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Al-driven decision making for
Intravascular device selection in
aortic disease. Current insights
and prospects
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INVAMED Medical Innovation Institute, New York, NY, United States, 2Med-International UK Health
Agency Ltd., Leicestershire, United Kingdom

Abdominal and thoracic aortic repairs increasingly rely on endovascular solutions,
but device selection in anatomically complex cases remains prone to error due to
measurement variability, tortuosity, short/angulated necks, and heterogeneous
post-EVAR evolution. This article focuses on artificial intelligence (Al) tools that
support intravascular device selection and planning, particularly in abdominal
and thoracic aortic aneurysms, and type B dissection scenarios where
endovascular repair (EVAR/TEVAR) is applicable. We synthesize evidence on (i)
automated centerline extraction and 3D measurements that standardize sizing;
(i) risk models that predict inadequate sealing or endoleakage to guide
oversizing and landing zone strategy; and (iii) procedural environment
"augmented intelligence” maps and extended reality modules that
operationalize device selections in the laboratory. We summarize commercial
and research-level systems, clinical readiness, and regulatory status, and outline
validation, explainability, and bias considerations. While current evidence-based
workflows achieve excellent results, targeted Al components reduce variability
and can support consistent device decisions across complex anatomies.
Prospective, multicenter validation is needed before routine implementation;
for now, Al should be viewed as a complement, rather than a replacement, to
established EVAR/TEVAR planning and oversight.

KEYWORDS

aortic aneurysm, artificial intelligence, endovascular repair, medical image
segmentation, intravascular device selection

1 Introduction

Aortic diseases, encompass a spectrum of life-threatening conditions, primarily
abdominal and thoracic aortic aneurysms (AAA and TAA) and aortic dissection (AD).
Although these conditions vary in pathophysiological and clinical presentation, they
share a common risk of high morbidity and mortality when left untreated (1, 2).

While treatment can be lifesaving, there is no established pharmacologic treatment for
most aortic diseases (3). Open or endovascular surgical repair is the mainstay of
intervention. For suitable patients, endovascular approaches such as EVAR (for AAA)
and TEVAR (for TAA or complicated AD) offer minimally invasive alternatives to open
surgery (4, 5). Current treatment of aortic disease is based on well-established guidelines
that have yielded excellent results. EVAR achieves mortality rates in the low single-digit
percentage range, and current imaging protocols provide rapid and accurate diagnosis in
the majority of cases (6, 7). However, the rates of morbidity and mortality vary among

01 frontiersin.org


http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2025.1585299&domain=pdf&date_stamp=2020-03-12
mailto:rasitdinc@hotmail.com
https://doi.org/10.3389/fcvm.2025.1585299
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1585299/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1585299/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1585299/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1585299/full
http://orcid.org/0000-0003-1382-0262
http://orcid.org/0000-0002-2726-7990
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2025.1585299

Dinc and Ardic

the studies. Caradu et al. (8) reported that complications such as
device migration or endoleak occur in up to 25% of patients
undergoing EVAR.

Accurate device selection and measurement of aortic
dimensions are crucial for the success of endovascular repair.
The computed tomography angiography (CTA) imaging has also
an essential role in post-procedural monitoring (9-11). Despite
these advantages, these procedures can be complex and time-
consuming, especially in cases with tortuous anatomy or
dissection. Additionally, traditional planning relies heavily on
clinician expertise and manual image interpretation, which leads
to variability and can increase the risk of complications such as
endoleaks or device migration (8, 12). These risks underscore
the need for precise preoperative planning and meticulous
postprocedural imaging surveillance, while addressing resource-
intensive and standardization challenges.

Despite guideline-driven workflows, device selection remains
challenging due to patient-specific anatomy (short/angulated necks,
thrombus/calcification, iliac access), interobserver variability in 3D
measurements, and post-EVAR risks such as seal failure, endoleak,
and sac enlargement or migration. These factors lead to
reinterventions and variability across centers, even when CTA
protocols are standardized (13, 14). Therefore, the specific goal of
this review is to examine AI modules that directly impact device
selection steps (from automated centerline and sizing to risk-based
oversizing and landing zone strategy) and to clarify how such tools
help (or potentially could help) clinicians make better device
decisions rather than providing generic analyses independent of
procedural choices. Advances in computational technologies,
artificial (AD),
opportunities to improve clinical decision-making in vascular

particularly intelligence have created new
medicine. AI is a general term that includes machine learning
(ML), which allows systems to learn from data, and deep learning
(DL), a subset of Al that uses neural networks to process complex
imaging or clinical inputs. These tools have shown early promise in
risk prediction, anatomical segmentation, and image interpretation.
In the context of aortic disease, Al has the potential to support
more precise preoperative planning, improved procedural
simulations, and personalized surveillance strategies (13-16).

