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The potential of modular construction to deliver affordable housing can
be enhanced through automation. However, high upfront investment for
automation raises concerns about its economic feasibility. This study aims
to evaluate the economic viability and sustainability of automating modular
construction manufacturing for affordable housing delivery by conducting a
cost-benefit analysis. The study employs a two-stage quantitative approach. The
first stage involves using simulation results from a previous study conducted
by the authors to analyse the production time of manual and automated
factory setups, while the second stage entails collecting and comparing the
costs and metrics associated with both setups, focusing on labor wages, robot
and machinery costs, and energy consumption. Results show that automation
reduces production time by almost 40% per unit, labor wages by 69.7% per unit,
and energy consumption cost by 11.6% per unit. While adopting automation
requires a high investment in robotic systems—approximately 321% higher than
the cost of manual setup—and increases annual maintenance costs by the
same amount, the long-term savings and increased efficiency demonstrate the
economic viability of automation, with an estimated payback period of around
3 years. The study concludes that automation offers substantial economic and
operational benefits for modular manufacturing, offering valuable insights for
stakeholders in the modular construction industry aiming to optimize their
production systems for affordability and sustainability. The analysis is limited
to the direct costs and benefits of the main manufacturing process, excluding
idle time, indirect costs, and environmental and quality impacts. Future research
should expand the model's scope to include full factory operations, MEP
integration, logistics, and full assembly; apply probabilistic sensitivity analysis
to capture uncertainty; and assess the environmental and life-cycle impacts of
automation.

modular construction, automation in construction, robotic assembly, human-
robotcollaboration, sustainable construction

1 Introduction

Modular construction has emerged as a viable solution to address the growing
demand for affordable housing, particularly in urban environments where traditional
construction methods often fall short on speed, cost, and sustainability. By manufacturing
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components in a controlled factory environment and assembling
them on-site, modular construction offers advantages such
as reduced construction time, improved quality control, and
minimized material waste (Parisi and Donyavi, 2024; Tsz et al.,
2023). The reduction in construction duration through the
synchronization of offsite and onsite work minimizes delays caused
by weather and other site disruptions. This not only accelerates
housing delivery but also helps mitigate the rising costs associated
with prolonged construction periods (Salama et al., 2020). Modular
construction is particularly suitable for affordable housing projects
due to its ability to reduce costs through economies of scale,
optimized process and material use, and the need for fewer skilled
workers on site (Abiodun et al., 2024; Liu and Zainul, 2024).
Sustainability is another benefit, as modular construction promotes
resource efficiency, energy conservation, and waste reduction
(Sajid et al., 2024). Despite its numerous benefits, the adoption
of modular construction faces challenges such as initial setup costs,
a shortage of skilled labor, and process complexity (Saliu et al.,
2024). To address these challenges, the construction industry is
increasingly looking towards automation and digital technologies
(Chen et al.,, 2022; Kapoor and Sharma, 2024). The automation
of manufacturing processes demonstrates significant benefits,
including reduced production time, improved precision, and lower
long-term labor costs (Haque, 2023). Hence, its integration in
modular construction manufacturing presents further opportunities
to enhance efficiency, consistency, and scalability (Islam et al,
2025). Automated modular factories can utilize robotic arms for
framing, welding, insulation, and panel assembly to optimize
the manufacturing process (Xu et al, 2025). However, their
high initial costs, advanced maintenance requirements, and the
need for specialized operational expertise remain key barriers to
widespread adoption (Fu et al., 2024).

Purchasing robotic systems, integrating automated production
lines, and modifying factory layouts require substantial capital,
which raises concerns about the financial feasibility of automation,
particularly for affordable housing projects. Additionally, automated
processes may increase energy consumption, and their cost-
effectiveness depends on long-term operational savings and
productivity gains. Given these complexities, a detailed cost-benefit
analysis is necessary to determine whether automation can offer
economic advantages over traditional manual manufacturing in
modular construction. This study aims to evaluate the economic
viability and sustainability of automating modular construction
manufacturing for affordable housing delivery. To achieve this, the
study conducts a cost-benefit analysis of manual and automated
production setups using simulation results established from a
previous study conducted by the authors (Ouda and Haggag, 2024).
The specific objectives are to:

« Utilize simulation results to compare manual and automated
modular-factory setups and analyze differences in production
time.

o Quantify and assess key cost components under both
production scenarios: labor, machinery, and energy
consumption.

o Evaluate the economic feasibility of automation through
financial indicators such as Net Present Value (NPV), Benefit-

Cost Ratio (BCR), and Payback Period.
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o Interpret the implications of automation for affordable housing
delivery, highlighting potential benefits for industry practice
and policy development.

2 Cost-benefit analysis in modular
construction automation

Cost-benefit analysis (CBA) is a key method for assessing the
financial viability of an investment by identifying, quantifying,
and comparing all relevant costs against the expected returns
(Khalil and Tallozy, 2025). In modular manufacturing automation,
CBA examines the economic, operational, and environmental
implications of technological adoption, including production time,
labor costs, machinery expenses, and energy use (Burggrif et al.,
2019). The first aspect of CBA is costs. Capital investment is
one of the most significant costs associated with automation,
due to the advanced technologies and the need for integration
with existing infrastructure. Also, automation systems require
ongoing maintenance, software updates, and technical support to
maintain productivity. Beyond that, the workforce needs adaptation
and training, all of which adds to the costs. The other aspect
of CBA assesses benefits, which requires a structured approach
to quantifying both direct and indirect returns (Khalil and
Tallozy, 2025; Hu et al., 2020).

