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Abdominal and thoracic aortic repairs increasingly rely on endovascular solutions, 

but device selection in anatomically complex cases remains prone to error due to 

measurement variability, tortuosity, short/angulated necks, and heterogeneous 

post-EVAR evolution. This article focuses on artificial intelligence (AI) tools that 

support intravascular device selection and planning, particularly in abdominal 

and thoracic aortic aneurysms, and type B dissection scenarios where 

endovascular repair (EVAR/TEVAR) is applicable. We synthesize evidence on (i) 

automated centerline extraction and 3D measurements that standardize sizing; 

(ii) risk models that predict inadequate sealing or endoleakage to guide 

oversizing and landing zone strategy; and (iii) procedural environment 

“augmented intelligence” maps and extended reality modules that 

operationalize device selections in the laboratory. We summarize commercial 

and research-level systems, clinical readiness, and regulatory status, and outline 

validation, explainability, and bias considerations. While current evidence-based 

workflows achieve excellent results, targeted AI components reduce variability 

and can support consistent device decisions across complex anatomies. 

Prospective, multicenter validation is needed before routine implementation; 

for now, AI should be viewed as a complement, rather than a replacement, to 

established EVAR/TEVAR planning and oversight.
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1 Introduction

Aortic diseases, encompass a spectrum of life-threatening conditions, primarily 

abdominal and thoracic aortic aneurysms (AAA and TAA) and aortic dissection (AD). 

Although these conditions vary in pathophysiological and clinical presentation, they 

share a common risk of high morbidity and mortality when left untreated (1, 2).

While treatment can be lifesaving, there is no established pharmacologic treatment for 

most aortic diseases (3). Open or endovascular surgical repair is the mainstay of 

intervention. For suitable patients, endovascular approaches such as EVAR (for AAA) 

and TEVAR (for TAA or complicated AD) offer minimally invasive alternatives to open 

surgery (4, 5). Current treatment of aortic disease is based on well-established guidelines 

that have yielded excellent results. EVAR achieves mortality rates in the low single-digit 

percentage range, and current imaging protocols provide rapid and accurate diagnosis in 

the majority of cases (6, 7). However, the rates of morbidity and mortality vary among 
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the studies. Caradu et al. (8) reported that complications such as 

device migration or endoleak occur in up to 25% of patients 

undergoing EVAR.

Accurate device selection and measurement of aortic 

dimensions are crucial for the success of endovascular repair. 

The computed tomography angiography (CTA) imaging has also 

an essential role in post-procedural monitoring (9–11). Despite 

these advantages, these procedures can be complex and time- 

consuming, especially in cases with tortuous anatomy or 

dissection. Additionally, traditional planning relies heavily on 

clinician expertise and manual image interpretation, which leads 

to variability and can increase the risk of complications such as 

endoleaks or device migration (8, 12). These risks underscore 

the need for precise preoperative planning and meticulous 

postprocedural imaging surveillance, while addressing resource- 

intensive and standardization challenges.

Despite guideline-driven work6ows, device selection remains 

challenging due to patient-specific anatomy (short/angulated necks, 

thrombus/calcification, iliac access), interobserver variability in 3D 

measurements, and post-EVAR risks such as seal failure, endoleak, 

and sac enlargement or migration. These factors lead to 

reinterventions and variability across centers, even when CTA 

protocols are standardized (13, 14). Therefore, the specific goal of 

this review is to examine AI modules that directly impact device 

selection steps (from automated centerline and sizing to risk-based 

oversizing and landing zone strategy) and to clarify how such tools 

help (or potentially could help) clinicians make better device 

decisions rather than providing generic analyses independent of 

procedural choices. Advances in computational technologies, 

particularly artificial intelligence (AI), have created new 

opportunities to improve clinical decision-making in vascular 

medicine. AI is a general term that includes machine learning 

(ML), which allows systems to learn from data, and deep learning 

(DL), a subset of AI that uses neural networks to process complex 

imaging or clinical inputs. These tools have shown early promise in 

risk prediction, anatomical segmentation, and image interpretation. 

In the context of aortic disease, AI has the potential to support 

more precise preoperative planning, improved procedural 

simulations, and personalized surveillance strategies (13–16).

This article provides a narrative overview of emerging applications 

of AI in the treatment of aortic diseases, focusing specifically on their 

potential to assist in intravascular device selection and procedure 

planning in endovascular repair. The discussion addresses anatomical 

challenges, imaging interpretation, clinical risk stratification, and 

future research directions. Given current limitations in clinical 

evidence, this review emphasizes the prospective value of AI rather 

than asserting definitive clinical superiority.

