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Background: The non-high-density lipoprotein cholesterol to high-density 

lipoprotein cholesterol ratio (NHHR) is a novel lipid index for assessing 

atherosclerosis. Although NHHR has been recognized as a biomarker for 

multiple diseases, its association with abdominal aortic calcification (AAC) 

remains unexplored.

Methods: This study analyzed data from 2,517 participants in the 2013 to 2014 

National Health and Nutrition Examination Survey (NHANES). AAC was assessed 

using dual-energy x-ray absorptiometry and quantified with the Kauppila score 

(AAC−24). The relationship between NHHR and AAC was evaluated using 

multivariate linear and logistic regression models, with nonlinear associations 

visualized via restricted cubic splines. Subgroup and interaction analyses were 

conducted to assess the robustness of the findings across different populations.

Results: In fully adjusted models, AAC scores and severe AAC (sAAC) prevalence 

increased with each quartile increment of NHHR (p < 0.05). A one-unit increase 

in NHHR was associated with a 0.13-unit rise in AAC score (β = 0.13, 95% CI: 

0.02–0.24) and a 19% increase in sAAC risk (OR = 1.19, 95% CI: 1.02–1.40). 

Subgroup analysis identified a significant interaction between NHHR and 

gender in relation to AAC. The OR (95% CI) was 0.97 (0.77–1.23) in males and 

1.46 (1.18–1.81) in females (p for interaction = 0.008).

Conclusion: In adults aged 40 years and older, higher NHHR levels were 

associated with increased AAC scores and a greater risk of sAAC, particularly 

among women. Furthermore, this study highlights the potential clinical value 

of NHHR in the prevention of AAC and its related complications.
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1 Introduction

Abdominal aortic calcification (AAC) is a pathological progression actively regulated 

in response to local or systemic environmental disturbances (1). It is characterized by 

abnormal deposition of calcium phosphate crystals on the inner surface of blood 

vessels and the intimal layer (2). AAC is strongly associated with aging, smoking, 
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metabolic disorders, and kidney disease (1). Both coronary artery 

calcification and AAC are manifestations of vascular calcification, 

with AAC being closely linked to cardiovascular disease mortality 

and all-cause mortality (3). Furthermore, AAC serves as a 

significant predictor of myocardial infarction (3), stroke (4), and 

congestive heart failure (5). The incidence of these conditions 

increases significantly with the severity of AAC.

Blood lipids play a crucial role in atherosclerosis formation, 

making their involvement in arterial calcification significant. In 

recent times, the non-high-density lipoprotein cholesterol to 

high-density lipoprotein cholesterol ratio (NHHR) has gained 

attention as a novel index for predicting the risk of 

cardiovascular events (6). Studies have reported an association 

between NHHR and various long-term illnesses, including 

diabetes (7), fatty liver illnesses (8), metabolic syndrome (9), and 

kidney stones (10). Additionally, research indicates that AAC is 

associated with cholesterol (p < 0.05), high-density lipoprotein 

(HDL-C) (p < 0.01), and low-density lipoprotein cholesterol 

(LDL-C) (p < 0.05) (11). Furthermore, a previous study (12) 

confirmed that HDL-C is negatively correlated with aortic 

calcification. Integrating NHHR with other atherogenic and 

anti-atherosclerotic indicators holds promise for predicting the 

severity of AAC and preventing cardiovascular events. 

Accordingly, this study conducted a cross-sectional analysis to 

investigate the association between NHHR and AAC, assessing 

whether higher NHHR levels are associated with increased AAC 

scores and a greater risk of severe AAC in adults aged 40 years 

and older.

2 Methods

2.1 Data sources

The data were obtained from the National Health and 

Nutrition Examination Survey (NHANES), a cross-sectional 

survey designed to assess the health status of the U.S. 

population. NHANES employs a probability-based multistage 

sampling design to ensure a nationally representative sample of 

the non-hospitalized civilian population in the United States. 

Conducted every two years, the survey collects health 

information through standardized protocols. The NHANES 

survey protocol was approved by the Research Ethics Review 

Board of the National Center for Health Statistics, and all 

participants provided written informed consent.

2.2 Assessment of NHHR and AAC

This study analyzed the NHHR in plasma as the primary 

exposure variable. NHHR is the ratio of total cholesterol minus 

high-density cholesterol (non-HDL-C) to high-density 

cholesterol (HDL-C). NHHR was analyzed primarily as a 

continuous variable and secondarily as a categorical variable 

divided into quartiles.

