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Objective: Cardiovascular-kidney-metabolic (CKM) syndrome represents a
critical intersection of cardiovascular, renal, and metabolic disorders,
emphasizing the importance of early risk stratification and intervention. The
triglyceride-glucose (TyG) index, a surrogate marker of insulin resistance, has
shown promise in predicting cardiometabolic risk. However, its association
with hyperuricemia in early-stage CKM syndrome remains uncertain.
Methods: This study analyzed data from 14,716 adult participants in the
NHANES 2005-2018 dataset. A complex survey weight design and multiple
imputation techniques were utilized to address missing data. The relationship
between the TyG index and hyperuricemia was examined using generalized
additive models and piecewise regression, with multivariable logistic
regression adjusting for 14 potential confounders.

Results: The TyG index demonstrated a significant positive association with
hyperuricemia. Each unit increase in the TyG index was associated with a 62%
higher risk of hyperuricemia (OR=1.62, 95% Cl: 1.45-1.81). A non-linear
relationship was identified, with an inflection point at a TyG index of 9.50.
Below this threshold, higher TyG index values were significantly associated
with increased odds of hyperuricemia (OR =2.18, 95% Cl: 1.82-2.61), while
above the threshold, the association became non-significant (OR = 0.79, 95%
Cl: 0.57-1.10). Subgroup analyses confirmed consistent associations across
various demographic and clinical characteristics.

Conclusions: The TyG index may serve as a valuable biomarker for identifying
hyperuricemia risk in individuals with early-stage CKM syndrome, offering
potential utility in clinical and public health settings. Further longitudinal
studies are warranted to confirm these findings and assess the impact of TyG
index-guided interventions on CKM syndrome progression.
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1 Introduction

Cardiovascular-kidney-metabolic (CKM) syndrome reflects
the complex interplay of cardiovascular, renal, and metabolic
disorders, which often coexist and amplify each other’s clinical
burden. The increasing prevalence of CKM syndrome worldwide
has underscored the need for early identification of risk factors
and targeted interventions to curb its progression (1). Among
the various metabolic abnormalities associated with CKM
syndrome, hyperuricemia—a condition characterized by elevated
serum uric acid levels—has garnered attention for its role in
exacerbating cardiovascular and renal dysfunction (2-4). The
relationship between hyperuricemia and insulin resistance (IR)
is well-documented, with emerging evidence suggesting that
hyperuricemia may both result from and contribute to
metabolic derangements (5, 6). However, the mechanisms
linking these conditions remain incompletely understood,
particularly in the context of early-stage CKM syndrome.

The triglyceride-glucose (TyG) index, a reliable surrogate
marker of IR (7), has gained traction in recent years for its
predictive value in cardiometabolic disorders (8, 9). Studies have
shown that higher TyG index values are associated with an
of type 2 diabetes,
cardiovascular diseases (10-12). However, while its utility in

increased risk hypertension, and
assessing cardiometabolic risk has been established, limited
research has explored the relationship between the TyG index
and hyperuricemia, particularly in populations with CKM
syndrome. Investigating this relationship could offer valuable
insights into the role of IR in CKM-related metabolic
disturbances and inform early intervention strategies.

In this study, we focus on individuals in the early stages of
CKM syndrome to evaluate the relationship between the TyG
index and hyperuricemia. By utilizing data from the National
Health and Nutrition Examination Survey (NHANES) 2005-
2018 and employing advanced statistical techniques, we aim to
identify thresholds  for

hyperuricemia risk. This study is unique in targeting an

non-linear  associations  and
underexplored population—those in the early stages of CKM
syndrome—and provides evidence for the TyG index as a
practical biomarker for early intervention. These findings
contribute to the growing need for proactive approaches in
CKM syndrome management, focusing on risk prediction and

prevention during its earliest phases.

2 Methods
2.1 Study population

This cross-sectional study utilized data from the NHANES
2005-2018. NHANES employs a complex, multistage probability
sampling design to collect nationally representative data through
standardized  questionnaires, physical examinations, and
laboratory tests. From the NHANES 2005-2018 population, we
excluded participants

aged <20 years, pregnant women,
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individuals with undetermined CKM syndrome status due to
incomplete data for key staging variables [missing measurements
for body mass index (BMI), waist circumference, blood pressure,
glucose parameters, lipid profiles, kidney function, or
cardiovascular disease history], those with missing data for TyG
index calculation (fasting triglycerides and glucose) or serum
uric acid measurements, and participants with stage 4 CKM
syndrome, as our study focused specifically on early-stage
disease progression and intervention opportunities. The final
adults with (0-3)

analytic sample early-stage

CKM syndrome.

comprised

2.2 Definition of CKM syndrome early-
stage

The staging of CKM Syndrome was comprehensively
delineated according to the 2023 American Heart Association
Presidential Advisory Statement (1, 13). Our study concentrated
on early-stage CKM syndrome (stages 0-3): Stage 0 indicates the
absence of CKM risk factors; Stage 1 is characterized by excess
or dysfunctional adiposity; Stage 2 encompasses metabolic risk
factors or chronic kidney disease (CKD); Stage 3 includes
subclinical cardiovascular disease. Within this classification, very
G4 or G5) and high
cardiovascular disease risk predicted by the Framingham risk

high-risk kidney disease (stages

score were considered equivalent markers of subclinical
cardiovascular pathology. Kidney function was estimated using
the CKD-EPI equation to calculate glomerular filtration rate
(eGFR) and staged according to Kidney Disease Improving
Global Outcomes (KDIGO) guidelines. Given the research’s
focus on early disease progression, participants with established
cardiovascular disease, end-stage kidney disease, or advanced

metabolic complications (Stage 4) were excluded.

2.3 Exposure variable

The TyG index was calculated as In[fasting triglycerides (mg/
dl) x fasting glucose (mg/dl)/2] (14). Blood samples were collected
after 8-12 h of fasting at NHANES mobile examination centers.
Serum triglycerides were measured using enzymatic methods
(GPO-PAP method, Roche Diagnostics), and glucose was
measured using hexokinase method (Roche/Hitachi Cobas
C311). The TyG index was analyzed both as a continuous
variable and as a categorical variable divided into quartiles (Q1:
5.65-8.16, Q2: 8.16-8.58, Q3: 8.58-9.03, Q4: 9.03-12.84).

