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Objective: Cardiovascular-kidney-metabolic (CKM) syndrome represents a 

critical intersection of cardiovascular, renal, and metabolic disorders, 

emphasizing the importance of early risk stratification and intervention. The 

triglyceride-glucose (TyG) index, a surrogate marker of insulin resistance, has 

shown promise in predicting cardiometabolic risk. However, its association 

with hyperuricemia in early-stage CKM syndrome remains uncertain.

Methods: This study analyzed data from 14,716 adult participants in the 

NHANES 2005–2018 dataset. A complex survey weight design and multiple 

imputation techniques were utilized to address missing data. The relationship 

between the TyG index and hyperuricemia was examined using generalized 

additive models and piecewise regression, with multivariable logistic 

regression adjusting for 14 potential confounders.

Results: The TyG index demonstrated a significant positive association with 

hyperuricemia. Each unit increase in the TyG index was associated with a 62% 

higher risk of hyperuricemia (OR = 1.62, 95% CI: 1.45–1.81). A non-linear 

relationship was identified, with an inflection point at a TyG index of 9.50. 

Below this threshold, higher TyG index values were significantly associated 

with increased odds of hyperuricemia (OR = 2.18, 95% CI: 1.82–2.61), while 

above the threshold, the association became non-significant (OR = 0.79, 95% 

CI: 0.57–1.10). Subgroup analyses confirmed consistent associations across 

various demographic and clinical characteristics.

Conclusions: The TyG index may serve as a valuable biomarker for identifying 

hyperuricemia risk in individuals with early-stage CKM syndrome, offering 

potential utility in clinical and public health settings. Further longitudinal 

studies are warranted to confirm these findings and assess the impact of TyG 

index-guided interventions on CKM syndrome progression.

KEYWORDS

triglyceride-glucose index (TyG), hyperuricemia, cardiovascular-kidney-metabolic 

syndrome (CKM), threshold effect, United States

TYPE Original Research 
PUBLISHED 17 October 2025 
DOI 10.3389/fcvm.2025.1553957

Frontiers in Cardiovascular Medicine 01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2025.1553957&domain=pdf&date_stamp=2020-03-12
mailto:179050526@qq.com
https://doi.org/10.3389/fcvm.2025.1553957
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1553957/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1553957/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1553957/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1553957/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1553957/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1553957/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1553957/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2025.1553957


1 Introduction

Cardiovascular-kidney-metabolic (CKM) syndrome re�ects 

the complex interplay of cardiovascular, renal, and metabolic 

disorders, which often coexist and amplify each other’s clinical 

burden. The increasing prevalence of CKM syndrome worldwide 

has underscored the need for early identification of risk factors 

and targeted interventions to curb its progression (1). Among 

the various metabolic abnormalities associated with CKM 

syndrome, hyperuricemia—a condition characterized by elevated 

serum uric acid levels—has garnered attention for its role in 

exacerbating cardiovascular and renal dysfunction (2–4). The 

relationship between hyperuricemia and insulin resistance (IR) 

is well-documented, with emerging evidence suggesting that 

hyperuricemia may both result from and contribute to 

metabolic derangements (5, 6). However, the mechanisms 

linking these conditions remain incompletely understood, 

particularly in the context of early-stage CKM syndrome.

The triglyceride-glucose (TyG) index, a reliable surrogate 

marker of IR (7), has gained traction in recent years for its 

predictive value in cardiometabolic disorders (8, 9). Studies have 

shown that higher TyG index values are associated with an 

increased risk of type 2 diabetes, hypertension, and 

cardiovascular diseases (10–12). However, while its utility in 

assessing cardiometabolic risk has been established, limited 

research has explored the relationship between the TyG index 

and hyperuricemia, particularly in populations with CKM 

syndrome. Investigating this relationship could offer valuable 

insights into the role of IR in CKM-related metabolic 

disturbances and inform early intervention strategies.

In this study, we focus on individuals in the early stages of 

CKM syndrome to evaluate the relationship between the TyG 

index and hyperuricemia. By utilizing data from the National 

Health and Nutrition Examination Survey (NHANES) 2005– 

2018 and employing advanced statistical techniques, we aim to 

identify non-linear associations and thresholds for 

hyperuricemia risk. This study is unique in targeting an 

underexplored population—those in the early stages of CKM 

syndrome—and provides evidence for the TyG index as a 

practical biomarker for early intervention. These findings 

contribute to the growing need for proactive approaches in 

CKM syndrome management, focusing on risk prediction and 

prevention during its earliest phases.

2 Methods

2.1 Study population

This cross-sectional study utilized data from the NHANES 

2005–2018. NHANES employs a complex, multistage probability 

sampling design to collect nationally representative data through 

standardized questionnaires, physical examinations, and 

laboratory tests. From the NHANES 2005–2018 population, we 

excluded participants aged <20 years, pregnant women, 

individuals with undetermined CKM syndrome status due to 

incomplete data for key staging variables [missing measurements 

for body mass index (BMI), waist circumference, blood pressure, 

glucose parameters, lipid profiles, kidney function, or 

cardiovascular disease history], those with missing data for TyG 

index calculation (fasting triglycerides and glucose) or serum 

uric acid measurements, and participants with stage 4 CKM 

syndrome, as our study focused specifically on early-stage 

disease progression and intervention opportunities. The final 

analytic sample comprised adults with early-stage (0–3) 

CKM syndrome.

2.2 Definition of CKM syndrome early- 
stage

The staging of CKM Syndrome was comprehensively 

delineated according to the 2023 American Heart Association 

Presidential Advisory Statement (1, 13). Our study concentrated 

on early-stage CKM syndrome (stages 0–3): Stage 0 indicates the 

absence of CKM risk factors; Stage 1 is characterized by excess 

or dysfunctional adiposity; Stage 2 encompasses metabolic risk 

factors or chronic kidney disease (CKD); Stage 3 includes 

subclinical cardiovascular disease. Within this classification, very 

high-risk kidney disease (stages G4 or G5) and high 

cardiovascular disease risk predicted by the Framingham risk 

score were considered equivalent markers of subclinical 

cardiovascular pathology. Kidney function was estimated using 

the CKD-EPI equation to calculate glomerular filtration rate 

(eGFR) and staged according to Kidney Disease Improving 

Global Outcomes (KDIGO) guidelines. Given the research’s 

focus on early disease progression, participants with established 

cardiovascular disease, end-stage kidney disease, or advanced 

metabolic complications (Stage 4) were excluded.