2 Aortic pathologies and management

2.1 Pathology-specific background and 
treatment overview

Cardiovascular diseases remain the leading cause of death 

globally, with aortic pathologies representing some of the most 

acute and high-risk conditions (17). The most clinically 

significant of these are AAA, TAA, and AD (18, 19). These 

conditions differ in etiology, natural history, imaging 

requirements, and treatment modalities and should be 

considered separately (5, 20).

AAA and TAA are characterized by progressive dilation of the 

vessel wall, usually due to a combination of genetic factors, 

atherosclerosis, and degenerative changes in the media. AAAs 

are most commonly seen beneath the renal arteries, while TAAs 

affect the ascending or descending thoracic aorta (5, 20). If 

untreated, aneurysmal rupture has a mortality rate of up to 80%, 

especially in abdominally located cases (18). AD, in contrast, 

causes a tear in the intimal layer of the aorta, allowing blood to 

enter the medial layer and creating a false lumen (1, 21) 

(Figure 1). Dissections are classified as Stanford type A 

(ascending aorta) and type B (descending aorta) and present 

acutely. Without prompt diagnosis and treatment, mortality in 

type A dissections can approach 50% within the first 48 h (1, 19).

Standard treatment for AAA and selected cases of TAA 

includes open surgical repair or EVAR for AAA and TEVAR for 

TAA (4, 5). EVAR is preferred in elective AAA cases due to 

reduced perioperative risk. However, anatomic suitability must 

be confirmed with preoperative imaging to avoid complications 

such as endoleaks or device migration (8, 12). Not all 

aneurysms, especially those with short or angled necks, are 

suitable for endovascular techniques. In contrast, treatment of 

AD varies by type: Type A dissections usually require urgent 

open surgery, while uncomplicated Type B dissections can be 

managed medically, and TEVAR is reserved for complicated 

cases (1, 2). These differences emphasize the importance of 

personalized treatment planning based on precise anatomic and 

clinical assessment, guided by current clinical practice guidelines 

rather than new technologies.

2.2 Radiological assessment of EVAR

EVAR involves the placement of a stent graft into the aorta to 

remove an aneurysmal segment from the systemic blood 6ow and 

strengthen the arterial wall. It is predominantly indicated for the 

treatment of AAA in anatomically suitable patients (4, 12). 

Despite the challenging anatomical morphology, the latest 

generation of EVAR devices can address a wide range of 

complex aortic pathologies, including both the aneurysms and 

dissections (22).

Preoperative imaging is essential to determine aneurysm size, 

morphology, and suitability for EVAR. The procedure requires 

accurate measurement of the proximal and distal landing zones 

to ensure adequate adherence and fixation of the endograft to 

healthy arterial tissue and to minimize the risk of device 

migration and endoleakage (12, 23). Appropriate oversizing is 

also necessary to ensure effective fixation.

Computed tomography (CT) is the most widely used method 

for both pre- and post-procedural assessment due to its high 

spatial resolution and 3D reconstruction capability (22). 

A noncontrast CT scan can help distinguish calcified thrombi or 
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surgical materials from endoleaks containing contrast material, 

while CT scans containing contrast material provide a detailed 

assessment of aneurysm morphology and vascular anatomy (11, 

24). Multiphase CT scanning is particularly useful for 

identifying and classifying endoleaks, one of the most common 

complications after EVAR (11). 3D evaluation of the aorta is 

important because even a small increase in the length of the 

aortic aneurysm can cause a significant increase in its volume. 

While maximum aortic diameter is currently the gold standard 

for decision-making, it is not always associated with volumetric 

expansion. For example, Caradu et al. (8) demonstrated that 

even a 2 mm increase in diameter can re6ect a greater than >5% 

increase in aneurysm volume. Such observations highlight the 

value of 3D volumetric assessment in monitoring saccular 

development However, true volumetric analysis requires 

advanced segmentation techniques that are time-consuming and 

not yet widely used in daily practice.

Long-term post-intervention follow-up is crucial for due to the 

potential for late complications such as endoleaks, saccular 

expansion, device migration, or delayed rupture (25). Mehta et al. 

(26) reported approximately 1.5% of EVAR patients experienced 

delayed rupture at a mean of 29 months after intervention. The 

Food and Drug Administration (FDA) recommends continuing 

CTA at 1, 6, and 12 months after EVAR and then annually 

thereafter indefinitely if no problems are detected (25).

Despite its advantages, CTA has limitations, including 

radiation exposure, cost, and the risk of contrast-induced 

nephropathy. Furthermore, segmentation of the aortic wall 

and thrombus is semi-automatic at most imaging stations. 