AAC served as the dependent variable. NHANES provides 

AAC data obtained through dual-energy x-ray absorptiometry 

(DXA), with strict quality control measures applied to data 

collection and scan analysis. The University of California, 

San Francisco, evaluates participant scans using standard 

radiology protocols tailored for NHANES. The Kauppila method 

(AAC-24 score) was used to assess AAC severity. The grading 

criteria for aortic calcification in each segment are detailed in 

Supplementary Table 1. Based on existing research, a Kauppila 

score greater than 6 was classified as severe AAC (sAAC). 

Participants included in the final analysis were categorized into 

two groups: “no severe AAC (AAC score ≤ 6)” and “sAAC 

(AAC score >6).”

2.3 Covariates

Covariates included demographic characteristics [sex, age, 

marital status, race, educational level, and the poverty income 

ratio (PIR)]; lifestyle risk factors [smoking and drinking status]; 

physical examination data [body mass index (BMI), systolic 

blood pressure (SBP), and diastolic blood pressure (DBP)]; 

comorbidities [hypertension, diabetes, heart failure, coronary 

heart disease (CHD), angina, heart attack, and stroke history]; 

biochemical indicators [glycohemoglobin, total cholesterol (TC), 

and high-density lipoprotein cholesterol (HDL)]; renal function 

biomarkers [uric acid and creatinine levels]; and bone mineral 

metabolism markers [25-hydroxyvitamin D, serum calcium, and 

phosphorus levels]. All variables were obtained through 

household interviews and examinations at the Mobile 

Examination Center (MEC). Detailed measurement procedures 

are available at: https://www.cdc.gov/nchs/nhanes/.

The race variable included Mexican American, other Hispanic, 

non-Hispanic White, non-Hispanic Black, and other races. 

Smokers were defined as individuals who had smoked at least 

100 cigarettes in their lifetime. Drinkers were defined as those 

who consumed alcoholic beverages more than 12 times per year. 

BMI was calculated as weight (kg) divided by height squared 

(m2). Hypertension was defined as a self-reported physician 

diagnosis, current use of antihypertensive medication, or 

measured blood pressure ≥140/90 mmHg. Diabetes was defined 

as a self-reported physician diagnosis, use of oral hypoglycemic 

agents or insulin, fasting plasma glucose ≥126 mg/dl, 

glycohemoglobin (HbA1c) ≥6.5%, or 2-h plasma glucose 

≥200 mg/dl after an oral glucose tolerance test.

2.4 Statistical analysis

In this study, continuous variables were expressed as means 

and standard deviations, while categorical variables were 

presented as counts (n) and percentages (%). Comparisons of 

continuous variables were performed using the Kruskal–Wallis 

test, while categorical variables were analyzed using chi-square 

tests. The association between NHHR and AAC was evaluated 

using multivariate linear and logistic regression models, with the 

Zhang et al.                                                                                                                                                             10.3389/fcvm.2025.1578407 

Frontiers in Cardiovascular Medicine 02 frontiersin.org

https://www.cdc.gov/nchs/nhanes/


relationship expressed through β values, odds ratios (ORs), and 

corresponding 95% confidence intervals (95% CI). Three models 

were established: Model 1 was conducted without covariate 

adjustments, Model 2 adjusted for race, gender, BMI, and age, 

and Model 3 further adjusted for marital status, education, PIR, 

smoking history, drinking history, hypertension, diabetes, heart 

failure, CHD, angina, stroke, TC, creatinine, serum calcium, 

phosphorus, uric acid, total 25-hydroxyvitamin D, and 

glycated hemoglobin.

Drawing upon these analyses, differences in AAC scores and 

sAAC risk among NHHR quartile groups were further 

evaluated. Additionally, independent ordinal variables were used 

to assess linear trends in NHHR. Restricted cubic spline (RCS) 

models derived from Model 3 were applied to investigate 

potential nonlinear dependencies linking NHHR and both AAC 

scores and sAAC. Finally, to determine whether the relationship 

between NHHR and AAC scores or sAAC was inKuenced by 

age, gender, lifestyle factors, underlying diseases, or 

cardiovascular events, subgroup analyses were performed. 

