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Objective: To assess the performance of a lesion-specific pericoronary adipose
tissue (PCAT) radiomics model in comparison to a right coronary artery (RCA)
PCAT model in predicting major adverse cardiovascular events (MACE) over a
three-year period in patients diagnosed with coronary artery disease (CAD).
Additionally, the study aims to evaluate the incremental predictive value of
combined models integrating clinical features.

Methods: This study conducted a retrospective analysis involving 242 patients
with coronary artery disease who underwent coronary CT angiography
(CCTA) with MACE occurring in 121 cases. The right coronary artery and
lesion-specific PCAT were segmented using the Peri-coronary Adipose Tissue
Analysis Tool software (Shukun Technology Co., Ltd.), and 93 radiographic
features were extracted, and the features were screened by Pearson
correlation coefficients and Lasso regression after the features were
processed by Min-Max Normalization. Machine learning techniques were
utilized to construct four models: the right coronary artery PCAT model
(RCA-model), the lesion-specific PCAT model (LS-model), the clinical model
(Cli-model), and two combined models (Cli-RCA model and Cli-LS model).
The performance of these models was evaluated by receiver operating
characteristic (ROC) curves, calibration curve and decision curve analysis (DCA).
Results: The LS-model demonstrated superior predictive performance with AUC
values of 0.821 and 0.838 in the training and test cohorts, respectively. This
performance surpassed that ofthe RCA-model, which recorded AUC values of
0.789 and 0.788. Notably, the Cli-LS model achieved the highest AUCs of 0.873
and 0.877. The difference in AUC was statistically significant (p<0.05).
Calibration curves indicated excellent agreement between predicted and
observed risks, as indicated by aHosmer-Lemeshow test result of P>0.05.
Furthermore, decision curve analysis confirmed a higher net clinical benefit.
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Conclusion: Lesion-specific PCAT radiomics features demonstrate superior
predictive capability for MACE compared to f RCA-based features. Integrating
clinical risk factors further enhances model performance, offering a noninvasive
imaging tool for risk stratification in patients with CAD.

KEYWORDS

coronary computed tomography angiography, pericoronary adipose tissue, lesion-
specific pericoronary adipose tissue, radiomics, major adverse cardiovascular events

1 Introduction

Coronary artery disease (CAD) is recognized as one of the
leading lethal factors worldwide (1), leading to endpoint events,
such as acute myocardial infarction and sudden death. These
outcomes not only constitute a major threat to the lives of
patients, but also significantly affect their quality of life. In 1999,
Professor Rose had proposed that atherosclerosis is a chronic
inflammatory lipid disease (2), with the lipid infiltration theory
serving as the pathophysiological foundation of atherosclerosis
(3). Furthermore, vascular inflammation plays an important role
in the formation, progression, and rupture of atherosclerotic
plaques (4). There is a bidirectional communication mechanism
between pericoronary adipose tissue (PCAT) and the vessel wall
(5). Under pathological conditions, when vascular inflammation
occurs, PCAT induces mesenchymal changes in the vessel wall
from the outside in through the release of pro-inflammatory
factors and inflammatory cytokines. Conversely, the vessel wall
can influence PCAT through paracrine secretion. This interplay
contributes to the formation of coronary atherosclerotic plaques
and facilitates a reversible shift of PCAT from a lipid phase to
an aqueous phase, which can be noninvasively identified by
imaging techniques such as coronary computed tomography
angiography (CCTA).

CCTA has been an important tool for the noninvasive
diagnosis of CAD, and plays a crucial role in the assessment of
MACE (6). The CRISP CT study (7) demonstrated that the fat
attenuation index (FAI) in the periphery of the right coronary
artery (RCA) could be used as a representative biomarker for
the comprehensive assessment of coronary inflammation and
high FAI values are an important indicator of increased cardiac
mortality. A study (8) suggested that lesion-specific pericoronary
adipose tissue CT attenuation (PCATa) in the region of
coronary lesions was better than that in the right coronary
artery in predicting MACE. That is, in prognostic evaluation,
lesion-specific inflammation has a higher priority compared to
overall inflammation.

With the continuous advancement of artificial intelligence
technology, the application of radiomics in the field of medical
research is expanding. In addition to coronary inflammation due
to PCAT, radiomics can also capture spatial structural changes
of irreversible PCAT, such as lipofibrosis and microvascular
remodeling (9). Numerous studies have confirmed the
superiority of radiomics of PCAT in the prediction of adverse
cardiovascular events (10-12), and the radiomics model of
PCAT in the RCA is superior to the radiomics model of PCAT
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in the other two coronary arteries (13). It has also been
demonstrated (14) that imaging histology models of lesion-
specific PCAT have a higher value than traditional risk factors
in MACE prediction.

