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Virtual reality (VR) offers transformative potential for human behavioral 
studies by enabling controlled simulations of complex environments. Accurate 
replication of real-world conditions, however, remains critical, particularly for 
lighting studies that require high precision and reliable data extraction. This 
study investigates discrepancies in light distribution across typical lighting 
configurations and develops predictive models to mitigate these variations 
while identifying practical constraints. Illumination differences between real-
world measurements, DIALux evo simulations, and VR environments were 
examined empirically. Multiple linear regression with interaction terms was 
then used to develop predictive models for one-, two-, and four-luminaire 
configurations on horizontal and vertical planes, based on 100 test points per 
plane in a controlled room. Model validation included cross-space application 
and residual analysis using an additional dataset of 60 test points per plane 
collected in a separate room with a similar lighting setup. Statistical analysis 
revealed 53%–88% differences in illumination intensity across configurations. 
The predictive models effectively reduced discrepancies on the horizontal plane 
and were optimized for linear, low-intensity lighting, while highlighting the 
need for further investigation into vertical illumination and complex luminaire 
arrangements. Future work involving non-linear or advanced computational 
approaches could enhance model accuracy for irregular lighting distributions 
in VR. These findings have practical implications for VR-based lighting studies, 
building performance simulations, and virtual illumination design.
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 1 Introduction

Virtual Reality (VR) technology possesses considerable potential for precise assessment 
of environmental interventions, as reflected in the growing body of research within the
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built environment domain (Kuliga et al., 2015; Newman et al., 
2022; Fathi et al., 2025; Liu and Liu, 2025). Many of these studies 
aim to replicate real-world scenarios to map human activities 
with precision. However, achieving an exact replica of real-world 
test environments remains a critical challenge. Consequently, 
researchers have pursued two primary directions: one involves the 
direct comparison of human activities across matched physical and 
virtual environments, while the other focuses on the calibration or 
improvement of VR systems to enhance fidelity or impressiveness. 
Notably, improvements in experimental methodologies for VR 
calibration have been observed in scholarly work dating back 
to 1993 (Nemire and Ellis, 1993). Though, it is evident that 
calibration specifically for lighting is essential for creating a 
real-world-like experience within virtual environments, enabling 
researchers to collect reliable and valid data. This need becomes 
particularly significant given that VR modeling tools were originally 
developed for game design and visual representation, with scene 
controls resembling camera settings—features not inherently suited 
for scientific investigations in built environment. Despite these 
limitations, a growing number of scientific inquiries in recent years 
have begun to adapt VR modeling tools for quantitative research 
purposes, moving beyond their traditional qualitative or behavioral 
applications. Moreover, research in this domain is increasingly 
leveraging advanced VR tools for diverse scientific applications. 
These include energy simulation (Hou et al., 2022), investigations 
into occupant comfort and behavioral responses (Gan et al., 
2022; Somarathna et al., 2022), studies of lighting environments 
(Mohammadrezaei et al., 2024), emergency evacuation modeling 
(Liu and Liu, 2025), as well as architectural and urban design 
research (Portman et al., 2015; Jamei et al., 2017).

Recent advancements in Virtual Reality (VR) calibration focus 
on lighting, color fidelity, and HMD performance, with lighting 
being crucial for spatial realism (Kumar and Dhar, 2023). Although 
VR tools employ Physically Based Rendering, Global Illumination, 
and reflection techniques, they optimize perceptual realism rather 
than replicating real-world lighting quantitatively. Consequently, 
VR environments appear convincing but often fail to deliver reliable 
illumination data, such as lux levels on surfaces. Despite this, 
researchers in architecture and the built environment increasingly 
use VR to study perception and lighting. This highlights the need 
for a robust model to predict lighting intensity from luminaire 
configurations. This study addresses the perceptual-empirical 
gap by calibrating VR lighting for lux accuracy, distinguishing 
subjective brightness from measurable illuminance (Panahiazar and 
Matkan, 2018).

This research addresses the critical gap between perceptual 
realism and quantitative accuracy in VR lighting calibration. While 
most VR research emphasize visually convincing environments, 
they rarely ensure empirically reliable illumination data. To bridge 
this divide, the study developed a virtual replica of a real 
discussion room, recreating its lighting to design six paired test 
scenarios across three setups. Lux measurements at 100 horizontal 
and vertical points enabled rigorous comparison between real 
and virtual conditions. Using multiple linear regression with 
interaction terms, predictive equations for lux levels were created 
and validated. Even though discrepancies exceeded 82% overall 
and 53% for horizontal surfaces, the models demonstrated strong 
predictive capability, marking a novel step in quantifying VR 

illumination accuracy. Unlike prior work, this research proposes 
a calibration framework that translates VR lighting into reliable, 
physical metrics, ensuring surfaces in virtual scenes can be analyzed 
with scientific consistency. Beyond methodological innovation, the 
study contributes a foundation for integrating predictive calibration 
tools into VR platforms, expanding their role in artificial lighting 
simulations and establishing VR as a credible instrument for 
evidence-based built-environmental research. 

2 Related work

A comprehensive state-of-the-art literature review, substantiated 
by bibliometric analysis, was performed to address the key research 
enquiries of this study. The review process emphasized eight key 
research articles, selected through a systematic screening procedure. 
Particular emphasis was placed on eight research articles shortlisted 
through a systematic screening process. However, findings from all 
reviewed works with relevant contributions were documented in 
chronological order. The review is organized into two main stages: 
first, a comparative analysis of existing approaches (Section 2.1), and 
second, an examination of calibration methodologies along with the 
identification of limitations in current models (Section 2.2). 

2.1 Comparing physical and virtual lighting 
environments

Early research on Virtual Reality (VR) from 1995 to 2000 
primarily examined the limitations of head-mounted displays 
(HMDs), the representation of complex spatial layouts, and 
the challenges of multi-user interaction (Rolland et al., 1995; 
Arthur et al., 1997; Schroeder et al., 1998; Jayaram et al., 1999). 
During this period, lighting was not a central focus. The first studies 
addressing virtual lighting directly emerged in the early 2000s. 
Mania, (2001) compared real and virtual lighting visualizations, 
while Mania and Robinson, (2005) confirmed perceptual parity in 
such comparisons. Between 2002 and 2008, VR studies expanded 
into fields like medicine, vehicle design, and multisensory training 
(Taylor et al., 2002; Jichlinski, 2003; Reuding and Meil, 2004; 
Spottiswood and Bishop, 2005; Rothbaum et al., 2006; Lee et al., 
2007; Jones et al., 2008). However, lighting remained secondary, 
with the majority of research focusing either on interactional 
or experiential qualities rather than illumination. After 2011, 
VR research shifted toward behavioral analysis and disability 
support, continuing to prioritize application over lighting accuracy 
(Fornasari et al., 2013; Gade et al., 2013; Picinali et al., 2014).

The first systematic effort to directly compare lighting in 
physical and virtual settings was undertaken by Heydarian et al. 
(2015b), who studied end-user preferences for lighting during 
reading tasks. Participants interacted with virtual environments 
that replicated real-world spaces and could adjust blinds or 
artificial lights. Their work extended into a broader study on 
natural versus artificial light usage Heydarian et al. (2015a) Results 
revealed a strong preference for daylight under certain control 
conditions, but less reliance on natural light when both artificial 
lighting and blinds were adjustable. These findings demonstrated 
that virtual platforms could simulate human lighting behavior in 
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detail, though accuracy of simulated illumination data was not 
the focus. Hong and Michalatos, (2016), advanced this discussion 
by replicating real-world lighting in VR, addressing limitations 
such as screen-based light intensity and visual adaptation. They 
concluded that Bloom and HDR rendering techniques could 
improve realism compared to conventional Building Information 
Modeling (BIM) software. Chokwitthaya et al. (2017) extended 
this work by exploring performance thresholds, revealing that 
discrepancies around 300–400 lumens impacted task performance. 
However, results were inconclusive since discrepancies were not 
measured in lux—the standard illuminance unit recommended by 
the Illuminating Engineering Society (IES).

Perceptual approaches continued to dominate. 
Chamilothori et al. (2019) compared perceptual daylighting 
factors—pleasantness, interest, and satisfaction—finding no major 
differences between real and virtual conditions, thus validating 
VR for perceptual daylight research (Mahmoudzadeh et al., 
2021). further compared user satisfaction with interactive versus 
automated lighting systems and observed that lighting systems 
offering control were preferred and imposed lower cognitive loads 
for reading tasks compared to automated systems. Hegazy et al. 
(2021) however, pointedly highlighted the need for VR-based studies 
to benchmark illumination against real-world standards to improve 
scientific validity.

Recent reviews (Luo and Zhang, 2023) reaffirm that most 
VR-lighting research emphasizes perceptual responses that 
enrich different domains but rarely prioritizes quantitative rigor. 
Consequently, while VR has positioned itself as a powerful 
tool for cost-effective, scalable lighting studies, it remains 
limited in capturing and reproducing illumination data with 
measurable accuracy. 

2.2 Calibration studies

Efforts to improve realism in VR lighting environments 
have generally followed two routes: (1) HMD visual 
calibration—ensuring proper reproduction of light within headsets, 
and (2) light source calibration—adjusting digital light settings to 
mirror real-world illumination values. The first approach typically 
involves subjective user studies within immersive VR, while the 
second incorporates 3D modeling, rendering engines, and direct 
illuminance measurement tools.

