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Objective: To assess the performance of a lesion-specific pericoronary adipose 

tissue (PCAT) radiomics model in comparison to a right coronary artery (RCA) 

PCAT model in predicting major adverse cardiovascular events (MACE) over a 

three-year period in patients diagnosed with coronary artery disease (CAD). 

Additionally, the study aims to evaluate the incremental predictive value of 

combined models integrating clinical features.

Methods: This study conducted a retrospective analysis involving 242 patients 

with coronary artery disease who underwent coronary CT angiography 

(CCTA) with MACE occurring in 121 cases. The right coronary artery and 

lesion-specific PCAT were segmented using the Peri-coronary Adipose Tissue 

Analysis Tool software (Shukun Technology Co., Ltd.), and 93 radiographic 

features were extracted, and the features were screened by Pearson 

correlation coefficients and Lasso regression after the features were 

processed by Min-Max Normalization. Machine learning techniques were 

utilized to construct four models: the right coronary artery PCAT model 

(RCA-model), the lesion-specific PCAT model (LS-model), the clinical model 

(Cli-model), and two combined models (Cli-RCA model and Cli-LS model). 

The performance of these models was evaluated by receiver operating 

characteristic (ROC) curves, calibration curve and decision curve analysis (DCA).

Results: The LS-model demonstrated superior predictive performance with AUC 

values of 0.821 and 0.838 in the training and test cohorts, respectively. This 

performance surpassed that ofthe RCA-model, which recorded AUC values of 

0.789 and 0.788. Notably, the Cli-LS model achieved the highest AUCs of 0.873 

and 0.877. The difference in AUC was statistically significant (p < 0.05). 

Calibration curves indicated excellent agreement between predicted and 

observed risks, as indicated by aHosmer-Lemeshow test result of P > 0.05. 

Furthermore, decision curve analysis confirmed a higher net clinical benefit.
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Conclusion: Lesion-specific PCAT radiomics features demonstrate superior 

predictive capability for MACE compared to f RCA-based features. Integrating 

clinical risk factors further enhances model performance, offering a noninvasive 

imaging tool for risk stratification in patients with CAD.

KEYWORDS

coronary computed tomography angiography, pericoronary adipose tissue, lesion- 

specific pericoronary adipose tissue, radiomics, major adverse cardiovascular events

1 Introduction

Coronary artery disease (CAD) is recognized as one of the 

leading lethal factors worldwide (1), leading to endpoint events, 

such as acute myocardial infarction and sudden death. These 

outcomes not only constitute a major threat to the lives of 

patients, but also significantly affect their quality of life. In 1999, 

Professor Rose had proposed that atherosclerosis is a chronic 

in(ammatory lipid disease (2), with the lipid infiltration theory 

serving as the pathophysiological foundation of atherosclerosis 

(3). Furthermore, vascular in(ammation plays an important role 

in the formation, progression, and rupture of atherosclerotic 

plaques (4). There is a bidirectional communication mechanism 

between pericoronary adipose tissue (PCAT) and the vessel wall 

(5). Under pathological conditions, when vascular in(ammation 

occurs, PCAT induces mesenchymal changes in the vessel wall 

from the outside in through the release of pro-in(ammatory 

factors and in(ammatory cytokines. Conversely, the vessel wall 

can in(uence PCAT through paracrine secretion. This interplay 

contributes to the formation of coronary atherosclerotic plaques 

and facilitates a reversible shift of PCAT from a lipid phase to 

an aqueous phase, which can be noninvasively identified by 

imaging techniques such as coronary computed tomography 

angiography (CCTA).

CCTA has been an important tool for the noninvasive 

diagnosis of CAD, and plays a crucial role in the assessment of 

MACE (6). The CRISP CT study (7) demonstrated that the fat 

attenuation index (FAI) in the periphery of the right coronary 

artery (RCA) could be used as a representative biomarker for 

the comprehensive assessment of coronary in(ammation and 

high FAI values are an important indicator of increased cardiac 

mortality. A study (8) suggested that lesion-specific pericoronary 

adipose tissue CT attenuation (PCATa) in the region of 

coronary lesions was better than that in the right coronary 

artery in predicting MACE. That is, in prognostic evaluation, 

lesion-specific in(ammation has a higher priority compared to 

overall in(ammation.

With the continuous advancement of artificial intelligence 

technology, the application of radiomics in the field of medical 

research is expanding. In addition to coronary in(ammation due 

to PCAT, radiomics can also capture spatial structural changes 

of irreversible PCAT, such as lipofibrosis and microvascular 

remodeling (9). Numerous studies have confirmed the 

superiority of radiomics of PCAT in the prediction of adverse 

cardiovascular events (10–12), and the radiomics model of 

PCAT in the RCA is superior to the radiomics model of PCAT 

in the other two coronary arteries (13). It has also been 

demonstrated (14) that imaging histology models of lesion- 

specific PCAT have a higher value than traditional risk factors 

in MACE prediction.

