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Cost-benefit analysis of 
automating modular 
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The potential of modular construction to deliver affordable housing can 
be enhanced through automation. However, high upfront investment for 
automation raises concerns about its economic feasibility. This study aims 
to evaluate the economic viability and sustainability of automating modular 
construction manufacturing for affordable housing delivery by conducting a 
cost-benefit analysis. The study employs a two-stage quantitative approach. The 
first stage involves using simulation results from a previous study conducted 
by the authors to analyse the production time of manual and automated 
factory setups, while the second stage entails collecting and comparing the 
costs and metrics associated with both setups, focusing on labor wages, robot 
and machinery costs, and energy consumption. Results show that automation 
reduces production time by almost 40% per unit, labor wages by 69.7% per unit, 
and energy consumption cost by 11.6% per unit. While adopting automation 
requires a high investment in robotic systems—approximately 321% higher than 
the cost of manual setup—and increases annual maintenance costs by the 
same amount, the long-term savings and increased efficiency demonstrate the 
economic viability of automation, with an estimated payback period of around 
3 years. The study concludes that automation offers substantial economic and 
operational benefits for modular manufacturing, offering valuable insights for 
stakeholders in the modular construction industry aiming to optimize their 
production systems for affordability and sustainability. The analysis is limited 
to the direct costs and benefits of the main manufacturing process, excluding 
idle time, indirect costs, and environmental and quality impacts. Future research 
should expand the model’s scope to include full factory operations, MEP 
integration, logistics, and full assembly; apply probabilistic sensitivity analysis 
to capture uncertainty; and assess the environmental and life-cycle impacts of 
automation.

KEYWORDS

modular construction, automation in construction, robotic assembly, human-
robotcollaboration, sustainable construction 

 1 Introduction

Modular construction has emerged as a viable solution to address the growing 
demand for affordable housing, particularly in urban environments where traditional 
construction methods often fall short on speed, cost, and sustainability. By manufacturing
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components in a controlled factory environment and assembling 
them on-site, modular construction offers advantages such 
as reduced construction time, improved quality control, and 
minimized material waste (Parisi and Donyavi, 2024; Tsz et al., 
2023). The reduction in construction duration through the 
synchronization of offsite and onsite work minimizes delays caused 
by weather and other site disruptions. This not only accelerates 
housing delivery but also helps mitigate the rising costs associated 
with prolonged construction periods (Salama et al., 2020). Modular 
construction is particularly suitable for affordable housing projects 
due to its ability to reduce costs through economies of scale, 
optimized process and material use, and the need for fewer skilled 
workers on site (Abiodun et al., 2024; Liu and Zainul, 2024). 
Sustainability is another benefit, as modular construction promotes 
resource efficiency, energy conservation, and waste reduction 
(Sajid et al., 2024). Despite its numerous benefits, the adoption 
of modular construction faces challenges such as initial setup costs, 
a shortage of skilled labor, and process complexity (Saliu et al., 
2024). To address these challenges, the construction industry is 
increasingly looking towards automation and digital technologies 
(Chen et al., 2022; Kapoor and Sharma, 2024). The automation 
of manufacturing processes demonstrates significant benefits, 
including reduced production time, improved precision, and lower 
long-term labor costs (Haque, 2023). Hence, its integration in 
modular construction manufacturing presents further opportunities 
to enhance efficiency, consistency, and scalability (Islam et al., 
2025). Automated modular factories can utilize robotic arms for 
framing, welding, insulation, and panel assembly to optimize 
the manufacturing process (Xu et al., 2025). However, their 
high initial costs, advanced maintenance requirements, and the 
need for specialized operational expertise remain key barriers to 
widespread adoption (Fu et al., 2024).

Purchasing robotic systems, integrating automated production 
lines, and modifying factory layouts require substantial capital, 
which raises concerns about the financial feasibility of automation, 
particularly for affordable housing projects. Additionally, automated 
processes may increase energy consumption, and their cost-
effectiveness depends on long-term operational savings and 
productivity gains. Given these complexities, a detailed cost-benefit 
analysis is necessary to determine whether automation can offer 
economic advantages over traditional manual manufacturing in 
modular construction. This study aims to evaluate the economic 
viability and sustainability of automating modular construction 
manufacturing for affordable housing delivery. To achieve this, the 
study conducts a cost-benefit analysis of manual and automated 
production setups using simulation results established from a 
previous study conducted by the authors (Ouda and Haggag, 2024). 
The specific objectives are to:

• Utilize simulation results to compare manual and automated 
modular-factory setups and analyze differences in production 
time.

• Quantify and assess key cost components under both 
production scenarios: labor, machinery, and energy 
consumption.

• Evaluate the economic feasibility of automation through 
financial indicators such as Net Present Value (NPV), Benefit-
Cost Ratio (BCR), and Payback Period.

• Interpret the implications of automation for affordable housing 
delivery, highlighting potential benefits for industry practice 
and policy development.

2 Cost-benefit analysis in modular 
construction automation

Cost-benefit analysis (CBA) is a key method for assessing the 
financial viability of an investment by identifying, quantifying, 
and comparing all relevant costs against the expected returns 
(Khalil and Tallozy, 2025). In modular manufacturing automation, 
CBA examines the economic, operational, and environmental 
implications of technological adoption, including production time, 
labor costs, machinery expenses, and energy use (Burggräf et al., 
2019). The first aspect of CBA is costs. Capital investment is 
one of the most significant costs associated with automation, 
due to the advanced technologies and the need for integration 
with existing infrastructure. Also, automation systems require 
ongoing maintenance, software updates, and technical support to 
maintain productivity. Beyond that, the workforce needs adaptation 
and training, all of which adds to the costs. The other aspect 
of CBA assesses benefits, which requires a structured approach 
to quantifying both direct and indirect returns (Khalil and 
Tallozy, 2025; Hu et al., 2020). 