Therefore, fully automated, standardized 3D analysis tools, 

most often AI-powered, may improve efficiency and 

consistency in the future but are under evaluation for routine 

clinical integration (8, 27, 28).

3 AI techniques in aortic diseases 
management

3.1 Overview of AI, ML, and DL in aortic 
pathologies

AI generally refers to computational systems that mimic 

human cognitive functions, including learning, reasoning, and 

decision-making (15, 29). In this context, ML refers to 

algorithms that improve through data visualization, and DL is a 

specialized subset of ML that uses multilayer neural networks, 

specifically capable of extracting complex patterns in imaging 

data (16, 30). In the context of aortic disease, AI models have 

shown potential in automating diagnostic image segmentation, 

FIGURE 1 

Simplified schematic representation of the stages of aortic aneurysm and dissection and the effect of stenting on blood flow. (A) Aortic dissection, (B) 

aortic aneurysm. Adapted from “Schematic illustration of abdominal aortic aneurysms (AAA) pathogenesis and its macrophage polarization therapy” 

by Rasit Dinc (Taiwan Society of Cardiology (Acta Cardiologica Sinica). Drawing with Adobe Creative Suite Package [(Illustrator, version 28.7.1 and 

Photoshop, version 25.12)].
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improving morphological analysis, and supporting outcome 

prediction (10, 27, 31).

In this review, we use AI as an umbrella term that also 

encompasses machine learning (ML) and deep learning (DL). 

DL is the core element of imaging for segmentation and 

centerline/orthogonal measurements; ML/DL models also 

support risk prediction related to oversizing and landing zone 

strategy. We discuss computer vision (CV), where models 

interpret CT angiography, and extended reality (XR), where 

planning layers help operationalize device selection (13, 30, 32).

3.2 Image-based aortic segmentation and 
measurement

One of the most studied applications of AI in vascular 

medicine is the automatic segmentation of abdominal aortic 

aneurysms (AAA) in CTA datasets (Figure 2). Traditional 

methods often rely on semi-automated tools that require manual 

correction, are time-consuming, and operator dependent.

Abdolmanafi et al. (10) developed a DL-based tool that enables 

highly accurate segmentation of the aneurysmal sac from 

preoperative CT and allows rapid and reproducible measurement 

of aortic diameters. Similarly, Adam et al. implemented a fully 

automated pipeline for maximum diameter assessment before and 

after EVAR that correlated well with manual measurements (27). 

These tools can help reduce observer variability and support 

standardized surveillance, but their clinical use is limited to 

experimental or retrospective settings (10, 27, 31).

3.3 Prediction models and risk stratification

AI has also been applied to predict clinical outcomes after EVAR, 

including complications such as endoleaks, sac dilation, or 

reintervention. For example, Karthikesalingam et al. used an artificial 

neural network to stratify the risk of mortality and reintervention 

after EVAR and identified high-risk patient profiles based on 

anatomic and procedural variables (34). More recently, Long et al. 

proposed a DL-based risk model that integrates procedural and 

imaging features to predict post-EVAR complications such as type 1 

FIGURE 2 

Simplified visual representation of AA segmentation using DL model. The goal of image acquisition (Step-1) is to obtain a 3D image of the aorta from 

a series of DICOM images with 2D cross-sectional slices. In the pre-processing stage (Step-2), the image quality is improved and the input for the AI 

model is standardized. In AI-assisted segmentation (Step-3), DL models are trained on thousands of labeled scans. A segmentation mask is applied by 

marking the pixels corresponding to the aorta and the segmented aorta is analyzed to mark areas with abnormal dilation. In the post-processing 

stage (Step-4), the AI output is cleaned for accuracy. In the reconstruction and visualization stage (Step-5), the goal is to display the results in a 

clear and interpretable way. For this purpose, the aorta is shown with a base color (e.g., blue) and the aneurysm region is shown with a warning 

color (e.g., red). In the figure, pre-and post-stenting blood flow velocity are figured (right below). Adapted from: “Visual representation of the 

network architecture and output for AAA tissue segmentation” by Atefeh Abdolmanafi, Arianna Forneris, Randy D. Moore and Elena S. Di Martino, 

licensed under CC BY 4.0, and “Diagrammatic comparison of the processing framework of machine learning and deep learning” by Nurittin Ardic 

and Dinc, licensed under CC BY-NC. Drawing with Adobe Creative Suite Package [(Illustrator, version 28.7.1 and Photoshop, version 25.12)].
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endoleaks and bladder dilation (35). However, these models need to be 

validated in large, prospective, multicenter cohorts before they can be 

recommended for routine clinical use.

