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Optimized aortic root
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transcatheter aortic
valve implantation
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Viacheslav V. Danilov**

Siberian State Medical University, Tomsk, Russia, 2Institute of Control Sciences of Russian Academy of
Sciences, Moscow, Russia, *Almazov National Medical Research Center, Saint Petersburg, Russia,
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Transcatheter aortic valve implantation (TAVI) is a highly effective treatment for
patients with severe aortic stenosis. Accurate valve positioning is critical for
successful TAVI, and highly accurate real-time visualization—with minimal use
of contrast—is especially important for patients with chronic kidney disease.
Under fluoroscopic conditions, which often suffer from low contrast, high
noise and artifacts, automatic segmentation of anatomical structures using
convolutional neural networks (CNNs) can significantly improve the accuracy
of valve positioning. This paper presents a comparative analysis of various
CNN architectures for automatic aortic root segmentation on angiographic
images, with the aim of optimizing the TAVI process. The experimental
evaluation included models such as FPN, U-Net++, DeeplLabV3+, LinkNet,
MA-Net, and PSPNet, all trained and tested with optimally tuned
hyperparameters. During training dynamics, DeeplabV3+ and U-Net++
showed stable convergence with median Dice scores around 0.88. However,
when evaluated at the patient level, MA-Net and PSPNet outperformed all
other models, achieving Dice coefficients of 0.942 and 0.936, and an average
symmetric surface distance of 4.1 mm. The findings underscore the potential
of incorporating automatic segmentation methods into decision-support
systems for cardiac surgery—reducing contrast agent use, minimizing surgical
risks, and improving valve positioning accuracy. Future work will focus on
expanding the dataset, exploring additional architectures, and adapting the
models for real-time application.

KEYWORDS

automatic segmentation, aortic root, angiographic images, TAVI, convolutional neural
networks

1 Introduction

TAVI represents a vital alternative to conventional surgical aortic valve replacement,
especially for patients with symptomatic severe aortic stenosis who are at high risk for
open-heart surgery. The increasing prevalence of TAVI has broadened its indications
(1). However, complications—often stemming from a mismatch between prosthesis
size and the fibrous aortic ring (2, 3) or from improper device deployment (4)—
remain a significant concern. Many post-operative complications are closely related to
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the experience of the operating surgeon. In addition, patient motion
(e.g., chest excursion during respiration and cardiac activity) further
complicates device implantation (5, 6). In addition, the development
of complications largely depends on the quality of intraoperative
imaging required for accurate valve placement (2).

Accurate intraoperative imaging is crucial for precise valve
placement; yet, conventional methods impose limitations due to
increased radiation exposure and the need for repeated contrast
injections, which elevate the risk of renal complications.
Consequently, developing systems that reliably identify key
anatomical landmarks while minimizing contrast agent use and
radiation exposure is of paramount importance.
in visual allow the

Recent advances support systems

integration of preoperative three-dimensional computed
tomography (CT) models with intraoperative X-ray images
(7, 8). Nonetheless, challenges such as patient movement,
deformation of anatomical structures by rigid instruments, and
low image contrast complicate direct comparisons between
preoperative and intraoperative images (9-13).

To address these challenges, our approach integrates several
CNN architectures (e.g., U-Net++,

DeepLabV3+) enhance boundary detection under low-contrast

strategies: multi-scale

and noisy conditions; extensive data augmentation (random
shifts, addition,
improves robustness against artifacts and patient motion; and

rotations, noise perspective  distortions)

the inclusion of lightweight yet accurate models (e.g., LinkNet,
MA-Net)
intraoperative use. These design choices directly respond to the

ensures computational efficiency suitable for
difficulties inherent in real-time angiographic segmentation.
Unlike prior studies, our work focuses on the automatic
segmentation of the aortic root directly from individual fluoroscopic
images captured during TAVI. This approach provides a rapid and
accurate method for segmenting the aortic root, thereby simplifying
procedural navigation and increasing safety. By combining state-of-
the-art deep learning techniques with adaptations tailored to
intraoperative imaging conditions, our method opens new avenues
for optimizing TAVI procedures and improving clinical outcomes.
This paper provides a comparative analysis of six deep neural
network architectures—FPN, U-Net++, DeepLabV3+, LinkNet,
MA-Net, and PSPNet—for automatic aortic root segmentation
from intraoperative angiographic images. The primary objective
is to identify the model that delivers high segmentation accuracy
contrast media use while

with  minimal maintaining

computational efficiency. We also discuss hyperparameter
tuning strategies and model optimization for deployment under

constrained computing resources.

2 Materials and methods

The development of our segmentation system for aortic root
segmentation followed a two-stage process:

« Stage 1: Data preparation
O Data
verification sets.

labeling and creation of training and
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O Each fluoroscopic image was annotated independently
by two experienced vascular surgeons. All annotations
were then reviewed by the Head of the Department of
Vascular and Interventional Surgery. In cases of
disagreement or particularly complex anatomy, the
final segmentation was established by consensus in a
joint meeting of the annotators. This multi-observer
approach ensured a high-quality ground truth

segmentation for training and evaluation.

o Stage 2: Training and evaluation

O Selection of CNN architectures, loss functions, and
evaluation metrics.

O Systematic evaluation of qualitative and quantitative
parameters from training and validation datasets.

2.1 Data collection

During endovascular surgeries, including TAVI, angiography
via fluoroscopy serves as the reference method for dynamic
intraoperative imaging. Data were collected from intraoperative
angiographs 2018 and 2024 during
implantation procedures in 80 patients with severe aortic valve

obtained between

stenosis (Supplementary Table S1). The resulting dataset
comprises 2,854 images (1, 000 x 1, 000 pixels, 8-bit grayscale).
For the five-fold patient-level cross-validation, approximately
86%-88% of patients were assigned to the training set and 12%-
14% to the validation/test set in each fold. Because the number
of frames per patient varied, the exact ratio of training vs. test
images fluctuated slightly across folds.

As part of the TAVI procedures, a series of anonymized images
were obtained, illustrating four main procedural stages: (i) overview
angiography (Supplementary Figure S1A), (ii) positioning of the
catheter and delivery system (Supplementary Figure SIB), (iii)
initiation of retraction of the delivery system and valve exposure
(Supplementary Figure S1C), and (iv) control angiography after
valve implantation (Supplementary Figure S1D). These images
provide a comprehensive representation of procedural steps, aiding
in the accurate assessment of device placement and function.