Stratifications included age (<55 years vs. ≥55 years), gender 

(male vs. female), alcohol consumption (yes vs. no), diabetes 

(yes vs. no), coronary heart disease (yes vs. no), stroke (yes vs. 

no), and hypertension (yes vs. no). These analyses aimed to 

evaluate the stability of the NHHR-AAC relationship across 

subgroups and to detect potential interactions. All statistical 

analyses were conducted using R version 4.4.1 (R Foundation 

for Statistical Computing, Vienna, Austria). A p-value of <0.05 

was considered statistically significant.

3 Result

In the NHANES (2013–2014) cohort, 10,175 participants 

completed the interview, of whom 3,140 had valid AAC score 

data. Participants with missing AAC scores, TC, or HDL-C data 

(n = 110), along with those with missing covariate data (n = 513), 

were excluded. Ultimately, 2,517 participants were included in 

the final analysis. A comprehensive Kowchart illustrating 

participant selection is presented in Figure 1.

3.1 Baseline

Table 1 summarizes the baseline characteristics of U.S. adults 

aged 40 years and older. Relative to participants without sAAC, 

individuals with sAAC exhibited a higher likelihood of being 

older and having a history of stroke, diabetes, hypertension, 

heart failure, and smoking. Additionally, these individuals had 

lower BMI, TC, and DBP but exhibited higher SBP glycated 

hemoglobin, creatinine, and 25-hydroxyvitamin D levels.

3.2 NHHR and AAC scores

Table 2 presents the relationship between NHHR and AAC 

scores, analyzed as both continuous and categorical variables. In 

Model 2, NHHR demonstrated a borderline significant positive 

correlation with AAC score (β = 0.09, 95% CI: −0.005 to 0.18, 

p = 0.063). In Model 3, NHHR was significantly associated with 

AAC score (β = 0.13, 95% CI: 0.02 to 0.24, p = 0.023). Each one- 

unit increase in NHHR was associated with a 0.13-unit higher 

AAC score. When NHHR was categorized into quartiles for 

analysis, the fully adjusted models showed that individuals 

within the top quartile exhibited a statistically significant 

elevation in AAC scores (p < 0.05) relative to the bottom 

quartile group. Specifically, the top quartile group had AAC 

scores 0.44 units higher than the bottom quartile group 

(β = 0.44, 95% CI: 0.03–0.85, p = 0.036), with a statistically 

significant trend (p for trend <0.05). (Results for additional 

variables are provided in Supplementary Tables 2–5.)

3.3 NHHR and sAAC

The multiple logistic regression analysis demonstrated a 

positive association between NHHR levels and sAAC risk 

(Table 3). When NHHR was analyzed as a continuous variable, 

it remained significantly associated with a higher risk of sAAC 

in both the partially adjusted Model 2 and the fully adjusted 

Model 3. Specifically, each one-unit increase in NHHR was 

associated with a 19% increase in sAAC risk. (OR = 1.19, 95% 

CI: 1.02–1.40, p = 0.023). This positive correlation persisted 

when NHHR was categorized into quartiles. Notably, in 

Model 3, participants in the top NHHR quartile had a 96% 

higher risk of sAAC compared to those in the bottom quartile 

(OR = 1.96, 95% CI: 1.10–3.48, p = 0.022; p for trend = 0.018). 

(Results for additional variables are presented in Supplementary 

Tables 7–9.)

FIGURE 1 

Flow chart of participant recruitment.
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3.4 Association between NHHR and AAC

Restricted cubic spline analyses (Figures 2, 3) revealed a 

monotonic dose-response association between NHHR 

concentrations and AAC scores (p for nonlinearity = 0.614). In 

the comprehensive adjusted model, NHHR concentrations 

demonstrated a significant positive linear correlation with sAAC 

(p for nonlinearity = 0.246).

3.5 Subgroup analysis

Subgroup analyses, in which NHHR was treated as a 

continuous variable and fully adjusted for covariates, are 

presented in Figures 4, 5. Across all subgroups stratified by age, 

sex, drinking status, and history of underlying diseases (diabetes, 

hypertension, stroke, and CHD), NHHR was consistently 

positively correlated with AAC (both AAC score and sAAC). No 

significant interactions were observed between NHHR and other 

subgroup variables, except for gender, where a significant 

interaction was detected [p for interaction (OR) = 0.007; p for 

interaction (β) = 0.008]. Meanwhile, the positive association 

between NHHR and the severity of AAC remained consistent 

across different racial groups (Supplementary Tables 10–12).