Therefore, we constructed five predictive models: right
coronary artery PCAT radiomics model(RCA-model), lesion-
specific PCAT radiomics model(LS-model), clinical model(Cli-
model), clinical-right-coronary-artery PCAT radiomics model
(Cli-RCA model), and clinical-lesion-specific PCAT radiomics
model(Cli-LS model). The objective of these models is to
investigate the predictive effects of right coronary artery PCAT
PCAT
characteristics, and clinical characteristics on the occurrence of

radiomics  characteristics, lesion-specific radiomics
MACE within three years following CCTA examination,and to
lesion-specific PCAT

incremental value for MCAE prediction.

see whether radiomic feature have

2 Materials and methods
2.1 Study population

This study retrospectively collected 984 patients diagnosed
with CAD who underwent CCTA at the Medical Imaging
Center of Liaoning University of Traditional Chinese Medicine
Hospital from August 2020 to December 2023. Among these
patients, 123 patients experienced MACE within three years
after undergoing inclusion and exclusion criteria screening. The
occurrence of MACE in patients was determined based on the
hospital’s electronic medical records as well as telephone follow-
ups. Clinical risk factors available for each patient were
collected, including gender, age, body mass index, cardiovascular
risk factors, medication usage, total cholesterol, triglycerides,
high-density lipoprotein cholesterol, low-density lipoprotein
cholesterol, C-reactive protein, and blood glucose. MACE was
defined as cardiac death (including fatal acute myocardial
infarction), malignant arrhythmias, nonfatal acute myocardial
infarction, new-onset congestive heart failure, coronary
revascularization (after six weeks of CCTA), and readmission
due to unstable angina. Patients without MACE were matched
to patients with MACE in terms of sex, age, body mass index,
cardiovascular risk factors, and medications. In this study,
multivariate logistic regression was used to calculate propensity
scores, and Propensity Score Matching (PSM) was applied to
control for inter-group confounding factors. The matching

process adopted a 1:1 nearest-neighbor matching method with a
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sampling strategy of no replacement, and the caliper value was set
at 0.1. Propensity scores were estimated based on potential
variables such as relevant baseline characteristics and clinical
features. After matching, the absolute standardized mean
differences (SMD) of variables between the MACE group and
the non-MACE group tended to be balanced. Using the
criterion that the absolute value of SMD is less than 0.1, the
covariates of the two groups were considered to achieve good
balance after matching. Exclusion criteria were as follows:
previous coronary revascularization, incomplete clinical data of
patients, poor quality of CCTA images, abnormal coronary
artery origins, coronary revascularization within six weeks of the
CCTA examination, target plaque located in myocardial bridges,

10.3389/fcvm.2025.1600942

malignant tumors, and patients with other cardiac diseases
(Figure 1). All enrolled patients were divided into training and
test groups in a 7:3 ratio. The local institutional review board
and ethics committee approved this retrospective
[approval number: Y2025004CS(KT)-004-01].

study

2.2 CCTA acquisition

CCTA scans were performed using a 256-slice CT scanner

(Brilliance  iCT,  Royal  Philips)  with  prospective
electrocardiographic gating. The scanner specifications included
collimator 128 x 0.625 mm, tube voltage 100 or 120kV,

Patients with CCTA from August
2020 to December 2023

Excluded(n=932):
—No abnormalities(n=887)

Y

—Malignant tumor(n=15)
—Other heart diseases(n=18)
—Coronary origin variation(n=12)

Consecutive pa

tients admitted
with CAD(n=984)

Excluded(n=145):
—Previous revascularization(n=109)
—Incompleted clinical information(n=22)

—Poor CCTA image quality(n=9)
—Interval between CCTA and coronary
revascularization < 6 weeks(n=5)

!

MACE(n=123)

Excluded:
—Target plaque is located
myocardial bridge(n=2)

A

MACE(n=121)

:

Non-MACE(n=716)

| Matching by sex,age,BMI,risk
factors and medications

Non-MACE(n=121)

;

Final dataset
(n=242)

l

Randomed devided by 7:3

.

Training dataset
(n=164)

1

'

Test dataset
(n=78)

3

MACE(n=83) MACE(n=81)

MACE(n=38)

MACE(n=40)

FIGURE 1

major adverse cardiovascular events.

A flowchart of patient recruitment and study design. CCTA, coronary computed tomography angiography; CAD, coronary artery disease; MACE,
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automatic tube current adjustment, layer spacing 0.625 mm, layer
thickness 0.9 mm, rotation time 270 ms. The acquisition time
window was controlled at 30%-80% of the R-R interval. For
all
nitroglycerin to dilate the coronary arteries and a [-blocker

optimal image quality, patients received sublingual
(metoprolol, 25 or 50 mg, orally) was administered as needed
30 min before performing the CCTA scan to reduce the target
heart rate of less than 65 beats per minute. A nonionic contrast
medium (Iophorol 350 mgl/ml, Hengrui Pharmaceutical Co.,
Ltd., Jiangsu) was administered through a high-pressure syringe
at a 5 ml/s flow rate through an anterior elbow vein, followed by

40 ml of saline at the same flow rate.