2.4 Outcome variable

Hyperuricemia was defined as serum uric acid >7.0 mg/dl in
males or >6.0mg/dl in females (15). Serum uric acid was
measured using uricase-peroxidase method (Beckman Coulter
UniCel DxC 800 Synchron) under standardized conditions. All
samples were processed within 24 h of collection. Laboratory
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personnel were blinded to participants’ exposure status to
minimize measurement bias.

2.5 Covariates

Covariates included age (continuous, in years), sex (male or
female), race/ethnicity (Non-Hispanic White, Non-Hispanic
Black, Mexican American, and Other races), poverty-income
ratio (PIR) (categorized as low [<1.3], medium [1.3-3.5], and
high [>3.5]), education level (less than high school, high school
graduate, and more than high school), physical activity (METs/
week, categorized as low [<600], moderate [600-1199], and
vigorous [>1200]), smoking status (never [<100 -cigarettes
lifetime], former [>100 cigarettes but stopped], current [>100
cigarettes and still smoking]), drinking status (heavy [>3 drinks/
day for women, >4 for men, or >5 binge drinking days/month],
moderate [>2 drinks/day for women, >3 for men, or twice
mild [all cases]), BMI
(continuous, in kg/m?), eGFR (continuous, in ml/min/1.73 m?

monthly binge drinking], other
calculated using CKD-EPI equation), glucose metabolism state
(normoglycemia, prediabetes, diabetes), hypertension (yes/no),
hyperlipidemia (yes/no), and healthy eating index (HEI)-2015

score, range 0-100) (16, 17).

2.6 Statistical analysis

Baseline characteristics of participants across quartiles of the
TyG were summarized using descriptive statistical methods.
Continuous variables were presented as survey-weighted mean
values with 95% confidence intervals, and categorical variables
were presented as survey-weighted percentage proportions with
95%
assessed using survey-weighted linear regression analysis for

confidence intervals. Between-group differences were
continuous variables and survey-weighted chi-square statistical
tests for categorical variables.

Missing data in covariates were handled using Multiple
Imputation by Chained Equations (MICE) to reduce bias and
analytical
incorporated all relevant predictors and outcome variables to

enhance robustness. The imputation model

preserve between variables. Predictive

matching (PMM) was used for continuous variables, logistic

relationships mean
regression for binary variables, and multinomial regression for
categorical variables, with 5 iterations to ensure convergence.
The association between the TyG index and hyperuricemia
was examined using a three-step analytical approach. First,
survey-weighted logistic regression models were constructed to
evaluate the relationship. Three models were developed: Model
1, unadjusted; Model 2, adjusted for age, sex, and race/ethnicity;
and Model 3, adjusted for a comprehensive set of covariates
including age, sex, race/ethnicity, PIR, educational level, physical
activity (METs/week), smoking status, drinking status, BMI,
eGFR, glucose metabolism state, hypertension, hyperlipidemia,
and HEI-2015. Second, generalized additive models and smooth
curve fitting were employed to explore potential non-linear
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relationships between the TyG index and hyperuricemia. When
non-linearity was identified, a recursive algorithm was used to
calculate the inflection point, followed by the construction of
survey-weighted piecewise logistic regression models for the
segments on either side of the inflection point. The log-
likelihood ratio test was applied to compare the standard logistic
regression model with the piecewise model to determine the
better fit. Finally, subgroup analyses were performed using
survey-weighted stratified logistic regression models, stratified by
variables such as age, sex, race, smoking status, alcohol
consumption and eGFR. Continuous stratification variables were
categorized based on clinically relevant cut-points before
conducting interaction tests. Effect modification was assessed
using likelihood ratio tests to evaluate interactions between
variables and the TyG index.

For sensitivity analysis, we converted the TyG index into a
categorical variable and calculated P for trend to verify the
continuous variable analysis results and examine potential non-
linearity. All  analyses
stratification, and cluster variables following NHANES analytical

incorporated  sampling  weights,
guidelines to account for the complex survey design and ensure
nationally representative estimates. Statistical analyses were
performed using R (version 4.2.2, http://www.R-project.org) and
(version 4.2,

EmpowerStats https://www.empowerstats.com).

A two-sided P value <0.05 was considered statistically significant.

3 Results
3.1 Study sample selection

Among the 70,190 participants from the NHANES (2005-
2018), a total of 14,716 participants were included in the final
analysis after applying the exclusion criteria (Figure 1). The
exclusion process sequentially removed participants who were
under 20 years old (n=30,441), pregnant (n=2,711), unable to
determine CKM syndrome status (n = 8,234), missing TyG index
data (n=2,229), and missing uric acid measurements (n=45).
Additionally, 1,996 individuals with CKM syndrome in stage 4
were excluded from the analysis.

CKM syndrome stage distribution among the final study
population (n=14,714) was as follows: Stage 0 (1= 1,384, 9.4%),
Stage 1 (n=3,263, 22.2%), Stage 2 (n=9,015, 61.3%), and Stage
3 (n=1,052, 7.1%). Detailed CKM staging criteria are provided
in Supplementary Table S1.

3.2 Baseline demographic characteristics

The baseline characteristics of 14,714 participants stratified by
TyG index quartiles demonstrated significant differences across
(Table 1). In
characteristics, mean age progressively increased from 41.29
years in Q1 to 50.10 years in Q4 (P <0.001). Male proportion
showed an ascending trend from 38.21% to 57.97% across

multiple domains terms of demographic

quartiles (P <0.001). Racial distribution varied significantly
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The National Health and Nutrition
Examination Survey 2005-2018 (n=70,190)

Under the age of
20 (n=30,441)

1

)

Pregnant individuals
(n=5,711)

n=39,749

n=34,038

b7

Unable to determine individuals
with CKM syndrome (n=15,234)

)

n=18,804

Unable to calculate the
TyG index (n=2,029)

n=16,775

Missing uric acid data
(n=65)

n=16,710

Individuals with CKM
syndrome in stage 4 (n=1,996)

PRUFNIrRU

Analytical sample

(n=14,714)
CKM Stage 0 || CKM Stage 1 || CKM Stage 2 || CKM Stage 3
(n=1,384) (n=3,263) (n=9,015) (n=1,052)

FIGURE 1
Flowchart of participant selection for the study. TyG, triglyceride-glucose; CKM, cardiovascular-kidney-metabolic.
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TABLE 1 Weighted baseline characteristics of study participants according to TyG index quartiles.