2.1 Economic evaluation frameworks

Literature explored several CBA frameworks. The traditional 
discounted cash flow (DCF) framework is employed for most 
feasibility studies, employing indicators of investment performance 
like net present value (NPV), benefit-cost ratio, internal rate 
of return, and payback period (Pivorienė, 2017). While these 
indicators are widely applied for feasibility assessment, several 
studies emphasize their limitations when evaluating automation 
in construction. DCF methods assume deterministic costs and 
stable conditions, which may underrepresent uncertainties in 
production variability, maintenance, and energy prices. Also, 
they exclude indirect costs such as maintenance, downtime, and 
salvage value. Nevertheless, they remain the industry standard 
for early-stage decision-making because they provide quick 
and comparable measures of financial performance without 
requiring extensive data. Studies such as (Khalil and Tallozy, 
2025; Hu et al., 2020) confirm the practicality of DCF-based 
CBA for automation investments, while others like (Heralova, 
2017; Jayawardana et al., 2022; Landscheidt and Kans, 2016) 
advocate complementing them with life-cycle or total cost-of-
ownership approaches when detailed data are available. Life-cycle 
cost analysis (LCCA) framework calculates design, production, 
transportation, installation, maintenance, and disposal costs over 
the project lifetime (Heralova, 2017). A recent conceptual study has 
proposed a framework that combines LCC with environmental and 
social LCA to capture broader impacts (Jayawardana et al., 2022). 
Total cost of ownership considers maintenance, downtime, and 
disposal costs, with direct costs, better estimating long-term savings 
(Landscheidt and Kans, 2016). Process-oriented costing methods, 
such as Activity-Based Costing (ABC) and its variants, allocate 

Frontiers in Built Environment 02 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1713686
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Ouda and Haggag 10.3389/fbuil.2025.1713686

indirect costs (utilities, equipment depreciation, and maintenance) 
more precisely than traditional methods, resulting in more 
accurate per-unit costs. Time-Driven ABC estimates labor/time 
per activity (e.g., welding, assembly), enabling production line 
simulation to compute detailed cost‐time profiles. Such methods 
allow sensitivity analysis, exploring the impact of improving 
productivity or automating a step on the total module cost (Lee et al., 
2015). Similarly, Risk Adjusted CBA includes uncertainty when 
estimating net benefits through sensitivity analysis, scenario 
testing, or probabilistic modelling (Khalil and Tallozy, 2025). Some 
studies utilize value-based or multi-criteria frameworks, where 
non-monetized benefits (quality, speed, environmental gains) are 
translated into monetary or index values and included alongside cost 
in an overall assessment (Antillón et al., 2014). Broader approaches 
like LCCA, TCO, ABC, and Value-Based CBA offer greater scope 
but require detailed long-term datasets rarely available in early-stage 
automation projects (Jayawardana et al., 2022). Given the purpose 
and method of this paper, the DCF framework is appropriate and 
consistent with prior CBA research.

Table 1 summarizes representative studies that have applied 
CBA or equivalent frameworks to construction automation and 
prefabrication contexts. Most address individual robotic tasks 
or conceptual frameworks with limited financial scope. Early 
deterministic CBAs (Burggräf et al., 2019; Hu et al., 2020) quantified 
profitability but excluded indirect and energy-related costs. Broader 
frameworks such as TCO and LCCA (Jayawardana et al., 2022; 
Landscheidt and Kans, 2016) improved life cycle understanding 
but remained detached from automation performance data. Task-
specific or performance-oriented studies (García de Soto et al., 2018; 
Liu et al., 2024; Hadi et al., 2025; Barosz et al., 2020; Xie et al., 2018) 
focused on technical feasibility rather than financial viability. Recent 
contributions (Mehdipoor et al., 2025) began integrating simulation 
and economic assessment, but remains scope-limited. These studies 
collectively reveal that quantitative economic evaluations of process-
scale automation linking production simulation with financial 
metrics are still scarce, particularly in the context of affordable 
housing modular manufacturing, which remains underdeveloped.

2.2 Automation cost drivers in modular 
manufacturing

Several studies have discussed the cost breakdown of automatic 
manufacturing systems that utilize industrial robots. Across 
different applications, cost structures divide the total cost into 
acquisition, operation, maintenance, and disposal costs, as well 
as intangible costs such as downtime (Landscheidt and Kans, 2016). 
Traditional frameworks often focus on tangible costs and overlook 
the hidden costs caused by idle loss, efficiency loss, and quality 
loss, among others. Some studies also ignored costs associated 
with debugging, upgrading, and disposal due to data scarcity 
and a focus on feasibility (García de Soto et al., 2018; Zhao et al., 
2021). Consequently, the initial economic evaluation of modular 
manufacturing automation can examine the primary operating 
expenses of factory processes, specifically labor, machinery and 
equipment, and energy costs. Other costs, such as overhead or 
administrative expenses, while relevant in broader economic 
evaluations, can be excluded in a process-oriented approach. 

2.2.1 Workforce
Automation can significantly reduce labor requirements, 

thereby lowering recurring expenditures and enhancing workforce 
productivity (Delgado et al., 2019). While these benefits are 
offset initially by the capital cost of robotic systems and the need 
for specialized operators and technicians, automation promises 
long-term savings through improved efficiency and productivity, 
optimized resource allocation, and decreased energy consumption 
(Feldmann, 2022; Xiaoyi, 2024). Studies emphasize that workforce 
restructuring and reskilling are essential to realize automation cost 
savings and productivity gains (Xu et al., 2025; Delgado et al., 2019). 

2.2.2 Level of automation
In automation research, production strategies are 

often described along a spectrum from manual to semi-
automated, human-robot-collaborative (HRC), and fully 
automated systems (Fu et al., 2024). Semi-automated lines integrate 
mechanized handling or guided assembly while retaining substantial 
human control, offering flexibility at a moderate cost. Fully 
automated factories represent the upper-limit benchmark for 
productivity and capital intensity. Positioning the current study 
at this end of the spectrum allows assessment of automation’s 
maximum potential benefits, serving as a reference point for future 
comparisons with hybrid or phased-adoption strategies. 

