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Virtual reality (VR) offers transformative potential for human behavioral
studies by enabling controlled simulations of complex environments. Accurate
replication of real-world conditions, however, remains critical, particularly for
lighting studies that require high precision and reliable data extraction. This
study investigates discrepancies in light distribution across typical lighting
configurations and develops predictive models to mitigate these variations
while identifying practical constraints. lllumination differences between real-
world measurements, DIALux evo simulations, and VR environments were
examined empirically. Multiple linear regression with interaction terms was
then used to develop predictive models for one-, two-, and four-luminaire
configurations on horizontal and vertical planes, based on 100 test points per
plane in a controlled room. Model validation included cross-space application
and residual analysis using an additional dataset of 60 test points per plane
collected in a separate room with a similar lighting setup. Statistical analysis
revealed 53%—-88% differences in illumination intensity across configurations.
The predictive models effectively reduced discrepancies on the horizontal plane
and were optimized for linear, low-intensity lighting, while highlighting the
need for further investigation into vertical illumination and complex luminaire
arrangements. Future work involving non-linear or advanced computational
approaches could enhance model accuracy for irregular lighting distributions
in VR. These findings have practical implications for VR-based lighting studies,
building performance simulations, and virtual illumination design.

virtual reality, lighting simulation, empirical validation, built-environment, predictive
mode, illumination discripency, cross-environment evaluation

1 Introduction

Virtual Reality (VR) technology possesses considerable potential for precise assessment
of environmental interventions, as reflected in the growing body of research within the
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built environment domain (Kuliga et al., 2015; Newman et al,
2022; Fathi et al.,, 2025; Liu and Liu, 2025). Many of these studies
aim to replicate real-world scenarios to map human activities
with precision. However, achieving an exact replica of real-world
test environments remains a critical challenge. Consequently,
researchers have pursued two primary directions: one involves the
direct comparison of human activities across matched physical and
virtual environments, while the other focuses on the calibration or
improvement of VR systems to enhance fidelity or impressiveness.
Notably, improvements in experimental methodologies for VR
calibration have been observed in scholarly work dating back
to 1993 (Nemire and Ellis, 1993). Though, it is evident that
calibration specifically for lighting is essential for creating a
real-world-like experience within virtual environments, enabling
researchers to collect reliable and valid data. This need becomes
particularly significant given that VR modeling tools were originally
developed for game design and visual representation, with scene
controls resembling camera settings—features not inherently suited
for scientific investigations in built environment. Despite these
limitations, a growing number of scientific inquiries in recent years
have begun to adapt VR modeling tools for quantitative research
purposes, moving beyond their traditional qualitative or behavioral
applications. Moreover, research in this domain is increasingly
leveraging advanced VR tools for diverse scientific applications.
These include energy simulation (Hou et al., 2022), investigations
into occupant comfort and behavioral responses (Gan et al.,
2022; Somarathna et al., 2022), studies of lighting environments
(Mohammadrezaei et al., 2024), emergency evacuation modeling
(Liu and Liu, 2025), as well as architectural and urban design
research (Portman et al., 2015; Jamei et al., 2017).

Recent advancements in Virtual Reality (VR) calibration focus
on lighting, color fidelity, and HMD performance, with lighting
being crucial for spatial realism (Kumar and Dhar, 2023). Although
VR tools employ Physically Based Rendering, Global Illumination,
and reflection techniques, they optimize perceptual realism rather
than replicating real-world lighting quantitatively. Consequently,
VR environments appear convincing but often fail to deliver reliable
illumination data, such as lux levels on surfaces. Despite this,
researchers in architecture and the built environment increasingly
use VR to study perception and lighting. This highlights the need
for a robust model to predict lighting intensity from luminaire
configurations. This study addresses the perceptual-empirical
gap by calibrating VR lighting for lux accuracy, distinguishing
subjective brightness from measurable illuminance (Panahiazar and
Matkan, 2018).

This research addresses the critical gap between perceptual
realism and quantitative accuracy in VR lighting calibration. While
most VR research emphasize visually convincing environments,
they rarely ensure empirically reliable illumination data. To bridge
this divide, the study developed a virtual replica of a real
discussion room, recreating its lighting to design six paired test
scenarios across three setups. Lux measurements at 100 horizontal
and vertical points enabled rigorous comparison between real
and virtual conditions. Using multiple linear regression with
interaction terms, predictive equations for lux levels were created
and validated. Even though discrepancies exceeded 82% overall
and 53% for horizontal surfaces, the models demonstrated strong
predictive capability, marking a novel step in quantifying VR
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illumination accuracy. Unlike prior work, this research proposes
a calibration framework that translates VR lighting into reliable,
physical metrics, ensuring surfaces in virtual scenes can be analyzed
with scientific consistency. Beyond methodological innovation, the
study contributes a foundation for integrating predictive calibration
tools into VR platforms, expanding their role in artificial lighting
simulations and establishing VR as a credible instrument for
evidence-based built-environmental research.