4 Discussion

This cross-sectional study examined the association between 

NHHR and AAC in U.S. adults aged 40 years and older. The 

findings indicate that, after adjusting for demographic factors, 

renal function, bone metabolism markers, and cardiovascular 

TABLE 1 Characteristics of study participants.

Characteristics Level Overall (n = 2,517) No sAAC (n = 2,302) sAAC (n = 215) p

Gender Male 1,226 (48.7%) 1,126 (49.3%) 100 (40.4%) 0.547a

Age (years) 58.94 ± 11.94 57.74 ± 11.48 71.80 ± 8.83 <0.001b

Marital status Married/Living with partner 1,592 (68.4%) 1,485 (69.9%) 107 (48.9%) <0.001a

Widowed/Divorced/Separated 730 (24.3%) 630 (22.4%) 100 (49.1%)

Unmarried 195 (7.3%) 187 (7.7%) 8 (2.0%)

Race Mexican American 312 (6.6%) 295 (6.8%) 17 (4.2%) <0.001a

Other Hispanic 231 (4.3%) 222 (4.5%) 9 (1.7%)

Non-Hispanic White 1,172 (72.6%) 1,027 (72.0%) 145 (80.3%)

Non-Hispanic Black 483 (9.9%) 459 (10.1%) 24 (6.9%)

Other 319 (6.6%) 299 (6.6%) 20 (6.9%)

Education level Under high school 523 (14.6%) 470 (13.9%) 53 (22.8%) 0.227a

High school or equivalent 565 (20.8%) 514 (20.8%) 51 (20.5%)

Above high school 1,429 (64.7%) 1,318 (65.3%) 111 (56.7%)

PIR 2.71 ± 1.65 2.72 ± 1.66 2.61 ± 1.56 0.340b

BMI (kg/m2) 28.56 ± 5.61 28.68 ± 5.70 27.24 ± 4.31 <0.001b

Smoke Yes 1,194 (46.5%) 1,060 (45.3%) 134 (62.2%) <0.001a

Drink Yes 1,829 (78.2%) 1,672 (78.5%) 157 (73.3%) 0.966a

SBP (mmHg) 127.35 ± 18.53 126.58 ± 18.19 135.54 ± 20.14 <0.001b

DBP (mmHg) 71.03 ± 11.55 71.69 ± 11.32 64.02 ± 11.63 <0.001b

Hypertension Yes 1,375 (51.2%) 1,197 (48.9%) 178 (81.1%) <0.001a

Diabetes Yes 587 (19.6%) 505 (18.3%) 82 (35.8%) <0.001a

Heart failure Yes 85 (2.8%) 63 (2.4%) 22 (7.7%) <0.001 a

CHD Yes 135 (4.7%) 90 (3.8%) 45 (17.2%) <0.001a

Angina Yes 81 (2.7%) 63 (2.4%) 18 (7.3%) <0.001a

Heart attack Yes 135 (4.8%) 103 (4.0%) 32 (15.6%) <0.001a

Stroke Yes 108 (3.7%) 84 (3.2%) 24 (10.3%) <0.001a

Glycohemoglobin (%) 5.91 ± 1.15 5.89 ± 1.14 6.22 ± 1.27 <0.001

TC (mg/dl) 194.59 ± 42.80 195.70 ± 42.91 182.76 ± 39.87 <0.001b

HDL (mg/dl) 54.08 ± 16.88 54.17 ± 16.87 53.16 ± 16.96 0.404b

Uric acid (mg/dl) 5.45 ± 1.38 5.43 ± 1.38 5.62 ± 1.42 0.057b

Creatinine (mg/dl) 0.95 ± 0.54 0.94 ± 0.53 1.08 ± 0.63 <0.001b

Serum calcium (mg/dl) 9.46 ± 0.37 9.45 ± 0.37 9.49 ± 0.36 0.156b

Serum phosphorus (mg/dl) 3.79 ± 0.57 3.78 ± 0.57 3.91 ± 0.54 0.002b

Total 25-hydroxyvitamin D (nmol/L) 70.96 ± 29.52 70.00 ± 28.91 81.22 ± 33.77 <0.001b

NHHR 2.89 ± 1.40 2.91 ± 1.41 2.72 ± 1.27 0.055b

AAC-24 score 1.54 ± 3.32 0.67 ± 1.42 10.84 ± 3.55 <0.001b

PIR, household income-to-poverty ratio; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; CHD, coronary heart disease; TC, total cholesterol; HDL, high- 

density lipoprotein; AAC, abdominal aortic calcification.
aP value calculated using the Chi-square test.
bP value calculated using the Kruskal–Wallis test.
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risk factors, NHHR was positively correlated with both AAC score 

and sAAC risk. Subgroup analysis revealed that this relationship 

remained consistent across various subgroups, suggesting its 

relative stability within the general population.