Research specifically addressing lighting calibration is relatively 
recent and limited. The earliest significant attempt was Jia et al. 
(2014), who created an interactive framework combining 
photorealistic simulation with lighting control algorithms. However, 
this work focused primarily on computer graphics rather than 
real-world validation. Hegazy et al. (2021) conducted one of the 
first daylight-focused calibration studies using Unreal Engine. 
They examined illuminance accuracy in two daylit case studies 
with varying spatial complexity. Three rendering techniques 
were tested, with ray tracing achieving the closest results to 
benchmark lighting simulation tools. While this study demonstrated 
promise for real-time ray tracing, it emphasized caution, given the 
inability of VR engines to fully replicate the multifaceted nature of 
real-world lighting.

Subsequent studies concentrated on HMD calibration. 
Murray et al. (2022), developed a framework for calibrating headset 
luminance via color grading in Unity but restricted their analysis to 
achromatic RGB values without addressing hardware constraints. 
Gil Rodríguez et al. (2022), employed imaging colorimeters to 
validate HMD output, finding a linear relationship between 
surface reflectance and visual stimuli, while also investigating 
color constancy effects. Though valuable, these studies focused 
on luminance and display performance rather than illumination 
accuracy. A technically significant but narrow approach was 
proposed by Scorpio et al. (2022). who calibrated single-point 
lighting in Unreal Engine 4 (UE4). By adjusting cone angles of 
artificial lights, they compared simulated luminance with DIALux 
Evo, though their results remained software-centric and lacked 
physical validation. Kong et al. (2023) contributed by examining 
thresholds for brightness perception of luminous surfaces, offering 
useful behavioral insights but leaving illumination (lux) calibration 
unaddressed.

These efforts illustrate that most calibration studies stop short 
of offering practical, replicable methodologies for translating real-
world lighting conditions into virtual spaces. Although VR has 
proven its utility in human perception and behavioral modeling, 
robust approaches for quantitative validation in lighting simulations 
remain undeveloped. The synthesis of the literature reveals several 
critical limitations:

• Comparative studies predominantly emphasize qualitative 
aspects—such as behavioral or perceptual observations—rather 
than quantitative assessments. These studies often lack 
standardized measurement protocols across both real and 
virtual environments, limiting their utility in developing 
generalized calibration models.

• There is a notable scarcity of non-perceptual, parametric 
studies focused on lighting intensity, particularly in the 
context of calibrating light levels outside controlled dark-
room environments. Existing findings remain inconclusive, 
underscoring the need for future research aimed at advancing 
reliable calibration methodologies. It is important to note 
that existing studies primarily examine luminance—what a 
surface emits (quantitative)—or brightness (qualitative), while 
illumination—what a surface receives (quantitative)—is often 
overlooked.

Moreover, there is a significant gap in the literature 
concerning practical, replicable methods for calibrating complex 
lighting scenarios across varied real-world settings. Therefore, 
this study aims to develop a practical calibration model by 
systematically comparing real-world and UE5 lighting conditions 
on horizontal and vertical surfaces. It uniquely contributes a 
methodological framework for enhancing digital illumination 
fidelity across varied lighting scenarios, advancing accuracy 
in architectural lighting simulations and supporting more 
precise illumination data generation. Therefore, to achieve 
these objectives, this study seeks to address the following
research inquiries: 

RQ1: What is the degree of disparity in lighting intensity 
measurements between VR and physical environments?
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RQ2: What can be the optimized and practical approach to 
minimize quantitative discrepancies between virtual and 
physical environments’ illumination distribution?

The outcomes of this study are expected to advance the 
application of virtual environments in sustainable architecture, 
human-centered design, and predictive modelling, ultimately 
fostering more accurate and reliable VR tools for design, research 
and construction industry. 

3 Methodology

The experimental procedure involved creating a virtual replica 
of a real-world room under comparable lighting conditions to 
investigate illumination discrepancies and develop a calibration 
model. Three distinct lighting arrangements were implemented to 
assess light distribution across both horizontal and vertical surfaces. 
A total of 100 test points was recorded on the horizontal surface and 
100 on the vertical surface. Lux levels from both environments were 
compared to identify variations in lighting intensity. Subsequently, 
predictive models were developed using Multiple Linear Regression 
(MLR) with interaction terms. While MLR is a commonly used 
statistical method, its application for calibrating VR illumination 
represents a novel methodological contribution, addressing a 
significant gap in current research. Although no living subjects 
were involved, the study was reviewed and approved by the 
Kasturba Medical College and Kasturba Hospital Institutional Ethics 
Committee (Approval No. IEC1: 373/2024), ensuring adherence to 
ethical standards. 

3.1 Physical environment setup

3.1.1 Test room configuration
A small discussion room measuring 2.75 m in width and 3.1 m 

in length, featuring a centrally positioned table, was selected for 
its flexible environmental control. The table (1,500 mm × 750 mm 
× 750 mm) was covered with a white paper sheet marked with a 
100 mm grid, yielding 128 test points for horizontal measurements. 
For vertical surface measurements, 144 test points were marked 
on the front wall using the same grid size. The room has a false 
ceiling at a height of 2.48 m, equipped with four luminaires of 
identical technical specifications, each positioned 600 mm from the 
adjacent walls (Figure 1). The room is isolated from daylight and 
external artificial light sources. To maintain consistency in reflection 
properties, color, and texture, RGB values were recorded for each 
surface, and materials with matching properties were replicated in 
the VR environment.

3.1.2 Instruments, measurement protocols and 
real-world data collection

A lux meter (make - LT Lutron LX 101A) has been used to collect 
the lighting intensity readings from the table top and wall surface 
grid points. The collected illuminance data were recoded digitally 
in lux and rechecked again at some random points to minimize 
error. However, the readings were varying between 1 lux and 5 lux at 
some points. Illumination measurements were recorded using the 

lux meter, which has a specified accuracy of ±5% of the reading 
±10 digits, though it is widely regarded as sufficiently precise for 
architectural and environmental lighting studies. For correct reading 
of RGB values shade cards from Asian Paints were used to determine 
accurate RGB values (Table 1).

Additionally, glossiness and surface roughness were estimated 
based on gloss unit (GU) values provided by material manufacturers 
(e.g., Asian Paints for painted surfaces, laminate suppliers for 
finishes). For some materials such as papers or specialty finishes, 
gloss levels were assessed visually under controlled illumination 
conditions to categorize them as matte, semi-gloss, or glossy. These 
gloss assessments were then translated into roughness values for the 
virtual materials in UE5 (Wotton, 2000; Decrolux, 2023).

Reflection factors (approximate diffuse reflectance) for materials 
were estimated using published literature values for typical 
surface types (e.g., matte paints ∼5–6%, white paper ∼65%, 
ceilings ∼70%) and cross-checked visually by comparing the 
brightness and reflectance under uniform lighting (Jakubiec, 
2023). Albedo values were approximated from the measured 
RGB readings under controlled light conditions and converted 
into normalized reflectance values to guide Base Color settings 
in the virtual environment. These surface property estimations 
ensured consistency between real-world materials and their virtual 
counterparts (Games, 2024). 

3.1.3 Light source specifications
Four ceiling-mounted luminaires (Havells brand) were utilized, 

each requiring 15 W of system power and providing an output of 
1,550 (≥1,500) lumens. These luminaires have a color rendering 
index (CRI) exceeding 80. The correlated color temperature (CCT) 
is specified at 5700 K. Each luminaire is designed with an inner 
beam angle of zero degree and an outer beam angle of 120°, ensuring 
broad, uniform light distribution (Supplementary Appendix A). 

3.2 VR environment setup

3.2.1 3D modelling and virtual environment 
configuration

A three-dimensional model of the test spaces was developed 
in SketchUp, using precise measurements from the real-world 
environment. This model was then imported into Unreal Engine 
5.3.2 (UE5) via the Datasmith Direct Link tool. Within UE5, 
materials were applied based on previously collected RGB values 
and textures derived from photographs of the physical environment. 
Test grids were created by applying an image of the grid pattern as 
a material texture sample. All indoor surface properties, including 
material type, texture, color, reflectance percentage, and albedo, were 
matched with real-world values as detailed in Table 1. To eliminate 
external illumination sources, both the SunSky and Volumetric 
Cloud settings were disabled.

The virtual lighting setup in UE5 used spotlights with a lumen 
output of 1,550, matching the real-world luminaires in terms of 
beam angles and color temperature. Additional settings in UE5 
were configured with Indirect Lighting Intensity and Volumetric 
Scattering set to 1.0, and PostProcess Volume, Global Illumination, 
and Reflection Method set to Lumen Only. Ray Tracing Reflections 
remained at default values. Light placement was executed to replicate 
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FIGURE 1
Test room attributes. (a) real world test room settings, (b) VR environment test room settings, (c) Dimensioning and positing of lighting and data 
collection points, (d) Test points on vertical surface, (e) Test points on horizontal surface (source: author).

TABLE 1  Indoor materials and components surface physical properties.

Sr No. Interior surface 
type/Interior 
component

Surface 
material

RGB value Glossiness or 
Roughness/
Estimated 

roughness in 
UE5

Reflection 
factor

Estimated 
albedo

1 Left side wall Matte (laminate) 185,176,177 15 GU/0.85 5% ∼0.72

2 Front side wall (left side 
section)

Matte colored 
(laminate)

165,39,45 15 GU/0.85 6% ∼0.30–0.35

3 Front side wall (right 
side section)

Matte (paint) 151,69,69 15 GU/0.85 5% ∼0.28–0.32

4 Right side wall Matte light gray paint 210,211,213 15 GU/0.85 5% ∼0.82

5 Table surface (Paper) Ultra-matte, light finish 248,247,240 6 GU/0.95 65% ∼0.88–0.92

6 Floor surface Matte neutral gray 170,170,170 10 GU/0.90 25% ∼0.66

7 False ceiling Off white matte paint 250, 249, 246 20 GU/0.75 70% ∼0.90

the exact positioning and parameters of the physical setup, thus 
mimicking the real-world lighting environment. 