The dataset includes representative images of key procedural
stages, such as valve positioning, initiation of device retraction
with valve exposure, and complete valve deployment. Notably,
some images depict the implantation of the ACURATE neo valve
(14), while others show the CoreValve Evolut R (15)—both self-
expanding, supra-annular valves with porcine pericardium leaflets.

Since precise TAVI device positioning requires tracking
anatomical landmarks relative to the native valve plane, the
dataset was further annotated during contrast agent injections
using the Supervisely web-based computer vision platform (16).

2.2 Model selection

In this study, we evaluated six CNNs for aortic root
segmentation in angiography images: U-Net++ (17), LinkNet
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(18), FPN (19), PSPNet (20), DeepLabV3+ (21), and MA-Net (22).
These models were selected based on their proven performance in
analyzing complex biomedical images.

U-Net++ is an advanced version of the U-Net architecture
tailored for medical image segmentation. It employs a deeply
with
transitions between the encoder and decoder, enabling the

controlled encoder-decoder structure nested dense
capture of fine details. Its effectiveness has been demonstrated in
numerous studies, including the semantic segmentation of
coronary vessel X-ray images (23).

In addition to U-Net++, we employed LinkNet and FPN.
LinkNet is a lightweight network that uses skip connections to
efficiently recombine fine details from the encoder to the
decoder. FPN, characterized by its top-down architecture and
lateral connections, creates a feature pyramid that enhances the
segmentation process.

PSPNet and DeepLabV3+ were chosen for their ability to
process features at multiple scales and improve contextual
awareness-qualities essential for accurately segmenting complex
intravascular images, where distinguishing foreground from
background is challenging (24).

Finally, MA-Net, the most modern CNN in our selection,
integrates attention mechanisms to focus on the most salient
features of the image, thereby increasing segmentation accuracy.
This model effectively exploits the strengths of conventional CNN
architectures while optimizing feature extraction and presentation.

Although not included in our evaluation, we acknowledge the
emergence of transformer-based segmentation models such as
TransUNet, Swin-Unet, and SegFormer (25-27). These architectures
leverage global self-attention and have demonstrated promising
results on various segmentation tasks. However, we opted not to
include them in this study due to several practical considerations.
First, the self-attention mechanism in transformers has quadratic
complexity (O(N?)) with respect to the number of image pixels,
making it computationally prohibitive for our high-resolution
angiographic images (approximately 1,000 x 1,000 pixels). Second,
our dataset of 2,854 images (from 81 patients) is relatively small—
transformer networks, which lack the strong spatial inductive biases
of CNNs, generally require much larger training datasets to avoid
overfitting. Third, in an intraoperative clinical setting like TAVI, the
need for efficient, near-real-time inference favors using lightweight
CNN architectures that can run quickly on available hardware.
Moreover, the six CNN models we selected already achieve excellent
segmentation accuracy in our experiments (Dice coefficient up to
0.88), indicating that our performance requirements can be met
without the added complexity of transformers. For these reasons, we
focused on CNN-based models in this comparative analysis. The
exploration of transformer-based segmentation approaches is
deferred to future work when larger datasets and greater
computational resources become available.

2.3 Hyperparameter tuning strategy

For aortic root segmentation, we carefully configured six

segmentation networks—U-Net++, LinkNet, FPN, PSPNet,
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DeepLabV3+,
settings for these models required a rigorous hyperparameter

and MA-Net. Achieving the optimal training

tuning process, during which each model underwent over 200
configuration tests to ensure optimal performance.

Our tuning process aimed to maximize the segmentation
score, specifically focusing on the Dice Similarity Coefficient
(DSC). To this end, we employed the DSC loss function
(Equation 1), defined as follows:

23 ()’true X ypred) t€

(1)
Z}’true + Z}}pred + €

Loss=1—

where, ytrye and )’pred denote the true and predicted label values,
respectively, and € is a small constant (set to 10~7) for numerical
stability to prevent division by zero.

Recognizing that not all hyperparameters impact model
performance equally (28), our focus was on optimizing the most
critical parameters: the encoder architecture, input image size,
optimizer selection, and learning rate. Parameters such as batch
size, activation functions, optimizer parameters, and convolution
kernel sizes were kept constant. Table 1 provides a detailed
summary of the hyperparameters studied and their
corresponding values during model tuning.

Hyperparameter optimization was conducted using a
combination of Bayesian optimization and an early termination
strategy. Instead of traditional random or grid search methods,
we utilized the Optuna (29) library with the Tree-structured
Parzen Estimator algorithm, which builds a probabilistic model
of the

combinations for further testing. Additionally, early termination

hyperparameters to identify the most promising

of unpromising configurations was implemented using

Hyperband Pruner (30). This combination of methods,
corresponding to the BOHB approach (31), provided enhanced
computational  efficiency and reliability compared to

conventional hyperparameter optimization techniques.

2.4 Model training strategy

After determining the optimal hyperparameters, we trained
and tested our models on the entire dataset. Due to the limited
number of subjects (80 patients), we employed a 5-fold cross-
validation approach. In each fold, data from 65 patients were

TABLE 1 Hyperparameters used in network optimization.

 Hyperparameter

Architecture Unet++, LinkNet, FPN, PSPNet, DeepLabV3
+, MA-Net
Encoder EfficientNet-B0, EfficientNet-B4, 8
EfficientNet-B0, SE-ResNeXt50, ResNet-50,
ResNet-101, SE-ResNeXt101, RegNetX-120
Input size 512 x 512, 624 x 624, 896 x 896 3
Optimizer Adam, Radam, RMSprop 3
Learning rate 1073, 1074, 107° 3
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used for training and 15 patients for testing (Supplementary
Table S2). This partitioning scheme ensured that the subject
groups in each subset remained mutually exclusive, thereby
preventing any data leakage between training and testing sets.

During the setup and training stages, a series of augmentation
transformations was applied using the Albumentations library
(32). These transformations not only expanded the dataset but
also served as a regularization method to mitigate overfitting.
The augmentation workflow included:

Horizontal flip with a 50% probability.