2.3 Exposure variable

The TyG index was calculated as ln[fasting triglycerides (mg/ 

dl) × fasting glucose (mg/dl)/2] (14). Blood samples were collected 

after 8–12 h of fasting at NHANES mobile examination centers. 

Serum triglycerides were measured using enzymatic methods 

(GPO-PAP method, Roche Diagnostics), and glucose was 

measured using hexokinase method (Roche/Hitachi Cobas 

C311). The TyG index was analyzed both as a continuous 

variable and as a categorical variable divided into quartiles (Q1: 

5.65–8.16, Q2: 8.16–8.58, Q3: 8.58–9.03, Q4: 9.03–12.84).

2.4 Outcome variable

Hyperuricemia was defined as serum uric acid ≥7.0 mg/dl in 

males or ≥6.0 mg/dl in females (15). Serum uric acid was 

measured using uricase-peroxidase method (Beckman Coulter 

UniCel DxC 800 Synchron) under standardized conditions. All 

samples were processed within 24 h of collection. Laboratory 

Chen and Liang                                                                                                                                                       10.3389/fcvm.2025.1553957 

Frontiers in Cardiovascular Medicine 02 frontiersin.org



personnel were blinded to participants’ exposure status to 

minimize measurement bias.

2.5 Covariates

Covariates included age (continuous, in years), sex (male or 

female), race/ethnicity (Non-Hispanic White, Non-Hispanic 

Black, Mexican American, and Other races), poverty-income 

ratio (PIR) (categorized as low [<1.3], medium [1.3–3.5], and 

high [>3.5]), education level (less than high school, high school 

graduate, and more than high school), physical activity (METs/ 

week, categorized as low [<600], moderate [600–1199], and 

vigorous [≥1200]), smoking status (never [<100 cigarettes 

lifetime], former [>100 cigarettes but stopped], current [>100 

cigarettes and still smoking]), drinking status (heavy [≥3 drinks/ 

day for women, ≥4 for men, or ≥5 binge drinking days/month], 

moderate [≥2 drinks/day for women, ≥3 for men, or twice 

monthly binge drinking], mild [all other cases]), BMI 

(continuous, in kg/m2), eGFR (continuous, in ml/min/1.73 m2, 

calculated using CKD-EPI equation), glucose metabolism state 

(normoglycemia, prediabetes, diabetes), hypertension (yes/no), 

hyperlipidemia (yes/no), and healthy eating index (HEI)-2015 

score, range 0–100) (16, 17).

2.6 Statistical analysis

Baseline characteristics of participants across quartiles of the 

TyG were summarized using descriptive statistical methods. 

Continuous variables were presented as survey-weighted mean 

values with 95% confidence intervals, and categorical variables 

were presented as survey-weighted percentage proportions with 

95% confidence intervals. Between-group differences were 

assessed using survey-weighted linear regression analysis for 

continuous variables and survey-weighted chi-square statistical 

tests for categorical variables.

Missing data in covariates were handled using Multiple 

Imputation by Chained Equations (MICE) to reduce bias and 

enhance analytical robustness. The imputation model 

incorporated all relevant predictors and outcome variables to 

preserve relationships between variables. Predictive mean 

matching (PMM) was used for continuous variables, logistic 

regression for binary variables, and multinomial regression for 

categorical variables, with 5 iterations to ensure convergence.

The association between the TyG index and hyperuricemia 

was examined using a three-step analytical approach. First, 

survey-weighted logistic regression models were constructed to 

evaluate the relationship. Three models were developed: Model 

1, unadjusted; Model 2, adjusted for age, sex, and race/ethnicity; 

and Model 3, adjusted for a comprehensive set of covariates 

including age, sex, race/ethnicity, PIR, educational level, physical 

activity (METs/week), smoking status, drinking status, BMI, 

eGFR, glucose metabolism state, hypertension, hyperlipidemia, 

and HEI-2015. Second, generalized additive models and smooth 

curve fitting were employed to explore potential non-linear 

relationships between the TyG index and hyperuricemia. When 

non-linearity was identified, a recursive algorithm was used to 

calculate the in�ection point, followed by the construction of 

survey-weighted piecewise logistic regression models for the 

segments on either side of the in�ection point. The log- 

likelihood ratio test was applied to compare the standard logistic 

regression model with the piecewise model to determine the 

better fit. Finally, subgroup analyses were performed using 

survey-weighted stratified logistic regression models, stratified by 

variables such as age, sex, race, smoking status, alcohol 

consumption and eGFR. Continuous stratification variables were 

categorized based on clinically relevant cut-points before 

conducting interaction tests. Effect modification was assessed 

using likelihood ratio tests to evaluate interactions between 

variables and the TyG index.

For sensitivity analysis, we converted the TyG index into a 

categorical variable and calculated P for trend to verify the 

continuous variable analysis results and examine potential non- 

linearity. All analyses incorporated sampling weights, 

stratification, and cluster variables following NHANES analytical 

guidelines to account for the complex survey design and ensure 

nationally representative estimates. Statistical analyses were 

performed using R (version 4.2.2, http://www.R-project.org) and 

EmpowerStats (version 4.2, https://www.empowerstats.com). 

A two-sided P value <0.05 was considered statistically significant.

3 Results

3.1 Study sample selection

Among the 70,190 participants from the NHANES (2005– 

2018), a total of 14,716 participants were included in the final 

analysis after applying the exclusion criteria (Figure 1). The 

exclusion process sequentially removed participants who were 

under 20 years old (n = 30,441), pregnant (n = 2,711), unable to 

determine CKM syndrome status (n = 8,234), missing TyG index 

data (n = 2,229), and missing uric acid measurements (n = 45). 

Additionally, 1,996 individuals with CKM syndrome in stage 4 

were excluded from the analysis.