2 Related work

A comprehensive state-of-the-art literature review, substantiated
by bibliometric analysis, was performed to address the key research
enquiries of this study. The review process emphasized eight key
research articles, selected through a systematic screening procedure.
Particular emphasis was placed on eight research articles shortlisted
through a systematic screening process. However, findings from all
reviewed works with relevant contributions were documented in
chronological order. The review is organized into two main stages:
first, a comparative analysis of existing approaches (Section 2.1), and
second, an examination of calibration methodologies along with the
identification of limitations in current models (Section 2.2).

2.1 Comparing physical and virtual lighting
environments

Early research on Virtual Reality (VR) from 1995 to 2000
primarily examined the limitations of head-mounted displays
(HMDs), the representation of complex spatial layouts, and
the challenges of multi-user interaction (Rolland et al, 1995;
Arthur et al,, 1997; Schroeder et al., 1998; Jayaram et al., 1999).
During this period, lighting was not a central focus. The first studies
addressing virtual lighting directly emerged in the early 2000s.
Mania, (2001) compared real and virtual lighting visualizations,
while Mania and Robinson, (2005) confirmed perceptual parity in
such comparisons. Between 2002 and 2008, VR studies expanded
into fields like medicine, vehicle design, and multisensory training
(Taylor et al, 2002; Jichlinski, 2003; Reuding and Meil, 2004;
Spottiswood and Bishop, 2005; Rothbaum et al., 2006; Lee et al.,
2007; Jones et al., 2008). However, lighting remained secondary,
with the majority of research focusing either on interactional
or experiential qualities rather than illumination. After 2011,
VR research shifted toward behavioral analysis and disability
support, continuing to prioritize application over lighting accuracy
(Fornasari et al., 2013; Gade et al., 2013; Picinali et al., 2014).

The first systematic effort to directly compare lighting in
physical and virtual settings was undertaken by Heydarian et al.
(2015b), who studied end-user preferences for lighting during
reading tasks. Participants interacted with virtual environments
that replicated real-world spaces and could adjust blinds or
artificial lights. Their work extended into a broader study on
natural versus artificial light usage Heydarian et al. (2015a) Results
revealed a strong preference for daylight under certain control
conditions, but less reliance on natural light when both artificial
lighting and blinds were adjustable. These findings demonstrated
that virtual platforms could simulate human lighting behavior in
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detail, though accuracy of simulated illumination data was not
the focus. Hong and Michalatos, (2016), advanced this discussion
by replicating real-world lighting in VR, addressing limitations
such as screen-based light intensity and visual adaptation. They
concluded that Bloom and HDR rendering techniques could
improve realism compared to conventional Building Information
Modeling (BIM) software. Chokwitthaya et al. (2017) extended
this work by exploring performance thresholds, revealing that
discrepancies around 300-400 lumens impacted task performance.
However, results were inconclusive since discrepancies were not
measured in lux—the standard illuminance unit recommended by
the Tlluminating Engineering Society (IES).

Perceptual approaches continued to dominate.
Chamilothori et al. (2019) compared perceptual daylighting
factors—pleasantness, interest, and satisfaction—finding no major
differences between real and virtual conditions, thus validating
VR for perceptual daylight research (Mahmoudzadeh et al,
2021). further compared user satisfaction with interactive versus
automated lighting systems and observed that lighting systems
offering control were preferred and imposed lower cognitive loads
for reading tasks compared to automated systems. Hegazy et al.
(2021) however, pointedly highlighted the need for VR-based studies
to benchmark illumination against real-world standards to improve
scientific validity.

Recent reviews (Luo and Zhang, 2023) reaffirm that most
VR-lighting research emphasizes perceptual responses that
enrich different domains but rarely prioritizes quantitative rigor.
Consequently, while VR has positioned itself as a powerful
tool for cost-effective, scalable lighting studies, it remains
limited in capturing and reproducing illumination data with
measurable accuracy.

2.2 Calibration studies

Efforts to improve realism in VR lighting environments
routes: (1) HMD
calibration—ensuring proper reproduction of light within headsets,

have generally followed two visual
and (2) light source calibration—adjusting digital light settings to
mirror real-world illumination values. The first approach typically
involves subjective user studies within immersive VR, while the
second incorporates 3D modeling, rendering engines, and direct
illuminance measurement tools.

Research specifically addressing lighting calibration is relatively
recent and limited. The earliest significant attempt was Jia et al.
(2014),

photorealistic simulation with lighting control algorithms. However,

who created an interactive framework combining
this work focused primarily on computer graphics rather than
real-world validation. Hegazy et al. (2021) conducted one of the
first daylight-focused calibration studies using Unreal Engine.
They examined illuminance accuracy in two daylit case studies
with varying spatial complexity. Three rendering techniques
were tested, with ray tracing achieving the closest results to
benchmark lighting simulation tools. While this study demonstrated
promise for real-time ray tracing, it emphasized caution, given the
inability of VR engines to fully replicate the multifaceted nature of
real-world lighting.
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concentrated on HMD calibration.