Shift, scale, and rotate with a 50% probability: random shifts,
scaling, and rotations within specified limits (shift limit =
0.0625, zoom limit = 0.1, rotation limit = 15).

Conditional filling: padding images to ensure a consistent size

for processing.

Gaussian noise with a 20% probability: adding random noise
with a variance range of 3-10.

Perspective distortion with a 50% probability: applying
random perspective transformations with a scale of 0.05-0.1.
Random brightness and contrast adjustment with a 90%
probability: adjusting brightness and contrast within limits
(brightness limit = 0.2, contrast limit = 0.2).

Hue, saturation, and value adjustment with a 90% probability:
shifting hue, saturation, and value within specified limits
(hue shift limit = 20, saturation shift limit = 30, value shift
limit = 20).

Since the models vary in complexity, they require different
amounts of GPU memory when using a fixed batch size. To
ensure fair learning conditions, we adjusted the batch size so
that each model utilized approximately 70%-90% of the
available GPU memory.

All training, tuning, and testing were conducted on server
hardware comprising a 40-core Intel(R) Xeon(R) Gold 5218R
CPU @ 2.10 GHz, 512 GB of RAM, and an Nvidia A6000 GPU
with 48 GB of video memory. The models were developed using
PyTorch v2.1 and Python v3.11.

3 Results
3.1 Tuning hyperparameters

Each model underwent a rigorous hyperparameter tuning
process as described in the Section 2.3, with over 200

TABLE 2 Optimal hyperparameters for the studied networks.

10.3389/fcvm.2025.1602780

configurations tested per model. The results obtained at the
tuning stage are summarized below and detailed in Table 2:

Encoder: EfficientNet-B4 and SE-ResNeXt101 were the most
commonly used encoders across the architectures. Specifically,
U-Net++ and MA-Net employed EfficientNet-B4, while
LinkNet, FPN, PSPNet, and DeepLabV3+ were based on SE-
ResNeXt101.

Input data size: Input dimensions were adapted for each
model, ranging from 512 x 512 to 896 x 896 pixels. This

variation reflects a trade-off between computational efficiency
and the level of detail required for accurate segmentation.
Optimizer and learning rate: Optimizer and Learning Rate:
RMSprop was primarily used as the optimizer, with the
exception of PSPNet, which employed Adam.

Learning rate: The optimal learning rate depended on the
model architecture, parameter count, and computational
complexity. For more complex, resource-intensive models
(e.g., U-Net++, DeepLabV3+), a lower learning rate (0.0001)
was preferable to maintain training stability. For models with
fewer parameters and moderate complexity (e.g., FPN,
LinkNet, PSPNet, MA-Net), a learning rate of 0.001 allowed
for faster training without degrading performance.

Accuracy: Model performance was evaluated using the DSC on
the validation subset, which measures the overlap between the
model prediction and the true segmentation. DSC scores
ranged from 0.906 (PSPNet) to 0.916 (FPN), indicating that
FPN achieved the highest segmentation accuracy during the
tuning phase.

Complexity: The number of parameters and the floating-point
per second (FLOPs)
computational requirements. FPN (19.35 million parameters,
99.2 G FLOPs), DeepLabV3+ (18.62 million, 113.52
G FLOPs), and LinkNet (17.86 million, 53.18 G FLOPs) have
a relatively similar (and generally smaller) parameter count,
though FPN and DeepLabV3+ FLOPs
compared to LinkNet due to their architectural features.
U-Net++ exhibited the highest complexity, with 72.38 million
parameters and 502.097 billion FLOPs, making it the most
computationally intensive. PSPNet (47.69 million parameters,
24.19 G FLOPs) and MA-Net (25.63 million parameters,
39.06 G FLOPs) showed average resource consumption.

operations indicate each model’s

require higher

Stability and training time: During hyperparameter tuning,
DeepLabV3+ LinkNet
encountered only one. The remaining models completed all

experienced 27 crashes, while

configurations without failures. Tuning times ranged from
177 h (LinkNet) to 499 h (DeepLabV3+), reflecting differences

irchiccture Encoder _input sze_Optimizer LR ___Parameters M_FLOPs G Config chectcd

U-Net++ EfficientNet-B4 RMSprop 0.0001 x 10™* 724 502.1
LinkNet SE-ResNeXt101 512 RMSprop 0.001 x 107> 17.9 53.2 215
FPN SE-ResNeXt101 512 RMSprop 0.001 x 107> 19.4 99.2 216
PSPNet SE-ResNeXt101 512 Adam 0.001 x 107> 47.7 24.2 216
DeepLabV3+ SE-ResNeXt101 512 RMSprop 0.0001 x 107* 18.6 113.6 189
MA-Net EfficientNet-B4 896 RMSprop 0.001 x 107> 25.6 39.1 216
Frontiers in Cardiovascular Medicine 04 frontiersin.org
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in model complexity, input size, and the number of
configurations tested.

The hyperparameter tuning results indicate that FPN achieved the
highest DSC scores, suggesting that it is the most suitable model
for aortic root segmentation on the tuning verification subset.
DeepLabV3+ followed closely, with DSC scores of 0.916 and
0.915, respectively, while U-Net++ and MA-Net exhibited
comparable results at 0913, albeit with a slightly higher
computational load. Meanwhile, LinkNet and PSPNet provide a
favorable accuracy-to-complexity ratio, making them particularly
viable in scenarios with limited computing power or stricter
processing time requirements.

3.2 Model training

The study conducted a comprehensive assessment of the
performance and convergence characteristics of six deep
learning models: U-Net++, LinkNet, FPN, PSPNet, DeepLabV3+
and MA-Net. The models were trained over 35 epochs with an
analysis of the dynamics of the loss function and the DSC
coefficient (Supplementary Figure S2). The research results
revealed a consistent pattern in all models, demonstrating a
gradual decrease in losses and a corresponding increase in the
DSC coefficient throughout the learning process. These trends
indicate the ability of models to learn and improve their
segmentation capabilities as they learn.