As a novel lipid-based index for assessing atherosclerosis, 

NHHR has demonstrated clinical predictive value for angina 

(13) and CHD (14) in previous studies. Vascular calcification, 

an actively regulated process that occurs early in atherosclerotic 

lesions (15), serves as an important predictor of cardiovascular 

events. AAC, a recognized marker of subclinical atherosclerosis, 

is also an independent predictor of cardiovascular event and 

mortality (16). Investigating the relationship between NHHR 

and AAC is therefore crucial for the early detection of 

subclinical atherosclerosis and cardiovascular risk. According to 

Matthew et al. (17), HDL-C demonstrates the strongest 

correlation with the severity of abdominal aortic sclerosis within 

the lipid profile. Additionally, Data from the NHANES study 

(18) demonstrated a positive association between elevated 

residual cholesterol (RC) levels and increased risk of sAAC in 

women. By integrating both atherogenic and anti-atherogenic 

lipid parameters, NHHR provides a more comprehensive 

measure for assessing AAC presence and severity.

In this study, after stepwise regression adjustment for 

demographic, lifestyle, and metabolic confounding factors, the 

association between NHHR and AAC was revealed, 

demonstrating an independent positive relationship between the 

two. Although the effect size of NHHR on AAC was relatively 

modest, the association remained statistically significant and 

consistent across fully adjusted models, indicating a certain 

degree of robustness. Furthermore, given the racial diversity of 

the NHANES population, we further explored the potential 

impact of race on this association. Despite variations in the 

prevalence and severity of AAC among different racial groups, 

the positive relationship between NHHR and AAC remained 

consistent across all subgroups. This suggests that, although 

genetic background, dietary habits, and socioeconomic factors 

may contribute to baseline differences among populations, the 

biological link between lipid metabolism abnormalities reKected 

by NHHR and vascular calcification is relatively stable and not 

dependent on racial differences. Therefore, NHHR may serve as 

a potential cross-ethnic indicator for assessing the risk of 

vascular calcification and atherosclerosis. From a clinical 

perspective, the relatively small effect size suggests that NHHR 

alone may have limited predictive utility for individual risk 

assessment. However, from a population-wide and multi-ethnic 

standpoint, even a modest increase in relative risk could 

translate into a notable increase in absolute case numbers, 

carrying important public health implications. Nevertheless, as 

this was a cross-sectional study, the actual predictive value of 

NHHR warrants further validation in prospective studies.

The development of AAC is inKuenced by multiple 

pathological mechanisms, including metabolic disorders and 

inKammatory responses. Based on existing literature, this study 

proposes the following potential mechanism underlying NHHR’s 

effect on AAC. First, NHHR may be linked to AAC through 

lipid metabolism dysregulation. As the ratio of non-HDL-C to 

HDL-C, an elevated NHHR value is strongly associated with 

lipid metabolic disorders. Specifically, a high NHHR is often 

associated with elevated non-HDL-C and reduced HDL-C 

concentrations. Among non-HDL components, oxidized low- 

density lipoprotein (ox-LDL) plays a crucial role in stimulating 

the transformation of vascular smooth muscle cells (VSMCs) 

into osteoblast-like cells, thereby promoting vascular medial 

calcification (19). HDL-C exerts anti-inKammatory, antioxidant, 

and anti-atherosclerotic effects. Additionally, it facilitates 

cholesterol efKux and reverse cholesterol transport, which are 

critical processes for mitigating atherosclerosis and vascular 

calcification (20). These findings support the positive correlation 

between high NHHR and AAC severity. Although the precise 

mechanism linking lipid metabolism disorders to AAC remains 

unclear, managing NHHR as a comprehensive lipid index may 

help mitigate AAC progression and reduce the risk of 

cardiovascular events.

TABLE 2 Multivariate-adjusted β-values and 95% confidence intervals for 
the association between NHHR and AAC score.