2.3 Segmentation and radiomics feature
extraction for PCAT

PCAT and radiomic feature

extraction were performed using PCAT analysis tool software

automatic segmentation
(Shukun Technology Co., Ltd.) (images were in a uniform
DICOM format and de-noised as well as normalized before
uploading them to the software). PCAT was defined as all
adipose tissue surrounding the coronary arteries within a radial
distance outside the vessel wall equal to the diameter of the
vessel, with CT attenuation values ranging from —190 and —30
Hounsfield units (HU). To avoid the effect of aortic wall
pulsation, we excluded PCAT in the RCA within 10 mm from
the coronary ostium and automatically tracked PCAT in the
proximal segment of the RCA (10-50 mm segment) by software.

The assessment of lesion-specific peri-coronary adipose tissue in
patients with MACE was determined by target plaques, which were
identified by CT-derived fractional flow reserve (CT-FFR) analysis

10.3389/fcvm.2025.1600942

(CoronaryD0c®—FFR, Shukun China).
A target plaque was defined as a lesion exhibiting a positive CT-

Technology, Beijing,
FFR < 0.8, measured 2 cm distal to a plaque, indicating a potential
impact on the hemodynamics of the corresponding coronary
artery (as illustrated in Figure 2). When multiple target plaques
existed, the plaque corresponding to the lowest CT-FFR value was
selected as the target plaque. Because target plaques may not be
present in non-MACE patients in the control group, we chose to
perform PCAT segmentation and feature extraction at the
narrowest point of the coronary artery in each non-MACE
patient. Figure 3 shows the main processes of radiomics.

Each patient will undergo segmentation and extraction of
PCAT radiomic features from the proximal RCA and around
the target plaque. A total of 93 radiomic features will be
extracted from lesion-specific PCAT or PCAT of the RCA for
each segmentation (as detailed in the Supplementary Material),
so that each patient will ultimately generate 186 radiomic features.

2.4 Feature selection and prediction model
building

We plan to develop five risk prediction models to predict the
occurrence of MACE in patients with coronary artery disease
based on the training dataset: right coronary artery PCAT
radiomics model (RCA-model), lesion-specific PCAT radiomics
model (LS- model), clinical model (Cli-model), clinical-right-
coronary-artery PCAT radiomics model (Cli-RCA model), and
clinical-lesion-specific PCAT radiomics model (Cli-LS model).
The performance of these models was evaluated using the test
dataset. The process of feature selection and model construction
is described below:

FIGURE 2

in (B) as 0.67.

An example of target plaque selection in the left anterior descending branch (LAD, left anterior decending branch). In (A), the blue-arrowed portion is
the area of severe stenosis in the LAD, the green-marked portion is 2 cm from the area of severe stenosis, and the red and orange areas are the
outlined extent of lesion-specific peri-coronary adipose tissue. The value of CT-FFR at 2 cm from the region of severe stenosis can be obtained
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FIGURE 3
Radiomics workflow. PCAT, pericoronary adipose tissue

2.4.1 Radiomics and clinical feature selection
2.4.1.1 Clinical feature selection

Clinical features included were sex, age, BMI, total cholesterol,
triglycerides, HDL cholesterol, LDL cholesterol, glucose, and
C-reactive protein. Prior to feature selection, the clinical data
were normalized, which was executed through Min-Max
Normalization. This method involved a linear transformation of
the data, scaling it to the range of [0,1], as calculated by the
following equation:

X — Xmi
Xnew = -
Xmax - Xmin
Where X is the original data of clinical features, X, is the
and X,.. is the
maximum value in the feature dataset. Then, the Pearson

minimum value in the feature dataset,
correlation coefficient was used to screen for features with |
r]>0.95, so as to improve the efficiency and stability of the
model. Finally, Lasso was used to screen clinical features with
non-zero coefficients. Ten-fold cross-validation was used in the
Lasso process to ensure good generalization performance of the
Lasso regression, and clinical scores were calculated.

2.4.1.2 Radiomics feature selection

The selection of radiomics features was consistent with the
clinical feature screening process described in Section 2.4.1.1,
and the radiomics score was calculated.

2.4.2 Prediction model construction

It has been reported (15) that among multiple machine
learning algorithmic models, the Extreme Gradient Boosting
(XGBoost) algorithm performed the best in several studies and
even outperformed or equaled the models specifically trained in
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each section. Therefore, this algorithm was adopted for all five
models in this study. The optimal parameters of each model in
the training set were determined through grid search and cross-
validation, and the data in the test set were not involved in
parameter tuning.

2.4.2.1 Clinical model construction

The clinical model is an XGBoost model constructed based on
clinical risk factors with coefficients other than zero selected by
Lasso.