3.2.2 Data collection protocol in VR
The data collection procedure in this experiment follows a 

two-step approach to measure lux levels under virtual lighting 
conditions. In the first step, lux measurements for each data point 

in UE5 are obtained through a systematic process. This involves 
navigating to the Show menu, selecting Visualize, and enabling 
HDR Eye Adaptation. The cursor is then positioned precisely on 
each designated test point on the virtual test surface within the VR 
environment to record lux values. This procedure is repeated for 
all three lighting arrangements. Measurements are taken separately 
for horizontal and vertical test surfaces, resulting in a total of six 
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FIGURE 2
Lighting configuration for experimental setups.

iterations (Figure 2). In the second step, the distance of each data 
point from the light sources is measured. The Euclidean distance of 
each data point is calculated using the Pythagorean theorem. This 
distance will serve as an independent variable in predictive analysis.

With respect to computer display effect, the HDR Eye 
Adaptation tool in Unreal Engine dynamically adjusts exposure 
in response to scene lighting, simulating the adaptive response of 
human vision to variations in brightness. However, in this study, lux 
readings were obtained from the UE5 lighting engine computations, 
which are independent of the monitor’s brightness or contrast 
settings. While variations in monitor brightness may affect the 
visual perception of the scene, they do not influence the lux values 
computed by Unreal Engine. Thus, display settings did not impact 
the illumination readings during the data collection process. 

3.3 Calibration and analysis procedure

The calibration procedure consists of three steps: Data 
collection from both the environments and comparison including 
descriptive statistical analysis, regression analysis to identify 
adjusted VR value for calibration for different lighting arrangements 

and lastly validation and accuracy assessment by comparing 
the adjusted VR data with the real-world data. Figure 3 
represents the step by step data collection, analysis and
reporting procedure.

3.3.1 Data comparison and pre-processing
In the first step, the difference between the lux level (measured 

in the VR environment) and the desired lux level (targeted real-
world measurement) on all test points were calculated. Thereafter, to 
understand the relative magnitude of the discrepancy, the difference 
was further expressed as a percentage of the desired target lux 
level. This calculation provided a standardized measure to assess the 
intensity of adjustment needed across different lighting scenarios. 
This percentage metric allows for a clear interpretation of how 
much the current lux level in the VR environment deviates from 
the real-world target. The results of this comparison indicated 
that in most cases, an increment in lighting intensity is required 
within the VR environment to match the real-world lux levels. This 
adjustment is essential for achieving a closer alignment between 
VR simulations and real-world conditions, thereby enhancing the 
illumination accuracy of the virtual setup for further analysis 
(reported in Section 4.1). 
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FIGURE 3
Brief experiment procedure depicting steps from test space selection to result reporting (source: author).

3.3.2 Calibration strategy
Following the initial assessment of intensity discrepancies, 

the primary objective is to determine adjusted VR illuminance 
values. Therefore, regression analysis was performed to 
enable the quantification of relationships among variables 
(Marill, 2004; Uyanık and Güler, 2013). In this study, the dependent 
variable is the illuminance level (lux) in the VR environment, 
while the independent variables include real-world illuminance 
readings (lux) and the Euclidean distance of each test point 
from the luminaires. Regression analysis also facilitates the 
identification of statistically significant factors, the incorporation 
of interaction effects (such as distances from light sources), and 
ultimately the development of a predictive VR calibration model. 
To maintain the model’s practicality and manage complexity, 
variables such as reflection percentage and color rendering index
were excluded. 

3.3.3 Validation and accuracy assessment
To evaluate the accuracy of the predictive VR calibration model, 

this study conducted a validation using a new set of test points 
on both horizontal and vertical surfaces. The predictive models 
were initially developed using 100 test points collected across 
various setups. The additional 28 and 20 points were then used to 
compare the predicted illumination values with the actual values 
obtained from the VR and real-world environments. Subsequently, 

the predictive models were assessed in cross-space application 
using residual analysis to assess consistency and robustness under 
diverse conditions, thereby demonstrating the model’s adaptability 
(Verran and Ferketich, 1987; Santos Nobre and da Motta Singer, 
2007). Similar validation approaches have been widely applied 
in research for predictive models, including those for annual 
energy consumption and monthly heating demand predictions 
(Catalina et al., 2008; Mottahedi et al., 2015). 

4 Data analysis

4.1 Discrepancy evaluation

Discrepancy in real and VR environment is checked using two 
different approaches. In first, the variability in illumination level 
has been screened using a comparative analysis approach involving 
real-world, DIALux, and Unreal Engine data. This method not only 
helps in identifying the fidelity of lighting simulation tools but also 
validates the accuracy of modeling. The first step checks whether 
real-world data aligns more closely with DIALux while diverging 
from UE5, which would suggest that the issue lies primarily with 
UE’s illumination algorithms. Alternatively, if both DIALux and UE5 
deviate from real-world data, the discrepancies may originate from 
inaccuracies in 3D modeling or material properties.
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FIGURE 4
Selected test points (red color) for discrepancy evaluation, (a) horizontal surface, (b) vertical surface.

To examine this issue, illumination data were collected from 16 
points on horizontal surfaces and 11 points on vertical surfaces, 
arranged along two imaginary cross-diagonal lines (Figure 4). 
The percentage error between real-world and DIALux values 
on horizontal surfaces was minimal—0% with one light, −4% 
with two lights, and −5% with four lights—indicating that 
DIALux accurately replicates real-world lighting conditions on flat 
horizontal planes. In contrast, DIALux overestimated illumination 
by approximately 20% on vertical surfaces under one- and two-
light scenarios and underestimated it by 10% under the four-light 
condition (Refer Supplementary Appendix B). The VR environment 
created in Unreal Engine (UE), however, showed substantial 
underestimation across all scenarios. On horizontal surfaces, the 
error ranged from 52% to 61%, while vertical surfaces exhibited 
even greater discrepancies, with errors between 84% and 92%. 
These findings reveal a significant gap in UE’s ability to simulate 
real-world lighting, particularly on vertical planes. Thus, this 
analysis confirms that while DIALux offers reliable alignment 
with real-world lighting on most surfaces, Unreal Engine’s lighting 
setup may require further calibration or modification to improve 
simulation accuracy (Figure 5).

The second approach for discrepancy evaluation involved a 
descriptive statistical analysis conducted across horizontal and 
vertical surfaces, with measurements taken at 100 test points for each 
lighting scenario. In the one-light source condition, the horizontal 
surface exhibited an average deviation of 41.34 lux, indicating 
the need for a 53.49% increase in light intensity within the VR 
environment to align with real-world conditions. Conversely, the 
vertical surface showed a deviation of 21.2 lux, necessitating 82.78% 
adjustment. Under the two-light source scenario, the horizontal 
surface showed an average difference of 84.12 lux requiring a 59.69% 
increase, while the vertical surface recorded a deviation of 32.12 lux 
requiring 88.19% increase. Finally, in the four-light source scenario, 
the horizontal and vertical surfaces showed differences of 174.23 
lux requiring 61.05% increase and 164.76 lux requiring an 82.35% 
increase, respectively (Table 2).

Both the analysis indicates that DIALux closely replicates real-
world lighting with minimal error (0% to −5% on horizontal 
and ±20% on vertical surfaces), Unreal Engine underestimates 
illumination significantly, requiring 53%–82% correction on 
horizontal and 83%–88% on vertical surfaces. This confirms that 
UE’s lighting simulation, particularly on vertical planes, needs 
substantial calibration for accuracy. 

4.2 Lighting calibration for scientific 
illumination accuracy

In order to frame calibration model of each scenario and 
to assess the relationship between real-world and VR lighting 
intensities, multiple linear regression with interaction terms analysis 
were adopted. Accordingly, 100 test points on a horizontal surface 
and 100 test points on a vertical surface were analyzed as per the 
predefined methodology to build multiple regression model. In the 
study, predictive models for varying light source configurations are 
developed by analyzing interactions between lux levels at test points 
and their respective distances from light sources. For a single light 
source, the interaction is defined as the product of the lux level at the 
test point (real-world data) and the distance from the light source. 
For two light sources, two interactions are considered: (1) the lux 
level contributed by both sources at the test point multiplied by 
the distance from the first light source, and (2) the same lux level 
multiplied by the distance from the second light source. Similarly, 
for four light sources, four interactions are defined, following the 
same pattern of lux level contribution at the test point multiplied by 
distances from each of the four light sources. These interactions form 
the basis for generating predictive models for multi-source lighting 
scenarios. 

4.2.1 For horizontal test surface
In case of single light source, the regression model shows 

excellent fit (R2 = 0.998), explaining 99.76% of the variance. Lux 
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FIGURE 5
Illumination variation in real-world, dialux evo and VR environment of UE5, left-side graphs representing horizontal plane and right-side graphs 
representing vertical plane.

TABLE 2  Illumination variation presentation through average difference.