NHHR 
level

β (95%CI)

Model 1 Model 2 Model 3

Continuous −0.09 (−0.18 to – 

0.006) 0.067

0.09 (−0.005 to – 

0.18) 0.063

0.13 (0.02–0.24) 

0.023

Q1 Reference Reference Reference

Q2 −0.11 (−0.47 to – 

0.26) 0.569

0.04 (−0.31 to – 

0.37) 0.828

0.10 (−0.24 to – 

0.43) 0.557

Q3 −0.24 (−0.61 to – 

0.12) 0.193

0.12 (−0.22 to – 

0.47) 0.490

0.21 (−0.14 to – 

0.57) 0.238

Q4 −0.24 (−0.61 to – 

0.12) 0.195

0.34 (−0.03 to – 

0.68) 0.064

0.44 (0.03–0.85) 

0.036

P-trend 0.144 0.058 0.035

Model 1: no covariate adjustments.

Model 2: adjusted for age, sex, race, and BMI.

Model 3: further adjusted for marital status, education, PIR, smoking history, drinking 

history, hypertension, diabetes, heart failure, coronary heart disease, angina pectoris, 

stroke, total cholesterol, creatinine, serum calcium, phosphorus, uric acid, total 

25-hydroxyvitamin D, and glycated hemoglobin, based on Model 2.

TABLE 3 Multivariate-adjusted ORs and 95% confidence intervals for the 
association between NHHR and sAAC.

NHHR 
level

OR (95%CI)

Model 1 Model 2 Model 3

Continuous 0.90 (0.81–1.00) 

0.055

1.10 (0.97–1.23) 

0.124

1.19 (1.02–1.40) 

0.023

Q1 Reference Reference Reference

Q2 0.91 (0.63–1.33) 

0.630

1.14 (0.76–1.71) 

0.512

1.34 (0.85–2.12) 

0.204

Q3 0.76 (0.50–1.12) 

0.164

1.16 (0.75–1.77) 

0.506

1.61 (0.99–2.66) 

0.061

Q4 0.75 (0.51–1.12) 

0.161

1.47 (0.95–2.29) 

0.083

1.96 (1.10–3.48) 

0.022

P-trend 0.103 0.105 0.018

Model 1: no covariate adjustments.

Model 2: adjusted for age, sex, race, and BMI.

Model 3: further adjusted for marital status, education, PIR, smoking history, drinking 

history, hypertension, diabetes, heart failure, coronary heart disease, angina pectoris, 

stroke, total cholesterol, creatinine, serum calcium, phosphorus, uric acid, total 

25-hydroxyvitamin D, and glycated hemoglobin, based on Model 2.
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FIGURE 2 

Restricted cubic spline model depicting the relationship between NHHR and AAC score. The restricted cubic spline model was adjusted for age, 

gender, race, BMI, marital status, education, PIR, smoking history, drinking history, hypertension, diabetes, heart failure, coronary heart disease, 

angina pectoris, stroke, total cholesterol, creatinine, serum calcium, phosphorus, uric acid, total 25-hydroxyvitamin D, and glycated hemoglobin.

FIGURE 3 

Restricted cubic spline model depicting the relationship between NHHR and sAAC. The restricted cubic spline model was adjusted for age, gender, 

race, BMI, marital status, education, PIR, smoking history, drinking history, hypertension, diabetes, heart failure, coronary heart disease, angina 

pectoris, stroke, total cholesterol, creatinine, serum calcium, phosphorus, uric acid, total 25-hydroxyvitamin D, and glycated hemoglobin.
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Another potential mechanism underlying AAC progression is 

the inKammatory response. Studies have shown that inKammatory 

gene expression in macrophages within foam cells is elevated in 

advanced atherosclerotic plaques compared to regressing plaques 

(21), supporting the hypothesis that lipids contribute to AAC 

progression through inKammatory pathways. In recent years, 

several inKammatory signaling pathways involving low-density 

lipoprotein (LDL) and macrophages in atherosclerotic plaques 

have been identified, including the TLR2, TLR4, and MYD88 

pathways, which regulate cytokine gene expression and inKuence 

atherosclerosis development (22–24). Additionally, ox-LDL has 

been shown to activate the TLR4-TLR6-CD36 pathway, 

triggering inKammasomes to induce the secretion of significant 

quantities of pro-inKammatory cytokines, including interleukin- 

1β (IL-1β) and interleukin-18 (IL-18) (20). IL-1β, in particular, 

regulates inKammatory signaling cascades in VSMCs via the NF- 

kappa B and WNT/β-catenin pathways (25, 26), thereby 

promoting vascular calcification. Similarly, IL-8 has been found 

to induce the differentiation of circulating osteoblasts, further 

contributing to vascular calcification (19). Beyond lipid-driven 

inKammation, other inKammatory factors also inKuence AAC. 

