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Background: In recent years, non-optimal temperature has significantly 

impacted global health including ischemic heart disease (IHD).

Methods: Data regarding the burden of IHD caused by non-optimal 

temperature were sourced from the Global Burden of Disease Study 2021. 

Temporal trends of the age-standardized mortality rate (ASMR) and the age- 

standardized disability-adjusted life years rate (ASDR) were estimated by 

annual percentage change (EAPC) from 1990 to 2021. Age-period-cohort 

modeling was employed to investigate IHD-related mortality.

Results: The number of IHD deaths and DALYs resulting from non-optimal 

temperature experienced a rise of 71.6% and 60.6%, respectively. And it 

showed regional imbalances: in the region with low-middle socio- 

demographic index (SDI), it was increased [EAPC for ASMR: 0.39% (95% CI: 

0.2%, 0.58%), EAPC for ASDR: 0.33% (95% CI: 0.15%, 0.52%)], while decreased 

in the high SDI region, [EAPC for ASMR: −3.44% (95%CI: −3.58%, −3.3%), 

EAPC for ASDR: −3.18% (95%CI: −3.32%, −3.03%)]. APC modeling showed 

that the global risk of death from IHD caused by non-optimal temperature 

was increased with age and was generally higher in males than in females. 

The period effect revealed a higher mortality risk in low-middle and low SDI 

regions, whereas the birth cohort effect indicated a lower mortality risk in 

high-middle and high SDI regions.

Conclusions: The IHD burden caused by non-optimal temperature significantly 

varied according to the genders, SDI regions, and countries from 1990 to 2021. 

It is crucial to implement effective strategies to mitigate the impact of non- 

optimal temperature on IHD, particularly among men, the elderly, and the 

lower SDI regions.
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1 Introduction

Ischemic heart disease (IHD), chie�y resulting from coronary 

artery disease and myocardial infarction, is marked by high 

mortality and disability rates, rendering it the cardiovascular 

condition with the most substantial disease burden (1). According 

to the latest Global Burden of Disease (GBD) report, it was 

estimated that around 182 million disability-adjusted life years 

(DALYs) due to IHD were experienced worldwide in that year 

(2), and it will cause 10.8 million deaths in 2040 and will 

continue to represent a substantial hazard to global cardiovascular 

health, leading to considerable medical burden and economic 

pressure (3). Therefore, it is of critical importance to implement 

effective strategies for the control of global non-communicable 

diseases, with particular attention to IHD (4).

In recent years, extreme heat waves and cold waves have 

become more frequent around the world, which directly endanger 

the health of individuals (5). A study covering 27 countries on 

five continents revealed that heat and cold caused 2.2 and 9.1 

excess fatalities per 1,000 cardiovascular deaths, respectively (6). 

The adverse consequences of extreme temperature on agricultural 

workers in nations with a medium and low human development 

index can lead to a significant reduction in working hours, which 

in turn can have a damaging impact on the economic stability of 

vulnerable groups (5). Epidemiological evidence indicates that the 

relationship between temperature and mortality is inverted 

J-shaped, particularly concerning cardiovascular diseases (CVD), 

with IHD exhibiting the highest attributable mortality fraction 

(7). According to previous research, the in�uence of extreme cold 

on IHD mortality tends to persist over a longer period, whereas 

the impact of extreme heat is typically more acute and transient 

(6, 8). Notwithstanding the acknowledgment of the substantial 

burden imposed by IHD and the escalating global exposure to 

extreme climates, there is presently no comprehensive study 

quantifying the IHD burden caused by non-optimal temperature 

from a global perspective.

Based on the GBD 2021 database, this study analyzed data 

from 204 countries and regions to thoroughly evaluate the 

in�uence of non-optimal temperature exposure on the burden 

of IHD. Utilizing the Estimated Annual Percentage Change 

(EAPC) and the Age-Period-Cohort (APC) model enables us to 

discern temporal trends and decompose mortality risk data 

across three dimensions: age, period, and cohort within various 

SDI regions. The study aims to provide reliable information to 

help governments formulate scientific public health 

interventions and policies to reduce the harm to cardiovascular 

health caused by frequent extreme temperature around the world.