Lighting configuration and test points One light Two lights Four lights

Horizontal Vertical Horizontal Vertical Horizontal Vertical

Average difference 41.34 21.21 84.12 32.12 174.23 164.76

Percentage difference 53.49% 82.78% 59.69% 88.19% 61.05% 82.35%

level by one light source (β = 1.60, p < 0.0001) and the interaction 
term (β = −0.00061, p < 0.000001) significantly influence the 
dependent variable. Distance alone was not statistically significant 
(p = 0.127) (Figure 6). Predictive formula,

Lux Level (Y) = 17.22+ 1.60X1 ‐0.0028X2‐0.00061(X1X2)

Where X1 is Illumination level (Lux) in real world, X2 is distance 
from the light source, X1X2 (illumination intensity in real-world 
multiply with distance from the light source) presents interaction 
term. Model validation for the one-light condition on the horizontal 
plane showed excellent predictive accuracy (R2 = 0.997) with low 
prediction errors (RMSE = 0.75 lx, MAE = 0.59 lx, SE = 0.77 lx). 
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FIGURE 6
Regression fit for horizontal plane: VR illumination vs. predicted illumination (one light).

Although formal normality tests (Kolmogorov–Smirnov, p = 0.014; 
Shapiro–Wilk, p = 0.001) indicated slight deviations from normality, 
the Q–Q plot exhibited near-linear alignment, suggesting that 
the residuals are approximately normal and thus suitable for 
parametric analysis.

High multicollinearity (VIF >10) was observed due to the 
interaction term; however, this is acceptable given the model’s 
predictive (rather than causal) intent.

In case of two light setup, the regression analysis reveals that 
(R2 = 0.993) explains 99.3% of the variance in the dependent 
variable. Lux level (β = −1.31, p = 0.0035) and distance from the 
first light source (β = −0.073, p < 0.00001) significantly affect the 
outcome. Interaction terms 1 and 2 are also statistically significant 
(p < 0.001), (Figure 7). Prediction Formula,

Lux Level (Y) = 164.28‐1.31X1‐0.073X2‐0.024X3 + 0.00051X4 + 0.00043X5

 WhereX1 is Illumination intensity (Lux) by two light sources, X2
is distance from first light source, X3 is distance from second light 
source and X4 is interaction one (illumination intensity in real-
world multiply with distance from first light source) X5 is interaction 
two (illumination intensity in real-world multiply with distance 
from second light source). Model validation demonstrated excellent 
predictive performance, with a high coefficient of determination 
(R2 = 0.992) and low prediction errors (RMSE = 0.90 lx, MAE 
= 0.71 lx, SE = 0.92 lx). Residual analysis indicated minor 
deviations from normality: although the Kolmogorov–Smirnov (p 
= 0.001) and Shapiro–Wilk (p = 0.010) tests suggested slight 
departures, the Q–Q plot exhibited near-linear alignment, implying 
that the residuals were approximately normally distributed and 
thus appropriate for parametric analyses. Multicollinearity was 
elevated (VIF >10) owing to the interaction term; however, this 
was considered acceptable given the model’s exploratory and
predictive focus.

In case of four lights setup, the regression model explains the R2 
= 0.986 or 98.6% of the variance in the dependent variable using lux 
levels, distances from light sources, and interaction terms. The lux 

level (β = −4.81, p = 0.038) and distance from the second light (β = 
−0.998, p = 0.033) significantly influence the outcome. Interaction 
2 is also significant (β = 0.0035, p = 0.031), indicating a combined 
effect of variables. The model is statistically robust (F = 696.52, p < 
0.00001) (Figure 8). Prediction formula,

Lux level (Y) = 1382.46 ‐4.81X1 ‐0.59X2 ‐0.998X3 + 0.346X4

+ 0.512X5 + 0.002X6 + 0.0035X7 ‐0.0011X8 ‐0.0017X9

 Where X1 is illumination intensity (lux) by four light sources in 
real-world, X2 is distance from first light source, X3 is distance 
from second light source, X4 is distance from third light source, 
X5 is distance from fourth light source, X6 is interaction one 
(illumination intensity in real-world multiply with distance from 
first light source), X7 is interaction two (illumination intensity 
in real-world multiply with distance from second light source), 
and X8 is interaction three (illumination intensity in real-world 
multiply with distance from third light source) and X9 is interaction 
four (illumination intensity in real-world multiply with distance 
from fourth light source). The model showed strong predictive 
performance (R2 = 0.985; RMSE = 1.161 lx; MAE = 0.879 
lx; SE = 1.224 lx). Residuals exhibited minor deviations from 
normality (Shapiro–Wilk p = 0.001) but Q–Q plots indicate 
near-linear alignment, supporting approximate normality for 
parametric analyses. High multicollinearity (VIF 14,467–443,788) 
reflects inherent geometric and photometric dependencies of 
multiple sources, consistent with the inverse-square law, and does 
not compromise predictive accuracy (Refer to Supplementary 
Appendix C for multicollinearity diagnostics, Supplementary 
Appendix D for residual normality analysis, and Supplementary 
Appendix E for homoscedasticity examination).

4.2.2 For vertical test surface
In the case of one light source, the regression model (R2 = 

0.9874) explains 98.74% of the variance in VR lux levels. Lux level 
by one light (β = −0.1657, p = 0.0008), distance from the first light 
(β = −0.0083, p < 1.6 × 10−8), and their interaction (β = 0.00065, 
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FIGURE 7
Regression fit for horizontal plane: VR illumination vs. predicted illumination (two lights).

FIGURE 8
Regression fit for horizontal plane: VR illumination vs. predicted illumination (four lights).

p < 2.3 × 10−21) are statistically significant predictors. Therefore, the 
prediction model for one luminary is,

Lux level (Y) = 2.424‐0.1657X1‐0.0083X2 + 0.00065X3

Where X1 is illumination level (lux) by one light source in real-world, 
X2 is distance from first light source, and X3 is interaction term (real-
world lux level multiply with distance from the light source). For the 
one-light vertical condition, the model showed strong fit (R2 = 0.987; 
RMSE = 0.916 lx; MAE = 0.649 lx; SE = 0.935 lx). However, residuals 
significantly deviate from normality (Kolmogorov–Smirnov and 
Shapiro–Wilk p = 0.000), exhibiting right skewness (≈2.0) and 
leptokurtosis (≈3.9), with Q–Q plots deviating from linearity. VIF 
values (3.72–103.41) indicate moderate to high multicollinearity, 
especially between lux and the interaction term. These violations 
of normality and multicollinearity compromise the validity of 

parametric inferences, preventing reliable use of the derived 
prediction formula for vertical illuminance.

In case of two light sources, the multiple regression model (R2 = 
0.9878, p < 0.0001) significantly predicts VR lux values using real-
world lux, distances, and interactions. Lux (β = 0.3039), distance 1 
(β = −0.0135), distance 2 (β = 0.0086), interaction 1 (β = 0.00039), 
and interaction 2 (β = −0.00021) are all statistically significant (p < 
0.001). Therefore, the prediction model for two luminaries,

Lux level (Y) = ‐8.2468+ 0.3039X1‐0.0135X2 + 0.0086X3

+ 0.00039X4‐0.00021X5

Where X1 is real-world lux level by two light sources, X2 and X3
are the distances from light sources, X4 and X5 are interaction. 
The model exhibited strong fit (R2 = 0.987; RMSE = 0.907 lx; 
MAE = 0.657 lx; SE = 0.936 lx). Residuals significantly deviate 
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TABLE 3  Standard error summary of Multiple Linear Regression models for Lux prediction under one-, two-, and four-light-source conditions across 
horizontal and vertical planes.

Plane Condition R2 Standard error RMSE (Lux) MAE (Lux)

Horizontal

One light 0.997 0.768 0.752 0.59

Two lights 0.992 0.929 0.9 0.706

Four lights 0.985 1.224 1.161 0.879

Vertical

One light 0.987 0.935 0.916 0.649

Two lights 0.987 0.936 0.907 0.657

Four lights 0.984 3.709 3.538 2.746

R2 indicates model fit; RMSE, and MAE (in Lux) represent prediction error magnitudes. Horizontal plane results show lower prediction errors than vertical plane across all lighting conditions.

from normality (Kolmogorov–Smirnov and Shapiro–Wilk p < 0.05), 
showing positive skewness (≈1.9) and leptokurtosis (≈3.4), with 
histograms and Q–Q plots confirming non-normality. VIF values 
(7.02–147.15) indicate moderate to high multicollinearity, especially 
between total lux and interaction terms, arising naturally from 
the additive effects of dual sources. These violations undermine 
parametric assumptions, limiting reliable use of the derived 
prediction formula.

In case of four lights source, the regression analysis demonstrates 
(R2 = 0.9842, p < 0.0001) shows a strong predictive relationship 
between VR lux values and real-world lux, distances from four light 
sources, and interaction terms. Notably, lux by RW lights (β = 41.27, 
p < 0.000001), Distance 4 (β = 2.30), and Interaction 1 (β = 0.0049) 
significantly impact VR readings. Therefore, the prediction model 
for one luminary,

Lux level (Y) = ‐2463.27+ 41.27X1 ‐0.43X2 + 0.70X3–1.44X4

+ 2.30X5 + 0.0049X6 + 0.00016X7–0.0177X8

Where, X1 is illumination level (lux) by four light sources in real-
world, X2 to X5 are distances from first to fourth light sources, 
and X6 to X8 are interaction terms for each light. Moreover, 
the figures of regression fit for vertical test plane are presented 
in supplementary file. For the four-light condition, the model 
showed strong fit (R2 = 0.984; RMSE = 3.538 lx; MAE = 2.746 
lx; SE = 3.709 lx). Residuals deviate significantly from normality 
(Kolmogorov–Smirnov and Shapiro–Wilk p < 0.05), with slight 
negative skewness (≈−0.08) and platykurtic distributions (≈−1.35), 
indicating flatter tails. VIF values are extremely high (91.99 to >3.2 
× 106), reflecting near-perfect multicollinearity due to additive and 
spatially coupled light interactions. These violations of normality 
and collinearity limit reliability of the predictive formula for extreme 
illumination values. Table 3 presents an overview of the standard 
error metrics for all configurations.