Murray et al. (2022), developed a framework for calibrating headset

Subsequent studies
luminance via color grading in Unity but restricted their analysis to
achromatic RGB values without addressing hardware constraints.
Gil Rodriguez et al. (2022), employed imaging colorimeters to
validate HMD output, finding a linear relationship between
surface reflectance and visual stimuli, while also investigating
color constancy effects. Though valuable, these studies focused
on luminance and display performance rather than illumination
accuracy. A technically significant but narrow approach was
proposed by Scorpio et al. (2022). who calibrated single-point
lighting in Unreal Engine 4 (UE4). By adjusting cone angles of
artificial lights, they compared simulated luminance with DIALux
Evo, though their results remained software-centric and lacked
physical validation. Kong et al. (2023) contributed by examining
thresholds for brightness perception of luminous surfaces, offering
useful behavioral insights but leaving illumination (lux) calibration
unaddressed.

These efforts illustrate that most calibration studies stop short
of offering practical, replicable methodologies for translating real-
world lighting conditions into virtual spaces. Although VR has
proven its utility in human perception and behavioral modeling,
robust approaches for quantitative validation in lighting simulations
remain undeveloped. The synthesis of the literature reveals several
critical limitations:

o Comparative studies predominantly emphasize qualitative
aspects—such as behavioral or perceptual observations—rather
than quantitative assessments. These studies often lack
standardized measurement protocols across both real and
virtual environments, limiting their utility in developing
generalized calibration models.

o There is a notable scarcity of non-perceptual, parametric
studies focused on lighting intensity, particularly in the
context of calibrating light levels outside controlled dark-
room environments. Existing findings remain inconclusive,
underscoring the need for future research aimed at advancing
reliable calibration methodologies. It is important to note
that existing studies primarily examine luminance—what a
surface emits (quantitative)—or brightness (qualitative), while
illumination—what a surface receives (quantitative)—is often
overlooked.

Moreover, there is a significant gap in the literature
concerning practical, replicable methods for calibrating complex
lighting scenarios across varied real-world settings. Therefore,
this study aims to develop a practical calibration model by
systematically comparing real-world and UE5 lighting conditions
on horizontal and vertical surfaces. It uniquely contributes a
methodological framework for enhancing digital illumination
fidelity across varied lighting scenarios, advancing accuracy
in architectural lighting simulations and supporting more
precise illumination data generation. Therefore, to achieve
these objectives, this study seeks to address the following
research inquiries:

RQI1: What is the degree of disparity in lighting intensity
measurements between VR and physical environments?
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RQ2: What can be the optimized and practical approach to
minimize quantitative discrepancies between virtual and
physical environments’ illumination distribution?

The outcomes of this study are expected to advance the
application of virtual environments in sustainable architecture,
human-centered design, and predictive modelling, ultimately
fostering more accurate and reliable VR tools for design, research
and construction industry.

3 Methodology

The experimental procedure involved creating a virtual replica
of a real-world room under comparable lighting conditions to
investigate illumination discrepancies and develop a calibration
model. Three distinct lighting arrangements were implemented to
assess light distribution across both horizontal and vertical surfaces.
A total of 100 test points was recorded on the horizontal surface and
100 on the vertical surface. Lux levels from both environments were
compared to identify variations in lighting intensity. Subsequently,
predictive models were developed using Multiple Linear Regression
(MLR) with interaction terms. While MLR is a commonly used
statistical method, its application for calibrating VR illumination
represents a novel methodological contribution, addressing a
significant gap in current research. Although no living subjects
were involved, the study was reviewed and approved by the
Kasturba Medical College and Kasturba Hospital Institutional Ethics
Committee (Approval No. IEC1: 373/2024), ensuring adherence to
ethical standards.

3.1 Physical environment setup

3.1.1 Test room configuration

A small discussion room measuring 2.75 m in width and 3.1 m
in length, featuring a centrally positioned table, was selected for
its flexible environmental control. The table (1,500 mm x 750 mm
x 750 mm) was covered with a white paper sheet marked with a
100 mm grid, yielding 128 test points for horizontal measurements.
For vertical surface measurements, 144 test points were marked
on the front wall using the same grid size. The room has a false
ceiling at a height of 2.48 m, equipped with four luminaires of
identical technical specifications, each positioned 600 mm from the
adjacent walls (Figure 1). The room is isolated from daylight and
external artificial light sources. To maintain consistency in reflection
properties, color, and texture, RGB values were recorded for each
surface, and materials with matching properties were replicated in
the VR environment.

3.1.2 Instruments, measurement protocols and
real-world data collection

A lux meter (make - LT Lutron LX 101 A) has been used to collect
the lighting intensity readings from the table top and wall surface
grid points. The collected illuminance data were recoded digitally
in lux and rechecked again at some random points to minimize
error. However, the readings were varying between 1 lux and 5 lux at
some points. Illumination measurements were recorded using the
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lux meter, which has a specified accuracy of 5% of the reading
+10 digits, though it is widely regarded as sufficiently precise for
architectural and environmental lighting studies. For correct reading
of RGB values shade cards from Asian Paints were used to determine
accurate RGB values (Table 1).