2.1 Economic evaluation frameworks

Literature explored several CBA frameworks. The traditional
discounted cash flow (DCF) framework is employed for most
feasibility studies, employing indicators of investment performance
like net present value (NPV), benefit-cost ratio, internal rate
of return, and payback period (Pivoriené, 2017). While these
indicators are widely applied for feasibility assessment, several
studies emphasize their limitations when evaluating automation
in construction. DCF methods assume deterministic costs and
stable conditions, which may underrepresent uncertainties in
production variability, maintenance, and energy prices. Also,
they exclude indirect costs such as maintenance, downtime, and
salvage value. Nevertheless, they remain the industry standard
for early-stage decision-making because they provide quick
and comparable measures of financial performance without
requiring extensive data. Studies such as (Khalil and Tallozy,
2025; Hu et al, 2020) confirm the practicality of DCF-based
CBA for automation investments, while others like (Heralova,
2017; Jayawardana et al., 2022; Landscheidt and Kans, 2016)
advocate complementing them with life-cycle or total cost-of-
ownership approaches when detailed data are available. Life-cycle
cost analysis (LCCA) framework calculates design, production,
transportation, installation, maintenance, and disposal costs over
the project lifetime (Heralova, 2017). A recent conceptual study has
proposed a framework that combines LCC with environmental and
social LCA to capture broader impacts (Jayawardana et al., 2022).
Total cost of ownership considers maintenance, downtime, and
disposal costs, with direct costs, better estimating long-term savings
(Landscheidt and Kans, 2016). Process-oriented costing methods,
such as Activity-Based Costing (ABC) and its variants, allocate
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indirect costs (utilities, equipment depreciation, and maintenance)
more precisely than traditional methods, resulting in more
accurate per-unit costs. Time-Driven ABC estimates labor/time
per activity (e.g., welding, assembly), enabling production line
simulation to compute detailed cost-time profiles. Such methods
allow sensitivity analysis, exploring the impact of improving
productivity or automating a step on the total module cost (Lee et al.,
2015). Similarly, Risk Adjusted CBA includes uncertainty when
estimating net benefits through sensitivity analysis, scenario
testing, or probabilistic modelling (Khalil and Tallozy, 2025). Some
studies utilize value-based or multi-criteria frameworks, where
non-monetized benefits (quality, speed, environmental gains) are
translated into monetary or index values and included alongside cost
in an overall assessment (Antillon et al., 2014). Broader approaches
like LCCA, TCO, ABC, and Value-Based CBA offer greater scope
but require detailed long-term datasets rarely available in early-stage
automation projects (Jayawardana et al., 2022). Given the purpose
and method of this paper, the DCF framework is appropriate and
consistent with prior CBA research.

Table I summarizes representative studies that have applied
CBA or equivalent frameworks to construction automation and
prefabrication contexts. Most address individual robotic tasks
or conceptual frameworks with limited financial scope. Early
deterministic CBAs (Burggrif et al., 2019; Hu et al., 2020) quantified
profitability but excluded indirect and energy-related costs. Broader
frameworks such as TCO and LCCA (Jayawardana et al., 2022;
Landscheidt and Kans, 2016) improved life cycle understanding
but remained detached from automation performance data. Task-
specific or performance-oriented studies (Garcia de Soto etal., 2018;
Liu et al., 2024; Hadi et al., 2025; Barosz et al., 2020; Xie et al., 2018)
focused on technical feasibility rather than financial viability. Recent
contributions (Mehdipoor et al., 2025) began integrating simulation
and economic assessment, but remains scope-limited. These studies
collectively reveal that quantitative economic evaluations of process-
scale automation linking production simulation with financial
metrics are still scarce, particularly in the context of affordable
housing modular manufacturing, which remains underdeveloped.

2.2 Automation cost drivers in modular
manufacturing

Several studies have discussed the cost breakdown of automatic
manufacturing systems that utilize industrial robots. Across
different applications, cost structures divide the total cost into
acquisition, operation, maintenance, and disposal costs, as well
as intangible costs such as downtime (Landscheidt and Kans, 2016).
Traditional frameworks often focus on tangible costs and overlook
the hidden costs caused by idle loss, efficiency loss, and quality
loss, among others. Some studies also ignored costs associated
with debugging, upgrading, and disposal due to data scarcity
and a focus on feasibility (Garcia de Soto et al., 2018; Zhao et al.,
2021). Consequently, the initial economic evaluation of modular
manufacturing automation can examine the primary operating
expenses of factory processes, specifically labor, machinery and
equipment, and energy costs. Other costs, such as overhead or
administrative expenses, while relevant in broader economic
evaluations, can be excluded in a process-oriented approach.
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2.2.1 Workforce

Automation can significantly reduce labor requirements,
thereby lowering recurring expenditures and enhancing workforce
productivity (Delgado et al, 2019). While these benefits are
offset initially by the capital cost of robotic systems and the need
for specialized operators and technicians, automation promises
long-term savings through improved efficiency and productivity,
optimized resource allocation, and decreased energy consumption
(Feldmann, 2022; Xiaoyi, 2024). Studies emphasize that workforce
restructuring and reskilling are essential to realize automation cost
savings and productivity gains (Xu et al., 2025; Delgado et al., 2019).

2.2.2 Level of automation

In automation research, production strategies

often described along a spectrum from manual to semi-
automated, (HRC), fully
automated systems (Fu et al., 2024). Semi-automated lines integrate

are

human-robot-collaborative and
mechanized handling or guided assembly while retaining substantial
human control, offering flexibility at a moderate cost. Fully
automated factories represent the upper-limit benchmark for
productivity and capital intensity. Positioning the current study
at this end of the spectrum allows assessment of automation’s
maximum potential benefits, serving as a reference point for future
comparisons with hybrid or phased-adoption strategies.

2.2.3 Production time

One of the primary advantages of modular construction is
its reduced production time compared to traditional building
methods. Automated manufacturing is expected to further reduce
construction time compared to manual processes (Abkar et al.,
2023). Studies report time reductions ranging from 30% to 50%
when robotics are integrated into production lines (Ouda and
Haggag, 2024; Hu et al,, 2020; Garcia de Soto et al., 2018; Gao
and You, 2017). Although automation accelerates production,
researchers note that savings depend on production volume and
system utilization. Under-utilized automated lines may extend
payback periods (Burggrif et al., 2019). Consequently, automation’s
time efficiency must be contextualized within demand and factory
capacity planning, which is critical for affordable housing projects.

Overall, the literature agrees that automations cost advantage
emerges over time through efficiency and consistency rather than
immediate expense reduction. This justifies the use of long-term
financial indicators, such as NPV, BCR, and Payback Period, to
evaluate the feasibility of automation in modular construction
factories.