2.2.3 Production time
One of the primary advantages of modular construction is 

its reduced production time compared to traditional building 
methods. Automated manufacturing is expected to further reduce 
construction time compared to manual processes (Abkar et al., 
2023). Studies report time reductions ranging from 30% to 50% 
when robotics are integrated into production lines (Ouda and 
Haggag, 2024; Hu et al., 2020; García de Soto et al., 2018; Gao 
and You, 2017). Although automation accelerates production, 
researchers note that savings depend on production volume and 
system utilization. Under-utilized automated lines may extend 
payback periods (Burggräf et al., 2019). Consequently, automation’s 
time efficiency must be contextualized within demand and factory 
capacity planning, which is critical for affordable housing projects.

Overall, the literature agrees that automation’s cost advantage 
emerges over time through efficiency and consistency rather than 
immediate expense reduction. This justifies the use of long-term 
financial indicators, such as NPV, BCR, and Payback Period, to 
evaluate the feasibility of automation in modular construction 
factories. 

2.3 Energy

Energy represents a major operational cost and a sustainability 
determinant in manufacturing, directly impacting total production 
expenses and the environmental footprint (Mohamed et al., 2019). 
While industrial robots and machines are high-powered, studies 
show that lighting and HVAC systems are the main energy 
consumers in a factory (Al Momani et al., 2023; Cai et al., 
2025). Consequently, total energy per module can decrease when 
automation boosts output and streamlines cycle times (Gao and 
You, 2017). For example, a fully automated steel-module line 
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TABLE 1  Representative studies on automation and CBA in modular construction.

Study Focus/Application Method Data Type Limitations

Burggräf et al. (2019) Flow-line automation for 
assembly systems

DCF CBA; NPV, Payback Simulation Excluded energy and 
maintenance costs

Hu et al. (2020) Façade-installation robot; 
task-specific

CBA; NPV, BCR Simulation Single-task focus; no 
full-factory integration

Jayawardana et al. (2022) Modular construction LCSA; 
project

Hybrid LCC + LCA; 
Sustainability

Conceptual no economic metrics or 
automation integration

Landscheidt and Kans (2016) Industrial-robot TCO; process TCO model; Cost ratio Empirical No productivity benefits

García de Soto et al. (2018) Robot-built wall fabrication; 
task-specific

Time/cost analysis; per unit Empirical No financial CBA

Liu et al. (2024) Vision-guided robotic 
assembly of prefabricated 
components; on-site

Experimental + simulation; 
Cycle time/accuracy

Empirical No CBA or cost data; accuracy 
focused

Hadi et al. (2025) Waste comparison: robotic vs. 
manual offsite assembly; 
factory

Comparative case study; 
Material efficiency

Empirical Single case; no CBA model

Barosz et al. (2020) Human vs. robot operated 
manufacturing line; line-level

DES (FlexSim); OEE/OFE 
productivity metrics

Simulation Productivity focused; no CBA; 
not modular construction 
specific; automation impact 
not monetized

Xie et al. (2018) Dynamic energy simulation in 
modular manufacturing; 
factory

Energy simulation + CBA; 
Energy cost/savings

Simulation Energy focused; no 
automation

Mehdipoor et al. (2025) Semiautomation in light-gauge 
steel manufacturing; factory

CBA + digital workflow; 
Payback period, cost accuracy

Empirical + simulation No LCA

in China achieved 22% higher output while using 10% less 
total energy than the prior semi-manual setup, equivalent to a 
25%–30% reduction in energy per unit (CSCEC, 2024). Likewise, 
studies of specific processes show even larger savings, where 
collaborative robots used 41%–71% less energy per weld than 
manual welding (Ruprecht, 2025). However, most analyses exclude 
indirect energy loads such as HVAC, logistics, and IT systems, 
which may underestimate total consumption. Recognizing these 
boundaries clarifies that automation’s energy advantage is process-
specific rather than absolute. 

2.4 Environmental considerations

The prefabricated nature of modular buildings promotes 
materials efficiency and mitigates the environmental harm typically 
associated with onsite construction. Automation contributes to 
the overall sustainability by increasing precision in fabrication 
and reducing waste, production time, and energy use (Feldmann, 
2022; Wuni and Shen, 2020). Industrial robots are designed to 
enhance precision and minimize errors and waste, which lead to 
cost savings (Chau et al., 2024; Yang et al., 2017; Chea et al., 
2020). For example, ABB Robotics reported a U.S. project where 
robotic assembly of modular homes boosted production efficiency 

by 15%, sped by more than 38%, while cutting waste by about 
30% (ABB, 2021). This is particularly significant given that up 
to 25% of materials delivered to construction sites end up 
as waste. By adopting sustainable construction practices, waste 
can be reduced through optimized building design and efficient 
construction methods (Dindorf and Wos, 2024). While these 
improvements contribute to lower carbon footprints, most current 
evaluations stop short of quantifying full-life-cycle environmental 
impacts. Integrating cost, time, and environmental metrics through 
combined life-cycle cost and life-cycle assessment approaches would 
provide a more comprehensive understanding of automation’s role in 
sustainable, affordable housing delivery. 

2.5 Summary and research gap

The existing literature confirms that automation can improve 
efficiency and sustainability in modular construction, but raises 
concerns about its high upfront investment and operational 
costs. While cost-benefit analysis is a common evaluation tool 
for investment projects, comprehensive economic evaluations 
of modular construction automation for affordable housing 
remain limited. Most analyses examine either individual robotic 
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processes or conceptual feasibility, leaving a gap for simulation-
based economic evaluation of main process automation. This 
study addresses the gap by applying simulation-based data 
established in prior research within a DCF-based CBA to evaluate 
manual and automated factory setups for affordable-housing 
manufacturing, focusing on production time, labor and robot 
costs, and energy consumption. By linking process-level modeling 
to financial indicators, this research provides a simulation-
driven foundation for assessing automation’s potential to enhance 
affordability and sustainability, as well as an upper-bound estimate 
of financial benefits. 

3 Methodology

3.1 Research design

This study employs a comparative cost-benefit analysis 
framework to evaluate the economic viability of automating 
modular construction manufacturing for affordable housing. The 
methodology is structured into four main phases: simulation results, 
data collection, cost-benefit analysis, and sensitivity analysis. A 
quantitative simulation-based comparative analysis was conducted 
between two factory setups: a manual production line and an 
automated production line. The comparison focused on key 
performance indicators, including production time, labor costs, 
robot costs, and energy consumption. 