Variables

Q1 (5.65-8.16)
n=3,879

TyG index quartiles

Q2 (8.16-8.58)
n=3721

Q3 (8.58-9.03)
n=3,645

10.3389/fcvm.2025.1553957

Q4 (9.03-12.84)
[ )

Age (years) 41.29 (40.43, 42.15) 46.34 (45.59, 47.09) 48.34 (47.55, 49.13) 50.10 (49.44, 50.76)

Sex (%) <0.001
Male 38.21 (36.29, 40.17) 47.68 (45.80, 49.57) 52.26 (50.24, 54.28) 57.97 (55.75, 60.15)

Female 61.79 (59.83, 63.71) 52.32 (50.43, 54.20) 47.74 (45.72, 49.76) 42.03 (39.85, 44.25)
Race/ethnicity (%) <0.001
Non-Hispanic White 63.43 (60.40, 66.35) 68.29 (65.36, 71.09) 67.77 (64.78, 70.63) 68.51 (65.29, 71.56)

Non-Hispanic Black 16.54 (14.51, 18.79) 10.91 (9.58, 12.40) 7.64 (6.57, 8.87) 5.64 (4.79, 6.64)

Mexican American 6.51 (5.32, 7.94) 8.26 (6.90, 9.85) 10.05 (8.54, 11.79) 11.42 (9.78, 13.30)

Others 13.53 (11.75, 15.53) 12.54 (11.05, 14.20) 14.54 (13.02, 16.21) 14.43 (12.38, 16.75)

PIR (%) 0.083
Low 20.49 (18.58, 22.55) 20.44 (18.73, 22.25) 21.40 (19.37, 23.58) 22.70 (20.81, 24.70)

Medium 35.52 (33.36, 37.73) 35.06 (32.42, 37.78) 37.66 (35.10, 40.29) 37.08 (35.08, 39.11)

High 43.99 (41.28, 46.73) 44.51 (41.10, 47.97) 40.94 (38.12, 43.83) 40.23 (37.73, 42.78)

Education level (%) <0.001
Less than high school 11.37 (10.06, 12.84) 14.70 (13.18, 16.36) 18.18 (16.37, 20.14) 19.88 (18.12, 21.77)

High school 20.06 (18.23, 22.02) 23.27 (21.38, 25.28) 23.47 (21.44, 25.63) 25.31 (23.04, 27.72)

More than high school 68.57 (65.84, 71.18) 62.03 (59.24, 64.73) 58.35 (55.58, 61.07) 54.81 (52.02, 57.58)

METs/week (%) <0.001
Low 19.54 (17.91, 21.27) 23.43 (21.81, 25.12) 25.32 (23.55, 27.17) 26.23 (24.50, 28.04)

Moderate 2.34 (1.80, 3.05) 2.76 (2.09, 3.64) 2.48 (1.96, 3.14) 2.51 (1.89, 3.32)

Vigorous 78.12 (76.36, 79.78) 73.81 (72.09, 75.46) 72.20 (70.22, 74.09) 71.26 (69.31, 73.13)

Smoking (%) <0.001
Never 63.58 (61.16, 65.93) 56.36 (53.75, 58.93) 54.42 (52.08, 56.74) 47.44 (45.13, 49.76)

Former 20.05 (18.07, 22.19) 23.64 (21.39, 26.06) 24.88 (22.88, 26.99) 28.71 (26.51, 31.02)

Now 16.37 (14.90, 17.96) 20.00 (17.92, 22.25) 20.70 (18.89, 22.64) 23.85 (21.95, 25.85)

Drinking (%) <0.001
Never 11.89 (10.60, 13.32) 10.72 (9.52, 12.05) 10.27 (9.09, 11.58) 11.59 (10.13, 13.24)

Former 9.07 (8.02, 10.25) 11.23 (10.00, 12.59) 13.20 (11.89, 14.62) 15.69 (14.03, 17.50)

Mild 36.96 (34.41, 39.58) 37.37 (35.05, 39.76) 39.13 (36.98, 41.33) 34.91 (32.42, 37.48)

Moderate 21.90 (20.18, 23.72) 17.78 (16.06, 19.65) 15.59 (13.92, 17.42) 15.17 (13.50, 17.00)

Heavy 20.18 (18.70, 21.74) 22.89 (21.09, 24.80) 21.81 (19.93, 23.82) 22.64 (20.65, 24.78)

BMI (kg/m?) 26.17 (25.85, 26.50) 28.22 (27.91, 28.53) 29.97 (29.66, 30.28) 31.73 (31.37, 32.08) <0.001
Height (cm) 168.18 (167.76, 168.60) 169.13 (168.75, 169.51) 168.84 (168.40, 169.29) 169.64 (169.16, 170.11) <0.001
SBP (mmHg) 115.49 (114.82, 116.16) 119.81 (119.06, 120.56) 122.06 (121.34, 122.79) 126.28 (125.48, 127.08) <0.001
DBP (mmHg) 67.73 (67.22, 68.25) 69.62 (69.07, 70.17) 71.04 (70.42, 71.67) 73.17 (72.65, 73.70) <0.001
eGFR (ml/min/1.73 m?) 101.88 (100.87, 102.90) 96.06 (95.01, 97.11) 94.34 (93.35, 95.33) 93.21 (92.27, 94.16) <0.001
Glucose metabolism state (%) <0.001
Normoglycemia 88.08 (86.72, 89.33) 77.27 (75.56, 78.88) 63.50 (61.10, 65.84) 41.27 (38.83, 43.75)

Prediabetes 8.52 (7.42, 9.77) 15.39 (13.90, 17.00) 22.30 (20.20, 24.56) 24.59 (22.94, 26.31)