Convergence was determined by the stabilization of both
metrics (Supplementary Table S3). DeepLabV3+ demonstrated
consistent loss reduction and DSC improvement, reaching
convergence between epochs 10 and 15. MA-Net and U-Net++
also converged rapidly, though with minor fluctuations that
suggest more complex optimization dynamics. In contrast,
LinkNet converged at a slower pace, ultimately achieving a DSC
close to 0.877, while PSPNet showed the slowest convergence
with a lower median DSC of 0.854. FPN exhibited the least
stable behavior—likely due to its architectural design or
hyperparameter configuration.

A detailed performance analysis using DSC metrics revealed
notable differences in model stability (Supplementary Figure S3).
The lower bounds, defined by the 1.5-IQR whiskers, ranged
from 0.754 for PSPNet to 0.817 for DeepLabV3+, with PSPNet
displaying the widest spread (0.754-0.901) and the lowest
central tendency. DeepLabV3+ and U-Net++ showed more
consistent behavior, with DSC values spanning from 0.817 to
0913 and 0.826 to 0.913,

respectively, indicating stable

10.3389/fcvm.2025.1602780

optimization trajectories. Median DSC scores clustered closely
for the stronger models: U-Net++ (0.882) and DeepLabV3+
(0.881) achieved the highest central performance, followed by
MA-Net (0.878) and LinkNet (0.877). Although FPN reached a
similar maximum (0.913), its wider interval (0.794-0.913)
reflects reduced stability compared to these models. PSPNet,
with the lowest median DSC (0.854) and the broadest range,
the
Maximum DSC values, defined by the upper whisker, ranged
from 0.901 (PSPNet) to 0.913 (U-Net++, FPN, DeepLabV3+,
MA-Net), with LinkNet peaking at 0.909.

In summary, DeepLabV3+, U-Net++, and MA-Net emerged
as the most balanced models in terms of accuracy and stability,

demonstrated least reliable segmentation outcomes.

while PSPNet and FPN may require further optimization to
reduce variability. However, epoch-wise training analysis does
not directly reflect patient-level robustness. To address this, we
performed a separate evaluation across patients at the best
epoch for each fold.

3.3 Patient-level evaluation

In addition to epoch-wise training dynamics, we performed a
patient-level evaluation at the best-performing epoch for each fold
(Table 3). This analysis provides a clinically oriented estimate of
segmentation robustness. Median DSC values across patients
ranged from 0.926 (U-Net++) to 0.942 (MA-Net), while ASSD
values spanned 4.05-4.89 mm. Reported ASSD values are given
in millimeters, using a fixed PixelSpacing of 0.390625 mm/pixel
derived from the DICOM headers of the fluoroscopy system,
which remained constant across all cases.

MA-Net (EfficientNet-B4) achieved the highest median DSC
(0.942, 95% CI: 0.934-0.951) and one of the lowest ASSD scores
(4.07mm, 95% CI: 3.384-4.387). PSPNet (SE-ResNeXt101)
produced a nearly comparable DSC (0.936, 95% CI: 0.93-0.94)
and the lowest ASSD overall (4.05mm, 95% CI: 3.742-4.910).
LinkNet, FPN, and DeepLabV3+ achieved intermediate results
(median DSC 0.93, ASSD 4.3-4.6mm). U-Net++ ranked
lowest with a median DSC of 0.926 (95% CI: 0.917-0.939) and
the highest boundary error (ASSD 4.89 mm, 95% CI: 3.962-
5.511). To compare model performance, we performed paired
Wilcoxon signed-rank tests on the per-patient Dice scores with
Holm correction for multiple comparisons. This
confirmed statistically significant differences between several
model pairs, most notably between MA-Net and U-Net++, MA-
Net and LinkNet, and PSPNet and U-Net++ (Supplementary

~
~

analysis

TABLE 3 Patient-level evaluation results with 95% bootstrap confidence intervals.

Model _____DSC median

DSC 95% Cl
DeepLabV3+ 0.929 [0.915, 0.938]
FPN 0.933 [0.924, 0.941]
LinkNet 0.934 [0.920, 0.939]
MA-Net 0.942 [0.934, 0.951]
PSPNet 0.936 [0.929, 0.943]
U-Net++ 0.926 [0.917, 0.939]

Frontiers in Cardiovascular Medicine

ASSD median (mm)

05

ASSD 95% CI (mm)

4619 [4.034, 5.578]
4371 [3.985, 5.469]
4.567 [3.848, 5.420]
4.067 [3.384, 4.387]
4.051 [3.742, 4.910]
4.894 [4.961, 5.511]
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Table S4). These results reinforce the superiority of MA-Net and
PSPNet, not only during training dynamics but also when
evaluated per patient, underscoring their clinical robustness.
Figure 1 illustrates representative segmentation overlays produced
by the MA-Net model, highlighting its promising performance.

4 Discussion

4.1 Segmentation performance and
robustness

This study systematically benchmarks six modern CNN
architectures for aortic root segmentation on intraoperative
angiographic frames acquired during TAVI In a low-contrast,
artifact-prone setting, U-Net++ and DeepLabV3+ achieved the
most favorable balance of accuracy and stability (median DSC
~ 0.88), with MA-Net and LinkNet
performance at lower computational cost. These findings align

offering competitive
with broader medical-imaging evidence that (i) densely connected
U-Net variants better preserve small structures through multi-
scale skip paths and deep supervision, and (ii) atrous-convolution
backbones with pyramid pooling (as in DeepLabV3/+) improve
context aggregation under limited contrast and variable object
scales (33-35). While PSPNet and FPN reached high best-case
scores during tuning, their wider DSC dispersion in cross-
validation suggests sensitivity to hyperparameters and image
quality fluctuations, a known challenge in fluoroscopic
segmentation where noise, motion and overlapping devices
degrade local gradients. At the patient level, MA-Net and PSPNet
emerged as the most robust models, combining high overlap
(Dice > 0.936) with low boundary error (ASSD < 4.1 mm).
LinkNet, FPN, and DeepLabV3+ performed moderately, with
Dice around 0.93 and ASSD between 4.3 and 4.6 mm. U-Net++
lagged behind, showing the lowest Dice (0.926) and highest ASSD
(4.89 mm). In addition, statistical testing using paired Wilcoxon
signed-rank tests with Holm correction demonstrated that
differences between several models were statistically significant,
reinforcing the robustness of MA-Net and PSPNet compared to
others (Supplementary Table S4). Importantly, the patient-level
evaluation highlighted that overlap-based and boundary-based
metrics are not always aligned: while MA-Net maximized Dice,
PSPNet minimized ASSD, pointing to complementary strengths
in overlap accuracy vs. boundary precision. Together, these
findings suggest that MA-Net and PSPNet are the most balanced
and clinically reliable among the tested models, whereas U-Net++
—despite strong performance

during  training-proved less

consistent at the patient level.