2.3 Energy

Energy represents a major operational cost and a sustainability
determinant in manufacturing, directly impacting total production
expenses and the environmental footprint (Mohamed et al., 2019).
While industrial robots and machines are high-powered, studies
show that lighting and HVAC systems are the main energy
consumers in a factory (Al Momani et al, 2023; Cai et al,
2025). Consequently, total energy per module can decrease when
automation boosts output and streamlines cycle times (Gao and
You, 2017). For example, a fully automated steel-module line
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TABLE 1 Representative studies on automation and CBA in modular construction.

10.3389/fbuil.2025.1713686

Study Focus/Application Method ‘ Data Type Limitations

Burggrif et al. (2019) Flow-line automation for DCF CBA; NPV, Payback Simulation Excluded energy and
assembly systems maintenance costs

Hu et al. (2020) Facade-installation robot; CBA; NPV, BCR Simulation Single-task focus; no
task-specific full-factory integration

Jayawardana et al. (2022) Modular construction LCSA; Hybrid LCC + LCA; Conceptual no economic metrics or
project Sustainability automation integration

Landscheidt and Kans (2016) Industrial-robot TCO; process TCO model; Cost ratio Empirical No productivity benefits

Garcia de Soto et al. (2018) Robot-built wall fabrication; Time/cost analysis; per unit Empirical No financial CBA
task-specific

Liu et al. (2024) Vision-guided robotic Experimental + simulation; Empirical No CBA or cost data; accuracy
assembly of prefabricated Cycle time/accuracy focused
components; on-site

Hadi et al. (2025) Waste comparison: robotic vs. Comparative case study; Empirical Single case; no CBA model
manual offsite assembly; Material efficiency
factory

Barosz et al. (2020) Human vs. robot operated DES (FlexSim); OEE/OFE Simulation Productivity focused; no CBA;
manufacturing line; line-level productivity metrics not modular construction

specific; automation impact
not monetized

Xie et al. (2018) Dynamic energy simulation in Energy simulation + CBA; Simulation Energy focused; no
modular manufacturing; Energy cost/savings automation
factory

Mehdipoor et al. (2025) Semiautomation in light-gauge CBA + digital workflow; Empirical + simulation No LCA
steel manufacturing; factory Payback period, cost accuracy

in China achieved 22% higher output while using 10% less
total energy than the prior semi-manual setup, equivalent to a
25%-30% reduction in energy per unit (CSCEC, 2024). Likewise,
studies of specific processes show even larger savings, where
collaborative robots used 41%-71% less energy per weld than
manual welding (Ruprecht, 2025). However, most analyses exclude
indirect energy loads such as HVAC, logistics, and IT systems,
which may underestimate total consumption. Recognizing these
boundaries clarifies that automation’s energy advantage is process-
specific rather than absolute.

2.4 Environmental considerations

The prefabricated nature of modular buildings promotes
materials efficiency and mitigates the environmental harm typically
associated with onsite construction. Automation contributes to
the overall sustainability by increasing precision in fabrication
and reducing waste, production time, and energy use (Feldmann,
2022; Wuni and Shen, 2020). Industrial robots are designed to
enhance precision and minimize errors and waste, which lead to
cost savings (Chau et al, 2024; Yang et al, 2017; Chea et al,
2020). For example, ABB Robotics reported a U.S. project where
robotic assembly of modular homes boosted production efficiency

Frontiers in Built Environment

by 15%, sped by more than 38%, while cutting waste by about
30% (ABB, 2021). This is particularly significant given that up
to 25% of materials delivered to construction sites end up
as waste. By adopting sustainable construction practices, waste
can be reduced through optimized building design and efficient
construction methods (Dindorf and Wos, 2024). While these
improvements contribute to lower carbon footprints, most current
evaluations stop short of quantifying full-life-cycle environmental
impacts. Integrating cost, time, and environmental metrics through
combined life-cycle cost and life-cycle assessment approaches would
provide a more comprehensive understanding of automation’s role in
sustainable, affordable housing delivery.

2.5 Summary and research gap

The existing literature confirms that automation can improve
efficiency and sustainability in modular construction, but raises
concerns about its high upfront investment and operational
costs. While cost-benefit analysis is a common evaluation tool
for investment projects, comprehensive economic evaluations
of modular construction automation for affordable housing
remain limited. Most analyses examine either individual robotic
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processes or conceptual feasibility, leaving a gap for simulation-
based economic evaluation of main process automation. This
study addresses the gap by applying simulation-based data
established in prior research within a DCF-based CBA to evaluate
manual and automated factory setups for affordable-housing
manufacturing, focusing on production time, labor and robot
costs, and energy consumption. By linking process-level modeling
to financial indicators, this research provides a simulation-
driven foundation for assessing automation’s potential to enhance
affordability and sustainability, as well as an upper-bound estimate
of financial benefits.

3 Methodology
3.1 Research design

This study employs a comparative cost-benefit analysis
framework to evaluate the economic viability of automating
modular construction manufacturing for affordable housing. The
methodology is structured into four main phases: simulation results,
data collection, cost-benefit analysis, and sensitivity analysis. A
quantitative simulation-based comparative analysis was conducted
between two factory setups: a manual production line and an
automated production line. The comparison focused on key
performance indicators, including production time, labor costs,
robot costs, and energy consumption.

3.2 Simulation and scope

This CBA builds on established simulation results from a
previous study conducted by the authors (Ouda and Haggag, 2024).
Factory operations for both scenarios were modelled (Figure 1)
using the 3D simulation software Visual Components Premium
OLP v4.9. Simulated operations related only to the assembly of the
module panels, specifically framing, sheathing, insulation (without
Mechanical, electrical, and plumbing (MEP) work), and fixtures. The
focus on the assembly process was because it represents the most
labor and time-intensive stage of modular production and therefore
provides a reliable basis for comparing manual and automated
scenarios. MEP installations, as well as material procurement,
logistics, and quality-control operations, were excluded because
simulating these processes would require additional real-factory
data that were unavailable at the time of model development. Cycle
times were recorded for both scenarios:

o Manual Scenario: Simulated using human labor across all
stations.

o Automated Scenario: Simulated using robotic systems across
most stations.

