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Transcatheter aortic valve implantation (TAVI) is a highly effective treatment for 

patients with severe aortic stenosis. Accurate valve positioning is critical for 

successful TAVI, and highly accurate real-time visualization—with minimal use 

of contrast—is especially important for patients with chronic kidney disease. 

Under fluoroscopic conditions, which often suffer from low contrast, high 

noise and artifacts, automatic segmentation of anatomical structures using 

convolutional neural networks (CNNs) can significantly improve the accuracy 

of valve positioning. This paper presents a comparative analysis of various 

CNN architectures for automatic aortic root segmentation on angiographic 

images, with the aim of optimizing the TAVI process. The experimental 

evaluation included models such as FPN, U-Net++, DeepLabV3+, LinkNet, 

MA-Net, and PSPNet, all trained and tested with optimally tuned 

hyperparameters. During training dynamics, DeepLabV3+ and U-Net++ 

showed stable convergence with median Dice scores around 0.88. However, 

when evaluated at the patient level, MA-Net and PSPNet outperformed all 

other models, achieving Dice coefficients of 0.942 and 0.936, and an average 

symmetric surface distance of 4.1 mm. The findings underscore the potential 

of incorporating automatic segmentation methods into decision-support 

systems for cardiac surgery—reducing contrast agent use, minimizing surgical 

risks, and improving valve positioning accuracy. Future work will focus on 

expanding the dataset, exploring additional architectures, and adapting the 

models for real-time application.

KEYWORDS

automatic segmentation, aortic root, angiographic images, TAVI, convolutional neural 

networks

1 Introduction

TAVI represents a vital alternative to conventional surgical aortic valve replacement, 

especially for patients with symptomatic severe aortic stenosis who are at high risk for 

open-heart surgery. The increasing prevalence of TAVI has broadened its indications 

(1). However, complications—often stemming from a mismatch between prosthesis 

size and the fibrous aortic ring (2, 3) or from improper device deployment (4)— 

remain a significant concern. Many post-operative complications are closely related to 
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the experience of the operating surgeon. In addition, patient motion 

(e.g., chest excursion during respiration and cardiac activity) further 

complicates device implantation (5, 6). In addition, the development 

of complications largely depends on the quality of intraoperative 

imaging required for accurate valve placement (2).

Accurate intraoperative imaging is crucial for precise valve 

placement; yet, conventional methods impose limitations due to 

increased radiation exposure and the need for repeated contrast 

injections, which elevate the risk of renal complications. 

Consequently, developing systems that reliably identify key 

anatomical landmarks while minimizing contrast agent use and 

radiation exposure is of paramount importance.

Recent advances in visual support systems allow the 

integration of preoperative three-dimensional computed 

tomography (CT) models with intraoperative X-ray images 

(7, 8). Nonetheless, challenges such as patient movement, 

deformation of anatomical structures by rigid instruments, and 

low image contrast complicate direct comparisons between 

preoperative and intraoperative images (9–13).

To address these challenges, our approach integrates several 

strategies: multi-scale CNN architectures (e.g., U-Net++, 

DeepLabV3+) enhance boundary detection under low-contrast 

and noisy conditions; extensive data augmentation (random 

shifts, rotations, noise addition, perspective distortions) 

improves robustness against artifacts and patient motion; and 

the inclusion of lightweight yet accurate models (e.g., LinkNet, 

MA-Net) ensures computational efficiency suitable for 

intraoperative use. These design choices directly respond to the 

difficulties inherent in real-time angiographic segmentation.

Unlike prior studies, our work focuses on the automatic 

segmentation of the aortic root directly from individual =uoroscopic 

images captured during TAVI. This approach provides a rapid and 

accurate method for segmenting the aortic root, thereby simplifying 

procedural navigation and increasing safety. By combining state-of- 

the-art deep learning techniques with adaptations tailored to 

intraoperative imaging conditions, our method opens new avenues 

for optimizing TAVI procedures and improving clinical outcomes.