2.4.2.2 RCA-model and LS-model construction

Both the RCA PCAT radiomic model and the lesion-specific
PCAT radiomic model incorporated their respective radiomic
features selected by Lasso regression analysis, and the models
were constructed by XGBoost.

2.4.2.3 Cli-RCA model and Cli-LS model construction
Both the Cli-RCA model and the Cli-LS model incorporated

their respective Lasso-screened clinical risk factors as well as

features selected after Pearson-Lasso

radiomic regression

analysis, and the models were constructed using XGBoost.

2.5 Model performance evaluation

The performance of the models was assessed using several
indicator, including Area under the curve (AUC), accuracy,
sensitivity, specificity, precision, and F1-Score. The DeLong test
was used to compare the differences in AUC between different
models. Calibration curves were plotted and the Hosmer-
Lemeshow test was performed to assess the differentiation and
calibration of the models. Clinical DCA was performed to assess
the clinical utility of the models.
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2.6 Statistical analysis

SPSS (version 26.0) software and Neusoft Explore Multimodal
Medical Artificial Intelligence Platform were used for data
analysis. Statistical tests were performed using two-sided tests,
and P <0.05 was considered a statistically significant difference.
Categorical data were described by number and percentage,
while continuous data that conformed to normal distribution
were described by mean + standard deviation, and continuous
data that did not conform to normal distribution were described
by median (interquartile spacing). Comparisons between groups
of Categorical data were tested by y* test or Fisher’s exact
probability method, while the Students’ t-test was used for
normally distributed continuous data, and the Mann-Whitney
U test was used for non-normally distributed continuous data.

3 Results
3.1 Clinical characteristics

Through PSM analysis, a total of 242 patients were successfully
matched between the MACE group (n =141) and the non-MACE
group (n=141) (Figure 1). Clinical characteristics of the training
group (n=164) and the test group (n=78) are shown in Table 1.
In the training and test groups, MACE patients and non-MACE
patients were well matched with respect to sex, age, body mass
index(BMI), cardiovascular risk factors, and medications, with no

TABLE 1 Clinical features in the training and test datasets.

10.3389/fcvm.2025.1600942

significant differences between the two groups (P>0.05). The
average duration between the CCTA examination and the
occurrence of MACE was 15.7+7.96 months. Based on the
training group, total cholesterol (TC) and low-density lipoprotein
cholesterol (LDL-C) were significantly associated with MACE in
univariate analyses. Among the patients with MACE, there were 2
cases of cardiac death (1.65%), 4 cases of malignant arrhythmia
(3.3%), 19 cases of nonfatal acute myocardial infarction (15.7%), 5
cases of new-onset congestive heart failure (4.8%), and 36 cases of
coronary artery revascularization (29.75%), and 55 cases of
readmission for unstable angina (45.45%).

3.2 Feature selection and construction of
the model

3.2.1 Clinical factor selection and model
construction

Clinical features were screened by Lasso and showed that total
cholesterol, high-density lipoprotein cholesterol, and low-density
lipoprotein cholesterol were independent risk factors for MACE.
Cli-model was constructed based on the independent risk
factors screened above. The clinical score was calculated using
the following formula:

Cli — Score = 0.4466988849281064 — 0.08799032630039208
xCHOL + 0.0010963240852162903
xHDL — C + 0.34643333392075903 x LDL — C

Variables Training Test
MACE (n =83) ¥ Non-MACE (n=81) | P-value @ MACE (n=38) Non-MACE (n=40) P-value
Male 50 (60.24) 49 (60.49) 0.974 20 (52.63) 21 (52.50) 0.991
Age, years 63 (59, 68) 65 (59, 70) 0.189 63.9+7.39 63.8+6.88 0.966
BMIkg/m2 25.6+1.65 25.4+1.37 0.549 25.8+1.39 255+1.36 0.304
Cardiovascular risk factors
Smoking 27 (32.53) 25 (30.86) 0.819 14 (36.84) 12 (30.00) 0.522
Drinking 29 (33.73) 27 (33.33) 0.828 15 (39.47) 17 (42.50) 0.786
Hypertensive 51 (61.45) 51 (62.96) 0.841 24 (63.16) 25 (62.50) 0.952
Hyperlipidemia 9 (10.84) 8 (9.88) 0.839 3 (7.89) 3 (7.50) 0.948
Diabetes 29 (34.94) 30 (37.04) 0.780 13 (34.21) 15 (37.50) 0.762
Medications
Beta-blocker 6 (7.23) 5 (6.17) 0.787 3 (7.89) 4 (10.00) 0.745
ACE-1/ARB 21 (25.30) 22 (27.16) 0.787 10 (26.31) 11 (27.50) 0.906
CCB 18 (21.69) 16 (19.75) 0.760 8 (21.05) 7 (17.50) 0.691
Statin 17 (20.48) 19 (23.46) 0.645 4 (10.53) 4 (10.00) 0.939
Antiplatelet 19 (22.89) 22 (27.16) 0.528 5 (13.15) 4 (10.00) 0.663
Inflammatory markers, Lipids and Hypoglycemia
CHOL, mmol/L 5.24 (4.78, 5.62) 4.77 (3.86, 5.22) <0.001% 5.14+0.95 4.63+0.99 0.023*
TG, mmol/L 1.85 (1.42, 2.7) 1.72 (1.38, 2.19) 0.226 1.77 (1.41, 2.51) 1.92 (1.69, 2.17) 0.296
HDL-C, mmol/L 1.12 (0.95, 1.34) 1.17 (0.94, 1.54) 0.101 1.15 (0.98, 1.27) 1.19 (0.99, 1.49) 0.365
LDL-C, mmol/L 2.91+0.828 2.47 +0.874 0.001* 2.89 (2.16, 3.46) 2.34 (2.05, 3.15) 0.335
Blood glucose, mmol/L 6.07 (5.25, 7.03) 6.15 (5.33, 7.82) 0.859 5.87 (5.06, 6.88) 5.95 (4.96, 7.20) 0.968
C-reactive protein 4.8 (3.34, 6.55) 4.5 (3.25, 5.87) 0.406 425 (2.04, 4.97) 4.61 (3.88, 7.17) 0.072