It is also important to distinguish risk profiling tools from actual 

treatment guidance. Predictive models can help clinicians adjust 

surveillance intensity or select ancillary techniques, but they do not 

replace existing treatment guidelines or procedural decisions.

3.4 AI for complication prediction and 
endoleak classification

Endoleaks are among the most common findings after EVAR. 

They represent blood 6ow that continues outside the stent graft 

lumen but within the aneurysm sac. Endoleaks are classified as 

types 1–5, with varying clinical outcomes. Importantly, type 2 

endoleaks, originating from retrograde 6ow from branch vessels 

such as the lumbar or inferior mesenteric arteries, are generally 

benign and self-limited, while types 1 and 3 endoleaks 

(inadequate seal or device integrity failure) are associated with a 

higher risk of sac expansion and rupture (11, 25).

Accurately identifying and classifying endoleaks using CT 

imaging after EVAR can be challenging due to variations in 

anatomy, contrast timing, and image quality. AI-based image 

classification and segmentation tools have been investigated to 

address these limitations. Long et al. A DL model was developed 

that integrates procedural variables and imaging features to 

predict the likelihood of complications, including type 1 

endoleaks and sac dilation, with promising accuracy (35). 

Furthermore, predictive modeling can support early 

identification of patients at risk for delayed complications such 

as sac enlargement, migration, or even rupture. 

Karthikesalingam et al. (34) applied an artificial neural network 

to stratify the risk of reintervention and mortality after EVAR 

using large retrospective datasets. While their study 

demonstrated the applicability of nonlinear models for outcome 

prediction, external validation remains limited.

Despite these advances, current AI models have not been 

validated for diagnostic use in real-world clinical settings. 

Furthermore, risk prediction does not imply an indication for 

treatment. Decisions regarding reintervention after type 2 

endoleaks or sac dilation should adhere to established guidelines 

and individual patient factors (25).

In summary, AI has the potential to complement post-EVAR 

surveillance through automated detection and risk prediction; 

however, it should be viewed as a complement to, and not a 

substitute for, clinical judgment and guideline-based decision-making.

3.5 Limitations and current clinical status

Although preliminary findings are encouraging, the real-world 

integration of AI models in aortic disease management is limited. 

Most studies to date are retrospective, single-center, or lack 

external validation. Regulatory approval for AI-based clinical 

tools in vascular surgery remains rare (33, 36).

Furthermore, most published models are “black box” in 

nature; This means that decision-making processes are not 

interpretable and raises questions about clinical trust and 

accountability (37, 38). Ethical issues, such as algorithmic bias 

in underrepresented populations, should also be addressed 

before wider implementation (39, 40).

4 Clinical integration of AI: from 
workflow support to real-world 
applications

4.1 Workflow and decision support 
integration

The integration of AI into vascular clinical work6ows is an 

emerging area of research focused on improving the efficiency, 

accuracy, and consistency of preoperative planning and 

procedural simulation. These technologies are being developed 

TABLE 1 AI components directly supporting device selection decisions in aortic endovascular repair. The table highlights applications that impact 
sizing, sealing, and procedural planning rather than overall analysis.

Use case (decision 
point)

Typical inputs AI output for device 
selection

Clinical readiness Representative 
examples/resources

Automatic centerline extraction 

and orthogonal measurement for 

graft sizing/oversizing

CTA DICOM; aortic/iliac 

geometry

Reproducible diameters and 

lengths; standard sizing worksheet

CE-marked semi- 

automatic modules; 

operator validation 

required

TeraRecon IntuitionTM, Siemens 

syngo.CT Vascular Analysis (35)

Risk prediction of inadequate 

sealing or type I endoleak guides 

oversizing and landing zone 

strategy

Preoperative 

measurements + anatomic and 

procedural features

Possibility of endoleak or 

migration risk; oversizing 

recommendations

Investigational; 

retrospective validation

(34, 35)

Intra-procedural augmented 

intelligence mapping for complex 

EVAR/TEVAR

Preoperative CTA + live 

6uoroscopy

Key point registration and site 

targeting to confirm device 

configuration

Early clinical reports (13, 41)

Automated post-EVAR 

volumetric assessment supports 

reapplication or extension device 

planning

Serial CTA scans Objective measurements of sac 

and neck evolution to guide 

reintervention device selection

Investigational use; 

prospective trials ongoing

(8)
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to support vascular surgeons and interventional radiologists in 

routine decision-making and patient-specific procedural 

strategies, rather than replacing clinical judgment.

To delineate how AI supports device selection decisions rather 

than overall work6ow optimization, Table 1 summarizes the key 

AI components applied to graft sizing, seal site optimization, 

and procedural planning. The table highlights the decision point 

targeted by each AI module, the input data, the outputs related 

to device selection, and the current level of clinical readiness.