2 Materials and methods

2.1 Data sources

The GBD 2021 study employs the latest epidemiological data 

and standardized methodologies from 1990 to 2021 to 

comprehensively evaluate health losses associated with 371 

diseases, injuries, and 88 risk factors among diverse age and sex 

groups in 204 countries and regions (2). The number of deaths, 

age-standardized mortality rates (ASMR), DALYs, and age- 

standardized DALY rates (ASDR) attributed to non-optimal 

temperature related to IHD between 1990 and 2021, categorized 

by gender, age, region, and country, were derived from the GBD 

2021 (https://vizhub.healthdata.org/gbd-results/), and further 

categorized into five quintiles of Socio-Demographic Index (SDI). 

The criteria of SDI assessment included average educational 

attainment, fertility rates, and a composite evaluation of economic 

development across different nations. Each cause of death was 

mapped to the GBD cause of death categories by the ICD-10 

coding system. The ICD-10 codes for IHD-related causes of death 

include I20-I21.6, I21.9-I25.9, and Z82.4-Z82.49.

The non-optimal temperature dataset was derived from 

the ERA5 reanalysis, a comprehensive meteorological dataset 

produced by the European Centre for Medium-Range Weather 

Forecasts (ECMWF), offering a highly detailed global atmospheric 

record with excellent spatial and temporal resolution (9). 

Exposure to non-optimal temperature is defined as encountering 

ambient temperature, either above or below the threshold linked 

to the lowest mortality risk, within the same day (10). The 

theoretical minimum risk exposure level (TMREL) for 

temperature refers to the daily temperature at which the mortality 

rate is lowest for all cause-specific diseases in a given location and 

year. It accounts for the varying exposure-response relationships 

across different annual temperature zones, as well as changes in 

disease composition over time and space (11). Within the 

Comparative Risk Assessment (CRA) framework, the GBD study 

estimated the population attributable fraction (PAF) for non- 

optimal temperature using the TMREL (12). To quantify the 

burden of IHD attributed to non-optimal temperature, the GBD 

study multiplied the total IHD burden by the corresponding 

PAFs across GBD regions, years, age groups, and sexes.

2.2 Statistical analysis

This study aimed to estimate the IHD burden resulting from 

non-optimal temperature between 1990 and 2021, using deaths, 

DALYs, ASMR, ASDR, and percentage changes in age- 

standardized rates (ASRs). EAPC, a widely used and concise 

metric for assessing trends in ASRs over a given period, was 

employed to quantify trends within the specified time interval 

(13). The general regression model and the EAPC calculation 

are presented in Equations 1, 2, respectively. The EAPC is 

calculated by fitting the natural logarithm of the rate to a 

regression model with time as the variable, generating a straight 

line from the log-transformed observations, with the value 

derived from the slope (14).

y ¼ aþ bx þ 1 (1) 

EAPC ¼ 100�(exp(b) � 1) (2) 
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The APC model was utilized to assess the separate impact of 