This article provides a narrative overview of emerging applications
of Al in the treatment of aortic diseases, focusing specifically on their
potential to assist in intravascular device selection and procedure
planning in endovascular repair. The discussion addresses anatomical
challenges, imaging interpretation, clinical risk stratification, and
future research directions. Given current limitations in clinical
evidence, this review emphasizes the prospective value of Al rather

than asserting definitive clinical superiority.

2 Aortic pathologies and management

2.1 Pathology-specific background and
treatment overview

Cardiovascular diseases remain the leading cause of death
globally, with aortic pathologies representing some of the most
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acute and high-risk conditions (17). The most Cclinically
significant of these are AAA, TAA, and AD (18, 19). These
differ in
requirements, and

conditions etiology, mnatural history, imaging

treatment modalities and should be
considered separately (5, 20).

AAA and TAA are characterized by progressive dilation of the
vessel wall, usually due to a combination of genetic factors,
atherosclerosis, and degenerative changes in the media. AAAs
are most commonly seen beneath the renal arteries, while TAAs
affect the ascending or descending thoracic aorta (5, 20). If
untreated, aneurysmal rupture has a mortality rate of up to 80%,
especially in abdominally located cases (18). AD, in contrast,
causes a tear in the intimal layer of the aorta, allowing blood to
enter the medial layer and creating a false lumen (1, 21)
(Figure 1). Dissections are classified as Stanford type A
(ascending aorta) and type B (descending aorta) and present
acutely. Without prompt diagnosis and treatment, mortality in
type A dissections can approach 50% within the first 48 h (1, 19).

Standard treatment for AAA and selected cases of TAA
includes open surgical repair or EVAR for AAA and TEVAR for
TAA (4, 5). EVAR is preferred in elective AAA cases due to
reduced perioperative risk. However, anatomic suitability must
be confirmed with preoperative imaging to avoid complications
Not all

aneurysms, especially those with short or angled necks, are

such as endoleaks or device migration (8, 12).

suitable for endovascular techniques. In contrast, treatment of
AD varies by type: Type A dissections usually require urgent
open surgery, while uncomplicated Type B dissections can be
managed medically, and TEVAR is reserved for complicated
cases (1, 2). These differences emphasize the importance of
personalized treatment planning based on precise anatomic and
clinical assessment, guided by current clinical practice guidelines
rather than new technologies.

2.2 Radiological assessment of EVAR

EVAR involves the placement of a stent graft into the aorta to
remove an aneurysmal segment from the systemic blood flow and
strengthen the arterial wall. It is predominantly indicated for the
treatment of AAA in anatomically suitable patients (4, 12).
Despite the challenging anatomical morphology, the latest
generation of EVAR devices can address a wide range of
complex aortic pathologies, including both the aneurysms and
dissections (22).

Preoperative imaging is essential to determine aneurysm size,
morphology, and suitability for EVAR. The procedure requires
accurate measurement of the proximal and distal landing zones
to ensure adequate adherence and fixation of the endograft to
healthy arterial tissue and to minimize the risk of device
migration and endoleakage (12, 23). Appropriate oversizing is
also necessary to ensure effective fixation.

Computed tomography (CT) is the most widely used method
for both pre- and post-procedural assessment due to its high
resolution and 3D

spatial reconstruction capability (22).

A noncontrast CT scan can help distinguish calcified thrombi or
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Simplified schematic representation of the stages of aortic aneurysm and dissection and the effect of stenting on blood flow. (A) Aortic dissection, (B)
aortic aneurysm. Adapted from “Schematic illustration of abdominal aortic aneurysms (AAA) pathogenesis and its macrophage polarization therapy”
by Rasit Dinc (Taiwan Society of Cardiology (Acta Cardiologica Sinica). Drawing with Adobe Creative Suite Package I(lllustrator, version 28.7.1 and

Photoshop, version 25.12)].

surgical materials from endoleaks containing contrast material,
while CT scans containing contrast material provide a detailed
assessment of aneurysm morphology and vascular anatomy (11,
24). Multiphase CT
identifying and classifying endoleaks, one of the most common
complications after EVAR (11). 3D evaluation of the aorta is

scanning is particularly useful for

important because even a small increase in the length of the
aortic aneurysm can cause a significant increase in its volume.
While maximum aortic diameter is currently the gold standard
for decision-making, it is not always associated with volumetric
expansion. For example, Caradu et al. (8) demonstrated that
even a 2 mm increase in diameter can reflect a greater than >5%
increase in aneurysm volume. Such observations highlight the
value of 3D volumetric assessment in monitoring saccular
development However, true volumetric analysis requires
advanced segmentation techniques that are time-consuming and
not yet widely used in daily practice.

