival outcomes of patients with PCAD over 

three years. The study population was divided into groups based 

on cutoff values of 229.5 for PIV and 4.9 for TyG.

Analysis by PIV Levels: The population was categorized into 

two groups according to the PIV threshold of 229.5: (1) Low 

PIV group (PIV < 229.5); (2) High PIV group (PIV ≥ 229.5). 

Kaplan–Meier survival curves (Figure 7A) demonstrated a 

markedly lower survival rate in the high PIV group compared to 

the low PIV group over three years. This indicates that elevated 

PIV levels correlate with a poorer prognosis in PCAD patients.

Analysis by TyG Levels: Likewise, the population was divided 

into two groups based on the TyG threshold of 4.9: (1) Low TyG 

group (TyG < 4.9); (2) High TyG group (TyG ≥ 4.9). Figure 7B

shows that the high TyG group exhibited a lower survival rate 

than the low TyG group, suggesting that elevated TyG levels are 

linked to heightened mortality risk in PCAD.

Combined effects of PIV and TyG: The combined in(uence of 

PIV and TyG levels on survival rates was examined, with 

outcomes stratified by gender (Figure 7C). Four groups were 

evaluated: (1) High PIV + High TyG: This group displayed the 

lowest survival rates across genders, highlighting the heightened 

risk associated with elevated levels of both indices. (2) Low 

PIV + Low TyG: Conversely, this group exhibited the highest 

survival rates, indicating a protective effect when both indices 

fall below their thresholds. (3) High PIV + Low TyG and (4) 

TABLE 2 Logistic regression.

Parameter SMD OR P value Parameter SMD OR P value

Age 1.262 1.002 0.665 Hcy 0.014 1.012 0.395

Gender 0.005 0.419 <0.001 CRP 0.057 1.388 <0.001

WBC 0.109 0.254 <0.001 HDL 0.332 1.499 0.222

RBC 0.103 0.403 <0.001 LDL 0.151 1.074 0.634

Hb 0.157 0.513 <0.001 TC 0.159 0.814 0.196

Hct 0.115 1.267 <0.001 TG 0.332 0.483 0.029

Eosinophil 0.048 1.590 0.133 Glu 0.002 0.993 0.015

Lymphocyte 0.012 5.275 0.444 HbA1c 0.060 0.994 0.931

Monocyte 0.175 3.871 0.213 SBP 0.003 1.006 0.046

Basophil 0.094 4.244 0.304 DBP 0.004 0.992 0.101

Neutrophil 0.103 6.816 0.429 BMI 0.0,170 1.019 0.261

PLT 0.001 0.993 <0.001 WC 0.007 0.988 0.111

Alt 0.001 0.999 0.806 Smoke 0.093 0.960 0.661

Ast 0.003 0.997 0.423 Drink 0.125 0.959 0.742

BUN 0.032 1.017 0.591 CRI1 0.179 1.278 0.172

Scr 0.032 1.002 0.417 CRI2 0.172 1.046 0.793

TyG 0.287 2.6511 <0.001 BRI 0.021 0.952 0.019

PIV 0.004 1.0037 <0.001 THR 0.236 1.162 0.523

WBC, white blood cell count; RBC, red blood cell count; Hb, hemoglobin; Hct, hematocrit; PLT, platelets; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, urea 

nitrogen; Scr, creatinine; TyG, triglyceride-glucose index; PIV, pan-immunoin(ammatory value; Hcy, homocysteine; CRP, c-reactive protein; HDL, high-density lipoprotein cholesterol; 

LDL, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides; Glu, blood glucose; HbA1c, glycated hemoglobin; SBP, systolic blood pressure; DBP, diastolic blood 

pressure; BMI, body mass index; WC, waistline; CRI1and CRI2, castelli risk index 1 and 2, BRI, body roundness index; THR, triglyceride-to-HDL ratio; SMD, standardized mean 

difference; OR, odds ratio.
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Low PIV + High TyG: The high PIV + low TyG group 

demonstrated a higher survival rate than the low PIV + high 

TyG group. This suggests that the TyG index is a stronger 

prognostic indicator in PCAD, with lower TyG levels mitigating 

the adverse effects of elevated PIV.

Gender-Specific Survival Trends: In the low PIV + low TyG 

group, modest gender differences emerged: (1) Females 

exhibited higher survival rates than males in the early three-year 

period; (2) Subsequently, female survival rates decreased, falling 

below male rates in later stages. The reasons for this gender- 

specific trend are addressed in the discussion section.