age, period, and birth cohort on IHD mortality associated with 

non-optimal temperature. The age effect reveals biological 

and sociological changes that occur with aging. The period 

effect re�ects temporal events and changes impacting mortality 

from IHD due to non-optimal temperature. The cohort effect 

highlights generational variations in mortality, shaped by 

differing levels of exposure to risk factors. Drawing on data 

from GBD 2021, we obtain global and region-specific IHD 

mortality estimates across various SDI classifications, along 

with the corresponding demographic data, as the APC model’s 

inputs. Subsequently, the derived data were tabulated, 

comprising the following: (a) 16 age groups, ranging from 20 to 

24 to 95+ years, with consecutive age intervals of 5 years; (b) six 

consecutive 5-year calendar periods from 1992 to 1996 to 2017– 

2021; (c) twenty-one consecutive 5-year birth cohorts, from 

1895 to 1899 to 1995–1999. The central birth cohort (1945– 

1949) and the central calendar period (2002–2006) were used as 

reference points to determine the period rate ratios (RRs). This 

study utilized the web-based APC analysis tool developed by the 

National Cancer Institute of the United States. (http:// 

analysistools.nci.nih.gov/apc/) (15). The APC model generates 

outputs including the net drift, which re�ects the overall annual 

percentage change while accounting for variations across periods 

and cohorts. For various age groups and birth cohorts, local 

drift logarithmically represents the yearly percentage change. 

The in�uence of age on the increasing trend of IHD is 

illustrated by the longitudinal age curve, which re�ects the age- 

specific rate of the control cohort adjusted for period bias. The 

period RR denotes the risk relative to the reference period after 

adjusting for age and non-linear cohort effects. Similarly, the 

cohort RR indicates the relative risk of a birth cohort in 

comparison to the reference birth cohort, after adjusting for age 

and non-linear period effects. The statistical analysis and 

visualization presented in this article were conducted using 

R software (version 4.4.1). A p-value of less than 0.05 (two- 

sided) was regarded as statistically significant.

3 Results

3.1 Trends in the global IHD burden caused 
by non-optimal temperature

Globally, deaths and DALYs from IHD attributable to non- 

optimal temperature have risen significantly over the past 

32 years (Figure 1). Specifically, the number of IHD deaths due 

to non-optimal temperature rose from 355,690 (95% UI: 

291,440–465,060) in 1990 to 610,520 (95% UI: 459,420–862,750) 

in 2021. Additionally, DALYs increased from 7,720,580 (95% 

UI: 6,227,790–10,156,650) in 1990 to 12,418,520 (95% UI: 

9,158,610–17,640,350) in 2021 (Table 1). However, from 1990 to 

2021, the ASMR and ASDR declined by 30.1% and 27.7%, 

respectively. Similarly, the absolute burden of IHD attributable 

to low temperature increased, whereas the ASMR and ASDR 

declined (Supplementary Figure S1).

Between 1990 and 2021, the global IHD burden caused by 

non-optimal temperature was markedly higher in men 

compared to women. In 2021, the number of deaths among 

men reached 339,800 (95% UI: 255,300–473,530), exceeding that 

of women, which stood at 270,730 (95% UI: 203,910–380,650) 

(Table 1). Similarly, DALYs among men reached 7.59 million, 

which was 1.57 times higher than those in women (4.83 

million). Over the past three decades, both the ASMR and 

ASDR of IHD attributable to non-optimal temperature have 

consistently been higher in males than in females (Figure 1).

As illustrated in Figure 2, the number of deaths and DALYs 

attributed to non-optimal temperature exhibited an initial 

increase followed by a decline with advancing age for both 

genders. Both males and females demonstrated a pronounced 

growth in ASMR and ASDR after the age of 70, with low 

temperature emerging as the dominant factor driving this rise. 

Most fatalities occurred among individuals aged 55–89, with the 

80–84 age group experiencing the highest death toll (Figure 2A). 

Additionally, the 65–69 age group accounted for the largest 

number of DALYs, with the majority of DALYs concentrated in 

the 50–84 age range (Figure 2B).

3.2 The IHD burden resulting from non- 
optimal temperature in various regions and 
countries

In 2021, the low-middle SDI region presented the highest 

ASMR and ASDR, while the high SDI region recorded the 

lowest ASMR and ASDR (Table 1). From 1990 to 2021, across 

all SDI regions, only non-optimal temperature in the high and 

high-middle SDI regions demonstrated decreasing trends in 

both ASMR and ASDR for IHD (Figures 3A,D). Similar patterns 

were observed in ASMR and ASDR when gender stratification 

was compared across all SDI regions. Additionally, males 

exhibited higher ASMR and ASDR than females (Figures 3B,C, 

E,F and Table 1). Similarly, in all SDI regions, males bore a 

higher burden of IHD attributable to low temperature than 

females (Supplementary Figure S2).