Long-term post-intervention follow-up is crucial for due to the
potential for late complications such as endoleaks, saccular
expansion, device migration, or delayed rupture (25). Mehta et al.
(26) reported approximately 1.5% of EVAR patients experienced
delayed rupture at a mean of 29 months after intervention. The
Food and Drug Administration (FDA) recommends continuing
CTA at 1, 6, and 12 months after EVAR and then annually

thereafter indefinitely if no problems are detected (25).
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Despite its advantages, CTA has limitations, including
radiation exposure, cost, and the risk of contrast-induced
nephropathy. Furthermore, segmentation of the aortic wall
and thrombus is semi-automatic at most imaging stations.
Therefore, fully automated, standardized 3D analysis tools,
most often Al-powered, may improve efficiency and
consistency in the future but are under evaluation for routine
clinical integration (8, 27, 28).

3 Al techniques in aortic diseases
Mmanagement

3.1 Overview of Al, ML, and DL in aortic
pathologies

Al generally refers to computational systems that mimic
human cognitive functions, including learning, reasoning, and
decision-making (15, 29). In this context, ML refers to
algorithms that improve through data visualization, and DL is a
specialized subset of ML that uses multilayer neural networks,
specifically capable of extracting complex patterns in imaging
data (16, 30). In the context of aortic disease, AI models have
shown potential in automating diagnostic image segmentation,
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improving morphological analysis, and supporting outcome
prediction (10, 27, 31).

In this review, we use AI as an umbrella term that also
encompasses machine learning (ML) and deep learning (DL).
DL is the core element of imaging for segmentation and
ML/DL  models
support risk prediction related to oversizing and landing zone

centerline/orthogonal measurements; also
strategy. We discuss computer vision (CV), where models
interpret CT angiography, and extended reality (XR), where
planning layers help operationalize device selection (13, 30, 32).

3.2 Image-based aortic segmentation and
measurement

One of the most studied applications of AI in vascular
medicine is the automatic segmentation of abdominal aortic
aneurysms (AAA) in CTA datasets (Figure 2). Traditional
methods often rely on semi-automated tools that require manual
correction, are time-consuming, and operator dependent.

10.3389/fcvm.2025.1585299

Abdolmanafi et al. (10) developed a DL-based tool that enables
highly accurate segmentation of the aneurysmal sac from
preoperative CT and allows rapid and reproducible measurement
of aortic diameters. Similarly, Adam et al. implemented a fully
automated pipeline for maximum diameter assessment before and
after EVAR that correlated well with manual measurements (27).
These tools can help reduce observer variability and support
standardized surveillance, but their clinical use is limited to
experimental or retrospective settings (10, 27, 31).

3.3 Prediction models and risk stratification

Al has also been applied to predict clinical outcomes after EVAR,
including complications such as endoleaks, sac dilation, or
reintervention. For example, Karthikesalingam et al. used an artificial
neural network to stratify the risk of mortality and reintervention
after EVAR and identified high-risk patient profiles based on
anatomic and procedural variables (34). More recently, Long et al.
proposed a DL-based risk model that integrates procedural and
imaging features to predict post-EVAR complications such as type 1

FIGURE 2
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Simplified visual representation of AA segmentation using DL model. The goal of image acquisition (Step-1) is to obtain a 3D image of the aorta from
a series of DICOM images with 2D cross-sectional slices. In the pre-processing stage (Step-2), the image quality is improved and the input for the Al
model is standardized. In Al-assisted segmentation (Step-3), DL models are trained on thousands of labeled scans. A segmentation mask is applied by
marking the pixels corresponding to the aorta and the segmented aorta is analyzed to mark areas with abnormal dilation. In the post-processing
stage (Step-4), the Al output is cleaned for accuracy. In the reconstruction and visualization stage (Step-5), the goal is to display the results in a
clear and interpretable way. For this purpose, the aorta is shown with a base color (e.g., blue) and the aneurysm region is shown with a warning
color (e.g., red). In the figure, pre-and post-stenting blood flow velocity are figured (right below). Adapted from: "Visual representation of the
network architecture and output for AAA tissue segmentation” by Atefeh Abdolmanafi, Arianna Forneris, Randy D. Moore and Elena S. Di Martino,
licensed under CC BY 4.0, and "Diagrammatic comparison of the processing framework of machine learning and deep learning” by Nurittin Ardic
and Dinc, licensed under CC BY-NC. Drawing with Adobe Creative Suite Package I[(lllustrator, version 28.7.1 and Photoshop, version 25.12)].
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endoleaks and bladder dilation (35). However, these models need to be
validated in large, prospective, multicenter cohorts before they can be
recommended for routine clinical use.