Additionally, glossiness and surface roughness were estimated
based on gloss unit (GU) values provided by material manufacturers
(e.g., Asian Paints for painted surfaces, laminate suppliers for
finishes). For some materials such as papers or specialty finishes,
gloss levels were assessed visually under controlled illumination
conditions to categorize them as matte, semi-gloss, or glossy. These
gloss assessments were then translated into roughness values for the
virtual materials in UE5 (Wotton, 2000; Decrolux, 2023).

Reflection factors (approximate diffuse reflectance) for materials
were estimated using published literature values for typical
surface types (e.g., matte paints ~5-6%, white paper ~65%,
ceilings ~70%) and cross-checked visually by comparing the
brightness and reflectance under uniform lighting (Jakubiec,
2023). Albedo values were approximated from the measured
RGB readings under controlled light conditions and converted
into normalized reflectance values to guide Base Color settings
in the virtual environment. These surface property estimations
ensured consistency between real-world materials and their virtual
counterparts (Games, 2024).

3.1.3 Light source specifications

Four ceiling-mounted luminaires (Havells brand) were utilized,
each requiring 15 W of system power and providing an output of
1,550 (21,500) lumens. These luminaires have a color rendering
index (CRI) exceeding 80. The correlated color temperature (CCT)
is specified at 5700 K. Each luminaire is designed with an inner
beam angle of zero degree and an outer beam angle of 120°, ensuring
broad, uniform light distribution (Supplementary Appendix A).

3.2 VR environment setup

3.2.1 3D modelling and virtual environment
configuration

A three-dimensional model of the test spaces was developed
in SketchUp, using precise measurements from the real-world
environment. This model was then imported into Unreal Engine
5.3.2 (UE5) via the Datasmith Direct Link tool. Within UES5,
materials were applied based on previously collected RGB values
and textures derived from photographs of the physical environment.
Test grids were created by applying an image of the grid pattern as
a material texture sample. All indoor surface properties, including
material type, texture, color, reflectance percentage, and albedo, were
matched with real-world values as detailed in Table 1. To eliminate
external illumination sources, both the SunSky and Volumetric
Cloud settings were disabled.

The virtual lighting setup in UE5 used spotlights with a lumen
output of 1,550, matching the real-world luminaires in terms of
beam angles and color temperature. Additional settings in UE5
were configured with Indirect Lighting Intensity and Volumetric
Scattering set to 1.0, and PostProcess Volume, Global Illumination,
and Reflection Method set to Lumen Only. Ray Tracing Reflections
remained at default values. Light placement was executed to replicate
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(b)

FIGURE 1

(©)

Test room attributes. (a) real world test room settings, (b) VR environment test room settings, (c) Dimensioning and positing of lighting and data
collection points, (d) Test points on vertical surface, (e) Test points on horizontal surface (source: author).
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TABLE 1 Indoor materials and components surface physical properties.

Sr No. Interior surface Surface RGB value Glossiness or Reflection Estimated
type/Interior material Roughness/ factor albedo
component Estimated

roughness in
UES
1 Left side wall Matte (laminate) 185,176,177 15 GU/0.85 5% ~0.72
2 Front side wall (left side Matte colored 165,39,45 15 GU/0.85 6% ~0.30-0.35
section) (laminate)
3 Front side wall (right Matte (paint) 151,69,69 15 GU/0.85 5% ~0.28-0.32
side section)
4 Right side wall Matte light gray paint 210,211,213 15 GU/0.85 5% ~0.82
5 Table surface (Paper) Ultra-matte, light finish 248,247,240 6 GU/0.95 65% ~0.88-0.92
6 Floor surface Matte neutral gray 170,170,170 10 GU/0.90 25% ~0.66
7 False ceiling Off white matte paint 250, 249, 246 20 GU/0.75 70% ~0.90

the exact positioning and parameters of the physical setup, thus
mimicking the real-world lighting environment.

3.2.2 Data collection protocol in VR

The data collection procedure in this experiment follows a
two-step approach to measure lux levels under virtual lighting
conditions. In the first step, lux measurements for each data point
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in UE5 are obtained through a systematic process. This involves
navigating to the Show menu, selecting Visualize, and enabling
HDR Eye Adaptation. The cursor is then positioned precisely on
each designated test point on the virtual test surface within the VR
environment to record lux values. This procedure is repeated for
all three lighting arrangements. Measurements are taken separately
for horizontal and vertical test surfaces, resulting in a total of six
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FIGURE 2
Lighting configuration for experimental setups.

Arrangements for vertical surface test points (b;) One light , (b,) Two lights, (bs) Four lights

b2 b3

iterations (Figure 2). In the second step, the distance of each data
point from the light sources is measured. The Euclidean distance of
each data point is calculated using the Pythagorean theorem. This
distance will serve as an independent variable in predictive analysis.

With respect to computer display effect, the HDR Eye
Adaptation tool in Unreal Engine dynamically adjusts exposure
in response to scene lighting, simulating the adaptive response of
human vision to variations in brightness. However, in this study, lux
readings were obtained from the UES5 lighting engine computations,
which are independent of the monitor’s brightness or contrast
settings. While variations in monitor brightness may affect the
visual perception of the scene, they do not influence the lux values
computed by Unreal Engine. Thus, display settings did not impact
the illumination readings during the data collection process.