Diabetes 3.40 (2.77, 4.15) 7.35 (6.46, 8.35) 14.19 (12.80, 15.72) 34.15 (31.96, 36.40)

Hypertension (%) <0.001
No 79.63 (77.59, 81.53) 68.46 (66.14, 70.70) 60.31 (58.44, 62.16) 49.59 (47.15, 52.03)

Yes 20.37 (18.47, 22.41) 31.54 (29.30, 33.86) 39.69 (37.84, 41.56) 50.41 (47.97, 52.85)
Hyperlipidemia (%) <0.001
No 61.37 (59.50, 63.21) 35.49 (33.40, 37.65) 18.07 (16.32, 19.96) 1.72 (1.22, 2.41)

Yes 38.63 (36.79, 40.50) 64.51 (62.35, 66.60) 81.93 (80.04, 83.68) 98.28 (97.59, 98.78)

HEI-2015 53.16 (52.57, 53.75) 51.96 (51.23, 52.70) 50.98 (50.36, 51.61) 50.83 (50.14, 51.51) <0.001
TyG index 7.82 (7.81, 7.83) 8.38 (8.38, 8.39) 8.80 (8.79, 8.80) 9.49 (9.47, 9.51) <0.001
Uric acid (mg/dl) 4.88 (4.82, 4.93) 5.33 (5.27, 5.39) 5.68 (5.62, 5.74) 6.00 (5.94, 6.06) <0.001
Hyperuricemia (%) <0.001
No 91.95 (90.55, 93.16) 86.20 (84.50, 87.73) 79.11 (77.28, 80.83) 69.88 (67.73, 71.94)

Yes 8.05 (6.84, 9.45) 13.80 (12.27, 15.50) 20.89 (19.17, 22.72) 30.12 (28.06, 32.27)

CKM syndrome stage (%) <0.001
0 28.34 (26.46, 30.29) 12.26 (10.74, 13.95) 2.69 (2.13, 3.39) 0.00 (0.00, 0.00)

1 36.82 (34.65, 39.04) 38.83 (36.50, 41.22) 16.68 (15.17, 18.30) 0.00 (0.00, 0.00)

2 32.90 (30.75, 35.13) 45.22 (42.70, 47.76) 76.04 (74.26, 77.72) 92.69 (91.67, 93.60)

3 1.94 (1.58, 2.36) 3.69 (3.13, 4.36) 4.60 (3.87, 5.46) 7.31 (6.40, 8.33)

For continuous variables, data are presented as survey-weighted means (95% CI), and P-values were calculated using survey-weighted linear regression (svyglm). For categorical variables,
data are presented as survey-weighted percentages (95% CI), and P-values were calculated using the survey-weighted Chi-square test (svytable).

TyG, triglyceride-glucose; PIR, poverty income ratio; MET, metabolic equivalent; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; eGFR, estimated
glomerular filtration rate; HEI, healthy eating index; CKM, cardiovascular-kidney-metabolic syndrome.
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(P<0.001), with Non-Hispanic Whites maintaining relatively
stable proportions (63.43% to 68.51%), while Non-Hispanic
Blacks decreased (16.54% to 5.64%) and Mexican Americans
increased (6.51% to 11.42%). Higher education levels decreased
from 68.57% to 54.81% (P <0.001), while poverty income ratio
showed no significant differences across quartiles (P = 0.083).

Lifestyle characteristics demonstrated significant variations
across TyG quartiles. Physical activity patterns showed decreased
vigorous activity (78.12% to 71.26%) and increased low-intensity
activity (19.54% to 26.23%) (P <0.001). The proportion of never-
smokers decreased from 63.58% to 47.44%, while current smokers
increased from 16.37% to 23.85% (P <0.001). Among drinking
patterns, former drinkers increased from 9.07% to 15.69%, while
moderate drinkers decreased from 21.90% to 15.17% (P < 0.001).

Clinical parameters showed consistent trends of deterioration
with increasing TyG index. BMI increased from 26.17 to 31.73 kg/

2 (P<0.001), accompanied by elevated blood pressure (SBP:
11549 to 126.28 mmHg; DBP: 67.73 to 73.17 mmHg; both
P<0.001). Kidney function, assessed by eGFR, declined from
101.88 to 93.21 ml/min/1.73 m*> (P<0.001), while HEI-2015
scores decreased from 53.16 to 50.83 (P <0.001).

Metabolic parameters demonstrated substantial deterioration
across quartiles. The prevalence of normoglycemia decreased
markedly from 88.08% to 41.27%, while diabetes increased from
3.40% to 34.15% (P <0.001). Hypertension prevalence rose from
20.37% to 50.41%, and hyperlipidemia showed a dramatic
increase from 38.63% to 98.28% (both P<0.001). Mean TyG
index progressed from 7.82 to 9.49 (P <0.001). Serum uric acid
levels increased from 4.88 to 6.00 mg/dl, with hyperuricemia
prevalence rising from 8.05% to 30.12% (P < 0.001).

The distribution of CKM syndrome stages showed significant
shifts across TyG quartiles (P <0.001). Stage 0 decreased from
28.34% to 0% in Q4, while stage 2 became predominantly
prevalent, increasing from 32.90% to 92.69%. Stage 3 showed a
gradual rise from 1.94% to 7.31%, indicating a progressive
worsening of cardiometabolic health with increasing TyG index.

3.3 Association between TyG index and
hyperuricemia in early-stage CKM
syndrome

In the weighted analysis examining the association between
TyG index and hyperuricemia among participants with early-
stage CKM syndrome, both continuous and categorical analyses
revealed significant associations (Table 2). When analyzed as a
continuous variable, each unit increase in TyG index was
associated with 2.13-fold (95% CI: 1.96-2.31) increased odds of
hyperuricemia in the unadjusted model, which remained largely
unchanged after adjusting for demographic factors (OR=2.11,
95% CI: 1.94-2.30) and was attenuated but remained significant
after full adjustment for potential confounders (OR=1.62, 95%
CI: 1.45-1.81). In the quartile analysis, compared with the lowest
TyG index quartile (Q1: 5.65-8.16), the fully adjusted odds ratios
for hyperuricemia were 1.41 (95% CI: 1.11-1.80) for Q2 (8.16-
8.58), 2.00 (95% CI: 1.58-2.55) for Q3 (8.58-9.03), and 2.91
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TABLE 2 Weighted analysis of the association between TyG index and
hyperuricemia in a population with early-stage (stages 0-3)
CKM syndrome.