It is also important to distinguish risk profiling tools from actual
treatment guidance. Predictive models can help clinicians adjust
surveillance intensity or select ancillary techniques, but they do not
replace existing treatment guidelines or procedural decisions.

3.4 Al for complication prediction and
endoleak classification

Endoleaks are among the most common findings after EVAR.
They represent blood flow that continues outside the stent graft
lumen but within the aneurysm sac. Endoleaks are classified as
types 1-5, with varying clinical outcomes. Importantly, type 2
endoleaks, originating from retrograde flow from branch vessels
such as the lumbar or inferior mesenteric arteries, are generally
benign and self-limited, while types 1
(inadequate seal or device integrity failure) are associated with a
higher risk of sac expansion and rupture (11, 25).

and 3 endoleaks

Accurately identifying and classifying endoleaks using CT
imaging after EVAR can be challenging due to variations in
anatomy, contrast timing, and image quality. Al-based image
classification and segmentation tools have been investigated to
address these limitations. Long et al. A DL model was developed
that integrates procedural variables and imaging features to
predict the likelihood of complications, including type 1
endoleaks and sac dilation, with promising accuracy (35).
Furthermore, predictive ~modeling can support early
identification of patients at risk for delayed complications such
as sac enlargement, migration, or even rupture.
Karthikesalingam et al. (34) applied an artificial neural network
to stratify the risk of reintervention and mortality after EVAR
While  their

demonstrated the applicability of nonlinear models for outcome

using large retrospective  datasets. study

prediction, external validation remains limited.

10.3389/fcvm.2025.1585299

Despite these advances, current Al models have not been
validated for diagnostic use in real-world clinical settings.
Furthermore, risk prediction does not imply an indication for
treatment. Decisions regarding reintervention after type 2
endoleaks or sac dilation should adhere to established guidelines
and individual patient factors (25).

In summary, Al has the potential to complement post-EVAR
surveillance through automated detection and risk prediction;
however, it should be viewed as a complement to, and not a
substitute for, clinical judgment and guideline-based decision-making.

3.5 Limitations and current clinical status

Although preliminary findings are encouraging, the real-world
integration of AI models in aortic disease management is limited.
Most studies to date are retrospective, single-center, or lack
external validation. Regulatory approval for Al-based clinical
tools in vascular surgery remains rare (33, 36).

Furthermore, most published models are “black box” in
nature; This means that decision-making processes are not
interpretable and raises questions about clinical trust and
accountability (37, 38). Ethical issues, such as algorithmic bias
in underrepresented populations, should also be addressed
before wider implementation (39, 40).

4 Clinical integration of Al: from
workflow support to real-world
applications

4.1 Workflow and decision support
integration

The integration of Al into vascular clinical workflows is an
emerging area of research focused on improving the efficiency,
accuracy, and

consistency of preoperative planning and

procedural simulation. These technologies are being developed

TABLE 1 Al components directly supporting device selection decisions in aortic endovascular repair. The table highlights applications that impact

sizing, sealing, and procedural planning rather than overall analysis.

Use (decision
point)

Automatic centerline extraction

case Typical inputs

CTA DICOM,; aortic/iliac

Al output for device
selection

Reproducible diameters and

Clinical readiness Representative
examples/resources

CE-marked semi- TeraRecon Intuition™, Siemens

and orthogonal measurement for | geometry lengths; standard sizing worksheet | automatic modules; syngo.CT Vascular Analysis (35)
graft sizing/oversizing operator validation
required
Risk prediction of inadequate Preoperative Possibility of endoleak or Investigational; (34, 35)
sealing or type I endoleak guides | measurements + anatomic and migration risk; oversizing retrospective validation
oversizing and landing zone procedural features recommendations
strategy
Intra-procedural augmented Preoperative CTA + live Key point registration and site Early clinical reports (13, 41)
intelligence mapping for complex | fluoroscopy targeting to confirm device
EVAR/TEVAR configuration
Automated post-EVAR Serial CTA scans Objective measurements of sac Investigational use; (8)

volumetric assessment supports
reapplication or extension device
planning

Frontiers in Cardiovascular Medicine
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to support vascular surgeons and interventional radiologists in

routine  decision-making and patient-specific ~ procedural
strategies, rather than replacing clinical judgment.