Therefore, we constructed five predictive models: right 

coronary artery PCAT radiomics model(RCA-model), lesion- 

specific PCAT radiomics model(LS-model), clinical model(Cli- 

model), clinical-right-coronary-artery PCAT radiomics model 

(Cli-RCA model), and clinical-lesion-specific PCAT radiomics 

model(Cli-LS model). The objective of these models is to 

investigate the predictive effects of right coronary artery PCAT 

radiomics characteristics, lesion-specific PCAT radiomics 

characteristics, and clinical characteristics on the occurrence of 

MACE within three years following CCTA examination,and to 

see whether lesion-specific PCAT radiomic feature have 

incremental value for MCAE prediction.

2 Materials and methods

2.1 Study population

This study retrospectively collected 984 patients diagnosed 

with CAD who underwent CCTA at the Medical Imaging 

Center of Liaoning University of Traditional Chinese Medicine 

Hospital from August 2020 to December 2023. Among these 

patients, 123 patients experienced MACE within three years 

after undergoing inclusion and exclusion criteria screening. The 

occurrence of MACE in patients was determined based on the 

hospital’s electronic medical records as well as telephone follow- 

ups. Clinical risk factors available for each patient were 

collected, including gender, age, body mass index, cardiovascular 

risk factors, medication usage, total cholesterol, triglycerides, 

high-density lipoprotein cholesterol, low-density lipoprotein 

cholesterol, C-reactive protein, and blood glucose. MACE was 

defined as cardiac death (including fatal acute myocardial 

infarction), malignant arrhythmias, nonfatal acute myocardial 

infarction, new-onset congestive heart failure, coronary 

revascularization (after six weeks of CCTA), and readmission 

due to unstable angina. Patients without MACE were matched 

to patients with MACE in terms of sex, age, body mass index, 

cardiovascular risk factors, and medications. In this study, 

multivariate logistic regression was used to calculate propensity 

scores, and Propensity Score Matching (PSM) was applied to 

control for inter-group confounding factors. The matching 

process adopted a 1:1 nearest-neighbor matching method with a 
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sampling strategy of no replacement, and the caliper value was set 

at 0.1. Propensity scores were estimated based on potential 

variables such as relevant baseline characteristics and clinical 

features. After matching, the absolute standardized mean 

differences (SMD) of variables between the MACE group and 

the non-MACE group tended to be balanced. Using the 

criterion that the absolute value of SMD is less than 0.1, the 

covariates of the two groups were considered to achieve good 

balance after matching. Exclusion criteria were as follows: 

previous coronary revascularization, incomplete clinical data of 

patients, poor quality of CCTA images, abnormal coronary 

artery origins, coronary revascularization within six weeks of the 

CCTA examination, target plaque located in myocardial bridges, 

malignant tumors, and patients with other cardiac diseases 

(Figure 1). All enrolled patients were divided into training and 

test groups in a 7:3 ratio. The local institutional review board 

and ethics committee approved this retrospective study 

[approval number: Y2025004CS(KT)-004-01].

2.2 CCTA acquisition

CCTA scans were performed using a 256-slice CT scanner 

(Brilliance iCT, Royal Philips) with prospective 

electrocardiographic gating. The scanner specifications included 

collimator 128 × 0.625 mm, tube voltage 100 or 120 kV, 

FIGURE 1 

A flowchart of patient recruitment and study design. CCTA, coronary computed tomography angiography; CAD, coronary artery disease; MACE, 

major adverse cardiovascular events.
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automatic tube current adjustment, layer spacing 0.625 mm, layer 

thickness 0.9 mm, rotation time 270 ms. The acquisition time 

window was controlled at 30%–80% of the R-R interval. For 

optimal image quality, all patients received sublingual 

nitroglycerin to dilate the coronary arteries and a β-blocker 

(metoprolol, 25 or 50 mg, orally) was administered as needed 

30 min before performing the CCTA scan to reduce the target 

heart rate of less than 65 beats per minute. A nonionic contrast 

medium (Iophorol 350 mgI/ml, Hengrui Pharmaceutical Co., 

Ltd., Jiangsu) was administered through a high-pressure syringe 

at a 5 ml/s (ow rate through an anterior elbow vein, followed by 

40 ml of saline at the same (ow rate.

2.3 Segmentation and radiomics feature 
extraction for PCAT

PCAT automatic segmentation and radiomic feature 

extraction were performed using PCAT analysis tool software 

(Shukun Technology Co., Ltd.) (images were in a uniform 

DICOM format and de-noised as well as normalized before 

uploading them to the software). PCAT was defined as all 

adipose tissue surrounding the coronary arteries within a radial 

distance outside the vessel wall equal to the diameter of the 

vessel, with CT attenuation values ranging from −190 and −30 

Hounsfield units (HU). To avoid the effect of aortic wall 

pulsation, we excluded PCAT in the RCA within 10 mm from 

the coronary ostium and automatically tracked PCAT in the 

proximal segment of the RCA (10–50 mm segment) by software.