This paper provides a comparative analysis of six deep neural 

network architectures—FPN, U-Net++, DeepLabV3+, LinkNet, 

MA-Net, and PSPNet—for automatic aortic root segmentation 

from intraoperative angiographic images. The primary objective 

is to identify the model that delivers high segmentation accuracy 

with minimal contrast media use while maintaining 

computational efficiency. We also discuss hyperparameter 

tuning strategies and model optimization for deployment under 

constrained computing resources.

2 Materials and methods

The development of our segmentation system for aortic root 

segmentation followed a two-stage process:

• Stage 1: Data preparation 

○ Data labeling and creation of training and 

verification sets.

○ Each =uoroscopic image was annotated independently 

by two experienced vascular surgeons. All annotations 

were then reviewed by the Head of the Department of 

Vascular and Interventional Surgery. In cases of 

disagreement or particularly complex anatomy, the 

final segmentation was established by consensus in a 

joint meeting of the annotators. This multi-observer 

approach ensured a high-quality ground truth 

segmentation for training and evaluation.

• Stage 2: Training and evaluation 

○ Selection of CNN architectures, loss functions, and 

evaluation metrics.

○ Systematic evaluation of qualitative and quantitative 

parameters from training and validation datasets.

2.1 Data collection

During endovascular surgeries, including TAVI, angiography 

via =uoroscopy serves as the reference method for dynamic 

intraoperative imaging. Data were collected from intraoperative 

angiographs obtained between 2018 and 2024 during 

implantation procedures in 80 patients with severe aortic valve 

stenosis (Supplementary Table S1). The resulting dataset 

comprises 2,854 images (1, 000 � 1, 000 pixels, 8-bit grayscale). 

For the five-fold patient-level cross-validation, approximately 

86%–88% of patients were assigned to the training set and 12%– 

14% to the validation/test set in each fold. Because the number 

of frames per patient varied, the exact ratio of training vs. test 

images =uctuated slightly across folds.

As part of the TAVI procedures, a series of anonymized images 

were obtained, illustrating four main procedural stages: (i) overview 

angiography (Supplementary Figure S1A), (ii) positioning of the 

catheter and delivery system (Supplementary Figure S1B), (iii) 

initiation of retraction of the delivery system and valve exposure 

(Supplementary Figure S1C), and (iv) control angiography after 

valve implantation (Supplementary Figure S1D). These images 

provide a comprehensive representation of procedural steps, aiding 

in the accurate assessment of device placement and function.

The dataset includes representative images of key procedural 

stages, such as valve positioning, initiation of device retraction 

with valve exposure, and complete valve deployment. Notably, 

some images depict the implantation of the ACURATE neo valve 

(14), while others show the CoreValve Evolut R (15)—both self- 

expanding, supra-annular valves with porcine pericardium lea=ets.

Since precise TAVI device positioning requires tracking 

anatomical landmarks relative to the native valve plane, the 

dataset was further annotated during contrast agent injections 

using the Supervisely web-based computer vision platform (16).

2.2 Model selection

In this study, we evaluated six CNNs for aortic root 

segmentation in angiography images: U-Net++ (17), LinkNet 
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(18), FPN (19), PSPNet (20), DeepLabV3+ (21), and MA-Net (22). 

These models were selected based on their proven performance in 

analyzing complex biomedical images.

U-Net++ is an advanced version of the U-Net architecture 

tailored for medical image segmentation. It employs a deeply 

controlled encoder-decoder structure with nested dense 

transitions between the encoder and decoder, enabling the 

capture of fine details. Its effectiveness has been demonstrated in 

numerous studies, including the semantic segmentation of 

coronary vessel X-ray images (23).

In addition to U-Net++, we employed LinkNet and FPN. 

LinkNet is a lightweight network that uses skip connections to 

efficiently recombine fine details from the encoder to the 

decoder. FPN, characterized by its top-down architecture and 

lateral connections, creates a feature pyramid that enhances the 

segmentation process.

PSPNet and DeepLabV3+ were chosen for their ability to 

process features at multiple scales and improve contextual 

awareness-qualities essential for accurately segmenting complex 

intravascular images, where distinguishing foreground from 

background is challenging (24).

Finally, MA-Net, the most modern CNN in our selection, 

integrates attention mechanisms to focus on the most salient 

features of the image, thereby increasing segmentation accuracy. 