As summarized in Table 1, these targeted modules directly 

impact the sizing and planning decisions that determine 

procedure success. The next section summarizes the commercial 

applications of these functions in clinical practice.

One promising area is the use of AI-enabled software for 

automated stent graft planning. These tools incorporate 

preoperative CTA data to assist in selecting appropriate device 

sizes and configurations based on patient-specific anatomy. Patel 

et al. have shown that surgical augmented intelligence maps can 

facilitate more accurate deployment planning, improving radiation 

safety and contrast utilization during the treatment of complex 

aortic aneurysms (41). Extended reality (XR) platforms, which 

refer to technologies that enhance or change our perception of 

the world by overlaying digital information onto the real world or 

immersing users in a completely digital environment, are also 

gaining momentum in simulation-based training and procedural 

rehearsals, and artificial intelligence modules support real-time 

anatomical recognition. A novel integration of AI with XR has 

been described by Samant et al. to optimize planning for high- 

risk cardiovascular interventions, potentially reducing case time 

and improving anatomical understanding (13).

Beyond planning, AI-based systems can contribute to 

intraoperative navigation and real-time decision support. Some 

platforms can detect anatomical landmarks, identify stent 

landing zones, and alert operators to discrepancies between 

planning and live 6uoroscopic images. While these applications 

are experimental, they re6ect a shift toward surgical augmented 

intelligence; these tools enhance clinician performance rather 

than automating full procedural execution. In the outpatient 

setting, AI can help classify imaging studies, prioritize complex 

cases for earlier review, and generate standardized reports using 

natural language processing (NLP). For example, Fabre et al. 

(28) proposed a semi-automated system for monitoring 

aneurysm evolution after EVAR using AI-assisted measurement 

tracking on serial CTA scans.

However, most of these systems are still in development or 

pilot stages and have not yet received regulatory approval for 

widespread clinical use. Additionally, integration with hospital 

information systems and compatibility with imaging Picture 

Archiving and Communication Systems (PACS) remain 

logistical hurdles. However, these innovations highlight the 

growing importance of AI as a collaborative tool in complex 

vascular work6ows.

The outlined steps in AI-assisted aortic aneurysm intervention 

are: Patient CTA → Segmentation (AI) → Sizing → Risk 

stratification (AI) → Device planning (AI-assisted) → Procedure 

→ Postoperative follow-up (AI).

4.2 Commercial platforms in practice

While much of the AI innovation in aortic disease 

management stems from academic research, several commercial 

AI-powered tools have entered clinical use, particularly in the 

areas of work6ow improvement and triage optimization. These 

tools primarily serve as decision support systems for 

preoperative planning, automated imaging analysis, and 

postoperative surveillance. Box 1 illustrates three representative 

scenarios where AI directly impacts device selection decisions. 

However, their integration into routine clinical practice is 

limited and is typically limited to high-volume centers or 

pilot programs.

The TeraRecon IntuitionTM platform, including the EVAR 

planning suite, leverages AI to perform 3D centerline extraction 

from CTA scans, semi-automated aortic measurements, and 

stent graft sizing. These features aim to reduce interobserver 

variability and streamline case preparation. While the tool is 

CE-marked and widely used, it does not operate autonomously 

and requires user verification during planning steps (42–44).

Similarly, Siemens Healthineers’ syngo. CT Vascular Analysis 

supports automatic aortic centerline generation, curved planar 

reformations (CPR), and cross-sectional measurements. The 

platform also includes modules specific to AAA preoperative 

work6ows, such as stent planning and iliac measurement tools 

(45–47). While these modules have proven timesaving, 

independent evaluations are limited to vendor-supported studies.

Viz.ai’s Viz Aorta module is one of several FDA-cleared AI 

tools focused on aortic diseases. It uses deep learning to detect 

suspicious aortic aneurysms and dissections from CTA scans 

and prioritize radiology examination. Validation studies have 

reported 94.2% sensitivity and 97.3% specificity, and the 

software is currently used in over 850 US hospitals (48, 49). 

While the tool doesn’t recommend treatment, it significantly 

speeds up triage and facilitates earlier intervention by specialists.

Various ML models have been proposed to predict aneurysm 

sac growth, postoperative endoleak, and reintervention risk after 

EVAR (50). For example, Abbas et al. (51) developed a 

supervised model to predict 1-year sac expansion ≥5 mm with 

area under the curve (AUC) exceeding 0.90. Similarly, Long 

et al. (35) and Karthikesalingam et al. (34) have shown that 

artificial neural networks can outperform traditional statistical 

models for reintervention risk. However, these models have not 

yet been validated for clinical use and require prospective 

validation, multicenter training, and regulatory review.