A standard studio unit (Figure 2) was designed and created in
both setups. The unit size is 29.25 m?, composed of four main walls,
two slab panels, five interior walls, and a balcony. The structure
is composed of a light-gauge steel frame, insulated, and covered
with plasterboards to meet thermal, acoustic, and fire resistance
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requirements. A 300 mm grid is used to ensure manufacturing
modularity, reducing waste and costs.

3.3 Model validation and reliability

The simulation model established the process logic, parameters,
and performance data for manual and automated factory setups
through multiple deterministic simulation runs for four different
module designs, ensuring process stability and reliability of
production time outputs. While the results were not empirically
validated against real-world data or benchmarks specific to
automated modular factories due to data unavailability, the
simulation design, sensitivity analysis, and internal consistency were
reviewed to ensure representative modeling of modular-factory
operations.

This paper builds upon those deterministic results, using them
as input data for the cost-benefit analysis rather than rerunning
the simulation. All production time, labor, and energy values
are therefore based on the verified model. This approach ensures
methodological continuity while allowing the current study to focus
specifically on the economic feasibility dimension of automation for
affordable housing manufacturing.

3.4 Data collection
Data were collected from:

o Simulations of modular factory processes from the previous
study (production time).

o Manufacturer and market reports on robot costs, labor wages,
and energy consumption.

« Literature sources to indicate environmental impact and energy
savings in automated systems.

3.5 Cost-benefit analysis framework

The CBA was conducted using the structure shown in Figure 3.
After collecting data, the study analyses production time,
labor wages, machinery costs (initial investment), and energy
consumption. Afterward, it evaluates the long-term financial
viability using Net Present Value (NPV), Benefit-Cost Ratio (BCR),
and Payback Period. Finally, it conducts sensitivity analysis using
various assumptions on the main financial parameters.

3.6 Sensitivity analysis

A sensitivity analysis was conducted to test the robustness of the
economic evaluation. Key financial parameters, including factory
utilization, initial investment, labor wages, maintenance costs, and
discount rate, were varied one by one within realistic ranges while
keeping other factors constant. The resulting changes in NPV, BCR,
and discounted payback period were analyzed to assess how these
assumptions influence the overall feasibility of automation.
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FIGURE 1

Manual (left) and Automatic (right) factory setups (Ouda and Haggag, 2024).

29.25 m? o

FIGURE 2
Studio unit plan and assemblies (Ouda and Haggag, 2024).

U1 SlabjRoof x 2

Side Wall
U1 Side Wall Open
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U1 Internal Wall

U1 Internal Wall2

WC Partition Wall
WC Partition Wall

U1 Internal Wall3

U1 Balcony

4 Results and discussion
4.1 Production time

Production time is a critical factor in the cost-benefit analysis
of modular construction manufacturing. It directly affects labor
costs, factory output, and return on investment. Faster production
translates into reduced labor hours per unit, shorter project
durations, and increased annual output; all of which contribute

Frontiers in Built Environment

to the financial viability of automation. Based on the simulation
results summarized in Table 2, the automated process completed
a studio unit in 1 h 24 min, whereas the manual process required
2h 15 min. This means automation reduced production time by
approximately 37%, enabling higher throughput. This result is
similar to the ABB report stating increased production speed by
more than 38% (ABB, 2021).

Beyond the quantitative reduction in cycle time, these results
have strategic implications for affordable housing delivery. Shorter
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+ Deterministic production time
(manual & automated)
+ Labor data and staffing levels
+ Machinery operation time

1. Simulation Data Input

COST:

- Labor wages (manual vs. automated)
- Machinery purchase
 Annual maintenance (10 % of capital)
* Energy costs (USD 0.18/kWh rate)

2. Cost and Benefit Analysis

BENEFIT:
« Labor savings
- Energy savings
« Productivity/time savings

FIGURE 3
CBA structure for modular manufacturing automation.

production time translates directly into faster turnover of housing
units, allowing developers to meet demand more efficiently and
governments to scale subsidy programs. For factory operators, the
37% reduction indicates higher capacity utilization and greater
resilience against schedule delays, improving financial performance
in high-volume projects.

4.2 Labor costs

Labor costs are one of the most significant recurring
expenditures in modular construction and are therefore central
to the cost-benefit analysis of automation. Manual factory setups
typically require a larger workforce with varying skill levels, resulting
in higher cumulative wages and longer-term operational costs.
In contrast, automated factories rely on fewer personnel, often
focused on oversight, machine operation, and quality control,
thereby reducing labor dependency and associated costs. As this
study focuses on assembly lines, only jobs directly related to it were
considered:

o Assembly Line Worker: performs repetitive, specialized
tasks on a production line to assemble parts into modular
components.

o Machine Operator: operates general manufacturing machines
(e.g., panel cutters, nailing machines, framing stations), specific
to manual setups.

« Production Operator: operates machinery or robotic stations,
specific to automatic setups.

o Assembly Supervisor: directly supervises workers on the
assembly line, focuses on daily tasks, quality, and workflow

o Production Supervisor: oversees entire production process,
including multiple lines/stations, manages schedules and
targets

Both setups are assumed to require a minimum of one assembly
supervisor and one production supervisor for any production line.
The manual factory has 20 assembly line workers, as simulated
in (Chea et al, 2020), and is assumed to require two machine
operators (one per line). The automated factory has four assembly
line workers and is assumed to need three production operators
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NPV

Baseline:
Discount rate= 8 %

Lifespan = 10 years
Utilization = 70%

3. Financial Evaluation

Payback Period

Parameters Tested:

« Factory utilization (100 %, 40 %)
« Initial investment (+5 %, +10 %)
« Labor cost £10 %

+ Maintenance =5 %

« Discount rate (5 %, 10 %)

4. Sensitivity Analysis

Verification:
NPV >0, BCR > 1, and Payback Period < 4 under all
scenarios

to control and monitor the machinery (one per two stations)
(Barosz et al., 2020). Tables 3, 4 detail the annual labor costs for
manual and automated production setups, where average wages
are based on the US market for factory and manufacturing
industry, collected through “official government salary data, surveys,
and other sources such as job postings which contain salary
information” (Average Salary in United States, 2025). Reductions in
workforce size can significantly shorten the payback period for
automation investments.