CKM syndrome stage distribution among the final study 

population (n = 14,714) was as follows: Stage 0 (n = 1,384, 9.4%), 

Stage 1 (n = 3,263, 22.2%), Stage 2 (n = 9,015, 61.3%), and Stage 

3 (n = 1,052, 7.1%). Detailed CKM staging criteria are provided 

in Supplementary Table S1.

3.2 Baseline demographic characteristics

The baseline characteristics of 14,714 participants stratified by 

TyG index quartiles demonstrated significant differences across 

multiple domains (Table 1). In terms of demographic 

characteristics, mean age progressively increased from 41.29 

years in Q1 to 50.10 years in Q4 (P < 0.001). Male proportion 

showed an ascending trend from 38.21% to 57.97% across 

quartiles (P < 0.001). Racial distribution varied significantly 
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FIGURE 1 

Flowchart of participant selection for the study. TyG, triglyceride-glucose; CKM, cardiovascular-kidney-metabolic.
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TABLE 1 Weighted baseline characteristics of study participants according to TyG index quartiles.

Variables TyG index quartiles P-value

Q1 (5.65–8.16) 

n = 3,879

Q2 (8.16–8.58) 

n = 3,721

Q3 (8.58–9.03) 

n = 3,645

Q4 (9.03–12.84) 

n = 3,469

Age (years) 41.29 (40.43, 42.15) 46.34 (45.59, 47.09) 48.34 (47.55, 49.13) 50.10 (49.44, 50.76) <0.001

Sex (%) <0.001

Male 38.21 (36.29, 40.17) 47.68 (45.80, 49.57) 52.26 (50.24, 54.28) 57.97 (55.75, 60.15)

Female 61.79 (59.83, 63.71) 52.32 (50.43, 54.20) 47.74 (45.72, 49.76) 42.03 (39.85, 44.25)

Race/ethnicity (%) <0.001

Non-Hispanic White 63.43 (60.40, 66.35) 68.29 (65.36, 71.09) 67.77 (64.78, 70.63) 68.51 (65.29, 71.56)

Non-Hispanic Black 16.54 (14.51, 18.79) 10.91 (9.58, 12.40) 7.64 (6.57, 8.87) 5.64 (4.79, 6.64)

Mexican American 6.51 (5.32, 7.94) 8.26 (6.90, 9.85) 10.05 (8.54, 11.79) 11.42 (9.78, 13.30)

Others 13.53 (11.75, 15.53) 12.54 (11.05, 14.20) 14.54 (13.02, 16.21) 14.43 (12.38, 16.75)

PIR (%) 0.083

Low 20.49 (18.58, 22.55) 20.44 (18.73, 22.25) 21.40 (19.37, 23.58) 22.70 (20.81, 24.70)

Medium 35.52 (33.36, 37.73) 35.06 (32.42, 37.78) 37.66 (35.10, 40.29) 37.08 (35.08, 39.11)

High 43.99 (41.28, 46.73) 44.51 (41.10, 47.97) 40.94 (38.12, 43.83) 40.23 (37.73, 42.78)

Education level (%) <0.001

Less than high school 11.37 (10.06, 12.84) 14.70 (13.18, 16.36) 18.18 (16.37, 20.14) 19.88 (18.12, 21.77)

High school 20.06 (18.23, 22.02) 23.27 (21.38, 25.28) 23.47 (21.44, 25.63) 25.31 (23.04, 27.72)

More than high school 68.57 (65.84, 71.18) 62.03 (59.24, 64.73) 58.35 (55.58, 61.07) 54.81 (52.02, 57.58)

METs/week (%) <0.001

Low 19.54 (17.91, 21.27) 23.43 (21.81, 25.12) 25.32 (23.55, 27.17) 26.23 (24.50, 28.04)

Moderate 2.34 (1.80, 3.05) 2.76 (2.09, 3.64) 2.48 (1.96, 3.14) 2.51 (1.89, 3.32)

Vigorous 78.12 (76.36, 79.78) 73.81 (72.09, 75.46) 72.20 (70.22, 74.09) 71.26 (69.31, 73.13)

Smoking (%) <0.001

Never 63.58 (61.16, 65.93) 56.36 (53.75, 58.93) 54.42 (52.08, 56.74) 47.44 (45.13, 49.76)

Former 20.05 (18.07, 22.19) 23.64 (21.39, 26.06) 24.88 (22.88, 26.99) 28.71 (26.51, 31.02)

Now 16.37 (14.90, 17.96) 20.00 (17.92, 22.25) 20.70 (18.89, 22.64) 23.85 (21.95, 25.85)

Drinking (%) <0.001

Never 11.89 (10.60, 13.32) 10.72 (9.52, 12.05) 10.27 (9.09, 11.58) 11.59 (10.13, 13.24)

Former 9.07 (8.02, 10.25) 11.23 (10.00, 12.59) 13.20 (11.89, 14.62) 15.69 (14.03, 17.50)

Mild 36.96 (34.41, 39.58) 37.37 (35.05, 39.76) 39.13 (36.98, 41.33) 34.91 (32.42, 37.48)

Moderate 21.90 (20.18, 23.72) 17.78 (16.06, 19.65) 15.59 (13.92, 17.42) 15.17 (13.50, 17.00)

Heavy 20.18 (18.70, 21.74) 22.89 (21.09, 24.80) 21.81 (19.93, 23.82) 22.64 (20.65, 24.78)

BMI (kg/m2) 26.17 (25.85, 26.50) 28.22 (27.91, 28.53) 29.97 (29.66, 30.28) 31.73 (31.37, 32.08) <0.001

Height (cm) 168.18 (167.76, 168.60) 169.13 (168.75, 169.51) 168.84 (168.40, 169.29) 169.64 (169.16, 170.11) <0.001

SBP (mmHg) 115.49 (114.82, 116.16) 119.81 (119.06, 120.56) 122.06 (121.34, 122.79) 126.28 (125.48, 127.08) <0.001

DBP (mmHg) 67.73 (67.22, 68.25) 69.62 (69.07, 70.17) 71.04 (70.42, 71.67) 73.17 (72.65, 73.70) <0.001

eGFR (ml/min/1.73 m2) 101.88 (100.87, 102.90) 96.06 (95.01, 97.11) 94.34 (93.35, 95.33) 93.21 (92.27, 94.16) <0.001