In terms of the 21 GBD regions, the IHD burden caused by 

non-optimal temperature in 2021 was highest in Central Asia 

(ASMR: 23.49; ASDR: 427.5), followed by North Africa and the 

Middle East (ASMR: 19.25; ASDR: 380.1), with Eastern Europe 

ranking third (ASMR: 17.28; ASDR: 316.14) (Table 1). However, 

in 2021, the Caribbean region exhibited the lowest ASMR and 

ASDR at 1.24 and 24.91, respectively, followed by Sub-Saharan 

Central Africa (ASMR: 1.74; ASDR: 34.88) and the high-income 

Asia-Pacific (ASMR: 1.93; ASDR: 35.18). China and India 

recorded the highest number of IHD deaths and DALYs linked 

to non-optimal temperature in 2021, with estimates reaching 

0.15 million (95% UI: 0.11, 0.21) and 2.75 million (95% UI: 

1.54, 3.95), respectively (Supplementary Figure S3 and 

Supplementary Table S1), a situation largely contributed to by 

their large populations. The three countries with the highest 

IHD ASMR attributable to non-optimal temperature were Iraq, 

Turkmenistan, and Uzbekistan, with corresponding estimates of 
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46.26 (95% UI: 19.42, 76.04), 39.47 (95% UI: 27.50, 59.90), and 

34.17 (95% UI: 25.84, 50.85), respectively. Distributed evenly 

across 204 countries, the top three non-optimal temperature- 

related ASDR were Iraq, Turkmenistan, and Uzbekistan, similar 

to ASMR (Figure 4 and Supplementary Table S1).

3.3 Longitudinal trends in global non- 
optimal temperature IHD burden

Between 1990 and 2021, the global absolute number of deaths 

and DALYs attributable to IHD linked to non-optimal 

temperature has risen by 71.6% and 60.9%, respectively. 

However, the global ASMR decreased by 30.1%, with an EAPC 

of −1.34% (95% CI: −1.44%, −1.24%), while the ASDR declined 

by 27.7%, with an EAPC of −1.24% (95% CI: −1.35%, −1.13%) 

(Table 1). Both sexes exhibited declining ASMR and ASDR from 

IHD attributable to non-optimal temperature. However, the 

decline was more substantial among females, with an EAPC of 

−1.63% (95% CI: −1.73%, −1.53%) for ASMR and −1.50% (95% 

CI: −1.61%, −1.40%) for ASDR (Table 1).

The ASMR and ASDR of IHD due to non-optimal 

temperature exhibited varied patterns across different SDI areas 

between 1990 and 2021. The region with low-middle SDI 

demonstrated the most pronounced increase, with EAPCs of 

0.39% (95% CI: 0.20%, 0.58%) for ASMR and 0.33% (95% CI: 

0.15, 0.52) for ASDR. Nevertheless, the sharpest decline 

occurred in high SDI region, with EAPCs reaching −3.44% 

(95% CI: −3.58%, −3.3%) for ASMR and −3.18% (95% CI: 

−3.32%, −3.03%) for ASDR (Table 1).

Between 1990 and 2021, the IHD burden resulting from non- 

optimal temperature exhibited a declining tendency in the 

majority (17 out of 21) of geographic super-regions, with the 

95% CI of the EAPC falling below 0. Australasia experienced the 

most notable decline, with EAPCs of −4.90% (95% CI: −5.06%, 

−4.74%) and −5.15% (95% CI: −5.33%, −4.97%) for ASMR and 

ASDR, respectively. This was followed by Western Europe, with 

an EAPC of −4.17% (95% CI: −4.36%, −3.98%) for ASMR and 

FIGURE 1 

Changes in the deaths (A,C) and DALYs (B,D) attributable to non-optimal temperature globally and in different genders from 1990 to 2021.
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−4.38% (95% CI: −4.56%, −4.19%) for ASDR. The ASMR and 

ASDR across four regions exhibited an increase (The 95% CIs 

for EAPCs exceeded 0), with the largest increases in East Asia 

[EAPC: 0.87% (95% CI: 0.52%, 1.23%) and 0.41% (95% CI: 

0.11%, 0.71%), respectively], followed by South Asia [EAPC: 

0.66% (95% CI: 0.39%, 0.94%) and 0.49% (95% CI: 0.24%, 

0.75%), respectively] (Table 1).