The assessment of lesion-specific peri-coronary adipose tissue in 

patients with MACE was determined by target plaques, which were 

identified by CT-derived fractional (ow reserve (CT-FFR) analysis 

(CoronaryDoc®-FFR, Shukun Technology, Beijing, China). 

A target plaque was defined as a lesion exhibiting a positive CT- 

FFR < 0.8, measured 2 cm distal to a plaque, indicating a potential 

impact on the hemodynamics of the corresponding coronary 

artery (as illustrated in Figure 2). When multiple target plaques 

existed, the plaque corresponding to the lowest CT-FFR value was 

selected as the target plaque. Because target plaques may not be 

present in non-MACE patients in the control group, we chose to 

perform PCAT segmentation and feature extraction at the 

narrowest point of the coronary artery in each non-MACE 

patient. Figure 3 shows the main processes of radiomics.

Each patient will undergo segmentation and extraction of 

PCAT radiomic features from the proximal RCA and around 

the target plaque. A total of 93 radiomic features will be 

extracted from lesion-specific PCAT or PCAT of the RCA for 

each segmentation (as detailed in the Supplementary Material), 

so that each patient will ultimately generate 186 radiomic features.

2.4 Feature selection and prediction model 
building

We plan to develop five risk prediction models to predict the 

occurrence of MACE in patients with coronary artery disease 

based on the training dataset: right coronary artery PCAT 

radiomics model (RCA-model), lesion-specific PCAT radiomics 

model (LS- model), clinical model (Cli-model), clinical-right- 

coronary-artery PCAT radiomics model (Cli-RCA model), and 

clinical-lesion-specific PCAT radiomics model (Cli-LS model). 

The performance of these models was evaluated using the test 

dataset. The process of feature selection and model construction 

is described below:

FIGURE 2 

An example of target plaque selection in the left anterior descending branch (LAD, left anterior decending branch). In (A), the blue-arrowed portion is 

the area of severe stenosis in the LAD, the green-marked portion is 2 cm from the area of severe stenosis, and the red and orange areas are the 

outlined extent of lesion-specific peri-coronary adipose tissue. The value of CT-FFR at 2 cm from the region of severe stenosis can be obtained 

in (B) as 0.67.
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2.4.1 Radiomics and clinical feature selection
2.4.1.1 Clinical feature selection

Clinical features included were sex, age, BMI, total cholesterol, 

triglycerides, HDL cholesterol, LDL cholesterol, glucose, and 

C-reactive protein. Prior to feature selection, the clinical data 

were normalized, which was executed through Min-Max 

Normalization. This method involved a linear transformation of 

the data, scaling it to the range of [0,1], as calculated by the 

following equation:

Xnew ¼
X � Xmin

Xmax � Xmin 

Where X is the original data of clinical features, Xmin is the 

minimum value in the feature dataset, and Xmax is the 

maximum value in the feature dataset. Then, the Pearson 

correlation coefficient was used to screen for features with | 

r| > 0.95, so as to improve the efficiency and stability of the 

model. Finally, Lasso was used to screen clinical features with 

non-zero coefficients. Ten-fold cross-validation was used in the 

Lasso process to ensure good generalization performance of the 

Lasso regression, and clinical scores were calculated.

2.4.1.2 Radiomics feature selection

The selection of radiomics features was consistent with the 

clinical feature screening process described in Section 2.4.1.1, 

and the radiomics score was calculated.

2.4.2 Prediction model construction
It has been reported (15) that among multiple machine 

learning algorithmic models, the Extreme Gradient Boosting 

(XGBoost) algorithm performed the best in several studies and 

even outperformed or equaled the models specifically trained in 

each section. Therefore, this algorithm was adopted for all five 

models in this study. The optimal parameters of each model in 

the training set were determined through grid search and cross- 

validation, and the data in the test set were not involved in 

parameter tuning.

2.4.2.1 Clinical model construction

The clinical model is an XGBoost model constructed based on 

clinical risk factors with coefficients other than zero selected by 

Lasso.

2.4.2.2 RCA-model and LS-model construction

Both the RCA PCAT radiomic model and the lesion-specific 

PCAT radiomic model incorporated their respective radiomic 

features selected by Lasso regression analysis, and the models 

were constructed by XGBoost.

2.4.2.3 Cli-RCA model and Cli-LS model construction

Both the Cli-RCA model and the Cli-LS model incorporated 

their respective Lasso-screened clinical risk factors as well as 

radiomic features selected after Pearson-Lasso regression 

analysis, and the models were constructed using XGBoost.