‘ TyG index Model 1 Model 2 Model 3

Continuous 2.13 (1.96, 2.31) 2.11 (1.94, 2.30) 1.62 (1.45, 1.81)

Quartiles

Q1 (5.65-8.16)
Q2 (8.16-8.58)
Q3 (8.58-9.03)
Q4 (9.03-12.84)
P for trend

Reference
1.41 (1.11, 1.80)
2.00 (1.58, 2.55)
2.91 (2.25, 3.76)

<0.001

Reference
1.79 (1.42, 2.26)
2.98 (2.41, 3.68)
4.85 (3.96, 5.94)

<0.001

Reference
1.83 (1.46, 2.30)
3.02 (2.46, 3.71)
4.92 (4.06, 5.97)

<0.001

Model 1: Non-adjusted.

Model 2: Adjusted for age, sex, and race/ethnicity.

Model 3: Adjusted for age, sex, race/ethnicity, PIR, educational level, METs/week, smoking,
drinking, BMI, eGFR, glucose metabolism state, hypertension, hyperlipidemia, and HEI-
2015.

TyG, triglyceride-glucose; CKM, cardiovascular-kidney-metabolic; PIR, poverty income
ratio; MET, metabolic equivalent; BMI, body mass index; eGFR, estimated glomerular
filtration rate; HEI, healthy eating index.

(95% CI: 2.25-3.76) for Q4 (9.03-12.84), with significant trends
across quartiles (P for trend <0.001) in all models.

3.4 Threshold effect analysis of TyG
index on hyperuricemia in early-stage
CKM syndrome

Using GAM and smooth curve fitting, Figure 2 illustrated a
nonlinear relationship between TyG index and hyperuricemia.
The smooth curve demonstrated an initial positive association
with increasing TyG index values, followed by a declining trend
after reaching a peak at approximately TyG index of 9-10. This
visual representation of the nonlinear pattern aligned with the
threshold effect
logistic regression analysis in Table 3.

subsequently quantified by two-piecewise

Two-piecewise logistic regression analysis revealed a nonlinear
relationship between TyG index and hyperuricemia in early-stage
CKM syndrome (Table 3). While the standard linear model
showed that each unit increase in TyG index was associated
with 1.62-fold increased odds of hyperuricemia (95% CI: 1.45-
1.81, P<0.001), further threshold effect analysis identified an
inflection point at TyG index of 9.50. Below this threshold, each
unit increase in TyG index was associated with significantly
higher odds of hyperuricemia (OR=2.18, 95% CI: 1.82-2.61,
P<0.001). beyond the threshold of 9.50, this
association was no longer significant (OR =0.79, 95% CI: 0.57-
1.10, P=0.164). The log likelihood ratio test (P<0.001)
supported the superior fit of the two-piecewise model over the
linear model, suggesting a threshold effect in the association

However,

between TyG index and hyperuricemia.

3.5 Stratified analysis of the association
between TyG index and hyperuricemia in
early-stage CKM syndrome

In the stratified logistic regression analyses (Figure 3),

significant interaction effects were observed for sex, race/
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eGFR, estimated glomerular filtration rate; HEI, healthy eating index.
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The association between TyG index and hyperuricemia in a population with early-stage (stages 0—3) CKM syndrome. Age, sex, race/ethnicity, PIR,
educational level, METs/week, smoking, drinking, BMI, eGFR, glucose metabolism state, hypertension, hyperlipidemia, and HEI-2015 were adjusted.
TyG, triglyceride-glucose; CKM, cardiovascular-kidney-metabolic; PIR, poverty income ratio; MET, metabolic equivalent; BMI, body mass index;
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TyG index

TABLE 3 Weighted two-piecewise logistic regression analysis of the
association between TyG index and hyperuricemia in a population with
early-stage (stages 0-3) CKM syndrome.

TyG index Adjusted OR? (95% CI)  P-value

Model |

Fitting by the standard linear 1.62 (1.45, 1.81) <0.001
model

Model Il

Inflection point 9.50

<9.50 2.18 (1.82, 2.61) <0.001
>9.50 0.79 (0.57, 1.10) 0.164
Log likelihood ratio / <0.001

TyG, triglyceride-glucose; CKM, Cardiovascular-Kidney-Metabolic; OR, odds ratio; CI,
confidence interval; PIR, poverty income ratio; MET, metabolic equivalent; BMI, body
mass index; eGFR, estimated glomerular filtration rate; HEI, healthy eating index.
*Adjusted for age, sex, race/ethnicity, PIR, educational level, METs/week, smoking,
drinking, BMI, eGFR, glucose metabolism state, hypertension, hyperlipidemia, and
HEI-2015.

ethnicity, and smoking status (all P-interaction < 0.05), while age
groups, drinking status, and eGFR showed no significant
interaction effects. Notably, despite these interaction differences,
all subgroup analyses demonstrated statistically significant
positive associations (all P<0.05, OR > 1.0), further validating
the robust relationship between TyG index and hyperuricemia
established in our primary analysis (Table 2).

Further stratified analyses using generalized additive models
and smooth curve fitting (Figure 4) consistently revealed

Frontiers in Cardiovascular Medicine

nonlinear relationships between TyG index and hyperuricemia
across all subgroups. Although the specific patterns varied
among different stratifications of age, sex, race/ethnicity,
smoking status, drinking status and eGFR, the presence of
nonlinearity remained evident throughout all analyses, providing
additional support for the nonlinear association pattern
identified in our main analysis (Figure 2).