3.3 Calibration and analysis procedure
The calibration procedure consists of three steps: Data
collection from both the environments and comparison including

descriptive statistical analysis, regression analysis to identify
adjusted VR value for calibration for different lighting arrangements
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and lastly validation and accuracy assessment by comparing
the adjusted VR data with the real-world data. Figure3
represents the step by step data collection, analysis and
reporting procedure.

3.3.1 Data comparison and pre-processing

In the first step, the difference between the lux level (measured
in the VR environment) and the desired lux level (targeted real-
world measurement) on all test points were calculated. Thereafter, to
understand the relative magnitude of the discrepancy, the difference
was further expressed as a percentage of the desired target lux
level. This calculation provided a standardized measure to assess the
intensity of adjustment needed across different lighting scenarios.
This percentage metric allows for a clear interpretation of how
much the current lux level in the VR environment deviates from
the real-world target. The results of this comparison indicated
that in most cases, an increment in lighting intensity is required
within the VR environment to match the real-world lux levels. This
adjustment is essential for achieving a closer alignment between
VR simulations and real-world conditions, thereby enhancing the
illumination accuracy of the virtual setup for further analysis
(reported in Section 4.1).
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FIGURE 3

Brief experiment procedure depicting steps from test space selection to result reporting (source: author).

3.3.2 Calibration strategy

Following the initial assessment of intensity discrepancies,
the primary objective is to determine adjusted VR illuminance
values. Therefore, regression analysis was performed to
enable the quantification of relationships among variables
(Marill, 2004; Uyanik and Giiler, 2013). In this study, the dependent
variable is the illuminance level (lux) in the VR environment,
while the independent variables include real-world illuminance
readings (lux) and the Euclidean distance of each test point
from the luminaires. Regression analysis also facilitates the
identification of statistically significant factors, the incorporation
of interaction effects (such as distances from light sources), and
ultimately the development of a predictive VR calibration model.
To maintain the model’s practicality and manage complexity,
variables such as reflection percentage and color rendering index

were excluded.

3.3.3 Validation and accuracy assessment

To evaluate the accuracy of the predictive VR calibration model,
this study conducted a validation using a new set of test points
on both horizontal and vertical surfaces. The predictive models
were initially developed using 100 test points collected across
various setups. The additional 28 and 20 points were then used to
compare the predicted illumination values with the actual values
obtained from the VR and real-world environments. Subsequently,
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the predictive models were assessed in cross-space application
using residual analysis to assess consistency and robustness under
diverse conditions, thereby demonstrating the model’s adaptability
(Verran and Ferketich, 1987; Santos Nobre and da Motta Singer,
2007). Similar validation approaches have been widely applied
in research for predictive models, including those for annual
energy consumption and monthly heating demand predictions
(Catalina et al., 2008; Mottahedi et al., 2015).

4 Data analysis
4.1 Discrepancy evaluation

Discrepancy in real and VR environment is checked using two
different approaches. In first, the variability in illumination level
has been screened using a comparative analysis approach involving
real-world, DIALux, and Unreal Engine data. This method not only
helps in identifying the fidelity of lighting simulation tools but also
validates the accuracy of modeling. The first step checks whether
real-world data aligns more closely with DIALux while diverging
from UES5, which would suggest that the issue lies primarily with
UE’%s illumination algorithms. Alternatively, if both DIALux and UE5
deviate from real-world data, the discrepancies may originate from
inaccuracies in 3D modeling or material properties.
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To examine this issue, illumination data were collected from 16
points on horizontal surfaces and 11 points on vertical surfaces,
arranged along two imaginary cross-diagonal lines (Figure 4).
The percentage error between real-world and DIALux values
on horizontal surfaces was minimal—0% with one light, —4%
with two lights, and -5% with four lights—indicating that
DIALux accurately replicates real-world lighting conditions on flat
horizontal planes. In contrast, DIALux overestimated illumination
by approximately 20% on vertical surfaces under one- and two-
light scenarios and underestimated it by 10% under the four-light
condition (Refer Supplementary Appendix B). The VR environment
created in Unreal Engine (UE), however, showed substantial
underestimation across all scenarios. On horizontal surfaces, the
error ranged from 52% to 61%, while vertical surfaces exhibited
even greater discrepancies, with errors between 84% and 92%.
These findings reveal a significant gap in UE’s ability to simulate
real-world lighting, particularly on vertical planes. Thus, this
analysis confirms that while DIALux offers reliable alignment
with real-world lighting on most surfaces, Unreal Engine’s lighting
setup may require further calibration or modification to improve
simulation accuracy (Figure 5).