4.2 Positioning within existing solutions

Most automation in TAVI image guidance has focused on pre-
procedural CT: fully automatic 3D aortic-root (AR) segmentation,
landmark detection (annulus, STJ), and measurement extraction
can now reach Dice ~ 0.90-0.93 and millimetric agreement to
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expert annotations, enabling accurate sizing and prediction of
optimal C-arm angulation for implantation (36-38). Parallel
clinical lines of work register these CT models to live
fluoroscopy (CT-XR fusion) to overlay the annular plane and
coronary ostia and to guide device trajectories; feasibility and
workflow utility have been repeatedly demonstrated, including
improved projection selection and targeted catheterization (and,
in related structural cases, PVL closure guidance) (39, 40).

By contrast, purely fluoroscopy-based automation remains less
explored. Prior angiographic deep-learning has concentrated on
prosthesis or coronary vessel segmentation (often with
DeepLabV3+-type decoders or custom pre-processing), rather
than segmenting native aortic-root anatomy during valve
deployment (24, 41, 42). Our results therefore complement CT-
centric pipelines and fusion systems: they show that, even
without CT, single-frame fluoroscopic segmentation of the aortic
root is technically feasible at clinically meaningful overlap, and
can be computed fast enough for intraoperative decision support
when lightweight backbones are chosen.

4.3 Clinical relevance and potential impact

From a clinical perspective, accurate delineation of the aortic
root on live angiography has three immediate implications:

1. Projection and deployment control. When the annular plane
and sinuses are well segmented, operators can cross-check depth
and coaxiality against the prosthesis in real time, particularly
during rapid pacing or partial release. This complements CT-
predicted C-arm angles and reduces reliance on repeated
contrast runs to “re-find” the annulus in challenging anatomies
(e.g., heavy calcification, horizontal aortas) (43).

2. Complication mitigation. Better intraoperative landmarking
is mechanistically linked to less malpositioning-which in
turn is a major driver of paravalvular leak, conduction
disturbances and reintervention. While our study did not
test clinical outcomes, CT-fluoro fusion literature already
shows that improved landmark visualization facilitates device
manipulation; by analogy, robust fluoro-native segmentation
could offer similar intraoperative guardrails without the
prerequisites of CT registration (39, 40).

3. Contrast stewardship. Repeated contrast injections for
annulus re-identification contribute to Acute Kidney Injury
risk (AKI), which is associated with worse short-term

after TAVL

importance of minimizing contrast volume and/or scaling it

outcomes Multiple studies emphasize the

to renal function (e.g., contrast-to-eGFR ratios) to reduce

AKI and mortality risk; tools that stabilize visualization at
lower contrast loads are therefore clinically attractive (44-47).

4.4 Architectural trade-offs

Across architectures, two patterns emerged. First, multi-
scale, dilation-based decoders (DeepLabV3+) and densely nested
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FIGURE 1
Aortic root segmentation results: (A, C, E, G) segmentation mask labeling by an interventional cardiologist; (B, D, F, H) segmentation mask labeling by
the MA-Net model.
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U-Net++ variants were consistently resilient to low SNR and
background clutter-mirroring their documented strengths in
other angiographic tasks that require long-range context with
local boundary fidelity. Second, efficiency matters: LinkNet and
MA-Net delivered respectable median DSC with markedly fewer
FLOPs/parameters, which is relevant for real-time intraoperative
deployment on commodity GPUs. These observations are
congruent with the broader literature where tailored Deeplab/U-
Net derivatives, sometimes preceded by contrast-normalization
and  denoising benchmarks on

subnets, top X-ray

angiography datasets.

4.5 Beyond CNNs: transformer and hybrid
designs

Emerging transformer-based and hybrid models (e.g., Swin-
DeepLab, TransDeepLab) may further enhance robustness to
long-range dependencies and out-of-distribution artifact
patterns. Early medical imaging studies suggest superiority over
pure CNNs in heterogeneous datasets. Given dataset size and
intraoperative latency constraints, CNNs were prioritized here;
however, future work should evaluate compact transformer-

CNN hybrids for potential deployment.

4.6 Validation strategy and next steps

Beyond cross-validated DSC, three axes of validation are
critical:

o Generalization and reproducibility. External, multi-center
testing across vendors and acquisition protocols, with reader-
study assessment of anatomical plausibility (annular plane,
coronary ostia proximity) and inter-observer agreement.

o Task-linked endpoints. Prospective studies that randomize or
compare standard care vs. “segmentation-assisted” guidance
should track projection changes, number of contrast runs,
contrast-to-eGFR ratio, pacing time, device depth variance,
and early outcomes (PVL grade, PPM implantation, 30-day
AKI). Such endpoints have precedent in CT-fluoro fusion
and AKI literature and can ground the technical metric in
clinical effect size (40, 45).

o Workflow integration. Latency profiling and fail-safe design
(confidence estimates with automatic fallback to manual
workflow) are essential for OR adoption. In parallel,

combining our fluoro-native segmentation with optional pre-

procedural CT (when available) could offer a hybrid path:
our mask stabilizes the annulus in noisy frames, while CT

supplies pre-computed angles and 3D context (38).

4.7 Limitations

This study is limited by its single-center dataset and evaluation
restricted to contrast-enhanced fluoroscopy frames. Non-contrast
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frames, extreme motion, and heavy device overlap remain
challenging. Transformer hybrids were not benchmarked, and
real-time performance was not tested under continuous cine
acquisition. Most importantly, prospective outcome studies are
required to establish clinical benefits beyond segmentation
accuracy. The obtained results remain preliminary and should
be considered as hypotheses awaiting confirmation in future
multicenter studies based on the results.