4 Discussion

This study is the first to investigate the association between the
TyG index and hyperuricemia in individuals with early-stage
CKM syndrome. While previous studies have primarily focused
on specific disease populations or high-risk groups, evidence
from early-stage CKM syndrome population remains scarce.
Using data from 14,716 participants with early-stage CKM
syndrome in NHANES 2005-2018, with complex survey design
methods, we ensured accurate and nationally representative
estimates. After comprehensive adjustment for potential
confounders, each unit increase in TyG index was associated
with 62% higher odds of hyperuricemia (OR=1.62, 95% CI:
1.45-1.81). Notably, generalized additive model analysis revealed
a non-linear relationship with an inflection point at TyG index
of 9.50: below this threshold, each unit increase in TyG index
was associated with 118% higher odds of hyperuricemia
(OR=2.18, 95% CI: 1.82-2.61), while beyond this point, the
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Characteristics Total (N) OR (95% Cl) P-value P-interaction*
Age (years) ! 0.09
<60 10413  1.57 (1.38, 1.78) : —o— <0.05
260 4301  1.87 (1.56, 2.24) —e—  <0.05
Sex ! <0.05
Male 7140  1.36 (1.19, 1.56) : - <0.05
Female 7574 2.09 (1.79, 2.43) —e— <0.05
Race/ethnicity ! <0.05
Non-Hispanic White ~ 6044 1.62 (1.39, 1.90) : —— <0.05
Non_Hispanic Black 2964 1.74 (146, 2. 08) } —— <0.05
Mexican American 2423  1.20 (1.01, 1.44) Il—o—- <0.05
Others 3283 1.78 (1.50, 2.12) , —— <0.05
Smoking 1 <0.05
Never 8342 1.81(1.58, 2.08) : —— <0.05
Former 3372 1.41(1.16, 1.71) | —e— <0.05
Now 3000 1.48(1.20, 1.82) | —e— <0.05
Drinking : 0.44
Never 2124 1.75(1.37,224) |, +r—e—— <0.05
Former 2185 1.41(1.10, 1.81) | —@— <0.05
Current 10405 1.65(1.45, 1.87) | e <0.05
eGFR (mL/min/1.73 m?) 1 0.47
260 13865 1.60 (1.46, 1.74) ! s <0.05
<60 849 1.60 (1.21, 2.11) : —— <0.05
10 15 20 25
FIGURE 3
Stratified analyses between TyG index and hyperuricemia in a population with early-stage (stages 0-3) CKM syndrome. *Each stratification adjusted
for all the factors (age, sex, race/ethnicity, PIR, educational level, METs/week, smoking, drinking, BMI, eGFR, glucose metabolism state, hypertension,
hyperlipidemia, and HEI-2015) except the stratification factor itself. OR, odds ratio; Cl, confidence interval; TyG, triglyceride-glucose; CKM,
cardiovascular-kidney-metabolic; PIR, poverty income ratio; MET, metabolic equivalent; BMI, body mass index; eGFR, estimated glomerular
filtration rate; HEI, healthy eating index

association reversed to negative and became statistically non-
significant (OR=0.79, 95% CI: 0.57-1.10). These findings
provide
assessment in early-stage CKM syndrome population.

important implications for hyperuricemia risk

The relationship between IR and hyperuricemia has garnered
considerable attention in recent years. Studies have demonstrated
that IR may influence uric acid metabolism and excretion through
multiple mechanisms, thereby promoting the development of
hyperuricemia. First, IR is closely associated with the renal
handling of uric acid. Research indicates that IR leads to
increased tubular reabsorption of wuric acid, reducing its
excretion and subsequently elevating serum uric acid levels (18).
Furthermore, IR is also linked to reduced renal sodium
excretion, which may further impact uric acid metabolism (19).
Second, IR is intricately related to other components of
metabolic syndrome, such as obesity and hypertension. Both
obesity and hypertension are independent risk factors for
hyperuricemia, and IR plays a pivotal role in the development
and progression of these conditions (11, 20). Consequently, IR
may indirectly contribute to hyperuricemia by influencing these
Although  the

remains the gold standard for

metabolic  disturbances. hyperinsulinemic-
euglycemic clamp (HEC)
assessing IR, its technical complexity and high cost render it
impractical for routine clinical use (21). The TyG index has

emerged as a reliable surrogate marker for IR due to its
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simplicity, ease of calculation, and potential for widespread
clinical application.

Consistent with the findings of this study, multiple research
studies provide consistent evidence of a positive correlation
between the TyG index and the risk of hyperuricemia. In a
comprehensive analysis involving 30,453 individuals aged 50 and
older, it was found that for each unit increase in the TyG index,
the risk of hyperuricemia increased by 1.44 times in men and
by 1.69 times in women, even after adjusting for confounding
factors (22). Another study involving 14,286 American adults
and 4,620 Chinese adults found that the TyG index, along with
TyG-BMI, TyG-WHIR, and TyG-WC, was
associated with hyperuricemia, with predictive ability stronger in

significantly

women than in men (23). Among adults with hypertension, the
TyG index also demonstrated a linear positive correlation with
hyperuricemia, with an odds ratio of 2.39 for hypertensive
patients and 2.61 for non-hypertensive participants (24).
A cross-sectional study of 42,387 Chinese adults showed that
higher TyG levels were associated with an increased risk of
hyperuricemia, with risk ratios exceeding those of its two gender
components (25). Collectively, these findings suggest that the
TyG index can serve as a valuable predictor of hyperuricemia
risk across different demographic groups, highlighting the
importance

of monitoring IR in the prevention and

management of hyperuricemia.
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FIGURE 4
Stratified analyses (by (A) age; (B) sex; (C) race/ethnicity; (D) smoking; (E) drinking; (F) eGFR) between TyG index and hyperuricemia in a population
with early-stage (stages 0—3) CKM syndrome using generalized additive model and smooth curve fittings. *Each generalized additive model and
smooth curve fitting was adjusted for all factors, including age, sex, race/ethnicity, PIR, educational level, METs/week, smoking, drinking, BMI,
eGFR, glucose metabolism state, hypertension, hyperlipidemia, and HEI-2015, except for the stratification factor itself. TyG, triglyceride-glucose;
CKM, cardiovascular-kidney-metabolic; PIR, poverty income ratio; MET, metabolic equivalent; BMI, body mass index; eGFR, estimated glomerular
filtration rate; HEI, healthy eating index.