The second approach for discrepancy evaluation involved a
descriptive statistical analysis conducted across horizontal and
vertical surfaces, with measurements taken at 100 test points for each
lighting scenario. In the one-light source condition, the horizontal
surface exhibited an average deviation of 41.34 lux, indicating
the need for a 53.49% increase in light intensity within the VR
environment to align with real-world conditions. Conversely, the
vertical surface showed a deviation of 21.2 lux, necessitating 82.78%
adjustment. Under the two-light source scenario, the horizontal
surface showed an average difference of 84.12 lux requiring a 59.69%
increase, while the vertical surface recorded a deviation of 32.12 lux
requiring 88.19% increase. Finally, in the four-light source scenario,
the horizontal and vertical surfaces showed differences of 174.23
lux requiring 61.05% increase and 164.76 lux requiring an 82.35%
increase, respectively (Table 2).
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Both the analysis indicates that DIALux closely replicates real-
world lighting with minimal error (0% to —5% on horizontal
and +20% on vertical surfaces), Unreal Engine underestimates
illumination significantly, requiring 53%-82% correction on
horizontal and 83%-88% on vertical surfaces. This confirms that
UE’s lighting simulation, particularly on vertical planes, needs
substantial calibration for accuracy.

4.2 Lighting calibration for scientific
illumination accuracy

In order to frame calibration model of each scenario and
to assess the relationship between real-world and VR lighting
intensities, multiple linear regression with interaction terms analysis
were adopted. Accordingly, 100 test points on a horizontal surface
and 100 test points on a vertical surface were analyzed as per the
predefined methodology to build multiple regression model. In the
study, predictive models for varying light source configurations are
developed by analyzing interactions between lux levels at test points
and their respective distances from light sources. For a single light
source, the interaction is defined as the product of the lux level at the
test point (real-world data) and the distance from the light source.
For two light sources, two interactions are considered: (1) the lux
level contributed by both sources at the test point multiplied by
the distance from the first light source, and (2) the same lux level
multiplied by the distance from the second light source. Similarly,
for four light sources, four interactions are defined, following the
same pattern of lux level contribution at the test point multiplied by
distances from each of the four light sources. These interactions form
the basis for generating predictive models for multi-source lighting
scenarios.

4.2.1 For horizontal test surface

In case of single light source, the regression model shows
excellent fit (R* = 0.998), explaining 99.76% of the variance. Lux
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TABLE 2 Illumination variation presentation through average difference.

Lighting configuration and test points One li Two lights Four lights
Horizontal = Vertical ‘ Horizontal Vertical Horizontal | Vertical
Average difference 41.34 21.21 84.12 32.12 174.23 164.76
Percentage difference 53.49% 82.78% 59.69% 88.19% 61.05% 82.35%

level by one light source (f = 1.60, p < 0.0001) and the interaction
term (B = —0.00061, p < 0.000001) significantly influence the
dependent variable. Distance alone was not statistically significant
(p = 0.127) (Figure 6). Predictive formula,

Lux Level (Y) = 17.22 + 1.60X, -0.0028X,-0.00061 (X, X,)
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Where X, is Illumination level (Lux) in real world, X, is distance
from the light source, X,X, (illumination intensity in real-world
multiply with distance from the light source) presents interaction
term. Model validation for the one-light condition on the horizontal
plane showed excellent predictive accuracy (R* = 0.997) with low
prediction errors (RMSE = 0.75 Ix, MAE = 0.59 Ix, SE = 0.77 Ix).
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Regression fit for horizontal plane: VR illumination vs. predicted illumination (one light).

Although formal normality tests (Kolmogorov-Smirnov, p = 0.014;
Shapiro-Wilk, p =0.001) indicated slight deviations from normality,
the Q-Q plot exhibited near-linear alignment, suggesting that
the residuals are approximately normal and thus suitable for
parametric analysis.

High multicollinearity (VIF >10) was observed due to the
interaction term; however, this is acceptable given the model’s
predictive (rather than causal) intent.

In case of two light setup, the regression analysis reveals that
(R? = 0.993) explains 99.3% of the variance in the dependent
variable. Lux level (B = —1.31, p = 0.0035) and distance from the
first light source (f = —0.073, p < 0.00001) significantly affect the
outcome. Interaction terms 1 and 2 are also statistically significant
(p < 0.001), (Figure 7). Prediction Formula,

Lux Level (Y) = 164.28-1.31X,-0.073X,-0.024X;; + 0.00051 X, + 0.00043X

WhereX; is Illumination intensity (Lux) by two light sources, X,
is distance from first light source, X; is distance from second light
source and X, is interaction one (illumination intensity in real-
world multiply with distance from first light source) X, is interaction
two (illumination intensity in real-world multiply with distance
from second light source). Model validation demonstrated excellent
predictive performance, with a high coeflicient of determination
(R* = 0.992) and low prediction errors (RMSE = 0.90 lx, MAE
0.71 1x, SE= 0.92 Ix). Residual analysis indicated minor
deviations from normality: although the Kolmogorov-Smirnov (p
= 0.001) and Shapiro-Wilk (p = 0.010) tests suggested slight
departures, the Q-Q plot exhibited near-linear alignment, implying
that the residuals were approximately normally distributed and

thus appropriate for parametric analyses. Multicollinearity was
elevated (VIF >10) owing to the interaction term; however, this
was considered acceptable given the model’s exploratory and
predictive focus.