2.5 Model performance evaluation

The performance of the models was assessed using several 

indicator, including Area under the curve (AUC), accuracy, 

sensitivity, specificity, precision, and F1-Score. The DeLong test 

was used to compare the differences in AUC between different 

models. Calibration curves were plotted and the Hosmer- 

Lemeshow test was performed to assess the differentiation and 

calibration of the models. Clinical DCA was performed to assess 

the clinical utility of the models.

FIGURE 3 

Radiomics workflow. PCAT, pericoronary adipose tissue.
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2.6 Statistical analysis

SPSS (version 26.0) software and Neusoft Explore Multimodal 

Medical Artificial Intelligence Platform were used for data 

analysis. Statistical tests were performed using two-sided tests, 

and P < 0.05 was considered a statistically significant difference. 

Categorical data were described by number and percentage, 

while continuous data that conformed to normal distribution 

were described by mean ± standard deviation, and continuous 

data that did not conform to normal distribution were described 

by median (interquartile spacing). Comparisons between groups 

of Categorical data were tested by χ2 test or Fisher’s exact 

probability method, while the Students’ t-test was used for 

normally distributed continuous data, and the Mann–Whitney 

U test was used for non-normally distributed continuous data.

3 Results

3.1 Clinical characteristics

Through PSM analysis, a total of 242 patients were successfully 

matched between the MACE group (n = 141) and the non-MACE 

group (n = 141) (Figure 1). Clinical characteristics of the training 

group (n = 164) and the test group (n = 78) are shown in Table 1. 

In the training and test groups, MACE patients and non-MACE 

patients were well matched with respect to sex, age, body mass 

index(BMI), cardiovascular risk factors, and medications, with no 

significant differences between the two groups (P > 0.05). The 

average duration between the CCTA examination and the 

occurrence of MACE was 15.7 ± 7.96 months. Based on the 

training group, total cholesterol (TC) and low-density lipoprotein 

cholesterol (LDL-C) were significantly associated with MACE in 

univariate analyses. Among the patients with MACE, there were 2 

cases of cardiac death (1.65%), 4 cases of malignant arrhythmia 

(3.3%), 19 cases of nonfatal acute myocardial infarction (15.7%), 5 

cases of new-onset congestive heart failure (4.8%), and 36 cases of 

coronary artery revascularization (29.75%), and 55 cases of 

readmission for unstable angina (45.45%).

3.2 Feature selection and construction of 
the model

3.2.1 Clinical factor selection and model 

construction
Clinical features were screened by Lasso and showed that total 

cholesterol, high-density lipoprotein cholesterol, and low-density 

lipoprotein cholesterol were independent risk factors for MACE. 

Cli-model was constructed based on the independent risk 

factors screened above. The clinical score was calculated using 

the following formula:

Cli � Score ¼ 0:4466988849281064 � 0:08799032630039208

�CHOL þ 0:0010963240852162903

�HDL � C þ 0:34643333392075903 � LDL � C 

TABLE 1 Clinical features in the training and test datasets.

Variables Training Test

MACE (n = 83) Non-MACE (n = 81) P-value MACE (n = 38) Non-MACE (n = 40) P-value

Male 50 (60.24) 49 (60.49) 0.974 20 (52.63) 21 (52.50) 0.991

Age, years 63 (59, 68) 65 (59, 70) 0.189 63.9 ± 7.39 63.8 ± 6.88 0.966

BMI,kg/m2 25.6 ± 1.65 25.4 ± 1.37 0.549 25.8 ± 1.39 25.5 ± 1.36 0.304

Cardiovascular risk factors

Smoking 27 (32.53) 25 (30.86) 0.819 14 (36.84) 12 (30.00) 0.522

Drinking 29 (33.73) 27 (33.33) 0.828 15 (39.47) 17 (42.50) 0.786

Hypertensive 51 (61.45) 51 (62.96) 0.841 24 (63.16) 25 (62.50) 0.952

Hyperlipidemia 9 (10.84) 8 (9.88) 0.839 3 (7.89) 3 (7.50) 0.948

Diabetes 29 (34.94) 30 (37.04) 0.780 13 (34.21) 15 (37.50) 0.762

Medications

Beta-blocker 6 (7.23) 5 (6.17) 0.787 3 (7.89) 4 (10.00) 0.745

ACE-I/ARB 21 (25.30) 22 (27.16) 0.787 10 (26.31) 11 (27.50) 0.906

CCB 18 (21.69) 16 (19.75) 0.760 8 (21.05) 7 (17.50) 0.691

Statin 17 (20.48) 19 (23.46) 0.645 4 (10.53) 4 (10.00) 0.939

Antiplatelet 19 (22.89) 22 (27.16) 0.528 5 (13.15) 4 (10.00) 0.663

In�ammatory markers, Lipids and Hypoglycemia

CHOL, mmol/L 5.24 (4.78, 5.62) 4.77 (3.86, 5.22) <0.001* 5.14 ± 0.95 4.63 ± 0.99 0.023*