Our study identified a non-linear relationship between the
TyG index and hyperuricemia in individuals with early-stage
CKM syndrome, with a threshold effect observed at a TyG index
of 9.50. Interestingly, another study reported a similar non-linear
association in a general population, where the inflection point was
found at 9.69 (26). These discrepant threshold values can be
attributed to multiple factors: Firstly, the metabolic profiles of
CKM
significantly from those in the general population. Specifically,

individuals in early-stage syndrome may differ
CKM syndrome is characterized by heightened IR and other
metabolic abnormalities that could fundamentally alter the TyG
index’s predictive capacity for hyperuricemia (27). Moreover, the
presence of additional metabolic risk factors in the CKM
syndrome population may further exacerbate the impact of the
TyG index on hyperuricemia, consequently resulting in a lower
threshold compared to the general population. In contrast,
Wang et al. explored the nonlinear correlation between the TyG
index and hyperuricemia in a hypertensive population using
Their differed markedly,

indicating no statistically significant nonlinear relationship

restricted cubic splines. results

between the two (p-nonlinear>0.05) (24). Collectively, these
findings highlight the complexity of interpreting the relationship
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between the TyG index and hyperuricemia. They underscore the
of
characteristics, suggesting that effective risk assessment and

critical ~ importance considering  population-specific
management may necessitate tailored approaches across different
clinical contexts.

The nonlinear relationship observed between the TyG index
and hyperuricemia in early-stage CKM syndrome patients can
be attributed

involving threshold-dependent physiological adaptations and

to several complex metabolic mechanisms
compensatory responses. The contrasting associations before and
after the inflection point may be explained by the intricate
interplay of IR, lipid metabolism, and uric acid regulation
through distinct pathophysiological phases.

Prior to the 9.50 threshold, the positive correlation is mediated
through multiple interconnected pathways (28-30). Insulin
resistance progressively impairs renal uric acid handling by
promoting hyperinsulinemia-induced reduction in uric acid
clearance through enhanced tubular reabsorption (26, 31).
Mechanistically, elevated insulin levels directly stimulate urate
transporter 1 (URAT1) expression and suppress ATP-binding
cassette subfamily G member 2 (ABCG2) activity, leading to
enhanced uric acid reabsorption and reduced secretion in the
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proximal tubules (32). Furthermore, progressive insulin resistance
is associated with accelerated purine synthesis through increased
adenosine triphosphate breakdown during elevated triglyceride
metabolism, directly contributing to enhanced wuric acid
production (26). The pro-inflammatory state and oxidative stress
associated with increasing insulin resistance create a metabolic
environment that promotes uric acid accumulation while
simultaneously impairing renal excretory capacity (33, 34).

The critical inflection point at TyG index 9.50 represents a
metabolic threshold where compensatory mechanisms begin
to predominate over pathological processes. This threshold
likely corresponds to a point where the body’s adaptive
responses to severe insulin resistance reach maximum capacity,
triggering protective metabolic adjustments. At this stage, uric
acid transitions from its pro-oxidant role to serving as a
compensatory antioxidant mechanism against the excessive
oxidative stress induced by severe insulin resistance (33). This
phenomenon aligns with the concept of metabolic saturation
effects, where compensatory mechanisms reach a plateau,
thereby attenuating further increases in hyperuricemia risk
despite continued insulin resistance progression.

Beyond the 9.50 threshold, several compensatory mechanisms
may explain the paradoxical negative association (34-37).
Advanced B-cell

dysfunction, secretion and

insulin  resistance triggers  pancreatic

leading to reduced insulin
consequently decreased insulin-mediated uric acid reabsorption
(34). Additionally, the glucose-uric acid competitive inhibition
mechanism becomes prominent when glucose levels exceed
renal threshold, leading to competitive inhibition of uric acid
reabsorption and increased uric acid excretion through
glucosuria-mediated osmotic diuresis (35). The dual antioxidant-
pro-oxidant nature of uric acid suggests that at extreme insulin
resistance levels, uric acid may serve a protective role, with
homeostatic mechanisms favoring its utilization as an
antioxidant buffer against overwhelming oxidative stress (33).
However, it is important to acknowledge that the specific
mechanisms underlying the paradoxical negative association
beyond the 9.50 threshold remain largely hypothetical and
require further experimental validation. While the individual
components of these proposed mechanisms (B-cell dysfunction,
glucose-uric acid competitive inhibition, and wuric acid’s
antioxidant properties) are well-established in the literature,
their specific interplay and timing in relation to the observed
threshold effect represent a working hypothesis that warrants
dedicated CKM
syndrome populations.

The identification of this specific threshold value (9.50) in

early-stage CKM syndrome populations, compared to the higher

mechanistic ~ studies in  early-stage

threshold (9.69) observed in general populations, suggests that
individuals with metabolic dysfunction experience metabolic
This
difference may reflect the heightened metabolic vulnerability of

decompensation at lower insulin resistance levels.
CKM syndrome patients, where the presence of additional
cardiovascular and renal risk factors creates a lower tolerance
threshold for insulin resistance-mediated metabolic disturbances

(38, 39). The earlier onset of compensatory mechanisms in this
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population may represent an adaptive response to prevent

further metabolic deterioration, highlighting the clinical
significance of this threshold for risk stratification and
intervention timing. Future research should focus on

mechanistic studies to validate these proposed compensatory
pathways and elucidate the precise biological basis for the
observed threshold effect, particularly through longitudinal
assessments of insulin sensitivity, uric acid metabolism, and
renal function in CKM syndrome populations.