Glucose metabolism state (%) <0.001

Normoglycemia 88.08 (86.72, 89.33) 77.27 (75.56, 78.88) 63.50 (61.10, 65.84) 41.27 (38.83, 43.75)

Prediabetes 8.52 (7.42, 9.77) 15.39 (13.90, 17.00) 22.30 (20.20, 24.56) 24.59 (22.94, 26.31)

Diabetes 3.40 (2.77, 4.15) 7.35 (6.46, 8.35) 14.19 (12.80, 15.72) 34.15 (31.96, 36.40)

Hypertension (%) <0.001

No 79.63 (77.59, 81.53) 68.46 (66.14, 70.70) 60.31 (58.44, 62.16) 49.59 (47.15, 52.03)

Yes 20.37 (18.47, 22.41) 31.54 (29.30, 33.86) 39.69 (37.84, 41.56) 50.41 (47.97, 52.85)

Hyperlipidemia (%) <0.001

No 61.37 (59.50, 63.21) 35.49 (33.40, 37.65) 18.07 (16.32, 19.96) 1.72 (1.22, 2.41)

Yes 38.63 (36.79, 40.50) 64.51 (62.35, 66.60) 81.93 (80.04, 83.68) 98.28 (97.59, 98.78)

HEI-2015 53.16 (52.57, 53.75) 51.96 (51.23, 52.70) 50.98 (50.36, 51.61) 50.83 (50.14, 51.51) <0.001

TyG index 7.82 (7.81, 7.83) 8.38 (8.38, 8.39) 8.80 (8.79, 8.80) 9.49 (9.47, 9.51) <0.001

Uric acid (mg/dl) 4.88 (4.82, 4.93) 5.33 (5.27, 5.39) 5.68 (5.62, 5.74) 6.00 (5.94, 6.06) <0.001

Hyperuricemia (%) <0.001

No 91.95 (90.55, 93.16) 86.20 (84.50, 87.73) 79.11 (77.28, 80.83) 69.88 (67.73, 71.94)

Yes 8.05 (6.84, 9.45) 13.80 (12.27, 15.50) 20.89 (19.17, 22.72) 30.12 (28.06, 32.27)

CKM syndrome stage (%) <0.001

0 28.34 (26.46, 30.29) 12.26 (10.74, 13.95) 2.69 (2.13, 3.39) 0.00 (0.00, 0.00)

1 36.82 (34.65, 39.04) 38.83 (36.50, 41.22) 16.68 (15.17, 18.30) 0.00 (0.00, 0.00)

2 32.90 (30.75, 35.13) 45.22 (42.70, 47.76) 76.04 (74.26, 77.72) 92.69 (91.67, 93.60)

3 1.94 (1.58, 2.36) 3.69 (3.13, 4.36) 4.60 (3.87, 5.46) 7.31 (6.40, 8.33)

For continuous variables, data are presented as survey-weighted means (95% CI), and P-values were calculated using survey-weighted linear regression (svyglm). For categorical variables, 

data are presented as survey-weighted percentages (95% CI), and P-values were calculated using the survey-weighted Chi-square test (svytable).

TyG, triglyceride-glucose; PIR, poverty income ratio; MET, metabolic equivalent; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; eGFR, estimated 

glomerular filtration rate; HEI, healthy eating index; CKM, cardiovascular-kidney-metabolic syndrome.
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(P < 0.001), with Non-Hispanic Whites maintaining relatively 

stable proportions (63.43% to 68.51%), while Non-Hispanic 

Blacks decreased (16.54% to 5.64%) and Mexican Americans 

increased (6.51% to 11.42%). Higher education levels decreased 

from 68.57% to 54.81% (P < 0.001), while poverty income ratio 

showed no significant differences across quartiles (P = 0.083).

Lifestyle characteristics demonstrated significant variations 

across TyG quartiles. Physical activity patterns showed decreased 

vigorous activity (78.12% to 71.26%) and increased low-intensity 

activity (19.54% to 26.23%) (P < 0.001). The proportion of never- 

smokers decreased from 63.58% to 47.44%, while current smokers 

increased from 16.37% to 23.85% (P < 0.001). Among drinking 

patterns, former drinkers increased from 9.07% to 15.69%, while 

moderate drinkers decreased from 21.90% to 15.17% (P < 0.001).

Clinical parameters showed consistent trends of deterioration 

with increasing TyG index. BMI increased from 26.17 to 31.73 kg/ 

m2 (P < 0.001), accompanied by elevated blood pressure (SBP: 

115.49 to 126.28 mmHg; DBP: 67.73 to 73.17 mmHg; both 

P < 0.001). Kidney function, assessed by eGFR, declined from 

101.88 to 93.21 ml/min/1.73 m2 (P < 0.001), while HEI-2015 

scores decreased from 53.16 to 50.83 (P < 0.001).

Metabolic parameters demonstrated substantial deterioration 

across quartiles. The prevalence of normoglycemia decreased 

markedly from 88.08% to 41.27%, while diabetes increased from 

3.40% to 34.15% (P < 0.001). Hypertension prevalence rose from 

20.37% to 50.41%, and hyperlipidemia showed a dramatic 

increase from 38.63% to 98.28% (both P < 0.001). Mean TyG 

index progressed from 7.82 to 9.49 (P < 0.001). Serum uric acid 

levels increased from 4.88 to 6.00 mg/dl, with hyperuricemia 

prevalence rising from 8.05% to 30.12% (P < 0.001).

The distribution of CKM syndrome stages showed significant 

shifts across TyG quartiles (P < 0.001). Stage 0 decreased from 

28.34% to 0% in Q4, while stage 2 became predominantly 

prevalent, increasing from 32.90% to 92.69%. Stage 3 showed a 

gradual rise from 1.94% to 7.31%, indicating a progressive 

worsening of cardiometabolic health with increasing TyG index.