3.4 Association between SDI and IHD 
burden caused by non-optimal 
temperature

We investigated the association between ASMR and SDI of 

IHD caused by non-optimal temperature in 21 GBD regions 

between 1990 and 2021. The results revealed an N-shaped 

association between regional SDI and the corresponding ASMR 

throughout the overall period. When the SDI was below 0.71, 

the ASMR increased gradually with the rising SDI levels, then 

declined significantly. From 1990 to 2021, the ASMR of IHD 

due to non-optimal temperature in five GBD regions, including 

Central Asia and Eastern Europe, exceeded expectations. In the 

majority of other regions, where the ASMR of IHD resulting 

from non-optimal temperature fell below the projections based 

on the SDI (Figure 5A). A similar pattern was observed for 

ASDR associated with IHD resulting from non-optimal 

temperature across diverse SDI levels (Figure 5B).

In exploring the association between the burden of IHD 

attributable to low temperature and SDI, both ASMR and ASDR 

in the 21 GBD regions exhibited a gradual increase with rising SDI 

levels, followed by a marked decline (Supplementary Figure S4).

3.5 Effects of local drift, age, period, and 
cohort on the burden of IHD due to non- 
optimal temperature

A net drift in IHD mortality of −1.17% per year (95% CI: 

−1.21, −1.13) was estimated globally using the APC model, with 

−2.38% (95% CI: −2.49, −2.26) in high-middle SDI region and 

−2.66% (95% CI: −2.77, −2.55) in high SDI region. In contrast, 

in low-middle SDI region, there was an upward trend in the net 

drift of IHD mortality (0.33%, 95% CI: 0.25, 0.41). Local drift 

curves for various age groups in high and high-middle SDI 

areas showed decreasing mortality rates across all age groups. In 

comparison to females, males showed smaller declines or greater 

increases in mortality rates across different age groups in all SDI 

regions (Figure 6A).

The age effect elucidated variations in risk across different age 

cohorts, with a consistent pattern observed globally and across all 

SDI regions, where risk escalated with the age increasing 

(Figure 6B). The period effect revealed a declining trend in 

mortality risk across all regions except for low and low-middle 

SDI areas (Figure 6C). Birth cohort effect indicated that the risk 

of mortality from IHD caused by non-optimal temperature 

declined globally. Notably, high SDI and high-middle SDI 

regions exhibit a downward trend, especially high SDI region, 

while the birth cohort effect in other regions has remained 

largely unaltered (Figure 6D).

Applying the APC model to the burden of IHD attributable to 

low temperature, we found that net drift declined across all 

regions. In the period effect, the risk remained stable in low and 

low-middle SDI regions, distinct from the patterns observed in 

the analysis of non-optimal temperature. The other effects were 

generally consistent (Supplementary Figure S5).

4 Discussion

4.1 Main findings

The findings of this study indicate that, from 1990 to 2021, the 

global deaths and DALYs from IHD attributable to non-optimal 

temperature increased substantially, whereas the corresponding 

ASRs showed a declining trend. In 2021, low temperature was 

the predominant contributor to the IHD burden attributable to 

non-optimal temperature, accounting for 82.8% of deaths and 

80.2% of DALYs. Additionally, disparities in deaths and DALYs 

were evident among various age groups, predominantly affecting 

the middle-aged and elderly populations. Male mortality 

exceeded that of females, with an increase in mortality observed 

as age progresses. The impact of IHD resulting from non- 

optimal temperature was minimal in Australasia, a region 

characterized by a high SDI, and most pronounced in Central 

Asia, an area with a middle SDI, in 2021. Finally, age and 

period effects revealed that the risk of IHD mortality associated 

with non-optimal temperature was consistently heightened in 

low and low-middle SDI areas.