MACE, major adverse cardiovascular events; BMI, body mass index; ACE-I, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; CCB, calcium channel blockers;

CHOL, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol.
*Indicated p < 0.05 with significance.
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3.2.2 Radiomics feature selection and model
construction

After feature selection by Min-Max Normalization, Pearson
correlation coefficient, and Lasso regression, the remaining
radiomics features for lesion-specific PCAT and RCA were 13
and 4 (Supplementary Material). LS-model and RCA-model
were constructed based on the radiomics features selected
above. Radiomics scores for both were calculated using the
formula:

RCA — Score = 0.15369785450499812 — 0.14163992422547764
x GLCM_InverseVariance — 0.26511991704637805
xGLSZM _LargeAreaHighGrayLevelEmphasis — 0.6789869017416388
x GLDM_DependenceNonUniformity + 0.8698829309013162
x GLDM_DependenceNonUniformityNormalized

LS — Score = 0.1002937208619752 + 0.21818380941201035
x FirstOrder_90Percentile + 0.15214465516983042
x FirstOrder_Mean + 0.9579877107143626
x FirstOrder_Minimum + 0.40730891742443626
x FirstOrder_TotalEnergy + 0.5738007754053269
xGLCM_Imc2 — 0.2924607299040573
x GLCM_InverseVariance — 0.11191226949584672
X GLSZM_SmallAreaLowGrayLevelEmphasis
+0.040345574601068655 x GLSZM_ZoneEntropy
—0.21375193026293665 x GLSZM_ZoneVariance
+0.268626376677788 x GLRLM_ShortRunLowGrayLevelEmphasis
+0.4697874003277172 x NGTDM_Coarseness
+0.08654636959841888 x NGTDM_Strength
—0.47909757307998235 x GLDM_GrayLevelNonUniformity

10.3389/fcvm.2025.1600942

3.2.3 Combined model construction

The clinical features and radiomic features selected by the
above process were integrated with each other to construct Cli-
RCA mode and Cli-LS model.

3.3 Model evaluation

The ROC curves for the training and testing groups of each
model are shown in Figure 4. Compared with the RCA-model
[AUC=0.789 (95% CI: 0.721-0.857), AUC=0.788 (95% CIL:
0.689-0.888)], the LS-model [AUC=0.822 (95% CI 0.759—
0.884), AUC=0.838 (95% CI 0.751-0.925)]
predictive performance. The predictive performance of the

had superior

clinical and radiomics features integration model was improved.
Compared with the Cli-RCA model [AUC=0.825 (95% CI:
0.762-0.887), AUC =0.822 (95% CI: 0.729-0.915)], Cli-LS model
[AUC=0.873 (95% CIL: 0.821-0.925), AUC=0.877 (95% CI:
0.797-0.957)] still possessed a superior prediction performance
for MACE. DeLong test showed that the training and test
groups’ AUC were not significantly different (p>0.05). The
AUC, accuracy, sensitivity, specificity, precision, and F1-Score of
each model are detailed in Table 2.

The calibration curves of Cli-RCA model and Cli-LS model
are shown in Figure 5 (Hosmer-Lemeshow test, P-value > 0.05).
This finding indicates that the above models have good
agreement between the training dataset and the testing dataset,
and the results of the prediction of MACE are reliable.

Clinical decision curve analyses were plotted to assess whether
the model resulted in a higher net benefit to the patient. As
illustrated in Figure 6, the DCA for the Cli-RCA model and the
Cli-LS model indicates that the Cli-LS model possessed a higher
overall net benefit within a reasonable threshold.