To delineate how Al supports device selection decisions rather
than overall workflow optimization, Table 1 summarizes the key
Al components applied to graft sizing, seal site optimization,
and procedural planning. The table highlights the decision point
targeted by each AI module, the input data, the outputs related
to device selection, and the current level of clinical readiness.

As summarized in Table 1, these targeted modules directly
impact the sizing and planning decisions that determine
procedure success. The next section summarizes the commercial
applications of these functions in clinical practice.

One promising area is the use of Al-enabled software for
automated stent graft planning. These tools incorporate
preoperative CTA data to assist in selecting appropriate device
sizes and configurations based on patient-specific anatomy. Patel
et al. have shown that surgical augmented intelligence maps can
facilitate more accurate deployment planning, improving radiation
safety and contrast utilization during the treatment of complex
aortic aneurysms (41). Extended reality (XR) platforms, which
refer to technologies that enhance or change our perception of
the world by overlaying digital information onto the real world or
immersing users in a completely digital environment, are also
gaining momentum in simulation-based training and procedural
rehearsals, and artificial intelligence modules support real-time
anatomical recognition. A novel integration of AI with XR has
been described by Samant et al. to optimize planning for high-
risk cardiovascular interventions, potentially reducing case time
and improving anatomical understanding (13).

Beyond planning, Al-based systems can contribute to
intraoperative navigation and real-time decision support. Some
platforms can detect anatomical landmarks, identify stent
landing zones, and alert operators to discrepancies between
planning and live fluoroscopic images. While these applications
are experimental, they reflect a shift toward surgical augmented
intelligence; these tools enhance clinician performance rather
than automating full procedural execution. In the outpatient
setting, Al can help classify imaging studies, prioritize complex
cases for earlier review, and generate standardized reports using
natural language processing (NLP). For example, Fabre et al.
(28) proposed a semi-automated

aneurysm evolution after EVAR using Al-assisted measurement

system for monitoring
tracking on serial CTA scans.

However, most of these systems are still in development or
pilot stages and have not yet received regulatory approval for
widespread clinical use. Additionally, integration with hospital
information systems and compatibility with imaging Picture
(PACS)
logistical hurdles. However, these innovations highlight the

Archiving and Communication Systems remain
growing importance of Al as a collaborative tool in complex
vascular workflows.

The outlined steps in Al-assisted aortic aneurysm intervention
are: Patient CTA — Segmentation (AI) — Sizing — Risk
stratification (AI) — Device planning (Al-assisted) — Procedure

— Postoperative follow-up (AI).
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4.2 Commercial platforms in practice

While much of the AI
management stems from academic research, several commercial

innovation in aortic disease
Al-powered tools have entered clinical use, particularly in the
areas of workflow improvement and triage optimization. These
tools primarily serve as decision

support systems for

preoperative planning, automated imaging analysis, and
postoperative surveillance. Box 1 illustrates three representative
scenarios where Al directly impacts device selection decisions.
However, their integration into routine clinical practice is
limited and is typically limited to high-volume centers or
pilot programs.

The TeraRecon Intuition™ platform, including the EVAR
planning suite, leverages AI to perform 3D centerline extraction
from CTA scans, semi-automated aortic measurements, and
stent graft sizing. These features aim to reduce interobserver
variability and streamline case preparation. While the tool is
CE-marked and widely used, it does not operate autonomously
and requires user verification during planning steps (42-44).

Similarly, Siemens Healthineers’ syngo. CT Vascular Analysis
supports automatic aortic centerline generation, curved planar
reformations (CPR), and cross-sectional measurements. The
platform also includes modules specific to AAA preoperative
workflows, such as stent planning and iliac measurement tools
(45-47). While these

independent evaluations are limited to vendor-supported studies.

modules have proven timesaving,

Viz.ai’s Viz Aorta module is one of several FDA-cleared Al
tools focused on aortic diseases. It uses deep learning to detect
suspicious aortic aneurysms and dissections from CTA scans
and prioritize radiology examination. Validation studies have
reported 94.2% sensitivity and 97.3% specificity, and the
software is currently used in over 850 US hospitals (48, 49).
While the tool doesn’t recommend treatment, it significantly
speeds up triage and facilitates earlier intervention by specialists.