TG, mmol/L 1.85 (1.42, 2.7) 1.72 (1.38, 2.19) 0.226 1.77 (1.41, 2.51) 1.92 (1.69, 2.17) 0.296

HDL-C, mmol/L 1.12 (0.95, 1.34) 1.17 (0.94, 1.54) 0.101 1.15 (0.98, 1.27) 1.19 (0.99, 1.49) 0.365

LDL-C, mmol/L 2.91 ± 0.828 2.47 ± 0.874 0.001* 2.89 (2.16, 3.46) 2.34 (2.05, 3.15) 0.335

Blood glucose, mmol/L 6.07 (5.25, 7.03) 6.15 (5.33, 7.82) 0.859 5.87 (5.06, 6.88) 5.95 (4.96, 7.20) 0.968

C-reactive protein 4.8 (3.34, 6.55) 4.5 (3.25, 5.87) 0.406 4.25 (2.04, 4.97) 4.61 (3.88, 7.17) 0.072

MACE, major adverse cardiovascular events; BMI, body mass index; ACE-I, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; CCB, calcium channel blockers; 

CHOL, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol.

*Indicated p < 0.05 with significance.
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3.2.2 Radiomics feature selection and model 

construction
After feature selection by Min-Max Normalization, Pearson 

correlation coefficient, and Lasso regression, the remaining 

radiomics features for lesion-specific PCAT and RCA were 13 

and 4 (Supplementary Material). LS-model and RCA-model 

were constructed based on the radiomics features selected 

above. Radiomics scores for both were calculated using the 

formula:

RCA � Score ¼ 0:15369785450499812 � 0:14163992422547764

�GLCM InverseVariance � 0:26511991704637805

�GLSZM LargeAreaHighGrayLevelEmphasis � 0:6789869017416388

�GLDM DependenceNonUniformity þ 0:8698829309013162

�GLDM DependenceNonUniformityNormalized 

LS � Score ¼ 0:1002937208619752 þ 0:21818380941201035

�FirstOrder 90Percentile þ 0:15214465516983042

�FirstOrder Mean þ 0:9579877107143626

�FirstOrder Minimum þ 0:40730891742443626

�FirstOrder TotalEnergy þ 0:5738007754053269

�GLCM Imc2 � 0:2924607299040573

�GLCM InverseVariance � 0:11191226949584672

�GLSZM SmallAreaLowGrayLevelEmphasis

þ0:040345574601068655 � GLSZM ZoneEntropy

�0:21375193026293665 � GLSZM ZoneVariance

þ0:268626376677788 � GLRLM ShortRunLowGrayLevelEmphasis

þ0:4697874003277172 � NGTDM Coarseness

þ0:08654636959841888 � NGTDM Strength

�0:47909757307998235 � GLDM GrayLevelNonUniformity 

3.2.3 Combined model construction

The clinical features and radiomic features selected by the 

above process were integrated with each other to construct Cli- 

RCA mode and Cli-LS model.

3.3 Model evaluation

The ROC curves for the training and testing groups of each 

model are shown in Figure 4. Compared with the RCA-model 

[AUC = 0.789 (95% CI: 0.721–0.857), AUC = 0.788 (95% CI: 

0.689–0.888)], the LS-model [AUC = 0.822 (95% CI: 0.759– 

0.884), AUC = 0.838 (95% CI: 0.751–0.925)] had superior 

predictive performance. The predictive performance of the 

clinical and radiomics features integration model was improved. 

Compared with the Cli-RCA model [AUC = 0.825 (95% CI: 

0.762–0.887), AUC = 0.822 (95% CI: 0.729–0.915)], Cli-LS model 

[AUC = 0.873 (95% CI: 0.821–0.925), AUC = 0.877 (95% CI: 

0.797–0.957)] still possessed a superior prediction performance 

for MACE. DeLong test showed that the training and test 

groups’ AUC were not significantly different (p > 0.05). The 

AUC, accuracy, sensitivity, specificity, precision, and F1-Score of 

each model are detailed in Table 2.

The calibration curves of Cli-RCA model and Cli-LS model 

are shown in Figure 5 (Hosmer-Lemeshow test, P-value > 0.05). 

This finding indicates that the above models have good 

agreement between the training dataset and the testing dataset, 

and the results of the prediction of MACE are reliable.

Clinical decision curve analyses were plotted to assess whether 

the model resulted in a higher net benefit to the patient. As 

illustrated in Figure 6, the DCA for the Cli-RCA model and the 

Cli-LS model indicates that the Cli-LS model possessed a higher 

overall net benefit within a reasonable threshold.