This model effectively exploits the strengths of conventional CNN 

architectures while optimizing feature extraction and presentation.

Although not included in our evaluation, we acknowledge the 

emergence of transformer-based segmentation models such as 

TransUNet, Swin-Unet, and SegFormer (25–27). These architectures 

leverage global self-attention and have demonstrated promising 

results on various segmentation tasks. However, we opted not to 

include them in this study due to several practical considerations. 

First, the self-attention mechanism in transformers has quadratic 

complexity (O(N2)) with respect to the number of image pixels, 

making it computationally prohibitive for our high-resolution 

angiographic images (approximately 1,000 � 1,000 pixels). Second, 

our dataset of 2,854 images (from 81 patients) is relatively small— 

transformer networks, which lack the strong spatial inductive biases 

of CNNs, generally require much larger training datasets to avoid 

overfitting. Third, in an intraoperative clinical setting like TAVI, the 

need for efficient, near-real-time inference favors using lightweight 

CNN architectures that can run quickly on available hardware. 

Moreover, the six CNN models we selected already achieve excellent 

segmentation accuracy in our experiments (Dice coefficient up to 

0.88), indicating that our performance requirements can be met 

without the added complexity of transformers. For these reasons, we 

focused on CNN-based models in this comparative analysis. The 

exploration of transformer-based segmentation approaches is 

deferred to future work when larger datasets and greater 

computational resources become available.

2.3 Hyperparameter tuning strategy

For aortic root segmentation, we carefully configured six 

segmentation networks—U-Net++, LinkNet, FPN, PSPNet, 

DeepLabV3+, and MA-Net. Achieving the optimal training 

settings for these models required a rigorous hyperparameter 

tuning process, during which each model underwent over 200 

configuration tests to ensure optimal performance.

Our tuning process aimed to maximize the segmentation 

score, specifically focusing on the Dice Similarity Coefficient 

(DSC). To this end, we employed the DSC loss function 

(Equation 1), defined as follows:

Loss ¼ 1 �

2
P

ytrue � y pred

� �

þ e

P

ytrue þ
P

y pred þ e

(1) 

where, ytrue and y pred denote the true and predicted label values, 

respectively, and e is a small constant (set to 10�7) for numerical 

stability to prevent division by zero.

Recognizing that not all hyperparameters impact model 

performance equally (28), our focus was on optimizing the most 

critical parameters: the encoder architecture, input image size, 

optimizer selection, and learning rate. Parameters such as batch 

size, activation functions, optimizer parameters, and convolution 

kernel sizes were kept constant. Table 1 provides a detailed 

summary of the hyperparameters studied and their 

corresponding values during model tuning.

Hyperparameter optimization was conducted using a 

combination of Bayesian optimization and an early termination 

strategy. Instead of traditional random or grid search methods, 

we utilized the Optuna (29) library with the Tree-structured 

Parzen Estimator algorithm, which builds a probabilistic model 

of the hyperparameters to identify the most promising 

combinations for further testing. Additionally, early termination 

of unpromising configurations was implemented using 

Hyperband Pruner (30). This combination of methods, 

corresponding to the BOHB approach (31), provided enhanced 

computational efficiency and reliability compared to 

conventional hyperparameter optimization techniques.

2.4 Model training strategy

After determining the optimal hyperparameters, we trained 

and tested our models on the entire dataset. Due to the limited 

number of subjects (80 patients), we employed a 5-fold cross- 

validation approach. In each fold, data from 65 patients were 

TABLE 1 Hyperparameters used in network optimization.

Hyperparameter Value Count

Architecture Unet++, LinkNet, FPN, PSPNet, DeepLabV3 

+, MA-Net

6

Encoder EfficientNet-B0, EfficientNet-B4, 

EfficientNet-B0, SE-ResNeXt50, ResNet-50, 

ResNet-101, SE-ResNeXt101, RegNetX-120

8

Input size 512 � 512, 624 � 624, 896 � 896 3

Optimizer Adam, Radam, RMSprop 3

Learning rate 10�3 , 10�4 , 10�5 3
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used for training and 15 patients for testing (Supplementary 

Table S2). This partitioning scheme ensured that the subject 

groups in each subset remained mutually exclusive, thereby 

preventing any data leakage between training and testing sets.