In case of four lights setup, the regression model explains the R?
=0.986 or 98.6% of the variance in the dependent variable using lux
levels, distances from light sources, and interaction terms. The lux
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level (B = —4.81, p = 0.038) and distance from the second light (§ =
-0.998, p = 0.033) significantly influence the outcome. Interaction
2 is also significant (B = 0.0035, p = 0.031), indicating a combined
effect of variables. The model is statistically robust (F = 696.52, p <
0.00001) (Figure 8). Prediction formula,

Luxlevel (Y) = 1382.46 - 4.81X, - 0.59X, - 0.998X;, + 0.346X,
+0.512X; +0.002X; +0.0035X,, - 0.0011X, - 0.0017X,

Where X, is illumination intensity (lux) by four light sources in
real-world, X, is distance from first light source, X5 is distance
from second light source, X, is distance from third light source,
X, is distance from fourth light source, X, is interaction one
(illumination intensity in real-world multiply with distance from
first light source), X, is interaction two (illumination intensity
in real-world multiply with distance from second light source),
and Xy is interaction three (illumination intensity in real-world
multiply with distance from third light source) and X, is interaction
four (illumination intensity in real-world multiply with distance
from fourth light source). The model showed strong predictive
performance (R*> = 0.985 RMSE = 1.161 Ix; MAE = 0.879
Ix; SE= 1.224 Ix). Residuals exhibited minor deviations from
0.001) but Q-Q plots indicate
near-linear alignment, supporting approximate normality for
parametric analyses. High multicollinearity (VIF 14,467-443,788)
reflects inherent geometric and photometric dependencies of

normality (Shapiro-Wilk p

multiple sources, consistent with the inverse-square law, and does
not compromise predictive accuracy (Refer to Supplementary
Appendix C for multicollinearity diagnostics, Supplementary
Appendix D for residual normality analysis, and Supplementary
Appendix E for homoscedasticity examination).

4.2.2 For vertical test surface

In the case of one light source, the regression model (R?
0.9874) explains 98.74% of the variance in VR lux levels. Lux level
by one light (p = -0.1657, p = 0.0008), distance from the first light
(B = -0.0083, p < 1.6 x 107%), and their interaction (B = 0.00065,
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p < 2.3 x 1072!) are statistically significant predictors. Therefore, the
prediction model for one luminary is,

Lux level (Y) = 2.424-0.1657X,-0.0083X, + 0.00065X;

Where X, is illumination level (lux) by one light source in real-world,
X, is distance from first light source, and Xj is interaction term (real-
world lux level multiply with distance from the light source). For the
one-light vertical condition, the model showed strong fit (R*=0.987;
RMSE =0.916 Ix; MAE = 0.649 Ix; SE = 0.935 Ix). However, residuals
significantly deviate from normality (Kolmogorov-Smirnov and
Shapiro-Wilk p = 0.000), exhibiting right skewness (=2.0) and
leptokurtosis (=3.9), with Q-Q plots deviating from linearity. VIF
values (3.72-103.41) indicate moderate to high multicollinearity,
especially between lux and the interaction term. These violations
of normality and multicollinearity compromise the validity of
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parametric inferences, preventing reliable use of the derived
prediction formula for vertical illuminance.

In case of two light sources, the multiple regression model (R* =
0.9878, p < 0.0001) significantly predicts VR lux values using real-
world lux, distances, and interactions. Lux (p = 0.3039), distance 1
(B = -0.0135), distance 2 (p = 0.0086), interaction 1 (f = 0.00039),
and interaction 2 (p = —0.00021) are all statistically significant (p <
0.001). Therefore, the prediction model for two luminaries,

Lux level (Y) = -8.2468 + 0.3039X,-0.0135X, + 0.0086X;
+0.00039X,-0.00021X5

Where X, is real-world lux level by two light sources, X, and X;
are the distances from light sources, X, and X, are interaction.
The model exhibited strong fit (R*> = 0.987; RMSE = 0.907 Ix;
MAE = 0.657 Ix; SE= 0.936 Ix). Residuals significantly deviate
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TABLE 3 Standard error summary of Multiple Linear Regression models for Lux prediction under one-, two-, and four-light-source conditions across
horizontal and vertical planes.

Condition Standard error RMSE (Lux) MAE (Lux)
One light 0.997 0.768 0.752 0.59
Horizontal Two lights 0.992 0.929 0.9 0.706
Four lights 0.985 1.224 1.161 0.879
One light 0.987 0.935 0.916 0.649
Vertical Two lights 0.987 0.936 0.907 0.657
Four lights 0.984 3.709 3.538 2.746

R? indicates model fit; RMSE, and MAE (in Lux) represent prediction error magnitudes. Horizontal plane results show lower prediction errors than vertical plane across all lighting conditions.

from normality (Kolmogorov-Smirnov and Shapiro-Wilk p < 0.05),
showing positive skewness (=1.9) and leptokurtosis (=3.4), with
histograms and Q-Q plots confirming non-normality. VIF values
(7.02-147.15) indicate moderate to high multicollinearity, especially
between total lux and interaction terms, arising naturally from
the additive effects of dual sources. These violations undermine
parametric assumptions, limiting reliable use of the derived
prediction formula.