3.2 Simulation and scope

This CBA builds on established simulation results from a 
previous study conducted by the authors (Ouda and Haggag, 2024). 
Factory operations for both scenarios were modelled (Figure 1) 
using the 3D simulation software Visual Components Premium 
OLP v4.9. Simulated operations related only to the assembly of the 
module panels, specifically framing, sheathing, insulation (without 
Mechanical, electrical, and plumbing (MEP) work), and fixtures. The 
focus on the assembly process was because it represents the most 
labor and time-intensive stage of modular production and therefore 
provides a reliable basis for comparing manual and automated 
scenarios. MEP installations, as well as material procurement, 
logistics, and quality-control operations, were excluded because 
simulating these processes would require additional real-factory 
data that were unavailable at the time of model development. Cycle 
times were recorded for both scenarios:

• Manual Scenario: Simulated using human labor across all 
stations.

• Automated Scenario: Simulated using robotic systems across 
most stations.

A standard studio unit (Figure 2) was designed and created in 
both setups. The unit size is 29.25 m2, composed of four main walls, 
two slab panels, five interior walls, and a balcony. The structure 
is composed of a light-gauge steel frame, insulated, and covered 
with plasterboards to meet thermal, acoustic, and fire resistance 

requirements. A 300 mm grid is used to ensure manufacturing 
modularity, reducing waste and costs.

3.3 Model validation and reliability

The simulation model established the process logic, parameters, 
and performance data for manual and automated factory setups 
through multiple deterministic simulation runs for four different 
module designs, ensuring process stability and reliability of 
production time outputs. While the results were not empirically 
validated against real-world data or benchmarks specific to 
automated modular factories due to data unavailability, the 
simulation design, sensitivity analysis, and internal consistency were 
reviewed to ensure representative modeling of modular-factory 
operations.

This paper builds upon those deterministic results, using them 
as input data for the cost-benefit analysis rather than rerunning 
the simulation. All production time, labor, and energy values 
are therefore based on the verified model. This approach ensures 
methodological continuity while allowing the current study to focus 
specifically on the economic feasibility dimension of automation for 
affordable housing manufacturing. 

3.4 Data collection

Data were collected from:

• Simulations of modular factory processes from the previous 
study (production time).

• Manufacturer and market reports on robot costs, labor wages, 
and energy consumption.

• Literature sources to indicate environmental impact and energy 
savings in automated systems.

3.5 Cost-benefit analysis framework

The CBA was conducted using the structure shown in Figure 3. 
After collecting data, the study analyses production time, 
labor wages, machinery costs (initial investment), and energy 
consumption. Afterward, it evaluates the long-term financial 
viability using Net Present Value (NPV), Benefit-Cost Ratio (BCR), 
and Payback Period. Finally, it conducts sensitivity analysis using 
various assumptions on the main financial parameters.

3.6 Sensitivity analysis

A sensitivity analysis was conducted to test the robustness of the 
economic evaluation. Key financial parameters, including factory 
utilization, initial investment, labor wages, maintenance costs, and 
discount rate, were varied one by one within realistic ranges while 
keeping other factors constant. The resulting changes in NPV, BCR, 
and discounted payback period were analyzed to assess how these 
assumptions influence the overall feasibility of automation. 
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FIGURE 1
Manual (left) and Automatic (right) factory setups (Ouda and Haggag, 2024).

FIGURE 2
Studio unit plan and assemblies (Ouda and Haggag, 2024).

4 Results and discussion

4.1 Production time

Production time is a critical factor in the cost-benefit analysis 
of modular construction manufacturing. It directly affects labor 
costs, factory output, and return on investment. Faster production 
translates into reduced labor hours per unit, shorter project 
durations, and increased annual output; all of which contribute 

to the financial viability of automation. Based on the simulation 
results summarized in Table 2, the automated process completed 
a studio unit in 1 h 24 min, whereas the manual process required 
2 h 15 min. This means automation reduced production time by 
approximately 37%, enabling higher throughput. This result is 
similar to the ABB report stating increased production speed by 
more than 38% (ABB, 2021).

Beyond the quantitative reduction in cycle time, these results 
have strategic implications for affordable housing delivery. Shorter 

Frontiers in Built Environment 06 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1713686
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Ouda and Haggag 10.3389/fbuil.2025.1713686

FIGURE 3
CBA structure for modular manufacturing automation.

production time translates directly into faster turnover of housing 
units, allowing developers to meet demand more efficiently and 
governments to scale subsidy programs. For factory operators, the 
37% reduction indicates higher capacity utilization and greater 
resilience against schedule delays, improving financial performance 
in high-volume projects. 

4.2 Labor costs

Labor costs are one of the most significant recurring 
expenditures in modular construction and are therefore central 
to the cost-benefit analysis of automation. Manual factory setups 
typically require a larger workforce with varying skill levels, resulting 
in higher cumulative wages and longer-term operational costs. 
In contrast, automated factories rely on fewer personnel, often 
focused on oversight, machine operation, and quality control, 
thereby reducing labor dependency and associated costs. As this 
study focuses on assembly lines, only jobs directly related to it were 
considered:

• Assembly Line Worker: performs repetitive, specialized 
tasks on a production line to assemble parts into modular 
components.

• Machine Operator: operates general manufacturing machines 
(e.g., panel cutters, nailing machines, framing stations), specific 
to manual setups.

• Production Operator: operates machinery or robotic stations, 
specific to automatic setups.

• Assembly Supervisor: directly supervises workers on the 
assembly line, focuses on daily tasks, quality, and workflow

• Production Supervisor: oversees entire production process, 
including multiple lines/stations, manages schedules and 
targets

Both setups are assumed to require a minimum of one assembly 
supervisor and one production supervisor for any production line. 
The manual factory has 20 assembly line workers, as simulated 
in (Chea et al., 2020), and is assumed to require two machine 
operators (one per line). The automated factory has four assembly 
line workers and is assumed to need three production operators 

to control and monitor the machinery (one per two stations) 
(Barosz et al., 2020). Tables 3, 4 detail the annual labor costs for 
manual and automated production setups, where average wages 
are based on the US market for factory and manufacturing 
industry, collected through “official government salary data, surveys, 
and other sources such as job postings which contain salary 
information” (Average Salary in United States, 2025). Reductions in 
workforce size can significantly shorten the payback period for 
automation investments.