XR-based platforms, including augmented reality (AR, sub- 

branch of XR) tools, are increasingly being tested for surgical 

rehearsal and intraoperative guidance in complex aortic repair. 

These systems provide comprehensive visualization of patient- 

specific anatomy, supporting preprocedural planning and team- 

based coordination. While promising, current AR/XR 

applications remain primarily research-focused and have not 

been widely adopted in commercial clinical practice (13).

Another promising platform is PRAE-VAorta (Nurea, France), 

a fully automated software that provides volumetric and 
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morphological analysis of aneurysm sac and neck evolution after 

EVAR. The software demonstrated excellent agreement with 

manually corrected segmentation (Pearson correlation coefficient 

>0.99; P < 0.0001) and significantly shortened segmentation time 

(2.5 min compared with 22 min per patient; P < 0.0001). These 

features may support earlier detection of adverse sac evolution 

and improve long-term EVAR surveillance. Although currently 

in the evaluation phase, PRAE-VAorta exemplifies the type of 

smart tool ready for clinical integration (8).

To provide a structured overview, Table 2 summarizes the key 

commercial and research AI applications used in different phases 

of aortic repair, including their clinical readiness and 

regulatory status.

5 Model validation, refinement, and 
explainability

5.1 Data quality and validation challenges

The development and application of AI models in aortic 

diseases (especially for EVAR planning, complication prediction, 

and postoperative surveillance) is limited by data availability and 

model generalizability issues. Most existing studies rely on 

single-center, retrospective datasets with limited demographic 

and geographic diversity. This creates a risk of overfitting and 

limits clinical applicability to broader patient populations (38, 52).

BOX 1 Illustrative device selection scenarios. Illustrative scenarios where AI directly impacts device selection.

Case-1: Elective AAA with a short, angulated, thrombus-laden neck.

A 73-year-old man with a 6.2 cm infrarenal AAA had a proximal neck length of ∼12 mm, an angulation of ∼65°, and mural 

thrombus/calcification. AI-assisted centerline and orthogonal planes provided reproducible diameters/lengths and a standardized 

sizing worksheet. A risk model (trained with retrospective data) demonstrated a higher likelihood of inadequate proximal sealing 

with routine oversizing. The team selected an oversizing window toward the superior end within the instructions for use (IFU), 

enlarged the planned proximal landing zone, and prepared ancillary maneuvers. Intraoperative augmented intelligence 6agging 

was appropriate; no early type I endoleak was detected. These AI components reduced measurement variability and supported 

sizing/landing zone decisions; clinical judgment remained primary.

Case-2: Post-EVAR sac enlargement triggered re-application/extension planning.

A 70-year-old man demonstrated sac enlargement on surveillance CT at 18 months. Automated volume measurements 

confirmed greater than 5% sac expansion despite a <2 mm change in maximum diameter, enabling earlier assessment of 

proximal extension. Standardized evolution curves and centerline-based re-measurement facilitated communication with the 

sizing team and informed the selection of the extension configuration. In this case, AI-assisted volume measurements and 

consistent measurement lines supported the decision to proceed, while guideline-based thresholds and imaging review 

remained decisive.

Case-3: TEVAR Planning for a type B dissection with a hostile arch.

A 68-year-old woman with a complicated Type B dissection and tortuous arch required careful landing site strategy. AI-assisted 

segmentation mapped true/false lumen relationships and branch vessel origins; planning overlays helped evaluate alternative 

proximal landing sites and projected catheter paths. The final device selection and site strategy were validated through IFU and 

multidisciplinary discussion. AI tools standardized measurements and visualized tradeoffs but did not replace operator 

decision-making.

TABLE 2 AI tools in aortic repair workflow with clinical readiness.

Workflow stage AI application Representative 
studies

Clinical readiness Market status Reference

Preoperative imaging 3D segmentation, centerline extraction TeraRecon IntuitionTM 

EVAR Suite

CE-marked devices, widely 

available

Semi-automated graft 

sizing and planning 

support

(42–44)

Preoperative imaging Automated centerline, cross-section Siemens syngo.CT 

Vascular Analysis

CE-marked devices, limited 

independent validation

Supports aortic 

measuring and graft 

planning

(45, 47)

Triage and acute care DL-based CTA detection of aneurysm/ 

dissection

Viz.ai Aorta FDA approved, in use 

850 + centers

Triage 6agging, 

prioritizes radiologist 

attention

(48, 49)

Intraoperative and 

preoperative simulation

AR/XR for anatomy visualization and 

rehearsal

AR simulators (research 

use)

Academic prototyping only Team-based rehearsal 

and guidance

(13)

Postoperative 

monitoring

ML-based prediction of sac dilatation 

or endoleak

Custom ML models 

(academic)

Not approved, retrospective only Predicts post-EVAR 

outcomes

(34, 35, 51)

Postoperative 

monitoring

Fully automated volumetric and 

morphological analysis of sac and neck 

evolution after EVAR

PRAE-VAorta Feasibility studies; excellent 

agreement with manual 

segmentation (r > 0.99)

Research use, under 

evaluation

(8)
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Most importantly, few models undergo external validation. 