During the setup and training stages, a series of augmentation 

transformations was applied using the Albumentations library 

(32). These transformations not only expanded the dataset but 

also served as a regularization method to mitigate overfitting. 

The augmentation work=ow included:

• Horizontal �ip with a 50% probability.

• Shift, scale, and rotate with a 50% probability: random shifts, 

scaling, and rotations within specified limits (shift limit = 

0.0625, zoom limit = 0.1, rotation limit = 15).

• Conditional filling: padding images to ensure a consistent size 

for processing.

• Gaussian noise with a 20% probability: adding random noise 

with a variance range of 3–10.

• Perspective distortion with a 50% probability: applying 

random perspective transformations with a scale of 0.05–0.1.

• Random brightness and contrast adjustment with a 90% 

probability: adjusting brightness and contrast within limits 

(brightness limit = 0.2, contrast limit = 0.2).

• Hue, saturation, and value adjustment with a 90% probability: 

shifting hue, saturation, and value within specified limits 

(hue shift limit = 20, saturation shift limit = 30, value shift 

limit = 20).

Since the models vary in complexity, they require different 

amounts of GPU memory when using a fixed batch size. To 

ensure fair learning conditions, we adjusted the batch size so 

that each model utilized approximately 70%–90% of the 

available GPU memory.

All training, tuning, and testing were conducted on server 

hardware comprising a 40-core Intel(R) Xeon(R) Gold 5218R 

CPU @ 2.10 GHz, 512 GB of RAM, and an Nvidia A6000 GPU 

with 48 GB of video memory. The models were developed using 

PyTorch v2.1 and Python v3.11.

3 Results

3.1 Tuning hyperparameters

Each model underwent a rigorous hyperparameter tuning 

process as described in the Section 2.3, with over 200 

configurations tested per model. The results obtained at the 

tuning stage are summarized below and detailed in Table 2:

• Encoder: EfficientNet-B4 and SE-ResNeXt101 were the most 

commonly used encoders across the architectures. Specifically, 

U-Net++ and MA-Net employed EfficientNet-B4, while 

LinkNet, FPN, PSPNet, and DeepLabV3+ were based on SE- 

ResNeXt101.

• Input data size: Input dimensions were adapted for each 

model, ranging from 512 � 512 to 896 � 896 pixels. This 

variation re=ects a trade-off between computational efficiency 

and the level of detail required for accurate segmentation.

• Optimizer and learning rate: Optimizer and Learning Rate: 

RMSprop was primarily used as the optimizer, with the 

exception of PSPNet, which employed Adam.

• Learning rate: The optimal learning rate depended on the 

model architecture, parameter count, and computational 

complexity. For more complex, resource-intensive models 

(e.g., U-Net++, DeepLabV3+), a lower learning rate (0.0001) 

was preferable to maintain training stability. For models with 

fewer parameters and moderate complexity (e.g., FPN, 

LinkNet, PSPNet, MA-Net), a learning rate of 0.001 allowed 

for faster training without degrading performance.

• Accuracy: Model performance was evaluated using the DSC on 

the validation subset, which measures the overlap between the 

model prediction and the true segmentation. DSC scores 

ranged from 0.906 (PSPNet) to 0.916 (FPN), indicating that 

FPN achieved the highest segmentation accuracy during the 

tuning phase.

• Complexity: The number of parameters and the =oating-point 

operations per second (FLOPs) indicate each model’s 

computational requirements. FPN (19.35 million parameters, 

99.2 G FLOPs), DeepLabV3+ (18.62 million, 113.52 

G FLOPs), and LinkNet (17.86 million, 53.18 G FLOPs) have 

a relatively similar (and generally smaller) parameter count, 

though FPN and DeepLabV3+ require higher FLOPs 

compared to LinkNet due to their architectural features. 