The decline in direct labor cost represents not only savings 
but also a structural shift in workforce composition. Automation 
reduces the need for repetitive manual tasks while increasing 
the demand for skilled technicians, maintenance staff, and digital 
production managers. Affordable housing projects are often reliant 
on subsidized labor or public sector incentives; therefore, this 
finding highlights the need for complementary training and 
upskilling programs to ensure that workforce transformation 
supports, rather than displaces, employment. Policymakers can 
leverage these savings to invest in programs that prepare workers 
for automated manufacturing environments. 

4.3 Machinery costs

Machine acquisition and integration costs form a substantial 
initial investment in automated modular construction 
manufacturing. Unlike ongoing labor costs, robot costs are typically 
capital expenditures with long-term value. In a cost-benefit analysis, 
it is essential to account not only for the purchase price of robotic 
systems but also for related expenses such as maintenance and 
operational energy consumption (Lindborg, 2020). Table 5 outlines 
the estimated costs of robotic systems used in the automated factory, 
as well as other machinery used in both setups. Costs were collected 
through direct quotes from manufacturers, such as ABB, and global 
suppliers, like Alibaba (X-Tilt Steel Frame, 2025; BOOSTON, 2025; 
IRB, 2024). The annual maintenance cost was estimated to be 10% of 
the purchase price (Landscheidt and Kans, 2016). The manual setup 
would require an investment of USD 124,500 in machinery, while 
the automatic setup would require USD 524,300 (an additional USD 
399,800 for robotic systems). By comparing these costs against labor 
savings and production gains, the economic feasibility of adopting 
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robotic systems in affordable housing manufacturing can be more 
accurately evaluated.

Although machinery acquisition substantially increases 
initial capital expenditure, it represents long-term assets rather 
than recurring expenses. When evaluated across the projected 
service life of robotic systems, the higher purchase price and 
annual maintenance translate into predictable, depreciable costs 
that improve financial planning accuracy. For developers and 
policymakers, this underscores the importance of designing 
financing mechanisms and incentives, such as low-interest loans 
or automation grants, to mitigate adoption barriers for smaller 
enterprises. Moreover, standardizing maintenance contracts and 
supply chains can further reduce operational uncertainty, ensuring 
that machinery costs are offset by consistent production efficiency 
and quality gains. 

4.4 Energy consumption

Energy consumption is a critical operational cost that influences 
the overall economic and environmental performance of modular 
construction factories. A comprehensive calculation of electricity 
consumption in a factory would consider direct and indirect 
uses. Direct uses refer to the energy consumed by equipment 
that transforms materials into products, such as robots, machines, 
assembly-line tools, conveyor systems, and crane systems. Indirect 
uses support infrastructure and operations of the factory but 
do not directly contribute to the output, including lighting, 
HVAC systems, material handling, and amenities (Koncz and 
Gludovatz, 2021). Automated factories generally consume more 
electricity due to the high-power demands of robotic systems 
and machinery, whereas manual factories rely more on human 
labor and have lower direct energy demands. However, automation 
often leads to faster production cycles, hence, less energy use 
per module. In this study, energy consumption was calculated 
based on direct uses and the lighting system alone, as other 
electricity uses in the factory were not accounted for due to 
a lack of available data. This means the total energy costs per 
unit may be underestimated, compared to real-world factory
conditions. 

4.4.1 Direct energy consumption–assembly line
The automated process requires higher direct energy use 

due to machinery at different stations, including articulated 
robots for framing and sheathing, conveyors, a butterfly table, 
a crane system for transportation, and an insulation blow 
system. The transportation process is the same in both setups. 
However, the framing and insulation stations are fully manual 
in the manual process, eliminating direct energy use, and 
the sheathing station requires an electric saw for cutting
panels.

EnergyConsumption (kWh) = Power×Time (1)

Cost (USD) = EnergyConsumption× rate (2)

This study uses an international electricity cost rate of USD 
0.18/kWh (World Population Review, 2025). Using Equations 1, 2, 
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TABLE 3  Assumed annual labor costs for manual factory setup [based on US market data (Average Salary in United States, 2025)].

Manual factory jobs Wages USD/year Quantity Total wages USD/year

Assembly Line Worker 27,100 20 542,000

Machine Operator 27,800 2 55,600

Assembly Supervisor 39,600 1 39,600

Production Supervisor 84,600 1 84,600

721,800

TABLE 4  Assumed annual labor costs for automatic factory setup [based on US market data (Average Salary in United States, 2025)].

Automatic factory jobs Wages USD/year Quantity Total wages USD/year

Assembly Line Worker 27,100 4 108,400

Production Operator 38,700 3 (1 per 2 stations) 116,100

Assembly Supervisor 39,600 1 39,600

Production Supervisor 84,600 1 84,600

348,700

TABLE 5  Estimated cost of machinery (Based on direct quotes and global suppliers).

Machine Cost (USD) Energy use (kW) Quantity Total cost (USD) Annual maintenance

Articulated robot 3m reach 40,000 2.8 2 80,000 8,000

Articulated robot 4m reach 60,000 2.8 2 120,000 12,000

Cartesian robot/Insulation blow 100,000 11.8 2 200,000 20,000

Conveyor 5300 + 7000 2.25 2 12,300 1,230

Butterfly Table 50,000 3.5 2 100,000 10,000

Girder Crane 4,000 2.4 3 12,000 1,200

Electric Saw 100 1.4 2 200 20

Tables 6, 7, calculate the energy consumption and cost per unit 
according to machine use at assigned stations in the automated and 
manual processes.