Pro-inKammatory diets (27) and pan-immune inKammation 

values (PIV) have been implicated in vascular calcification. An 

NHANES study reported a positive correlation between PIV and 

AAC (28), reinforcing the strong association between 

inKammation and AAC. Although the precise role of 

inKammation in AAC progression across different stages 

remains unclear, the mechanisms outlined above warrant further 

investigation. Furthermore, due to the cross-sectional design of 

this study, the possibility of reverse causation cannot be entirely 

excluded, meaning that individuals with AAC may themselves 

exhibit lipid metabolism abnormalities. In addition, potential 

measurement errors in lipid profiles or AAC may have partially 

attenuated or overestimated the true strength of the association. 

FIGURE 4 

Subgroup analysis of the association between NHHR as a continuous variable and AAC score. In addition to the corresponding stratification variables, 

Model 3 was adjusted for age, gender, race, BMI, marital status, education, PIR, smoking history, drinking history, hypertension, diabetes, heart failure, 

coronary heart disease, angina pectoris, stroke, total cholesterol, creatinine, serum calcium, phosphorus, uric acid, total 25-hydroxyvitamin D, and 

glycated hemoglobin.
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Therefore, further validation through longitudinal and 

interventional studies is warranted to confirm these findings and 

to elucidate the causal mechanisms underlying the relationship 

between NHHR and AAC.

To further investigate whether the relationship between 

NHHR and AAC is inKuenced by gender, alcohol consumption, 

age, diabetes, CHD, stroke, and hypertension, a subgroup 

analysis was conducted. The interaction between NHHR and 

these factors was examined, revealing a positive correlation 

between NHHR and AAC across all subgroups. However, in the 

gender subgroup, NHHR was negatively correlated with AAC in 

males, potentially due to the role of cholesterol as a steroid 

hormone. This difference may be associated with gender-specific 

hormone levels (29). Androgens have been shown to directly 

stimulate Gas6 expression in VSMCs, preventing apoptosis (30) 

and thereby inhibiting vascular calcification. A recent NHANES 

study also reported a significant interaction between residual 

cholesterol (RC) and sAAC in gender subgroups, demonstrating 

that elevated RC concentrations in female participants 

independently predicted higher sAAC incidence rates (18) 

consistent with our findings.

This study has several notable strengths. First, it is the first to 

investigate the relationship between NHHR, AAC scores, and 

sAAC in a nationally representative sample of U.S. adults. 

Second, the findings are reliable, as the study followed 

standardized protocols and controlled for potential confounding 

variables based on previous research. However, several 

limitations should be acknowledged. As a cross-sectional study, 

causal relationships among NHHR, AAC scores, and sAAC 

cannot be established, highlighting the need for confirmation in 

prospective studies. Additionally, this study did not include 

younger individuals or pregnant women and was conducted 

only in adults aged 40 years and older. Therefore, the 

generalizability of our findings to the entire population still 

requires prospective validation in different age groups and 

specific populations. Moreover, smoking and drinking status 

FIGURE 5 

Subgroup analysis of the association between NHHR as a continuous variable and sAAC. In addition to the corresponding stratification variables, 

Model 3 was adjusted for age, gender, race, BMI, marital status, education, PIR, smoking history, drinking history, hypertension, diabetes, heart 

failure, coronary heart disease, angina pectoris, stroke, total cholesterol, creatinine, serum calcium, phosphorus, uric acid, total 

25-hydroxyvitamin D, and glycated hemoglobin.
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were defined based on lifetime consumption, which may limit the 

precise assessment of lifestyle-related risk factors in relation to 

AAC; future studies with larger sample sizes and more detailed 

classification may help address this potential confounding. 

Finally, in addition to the biological mechanisms proposed in 

this study, reverse causation and random errors in data 

measurement may inKuence the true strength of the 

observed associations.

5 Conclusion

In adults aged 40 years and older, NHHR levels were positively 

associated with AAC scores and the risk of sAAC. This finding 

highlights the potential clinical value of NHHR in predicting the 

severity of AAC and the risk of cardiovascular complications.
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