3.3 Association between TyG index and 
hyperuricemia in early-stage CKM 
syndrome

In the weighted analysis examining the association between 

TyG index and hyperuricemia among participants with early- 

stage CKM syndrome, both continuous and categorical analyses 

revealed significant associations (Table 2). When analyzed as a 

continuous variable, each unit increase in TyG index was 

associated with 2.13-fold (95% CI: 1.96–2.31) increased odds of 

hyperuricemia in the unadjusted model, which remained largely 

unchanged after adjusting for demographic factors (OR = 2.11, 

95% CI: 1.94–2.30) and was attenuated but remained significant 

after full adjustment for potential confounders (OR = 1.62, 95% 

CI: 1.45–1.81). In the quartile analysis, compared with the lowest 

TyG index quartile (Q1: 5.65–8.16), the fully adjusted odds ratios 

for hyperuricemia were 1.41 (95% CI: 1.11–1.80) for Q2 (8.16– 

8.58), 2.00 (95% CI: 1.58–2.55) for Q3 (8.58–9.03), and 2.91 

(95% CI: 2.25–3.76) for Q4 (9.03–12.84), with significant trends 

across quartiles (P for trend <0.001) in all models.

3.4 Threshold effect analysis of TyG 
index on hyperuricemia in early-stage 
CKM syndrome

Using GAM and smooth curve fitting, Figure 2 illustrated a 

nonlinear relationship between TyG index and hyperuricemia. 

The smooth curve demonstrated an initial positive association 

with increasing TyG index values, followed by a declining trend 

after reaching a peak at approximately TyG index of 9–10. This 

visual representation of the nonlinear pattern aligned with the 

threshold effect subsequently quantified by two-piecewise 

logistic regression analysis in Table 3.

Two-piecewise logistic regression analysis revealed a nonlinear 

relationship between TyG index and hyperuricemia in early-stage 

CKM syndrome (Table 3). While the standard linear model 

showed that each unit increase in TyG index was associated 

with 1.62-fold increased odds of hyperuricemia (95% CI: 1.45– 

1.81, P < 0.001), further threshold effect analysis identified an 

in�ection point at TyG index of 9.50. Below this threshold, each 

unit increase in TyG index was associated with significantly 

higher odds of hyperuricemia (OR = 2.18, 95% CI: 1.82–2.61, 

P < 0.001). However, beyond the threshold of 9.50, this 

association was no longer significant (OR = 0.79, 95% CI: 0.57– 

1.10, P = 0.164). The log likelihood ratio test (P < 0.001) 

supported the superior fit of the two-piecewise model over the 

linear model, suggesting a threshold effect in the association 

between TyG index and hyperuricemia.

3.5 Stratified analysis of the association 
between TyG index and hyperuricemia in 
early-stage CKM syndrome

In the stratified logistic regression analyses (Figure 3), 

significant interaction effects were observed for sex, race/ 

TABLE 2 Weighted analysis of the association between TyG index and 
hyperuricemia in a population with early-stage (stages 0–3) 
CKM syndrome.

TyG index Model 1 Model 2 Model 3

Continuous 2.13 (1.96, 2.31) 2.11 (1.94, 2.30) 1.62 (1.45, 1.81)

Quartiles

Q1 (5.65–8.16) Reference Reference Reference

Q2 (8.16–8.58) 1.83 (1.46, 2.30) 1.79 (1.42, 2.26) 1.41 (1.11, 1.80)

Q3 (8.58–9.03) 3.02 (2.46, 3.71) 2.98 (2.41, 3.68) 2.00 (1.58, 2.55)

Q4 (9.03–12.84) 4.92 (4.06, 5.97) 4.85 (3.96, 5.94) 2.91 (2.25, 3.76)

P for trend <0.001 <0.001 <0.001

Model 1: Non-adjusted.

Model 2: Adjusted for age, sex, and race/ethnicity.

Model 3: Adjusted for age, sex, race/ethnicity, PIR, educational level, METs/week, smoking, 

drinking, BMI, eGFR, glucose metabolism state, hypertension, hyperlipidemia, and HEI- 

2015.

TyG, triglyceride-glucose; CKM, cardiovascular-kidney-metabolic; PIR, poverty income 

ratio; MET, metabolic equivalent; BMI, body mass index; eGFR, estimated glomerular 

filtration rate; HEI, healthy eating index.
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ethnicity, and smoking status (all P-interaction < 0.05), while age 

groups, drinking status, and eGFR showed no significant 

interaction effects. Notably, despite these interaction differences, 

all subgroup analyses demonstrated statistically significant 

positive associations (all P < 0.05, OR > 1.0), further validating 

the robust relationship between TyG index and hyperuricemia 

established in our primary analysis (Table 2).

Further stratified analyses using generalized additive models 

and smooth curve fitting (Figure 4) consistently revealed 

nonlinear relationships between TyG index and hyperuricemia 

across all subgroups. Although the specific patterns varied 

among different stratifications of age, sex, race/ethnicity, 

smoking status, drinking status and eGFR, the presence of 

nonlinearity remained evident throughout all analyses, providing 

additional support for the nonlinear association pattern 

identified in our main analysis (Figure 2).

4 Discussion

This study is the first to investigate the association between the 

TyG index and hyperuricemia in individuals with early-stage 

CKM syndrome. While previous studies have primarily focused 

on specific disease populations or high-risk groups, evidence 

from early-stage CKM syndrome population remains scarce. 

Using data from 14,716 participants with early-stage CKM 

syndrome in NHANES 2005–2018, with complex survey design 

methods, we ensured accurate and nationally representative 

estimates. After comprehensive adjustment for potential 

confounders, each unit increase in TyG index was associated 

with 62% higher odds of hyperuricemia (OR = 1.62, 95% CI: 

1.45–1.81). Notably, generalized additive model analysis revealed 

a non-linear relationship with an in�ection point at TyG index 

of 9.50: below this threshold, each unit increase in TyG index 

was associated with 118% higher odds of hyperuricemia 

(OR = 2.18, 95% CI: 1.82–2.61), while beyond this point, the 

FIGURE 2 

The association between TyG index and hyperuricemia in a population with early-stage (stages 0–3) CKM syndrome. Age, sex, race/ethnicity, PIR, 

educational level, METs/week, smoking, drinking, BMI, eGFR, glucose metabolism state, hypertension, hyperlipidemia, and HEI-2015 were adjusted. 