4.4.2 Indirect energy consumption - lighting
According to Neufert, an industrial warehouse with a height of 

2–5 m requires 200–500 lux. For this study, the target illuminance is 
set to 400 lux in assembly line areas (Neufert and Neufert, 2012). 
The total lumens required is found by multiplying the area (m2) 
by the lux. Thus, for an approximate assembly line area of 2000 m2 
(as simulated), the total luminous flux required is 800,000 lumens 
(2000 m2 × 400 lux). As referenced in a case study, the factory’s 
lighting system will utilize 2 × 18 W LED tube luminaires due 
to their cost efficiency and ease of installation, with a luminous 
flux value of 3600 lumens and a 99% luminaire efficiency (Uydur, 

2022). The number of fixtures needed can be determined by dividing 
the total Lumens Required (800,000) by the Lumens per fixture 
(3,600), which is approximately 223 fixtures. With a Luminaire 
Power (Watt) of 36 for each, the total power consumption of the 
assembly line’s lighting system is around 8 kW. Therefore, based 
on 10 operating hours per day, 300 working days per year, and a 
rate of USD 0.18/kWh, the lighting’s annual energy consumption is 
24,000 kWh/year, and the annual cost is USD 4,320. Assuming the 
same lighting conditions for both setups, the manual production of 
one unit (2.25 h) would consume 18 kW and cost USD 3.24, while 
the automated production of one unit (1.41 h) would use 11.28 kW 
and cost USD 2.03.

While the automated system incurs a higher direct energy cost 
per unit (USD 1.1) compared to the manual process (USD 0.3), it 
significantly outperforms in terms of production speed, reducing 
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TABLE 6  Energy consumption of automated assembly line (based on electricity cost rate of USD 0.18/kWh).

Machine Station Time (min) Energy (kWh) Cost (USD)

Articulated robot (2.8 kW) Framing + Sheathing 56:21 2.63 0.47

Conveyor (2.25 kW) Transportation 16:00 0.60 0.11

Butterfly Table (3.5 kW) Transportation 10:21 0.60 0.11

insulation blow (11.8 kW) Insulation 9:21 1.84 0.33

Girder Crane (2.4 kW) Transportation 6:59 0.28 0.05

Total (USD/unit) 1.08

TABLE 7  Energy consumption of manual assembly line (based on electricity cost rate of USD 0.18/kWh).

Machine Station Time (min) Energy (kWh) Cost (USD)

Electric Saw (1.4 kW) Sheathing 5:50 0.14 0.025

Conveyor (2.25 kW) Transportation 16:00 0.60 0.11

Butterfly Table (3.5 kW) Transportation 10:21 0.60 0.11

Girder Crane (2.4 kW) Transportation 6:59 0.28 0.05

Total (USD/unit) 0.295

indirect energy cost. Therefore, the total energy consumption 
cost for the automated would be USD 3.13 per unit, while the 
manual would be USD 3.54 per unit. This means that automation 
reduces energy cost per unit by approximately 11.6%, improving 
efficiency per unit.

While energy savings appear modest on a per-unit basis, 
scaling these reductions across annual production yields meaningful 
environmental benefits. The lower energy intensity reduces factory-
level greenhouse gas emissions and aligns with sustainability goals. 
Incorporating such automation-driven efficiencies into housing 
frameworks could help governments meet both affordability and 
sustainability targets simultaneously. 

4.5 Summary

Table 8 summarizes the key economic indicators. This analysis 
helps clarify the economic viability of adopting automation instead 
of manual operations.

5 Cost-benefit analysis

Despite a significantly high initial investment, the automated 
system demonstrated long-term financial advantages. This study 
assumes a working schedule of 10 operating hours per day, for 300 
working days per year, meaning 3,000 h per year. According to ABB 
robotics, the expected lifetime of articulated robots is 40,000 h (ABB, 
2025). Therefore, the lifetime of a robot would be around 13 years. 

To simplify the calculations in this study, the operational lifespan is 
rounded to 10 years. The production time per unit was reduced by 
37.3%, with automated assembly taking 1 h 24 min compared to 2 h 
14 min in manual operations. This directly translates into increased 
output capacity and higher productivity. At full capacity, the output 
is estimated to increase by 900 units, a 75% increase. One of the 
most notable benefits is in labor wages savings, with annual wages 
in the automated factory reduced by USD 373,100, approximately 
51.7%, from USD 721,800 in the manual setup to USD 348,700. This 
translates to a 69.7% reduction (USD 377.5 per unit), as calculated 
using Equations 3, 4. This substantial reduction in human labor not 
only decreases recurring expenses but also reduces dependency on 
workforce availability. While automation integration required an 
investment of USD 399,800, representing a 321% increase, the per-
unit machinery cost rose by 163.8%, amounting to USD 15.3, as 
calculated using Equation 5. This is relatively minor compared to the 
labor savings. Similarly, the annual maintenance cost increased by 
USD 39,980, approximately 321%, which translates to a USD 15.3 
(163.8%) increase per unit, calculated using Equation 6. In terms 
of energy consumption, although automated machines operate at 
higher power levels, their faster production rates reduce electricity 
cost per unit by USD 0.41 (11.6%), from USD 3.54 per unit in the 
manual process, to USD 3.13 per unit in the automated process.

WageRate =
AnnualWages

AnnualWorkingTime
(3)

Wages =WageRate×Time per Unit (4)
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TABLE 8  Key economic indicators.

Type Production 
time per unit

Annual output Annual labor 
wages

Machinery 
investment

Annual 
maintenance 
cost

Electricity cost 
per unit

Manual 2:14:56 1200 unit 721,800 124,500 12,450 3.54

Automated 1:24:34 2100 unit 348,700 524,300 52,430 3.13

Difference −0:50:22 +900 unit −373,100 +399,800 +39,980 −0.41

Impact 37.3% faster 
production

75% more output 51.7% reduced wages 321% increased cost 321% increased cost 11.6% reduced cost

TABLE 9  Production-time-based per unit costs and savings.