The decline in direct labor cost represents not only savings
but also a structural shift in workforce composition. Automation
reduces the need for repetitive manual tasks while increasing
the demand for skilled technicians, maintenance staff, and digital
production managers. Affordable housing projects are often reliant
on subsidized labor or public sector incentives; therefore, this
finding highlights the need for complementary training and
upskilling programs to ensure that workforce transformation
supports, rather than displaces, employment. Policymakers can
leverage these savings to invest in programs that prepare workers
for automated manufacturing environments.

4.3 Machinery costs

Machine acquisition and integration costs form a substantial

initial investment in automated modular construction
manufacturing. Unlike ongoing labor costs, robot costs are typically
capital expenditures with long-term value. In a cost-benefit analysis,
it is essential to account not only for the purchase price of robotic
systems but also for related expenses such as maintenance and
operational energy consumption (Lindborg, 2020). Table 5 outlines
the estimated costs of robotic systems used in the automated factory,
as well as other machinery used in both setups. Costs were collected
through direct quotes from manufacturers, such as ABB, and global
suppliers, like Alibaba (X-Tilt Steel Frame, 2025; BOOSTON, 2025;
IRB, 2024). The annual maintenance cost was estimated to be 10% of
the purchase price (Landscheidt and Kans, 2016). The manual setup
would require an investment of USD 124,500 in machinery, while
the automatic setup would require USD 524,300 (an additional USD
399,800 for robotic systems). By comparing these costs against labor

savings and production gains, the economic feasibility of adopting
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TABLE 2 Summary of total process times and overall unit production duration (Ouda and Haggag, 2024).
Setup

Frontiers in Built Environment

o <
<+ h
— N
&
[sa) o
S
wn wn
o —
2 2
o Ll
un —
SA
(=3 n
un —
=
o —
(=3 (=3
A <
=) @
Qq —
~ [=)}
o | =
* =
[ o
<t —
R
Lae} —
(=3 (=3
2 2
o o
[N [3a)
< —
<+ (o]
b5
—
2 E
=1
s S
= 3
<

Concurrent work is not reflected in process totals, but in unit production time.

08

10.3389/fbuil.2025.1713686

robotic systems in affordable housing manufacturing can be more
accurately evaluated.

Although machinery acquisition substantially increases
initial capital expenditure, it represents long-term assets rather
than recurring expenses. When evaluated across the projected
service life of robotic systems, the higher purchase price and
annual maintenance translate into predictable, depreciable costs
that improve financial planning accuracy. For developers and
policymakers, this underscores the importance of designing
financing mechanisms and incentives, such as low-interest loans
or automation grants, to mitigate adoption barriers for smaller
enterprises. Moreover, standardizing maintenance contracts and
supply chains can further reduce operational uncertainty, ensuring
that machinery costs are offset by consistent production efficiency
and quality gains.

4.4 Energy consumption

Energy consumption is a critical operational cost that influences
the overall economic and environmental performance of modular
construction factories. A comprehensive calculation of electricity
consumption in a factory would consider direct and indirect
uses. Direct uses refer to the energy consumed by equipment
that transforms materials into products, such as robots, machines,
assembly-line tools, conveyor systems, and crane systems. Indirect
uses support infrastructure and operations of the factory but
do not directly contribute to the output, including lighting,
HVAC systems, material handling, and amenities (Koncz and
Gludovatz, 2021). Automated factories generally consume more
electricity due to the high-power demands of robotic systems
and machinery, whereas manual factories rely more on human
labor and have lower direct energy demands. However, automation
often leads to faster production cycles, hence, less energy use
per module. In this study, energy consumption was calculated
based on direct uses and the lighting system alone, as other
electricity uses in the factory were not accounted for due to
a lack of available data. This means the total energy costs per
unit may be underestimated, compared to real-world factory
conditions.

4.4.1 Direct energy consumption—assembly line

The automated process requires higher direct energy use
due to machinery at different stations, including articulated
robots for framing and sheathing, conveyors, a butterfly table,
a crane system for transportation, and an insulation blow
system. The transportation process is the same in both setups.
However, the framing and insulation stations are fully manual
in the manual process, eliminating direct energy use, and
the sheathing station requires an electric saw for cutting
panels.

Energy Consumption (kWh) = Power x Time (1)

Cost(USD) = Energy Consumption X rate (2)

This study uses an international electricity cost rate of USD
0.18/kWh (World Population Review, 2025). Using Equations 1, 2,
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TABLE 3 Assumed annual labor costs for manual factory setup [based on US market data (Average Salary in United States, 2025)].

Manual factory jobs Wages USD/year Quantity Total wages USD/year
Assembly Line Worker 27,100 20 542,000
Machine Operator 27,800 2 55,600
Assembly Supervisor 39,600 1 39,600
Production Supervisor 84,600 1 84,600
721,800

TABLE 4 Assumed annual labor costs for automatic factory setup [based on US market data (Average Salary in United States, 2025)].

Automatic factory jobs Wages USD/year ‘ (@IVF:141414% ‘ Total wages USD/year
Assembly Line Worker 27,100 4 108,400
Production Operator 38,700 3 (1 per 2 stations) 116,100
Assembly Supervisor 39,600 1 39,600
Production Supervisor 84,600 1 84,600
348,700

TABLE 5 Estimated cost of machinery (Based on direct quotes and global suppliers).