TyG, triglyceride-glucose; CKM, cardiovascular-kidney-metabolic; PIR, poverty income ratio; MET, metabolic equivalent; BMI, body mass index; 

eGFR, estimated glomerular filtration rate; HEI, healthy eating index.

TABLE 3 Weighted two-piecewise logistic regression analysis of the 
association between TyG index and hyperuricemia in a population with 
early-stage (stages 0–3) CKM syndrome.

TyG index Adjusted ORa (95% CI) P-value

Model I

Fitting by the standard linear 

model

1.62 (1.45, 1.81) <0.001

Model II

In�ection point 9.50

<9.50 2.18 (1.82, 2.61) <0.001

>9.50 0.79 (0.57, 1.10) 0.164

Log likelihood ratio / <0.001

TyG, triglyceride-glucose; CKM, Cardiovascular-Kidney-Metabolic; OR, odds ratio; CI, 

confidence interval; PIR, poverty income ratio; MET, metabolic equivalent; BMI, body 

mass index; eGFR, estimated glomerular filtration rate; HEI, healthy eating index.
aAdjusted for age, sex, race/ethnicity, PIR, educational level, METs/week, smoking, 

drinking, BMI, eGFR, glucose metabolism state, hypertension, hyperlipidemia, and 

HEI-2015.
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association reversed to negative and became statistically non- 

significant (OR = 0.79, 95% CI: 0.57–1.10). These findings 

provide important implications for hyperuricemia risk 

assessment in early-stage CKM syndrome population.

The relationship between IR and hyperuricemia has garnered 

considerable attention in recent years. Studies have demonstrated 

that IR may in�uence uric acid metabolism and excretion through 

multiple mechanisms, thereby promoting the development of 

hyperuricemia. First, IR is closely associated with the renal 

handling of uric acid. Research indicates that IR leads to 

increased tubular reabsorption of uric acid, reducing its 

excretion and subsequently elevating serum uric acid levels (18). 

Furthermore, IR is also linked to reduced renal sodium 

excretion, which may further impact uric acid metabolism (19). 

Second, IR is intricately related to other components of 

metabolic syndrome, such as obesity and hypertension. Both 

obesity and hypertension are independent risk factors for 

hyperuricemia, and IR plays a pivotal role in the development 

and progression of these conditions (11, 20). Consequently, IR 

may indirectly contribute to hyperuricemia by in�uencing these 

metabolic disturbances. Although the hyperinsulinemic- 

euglycemic clamp (HEC) remains the gold standard for 

assessing IR, its technical complexity and high cost render it 

impractical for routine clinical use (21). The TyG index has 

emerged as a reliable surrogate marker for IR due to its 

simplicity, ease of calculation, and potential for widespread 

clinical application.

Consistent with the findings of this study, multiple research 

studies provide consistent evidence of a positive correlation 

between the TyG index and the risk of hyperuricemia. In a 

comprehensive analysis involving 30,453 individuals aged 50 and 

older, it was found that for each unit increase in the TyG index, 

the risk of hyperuricemia increased by 1.44 times in men and 

by 1.69 times in women, even after adjusting for confounding 

factors (22). Another study involving 14,286 American adults 

and 4,620 Chinese adults found that the TyG index, along with 

TyG-BMI, TyG-WHtR, and TyG-WC, was significantly 

associated with hyperuricemia, with predictive ability stronger in 

women than in men (23). Among adults with hypertension, the 

TyG index also demonstrated a linear positive correlation with 

hyperuricemia, with an odds ratio of 2.39 for hypertensive 

patients and 2.61 for non-hypertensive participants (24). 

A cross-sectional study of 42,387 Chinese adults showed that 

higher TyG levels were associated with an increased risk of 

hyperuricemia, with risk ratios exceeding those of its two gender 

components (25). Collectively, these findings suggest that the 

TyG index can serve as a valuable predictor of hyperuricemia 

risk across different demographic groups, highlighting the 

importance of monitoring IR in the prevention and 

management of hyperuricemia.

FIGURE 3 

Stratified analyses between TyG index and hyperuricemia in a population with early-stage (stages 0–3) CKM syndrome. *Each stratification adjusted 

for all the factors (age, sex, race/ethnicity, PIR, educational level, METs/week, smoking, drinking, BMI, eGFR, glucose metabolism state, hypertension, 

hyperlipidemia, and HEI-2015) except the stratification factor itself. OR, odds ratio; CI, confidence interval; TyG, triglyceride-glucose; CKM, 

cardiovascular-kidney-metabolic; PIR, poverty income ratio; MET, metabolic equivalent; BMI, body mass index; eGFR, estimated glomerular 

filtration rate; HEI, healthy eating index.
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Our study identified a non-linear relationship between the 

TyG index and hyperuricemia in individuals with early-stage 

CKM syndrome, with a threshold effect observed at a TyG index 

of 9.50. Interestingly, another study reported a similar non-linear 

association in a general population, where the in�ection point was 

found at 9.69 (26). These discrepant threshold values can be 

attributed to multiple factors: Firstly, the metabolic profiles of 

individuals in early-stage CKM syndrome may differ 

significantly from those in the general population. Specifically, 

CKM syndrome is characterized by heightened IR and other 

metabolic abnormalities that could fundamentally alter the TyG 

index’s predictive capacity for hyperuricemia (27). Moreover, the 

presence of additional metabolic risk factors in the CKM 

syndrome population may further exacerbate the impact of the 

TyG index on hyperuricemia, consequently resulting in a lower 

threshold compared to the general population. In contrast, 

Wang et al. explored the nonlinear correlation between the TyG 

index and hyperuricemia in a hypertensive population using 

restricted cubic splines. Their results differed markedly, 

indicating no statistically significant nonlinear relationship 

between the two (p-nonlinear > 0.05) (24). Collectively, these 

findings highlight the complexity of interpreting the relationship 

between the TyG index and hyperuricemia. They underscore the 

critical importance of considering population-specific 

characteristics, suggesting that effective risk assessment and 

management may necessitate tailored approaches across different 

clinical contexts.