FIGURE 4 

ROC curves for each model in the training dataset (left) and test dataset (right).
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4 Discussion

A previous randomized controlled trial (16) demonstrated 

that in patients with stable coronary artery disease and 

functionally significant stenosis identified by FFR, FFR- 

induced percutaneous coronary intervention (PCI) plus 

optimal drug therapy reduces the need for emergency 

revascularization when compared to optimal drug therapy 

alone. This intervention is important for the prevention of 

end-point outcome events including the composite end 

point of death, myocardial infarction, or emergency 

revascularization. However, due to the invasive nature and 

high costs of FFR, its application in clinical practice has been 

limited. The exploration of a noninvasive and easy-to-use 

method for the prediction of MACE has become a focus of 

current research and a hot topic.

TABLE 2 Performance evaluation of each model in the training dataset and test dataset.

Model AUC (95% CI) Accuracy Sensitivity Specificity Precision F1-score

Train Test Train Test Train Test Train Test Train Test Train Test

Cli-model 0.748 (0.675, 0.822) 0.778 (0.678, 0.882) 0.652 0.654 0.891 0.737 0.407 0.575 0.607 0.622 0.722 0.675

RCA-model 0.789 (0.721, 0.857) 0.788 (0.689, 0.888) 0.654 0.695 0.771 0.605 0.617 0.725 0.674 0.677 0.719 0.639

LS-model 0.822 (0.759, 0.884) 0.838 (0.751, 0.925) 0.738 0.718 0.868 0.868 0.605 0.575 0.692 0.660 0.770 0.750

Cli-RCA model 0.825 (0.762, 0.887) 0.822 (0.729, 0.915) 0.744 0.756 0.771 0.763 0.716 0.750 0.736 0.744 0.753 0.753

Cli-LS model 0.873 (0.821, 0.925) 0.877 (0.797, 0.957) 0.781 0.833 0.819 0.868 0.741 0.800 0.764 0.805 0.791 0.835

95% CI, 95% confidence interval.

FIGURE 5 

Calibration curves for the combined model training dataset (left) and test dataset (right). The closer the calibration curve is to the dashed diagonal 

line, the higher the calibration.

FIGURE 6 

Decision curve analysis (DCA) for the combined model training dataset (left) and test dataset (right). Where Model 1 is the Cli-RCA model and Model 2 

is the Cli-LS model. The DCA show that based on the training group, the Cli-LS model predicts higher benefits for MACE when the threshold 

probability is at greater than 30%, and based on the test group, the Cli-LS model predicts higher benefits for MACE when the threshold 

probability is greater than 22%. The Y axis denotes net benefit and X axis denotes threshold probability.
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The relationship between coronary in(ammation and high- 

risk plaque formation and rupture has been confirmed in past 

and recent studies (4). The rupture of plaque can lead to 

adverse clinical events. Common non-invasive circulating 

markers of in(ammation include neutrophil-to-lymphocyte ratio 

and C-reactive protein-to-albumin ratio, and the elevation of 

these ratios not only predicts an increase in the severity of 

coronary heart disease, but also serves as an independent early 

warning signal of poor prognosis in patients experiencing ST- 

segment-elevation myocardial infarction, a finding that has been 

confirmed in several studies (17, 18). In addition, the 

triglyceride-glucose index has been identified as an independent 

risk factor for poor long-term prognosis in coronary heart 

disease (19). These biomarkers can be obtained by simple blood 

tests, and despite demonstrating non-invasiveness, convenience 

and high sensitivity in clinical applications. They are still 

deficient in specificity, which is similar to the Cli-model results 

of our study (refer to Table 1). 18Fluorine - Fluoride positron 

emission tomography, as a non-invasive imaging tool, is able to 

accurately capture the coronary artery in(ammation, however, 

its application in actual clinical practice is severely constrained 

by its high cost and difficulty of access (20).

A correlation between CT attenuation and in(ammation in 

PCAT has been reported (21) and the concept of CT fat 

attenuation index (FAI) was proposed. Oikonomou in the 

CRISP CT study (7) suggested that FAI measured around the 

RCA could be used as a representative biomarker for overall 

coronary artery in(ammation. It was indicated that a high FAI 

value was also an important factor in increased cardiac mortality.