Because rigorous testing on independent datasets from different 

institutions or populations is lacking, reported performance 

metrics (e.g., accuracy, AUC) during development are often 

overly optimistic. For example, many aneurysm growth 

prediction models have demonstrated promising AUCs (>0.90) 

during internal testing but have not yet been evaluated in 

prospective or real-time clinical settings (35, 51).

Another common challenge is the heterogeneity in imaging 

protocols and annotation standards. CTA quality, phase timing, 

and slice thickness vary across institutions, hindering model 

reproducibility. Annotated ground truth data (especially for 

segmentation tasks such as aneurysm sac evolution or endoleak 

classification) is often manually curated, leading to interobserver 

variability and inconsistent labeling (53, 54).

Furthermore, publicly available datasets in this field remain 

insufficient. Compared to fields such as radiology or 

dermatology, aortic imaging lacks large, diverse, and 

standardized data repositories to support open benchmarking. 

This limits transparency and makes it difficult to compare 

model performance across studies (55, 56).

To meet regulatory and clinical standards, future research 

should prioritize multicenter data collection, standardized 

disclosure protocols, external validation in temporally and 

demographically diverse cohorts, publication of negative results 

and failure cases to increase transparency. Without addressing 

these fundamental data issues, AI models for aortic care risk 

remaining experimental, despite strong technical performance in 

controlled settings. Lack of external validation for device 

selection leads to uncertain reliability of oversizing windows and 

landing zone recommendations across scanners and centers.

5.2 Explainability and clinical confidence

Explainability is a critical barrier to the clinical adoption of AI 

in vascular care. While DL models can outperform traditional 

statistical techniques in classification and segmentation tasks, 

they are often perceived by clinicians as “black boxes”, 

producing results without a clear understanding of the 

reasoning behind decisions (37, 38). This uncertainty creates 

challenges in establishing confidence, especially when model 

predictions con6ict with clinical judgment.

To address this gap, explainable artificial intelligence (XAI) 

approaches, such as saliency maps, attention mechanisms, and 

decision trees, are being explored to make model outputs more 

interpretable. For example, highlighting which features on a 

CTA scan contribute most to aneurysm classification can help 

clinicians assess whether the model’s logic aligns with 

anatomical expectations (54). Despite these efforts, studies show 

that many existing XAI techniques are inherently unreliable and 

can create bias or false confidence in system outputs. 

Furthermore, clinicians’ preferences for visual and textual 

explanations vary, and integration into clinical systems should 

consider user-centered design (38, 56).

Regulatory bodies such as the FDA and EMA are now 

emphasizing transparency and traceability in AI/ML-based 

software (SaMS) used as medical devices. To comply with 

evolving standards, developers are required to document model 

behavior, training data lineage, and expected performance across 

patient subgroups (36). Explainability must indicate which 

anatomical features (e.g., neck diameter, thrombus burden, 

angulation) drive a risk estimate or sizing recommendation; 

without this, clinicians cannot rely on AI outputs that oversize 

or alter landing zone plans.

5.3 Regulatory issues

The use of AI in aortic disease management, particularly for 

clinical decision support, image interpretation, and outcome 

prediction, requires careful consideration of regulatory 

frameworks. In the US, the FDA regulates AI tools used for 

clinical purposes under the category of Software as a Medical 

Device (SaMD). Recent efforts, such as the FDA’s “Digital 

Health Software Pre-Certification Program” and Good 

Machine Learning Practices (GMLP) guidance, re6ect an 

evolving approach to safety assessment. Europe implements 

similar oversight through the European Medicines Agency 

(EMA) and the Medical Device Regulation (MDR), 

emphasizing CE marking, performance verification, and post- 

market surveillance. However, regulatory guidance for 

continuously learning AI models (those that adapt over time) 

is still under development, creating challenges for clinical 

application (36).

A key regulatory concern is bias and fairness. Studies have 

shown that AI models trained on homogeneous datasets can 

underperform in underrepresented populations, exacerbating 

health inequalities (39, 49). To mitigate these risks, developers 

should ensure demographic diversity in training datasets, 

include bias checks, and stratify model performance by subgroup.