The nonlinear relationship observed between the TyG index 

and hyperuricemia in early-stage CKM syndrome patients can 

be attributed to several complex metabolic mechanisms 

involving threshold-dependent physiological adaptations and 

compensatory responses. The contrasting associations before and 

after the in�ection point may be explained by the intricate 

interplay of IR, lipid metabolism, and uric acid regulation 

through distinct pathophysiological phases.

Prior to the 9.50 threshold, the positive correlation is mediated 

through multiple interconnected pathways (28–30). Insulin 

resistance progressively impairs renal uric acid handling by 

promoting hyperinsulinemia-induced reduction in uric acid 

clearance through enhanced tubular reabsorption (26, 31). 

Mechanistically, elevated insulin levels directly stimulate urate 

transporter 1 (URAT1) expression and suppress ATP-binding 

cassette subfamily G member 2 (ABCG2) activity, leading to 

enhanced uric acid reabsorption and reduced secretion in the 

FIGURE 4 

Stratified analyses (by (A) age; (B) sex; (C) race/ethnicity; (D) smoking; (E) drinking; (F) eGFR) between TyG index and hyperuricemia in a population 

with early-stage (stages 0–3) CKM syndrome using generalized additive model and smooth curve fittings. *Each generalized additive model and 

smooth curve fitting was adjusted for all factors, including age, sex, race/ethnicity, PIR, educational level, METs/week, smoking, drinking, BMI, 

eGFR, glucose metabolism state, hypertension, hyperlipidemia, and HEI-2015, except for the stratification factor itself. TyG, triglyceride-glucose; 

CKM, cardiovascular-kidney-metabolic; PIR, poverty income ratio; MET, metabolic equivalent; BMI, body mass index; eGFR, estimated glomerular 

filtration rate; HEI, healthy eating index.
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proximal tubules (32). Furthermore, progressive insulin resistance 

is associated with accelerated purine synthesis through increased 

adenosine triphosphate breakdown during elevated triglyceride 

metabolism, directly contributing to enhanced uric acid 

production (26). The pro-in�ammatory state and oxidative stress 

associated with increasing insulin resistance create a metabolic 

environment that promotes uric acid accumulation while 

simultaneously impairing renal excretory capacity (33, 34).

The critical in�ection point at TyG index 9.50 represents a 

metabolic threshold where compensatory mechanisms begin 

to predominate over pathological processes. This threshold 

likely corresponds to a point where the body’s adaptive 

responses to severe insulin resistance reach maximum capacity, 

triggering protective metabolic adjustments. At this stage, uric 

acid transitions from its pro-oxidant role to serving as a 

compensatory antioxidant mechanism against the excessive 

oxidative stress induced by severe insulin resistance (33). This 

phenomenon aligns with the concept of metabolic saturation 

effects, where compensatory mechanisms reach a plateau, 

thereby attenuating further increases in hyperuricemia risk 

despite continued insulin resistance progression.

Beyond the 9.50 threshold, several compensatory mechanisms 

may explain the paradoxical negative association (34–37). 

Advanced insulin resistance triggers pancreatic β-cell 

dysfunction, leading to reduced insulin secretion and 

consequently decreased insulin-mediated uric acid reabsorption 

(34). Additionally, the glucose-uric acid competitive inhibition 

mechanism becomes prominent when glucose levels exceed 

renal threshold, leading to competitive inhibition of uric acid 

reabsorption and increased uric acid excretion through 

glucosuria-mediated osmotic diuresis (35). The dual antioxidant- 

pro-oxidant nature of uric acid suggests that at extreme insulin 

resistance levels, uric acid may serve a protective role, with 

homeostatic mechanisms favoring its utilization as an 

antioxidant buffer against overwhelming oxidative stress (33). 

However, it is important to acknowledge that the specific 

mechanisms underlying the paradoxical negative association 

beyond the 9.50 threshold remain largely hypothetical and 

require further experimental validation. While the individual 

components of these proposed mechanisms (β-cell dysfunction, 

glucose-uric acid competitive inhibition, and uric acid’s 

antioxidant properties) are well-established in the literature, 

their specific interplay and timing in relation to the observed 

threshold effect represent a working hypothesis that warrants 

dedicated mechanistic studies in early-stage CKM 

syndrome populations.

The identification of this specific threshold value (9.50) in 

early-stage CKM syndrome populations, compared to the higher 

threshold (9.69) observed in general populations, suggests that 

individuals with metabolic dysfunction experience metabolic 

decompensation at lower insulin resistance levels. This 

difference may re�ect the heightened metabolic vulnerability of 

CKM syndrome patients, where the presence of additional 

cardiovascular and renal risk factors creates a lower tolerance 

threshold for insulin resistance-mediated metabolic disturbances 

(38, 39). The earlier onset of compensatory mechanisms in this 

population may represent an adaptive response to prevent 

further metabolic deterioration, highlighting the clinical 

significance of this threshold for risk stratification and 

intervention timing. Future research should focus on 

mechanistic studies to validate these proposed compensatory 

pathways and elucidate the precise biological basis for the 

observed threshold effect, particularly through longitudinal 

assessments of insulin sensitivity, uric acid metabolism, and 

renal function in CKM syndrome populations.

We conducted a stratified analysis to examine the differences 

in the TyG index and hyperuricemia across different subgroups 

in the early-stage CKM population. Interestingly, the subgroup 

analysis results based on the forest plot logistic regression 

showed that the positive correlation between the TyG index and 

hyperuricemia remained strong, regardless of age, gender, race, 

smoking, and alcohol consumption. This confirms the reliability 

and universality of our findings. The consistent association 

across different eGFR levels (≥60 and <60 ml/min/1.73 m2) with 

nearly identical effect sizes demonstrates the robustness of this 

relationship independent of baseline kidney function, which is 

particularly relevant given that renal insufficiency significantly 

affects uric acid metabolism. Simultaneously, the stratified 

analysis based on the generalized additive model and smooth 

curve fitting revealed a U-shaped nonlinear relationship within 

different subgroups, which further validates the stability of 

previous research results. Moreover, gender, race, and smoking 

appeared to in�uence the association between the TyG index 

and hyperuricemia in the early-stage CKM population 

(significant interaction P values), while age, drinking status, and 

eGFR showed no significant interaction effects. The observed 

interaction effects re�ect complex biological mechanisms that 

warrant detailed mechanistic consideration. Sex-based 

differences in TyG-hyperuricemia associations are primarily 

mediated through estrogen’s multifaceted metabolic effects. 