U-Net++ exhibited the highest complexity, with 72.38 million 

parameters and 502.097 billion FLOPs, making it the most 

computationally intensive. PSPNet (47.69 million parameters, 

24.19 G FLOPs) and MA-Net (25.63 million parameters, 

39.06 G FLOPs) showed average resource consumption.

• Stability and training time: During hyperparameter tuning, 

DeepLabV3+ experienced 27 crashes, while LinkNet 

encountered only one. The remaining models completed all 

configurations without failures. Tuning times ranged from 

177 h (LinkNet) to 499 h (DeepLabV3+), re=ecting differences 

TABLE 2 Optimal hyperparameters for the studied networks.

Architecture Encoder Input size Optimizer LR Parameters, M FLOPs, G Config checked

U-Net++ EfficientNet-B4 896 RMSprop 0.0001 × 10−4 72.4 502.1 216

LinkNet SE-ResNeXt101 512 RMSprop 0.001 × 10−3 17.9 53.2 215

FPN SE-ResNeXt101 512 RMSprop 0.001 × 10−3 19.4 99.2 216

PSPNet SE-ResNeXt101 512 Adam 0.001 × 10−3 47.7 24.2 216

DeepLabV3+ SE-ResNeXt101 512 RMSprop 0.0001 × 10−4 18.6 113.6 189

MA-Net EfficientNet-B4 896 RMSprop 0.001 × 10−3 25.6 39.1 216
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in model complexity, input size, and the number of 

configurations tested.

The hyperparameter tuning results indicate that FPN achieved the 

highest DSC scores, suggesting that it is the most suitable model 

for aortic root segmentation on the tuning verification subset. 

DeepLabV3+ followed closely, with DSC scores of 0.916 and 

0.915, respectively, while U-Net++ and MA-Net exhibited 

comparable results at 0.913, albeit with a slightly higher 

computational load. Meanwhile, LinkNet and PSPNet provide a 

favorable accuracy-to-complexity ratio, making them particularly 

viable in scenarios with limited computing power or stricter 

processing time requirements.

3.2 Model training

The study conducted a comprehensive assessment of the 

performance and convergence characteristics of six deep 

learning models: U-Net++, LinkNet, FPN, PSPNet, DeepLabV3+ 

and MA-Net. The models were trained over 35 epochs with an 

analysis of the dynamics of the loss function and the DSC 

coefficient (Supplementary Figure S2). The research results 

revealed a consistent pattern in all models, demonstrating a 

gradual decrease in losses and a corresponding increase in the 

DSC coefficient throughout the learning process. These trends 

indicate the ability of models to learn and improve their 

segmentation capabilities as they learn.

Convergence was determined by the stabilization of both 

metrics (Supplementary Table S3). DeepLabV3+ demonstrated 

consistent loss reduction and DSC improvement, reaching 

convergence between epochs 10 and 15. MA-Net and U-Net++ 

also converged rapidly, though with minor =uctuations that 

suggest more complex optimization dynamics. In contrast, 

LinkNet converged at a slower pace, ultimately achieving a DSC 

close to 0.877, while PSPNet showed the slowest convergence 

with a lower median DSC of 0.854. FPN exhibited the least 

stable behavior—likely due to its architectural design or 

hyperparameter configuration.

A detailed performance analysis using DSC metrics revealed 

notable differences in model stability (Supplementary Figure S3). 

The lower bounds, defined by the 1.5�IQR whiskers, ranged 

from 0.754 for PSPNet to 0.817 for DeepLabV3+, with PSPNet 

displaying the widest spread (0.754–0.901) and the lowest 

central tendency. DeepLabV3+ and U-Net++ showed more 

consistent behavior, with DSC values spanning from 0.817 to 

0.913 and 0.826 to 0.913, respectively, indicating stable 

optimization trajectories. Median DSC scores clustered closely 

for the stronger models: U-Net++ (0.882) and DeepLabV3+ 

(0.881) achieved the highest central performance, followed by 

MA-Net (0.878) and LinkNet (0.877). Although FPN reached a 

similar maximum (0.913), its wider interval (0.794–0.913) 

re=ects reduced stability compared to these models. PSPNet, 

with the lowest median DSC (0.854) and the broadest range, 

demonstrated the least reliable segmentation outcomes. 