Machine Cost (USD) Energy use (kW) Quantity  Total cost (USD) Annual maintenance

Articulated robot 3m reach 40,000 2.8 2 80,000 8,000
Articulated robot 4m reach 60,000 2.8 2 120,000 12,000
Cartesian robot/Insulation blow 100,000 11.8 2 200,000 20,000
Conveyor 5300 + 7000 2.25 2 12,300 1,230
Butterfly Table 50,000 3.5 2 100,000 10,000
Girder Crane 4,000 2.4 3 12,000 1,200
Electric Saw 100 1.4 2 200 20

Tables 6, 7, calculate the energy consumption and cost per unit  2022). The number of fixtures needed can be determined by dividing
according to machine use at assigned stations in the automated and  the total Lumens Required (800,000) by the Lumens per fixture
manual processes. (3,600), which is approximately 223 fixtures. With a Luminaire
Power (Watt) of 36 for each, the total power consumption of the
4.4.2 Indirect energy consumption - lighting assembly line’s lighting system is around 8 kW. Therefore, based
According to Neufert, an industrial warehouse with a height of ~ on 10 operating hours per day, 300 working days per year, and a
2-5 m requires 200-500 lux. For this study, the target illuminanceis  rate of USD 0.18/kWHh, the lighting’s annual energy consumption is
set to 400 lux in assembly line areas (Neufert and Neufert, 2012). 24,000 kWh/year, and the annual cost is USD 4,320. Assuming the
The total lumens required is found by multiplying the area (m*)  same lighting conditions for both setups, the manual production of
by the lux. Thus, for an approximate assembly line area of 2000 m*>  one unit (2.25 h) would consume 18 kW and cost USD 3.24, while
(as simulated), the total luminous flux required is 800,000 lumens  the automated production of one unit (1.41 h) would use 11.28 kW
(2000 m? x 400 lux). As referenced in a case study, the factory’s  and cost USD 2.03.
lighting system will utilize 2 x 18 W LED tube luminaires due While the automated system incurs a higher direct energy cost
to their cost efficiency and ease of installation, with a luminous  per unit (USD 1.1) compared to the manual process (USD 0.3), it
flux value of 3600 lumens and a 99% luminaire efficiency (Uydur,  significantly outperforms in terms of production speed, reducing
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TABLE 6 Energy consumption of automated assembly line (based on electricity cost rate of USD 0.18/kWh).

Machine Station Time (min) Energy (kWh) Cost (USD)
Articulated robot (2.8 kW) Framing + Sheathing 56:21 2.63 0.47
Conveyor (2.25kW) | Transportation 16:00 0.60 0.11
Butterfly Table (3.5 kW) Transportation 10:21 0.60 0.11
insulation blow (11.8 kW) Insulation 9:21 1.84 0.33
Girder Crane (2.4 kW) Transportation 6:59 0.28 0.05
Total (USD/unit) 1.08

TABLE 7 Energy consumption of manual assembly line (based on electricity cost rate of USD 0.18/kWh).

Machine Station Time (min) Energy (kWh) ‘ Cost (USD)
Electric Saw (1.4 kW) | Sheathing 5:50 0.14 0.025
Conveyor (2.25 kW) Transportation 16:00 0.60 0.11
Butterfly Table (3.5 kW) Transportation 10:21 0.60 0.11
Girder Crane (2.4 kW) | Transportation 6:59 0.28 0.05
Total (USD/unit) 0.295

indirect energy cost. Therefore, the total energy consumption
cost for the automated would be USD 3.13 per unit, while the
manual would be USD 3.54 per unit. This means that automation
reduces energy cost per unit by approximately 11.6%, improving
efficiency per unit.

While energy savings appear modest on a per-unit basis,
scaling these reductions across annual production yields meaningful
environmental benefits. The lower energy intensity reduces factory-
level greenhouse gas emissions and aligns with sustainability goals.
Incorporating such automation-driven efficiencies into housing
frameworks could help governments meet both affordability and
sustainability targets simultaneously.

4.5 Summary

Table 8 summarizes the key economic indicators. This analysis
helps clarify the economic viability of adopting automation instead
of manual operations.

5 Cost-benefit analysis

Despite a significantly high initial investment, the automated
system demonstrated long-term financial advantages. This study
assumes a working schedule of 10 operating hours per day, for 300
working days per year, meaning 3,000 h per year. According to ABB
robotics, the expected lifetime of articulated robots is 40,000 h (ABB,
2025). Therefore, the lifetime of a robot would be around 13 years.

Frontiers in Built Environment

To simplify the calculations in this study, the operational lifespan is
rounded to 10 years. The production time per unit was reduced by
37.3%, with automated assembly taking 1 h 24 min compared to 2 h
14 min in manual operations. This directly translates into increased
output capacity and higher productivity. At full capacity, the output
is estimated to increase by 900 units, a 75% increase. One of the
most notable benefits is in labor wages savings, with annual wages
in the automated factory reduced by USD 373,100, approximately
51.7%, from USD 721,800 in the manual setup to USD 348,700. This
translates to a 69.7% reduction (USD 377.5 per unit), as calculated
using Equations 3, 4. This substantial reduction in human labor not
only decreases recurring expenses but also reduces dependency on
workforce availability. While automation integration required an
investment of USD 399,800, representing a 321% increase, the per-
unit machinery cost rose by 163.8%, amounting to USD 15.3, as
calculated using Equation 5. This is relatively minor compared to the
labor savings. Similarly, the annual maintenance cost increased by
USD 39,980, approximately 321%, which translates to a USD 15.3
(163.8%) increase per unit, calculated using Equation 6. In terms
of energy consumption, although automated machines operate at
higher power levels, their faster production rates reduce electricity
cost per unit by USD 0.41 (11.6%), from USD 3.54 per unit in the
manual process, to USD 3.13 per unit in the automated process.

Wace Rate — Annual Wages 3)
et = N nual Working Time
Wages = Wage Rate x Time per Unit (4)
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TABLE 8 Key economic indicators.

10.3389/fbuil.2025.1713686

Production Annual output | Annual labor Machinery Annual Electricity cost
time per unit wages investment maintenance per unit
cost

Manual 2:14:56 1200 unit 721,800 124,500 12,450 3.54

Automated | 1:24:34 2100 unit 348,700 524,300 52,430 3.13

Difference | —0:50:22 +900 unit ~373,100 +399,800 +39,980 -0.41

Impact 37.3% faster 75% more output 51.7% reduced wages 321% increased cost 321% increased cost 11.6% reduced cost
production

TABLE 9 Production-time-based per unit costs and savings.