Kaplan–Meier survival analysis revealed that elevated PIV and TyG 

levels correlate with reduced survival in PCAD patients. The high 

PIV + high TyG combination yielded the poorest outcomes, whereas 

the low PIV + low TyG combination was associated with the most 

favorable prognosis. Notably, the TyG index exerts a greater in(uence 

on survival, as demonstrated by the superior outcomes in the high 

PIV + low TyG group compared to the low PIV + high TyG group. 

These results, alongside gender-specific patterns, provide critical 

insights for risk stratification and prognostic evaluation in PCAD.

4 Discussion

The prevalence of PCAD has risen in recent years, with a 

worse prognosis than CAD in older adults. In contrast to CAD 

in older populations, PCAD is characterized by fewer 

conventional risk factors yet manifests more acutely, often as an 

initial acute coronary syndrome in most patients. This acute 

onset elevates mortality rates among affected individuals. 

Moreover, the prolonged life expectancy of younger patients 

increases the likelihood of long-term complications, including 

recurrent cardiovascular events or heart failure. Thus, 

identifying reliable prognostic indicators, implementing effective 

prevention strategies, and developing targeted early interventions 

are critical to improving survival rates and quality of life for 

PCAD patients.

This study employs diverse machine learning algorithms to 

examine risk factors linked to PCAD and their prognostic 

impact, providing a foundation for early detection and primary 

prevention. A predictive model was constructed using various 

machine learning algorithms to forecast both the diagnosis and 

prognosis of PCAD. The diagnostic model attained an accuracy 

of 0.88, indicating robust performance in identifying PCAD. 

Furthermore, the PIV and TyG index emerged as key prognostic 

indicators for PCAD. Receiver operating characteristic (ROC) 

curve analysis established optimal cutoff values for these indices 

(PIV > 229.5, TyG > 4.9) and evaluated their sensitivity and 

specificity for prognostic stratification in PCAD. Survival 

analysis confirmed that elevated PIV and TyG levels correlate 

with a poorer prognosis, with the TyG index exhibiting a 

notably strong association.

FIGURE 3 

Decision tree. The accuracy of the model is 0.88 and the confidence level is 0.86. WBC, white blood cells; TyG, triglyceride-glucose index; PIV, pan- 

immunoinflammatory value.
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FIGURE 4 

An ensemble model for the prognosis of PCAD. The StepCox[forward]-RSF ensemble model exhibited the highest mean C-index (0.99) across both 

training and validation cohorts. RSF, random survival forest.
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Extensive research has established atherosclerosis as a low- 

grade, non-infectious in(ammatory condition (18–21). This 

condition is characterized by in(ammation-induced endothelial 

dysfunction, initiating key processes: (1) Lipoprotein 

accumulation beneath the impaired endothelium; (2) Leukocyte 

recruitment to the in(ammatory site; (3) Increased vascular 

permeability, worsening the condition. Recruited monocytes 

differentiate into macrophages, adopting pro-in(ammatory or 

anti-in(ammatory phenotypes based on the local 

microenvironment. The balance between these phenotypes 

critically governs atherosclerosis progression or resolution (22).

Systemic and localized in(ammation, affecting the entire body 

and specific vessels respectively, are pivotal in the development 

and progression of cardiovascular disease. Thus, early and 

precise detection of in(ammation, combined with timely 

intervention, is crucial for enhancing outcomes in patients 

with PCAD.

Although single biomarkers provide limited predictive value 

for cardiovascular risk assessment, recent focus has shifted to 

multi-biomarker panels. These biomarker combinations 

demonstrate substantial potential for improving the precision of 

cardiovascular disease outcome predictions.

TABLE 3 Univariate regression analysis of PCAD.