5 Conclusion

This study demonstrates that U-Net++ and DeepLabV3+
achieve accurate, reliable aortic root segmentation during
with  stable DSC
performance. However, when evaluated on a patient-level basis,
MA-Net and PSPNet outperformed all other models, combining
the highest Dice values with the lowest ASSD errors. These
results emphasize that patient-level evaluation provides a stricter

training, convergence and consistent

and more clinically relevant measure of segmentation reliability.

By enabling reliable visualization under low-contrast and
noisy imaging conditions, our approach aligns with clinical
needs to minimize contrast exposure, especially important given
the well-recognized association between contrast volume and
post-TAVI renal injury. Our publicly released dataset, models,
and code establish a reproducible foundation for fluoroscopy-
based decision-support in TAVL

Next steps include multicenter clinical validation, integration
into real-time operating-room workflows, and quantitative
assessment of procedural benefits, such as reduced contrast use,
shorter procedural times, improved deployment accuracy, and
better patient safety outcomes.

Data availability statement

The data supporting the key findings of this study are presented
within the article/Supplementary material. All essential components
of the study, including curated source code, data, and trained
models, have been made publicly available: Source code: https://

Dataset: https://doi.
https://doi.org/10.5281/

github.com/Nikita75699/segmentation_tavi.
org/10.5281/zenodo.10838384.  Models:
zenodo.15106413.

Ethics statement

Ethical approval was not required for the study involving
humans in accordance with the local legislation and institutional
requirements. Written informed consent to participate in this
study was not required from the participants or the participants’
legal guardians/next of kin in accordance with the national
legislation and the institutional requirements.

frontiersin.org


https://github.com/Nikita75699/segmentation_tavi
https://github.com/Nikita75699/segmentation_tavi
https://doi.org/10.5281/zenodo.10838384
https://doi.org/10.5281/zenodo.10838384
https://doi.org/10.5281/zenodo.15106413
https://doi.org/10.5281/zenodo.15106413

Laptev et al.

Author contributions

NVL: Software, Visualization, Writing - original draft,
Writing - review & editing, Data curation, Investigation,
Methodology. OMG: Formal analysis, Methodology, Validation,
Writing - review & editing. JKB: Data curation, Writing -
review & editing. EEV: Resources, Data curation, Validation,
Writing - review & editing. MAC: Resources, Data curation,
Validation, Writing - review & editing. VVD: Resources,
Validation, Writing — review & editing, Supervision, Methodology.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This study was
supported by the Russian Science Foundation under Grant No.
24-19-00084, titled “Robotic System for Medical Instrument
Delivery with Integrated Intelligent Information Processing.” For
more  information, visit
24-19-00084/.

please https://rscf.ru/project/

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

References

1. Eggebrecht H, Mehta RH. Transcatheter aortic valve implantation (TAVI) in
Germany 2008-2014: on its way to standard therapy for aortic valve stenosis in the
elderly. Eurolntervention. (2016) 11:1029-33. doi: 10.4244/EIJY15M09_11

2. Chourdakis E, Koniari I, Kounis NG, Velissaris D, Koutsogiannis N, Tsigkas G,
et al. The role of echocardiography and CT angiography in transcatheter aortic valve
implantation patients. ] Geriatr Cardiol. (2018) 15:86. doi: 10.11909/j.issn.1671-5411.
2018.01.006

3. Scarsini R, De Maria GL, Joseph J, Fan L, Cahill TJ, Kotronias RA, et al. Impact
of complications during transfemoral transcatheter aortic valve replacement: how can
they be avoided and managed? ] Am Heart Assoc. (2019) 8:¢013801. doi: 10.1161/
JAHA.119.013801

4. Veulemans V, Mollus S, Saalbach A, Pietsch M, Hellhammer K, Zeus T, et al.
Optimal C-arm angulation during transcatheter aortic valve replacement: accuracy
of a rotational C-arm computed tomography based three dimensional heart model.
World ] Cardiol. (2016) 8:606. doi: 10.4330/wjc.v8.i10.606

5. Kappetein AP, Head SJ, Généreux P, Piazza N, Van Mieghem NM, Blackstone
EH, et al. Updated standardized endpoint definitions for transcatheter aortic valve
implantation: the valve academic research consortium-2 consensus document.
J Am Coll Cardiol. (2012) 60:1438-54. doi: 10.1016/j.jacc.2012.09.001

6. Chan JL, Mazilu D, Miller JG, Hunt T, Horvath KA, Li M. Robotic-assisted real-
time mri-guided tavr: from system deployment to in vivo experiment in swine model.
Int ] Comput Assist Radiol Surg. (2016) 11:1905-18. doi: 10.1007/s11548-016-1421-4

7. Kilic T, Yilmaz I. Transcatheter aortic valve implantation: a revolution in the
therapy of elderly and high-risk patients with severe aortic stenosis. J Geriatr
Cardiol. (2017) 14:204. doi: 10.11909/j.issn.1671-5411.2017.03.002

8. Codner P, Lavi I, Malki G, Vaknin-Assa H, Assali A, Kornowski R. C-THV
measures of self-expandable valve positioning and correlation with implant
outcomes. Catheter Cardiovasc Interv. (2014) 84:877-84. doi: 10.1002/ccd.25594

9. Hertault A, Maurel B, Sobocinski J, Gonzalez TM, Le Roux M, Azzaoui R, et al.
Impact of hybrid rooms with image fusion on radiation exposure during

Frontiers in Cardiovascular Medicine

10.3389/fcvm.2025.1602780

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever
possible. If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcvm.2025.
1602780/ full#supplementary-material

endovascular aortic repair. Eur | Vasc Endovasc Surg. (2014) 48:382-90. doi: 10.
1016/j.¢jvs.2014.05.026

10. Kauffmann C, Douane F, Therasse E, Lessard S, Elkouri S, Gilbert P, et al.
Source of errors and accuracy of a two-dimensional/three-dimensional fusion road
map for endovascular aneurysm repair of abdominal aortic aneurysm. J Vasc Interv
Radiol. (2015) 26:544-51. doi: 10.1016/j.jvir.2014.12.019

11. McNally MM, Scali ST, Feezor RJ, Neal D, Huber TS, Beck AW. Three-
dimensional fusion computed tomography decreases radiation exposure, procedure
time, and contrast use during fenestrated endovascular aortic repair. J Vasc Surg.
(2015) 61:309-16. doi: 10.1016/}.jvs.2014.07.097