In another study (9), Oikonomou introduced an innovative 

imaging biomarker known as the fat radiomic profile (FRP), 

using new artificial intelligence techniques. The study revealed 

that, following a six-month treatment period for patients 

diagnosed with CAD, the FAI value around RCA elevated by 

in(ammation was reduced, and the FAI value in the lesion area 

of patients with acute ST-segment elevation myocardial 

infarction was significantly reduced. The FRP was significantly 

elevated in patients with acute myocardial infarction compared 

with patients with stable coronary artery disease, but there was 

no significant change in FRP after 6 months of treatment. It 

suggests that FAI only detects dynamic reversible changes in 

PCAT components (e.g., aqueous phase, lipid phase 

interconversion), and this reversible change is based on the 

coronary in(ammation produced. In contrast, the FRP also 

captured more advanced irreversible changes in PCAT (e.g., 

lipofibrosis and microvascular remodeling) in addition to 

in(ammation, significantly improving the risk prediction of 

MACE. Collectively, these results suggest that radiomic features 

of PCAT can provide additional information beyond density 

resolution. Although the morphological features, radiomics 

features, and stability of high-risk coronary plaques are 

considered more direct predictors of MACE, the radiomics 

features of plaques require manual layer-by-layer delineation 

followed by semi-automatic segmentation and extraction, which 

is time-consuming and labor-intensive. Additionally, the 

reproducibility challenge of plaque radiomics has not been fully 

resolved (22, 23). In contrast, the PCAT in this study was 

automatically segmented and its radiomics features were 

extracted using a pericoronary adipose tissue analysis tool 

software (Shukun Technology Co., Ltd.). The delineation and 

extraction process is relatively simple and highly reproducible. 

Based on the aforementioned biological and methodological 

characteristics of PCAT, this study decided to adopt PCAT as 

the core biomarker.

Based on the series of studies by Oikonomou mentioned 

above, a study (13) confirmed the optimal predictive 

performance of the PCAT radiomics model of RCA for the 

prediction of MACE in the three major coronary arteries. PCAT 

radiomics characterization of lesion regions also outperformed 

traditional risk factors in MACE prediction (14). Prior research 

has established that lesion-specific FAI is more effective than 

FAI of RCA for predicting MACE risk (8). However, no prior 

studies have directly compared lesion-specific PCAT radiomics 

features with PCAT radiomics features of RCA for MACE 

prediction. Our research team undertook this comparison, and 

the findings indicated that the lesion-specific PCAT radiomics 

model was superior to the PCAT radiomics model of RCA in 

MACE prediction, and the predictive performance of the model 

was even better after clinical risk factors were added to the 

model, and the predictive performance of the Cli-LS model was 

still better than that of the Cli-RCA model. These results suggest 

that the lesion-specific PCAT radiomics feature may be a more 

representative risk predictor of MACE, which is consistent with 

the results of lesion-specific FAI in predicting MACE.

The reasons for the conclusions in the present study can be 

described as follows. Firstly, the PCAT of RCA is different from 

the ROI of lesion-specific PCAT, and the presence of non- 

diseased segments in the PCAT region of RCA 10–50 mm from 

the coronary ostium, and the radiomic features of the lesion-free 

region may affect the predictive performance of the model. 

Secondly, pericoronary lesion-specific PCAT may be a reliable 

indicator of local immune-in(ammatory activation. A prior study 

(24) found an increased intracellular cytokine profile of pro- 

in(ammatory cells in regions with high local FAI values around 

coronary arteries, which correlates closely with plaque 

susceptibility. In addition to in(ammation, lipofibrosis and 

microvascular remodeling of PCAT in the lesion area may also be 

important factors for MACE development. Thridly, the clinical 

risk factors that we included in our model were total cholesterol, 

high-density lipoprotein cholesterol, and low-density lipoprotein 

cholesterol. The largest contributor to the downward trend in 

coronary heart disease deaths was the reduction in lipid levels 

(25). Therefore, elevated CHOL levels are pertinent for risk 

assessment and prediction of atherosclerotic disease. The inclusion 

of CHOL in the predictive model may improve the risk 

prediction performance of MACE, which is consistent with our 

findings. In addition, 13 radiomics features were selected in the 

lesion-specific PCAT radiomic model of this study, including four 

first-order gray-level statistics features, two gray-level Co- 

Occurrence Matrix (GLCM), three Gray-Level Size-Zone Matrix 

(GLSZM), one Gray-Level Run-Length Matrix (GLRLM), two 

Neighbouring Gray Tone Difference Matrix (NGTDM), one Gray 
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Level Dependence Matrix (GLDM). Among them, the first-order 

gray-level statistical features provide fundamental statistics that 

quantitatively characterize the distribution of ROI intensity values, 

based on physical or functional measurements. GLCM, GLSZM, 

GLRLM, NGTDM and GLDM are heterogeneity-based and 

texture-based features to characterize spatial arrangement and 

local heterogeneity of the intensity values within an image (26, 

27). The intensity-based first-order features and texture features 

may indirectly re(ect the level of local in(ammatory distribution 

in coronary arteries (e.g., the distribution and arrangement of 

adipocytes at the microscopic level). Whereas the heterogeneity 

features may reveal different components of adipose tissues 

or pathological changes (e.g., adipofibrosis, microvascular 

remodeling, and inter-conversion of the aqueous phase and the 

lipid phase of the adipocytes in PCAT). These features may reveal 

the development process of coronary atherosclerosis to a certain 

extent and provide more reference for the prediction of MACE.