It is to note that the results of residual normality analysis of MLR 
models revealed significant deviation from normality for all the cases 
of vertical plane scenarios, as evidenced by p-values below 0.05 in 
both the Kolmogorov-Smirnov and Shapiro-Wilk tests, supported 
by skewed histograms and non-linear Q-Q plots. Consequently, the 
model predictions may deviate from the actual responses, potentially 
affecting the accuracy and reliability of statistical inferences derived 
from the proposed MLR models. 

4.3 Validation analysis for predictive 
models on extended test points

In order to validate the predictive models, a comparison between 
VR data and predictive VR data generated through predictive 
models were analyzed for both horizontal and vertical surfaces on 
the same surfaces. It was the same surface on which were used 
to generate the predictive formulas. An extended 28 test points 
and 20 extended test points, were taken from the same grid for 
horizontal and vertical surfaces respectively. For horizontal test 
surface considering one, two and four light source configurations, 
the plot shows that the VR predicted values closely follow the 
VR data trend, with minor deviations. Peaks and slopes are well 
captured, indicating a good prediction model alignment overall. 
Though, specifically for four light sources, it is to note that beyond 
107 lux (VR illumination value) the predictive model needs more 
refinement for precise prediction.

Similarly, generated data from predictive models for vertical test 
points represents that predicted VR values closely follow the real VR 
data across the rise and sharp dip. The maximum difference near 
the peak shows high prediction accuracy. Post-dip, both curves align 
tightly, suggesting that the model captures the trend and magnitude 
of change effectively (Figure 9).

5 Validation through cross-space 
application

To evaluate the applicability of the proposed predictive 
models within a specific context, a moderately complex lighting 
configuration was selected for analysis, featuring a grid-iron 
arrangement of multiple luminaires, representing a realistic yet 
scenario-specific lighting setup. For this purpose, a detailed 
office setup located in Manipal (Latitude: 13.340681, Longitude: 
74.794826) was modeled. Comprehensive data on physical surface 
properties were collected, including RGB values, glossiness, 
reflection factors, and illumination levels. Illuminance (in 
Lux) measurements were recorded on both horizontal and 
vertical surfaces at 60 designated test points using a lux meter. 
The testing grids were carefully located the model, thereby 
validating its potential for broader application—specifically, its 
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FIGURE 9
Comparative Plot: VR vs. VR predicted illumination level. Horizontal plane: (a) one light, (b) two lights, (c) four lights; Vertical plane: (d) one light, (e) two 
lights, (f) four lights.

FIGURE 10
Test grids on horizontal and vertical planes for cross space evaluation.

adaptability across lighting schemes ranging from single to multiple 
luminaire configurations. All the readings were taken during 
night time (Figure 10).

Secondly, a detailed VR model was developed to closely 
replicate the real-world environment, incorporating similar surface 
and photometric properties. To achieve this, the interior surface 
characteristics in the VR model were carefully adjusted—this 
included setting the specular map for reflection percentage, 
modifying roughness, and configuring diffuse scattering with high 
albedo for soft light diffusion. The lighting setup involved placing 
luminaires with a cone angle adjustment to 120°, a lumen output 
of 1175 lumens, and a color temperature of 5700K. Additionally, a 
Post-Processing Volume was adjusted to enhance visual accuracy. 
Illumination intensity values (in lux) were then recorded using the 

HDR adaptation tool for subsequent comparative analysis. Then 
predictive models were used to generate the illumination intensities 
using “Y = 1,382.46 - 4.81X1 - 0.59X2 - 0.998X3 + 0.346X4 + 0.512X5
+ 0.002X6  + 0.0035X7  - 0.0011X8 - 0.0017X9” and “Y = 2.424-
0.1657X1-0.0083X2+0.00065X3” for horizontal and vertical test 
surfaces respectively. This collected data of real word analysis was 
further evaluated statistically using residual analysis to determine 
how effectively the model captured the differences between observed 
(real-world) and predicted (VR) values.

Residual analysis over the horizontal surface (storage 
unit) indicates that VR illumination predictions are closely 
aligned with real-world values, with no significant systematic 
bias. Residuals range from −12 to +18 lux, corresponding to 
minor errors of approximately 4.4% underprediction and 6.6% 
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FIGURE 11
Residual plots demonstrating minimal deviation from zero for test horizontal surface data.

overprediction (Figure 11). However, when evaluating predictions 
across multiple spatial settings, a consistent underestimation of
real-world illuminance by the VR-based model was observed. 
To correct this bias, a constant offset of +145 lux was applied, 
which improved residual alignment around the zero line 
and enhanced overall model accuracy. This offset remained 
consistent across various lighting and spatial conditions, 
supporting its validity as a calibration adjustment within empirical
validation practices.

For the vertical surface (wall in the office space), residual analysis 
of vertical surfaces showed inconsistent underprediction of real-
world illuminance by the VR-based model, with correction values 
ranging from +60 to +110 lux across different data points. This 
contrasts with the consistent +145 lux offset applied for horizontal 
surfaces. The variability in required correction indicates that the 
current model does not adequately account for vertical orientation-
specific lighting behavior. Factors influencing this might include 
spatial occlusion, and or limitations in simulating lighting within 
the VR environment. Due to this inconsistency, a uniform offset was 
not applied. These results indicate the need for a context-specific 
calibration approach, supported by advanced and computationally 
robust methods, to develop an improved predictive model for 
cross-space application, specifically addressing vertical lighting 
distribution. 

6 Discussion

The study reviews and examines the discrepancies and potential 
calibration models for lighting in virtual reality (VR) environments 
across four distinct artificial lighting configurations. This research is 
unique in its specific focus on replicating and aligning real-world 
lighting setups with their VR counterparts, emphasizing accurate 
lighting distribution. Initially, the study adopts a broad perspective 
to explore and understand discrepancies between real-world and VR 
lighting scenarios, while reviewing related studies to identify suitable 
calibration approaches. Following the reporting of findings from the 

initial inquiries in the literature review, the study advances through 
an experimental framework designed to address the key research 
questions as follows. 

6.1 Degree of disparity in lighting intensity

Currently, available research on lighting in VR environments 
presents the rigorous efforts taken by the researchers to report 
the difference with real-world attributes. The researchers reported 
the variability in both qualitative and quantitative aspects (Abd-
Alhamid et al., 2019). Specifically, in subjective research the 
responses are based on participants perception on a given scale (low 
to high brightness, visual comfort - cozy to desolate, warm to cold, 
sense of presence, etc.) (Chen et al., 2019; Mirdamadi et al., 2023; 
Scorpio et al., 2023), which can only provide basic understanding 
of illumination intensity. However, these studies supports VR as a 
promising technology to map human behavior or task performance 
(Bellazzi et al., 2022). Yet, it cannot fully replicate the complex 
and multifaceted experience of light in real environments, and 
results should therefore be interpreted with caution. On the other 
hand, quantitative researches are highly limited, which could 
provide précised lighting discrepancy for different illuminance levels 
with different lighting configurations. None the less, reporting 
is also required for different task-based lighting intensities to 
replicate more complex lighting setups. Only one study specifically 
addresses lighting distribution on the working plane based on 
participants’ responses to varying lighting intensity levels. It reports 
that task performance is affected at 300 and 400 lumens but 
does not account for illumination differences in comparison to 
in-situ conditions (Chokwitthaya et al., 2017). In contrast, this 
research highlights a pronounced disparity in empirical values, 
reporting a 53%–61% difference in lux levels between real-
world and VR environments on horizontal surfaces under various 
lighting configurations. Additionally, the study identified an even 
greater difference of 82%–88% on vertical surfaces. These higher 
discrepancies on vertical surfaces are likely influenced by factors 
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such as occlusion effects from nearby geometry and inaccurate 
reflectance representation of material surfaces in Unreal Engine. 
These conditions often lead to insufficient indirect lighting and 
exaggerated shadowing on non-horizontal planes. Future calibration 
strategies could involve refining reflectance parameters, improving 
global illumination sampling, or employing ray-traced lighting 
methods to enhance vertical surface accuracy. Furthermore, these 
findings demonstrate a significant variation in lighting distribution 
between real-world and VR environments. This section of the study 
also provides a foundation for future research to explore light source 
calibration, guided by the percentage differences reported here, and 
to analyze strategies for enhancing visual fidelity. 