ROC Curve(traning dataset)
10 ——C 7

Sensitivity

, Cli-model

P —RCA-model
0 LS-model
Cli-RCA model
Cli-LS model |

1-Specificity

FIGURE 4

0.0 0.2 04 06 08 1.0

ROC curves for each model in the training dataset (left) and test dataset (right).

ROC Curve(test dataset)
1.0 s — _r_/— /»‘/ >
Cli-model
— RCA-model
; LS-model
I /// Cli-RCA model
Ed Cli-LS model
0'00.’6 02 04 06 08 10
1-Specificity

Frontiers in Cardiovascular Medicine

frontiersin.org



Huang et al.

TABLE 2 Performance evaluation of each model in the training dataset and test dataset.

AUC (95% Cl)

Train

Test

Accuracy

Train

Test

Sensitivity

Train

Test

Specificity

Train | Test

10.3389/fcvm.2025.1600942

Precision

Train

Test

F1-score

Train

Test

Cli-model 0.748 (0.675, 0.822) 0.778 (0.678, 0.882) 0.652 0.654 0.891 0.737 0.407 0.575 0.607 0.622 0.722 0.675
RCA-model 0.789 (0.721, 0.857) 0.788 (0.689, 0.888) 0.654 0.695 0.771 0.605 0.617 0.725 0.674 0.677 0.719 0.639
LS-model 0.822 (0.759, 0.884) | 0.838 (0.751, 0.925) 0.738 0.718 0.868 0.868 0.605 0.575 0.692 0.660 0.770 0.750
Cli-RCA model 0.825 (0.762, 0.887) 0.822 (0.729, 0.915) 0.744 0.756 0.771 0.763 0.716 0.750 0.736 0.744 0.753 0.753
Cli-LS model 0.873 (0.821, 0.925) 0.877 (0.797, 0.957) 0.781 0.833 0.819 0.868 0.741 0.800 0.764 0.805 0.791 0.835
95% CI, 95% confidence interval.
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FIGURE 5
Calibration curves for the combined model training dataset (left) and test dataset (right). The closer the calibration curve is to the dashed diagonal
line, the higher the calibration.
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Decision curve analysis (DCA) for the combined model training dataset (left) and test dataset (right). Where Model 1 is the Cli-RCA model and Model 2
is the Cli-LS model. The DCA show that based on the training group, the Cli-LS model predicts higher benefits for MACE when the threshold
probability is at greater than 30%, and based on the test group, the Cli-LS model predicts higher benefits for MACE when the threshold
probability is greater than 22%. The Y axis denotes net benefit and X axis denotes threshold probability.
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4 Discussion

A previous randomized controlled trial (16) demonstrated
that in patients with stable coronary artery disease and
functionally significant stenosis identified by FFR, FFR-
induced percutaneous coronary intervention (PCI) plus
optimal drug therapy reduces the need for emergency

revascularization when compared to optimal drug therapy

Frontiers in Cardiovascular Medicine 08

alone. This intervention is important for the prevention of
end-point outcome events including the composite end
point of death, myocardial infarction, or emergency
revascularization. However, due to the invasive nature and
high costs of FFR, its application in clinical practice has been
limited. The exploration of a noninvasive and easy-to-use
method for the prediction of MACE has become a focus of

current research and a hot topic.
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The relationship between coronary inflammation and high-
risk plaque formation and rupture has been confirmed in past
and recent studies (4). The rupture of plaque can lead to
adverse clinical events. Common non-invasive circulating
markers of inflammation include neutrophil-to-lymphocyte ratio
and C-reactive protein-to-albumin ratio, and the elevation of
these ratios not only predicts an increase in the severity of
coronary heart disease, but also serves as an independent early
warning signal of poor prognosis in patients experiencing ST-
segment-elevation myocardial infarction, a finding that has been
studies (17, 18). In addition, the

triglyceride-glucose index has been identified as an independent

confirmed in several
risk factor for poor long-term prognosis in coronary heart
disease (19). These biomarkers can be obtained by simple blood
tests, and despite demonstrating non-invasiveness, convenience
and high sensitivity in clinical applications. They are still
deficient in specificity, which is similar to the Cli-model results
of our study (refer to Table 1). ®Fluorine - Fluoride positron
emission tomography, as a non-invasive imaging tool, is able to
accurately capture the coronary artery inflammation, however,
its application in actual clinical practice is severely constrained
by its high cost and difficulty of access (20).

A correlation between CT attenuation and inflammation in
PCAT has been reported (21) and the concept of CT fat
attenuation index (FAI) was proposed. Oikonomou in the
CRISP CT study (7) suggested that FAI measured around the
RCA could be used as a representative biomarker for overall
coronary artery inflammation. It was indicated that a high FAI
value was also an important factor in increased cardiac mortality.