Maximum DSC values, defined by the upper whisker, ranged 

from 0.901 (PSPNet) to 0.913 (U-Net++, FPN, DeepLabV3+, 

MA-Net), with LinkNet peaking at 0.909.

In summary, DeepLabV3+, U-Net++, and MA-Net emerged 

as the most balanced models in terms of accuracy and stability, 

while PSPNet and FPN may require further optimization to 

reduce variability. However, epoch-wise training analysis does 

not directly re=ect patient-level robustness. To address this, we 

performed a separate evaluation across patients at the best 

epoch for each fold.

3.3 Patient-level evaluation

In addition to epoch-wise training dynamics, we performed a 

patient-level evaluation at the best-performing epoch for each fold 

(Table 3). This analysis provides a clinically oriented estimate of 

segmentation robustness. Median DSC values across patients 

ranged from 0.926 (U-Net++) to 0.942 (MA-Net), while ASSD 

values spanned 4.05–4.89 mm. Reported ASSD values are given 

in millimeters, using a fixed PixelSpacing of 0.390625 mm/pixel 

derived from the DICOM headers of the =uoroscopy system, 

which remained constant across all cases.

MA-Net (EfficientNet-B4) achieved the highest median DSC 

(0.942, 95% CI: 0.934–0.951) and one of the lowest ASSD scores 

(4.07 mm, 95% CI: 3.384–4.387). PSPNet (SE-ResNeXt101) 

produced a nearly comparable DSC (0.936, 95% CI: 0.93–0.94) 

and the lowest ASSD overall (4.05 mm, 95% CI: 3.742–4.910). 

LinkNet, FPN, and DeepLabV3+ achieved intermediate results 

(median DSC � 0.93, ASSD 4.3–4.6 mm). U-Net++ ranked 

lowest with a median DSC of 0.926 (95% CI: 0.917–0.939) and 

the highest boundary error (ASSD 4.89 mm, 95% CI: 3.962– 

5.511). To compare model performance, we performed paired 

Wilcoxon signed-rank tests on the per-patient Dice scores with 

Holm correction for multiple comparisons. This analysis 

confirmed statistically significant differences between several 

model pairs, most notably between MA-Net and U-Net++, MA- 

Net and LinkNet, and PSPNet and U-Net++ (Supplementary 

TABLE 3 Patient-level evaluation results with 95% bootstrap confidence intervals.

Model DSC median DSC 95% CI ASSD median (mm) ASSD 95% CI (mm)

DeepLabV3+ 0.929 [0.915, 0.938] 4.619 [4.034, 5.578]

FPN 0.933 [0.924, 0.941] 4.371 [3.985, 5.469]

LinkNet 0.934 [0.920, 0.939] 4.567 [3.848, 5.420]

MA-Net 0.942 [0.934, 0.951] 4.067 [3.384, 4.387]

PSPNet 0.936 [0.929, 0.943] 4.051 [3.742, 4.910]

U-Net++ 0.926 [0.917, 0.939] 4.894 [4.961, 5.511]
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Table S4). These results reinforce the superiority of MA-Net and 

PSPNet, not only during training dynamics but also when 

evaluated per patient, underscoring their clinical robustness. 

Figure 1 illustrates representative segmentation overlays produced 

by the MA-Net model, highlighting its promising performance.

4 Discussion

4.1 Segmentation performance and 
robustness

This study systematically benchmarks six modern CNN 

architectures for aortic root segmentation on intraoperative 

angiographic frames acquired during TAVI. In a low-contrast, 

artifact-prone setting, U-Net++ and DeepLabV3+ achieved the 

most favorable balance of accuracy and stability (median DSC 

� 0:88), with MA-Net and LinkNet offering competitive 

performance at lower computational cost. These findings align 

with broader medical-imaging evidence that (i) densely connected 

U-Net variants better preserve small structures through multi- 

scale skip paths and deep supervision, and (ii) atrous-convolution 

backbones with pyramid pooling (as in DeepLabV3/+) improve 

context aggregation under limited contrast and variable object 

scales (33–35). While PSPNet and FPN reached high best-case 

scores during tuning, their wider DSC dispersion in cross- 

validation suggests sensitivity to hyperparameters and image 

quality =uctuations, a known challenge in =uoroscopic 

segmentation where noise, motion and overlapping devices 

degrade local gradients. At the patient level, MA-Net and PSPNet 

emerged as the most robust models, combining high overlap 

(Dice � 0.936) with low boundary error (ASSD � 4.1 mm). 