Factor Manual Automated Savings Impact

Production time per unit 2.25 h 1.41 h 37% faster

Labor USD/unit 541.35 163.84 377.51 69.7% reduction

Machinery USD/unit 9.34 24.64 −15.3 163.8% increase

Maintenance USD/unit 9.34 24.64 −15.3 163.8% increase

Electricity USD/unit 3.54 3.13 0.41 11.6% reduction

Total 563.57 216.25 347.32 61.6% savings

Depreciation perunit = (
Purchaseprice

Totalmachinehours
)×TimeperUnit (5)

Maintenance perunit = (
Annualmaintenanceprice

Annualmachinehours
)×TimeperUnit

(6)

These results highlight the economic advantages of automation 
through faster throughput, reduced labor dependence, and 
improved energy efficiency, despite the higher upfront investment. 
This reinforces the long-term cost efficiency of automation, 
especially when scaled to annual or multi-year production volumes. 
Costs per unit include labor wages, robotic maintenance and 
depreciation (operational) costs, and electricity consumption. 
The total savings per unit through automation are calculated 
by summing all the per-unit costs and savings, which equals 
about USD 347, as summarized in Table 9. Calculating the total 
costs and savings on a per-unit basis, rather than per year, 
allows for estimating the total savings of automation regardless 
of the annual output, and captures the benefits of automation
per unit.

5.1 Economic evaluation

To evaluate the long-term financial viability of automation 
integration in modular housing production, three core financial 
metrics were calculated based on the analysis: Net Present Value 
(NPV), Benefit-Cost Ratio (BCR), and Payback Period. These 

measures provide a comprehensive understanding of the return 
on investment (ROI) and cost-efficiency over time (Ceroni and 
Nof, 2009). To calculate these measures, the discount rate is 
assumed to be 8% (Fregonara and Ferrando, 2023), the operational 
lifespan is 10 years, and the factory output is assumed to be 
70% of demand, reflecting the industry. This means that the 
annual savings are the cost of producing 1470 units in an 
automated setup, subtracted from the cost of producing 840 units
manually. 

5.1.1 Net present value (NPV)
NPV is the difference between the present value of benefits (or 

cash inflows) and the present value of costs (or cash outflows) over 
a period of time (Nugroho and Maulana, 2020). A positive NPV 
means that the benefits outweigh the costs; hence, it is a profitable 
investment. A negative NPV means the project will result in a net 
loss. NPV is calculated using Equation 7:

NPV =
T

∑
t=1
(

Ct

(1+ r)t
)− initial investment (7)

Where Ct is the net savings in year t, T is the operational lifespan, r 
is the discount rate per period, and t is the number of time periods.

According to the analysis in this study, the initial investment 
for the automated system is USD 399,800. Using the total per-unit 
costs calculated in Table 9, the annual savings at a 70% demand 
can be found by subtracting the automated setup annual cost (USD 
317,887.50) from the manual setup annual cost (USD 473,398.80), 
which equals USD 155,511.30. Considering the assumed discount 
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rate of 8% and an operational lifespan of 10 years, the NPV is 
calculated to be USD 643,693. This positive value indicates that 
investing in automation yields substantial long-term economic 
benefits, confirming the profitability of transitioning to automation. 

5.1.2 Benefit-cost ratio (BCR)
BCR is the ratio of the present value of benefits to the present 

value of costs. It shows the return per dollar spent on the project. If 
the value is greater than 1, benefits exceed costs. If it is less than 1, 
costs exceed benefits. BCR is calculated using Equation 8:

BCR = NPV+ initial investment
initial investment

(8)

The calculated BCR is 2.61, which implies that for every USD 1 
invested in automation, the present value of returns is USD 2.61. This 
high ratio reinforces the efficiency and productivity improvements 
associated with automation in modular construction. 

5.1.3 Payback period
The payback period is the amount of time it takes for an 

investment to recover its initial cost, and it can be calculated with 
or without a discount rate. Equation 9 calculates the simple payback 
period, which is 2.57 years, or about 2 years and 7 months, for the 
automated factory setup. This means that the initial investment will 
be fully recovered in under 3 years through operational savings and 
increased productivity.

Simple Payback Period = initial investment
annual net savings

(9)

DiscountedPaybackPeriod (DPP) =
annualnet savings
(1+ r)t

(10)

Even when calculated using Discounted Payback Period
(Equation 10), the period is almost 3 years. Such a short payback 
period indicates a strong return on investment. 

5.1.4 Policy and investment implications
These positive financial indicators demonstrate that, even under 

conservative assumptions, automated modular factories can achieve 
viable returns within typical investment horizons for affordable 
housing projects. The short payback period of about 3 years suggests 
that targeted financial incentives, such as tax breaks or low-interest 
financing, could accelerate adoption. 

5.2 Sensitivity analysis

A sensitivity analysis was conducted to evaluate the effect of 
key parameters on financial outcomes. The analysis varied factory 
utilization (100%, 40%), initial investment (+5%, +10%), labor cost 
±10%, maintenance ±5%, and discount rate (5%, 10%), each at a time 
while keeping other factors constant (Table 10; Figure 4). Results 
show that factory utilization has the most decisive influence on 
project returns: increasing utilization from 70% to 100% raises the 
NPV from USD 643,693 to USD 1.09 million and the BCR from 2.61 
to 3.73, shortening the discounted payback period to about 2 years. 
At 40% utilization, NPV falls to USD 196,482 and BCR to 1.49, 
extending payback to nearly 5.8 years. Labor wage variation had a 
comparable impact: a 10% increase improved NPV to USD 786,691 

(BCR 2.97), whereas a 10% reduction decreased it to USD 499,766 
(BCR 2.25).

Varying the discount rate between 5% and 10% changed the 
NPV from USD 801,017 to USD 555,750 and the BCR from 3.0 to 
2.39, with payback periods ranging from 2.8 to 3.1 years. Changes in 
initial investment and maintenance cost produced moderate effects; 
a 10% increase in capital reduced NPV to USD 565,470 (BCR 2.29), 
while higher maintenance (15%) lowered NPV to USD 548,494 
(BCR 2.37).

Overall, all tested conditions produced BCRs greater than 
1, positive NPVs, and payback periods of less than 4 years 
(except low factory utilization), indicating that automation remains 
economically viable under realistic fluctuations in financial 
and operational parameters. The sensitivity results confirm that 
automation’s economic viability is robust but dependent on 
utilization efficiency. Factory utilization is the dominant driver 
of profitability; underutilization sharply reduces NPV and extends 
payback, highlighting the need for consistent production demand 
to sustain returns. Changes in capital, maintenance, or labor costs 
have moderate effects, suggesting manageable financial exposure. 
The discount rate modestly influences NPV and BCR but does 
not overturn project feasibility. These results could guide decisions 
on implementing and scaling automation for affordable modular 
housing manufacturing. 