12. Panuccio G, Torsello GF, Pfister M, Bisdas T, Bosiers MJ, Torsello G, et al.
Computer-aided endovascular aortic repair using fully automated two-and three-
dimensional fusion imaging. J Vasc Surg. (2016) 64:1587-94. doi: 10.1016/j.jvs.2016.05.100

13. Schulz CJ, Schmitt M, Bockler D, Geisbiisch P. Fusion imaging to support
endovascular aneurysm repair using 3D-3D registration. /] Endovasc Ther. (2016)
23:791-9. doi: 10.1177/1526602816660327

14. Boston Scientific. Data from: ACURATE neo2 TAVI valve system (2025).
(Accessed March 16, 2025).

15. Medtronic. Data from: Corevalve evolut R. Medtronic Cardiovascular. (2025).
Available online at: https://medtronic-cardiovascular.ru/catalog/transkateternoe-
protezirovanie-klapanov/corevalve-evolut-r/?doctor_confirm=yes (Accessed
February 13, 2025).

16. Supervisely. Data from: Supervisely computer vision platform. Supervisely
ecosystem. (2023).

17. Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J. Unet++: a nested U-Net
architecture for medical image segmentation. In: Deep Learning in Medical Image
Analysis and Multimodal Learning for Clinical Decision Support: 4th International
Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in
Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings
4. Springer (2018). p. 3-11.

frontiersin.org


https://rscf.ru/project/24-19-00084/
https://rscf.ru/project/24-19-00084/
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1602780/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1602780/full#supplementary-material
https://doi.org/10.4244/EIJY15M09&lowbar;11
https://doi.org/10.11909/j.issn.1671-5411.2018.01.006
https://doi.org/10.11909/j.issn.1671-5411.2018.01.006
https://doi.org/10.1161/JAHA.119.013801
https://doi.org/10.1161/JAHA.119.013801
https://doi.org/10.4330/wjc.v8.i10.606
https://doi.org/10.1016/j.jacc.2012.09.001
https://doi.org/10.1007/s11548-016-1421-4
https://doi.org/10.11909/j.issn.1671-5411.2017.03.002
https://doi.org/10.1002/ccd.25594
https://doi.org/10.1016/j.ejvs.2014.05.026
https://doi.org/10.1016/j.ejvs.2014.05.026
https://doi.org/10.1016/j.jvir.2014.12.019
https://doi.org/10.1016/j.jvs.2014.07.097
https://doi.org/10.1016/j.jvs.2016.05.100
https://doi.org/10.1177/1526602816660327
https://medtronic-cardiovascular.ru/catalog/transkateternoe-protezirovanie-klapanov/corevalve-evolut-r/?doctor_confirm=yes
https://medtronic-cardiovascular.ru/catalog/transkateternoe-protezirovanie-klapanov/corevalve-evolut-r/?doctor_confirm=yes

Laptev et al.

18. Chaurasia A, Culurciello E. Linknet: exploiting encoder representations for
efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image
Processing (VCIP). IEEE (2017). p. 1-4.

19. Lin TY, Dollar P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid
networks for object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. (2017). p. 2117-25.

20. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
(2017). p. 2881-90.

21. Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with
atrous separable convolution for semantic image segmentation. In: Proceedings of
the European Conference on Computer Vision (ECCV). (2018). p. 801-18.

22.Fan T, Wang G, Li Y, Wang H. Ma-net: a multi-scale attention network for liver
and tumor segmentation. IEEE Access. (2020) 8:179656-65. doi: 10.1109/ACCESS.
2020.3025372

23. Jiang Z, Ou C, Qian Y, Rehan R, Yong A. Coronary vessel segmentation using
multiresolution and multiscale deep learning. Inform Med Unlocked. (2021)
24:100602. doi: 10.1016/j.imu.2021.100602

24. Tyer K, Najarian CP, Fattah AA, Arthurs CJ, Soroushmehr SR, Subban V, et al.
Angionet: a convolutional neural network for vessel segmentation in x-ray
angiography. Sci Rep. (2021) 11:18066. doi: 10.1038/s41598-021-97355-8

25. Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, et al. Transunet: transformers
make strong encoders for medical image segmentation. arXiv [Preprint].
arXiv:2102.04306 (2021).

26. Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, et al. Swin-Unet: Unet-like
pure transformer for medical image segmentation. In: European Conference on
Computer Vision. Springer (2022). p. 205-18.

27. Xie E, Wang W, Yu Z, Anandkumar A, Alvarez JM, Luo P. Segformer: simple
and efficient design for semantic segmentation with transformers. Adv Neural Inf
Process Syst. (2021) 34:12077-90.

28. Tobin J. Data from: Troubleshooting deep neural networks. (2021). Available
online at:  https:/fullstackdeeplearning.com/spring2021/lecture-7/  (Accessed
February 13, 2025).

29. Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: a next-generation
hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. (2019).

30. Li L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A. Hyperband: a novel
bandit-based approach to hyperparameter optimization. ] Mach Learn Res. (2018) 18:1-52.

31. Falkner S, Klein A, Hutter F. BOHB: robust and efficient hyperparameter
optimization at scale. In: International Conference on Machine Learning. PMLR
(2018). p. 1437-46.

32. Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA.

Albumentations: fast and flexible image augmentations. Information. (2020) 11:125.
doi: 10.3390/info11020125

33. Siddique N, Sidike P, Elkin C, Devabhaktuni V. U-net and its variants for medical
image segmentation: theory and applications. arXiv [Preprint]. arXiv:2011.01118 (2020).

34. Jiangtao W, Ruhaiyem NIR, Panpan F. A comprehensive review of U-Net and
its variants: advances and applications in medical image segmentation. IET Image
Process. (2025) 19:¢70019. doi: 10.1049/ipr2.70019

Frontiers in Cardiovascular Medicine

10

10.3389/fcvm.2025.1602780

35. Finello F. Data from: Deeplabv3 and medical imaging. IMAIOS Blog (2022).
Available online at: https://www.imaios.com/en/resources/blog/deeplabv3-and-
medical-imaging (Accessed February 13, 2025).