Factor Manual Automated Savings Impact
Production time per unit 2.25h 141h 37% faster
Labor USD/unit 541.35 163.84 377.51 69.7% reduction
Machinery USD/unit 9.34 24.64 -15.3 163.8% increase
Maintenance USD/unit 9.34 24.64 -15.3 163.8% increase
Electricity USD/unit 3.54 313 0.41 11.6% reduction
Total 563.57 216.25 347.32 61.6% savings

Depreciation L= < Purchaseprice ) x Timeper Unit (5)
perunit—\ Total machine hours
Maintenance it = (Annualmaintenunceprice ) x Timeper Unit
perunit Annualmachine hours
(6)

These results highlight the economic advantages of automation
through faster throughput, reduced labor dependence, and
improved energy efficiency, despite the higher upfront investment.
This reinforces the long-term cost efficiency of automation,
especially when scaled to annual or multi-year production volumes.
Costs per unit include labor wages, robotic maintenance and
depreciation (operational) costs, and electricity consumption.
The total savings per unit through automation are calculated
by summing all the per-unit costs and savings, which equals
about USD 347, as summarized in Table 9. Calculating the total
costs and savings on a per-unit basis, rather than per year,
allows for estimating the total savings of automation regardless
of the annual output, and captures the benefits of automation
per unit.

5.1 Economic evaluation

To evaluate the long-term financial viability of automation
integration in modular housing production, three core financial
metrics were calculated based on the analysis: Net Present Value
(NPV), Benefit-Cost Ratio (BCR), and Payback Period. These
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measures provide a comprehensive understanding of the return
on investment (ROI) and cost-efficiency over time (Ceroni and
Nof, 2009). To calculate these measures, the discount rate is
assumed to be 8% (Fregonara and Ferrando, 2023), the operational
lifespan is 10 years, and the factory output is assumed to be
70% of demand, reflecting the industry. This means that the
annual savings are the cost of producing 1470 units in an
automated setup, subtracted from the cost of producing 840 units
manually.

5.1.1 Net present value (NPV)

NPV is the difference between the present value of benefits (or
cash inflows) and the present value of costs (or cash outflows) over
a period of time (Nugroho and Maulana, 2020). A positive NPV
means that the benefits outweigh the costs; hence, it is a profitable
investment. A negative NPV means the project will result in a net
loss. NPV is calculated using Equation 7:

(&
(1+7)!

Where C, is the net savings in year t, T is the operational lifespan, r

T
NPV =)

t=1

@)

) — initial investment

is the discount rate per period, and t is the number of time periods.

According to the analysis in this study, the initial investment
for the automated system is USD 399,800. Using the total per-unit
costs calculated in Table 9, the annual savings at a 70% demand
can be found by subtracting the automated setup annual cost (USD
317,887.50) from the manual setup annual cost (USD 473,398.80),
which equals USD 155,511.30. Considering the assumed discount
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rate of 8% and an operational lifespan of 10 years, the NPV is
calculated to be USD 643,693. This positive value indicates that
investing in automation yields substantial long-term economic
benefits, confirming the profitability of transitioning to automation.

5.1.2 Benefit-cost ratio (BCR)

BCR is the ratio of the present value of benefits to the present
value of costs. It shows the return per dollar spent on the project. If
the value is greater than 1, benefits exceed costs. If it is less than 1,
costs exceed benefits. BCR is calculated using Equation 8:

NPV + initial investment
initial investment

The calculated BCR is 2.61, which implies that for every USD 1
invested in automation, the present value of returns is USD 2.61. This
high ratio reinforces the efficiency and productivity improvements

BCR = (8)

associated with automation in modular construction.

5.1.3 Payback period

The payback period is the amount of time it takes for an
investment to recover its initial cost, and it can be calculated with
or without a discount rate. Equation 9 calculates the simple payback
period, which is 2.57 years, or about 2 years and 7 months, for the
automated factory setup. This means that the initial investment will
be fully recovered in under 3 years through operational savings and
increased productivity.

initial investment

Simple Payback Period = —————— 9
fmpte Fayback Ferio annual net savings ©)
annualnet savings
Discounted Payback Period (DPP) = M(l—)tlg (10)
+r

Even when calculated using Discounted Payback Period
(Equation 10), the period is almost 3 years. Such a short payback
period indicates a strong return on investment.

5.1.4 Policy and investment implications

These positive financial indicators demonstrate that, even under
conservative assumptions, automated modular factories can achieve
viable returns within typical investment horizons for affordable
housing projects. The short payback period of about 3 years suggests
that targeted financial incentives, such as tax breaks or low-interest
financing, could accelerate adoption.

5.2 Sensitivity analysis

A sensitivity analysis was conducted to evaluate the effect of
key parameters on financial outcomes. The analysis varied factory
utilization (100%, 40%), initial investment (+5%, +10%), labor cost
+10%, maintenance +5%, and discount rate (5%, 10%), each at a time
while keeping other factors constant (Table 10; Figure 4). Results
show that factory utilization has the most decisive influence on
project returns: increasing utilization from 70% to 100% raises the
NPV from USD 643,693 to USD 1.09 million and the BCR from 2.61
to 3.73, shortening the discounted payback period to about 2 years.
At 40% utilization, NPV falls to USD 196,482 and BCR to 1.49,
extending payback to nearly 5.8 years. Labor wage variation had a
comparable impact: a 10% increase improved NPV to USD 786,691
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(BCR 2.97), whereas a 10% reduction decreased it to USD 499,766
(BCR 2.25).

Varying the discount rate between 5% and 10% changed the
NPV from USD 801,017 to USD 555,750 and the BCR from 3.0 to
2.39, with payback periods ranging from 2.8 to 3.1 years. Changes in
initial investment and maintenance cost produced moderate effects;
a 10% increase in capital reduced NPV to USD 565,470 (BCR 2.29),
while higher maintenance (15%) lowered NPV to USD 548,494
(BCR 2.37).

Overall, all tested conditions produced BCRs greater than
1, positive NPVs, and payback periods of less than 4 years
(except low factory utilization), indicating that automation remains
economically viable under realistic fluctuations in financial
and operational parameters. The sensitivity results confirm that
automations economic viability is robust but dependent on
utilization efficiency. Factory utilization is the dominant driver
of profitability; underutilization sharply reduces NPV and extends
payback, highlighting the need for consistent production demand
to sustain returns. Changes in capital, maintenance, or labor costs
have moderate effects, suggesting manageable financial exposure.
The discount rate modestly influences NPV and BCR but does
not overturn project feasibility. These results could guide decisions
on implementing and scaling automation for affordable modular
housing manufacturing.