Estrogen enhances uric acid excretion by upregulating organic 

anion transporters (OAT1, OAT3) expression while 

downregulating URAT1 activity in renal tubules, promoting 

renal uric acid clearance (40). Simultaneously, estrogen improves 

insulin sensitivity through multiple pathways including 

enhanced GLUT4 translocation, improved mitochondrial 

biogenesis, and activation of PI3K/Akt signaling cascades (41). 

Additionally, estrogen’s anti-in�ammatory properties may 

attenuate the oxidative stress-mediated link between insulin 

resistance and hyperuricemia (42). Racial differences likely 

re�ect genetic polymorphisms in key metabolic pathways, 

including variants in uric acid transporter genes (ABCG2, 

SLC2A9, SLC22A12) that show significant ethnic distribution 

differences, with Asian populations showing stronger 

associations for ABCG2 rs2231142 and different effect sizes for 

SLC2A9 variants compared to Caucasian populations (43). The 

smoking-related interactions may result from nicotine’s complex 

effects on insulin sensitivity through increased IRS-1 Ser636 

phosphorylation and in�ammatory cascades that modify purine 

metabolism and renal uric acid handling (44).

These mechanistic insights have direct implications for 

developing individualized prevention strategies in early-stage 
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CKM syndrome management. Sex-specific TyG index thresholds 

may optimize risk prediction, with potentially higher cut-points 

for premenopausal women due to estrogen’s protective effects 

on both insulin sensitivity and uric acid excretion (45). Race- 

specific risk assessment models incorporating both TyG index 

values and genetic risk profiles could enhance prediction 

accuracy, particularly beneficial for populations with known 

genetic predispositions to hyperuricemia or insulin resistance 

(46). Given the synergistic metabolic effects observed, smoking 

cessation should be prioritized in CKM syndrome patients with 

elevated TyG index (47). Furthermore, lifestyle interventions 

could be tailored based on subgroup characteristics: dietary 

approaches emphasizing glycemic control may be particularly 

effective for individuals with genetic predispositions to insulin 

resistance, while structured exercise programs may show 

differential effectiveness across sex and ethnic groups (48). 

These personalized approaches represent a paradigm shift 

toward precision medicine in early-stage CKM syndrome 

prevention and management (49).

This study highlights the clinical potential of the TyG index as 

a simple, cost-effective biomarker for early detection of 

hyperuricemia in individuals with early-stage CKM syndrome. 

Unlike traditional markers, the TyG index integrates metabolic 

and insulin resistance parameters, offering a comprehensive risk 

assessment tool that could facilitate proactive screening and 

timely interventions. By identifying a threshold effect, our 

research provides novel insights that could refine risk 

stratification strategies, encouraging its inclusion in routine 

clinical practice and public health guidelines. Clinicians could 

use the TyG index to guide dietary, lifestyle, or pharmacological 

interventions targeting metabolic dysfunction and uric acid 

regulation. Future research should validate these findings in 

longitudinal studies, investigate underlying mechanisms, and 

assess the impact of TyG-index-based interventions on long- 

term outcomes, further solidifying its role in clinical and public 

health applications.

This study possesses several strengths that enhance its 

validity and significance. First, the use of a large, nationally 

representative sample from the NHANES database ensures 

broad generalizability and robust statistical power. Second, the 

study focused specifically on individuals with early-stage CKM 

syndrome, addressing a critical gap in current research by 

exploring metabolic and uric acid dynamics in this unique 

population. Third, standardized data collection methods, 

including biochemical measurements and comprehensive 

covariate assessments, minimize potential measurement biases 

and enhance data reliability. Fourth, advanced statistical 

methods, such as the application of smooth curve fitting and 

threshold analysis, allowed for the exploration of non-linear 

relationships and provided nuanced insights into the TyG 

index’s role in predicting hyperuricemia. Finally, rigorous 

adjustment for a wide range of confounders ensured that the 

observed associations were as unbiased as possible. Together, 

these methodological strengths make our findings both credible 

and impactful, providing a valuable foundation for future 

research and clinical applications.

This study has several limitations that should be 

acknowledged. First, due to our inclusion and exclusion criteria, 

the findings may have limited generalizability. For instance, we 

excluded individuals under 20 years old, pregnant women, and 

those with advanced CKM syndrome (stage 4), which means 

our results cannot be directly applied to these groups. Second, 

while the NHANES database provides a large, nationally 

representative sample, the cross-sectional nature of this study 

restricts our ability to establish causal relationships between the 

TyG index and hyperuricemia. Third, despite adjusting for 

multiple confounders, unmeasured or residual confounding 

cannot be entirely ruled out, as certain factors in�uencing the 

relationship, such as genetic predisposition or environmental 

exposures, may not have been accounted for. Fourth, the study 

focused primarily on a U.S. population, and while it included 

diverse ethnic groups, caution is needed when extrapolating the 

findings to non-U.S. populations or other ethnic groups with 

distinct metabolic profiles. Finally, we utilized a single 

measurement of the TyG index and uric acid levels, which may 

not fully capture their variability over time. Addressing these 

limitations in future longitudinal and interventional studies 

could further strengthen the clinical implications of our findings.

5 Conclusion

This study is the first to systematically reveal the complex 

association between the TyG index and hyperuricemia in early- 

stage CKM syndrome populations. By analyzing 14,716 

participants, we confirmed the TyG index as an effective 

indicator for hyperuricemia risk and uniquely identified its 

nonlinear relationship’s critical in�ection point. The results 

emphasize the significance of TyG index 9.50 as a key threshold 

for metabolic risk transformation, providing a novel perspective 

for clinical risk stratification. Future research should explore the 

physiological mechanisms underlying this nonlinear association, 

design prospective cohort studies to validate our findings, and 

develop more precise personalized risk prediction models. 

Large-scale, cross-ethnic, multi-center studies will help verify 

our conclusions and provide comprehensive evidence for 

precision medicine in early-stage CKM syndrome.
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