Various ML models have been proposed to predict aneurysm
sac growth, postoperative endoleak, and reintervention risk after
EVAR (50). For example, Abbas et al. (51) developed a
supervised model to predict 1-year sac expansion >5mm with
area under the curve (AUC) exceeding 0.90. Similarly, Long
et al. (35) and Karthikesalingam et al. (34) have shown that
artificial neural networks can outperform traditional statistical
models for reintervention risk. However, these models have not
yet been validated for clinical use and require prospective
validation, multicenter training, and regulatory review.

XR-based platforms, including augmented reality (AR, sub-
branch of XR) tools, are increasingly being tested for surgical
rehearsal and intraoperative guidance in complex aortic repair.
These systems provide comprehensive visualization of patient-
specific anatomy, supporting preprocedural planning and team-
based While AR/XR
applications remain primarily research-focused and have not

coordination. promising, current
been widely adopted in commercial clinical practice (13).
Another promising platform is PRAE-VAorta (Nurea, France),

a fully automated software that provides volumetric and
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morphological analysis of aneurysm sac and neck evolution after
EVAR. The software demonstrated excellent agreement with
manually corrected segmentation (Pearson correlation coefficient
>0.99; P<0.0001) and significantly shortened segmentation time
(2.5 min compared with 22 min per patient; P<0.0001). These
features may support earlier detection of adverse sac evolution
and improve long-term EVAR surveillance. Although currently
in the evaluation phase, PRAE-VAorta exemplifies the type of
smart tool ready for clinical integration (8).

To provide a structured overview, Table 2 summarizes the key
commercial and research Al applications used in different phases

10.3389/fcvm.2025.1585299

5 Model validation, refinement, and
explainability

5.1 Data quality and validation challenges

The development and application of AI models in aortic
diseases (especially for EVAR planning, complication prediction,
and postoperative surveillance) is limited by data availability and
model generalizability issues. Most existing studies rely on
single-center, retrospective datasets with limited demographic
and geographic diversity. This creates a risk of overfitting and

of aortic repair, including their clinical readiness and limits clinical applicability to broader patient populations (38, 52).

regulatory status.

Box 1 lllustrative device selection scenarios. Illustrative scenarios where Al directly impacts device selection.

Case-1: Elective AAA with a short, angulated, thrombus-laden neck.

A 73-year-old man with a 6.2 cm infrarenal AAA had a proximal neck length of ~12 mm, an angulation of ~65°, and mural
thrombus/calcification. Al-assisted centerline and orthogonal planes provided reproducible diameters/lengths and a standardized
sizing worksheet. A risk model (trained with retrospective data) demonstrated a higher likelihood of inadequate proximal sealing
with routine oversizing. The team selected an oversizing window toward the superior end within the instructions for use (IFU),
enlarged the planned proximal landing zone, and prepared ancillary maneuvers. Intraoperative augmented intelligence flagging
was appropriate; no early type I endoleak was detected. These AI components reduced measurement variability and supported
sizing/landing zone decisions; clinical judgment remained primary.

Case-2: Post-EVAR sac enlargement triggered re-application/extension planning.

A 70-year-old man demonstrated sac enlargement on surveillance CT at 18 months. Automated volume measurements
confirmed greater than 5% sac expansion despite a <2 mm change in maximum diameter, enabling earlier assessment of
proximal extension. Standardized evolution curves and centerline-based re-measurement facilitated communication with the
sizing team and informed the selection of the extension configuration. In this case, Al-assisted volume measurements and
consistent measurement lines supported the decision to proceed, while guideline-based thresholds and imaging review
remained decisive.

Case-3: TEVAR Planning for a type B dissection with a hostile arch.

A 68-year-old woman with a complicated Type B dissection and tortuous arch required careful landing site strategy. Al-assisted
segmentation mapped true/false lumen relationships and branch vessel origins; planning overlays helped evaluate alternative
proximal landing sites and projected catheter paths. The final device selection and site strategy were validated through IFU and
multidisciplinary discussion. AI tools standardized measurements and visualized tradeoffs but did not replace operator
decision-making.

TABLE 2 Al tools in aortic repair workflow with clinical readiness.