Transparency is another critical issue. Regulatory bodies now 

require developers to document not only the algorithm 

architecture and training performance, but also the clinical 

intended use, limitations, and explainability features. There are 

growing expectations that models used in aortic care must 

undergo not only technical validation but also clinical utility 

evaluations, including prospective trials or real-world evidence 

studies. Both the FDA and EMA are moving toward a total 

product lifecycle strategy for AI-based medical software; this 

approach ensures that performance remains traceable and 

auditable while supporting adaptive learning. In the US, the 

FDA’s Draft Guidance on AI-Enabled Device Software 

Functions outlines a Predetermined Change Control Plan 

(PCCP) framework that allows for post-distribution algorithm 

updates while maintaining regulatory oversight (57). Meanwhile, 

the EMA published its Re6ection Paper on the use of AI in the 

medical product lifecycle, advocating for a risk-based lifecycle 

management model and expecting developers to monitor AI 

performance at all stages, from development and distribution to 

post-authorization (58). Regulators are increasingly expecting 
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the intended use specified at the decision stage (e.g., supports graft 

sizing within the IFU), with performance stratified by anatomy 

and scanner protocol, which directly relates to EVAR/TEVAR 

device selection.

As regulations mature, interdisciplinary collaboration among 

clinicians, AI developers, and regulatory experts will be vital to 

safely integrating AI into aortic care pathways.

6 Future directions and ethical 
considerations

To fully benefit from these technological advances, current 

challenges must be addressed. Integrating AI into existing 

surgical planning software as part of real-time decision support 

systems, can reduce procedure times and improve outcomes by 

offering real-time recommendations for stent graft selection.

As machine learning models continue to mature, future 

applications in EVAR and TEVAR work6ows are expected to 

transition from passive decision support systems to dynamic and 

adaptive platforms. These systems can combine real-time 

hemodynamic data, multimodal imaging, and intraoperative 

feedback to instantly optimize treatment strategies. The 

integration of federated learning, which enables model training 

across multiple institutions without data sharing, offers a 

promising avenue for developing robust and generalizable 

models while preserving patient privacy (59). Future clinical 

settings could utilize these tools for personalized graft design or 

the automatic identification of high-risk anatomical variants.

To ensure clinical robustness and generalizability, future AI 

systems must be trained and validated using heterogeneous, 

multicenter datasets under standardized protocols. Initiatives 

such as the Medical Imaging and Data Resource Center 

(MIDRC) in the United States and the European Health Data 

Space (EHDS) in the European Union aim to support this effort 

by promoting federated learning, harmonized data sharing, and 

secure access across institutions and jurisdictions (59–61). 

Additionally, academia-industry collaborations should prioritize 

not only technical performance but also patient-centered 

outcomes and equity. It is crucial to ensure that AI development 

addresses global health inequalities, particularly for 

underrepresented populations that may exhibit different aortic 

disease phenotypes.

The adoption of AI in vascular surgery raises important 

ethical issues related to bias, transparency, and patient 

autonomy. The lack of interpretability in deep learning models 

can limit clinician trust, especially when predictions contradict 

established guidelines. XAI methods are being developed to 

address “black box” nature of AI, but most are limited to 

research settings (62). Interactive visualizations, such as 

attention maps, provide insights into model decisions (37, 38).

From a legal perspective, questions of liability in the event of 

AI-induced misdiagnosis or planning errors remain unresolved. 

Institutions should implement clear policies regarding oversight, 

documentation, and escalation protocols when AI tools are 

deployed in clinical pathways. In parallel, regulators are 

exploring risk-based classifications and real-time monitoring 

frameworks to ensure safety without hindering innovation (63).

In conclusion, the integration of AI into intravascular device 

selection for aortic disease is an area of active research. From 

preoperative segmentation and simulation to intraoperative 

guidance and postoperative surveillance, AI tools can offer 

supporting capabilities to increase precision and reduce 

variability in complex cases. However, current endovascular 

techniques currently deliver excellent results, and the added 

value of AI remains to be proven through large-scale validation 

and clinical trials. AI-powered approaches should be viewed as 

complements, not replacements, of established guideline-based 

care. The widespread clinical implementation landscape will 

depend on overcoming challenges related to data quality, 

explainability, interoperability, and regulatory approval. 

Continued interdisciplinary collaboration is essential to ensure 

the safe, equitable, and clinically meaningful development and 

implementation of these tools. Near-term priority is to 

prospectively test modules that standardize centerline/orthogonal 

measurements and calibrate oversizing against endoleak risk.
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