6.2 Optimized and practical calibration 
approach

In the context of lighting calibration studies, various aspects 
such as display brightness (Omidfar Sawyer and Chamilothori, 
2019; Kong et al., 2023), color accuracy (Murray et al., 2022), head-
mounted display (HMD) calibration (Gil Rodríguez et al., 2022), 
and light source and color temperature calibration (Billger et al., 
2004) have been meaningfully explored. Many of these studies 
adopt a subjective approach, offering important insights into user 
perception and visual fidelity. Foundational work by Scorpio focuses 
on calibration under a single light source and provides valuable 
directional understanding. However, opportunities remain to 
further advance this area by introducing contextualized, percentage-
based metrics and standardized unit-based reporting for broader 
applicability. The present study contributes to this progression 
by recommending and evaluating practical calibration models 
for distinct lighting configurations in virtual environments and 
proves applicability on horizontal working planes. These models 
exhibit strong performance, particularly under lower lux levels, 
with systematic residual patterns that can be effectively corrected. 
Furthermore, the study proposes predictive models suited to linear 
and grid-based lighting arrangements, while establishing the need 
for more advanced approaches to address the complexity of non-
linear or random lighting scenarios. This research thus extends 
existing literature by offering structured, data-driven calibration 
strategies applicable to scientific studies involving real-world and 
virtual lighting comparisons. 

6.3 Practical implications

Virtual reality (VR) is rapidly becoming a transformative tool for 
lighting research in built environments, enabling predictive analyses 
that inform sustainable architectural design (Saeidi et al., 2015; 
Fathy et al., 2023; Fathi et al., 2025). When properly calibrated, 
VR can faithfully replicate real-world lighting conditions, which 
is essential as lighting requirements vary widely with different 
activities—ranging from walking to surgery—each demanding 
precise illumination levels (Whyte, 2007; Khor et al., 2016; 
Konstantzos et al., 2020). This research provides built-space 
designers and lighting professionals a robust methodology to bridge 
the gap between virtual and actual illumination, ensuring more 

accurate horizontal lighting distribution and supporting evidence-
based design decisions. By introducing a systematic calibration 
framework and validated prediction models, the study enhances the 
realism and reliability of VR lighting simulations for research and 
practical applications (Augenbroe, 2004). The outcomes contribute 
significantly to SDG 7 (Affordable and Clean Energy) and SDG 
11 (Sustainable Cities and Communities), promoting sustainable, 
human-centric built environments. 

7 Limitations and future research

A primary strength and limitation of this study is its focus 
on quantitative illumination outcomes without incorporating 
perceptual observations. Future research could benefit from 
integrating both aspects to achieve a more comprehensive 
understanding of lighting accuracy in virtual environments. 
Secondly, the study provides reliable results for low-intensity linear 
light distributions but shows limitations in modeling high-intensity 
lighting with the same precision. Complex luminaire arrangements, 
which are common in specialized environments, were not explored 
in depth and remain an area for further study. Machine learning 
or other advanced modeling techniques could be employed to 
enhance the predictive capabilities of future models. Thirdly, due 
to the unavailability of high-precision spectrophotometers, surface 
reflectance was estimated using a lux meter by calculating the 
ratio of reflected to incident light, a method commonly used 
in daylighting and built-environment studies (Makaremi et al., 
2017). Color differences were analyzed using a calibrated camera 
with controlled white balance. Results were validated by cross-
checking known material properties and adjusting the VR model 
accordingly. Although these indirect methods may introduce minor 
inaccuracies in reflectance and albedo estimation, their influence on 
the overall illumination output is expected to be minimal, given the 
model’s strong predictive agreement with empirical data. Fourth, 
the study developed separate regression models for 1-, 2-, and 4-
light configurations but did not tested their cross-application. The 
negligible coefficients (e.g., X6 onward in the 4-light model) suggest 
simpler configurations may perform equally well, highlighting 
a need for comparative validation to determine optimal model 
complexity, which can be considered for further research.

Lastly, the need for scenario-specific predictive models remains 
a limitation. Future research should aim to develop a unified 
framework that integrates both horizontal and vertical predictions 
for broader practical applicability. 

8 Conclusion

This study reveals that visual fidelity in VR cannot reliably 
represent accurate illumination levels, as most VR software is 
primarily developed for gaming rather than scientific lighting 
analysis. It distinguishes between visually oriented applications 
and those requiring precise, data-driven illumination modeling. 
The research introduces a novel calibration method for multi-
light configurations, enabling more accurate lighting simulations 
essential for scientific investigations in the built environment 
specifically for horizontal working plane. The findings highlight
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key considerations for applying the model in research-oriented VR 
applications:

• For illumination difference, both cross-diagonal and statistical 
analyses confirm that DIALux reliably replicates real-
world illumination across surfaces, while Unreal Engine 
significantly underestimates lighting—particularly on vertical 
planes—requiring correction factors ranging from 53% to 
88%. These results underscore the necessity of calibrating UE’s 
lighting engine to enhance accuracy in virtual simulations of 
built environments.

• The VR calibration model effectively replicates real-world lux 
values on horizontal surfaces. However, for vertical surfaces, 
a more advanced and context-specific calibration approach 
is required. The predictive models developed in this study 
exhibit strong linear relationships and statistical significance in 
estimating illumination levels. Nonetheless, further refinement 
is necessary, particularly under higher intensity conditions and 
scenarios involving multiple luminaires.

• Cross-space validation shows the strong agreement with real-
world horizontal surface measurements (residuals: –12 to +18 
lux, errors ≤6.6%), but a consistent −145 lux bias was corrected 
via calibration. Vertical surface predictions, however, exhibited 
variable underprediction (+60 to +110 lux), highlighting 
orientation-dependent limitations and the need for context-
specific model refinements. These minimal, unbiased errors 
confirm the model’s robustness and suitability for accurate VR-
based lighting simulations across varied spatial conditions.

Overall, the study underscores the model’s adaptability 
while identifying areas for improvement to enhance its broader 
applicability. Nonetheless, this study identifies critical areas 
requiring attention for complex lighting configurations in VR 
environments and offers robust predictive models for standard 
or grid-pattern luminaire arrangements, which are commonly 
practiced.

Data availability statement

The raw data supporting the conclusions of this article will be 
made available by the authors, without undue reservation.

Author contributions

RK: Conceptualization, Data curation, Writing – original 
draft, Writing – review and editing. DD: Supervision, Writing – 
original draft, Writing – review and editing. PG: Formal Analysis, 
Methodology, Writing – review and editing. KS: Investigation, 
Validation, Visualization, Writing – review and editing. 

Funding

The author(s) declare that no financial support was received for 
the research and/or publication of this article.

Acknowledgments

The author sincerely thanks Ramaswamy RN from MSDC, 
Manipal, for his invaluable support during the development and 
examination of the VR environment. The author also gratefully 
acknowledges Havells Lighting for generously providing luminaries 
for experimental purposes. Their support greatly contributed to the 
progress and quality of this work.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in 
this article has been generated by Frontiers with the support of 
artificial intelligence and reasonable efforts have been made to 
ensure accuracy, including review by the authors wherever possible. 
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

Supplementary material

The Supplementary Material for this article can be 
found online at: https://www.frontiersin.org/articles/10.3389/
fbuil.2025.1707371/full#supplementary-material

References

Abd-Alhamid, F., Kent, M., Bennett, C., Calautit, J., and Wu, Y. (2019). Developing 
an innovative method for visual perception evaluation in a physical-based virtual 
environment. Build. Environ. 162, 106278. doi:10.1016/j.buildenv.2019.106278

Arthur, E., Hancock, P., and Chrysler, S. (1997). The perception of 
spatial layout in real and virtual worlds. Ergonomics 40, 69–77. doi:10.1080/
001401397188387

Frontiers in Built Environment 16 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1707371
https://www.frontiersin.org/articles/10.3389/fbuil.2025.1707371/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbuil.2025.1707371/full#supplementary-material
https://doi.org/10.1016/j.buildenv.2019.106278
https://doi.org/10.1080/001401397188387
https://doi.org/10.1080/001401397188387
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Kumar et al. 10.3389/fbuil.2025.1707371

Augenbroe, G. (2004). “Trends in building simulation,” in Advanced building 
simulation (London: Routledge), 18–38. doi:10.4324/9780203073674

Bellazzi, A., Bellia, L., Chinazzo, G., Corbisiero, F., D’Agostino, P., Devitofrancesco, 
A., et al. (2022). Virtual reality for assessing visual quality and lighting perception: a 
systematic review. Build. Environ. 209, 108674. doi:10.1016/j.buildenv.2021.108674

Billger, M., Heldal, I., Stahre, B., and Renstrom, K. (2004). “Perception of color and 
space in virtual reality: a comparison between a real room and virtual reality models,” 
in Human vision and electronic imaging IX, (SPIE), 90–98.

Catalina, T., Virgone, J., and Blanco, E. (2008). Development and validation of 
regression models to predict monthly heating demand for residential buildings. Energy 
Build. 40, 1825–1832. doi:10.1016/j.enbuild.2008.04.001

Chamilothori, K., Wienold, J., and Andersen, M. (2019). Adequacy of immersive 
virtual reality for the perception of daylit spaces: comparison of real and virtual 
environments. Leukos 15, 203–226. doi:10.1080/15502724.2017.1404918

Chen, Y., Cui, Z., and Hao, L. (2019). Virtual reality in lighting research: comparing 
physical and virtual lighting environments. Light. Res. and Technol. 51, 820–837. 
doi:10.1177/1477153518825387

Chokwitthaya, C., Saeidi, S., Zhu, Y., and Kooima, R. (2017). “The impact 
of lighting simulation discrepancies on human visual perception and energy 
behavior simulations in immersive virtual environment,” in Computing in civil 
engineering 2017 (Seattle, Washington: American Society of Civil Engineers), 390–398. 
doi:10.1061/9780784480830.048

Decrolux (2023). Approximate reflectance values of typical building finishes. 
Decrolux. Available online at:  https://decrolux.com.au/learning-centre/2018/
approximate-reflectance-values-of-typical-building-finishes.