5.3 Limitations and future research

This study has several limitations that should be acknowledged
when interpreting its findings. The CBA was based on a
previously established simulation of the panel assembly process
only and did not extend to all aspects of modular production.
Mechanical, electrical, and plumbing (MEP) work; material
procurement and logistics; factory downtime; and multi-unit
coordination were excluded from the model. Consequently,
the reported production times and cost savings represent
direct manufacturing efficiencies rather than complete life-cycle
performance.

The analysis also focused on direct economic parameters, labor,
machinery, and energy costs, while excluding certain indirect or
long-term factors such as workforce training, idle time, maintenance
downtime, salvage value, and quality/environmental impacts. These
exclusions were necessary to maintain analytical clarity and
comparability, but may lead to underestimation of total costs in fully
operational factories.

Additionally, the energy assessment was limited to direct
assembly line consumption and lighting. Other electricity uses,
including HVAC, IT systems, and administrative operations, were
not included due to unavailable data. A comprehensive energy life-
cycle analysis would capture the broader environmental implications
of automation.

Another methodological limitation concerns uncertainty
quantification. The present study used outputs from a previously
published deterministic simulation conducted by the authors; all
process durations, sequencing, and resource allocations are fixed,
without probabilistic modeling or statistical replication. Therefore,
the reported reductions, such as 37% in production time and 69.7%
in labor cost per unit, represent exact model outputs rather than
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TABLE 10 Sensitivity analysis on various economic scenarios based on production time.

Parameter Variation Annual savings (USD) | NPV (USD) BCR | Discounted payback
period (years)
Baseline 155,511.3 643,693.48 2.61 2.99
100% 222,159 1,090,905 3.73 2.020
Factory utilization
40% 88,863.6 196,481.99 1.49 5.797
+5% (419,790) 152,667.9 604,624.04 2.44 3.228
Initial investment (USD)
+10% (439,780) 149,811.9 565,470.04 2.29 3.478
—-10% manual = 487.22; auto = 134,061.9 499,766.26 2.25 3.542
147.5
Labor Wage (USD)
+10% (manual = 617.71; auto = 176,822.1 786,690.68 2.97 2.593
232.69)
5% (manual = 4.67; auto = 12.32) 169,698.9 738,893.43 2.85 2.714
Maintenance (USD)
15% (manual = 14.01; auto = 141,323.7 548,493.53 237 3.334
36.96)
5% 155,511.3 801,017.04 3 2.820
Discount Rate
10% 155,511.3 555,749.62 2.39 3.118
Sensitivity analysis on various economic scenarios
6.5 1,200,000.00
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5.5 1,000,000.00
5 900,000.00
45 800,000.00
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FIGURE 4
Sensitivity analysis on various economic scenarios.

statistical estimates. Future work should incorporate stochastic
elements and multiple replications to enable confidence interval
estimation and significance testing.

Finally, while the framework structure is transferable, the
analysis uses U.S. labor and energy costs, which may limit
generalizability to regions with different market conditions or labor
structures.
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Future studies should explore region-specific applications,
integrate hybrid or human-robot collaborative systems, expand
the framework to include environmental and social life-cycle
assessments, and employ stochastic or Monte Carlo simulations to
evaluate the sensitivity of economic indicators to changes in input
variables with different scenarios simultaneously. These extensions
would provide a more holistic understanding of automation’s
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economic and sustainability implications for affordable housing
manufacturing.

6 Conclusion

This study aimed to evaluate the economic viability of
automating modular-construction manufacturing for affordable
housing through a comparative cost-benefit analysis of manual and
automated production setups. Using established simulation data
from prior research, the study examined production time, labor and
machinery costs, and energy consumption as the main economic
indicators. The findings indicate that automation substantially
improves manufacturing efficiency, reducing production time by
roughly 37%, labor costs per unit by about 70%, and unit energy
costs by approximately 12%. Despite higher upfront investment
and maintenance expenses of around 321%, the overall financial
evaluation, reflected in a positive NPV (USD 640 000), a BCR
greater than 2, and a payback period of around 3 years, suggests
that automation is economically feasible for modular construction
factories operating under comparable conditions. The sensitivity
analysis confirms that automation in modular construction remains
financially sound under typical economic fluctuations. However,
project viability is most sensitive to factory utilization, underscoring
the importance of sustained production capacity and effective cost
control for maximizing long-term returns, especially in affordable-
housing manufacturing.

While these results demonstrate promising potential, they
should be interpreted within the study’s defined scope. The analysis
focused on the active panel-assembly stage, excluded MEP work
and other indirect costs, and applied deterministic rather than
stochastic modeling. Consequently, the outcomes provide indicative
rather than universal evidence of economic advantage. Future
research should expand the model’s scope to include full factory
operations, MEP integration, logistics, and full assembly; apply
probabilistic sensitivity analysis to capture uncertainty; and assess
the environmental and life-cycle impacts of automation. Cross-
regional case studies comparing different labor markets and hybrid
human-robot systems would also enhance the generalizability and
policy relevance of the findings.

This study highlights the economic and operational benefits
of automation, providing valuable insights for stakeholders in
the modular construction industry to optimize their production
systems for both affordability and sustainability. For developers and
manufacturers, the results support gradual or phased automation
strategies targeting high-labor, repetitive processes such as framing,
sheathing, and insulation to shorten production cycles and improve
cost efficiency. Policymakers and housing authorities can use these
insights to design incentive schemes, such as tax, grants, or low-
interest loans, to offset initial capital costs and encourage technology
adoption in affordable housing delivery. Industry leaders and
training institutions should anticipate workforce transformation
by developing reskilling programs focused on robotic operation,
maintenance, and digital production management. Overall, this
study contributes to the growing evidence that well-planned
automation can enhance both the affordability and sustainability of
modular-construction manufacturing when applied with informed
economic and policy strategies.
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