Parameter HR (95%CI) P value Parameter HR (95%CI) P value

Age 1.01 (0.97–1.05) 0.59 TG 3.60 (0.61–21.34) 0.15

Gender1 1.24 (0.57–2.70) 0.58 Glu 1.01 (1.01–1.03) <0.01

WBC 0.78 (0.33–1.86) 0.58 HbA1c 1.24 (0.93–1.65) 0.14

RBC 1.37 (0.46–4.16) 0.56 SBP 1.00 (0.98–1.03) 0.58

Hb 1.98 (0.79–5.00) 0.14 DBP 0.99 (0.96–1.03) 0.67

Hct 0.74 (0.50–1.49) 0.13 BMI 0.98 (0.83–1.16) 0.82

PLT 0.99 (0.98–1.00) <0.01 WC 1.01 (0.94–1.08) 0.69

Alt 1.00 (0.99–1.00) 0.33 Smoke1 5.5 (2.41–12.82) <0.01

Ast 1.00 (0.99–1.02) 0.18 Drink1 0.62 (0.24–1.66) 0.35

BUN 0.88 (0.70–1.13) 0.34 CRI1 0.95 (0.34–2.65) 0.92

Scr 0.96 (0.94–0.98) <0.01 CRI2 1.07 (0.42–2.77) 0.87

Hcy 0.87 (0.77–0.97) 0.01 THR 1.30 (0.41–4.13) 0.64

CRP 0.92 (0.71–1.20) 0.56 TyG 0.08 (0.01–0.71) 0.02

HDL 1.04 (0.11–9.35) 0.96 BRI 0.94 (0.55–1.61) 0.83

LDL 0.97 (0.38–2.50) 0.95 PIV 1.00 (1.00–1.00) <0.01

TC 1.00 (0.37–2.74) 0.98 CCI 1.21 (1.02–1.44) 0.02

PCAD, premature coronary artery disease; Gender1, gender = men; WBC, white blood cell count; RBC, red blood cell count; Hb, hemoglobin; Hct, hematocrit; PLT, platelets; ALT, alanine 

aminotransferase; AST, aspartate aminotransferase; BUN, urea nitrogen; Scr, creatinine; Hcy, homocysteine; CRP, c-reactive protein; HDL, high-density lipoprotein cholesterol; LDL, low- 

density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides; Glu, blood glucose; HbA1c, glycated hemoglobin; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, 

body mass index; WC, waistline; Smoke1, smoke = yes; Drink1, drink1 = yes; CRI1and CRI2, castelli risk index 1 and 2; THR, triglyceride-to-HDL ratio; TyG, triglyceride-glucose index; BRI, 

body roundness index; PIV, pan-immunoin(ammatory value; CCI, Charleston comorbidity index.

FIGURE 5 

Random survival forest. (A) Show that the error rate of the model stabilizes when the number of classification trees exceeds 200. (B) RSF: Based on 

Gini importance evaluation, the five most important features are LDL, TyG, PIV, CRI1, and CRI2. RSF, random survival forest; LDL, low-density 

lipoprotein cholesterol; TyG, triglyceride-glucose index; PIV, pan-immunoinflammatory value; CRI1and CRI2, castelli risk index 1 and 2.
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The PIV is a systemic in(ammation biomarker derived from 

specific blood cell subgroup counts. It combines neutrophil, 

monocyte, lymphocyte, and platelet counts—cell types integral 

to in(ammation—to yield a composite measure of immune- 

in(ammatory status (23–25). PIV is increasingly valued for its 

prognostic utility across conditions such as cancers, 

cardiovascular diseases, and metabolic syndrome (15, 16, 26). 

Given the established in(ammation-CAD link, PIV’s ability to 

predict CAD severity and complications has attracted 

considerable interest. Ayşe Irem Demirtola et al. (17) reported 

that elevated PIV levels correlate with increased atherosclerotic 

lesion severity in CAD patients. Likewise, Bektas Murat et al. 

(20) noted that higher PIV levels correlate with elevated long- 

term mortality in ST-elevation myocardial infarction (STEMI) 

patients, although no significant association emerged with in- 

hospital mortality. These results support the notion that 

systemic in(ammation drives CAD progression. Moreover, PIV 

outperforms other in(ammatory indices—such as the systemic 

immune-in(ammation index (SII), platelet-to-lymphocyte ratio 

(PLR), and neutrophil-to-lymphocyte ratio (NLR)—in predicting 

post-percutaneous coronary intervention (PCI) prognosis and 

coronary artery stenosis extent in STEMI patients (21).

Despite these insights, PIV’s role in PCAD, a CAD subset in 

younger individuals, remains largely unexamined. Current 

studies have not fully explored the PIV-PCAD relationship, 

underscoring a significant literature gap. Given PCAD’s distinct 

profile—fewer conventional risk factors yet a more acute 

course—examining PIV’s predictive utility in this population 

could provide critical prognostic and therapeutic insights.

The TyG index, derived from plasma triglycerides and fasting 

glucose levels, offers a simple, non-invasive method to assess 

insulin resistance (IR). It is widely applied to evaluate IR, predict 

metabolic dysregulation, and assess cardiovascular disease (CVD) 

risk. Hyperglycemia and hypertriglyceridemia are established 

drivers of CVD, contributing to endothelial dysfunction, 

in(ammation, and atherosclerosis—central mechanisms in 

cardiovascular complications. In healthy individuals, insulin 

regulates glucose and lipid metabolism by facilitating glucose 

uptake, promoting glycolysis, and maintaining lipid homeostasis. 