Workflow stage Al application Representative Clinical readiness Market status  Reference
studies
Preoperative imaging | 3D segmentation, centerline extraction | TeraRecon Intuition™ CE-marked devices, widely Semi-automated graft | (42-44)
EVAR Suite available sizing and planning
support
Preoperative imaging | Automated centerline, cross-section Siemens syngo.CT CE-marked devices, limited Supports aortic (45, 47)
Vascular Analysis independent validation measuring and graft
planning
Triage and acute care | DL-based CTA detection of aneurysm/ | Viz.ai Aorta FDA approved, in use Triage flagging, (48, 49)

dissection 850 + centers prioritizes radiologist

attention

Intraoperative and AR/XR for anatomy visualization and | AR simulators (research Academic prototyping only Team-based rehearsal | (13)

preoperative simulation | rehearsal use) and guidance
Postoperative ML-based prediction of sac dilatation | Custom ML models Not approved, retrospective only | Predicts post-EVAR (34, 35, 51)
monitoring or endoleak (academic) outcomes
Postoperative Fully automated volumetric and PRAE-VAorta Feasibility studies; excellent Research use, under (8)
monitoring morphological analysis of sac and neck agreement with manual evaluation
evolution after EVAR segmentation (r > 0.99)
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Most importantly, few models undergo external validation.
Because rigorous testing on independent datasets from different
institutions or populations is lacking, reported performance
metrics (e.g., accuracy, AUC) during development are often
overly optimistic. For example, many aneurysm growth
prediction models have demonstrated promising AUCs (>0.90)
during internal testing but have not yet been evaluated in
prospective or real-time clinical settings (35, 51).

Another common challenge is the heterogeneity in imaging
protocols and annotation standards. CTA quality, phase timing,
and slice thickness vary across institutions, hindering model
reproducibility. Annotated ground truth data (especially for
segmentation tasks such as aneurysm sac evolution or endoleak
classification) is often manually curated, leading to interobserver
variability and inconsistent labeling (53, 54).

Furthermore, publicly available datasets in this field remain
fields such as
dermatology, lacks large,
standardized data repositories to support open benchmarking.

insufficient. Compared to radiology or

aortic  imaging diverse, and
This limits transparency and makes it difficult to compare
model performance across studies (55, 56).

To meet regulatory and clinical standards, future research
should prioritize multicenter data collection, standardized
disclosure protocols, external validation in temporally and
demographically diverse cohorts, publication of negative results
and failure cases to increase transparency. Without addressing
these fundamental data issues, AI models for aortic care risk
remaining experimental, despite strong technical performance in
controlled settings. Lack of external validation for device
selection leads to uncertain reliability of oversizing windows and

landing zone recommendations across scanners and centers.

5.2 Explainability and clinical confidence

Explainability is a critical barrier to the clinical adoption of Al
in vascular care. While DL models can outperform traditional
statistical techniques in classification and segmentation tasks,
they are often perceived by clinicians as “black boxes”,
producing results without a clear understanding of the
reasoning behind decisions (37, 38). This uncertainty creates
challenges in establishing confidence, especially when model
predictions conflict with clinical judgment.

To address this gap, explainable artificial intelligence (XAI)
approaches, such as saliency maps, attention mechanisms, and
decision trees, are being explored to make model outputs more
interpretable. For example, highlighting which features on a
CTA scan contribute most to aneurysm classification can help
whether the with
anatomical expectations (54). Despite these efforts, studies show

clinicians assess model’s logic aligns

that many existing XAI techniques are inherently unreliable and

can create bias or false confidence in system outputs.
Furthermore, clinicians’ preferences for visual and textual
explanations vary, and integration into clinical systems should

consider user-centered design (38, 56).
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Regulatory bodies such as the FDA and EMA are now
emphasizing transparency and traceability in AI/ML-based
software (SaMS) used as medical devices. To comply with
evolving standards, developers are required to document model
behavior, training data lineage, and expected performance across
patient subgroups (36). Explainability must indicate which
anatomical features (e.g., neck diameter, thrombus burden,
angulation) drive a risk estimate or sizing recommendation;
without this, clinicians cannot rely on AI outputs that oversize
or alter landing zone plans.

5.3 Regulatory issues

The use of Al in aortic disease management, particularly for
clinical decision support, image interpretation, and outcome
prediction, careful consideration of regulatory
frameworks. In the US, the FDA regulates Al tools used for
clinical purposes under the category of Software as a Medical
Device (SaMD). Recent efforts, such as the FDA’s “Digital
Health Software and Good
Machine Learning Practices (GMLP) guidance, reflect an

requires

Pre-Certification Program”

evolving approach to safety assessment. Europe implements
similar oversight through the European Medicines Agency
(EMA) and the Medical (MDR),
emphasizing CE marking, performance verification, and post-

Device Regulation

market surveillance. However, regulatory guidance for
continuously learning AI models (those that adapt over time)
is still under development, creating challenges for clinical
application (36).