5.3 Limitations and future research

This study has several limitations that should be acknowledged 
when interpreting its findings. The CBA was based on a 
previously established simulation of the panel assembly process 
only and did not extend to all aspects of modular production. 
Mechanical, electrical, and plumbing (MEP) work; material 
procurement and logistics; factory downtime; and multi-unit 
coordination were excluded from the model. Consequently, 
the reported production times and cost savings represent 
direct manufacturing efficiencies rather than complete life-cycle
performance.

The analysis also focused on direct economic parameters, labor, 
machinery, and energy costs, while excluding certain indirect or 
long-term factors such as workforce training, idle time, maintenance 
downtime, salvage value, and quality/environmental impacts. These 
exclusions were necessary to maintain analytical clarity and 
comparability, but may lead to underestimation of total costs in fully 
operational factories.

Additionally, the energy assessment was limited to direct 
assembly line consumption and lighting. Other electricity uses, 
including HVAC, IT systems, and administrative operations, were 
not included due to unavailable data. A comprehensive energy life-
cycle analysis would capture the broader environmental implications 
of automation.

Another methodological limitation concerns uncertainty 
quantification. The present study used outputs from a previously 
published deterministic simulation conducted by the authors; all 
process durations, sequencing, and resource allocations are fixed, 
without probabilistic modeling or statistical replication. Therefore, 
the reported reductions, such as 37% in production time and 69.7% 
in labor cost per unit, represent exact model outputs rather than 

Frontiers in Built Environment 12 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1713686
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Ouda and Haggag 10.3389/fbuil.2025.1713686

TABLE 10  Sensitivity analysis on various economic scenarios based on production time.

Parameter Variation Annual savings (USD) NPV (USD) BCR Discounted payback 
period (years)

Baseline 155,511.3 643,693.48 2.61 2.99

Factory utilization
100% 222,159 1,090,905 3.73 2.020

40% 88,863.6 196,481.99 1.49 5.797

Initial investment (USD)
+5% (419,790) 152,667.9 604,624.04 2.44 3.228

+10% (439,780) 149,811.9 565,470.04 2.29 3.478

Labor Wage (USD)

−10% manual = 487.22; auto = 
147.5

134,061.9 499,766.26 2.25 3.542

+10% (manual = 617.71; auto = 
232.69)

176,822.1 786,690.68 2.97 2.593

Maintenance (USD)

5% (manual = 4.67; auto = 12.32) 169,698.9 738,893.43 2.85 2.714

15% (manual = 14.01; auto = 
36.96)

141,323.7 548,493.53 2.37 3.334

Discount Rate
5% 155,511.3 801,017.04 3 2.820

10% 155,511.3 555,749.62 2.39 3.118

FIGURE 4
Sensitivity analysis on various economic scenarios.

statistical estimates. Future work should incorporate stochastic 
elements and multiple replications to enable confidence interval 
estimation and significance testing.

Finally, while the framework structure is transferable, the 
analysis uses U.S. labor and energy costs, which may limit 
generalizability to regions with different market conditions or labor 
structures.

Future studies should explore region-specific applications, 
integrate hybrid or human-robot collaborative systems, expand 
the framework to include environmental and social life-cycle 
assessments, and employ stochastic or Monte Carlo simulations to 
evaluate the sensitivity of economic indicators to changes in input 
variables with different scenarios simultaneously. These extensions 
would provide a more holistic understanding of automation’s 
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economic and sustainability implications for affordable housing 
manufacturing. 

6 Conclusion

This study aimed to evaluate the economic viability of 
automating modular-construction manufacturing for affordable 
housing through a comparative cost-benefit analysis of manual and 
automated production setups. Using established simulation data 
from prior research, the study examined production time, labor and 
machinery costs, and energy consumption as the main economic 
indicators. The findings indicate that automation substantially 
improves manufacturing efficiency, reducing production time by 
roughly 37%, labor costs per unit by about 70%, and unit energy 
costs by approximately 12%. Despite higher upfront investment 
and maintenance expenses of around 321%, the overall financial 
evaluation, reflected in a positive NPV (USD 640 000), a BCR 
greater than 2, and a payback period of around 3 years, suggests 
that automation is economically feasible for modular construction 
factories operating under comparable conditions. The sensitivity 
analysis confirms that automation in modular construction remains 
financially sound under typical economic fluctuations. However, 
project viability is most sensitive to factory utilization, underscoring 
the importance of sustained production capacity and effective cost 
control for maximizing long-term returns, especially in affordable-
housing manufacturing.

While these results demonstrate promising potential, they 
should be interpreted within the study’s defined scope. The analysis 
focused on the active panel-assembly stage, excluded MEP work 
and other indirect costs, and applied deterministic rather than 
stochastic modeling. Consequently, the outcomes provide indicative 
rather than universal evidence of economic advantage. Future 
research should expand the model’s scope to include full factory 
operations, MEP integration, logistics, and full assembly; apply 
probabilistic sensitivity analysis to capture uncertainty; and assess 
the environmental and life-cycle impacts of automation. Cross-
regional case studies comparing different labor markets and hybrid 
human-robot systems would also enhance the generalizability and 
policy relevance of the findings.

This study highlights the economic and operational benefits 
of automation, providing valuable insights for stakeholders in 
the modular construction industry to optimize their production 
systems for both affordability and sustainability. For developers and 
manufacturers, the results support gradual or phased automation 
strategies targeting high-labor, repetitive processes such as framing, 
sheathing, and insulation to shorten production cycles and improve 
cost efficiency. Policymakers and housing authorities can use these 
insights to design incentive schemes, such as tax, grants, or low-
interest loans, to offset initial capital costs and encourage technology 
adoption in affordable housing delivery. Industry leaders and 
training institutions should anticipate workforce transformation 
by developing reskilling programs focused on robotic operation, 
maintenance, and digital production management. Overall, this 
study contributes to the growing evidence that well-planned 
automation can enhance both the affordability and sustainability of 
modular-construction manufacturing when applied with informed 
economic and policy strategies.
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