It is well-established that non-optimal temperature constitutes 

a risk factor for numerous diseases and poses a serious threat to 

human health (10, 16, 17). A study conducted in the US 

demonstrated that abnormal environmental temperature may 

exert a direct in�uence on the incidence of CVD and an 

indirect in�uence on CVD mortality through physical activity 

(18). A study involving 27 countries and 567 cities revealed that 

non-optimal temperature contributed to a 1% increase in 

mortality from IHD, with a projected increase in risk attributed 

to climate change (6). Moreover, a three-stage modeling study 

demonstrated that cold temperatures accounted for the majority 

of excess deaths, with mortality attributable to cold being 

approximately ten times higher than that associated with heat 

(19). Several physiological mechanisms have been put forth to 

explain the association between non-optimal temperature and 

the occurrence of IHD. These mechanisms range from cold- 

induced arterial vasoconstriction, which triggers increased 

cardiac output and fibrinogen levels, to diminished intravascular 

volume and dehydration during extreme heat, all contributing to 

a heightened risk of IHD events (20–22). Evidence has indicated 

that the lagged impact of low temperature on disease burden is 

more pronounced, and low temperature can exacerbate the 

adverse cardiovascular effects of nitrogen oxides (10, 23). 

Therefore, it is imperative to adapt global public health strategies 
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to mitigate the adverse cardiovascular effects associated with non- 

optimal temperatures. Accelerating the transition to renewable 

energy, enhancing urban green infrastructure, and establishing 

early warning systems for extreme temperature events are critical 

measures to regulate global temperature changes and protect 

cardiovascular health (6, 24).

FIGURE 2 

The age distribution of IHD deaths (A) and DALYs (B) attributable to non-optimal temperature. The bar was the number of IHD deaths and DALYs 

attributable to non-optimal temperature. The line represents the age-specific mortality rate and DALY rate attributable to non-optimal temperature.

Xia et al.                                                                                                                                                                 10.3389/fcvm.2025.1559432 

Frontiers in Cardiovascular Medicine 08 frontiersin.org



The impact of non-optimal temperature on IHD burden is 

significantly greater in males compared to females, with a 

1.5-fold higher incidence rate of IHD in males (25). Research 

carried out in China revealed that, after controlling for long- 

term trends in seasonality, relative humidity, and other 

confounding factors, males exhibited a higher daily YLL due to 

cardiovascular diseases compared to females (26). Risk 

behaviors, including smoking and alcohol consumption, are 

more prevalent in males and may interact with non-optimal 

temperature exposure to elevate the risk of cardiovascular events 

(27). Due to occupational demands, Men are more likely than 

women to engage in manual outdoor labor such as construction 

and farming, which increases their exposure to non-optimal 

temperature risk factors (28). Biomarkers regulating vascular 

in�ammation and adipokines are upregulated to a greater extent 

in women than in men. Furthermore, endogenous estrogen 

levels can diminish the risk of CVD in premenopausal women 

(29). Globally, the IHD burden caused by non-optimal 

temperature is greater among older populations compared to 

younger ones. Prior research has shown that older individuals 

are more sensitive to temperature �uctuations (16, 17). A report 

from Zhejiang Province, China, indicated that individuals aged 

65 and older are more sensitive to both low and high 

temperature than those aged 0–64 (30). Consistent with this 

study, the IHD burden resulting from non-optimal temperature 

peaks in the age group of 65 and older.