In another study (9), Oikonomou introduced an innovative
imaging biomarker known as the fat radiomic profile (FRP),
using new artificial intelligence techniques. The study revealed
that, following a six-month treatment period for patients
diagnosed with CAD, the FAI value around RCA elevated by
inflammation was reduced, and the FAI value in the lesion area
of patients with acute ST-segment elevation myocardial
infarction was significantly reduced. The FRP was significantly
elevated in patients with acute myocardial infarction compared
with patients with stable coronary artery disease, but there was
no significant change in FRP after 6 months of treatment. It
suggests that FAI only detects dynamic reversible changes in
PCAT (e.g. phase,
interconversion), and this reversible change is based on the

components aqueous lipid phase
coronary inflammation produced. In contrast, the FRP also
captured more advanced irreversible changes in PCAT (e.g.,
lipofibrosis and microvascular remodeling) in addition to
inflammation, significantly improving the risk prediction of
MACE. Collectively, these results suggest that radiomic features
of PCAT can provide additional information beyond density
resolution. Although the morphological features, radiomics
features, and stability of high-risk coronary plaques are
considered more direct predictors of MACE, the radiomics
features of plaques require manual layer-by-layer delineation
followed by semi-automatic segmentation and extraction, which
Additionally, the
reproducibility challenge of plaque radiomics has not been fully

is time-consuming and labor-intensive.
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resolved (22, 23). In contrast, the PCAT in this study was

automatically segmented and its radiomics features were
extracted using a pericoronary adipose tissue analysis tool
software (Shukun Technology Co., Ltd.). The delineation and
extraction process is relatively simple and highly reproducible.
Based on the aforementioned biological and methodological
characteristics of PCAT, this study decided to adopt PCAT as
the core biomarker.

Based on the series of studies by Oikonomou mentioned
above, a study (13)
performance of the PCAT radiomics model of RCA for the

prediction of MACE in the three major coronary arteries. PCAT

confirmed the optimal predictive

radiomics characterization of lesion regions also outperformed
traditional risk factors in MACE prediction (14). Prior research
has established that lesion-specific FAI is more effective than
FAI of RCA for predicting MACE risk (8). However, no prior
studies have directly compared lesion-specific PCAT radiomics
features with PCAT radiomics features of RCA for MACE
prediction. Our research team undertook this comparison, and
the findings indicated that the lesion-specific PCAT radiomics
model was superior to the PCAT radiomics model of RCA in
MACE prediction, and the predictive performance of the model
was even better after clinical risk factors were added to the
model, and the predictive performance of the Cli-LS model was
still better than that of the Cli-RCA model. These results suggest
that the lesion-specific PCAT radiomics feature may be a more
representative risk predictor of MACE, which is consistent with
the results of lesion-specific FAI in predicting MACE.

The reasons for the conclusions in the present study can be
described as follows. Firstly, the PCAT of RCA is different from
the ROI of lesion-specific PCAT, and the presence of non-
diseased segments in the PCAT region of RCA 10-50 mm from
the coronary ostium, and the radiomic features of the lesion-free
region may affect the predictive performance of the model.
Secondly, pericoronary lesion-specific PCAT may be a reliable
indicator of local immune-inflammatory activation. A prior study
(24) found an increased intracellular cytokine profile of pro-
inflammatory cells in regions with high local FAI values around
which
susceptibility. In addition to inflammation, lipofibrosis and

coronary  arteries, correlates  closely with plaque
microvascular remodeling of PCAT in the lesion area may also be
important factors for MACE development. Thridly, the clinical
risk factors that we included in our model were total cholesterol,
high-density lipoprotein cholesterol, and low-density lipoprotein
cholesterol. The largest contributor to the downward trend in
coronary heart disease deaths was the reduction in lipid levels
(25). Therefore, elevated CHOL levels are pertinent for risk
assessment and prediction of atherosclerotic disease. The inclusion
of CHOL in the predictive model may improve the risk
prediction performance of MACE, which is consistent with our
findings. In addition, 13 radiomics features were selected in the
lesion-specific PCAT radiomic model of this study, including four
first-order gray-level statistics features, two gray-level Co-
Occurrence Matrix (GLCM), three Gray-Level Size-Zone Matrix
(GLSZM), one Gray-Level Run-Length Matrix (GLRLM), two

Neighbouring Gray Tone Difference Matrix (NGTDM), one Gray
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Level Dependence Matrix (GLDM). Among them, the first-order
gray-level statistical features provide fundamental statistics that
quantitatively characterize the distribution of ROI intensity values,
based on physical or functional measurements. GLCM, GLSZM,
GLRLM, NGTDM and GLDM are heterogeneity-based and
texture-based features to characterize spatial arrangement and
local heterogeneity of the intensity values within an image (26,
27). The intensity-based first-order features and texture features
may indirectly reflect the level of local inflammatory distribution
in coronary arteries (e.g., the distribution and arrangement of
adipocytes at the microscopic level). Whereas the heterogeneity
features may reveal different components of adipose tissues
(e.g.
remodeling, and inter-conversion of the aqueous phase and the

or pathological changes adipofibrosis, microvascular
lipid phase of the adipocytes in PCAT). These features may reveal
the development process of coronary atherosclerosis to a certain
extent and provide more reference for the prediction of MACE.