36. Saitta S, Sturla F, Gorla R, Oliva OA, Votta E, Bedogni F, et al. A CT-based deep
learning system for automatic assessment of aortic root morphology for tavi
planning. Comput Biol Med. (2023) 163:107147. doi: 10.1016/j.compbiomed.2023.
107147

37. Mao Y, Zhu G, Yang T, Lange R, Noterdaeme T, Ma C, et al. Rapid
segmentation of computed tomography angiography images of the aortic valve: the
efficacy and clinical value of a deep learning algorithm. Front Bioeng Biotechnol.
(2024) 12:1285166. doi: 10.3389/fbioe.2024.1285166

38. Kocka V, Bértova L, Valoskova N, Labo$ M, Weichet J, Neuberg M, et al. Fully
automated measurement of aortic root anatomy using philips heartnavigator
computed tomography software: fast, accurate, or both? Eur Heart ] Suppl. (2022)
24:B36-B41. doi: 10.1093/eurheartjsupp/suac005

39. Vernikouskaya I, Rottbauer W, Seeger ], Gonska B, Rasche V, Wohrle J. Patient-
specific registration of 3D CT angiography (CTA) with x-ray fluoroscopy for image
fusion during transcatheter aortic valve implantation (TAVI) increases
performance of the procedure. Clin Res Cardiol. (2018) 107:507-16. doi: 10.1007/
500392-018-1212-8

40. Vernikouskaya I, Rottbauer W, Gonska B, Rodewald C, Seeger J, Rasche V, et al.
Image-guidance for transcatheter aortic valve implantation (TAVI) and cerebral
embolic protection. Int J Cardiol. (2017) 249:90-5. doi: 10.1016/j.ijcard.2017.09.158

41. Busto L, Veiga C, Gonzalez-N6voa JA, Loureiro-Ga M, Jiménez V, Baz JA, et al.
Automatic identification of bioprostheses on x-ray angiographic sequences of
transcatheter aortic valve implantation procedures using deep learning. Diagnostics.
(2022) 12:334. doi: 10.3390/diagnostics12020334

42. Chen Y, Zhang Y, Jiang M, Li J, Han X, Sun K, etal. SFAG-deeplabv3+: An
automatic ~ segmentation approach for coronary angiography images.
Neurocomputing. (2025) 650:130781. doi: 10.1016/j.neucom.2025.130781

43. Zaky M, Thalappillil R, Picone V, Zhan M, Cobey F, Resor C, et al. Practical
fluoroscopy projection algorithm for transcatheter aortic valve implantation to
improve procedural efficiency. Am ] Cardiol. (2022) 179:131. doi: 10.1016/j.
amjcard.2022.06.055

44. Venturi G, Pighi M, Pesarini G, Ferrero V, Lunardi M, Castaldi G, et al.
Contrast-induced acute kidney injury in patients undergoing TAVI compared with
coronary interventions. ] Am Heart Assoc. (2020) 9:¢017194. doi: 10.1161/JAHA.
120.017194

45. Chehab O, Esposito G, Long EJ, Ng Yin Ling C, Hale S, Malomo §, et al.
Contrast volume-to-estimated glomerular filtration rate ratio as a predictor of
short-term outcomes following transcatheter aortic valve implantation. J Clin Med.
(2024) 13:2971. doi: 10.3390/jcm13102971

46. Giannini F, Latib A, Jabbour RJ, Slavich M, Benincasa S, Chieffo A, et al. The
ratio of contrast volume to glomerular filtration rate predicts acute kidney injury and
mortality after transcatheter aortic valve implantation. Cardiovasc Revasc Med. (2017)
18:349-55. doi: 10.1016/j.carrev.2017.02.011

47. Chatani K, Abdel-Wahab M, Wiibken-Kleinfeld N, Gordian K, Pétzing K,
Mostafa AE, et al. Acute kidney injury after transcatheter aortic valve implantation:
impact of contrast agents, predictive factors, and prognostic importance in 203
patients with long-term follow-up. J Cardiol. (2015) 66:514-9. doi: 10.1016/j.jjcc.
2015.02.007

frontiersin.org


https://doi.org/10.1109/ACCESS.2020.3025372
https://doi.org/10.1109/ACCESS.2020.3025372
https://doi.org/10.1016/j.imu.2021.100602
https://doi.org/10.1038/s41598-021-97355-8
https://fullstackdeeplearning.com/spring2021/lecture-7/
https://doi.org/10.3390/info11020125
https://doi.org/10.1049/ipr2.70019
https://www.imaios.com/en/resources/blog/deeplabv3-and-medical-imaging
https://www.imaios.com/en/resources/blog/deeplabv3-and-medical-imaging
https://doi.org/10.1016/j.compbiomed.2023.107147
https://doi.org/10.1016/j.compbiomed.2023.107147
https://doi.org/10.3389/fbioe.2024.1285166
https://doi.org/10.1093/eurheartjsupp/suac005
https://doi.org/10.1007/s00392-018-1212-8
https://doi.org/10.1007/s00392-018-1212-8
https://doi.org/10.1016/j.ijcard.2017.09.158
https://doi.org/10.3390/diagnostics12020334
https://doi.org/10.1016/j.neucom.2025.130781
https://doi.org/10.1016/j.amjcard.2022.06.055
https://doi.org/10.1016/j.amjcard.2022.06.055
https://doi.org/10.1161/JAHA.120.017194
https://doi.org/10.1161/JAHA.120.017194
https://doi.org/10.3390/jcm13102971
https://doi.org/10.1016/j.carrev.2017.02.011
https://doi.org/10.1016/j.jjcc.2015.02.007
https://doi.org/10.1016/j.jjcc.2015.02.007

	Optimized aortic root segmentation during transcatheter aortic valve implantation
	Introduction
	Materials and methods
	Data collection
	Model selection
	Hyperparameter tuning strategy
	Model training strategy

	Results
	Tuning hyperparameters
	Model training
	Patient-level evaluation

	Discussion
	Segmentation performance and robustness
	Positioning within existing solutions
	Clinical relevance and potential impact
	Architectural trade-offs
	Beyond CNNs: transformer and hybrid designs
	Validation strategy and next steps
	Limitations

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