Globally, the period and cohort RRs of IHD burden due to 

non-optimal temperature are on a downward trend. This may 

be attributed to recent advancements in IHD treatment 

techniques, such as the rapid development of thrombolysis and 

interventional therapies, along with growing public awareness of 

cardiovascular health (31–33). Furthermore, advancements in 

pharmaceutical technologies, coupled with global economic 

growth, have synergistically driven enhanced accessibility to vital 

myocardial infarction treatments in underdeveloped regions 

(34). The corresponding burden has steadily decreased in high 

FIGURE 3 

Changes in the ASMR (A–C) and ASDR (D–F) of IHD attributable to non-optimal temperature globally and in different SDI regions from 1990 to 2021.
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and high-middle SDI regions in recent years, with the rate of 

decline having become progressively more pronounced as SDI 

levels rise. This may be attributed to increased access to work in 

climate-controlled environments and improved healthcare 

resources (35). Furthermore, high SDI region are more likely to 

have Sufficient healthcare resources and comprehensive 

healthcare policy frameworks. For instance, they may have 

effective management strategies for hypertension and promote 

FIGURE 4 

The spatial distribution of IHD ASMR (A) and ASDR (B) attributable to non-optimal temperature for both genders in 2021. Maps from: “Global national 

administrative boundary data”, Resource and Environmental Science Data Platform (https://www.resdc.cn/).
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FIGURE 5 

ASMR (A) and ASDR (B) attributable to non-optimal temperature across 21 geographical GBD regions by the SDI for both sexes combined from 1990 

to 2021.
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the use of Statin medications and low-dose aspirin for prevention, 

thereby decreasing the IHD burden (24, 36). However, adverse 

period and cohort effects were persistent in areas with low- 

middle SDI. Surgical supply chains in healthcare facilities in 

low- and middle-income countries (LMICs) are inefficient and 

often costly, with limited access to IHD care (37). Moreover, 

most LMICs are situated in tropical and subtropical areas, where 

the occurrence of extremes is more prevalent, and heat waves 

may become more frequent and persist for extended durations 

(38). To summarize, differences in living conditions and the 

provision of public health care related to IHD significantly 

in�uence the variations in disease burden among nations and 

regions. For that reason, it is imperative to develop and 

implement regionally tailored global public health interventions. 

To evaluate the risk of IHD caused by non-optimal temperature, 

particularly in LMICs, it is imperative to conduct further 

prospective studies.

Several limitations must be noted. First, the IHD burden 

indicator resulting from non-optimal temperature was derived 

from estimates. The temperature effects were described as 

transient, occurring on the day of exposure, without considering 

lagged or cumulative impacts. The IHD burden attributed to 

non-optimal temperature may be underestimated due to this 

method. Furthermore, the ecological design of the GBD study 

precluded the inclusion of genetic data in our analysis. 

Currently, population-based epidemiological studies directly 

assessing the interplay between genetic factors and non-optimal 

temperature exposure remain limited. Future research that 

FIGURE 6 

The local drifts (A), age effects (B), period effects (C), and cohort effects (D) of IHD-related mortality attributable to non-optimal temperature in the 

global and different SDI regions from 1990 to 2021.
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integrates genomic and environmental data is essential to unravel 

these complex relationships. Lastly, the reliance on global 

biodiversity data introduces variability in terms of data 

availability and quality across different locations. This 

unavoidable limitation has been acknowledged and reported in 

other studies, highlighting the challenges associated with data 

availability in this field of research (39–41).

5 Conclusion

Globally, the IHD burden caused by non-optimal temperature 

has reduced from 1990 to 2021. However, the observed trends 

across countries are inconsistent, with the burden shifting from 

high SDI nations to middle and low SDI countries, particularly 

among both males and the elderly. This phenomenon is driven 

by several factors, including increased exposure to non-optimal 

temperature, disparities in healthcare resources allocated to IHD 

care, and the effects of population growth and aging in middle 

and low SDI countries. These findings necessitate immediate 

action to enhance IHD prevention through strengthened 

primary health care and environmental climate management, 

particularly in countries and regions bearing a high disease 

burden and relative economic disadvantage. The findings will 

inform the formulation of policies for IHD prevention and 

climate change response in diverse geographical regions.
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