Certainly, the possible association of high FAI with specific 

radiomic patterns in the vicinity of coronary lesions is not only 

a theoretical issue, but may also have important clinical 

implications. The study by Pan (28) developed a PCAT radiomic 

model to predict coronary plaque progression. The lesion- 

specific PCAT radiomic feature, with its more reliable and 

targeted nature, can predict offender plaque progression at 

specific locations, making prophylactic coronary stenting a 

future treatment option. The ORFAN study (29) demonstrated 

that in patients with non-obstructive coronary artery disease, 

FAI scores accurately capture clinical risk stratification as well as 

in(ammatory risk beyond that explained by CCTA. In addition 

to coronary arteries, microvascular dysfunction may also be a 

background for cardiovascular MACE (30). That is, when CCTA 

shows a non-plaque outcome but with high-risk FAI or 

radiomic features, then specific anti-in(ammatory therapy may 

be an option.

Our study has some limitations. Firstly, It was a single-center, 

retrospective study with a small number of cases and lack of an 

external validation cohort. Secondly, to control for confounding 

bias, we adopted 1:1 propensity score matching to construct the 

study cohort. This method resulted in a matched sample where 

the proportion of the MACE group was 50%, which is 

significantly higher than the actual prevalence of coronary heart 

disease in the real world. While this helps us estimate the 

association between predictors and outcomes more accurately, it 

may overestimate the discriminative ability (e.g., AUC value) of 

the developed models in the general consecutive enrollment 

population with a lower prevalence. Therefore, the performance of 

each model in this study should be regarded as the “potential 

performance” under its optimal conditions. Before applying these 

models to the real world, further external validation must be 

conducted in an independent cohort with representative 

prevalence to calibrate their predictive probabilities and re-evaluate 

their discriminative power. Thirdly, the CT scanning mode in this 

study was prospective adaptive scanning, and changes in tube 

voltage may have an impact on image quality, thus affecting 

radiomics feature extraction and selection. Fourthly, because the 

PCAT analysis software of Shukun Technology Co., Ltd. is capable 

of fully automatic and semi-automatic segmentation and feature 

extraction of PCAT of the right coronary artery and lesion-specific 

PCAT, allowing for the extraction 93 radiographic features at a 

time. Consequently, we assert that the radiomic features derived 

from Shukun’s software exhibit a high degree of stability, and the 

intraclass correlation coefficient (ICC) consistency analysis was not 

performed before feature selection. However, fewer radiomic 

features per patient may affect the accuracy of the experimental 

results. Our team intends to utilize open-source software (e.g., 3D 

Slicer) to manually draw the ROIs of PCAT and extract the 

radiomic features, and compare the obtained experimental results 

with the current experiment. Fifthly, because the target plaques of 

lesion regions are determined by CT-FFR, when patients have 

multiple coronary lesions, the target plaque regions with CT-FFR 

<0.8, i.e., lesion-specific PCAT regions, may not necessarily be the 

regions with the most severe coronary in(ammation. Therefore, 

the current study can only suggest that the radiomic profile of 

lesion-specific PCAT may be more effective than that of the right 

coronary artery PCAT in predicting MACE over a three-year 

period, without indicating a predictive advantage of lesion-specific 

PCAT in coronary in(ammation. Future studies by our team will 

aim to explore and validate the FAI and lesion-specific FAI of the 

right coronary artery by including them in the same cohort of 

patients. Sixthly, the Region of Interest (ROI) for patients with 

MACE was defined based on the target plaque (CT-FFR < 0.8). 

For the control group, however, since patients without MACE 

may not have a target plaque, the ROI was defined based on the 

anatomically most stenotic site. The asymmetric ROI introduces 

potential confounding bias, which may affect the reliability of the 

results. In subsequent studies, our team will continue to expand 

the sample size, include a sufficient number of non-MACE 

patients who meet the target plaque criteria, and conduct further 

analyses. Lastly, the discussion of the radiomic features in this 

study has only been analyzed at the basic theoretical and clinical 

consequence level, and the intrinsic connection between these 

features and the biological properties of PCAT will be explored in 

depth in subsequent studies. We plan to validate the structural 

and functional changes of PCAT revealed by the radiomic features 

through biological experiments and molecular biology techniques, 

and further investigate the relationship between these changes and 

the development of coronary artery disease.

5 Conclusion

In summary, the lesion-specific PCAT radiomics model 

demonstrates a greater efficacy in predicting MACE compared to 

the PCAT radiomics model based on RCA. Incorporation of 

lesion-specific PCAT radiomic features into clinical cardiovascular 

risk factors could provide incremental predictive value.
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