A key regulatory concern is bias and fairness. Studies have
shown that AI models trained on homogeneous datasets can
underperform in underrepresented populations, exacerbating
health inequalities (39, 49). To mitigate these risks, developers
should ensure demographic diversity in training datasets,
include bias checks, and stratify model performance by subgroup.

Transparency is another critical issue. Regulatory bodies now
require developers to document not only the algorithm
architecture and training performance, but also the clinical
intended use, limitations, and explainability features. There are
growing expectations that models used in aortic care must
undergo not only technical validation but also clinical utility
evaluations, including prospective trials or real-world evidence
studies. Both the FDA and EMA are moving toward a total
product lifecycle strategy for Al-based medical software; this
approach ensures that performance remains traceable and
auditable while supporting adaptive learning. In the US, the
FDA’s Draft Guidance on Al-Enabled Device

Functions outlines a Predetermined Change Control Plan

Software

(PCCP) framework that allows for post-distribution algorithm
updates while maintaining regulatory oversight (57). Meanwhile,
the EMA published its Reflection Paper on the use of Al in the
medical product lifecycle, advocating for a risk-based lifecycle
management model and expecting developers to monitor Al
performance at all stages, from development and distribution to
post-authorization (58). Regulators are increasingly expecting
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the intended use specified at the decision stage (e.g., supports graft
sizing within the IFU), with performance stratified by anatomy
and scanner protocol, which directly relates to EVAR/TEVAR
device selection.

As regulations mature, interdisciplinary collaboration among
clinicians, AI developers, and regulatory experts will be vital to
safely integrating Al into aortic care pathways.

6 Future directions and ethical
considerations

To fully benefit from these technological advances, current
challenges must be addressed. Integrating AI into existing
surgical planning software as part of real-time decision support
systems, can reduce procedure times and improve outcomes by
offering real-time recommendations for stent graft selection.

As machine learning models continue to mature, future
applications in EVAR and TEVAR workflows are expected to
transition from passive decision support systems to dynamic and
adaptive platforms. These systems can combine real-time
hemodynamic data, multimodal imaging, and intraoperative
feedback to The
integration of federated learning, which enables model training

instantly optimize treatment strategies.
across multiple institutions without data sharing, offers a
promising avenue for developing robust and generalizable
models while preserving patient privacy (59). Future clinical
settings could utilize these tools for personalized graft design or
the automatic identification of high-risk anatomical variants.

To ensure clinical robustness and generalizability, future AI
systems must be trained and validated using heterogeneous,
multicenter datasets under standardized protocols. Initiatives
such as the Medical Imaging and Data Resource Center
(MIDRC) in the United States and the European Health Data
Space (EHDS) in the European Union aim to support this effort
by promoting federated learning, harmonized data sharing, and
secure access across institutions and jurisdictions (59-61).
Additionally, academia-industry collaborations should prioritize
not only technical performance but also patient-centered
outcomes and equity. It is crucial to ensure that AI development
health
underrepresented populations that may exhibit different aortic

addresses  global inequalities,  particularly  for
disease phenotypes.

The adoption of AI in vascular surgery raises important
ethical

autonomy. The lack of interpretability in deep learning models

issues related to bias, transparency, and patient
can limit clinician trust, especially when predictions contradict
established guidelines. XAI methods are being developed to
address “black box” nature of AI, but most are limited to
(62).

attention maps, provide insights into model decisions (37, 38).

research settings Interactive visualizations, such as

From a legal perspective, questions of liability in the event of
Al-induced misdiagnosis or planning errors remain unresolved.
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Institutions should implement clear policies regarding oversight,
documentation, and escalation protocols when AI tools are
deployed in clinical pathways. In parallel, regulators are
exploring risk-based classifications and real-time monitoring
frameworks to ensure safety without hindering innovation (63).
In conclusion, the integration of Al into intravascular device
selection for aortic disease is an area of active research. From
preoperative segmentation and simulation to intraoperative
guidance and postoperative surveillance, AI tools can offer
supporting capabilities to increase precision and reduce
variability in complex cases. However, current endovascular
techniques currently deliver excellent results, and the added
value of AI remains to be proven through large-scale validation
and clinical trials. AI-powered approaches should be viewed as
complements, not replacements, of established guideline-based
care. The widespread clinical implementation landscape will
depend on overcoming challenges related to data quality,
explainability, interoperability, and regulatory approval
Continued interdisciplinary collaboration is essential to ensure
the safe, equitable, and clinically meaningful development and
implementation of these tools. Near-term priority is to
prospectively test modules that standardize centerline/orthogonal
measurements and calibrate oversizing against endoleak risk.
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