Fathi, S., Sabeti, S., Shoghli, O., Heydarian, A., and Balali, V. (2025). Adoption 
of virtual and augmented reality in the architecture, engineering, construction, and 
facilities management (AEC-FM): mixed method analysis of trends, gaps, and solutions. 
Front. Built Environ. 11, 1580639. doi:10.3389/fbuil.2025.1580639

Fathy, F., Mansour, Y., Sabry, H., Refat, M., and Wagdy, A. (2023). Virtual reality and 
machine learning for predicting visual attention in a daylit exhibition space: a proof of 
concept. Ain Shams Eng. J. 14, 102098. doi:10.1016/j.asej.2022.102098

Fornasari, L., Chittaro, L., Ieronutti, L., Cottini, L., Dassi, S., Cremaschi, S., et al. 
(2013). Navigation and exploration of an urban virtual environment by children with 
autism spectrum disorder compared to children with typical development. Res. Autism 
Spectr. Disord. 7, 956–965. doi:10.1016/j.rasd.2013.04.007

Gade, V., Gallagher, R., and Deutsch, I. (2013). “Path width, path difficulty and optic 
flow differentially affect young, older adults and individuals post-stroke in a virtual 
cycling environment,” in 2013 international conference on virtual rehabilitation (ICVR), 
177–182.

Games, E. (2024). Unreal engine 5.4 documentation. Unreal Engine 5.4 Doc. 
Available online at:  https://dev.epicgames.com/documentation/en-us/unreal-engine/
unreal-engine-5-4-documentation?application_version=5.4.

Gan, V. J. L., Liu, T., and Li, K. (2022). Integrated BIM and VR for interactive 
aerodynamic design and wind comfort analysis of modular buildings. Buildings 12, 333. 
doi:10.3390/buildings12030333

Gil Rodríguez, R., Bayer, F., Toscani, M., Guarnera, D., Guarnera, G. C., and 
Gegenfurtner, K. R. (2022). Colour calibration of a head mounted display for colour 
vision research using virtual reality. SN Comput. Sci. 3, 22. doi:10.1007/s42979-021-
00855-7

Hegazy, M., Yasufuku, K., and Abe, H. (2021). Validating game engines 
as a quantitative daylighting simulation tool. Hong Kong 2, 285–294. 
doi:10.52842/conf.caadria.2021.2.285

Heydarian, A., Carneiro, J. P., Gerber, D., Becerik-Gerber, B., Hayes, T., and Wood, 
W. (2015a). Immersive virtual environments versus physical built environments: a 
benchmarking study for building design and user-built environment explorations. 
Automation Constr. 54, 116–126. doi:10.1016/j.autcon.2015.03.020

Heydarian, A., Pantazis, E., Carneiro, J. P., Gerber, D., and Becerik-Gerber, B. 
(2015b). “Towards understanding end-user lighting preferences in office spaces by using 
immersive virtual environments,” in Computing in civil engineering 2015 (Austin, Texas: 
American Society of Civil Engineers), 475–482. doi:10.1061/9780784479247.059

Hong, Y., and Michalatos, P. (2016). “LumiSpace: a VR architectural daylighting 
design system,” in SIGGRAPH ASIA 2016 virtual reality meets physical reality: modelling 
and simulating virtual humans and environments, 1–2.

Hou, L., Tan, Y., Luo, W., Xu, S., Mao, C., and Moon, S. (2022). Towards a more 
extensive application of off-site construction: a technological review. Int. J. Constr. 
Manag. 22, 2154–2165. doi:10.1080/15623599.2020.1768463

Jakubiec, J. A. (2023). Data-driven selection of typical opaque material reflectances 
for lighting simulation. Leukos 19, 176–189. doi:10.1080/15502724.2022.2100788

Jamei, E., Mortimer, M., Seyedmahmoudian, M., Horan, B., and Stojcevski, A. 
(2017). Investigating the role of virtual reality in planning for sustainable smart cities. 
Sustainability 9, 2006. doi:10.3390/su9112006

Jayaram, S., Jayaram, U., Wang, Y., Tirumali, H., Lyons, K., and Hart, P. (1999). 
VADE: a virtual assembly design environment. IEEE Comput. Graph. Appl. 19, 44–50. 
doi:10.1109/38.799739

Jia, L., Afshari, S., Mishra, S., and Radke, R. J. (2014). Simulation for pre-
visualizing and tuning lighting controller behavior. Energy Build. 70, 287–302. 
doi:10.1016/j.enbuild.2013.11.063

Jichlinski, P. (2003). New diagnostic strategies in the detection and staging of bladder 
cancer. Curr. Opin. urology 13, 351–355. doi:10.1097/00042307-200309000-00001

Jones, J. A., Swan, J. E., Singh, G., Kolstad, E., and Ellis, S. R. (2008). “The effects of 
virtual reality, augmented reality, and motion parallax on egocentric depth perception,” 
in Proceedings of the 5th symposium on applied perception in graphics and visualization, 
9–14.

Khor, W. S., Baker, B., Amin, K., Chan, A., Patel, K., and Wong, J. (2016). Augmented 
and virtual reality in Surgery—The digital surgical environment: applications, 
limitations and legal pitfalls. Ann. Transl. Med. 4, 454. doi:10.21037/atm.2016.12.23

Kong, G., Chen, P., Wang, L., Chen, S., Yu, J., and Chen, Z. (2023). Calibration 
of brightness of virtual reality light sources based on user perception in the real 
environment. J. Build. Eng. 78, 107702. doi:10.1016/j.jobe.2023.107702

Konstantzos, I., Sadeghi, S. A., Kim, M., Xiong, J., and Tzempelikos, A. (2020). The 
effect of lighting environment on task performance in buildings–A review. Energy Build.
226, 110394. doi:10.1016/j.enbuild.2020.110394

Kuliga, S. F., Thrash, T., Dalton, R. C., and Hölscher, C. (2015). Virtual 
reality as an empirical research tool—Exploring user experience in a real building 
and a corresponding virtual model. Comput. Environ. urban Syst. 54, 363–375. 
doi:10.1016/j.compenvurbsys.2015.09.006

Kumar, R., and Dhar, D. (2023). Unraveling the potential of immersive virtual 
environments for behavior mapping in the built environment: a mapping review. Hum. 
Behav. Emerg. Technol. 2023, 1–19. doi:10.1155/2023/8871834

Lee, J., Nam, Y., Cui, M. H., Choi, K. M., and Choi, Y. L. (2007). “Fit evaluation 
of 3D virtual garment,” in Usability and internationalization. HCI and culture: second 
international conference on usability and internationalization, UI-HCII 2007, held as 
part of HCI international 2007, beijing, China, July 22-27, 2007, proceedings, part I 2
(Springer), 550–558.

Liu, Q., and Liu, R. (2025). Virtual reality for indoor emergency evacuation 
studies: design, development, and implementation review. Saf. Sci. 181, 106678. 
doi:10.1016/j.ssci.2024.106678

Luo, Y., and Zhang, H. (2023). “Assessing lighting experience using physiological 
measures: a review,” in International conference on human-computer interaction
(Springer), 213–228.

Mahmoudzadeh, P., Afacan, Y., and Adi, M. N. (2021). Analyzing occupants’ control 
over lighting systems in office settings using immersive virtual environments. Build. 
Environ. 196, 107823. doi:10.1016/j.buildenv.2021.107823

Makaremi, N., Schiavoni, S., Pisello, A. L., Asdrubali, F., and Cotana, F. (2017). 
Quantifying the effects of interior surface reflectance on indoor lighting. Energy 
Procedia 134, 306–316. doi:10.1016/j.egypro.2017.09.531

Mania, K. (2001). “Connections between lighting impressions and presence in real 
and virtual environments: an experimental study,” in Proceedings of the 1st international 
conference on computer graphics, virtual reality and visualisation, 119–123.

Mania, K., and Robinson, A. (2005). An experimental exploration of the relationship 
between subjective impressions of illumination and physical fidelity. Comput. and 
Graph. 29, 49–56. doi:10.1016/j.cag.2004.11.007

Marill, K. A. (2004). Advanced statistics: linear regression, part II: multiple linear 
regression. Acad. Emerg. Med. 11, 94–102. doi:10.1111/j.1553-2712.2004.tb01379.x

Mirdamadi, M. S., Zomorodian, Z. S., and Tahsildoost, M. (2023). Evaluation of 
occupants’ visual perception in day lit scenes: a virtual reality experiment. J. Daylighting
10, 45–59. doi:10.15627/jd.2023.4

Mohammadrezaei, E., Ghasemi, S., Dongre, P., Gračanin, D., and Zhang, H. (2024). 
Systematic review of extended reality for smart built environments lighting design 
simulations. IEEE Access 12, 17058–17089. doi:10.1109/access.2024.3359167

Mottahedi, M., Mohammadpour, A., Amiri, S. S., Riley, D., and Asadi, S. 
(2015). Multi-linear regression models to predict the annual energy consumption 
of an office building with different shapes. Procedia Eng. 118, 622–629. 
doi:10.1016/j.proeng.2015.08.495

Murray, R. F., Patel, K. Y., and Wiedenmann, E. S. (2022). Luminance calibration of 
virtual reality displays in Unity. J. Vis. 22, 1. doi:10.1167/jov.22.13.1

Nemire, K., and Ellis, S. R. (1993). “Calibration and evaluation of virtual environment 
displays,” in Proceedings of 1993 IEEE research properties in virtual reality symposium
(IEEE), 33–40.