LinkNet, FPN, and DeepLabV3+ performed moderately, with 

Dice around 0.93 and ASSD between 4.3 and 4.6 mm. U-Net++ 

lagged behind, showing the lowest Dice (0.926) and highest ASSD 

(4.89 mm). In addition, statistical testing using paired Wilcoxon 

signed-rank tests with Holm correction demonstrated that 

differences between several models were statistically significant, 

reinforcing the robustness of MA-Net and PSPNet compared to 

others (Supplementary Table S4). Importantly, the patient-level 

evaluation highlighted that overlap-based and boundary-based 

metrics are not always aligned: while MA-Net maximized Dice, 

PSPNet minimized ASSD, pointing to complementary strengths 

in overlap accuracy vs. boundary precision. Together, these 

findings suggest that MA-Net and PSPNet are the most balanced 

and clinically reliable among the tested models, whereas U-Net++ 

—despite strong performance during training-proved less 

consistent at the patient level.

4.2 Positioning within existing solutions

Most automation in TAVI image guidance has focused on pre- 

procedural CT: fully automatic 3D aortic-root (AR) segmentation, 

landmark detection (annulus, STJ), and measurement extraction 

can now reach Dice � 0.90–0.93 and millimetric agreement to 

expert annotations, enabling accurate sizing and prediction of 

optimal C-arm angulation for implantation (36–38). Parallel 

clinical lines of work register these CT models to live 

=uoroscopy (CT-XR fusion) to overlay the annular plane and 

coronary ostia and to guide device trajectories; feasibility and 

work=ow utility have been repeatedly demonstrated, including 

improved projection selection and targeted catheterization (and, 

in related structural cases, PVL closure guidance) (39, 40).

By contrast, purely =uoroscopy-based automation remains less 

explored. Prior angiographic deep-learning has concentrated on 

prosthesis or coronary vessel segmentation (often with 

DeepLabV3+-type decoders or custom pre-processing), rather 

than segmenting native aortic-root anatomy during valve 

deployment (24, 41, 42). Our results therefore complement CT- 

centric pipelines and fusion systems: they show that, even 

without CT, single-frame =uoroscopic segmentation of the aortic 

root is technically feasible at clinically meaningful overlap, and 

can be computed fast enough for intraoperative decision support 

when lightweight backbones are chosen.

4.3 Clinical relevance and potential impact

From a clinical perspective, accurate delineation of the aortic 

root on live angiography has three immediate implications: 

1. Projection and deployment control. When the annular plane 

and sinuses are well segmented, operators can cross-check depth 

and coaxiality against the prosthesis in real time, particularly 

during rapid pacing or partial release. This complements CT- 

predicted C-arm angles and reduces reliance on repeated 

contrast runs to “re-find” the annulus in challenging anatomies 

(e.g., heavy calcification, horizontal aortas) (43).

2. Complication mitigation. Better intraoperative landmarking 

is mechanistically linked to less malpositioning-which in 

turn is a major driver of paravalvular leak, conduction 

disturbances and reintervention. While our study did not 

test clinical outcomes, CT-=uoro fusion literature already 

shows that improved landmark visualization facilitates device 

manipulation; by analogy, robust =uoro-native segmentation 

could offer similar intraoperative guardrails without the 

prerequisites of CT registration (39, 40).

3. Contrast stewardship. Repeated contrast injections for 

annulus re-identification contribute to Acute Kidney Injury 

risk (AKI), which is associated with worse short-term 

outcomes after TAVI. Multiple studies emphasize the 

importance of minimizing contrast volume and/or scaling it 

to renal function (e.g., contrast-to-eGFR ratios) to reduce 

AKI and mortality risk; tools that stabilize visualization at 

lower contrast loads are therefore clinically attractive (44–47).