Certainly, the possible association of high FAI with specific
radiomic patterns in the vicinity of coronary lesions is not only
a theoretical issue, but may also have important clinical
implications. The study by Pan (28) developed a PCAT radiomic
model to predict coronary plaque progression. The lesion-
specific PCAT radiomic feature, with its more reliable and
targeted nature, can predict offender plaque progression at
specific locations, making prophylactic coronary stenting a
future treatment option. The ORFAN study (29) demonstrated
that in patients with non-obstructive coronary artery disease,
FAI scores accurately capture clinical risk stratification as well as
inflammatory risk beyond that explained by CCTA. In addition
to coronary arteries, microvascular dysfunction may also be a
background for cardiovascular MACE (30). That is, when CCTA
shows a non-plaque outcome but with high-risk FAI or
radiomic features, then specific anti-inflammatory therapy may
be an option.

Our study has some limitations. Firstly, It was a single-center,
retrospective study with a small number of cases and lack of an
external validation cohort. Secondly, to control for confounding
bias, we adopted 1:1 propensity score matching to construct the
study cohort. This method resulted in a matched sample where
the proportion of the MACE group was 50%, which is
significantly higher than the actual prevalence of coronary heart
disease in the real world. While this helps us estimate the
association between predictors and outcomes more accurately, it
may overestimate the discriminative ability (e.g., AUC value) of
the developed models in the general consecutive enrollment
population with a lower prevalence. Therefore, the performance of
each model in this study should be regarded as the “potential
performance” under its optimal conditions. Before applying these
models to the real world, further external validation must be
with
prevalence to calibrate their predictive probabilities and re-evaluate

conducted in an independent cohort representative
their discriminative power. Thirdly, the CT scanning mode in this
study was prospective adaptive scanning, and changes in tube
voltage may have an impact on image quality, thus affecting
radiomics feature extraction and selection. Fourthly, because the

PCAT analysis software of Shukun Technology Co., Ltd. is capable
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of fully automatic and semi-automatic segmentation and feature
extraction of PCAT of the right coronary artery and lesion-specific
PCAT, allowing for the extraction 93 radiographic features at a
time. Consequently, we assert that the radiomic features derived
from Shukun’s software exhibit a high degree of stability, and the
intraclass correlation coefficient (ICC) consistency analysis was not
performed before feature selection. However, fewer radiomic
features per patient may affect the accuracy of the experimental
results. Our team intends to utilize open-source software (e.g., 3D
Slicer) to manually draw the ROIs of PCAT and extract the
radiomic features, and compare the obtained experimental results
with the current experiment. Fifthly, because the target plaques of
lesion regions are determined by CT-FFR, when patients have
multiple coronary lesions, the target plaque regions with CT-FFR
<0.8, i.e., lesion-specific PCAT regions, may not necessarily be the
regions with the most severe coronary inflammation. Therefore,
the current study can only suggest that the radiomic profile of
lesion-specific PCAT may be more effective than that of the right
coronary artery PCAT in predicting MACE over a three-year
period, without indicating a predictive advantage of lesion-specific
PCAT in coronary inflammation. Future studies by our team will
aim to explore and validate the FAI and lesion-specific FAI of the
right coronary artery by including them in the same cohort of
patients. Sixthly, the Region of Interest (ROI) for patients with
MACE was defined based on the target plaque (CT-FFR<0.8).
For the control group, however, since patients without MACE
may not have a target plaque, the ROI was defined based on the
anatomically most stenotic site. The asymmetric ROI introduces
potential confounding bias, which may affect the reliability of the
results. In subsequent studies, our team will continue to expand
the sample size, include a sufficient number of non-MACE
patients who meet the target plaque criteria, and conduct further
analyses. Lastly, the discussion of the radiomic features in this
study has only been analyzed at the basic theoretical and clinical
consequence level, and the intrinsic connection between these
features and the biological properties of PCAT will be explored in
depth in subsequent studies. We plan to validate the structural
and functional changes of PCAT revealed by the radiomic features
through biological experiments and molecular biology techniques,
and further investigate the relationship between these changes and
the development of coronary artery disease.

5 Conclusion

In summary, the lesion-specific PCAT radiomics model
demonstrates a greater efficacy in predicting MACE compared to
the PCAT radiomics model based on RCA. Incorporation of
lesion-specific PCAT radiomic features into clinical cardiovascular
risk factors could provide incremental predictive value.
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