Newman, M., Gatersleben, B., Wyles, K., and Ratcliffe, E. (2022). The use of virtual 
reality in environment experiences and the importance of realism. J. Environ. Psychol.
79, 101733. doi:10.1016/j.jenvp.2021.101733

Omidfar Sawyer, A., and Chamilothori, K. (2019). “Influence of subjective 
impressions of a space on brightness satisfaction: an experimental study in virtual 
reality,” in Proceedings of symposium on simulation for architecture and urban design 
2019.

Panahiazar, S., and Matkan, M. (2018). Qualitative and quantitative analysis 
of natural light in the dome of san lorenzo, turin. Front. Archit. Res. 7, 25–36. 
doi:10.1016/j.foar.2017.11.005

Frontiers in Built Environment 17 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1707371
https://doi.org/10.4324/9780203073674
https://doi.org/10.1016/j.buildenv.2021.108674
https://doi.org/10.1016/j.enbuild.2008.04.001
https://doi.org/10.1080/15502724.2017.1404918
https://doi.org/10.1177/1477153518825387
https://doi.org/10.1061/9780784480830.048
https://decrolux.com.au/learning-centre/2018/approximate-reflectance-values-of-typical-building-finishes
https://decrolux.com.au/learning-centre/2018/approximate-reflectance-values-of-typical-building-finishes
https://doi.org/10.3389/fbuil.2025.1580639
https://doi.org/10.1016/j.asej.2022.102098
https://doi.org/10.1016/j.rasd.2013.04.007
https://dev.epicgames.com/documentation/en-us/unreal-engine/unreal-engine-5-4-documentation?application_version=5.4
https://dev.epicgames.com/documentation/en-us/unreal-engine/unreal-engine-5-4-documentation?application_version=5.4
https://doi.org/10.3390/buildings12030333
https://doi.org/10.1007/s42979-021-00855-7
https://doi.org/10.1007/s42979-021-00855-7
https://doi.org/10.52842/conf.caadria.2021.2.285
https://doi.org/10.1016/j.autcon.2015.03.020
https://doi.org/10.1061/9780784479247.059
https://doi.org/10.1080/15623599.2020.1768463
https://doi.org/10.1080/15502724.2022.2100788
https://doi.org/10.3390/su9112006
https://doi.org/10.1109/38.799739
https://doi.org/10.1016/j.enbuild.2013.11.063
https://doi.org/10.1097/00042307-200309000-00001
https://doi.org/10.21037/atm.2016.12.23
https://doi.org/10.1016/j.jobe.2023.107702
https://doi.org/10.1016/j.enbuild.2020.110394
https://doi.org/10.1016/j.compenvurbsys.2015.09.006
https://doi.org/10.1155/2023/8871834
https://doi.org/10.1016/j.ssci.2024.106678
https://doi.org/10.1016/j.buildenv.2021.107823
https://doi.org/10.1016/j.egypro.2017.09.531
https://doi.org/10.1016/j.cag.2004.11.007
https://doi.org/10.1111/j.1553-2712.2004.tb01379.x
https://doi.org/10.15627/jd.2023.4
https://doi.org/10.1109/access.2024.3359167
https://doi.org/10.1016/j.proeng.2015.08.495
https://doi.org/10.1167/jov.22.13.1
https://doi.org/10.1016/j.jenvp.2021.101733
https://doi.org/10.1016/j.foar.2017.11.005
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Kumar et al. 10.3389/fbuil.2025.1707371

Picinali, L., Afonso, A., Denis, M., and Katz, B. F. (2014). Exploration of architectural 
spaces by blind people using auditory virtual reality for the construction of spatial 
knowledge. Int. J. Human-Computer Stud. 72, 393–407. doi:10.1016/j.ijhcs.2013.12.008

Portman, M. E., Natapov, A., and Fisher-Gewirtzman, D. (2015). To go where 
no man has gone before: virtual reality in architecture, landscape architecture 
and environmental planning. Comput. Environ. Urban Syst. 54, 376–384. 
doi:10.1016/j.compenvurbsys.2015.05.001

Reuding, T., and Meil, P. (2004). Predictive value of assessing vehicle interior 
design ergonomics in a virtual environment. J. Comput. Inf. Sci. Eng. 4, 109–113. 
doi:10.1115/1.1710867

Rolland, J. P., Holloway, R. L., and Fuchs, H. (1995). “Comparison of optical and video 
see-through, head-mounted displays,” in Telemanipulator and telepresence technologies, 
293–307.

Rothbaum, B. O., Anderson, P., Zimand, E., Hodges, L., Lang, D., and Wilson, J. 
(2006). Virtual reality exposure therapy and standard (in vivo) exposure therapy in the 
treatment of fear of flying. Behav. Ther. 37, 80–90. doi:10.1016/j.beth.2005.04.004

Saeidi, S., Rizzuto, T., Zhu, Y., and Kooima, R. (2015). “Measuring the effectiveness 
of an immersive virtual environment for the modeling and prediction of occupant 
behavior,” in Sustainable human–building ecosystems, 159–167.

Santos Nobre, J., and da Motta Singer, J. (2007). Residual analysis for 
linear mixed models. Biometrical J. J. Math. Methods Biosci. 49, 863–875. 
doi:10.1002/bimj.200610341

Schroeder, R., Heather, N., and Lee, R. M. (1998). The sacred and the virtual: religion 
in multi-user virtual reality. J. Computer-Mediated Commun. 4, 0. doi:10.1111/j.1083-
6101.1998.tb00092.x

Scorpio, M., Laffi, R., Teimoorzadeh, A., Ciampi, G., Masullo, M., and Sibilio, S. 
(2022). A calibration methodology for light sources aimed at using immersive virtual 
reality game engine as a tool for lighting design in buildings. J. Build. Eng. 48, 103998. 
doi:10.1016/j.jobe.2022.103998

Scorpio, M., Carleo, D., Gargiulo, M., Navarro, P. C., Spanodimitriou, Y., Sabet, P., 
et al. (2023). A review of subjective assessments in virtual reality for lighting research. 
Sustainability 15, 7491. doi:10.3390/su15097491

Somarathna, R., Bednarz, T., and Mohammadi, G. (2022). Virtual reality 
for emotion Elicitation–A review. IEEE Trans. Affect. Comput. 14, 2626–2645. 
doi:10.1109/taffc.2022.3181053

Spottiswood, L., and Bishop, I. (2005). “An agent-driven virtual environment for the 
simulation of land use decision making,” in International congress on.

Taylor, F., Jayaram, S., Jayaram, U., and Mitsui, T. (2002). “Validation of virtual crane 
behavior through comparison with a real crane,” in International design engineering 
technical conferences and computers and information in engineering conference, 67–75.

Uyanık, G. K., and Güler, N. (2013). A study on multiple linear regression 
analysis. Procedia-Social Behav. Sci. 106, 234–240. doi:10.1016/j.sbspro.
2013.12.027

Verran, J. A., and Ferketich, S. L. (1987). Testing linear model assumptions: 
residual analysis. Nurs. Res. 36, 127–129. doi:10.1097/00006199-198703000-
00014

Whyte, J. (2007). Virtual reality and the built environment. 1st edition. London: 
Routledge. doi:10.4324/9780080520667

Wotton, E. (2000). The IESNA lighting handbook and office lighting. Lighting 14.

Frontiers in Built Environment 18 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1707371
https://doi.org/10.1016/j.ijhcs.2013.12.008
https://doi.org/10.1016/j.compenvurbsys.2015.05.001
https://doi.org/10.1115/1.1710867
https://doi.org/10.1016/j.beth.2005.04.004
https://doi.org/10.1002/bimj.200610341
https://doi.org/10.1111/j.1083-6101.1998.tb00092.x
https://doi.org/10.1111/j.1083-6101.1998.tb00092.x
https://doi.org/10.1016/j.jobe.2022.103998
https://doi.org/10.3390/su15097491
https://doi.org/10.1109/taffc.2022.3181053
https://doi.org/10.1016/j.sbspro.-2013.12.027
https://doi.org/10.1016/j.sbspro.-2013.12.027
https://doi.org/10.1097/00006199-198703000-00014
https://doi.org/10.1097/00006199-198703000-00014
https://doi.org/10.4324/9780080520667
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org

	1 Introduction
	2 Related work
	2.1 Comparing physical and virtual lighting environments
	2.2 Calibration studies

	3 Methodology
	3.1 Physical environment setup
	3.1.1 Test room configuration
	3.1.2 Instruments, measurement protocols and real-world data collection
	3.1.3 Light source specifications

	3.2 VR environment setup
	3.2.1 3D modelling and virtual environment configuration
	3.2.2 Data collection protocol in VR

	3.3 Calibration and analysis procedure
	3.3.1 Data comparison and pre-processing
	3.3.2 Calibration strategy
	3.3.3 Validation and accuracy assessment


	4 Data analysis
	4.1 Discrepancy evaluation
	4.2 Lighting calibration for scientific illumination accuracy
	4.2.1 For horizontal test surface
	4.2.2 For vertical test surface

	4.3 Validation analysis for predictive models on extended test points

	5 Validation through cross-space application
	6 Discussion
	6.1 Degree of disparity in lighting intensity
	6.2 Optimized and practical calibration approach
	6.3 Practical implications

	7 Limitations and future research
	8 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