4.4 Architectural trade-offs

Across architectures, two patterns emerged. First, multi- 

scale, dilation-based decoders (DeepLabV3+) and densely nested 
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FIGURE 1 

Aortic root segmentation results: (A, C, E, G) segmentation mask labeling by an interventional cardiologist; (B, D, F, H) segmentation mask labeling by 

the MA-Net model.
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U-Net++ variants were consistently resilient to low SNR and 

background clutter-mirroring their documented strengths in 

other angiographic tasks that require long-range context with 

local boundary fidelity. Second, efficiency matters: LinkNet and 

MA-Net delivered respectable median DSC with markedly fewer 

FLOPs/parameters, which is relevant for real-time intraoperative 

deployment on commodity GPUs. These observations are 

congruent with the broader literature where tailored Deeplab/U- 

Net derivatives, sometimes preceded by contrast-normalization 

and denoising subnets, top benchmarks on X-ray 

angiography datasets.

4.5 Beyond CNNs: transformer and hybrid 
designs

Emerging transformer-based and hybrid models (e.g., Swin- 

DeepLab, TransDeepLab) may further enhance robustness to 

long-range dependencies and out-of-distribution artifact 

patterns. Early medical imaging studies suggest superiority over 

pure CNNs in heterogeneous datasets. Given dataset size and 

intraoperative latency constraints, CNNs were prioritized here; 

however, future work should evaluate compact transformer- 

CNN hybrids for potential deployment.

4.6 Validation strategy and next steps

Beyond cross-validated DSC, three axes of validation are 

critical: 

• Generalization and reproducibility. External, multi-center 

testing across vendors and acquisition protocols, with reader- 

study assessment of anatomical plausibility (annular plane, 

coronary ostia proximity) and inter-observer agreement.

• Task-linked endpoints. Prospective studies that randomize or 

compare standard care vs. “segmentation-assisted” guidance 

should track projection changes, number of contrast runs, 

contrast-to-eGFR ratio, pacing time, device depth variance, 

and early outcomes (PVL grade, PPM implantation, 30-day 

AKI). Such endpoints have precedent in CT-=uoro fusion 

and AKI literature and can ground the technical metric in 

clinical effect size (40, 45).

• Work�ow integration. Latency profiling and fail-safe design 

(confidence estimates with automatic fallback to manual 

work=ow) are essential for OR adoption. In parallel, 

combining our =uoro-native segmentation with optional pre- 

procedural CT (when available) could offer a hybrid path: 

our mask stabilizes the annulus in noisy frames, while CT 

supplies pre-computed angles and 3D context (38).

4.7 Limitations

This study is limited by its single-center dataset and evaluation 

restricted to contrast-enhanced =uoroscopy frames. Non-contrast 

frames, extreme motion, and heavy device overlap remain 

challenging. Transformer hybrids were not benchmarked, and 

real-time performance was not tested under continuous cine 

acquisition. Most importantly, prospective outcome studies are 

required to establish clinical benefits beyond segmentation 

accuracy. The obtained results remain preliminary and should 

be considered as hypotheses awaiting confirmation in future 

multicenter studies based on the results.

5 Conclusion

This study demonstrates that U-Net++ and DeepLabV3+ 

achieve accurate, reliable aortic root segmentation during 

training, with stable convergence and consistent DSC 

performance. However, when evaluated on a patient-level basis, 

MA-Net and PSPNet outperformed all other models, combining 

the highest Dice values with the lowest ASSD errors. These 

results emphasize that patient-level evaluation provides a stricter 

and more clinically relevant measure of segmentation reliability.

By enabling reliable visualization under low-contrast and 

noisy imaging conditions, our approach aligns with clinical 

needs to minimize contrast exposure, especially important given 

the well-recognized association between contrast volume and 

post-TAVI renal injury. Our publicly released dataset, models, 

and code establish a reproducible foundation for =uoroscopy- 

based decision-support in TAVI.

Next steps include multicenter clinical validation, integration 

into real-time operating-room work=ows, and quantitative 

assessment of procedural benefits, such as reduced contrast use, 

shorter procedural times, improved deployment accuracy, and 

better patient safety outcomes.
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