We conducted a stratified analysis to examine the differences
in the TyG index and hyperuricemia across different subgroups
in the early-stage CKM population. Interestingly, the subgroup
analysis results based on the forest plot logistic regression
showed that the positive correlation between the TyG index and
hyperuricemia remained strong, regardless of age, gender, race,
smoking, and alcohol consumption. This confirms the reliability
and universality of our findings. The consistent association
across different eGFR levels (>60 and <60 ml/min/1.73 m?) with
nearly identical effect sizes demonstrates the robustness of this
relationship independent of baseline kidney function, which is
particularly relevant given that renal insufficiency significantly
affects uric acid metabolism. Simultaneously, the stratified
analysis based on the generalized additive model and smooth
curve fitting revealed a U-shaped nonlinear relationship within
different subgroups, which further validates the stability of
previous research results. Moreover, gender, race, and smoking
appeared to influence the association between the TyG index
and hyperuricemia in the early-stage CKM population
(significant interaction P values), while age, drinking status, and
eGFR showed no significant interaction effects. The observed
interaction effects reflect complex biological mechanisms that
detailed Sex-based
differences in TyG-hyperuricemia associations are primarily

warrant mechanistic ~ consideration.
mediated through estrogen’s multifaceted metabolic effects.
Estrogen enhances uric acid excretion by upregulating organic
(OAT1, OAT3)

downregulating URAT1 activity in renal tubules, promoting

anion  transporters expression  while
renal uric acid clearance (40). Simultaneously, estrogen improves
insulin  sensitivity
enhanced GLUT4
biogenesis, and activation of PI3K/Akt signaling cascades (41).
Additionally,

attenuate the oxidative stress-mediated link between insulin

through multiple pathways including

translocation, improved mitochondrial

estrogen’s anti-inflammatory properties may
resistance and hyperuricemia (42). Racial differences likely
reflect genetic polymorphisms in key metabolic pathways,
including variants in uric acid transporter genes (ABCG2,
SLC2A9, SLC22A12) that show significant ethnic distribution
differences, with Asian populations showing stronger
associations for ABCG2 rs2231142 and different effect sizes for
SLC2A9 variants compared to Caucasian populations (43). The
smoking-related interactions may result from nicotine’s complex
effects on insulin sensitivity through increased IRS-1 Ser636
phosphorylation and inflammatory cascades that modify purine
metabolism and renal uric acid handling (44).

These mechanistic insights have direct implications for
developing individualized prevention strategies in early-stage

frontiersin.org



Chen and Liang

CKM syndrome management. Sex-specific TyG index thresholds
may optimize risk prediction, with potentially higher cut-points
for premenopausal women due to estrogen’s protective effects
on both insulin sensitivity and uric acid excretion (45). Race-
specific risk assessment models incorporating both TyG index
values and genetic risk profiles could enhance prediction
accuracy, particularly beneficial for populations with known
genetic predispositions to hyperuricemia or insulin resistance
(46). Given the synergistic metabolic effects observed, smoking
cessation should be prioritized in CKM syndrome patients with
elevated TyG index (47). Furthermore, lifestyle interventions
could be tailored based on subgroup characteristics: dietary
approaches emphasizing glycemic control may be particularly
effective for individuals with genetic predispositions to insulin
resistance, while structured exercise programs may show
differential effectiveness across sex and ethnic groups (48).
These personalized approaches represent a paradigm shift
toward precision medicine in early-stage CKM syndrome
prevention and management (49).

This study highlights the clinical potential of the TyG index as
a simple, cost-effective biomarker for early detection of
hyperuricemia in individuals with early-stage CKM syndrome.
Unlike traditional markers, the TyG index integrates metabolic
and insulin resistance parameters, offering a comprehensive risk
assessment tool that could facilitate proactive screening and
timely interventions. By identifying a threshold effect,
that

stratification strategies, encouraging its inclusion in routine

our
research provides novel insights could refine risk
clinical practice and public health guidelines. Clinicians could
use the TyG index to guide dietary, lifestyle, or pharmacological
interventions targeting metabolic dysfunction and uric acid
regulation. Future research should validate these findings in
longitudinal studies, investigate underlying mechanisms, and
assess the impact of TyG-index-based interventions on long-
term outcomes, further solidifying its role in clinical and public
health applications.

This study possesses several strengths that enhance its
validity and significance. First, the use of a large, nationally
representative sample from the NHANES database ensures
broad generalizability and robust statistical power. Second, the
study focused specifically on individuals with early-stage CKM
syndrome, addressing a critical gap in current research by
exploring metabolic and uric acid dynamics in this unique
Third,

including biochemical

population. standardized data collection methods,

measurements and comprehensive
covariate assessments, minimize potential measurement biases
and enhance data reliability. Fourth, advanced statistical
methods, such as the application of smooth curve fitting and
threshold analysis, allowed for the exploration of non-linear
relationships and provided nuanced insights into the TyG
index’s role in predicting hyperuricemia. Finally, rigorous
adjustment for a wide range of confounders ensured that the
observed associations were as unbiased as possible. Together,
these methodological strengths make our findings both credible
and impactful, providing a valuable foundation for future

research and clinical applications.
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This that should be
acknowledged. First, due to our inclusion and exclusion criteria,

study has several limitations
the findings may have limited generalizability. For instance, we
excluded individuals under 20 years old, pregnant women, and
those with advanced CKM syndrome (stage 4), which means
our results cannot be directly applied to these groups. Second,
while the NHANES database provides a large, nationally
representative sample, the cross-sectional nature of this study
restricts our ability to establish causal relationships between the
TyG index and hyperuricemia. Third, despite adjusting for
multiple confounders, unmeasured or residual confounding
cannot be entirely ruled out, as certain factors influencing the
relationship, such as genetic predisposition or environmental
exposures, may not have been accounted for. Fourth, the study
focused primarily on a U.S. population, and while it included
diverse ethnic groups, caution is needed when extrapolating the
findings to non-U.S. populations or other ethnic groups with
distinct metabolic profiles. Finally, we utilized a single
measurement of the TyG index and uric acid levels, which may
not fully capture their variability over time. Addressing these
limitations in future longitudinal and interventional studies

could further strengthen the clinical implications of our findings.

5 Conclusion

This study is the first to systematically reveal the complex
association between the TyG index and hyperuricemia in early-
CKM By 14,716
participants, we confirmed the TyG index as an effective

stage syndrome populations. analyzing
indicator for hyperuricemia risk and uniquely identified its
nonlinear relationship’s critical inflection point. The results
emphasize the significance of TyG index 9.50 as a key threshold
for metabolic risk transformation, providing a novel perspective
for clinical risk stratification. Future research should explore the
physiological mechanisms underlying this nonlinear association,
design prospective cohort studies to validate our findings, and
develop more precise personalized risk prediction models.
Large-scale, cross-ethnic, multi-center studies will help verify
our conclusions and provide comprehensive evidence for

precision medicine in early-stage CKM syndrome.
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