However, in IR, these processes falter, leading to impaired glucose 

uptake, reduced glycolysis, and dyslipidemia, which are closely 

tied to adverse cardiovascular outcomes (27). The TyG index 

provides a practical alternative to traditional IR measures like the 

hyper insulinemic-euglycemic clamp or HOMA-IR (28). Studies 

consistently link a higher TyG index to increased risks of 

myocardial infarction, stroke, and heart failure, even after 

adjusting for conventional risk factors such as age, smoking, and 

hypertension. Its integration of triglycerides and glucose enhances 

its robustness in predicting CVD risk, particularly in metabolic 

syndrome, where it often outperforms other IR markers.

Despite its established role in CVD (29–32), the TyG index’s 

association with PCAD remains underexplored. Given PCAD’s 

unique metabolic and in(ammatory profile, investigating the 

TyG index in this context could refine risk stratification and 

guide early interventions.

The advent of machine learning (ML) has transformed vast 

datasets into actionable models, significantly enhancing 

diagnostic precision. While ML models for cardiovascular 

disease likelihood and prognosis are emerging (33, 34), many 

are limited by small sample sizes or a focus on older 

populations, with few large-scale studies addressing PCAD. Our 

study bridges this gap by developing a diagnosis and prognosis 

model tailored to PCAD patients. We employed multiple ML 

methods with cross-validation to select key variables, diverging 

from traditional training-validation splits. Our findings confirm 

a significant association between PIV, the TyG index, and 

FIGURE 6 

ROC curve. (A) The optimal threshold for the PIV index predicted by the PCAD prognostic model was determined to be 229.5, at which the specificity 

and sensitivity of the PCAD prognostic model were 65.9% and 68.9%. (B) The optimal critical value of the TyG index predicts that the PCAD 

prognostic model is 4.9, at which the specificity and sensitivity of the PCAD prognostic model are 92.1% and 52.2%. TyG, triglyceride-glucose 

index; PIV, pan-immunoinflammatory value.
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PCAD occurrence, with elevated levels linked to poorer prognosis, 

reinforcing in(ammation’s foundational role in atherosclerosis. 

Notably, in the low PIV + low TyG cohort, women exhibited 

lower survival rates than men over time, possibly due to post- 

menopausal estrogen decline reducing atherosclerosis resistance.

5 Conclusions

The combined evaluation of PIV, TyG, and WBC offers robust 

diagnostic and prognostic value for PCAD, with elevated PIV and 

TyG levels indicating a poor prognosis, underscoring their 

potential as clinical biomarkers.

6 Limitations

Despite these advances, limitations persist. A limitation of our 

study is that our definition of PCAD was based on angiographic 

stenosis ≥50%, which may not capture patients with early 

subclinical atherosclerosis. Future studies should aim to establish 

a consensus definition to improve comparability. This study was 

conducted based on data from a single center, which may limit 

the generalizability of our findings and raises the possibility of 

overfitting in the predictive model. Although the internal 

performance was robust, external validation using multicenter or 

publicly available datasets is warranted to confirm the reliability 

and broader applicability of the model in different populations 

FIGURE 7 

Kaplan–Meier survival analysis. (A) The follow-up of patients with different PIV index groups for 36 months. (B) The follow-up of patients with 

different TyG index group for 36 months. (C) Men and women were followed up for 36 months in different PIV + TyG groups. TyG, triglyceride- 

glucose index; PIV, pan-immunoinflammatory value.
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and clinical settings. To enhance clinical applicability, it is worth 

noting that the components of PIV and TyG are typically part of 

routine laboratory tests, available within a short time frame in 

most emergency or outpatient settings. Therefore, their 

integration into clinical decision-making pathways is feasible in 

many healthcare systems. Nonetheless, in resource-limited 

environments or when immediate lab access is not possible, 

simplified models based on clinical features or point-of-care tests 

may be explored, though potentially at the expense of diagnostic 

accuracy. Further studies are needed to validate such surrogate 

models. Minor CommentsSingle-time-point measurements of 

glucose and lipid levels overlook temporal variations, and the 

retrospective design may introduce confounding and bias. 

Futhermore, the follow-up information in this retrospective study 

was restricted to all-cause mortality, and detailed coronary events 

such as PCI, re-PCI, or myocardial infarction were not uniformly 

available. In addition, data on peripheral atherosclerosis and 

related vascular events were lacking. These factors may have 

limited our ability to comprehensively evaluate cardiovascular 

outcomes. Future prospective multicenter studies with 

standardized collection of interventional and peripheral vascular 

events are needed to validate and extend our findings. Future 

research should leverage larger, multicenter cohorts, extended 

follow-ups, and randomized controlled trials to enhance 

predictive accuracy and validate these findings.
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