In case of four lights source, the regression analysis demonstrates
(R* = 0.9842, p < 0.0001) shows a strong predictive relationship
between VR lux values and real-world lux, distances from four light
sources, and interaction terms. Notably, lux by RW lights (p = 41.27,
p < 0.000001), Distance 4 (B = 2.30), and Interaction 1 (f = 0.0049)
significantly impact VR readings. Therefore, the prediction model
for one luminary,

Lux level (Y) = -2463.27 + 41.27X, -0.43X, + 0.70X; - 1.44X,
+2.30X; +0.0049X, + 0.00016X, - 0.0177X

Where, X, is illumination level (lux) by four light sources in real-
world, X, to X; are distances from first to fourth light sources,
and X, to Xg are interaction terms for each light. Moreover,
the figures of regression fit for vertical test plane are presented
in supplementary file. For the four-light condition, the model
showed strong fit (R = 0.984; RMSE = 3.538 Ix; MAE = 2.746
Ix; SE = 3.709 Ix). Residuals deviate significantly from normality
(Kolmogorov-Smirnov and Shapiro-Wilk p < 0.05), with slight
negative skewness (=—0.08) and platykurtic distributions (=—1.35),
indicating flatter tails. VIF values are extremely high (91.99 to >3.2
x 10°), reflecting near-perfect multicollinearity due to additive and
spatially coupled light interactions. These violations of normality
and collinearity limit reliability of the predictive formula for extreme
illumination values. Table 3 presents an overview of the standard
error metrics for all configurations.

It is to note that the results of residual normality analysis of MLR
models revealed significant deviation from normality for all the cases
of vertical plane scenarios, as evidenced by p-values below 0.05 in
both the Kolmogorov-Smirnov and Shapiro-Wilk tests, supported
by skewed histograms and non-linear Q-Q plots. Consequently, the
model predictions may deviate from the actual responses, potentially
affecting the accuracy and reliability of statistical inferences derived
from the proposed MLR models.
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4.3 Validation analysis for predictive
models on extended test points

In order to validate the predictive models, a comparison between
VR data and predictive VR data generated through predictive
models were analyzed for both horizontal and vertical surfaces on
the same surfaces. It was the same surface on which were used
to generate the predictive formulas. An extended 28 test points
and 20 extended test points, were taken from the same grid for
horizontal and vertical surfaces respectively. For horizontal test
surface considering one, two and four light source configurations,
the plot shows that the VR predicted values closely follow the
VR data trend, with minor deviations. Peaks and slopes are well
captured, indicating a good prediction model alignment overall.
Though, specifically for four light sources, it is to note that beyond
107 lux (VR illumination value) the predictive model needs more
refinement for precise prediction.

Similarly, generated data from predictive models for vertical test
points represents that predicted VR values closely follow the real VR
data across the rise and sharp dip. The maximum difference near
the peak shows high prediction accuracy. Post-dip, both curves align
tightly, suggesting that the model captures the trend and magnitude
of change effectively (Figure 9).

5 Validation through cross-space
application

To evaluate the applicability of the proposed predictive
models within a specific context, a moderately complex lighting
configuration was selected for analysis, featuring a grid-iron
arrangement of multiple luminaires, representing a realistic yet
scenario-specific lighting setup. For this purpose, a detailed
office setup located in Manipal (Latitude: 13.340681, Longitude:
74.794826) was modeled. Comprehensive data on physical surface
properties were collected, including RGB values, glossiness,
reflection factors, and illumination levels. Illuminance (in
Lux) measurements were recorded on both horizontal and
vertical surfaces at 60 designated test points using a lux meter.
The testing grids were carefully located the model, thereby

validating its potential for broader application—specifically, its
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adaptability across lighting schemes ranging from single to multiple
luminaire configurations. All the readings were taken during
night time (Figure 10).

Secondly, a detailed VR model was developed to closely
replicate the real-world environment, incorporating similar surface
and photometric properties. To achieve this, the interior surface
characteristics in the VR model were carefully adjusted—this
included setting the specular map for reflection percentage,
modifying roughness, and configuring diffuse scattering with high
albedo for soft light diffusion. The lighting setup involved placing
luminaires with a cone angle adjustment to 120° a lumen output
of 1175 lumens, and a color temperature of 5700K. Additionally, a
Post-Processing Volume was adjusted to enhance visual accuracy.
Ilumination intensity values (in lux) were then recorded using the
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HDR adaptation tool for subsequent comparative analysis. Then
predictive models were used to generate the illumination intensities
using “Y'=1,382.46 - 4.81X, - 0.59X, - 0.998X ; + 0.346X , + 0.512X ;
+ 0.002X¢ + 0.0035X, - 0.0011X - 0.0017X,” and “Y = 2.424-
0.1657X ;-0.0083X ,+0.00065X ;” for horizontal and vertical test
surfaces respectively. This collected data of real word analysis was
further evaluated statistically using residual analysis to determine
how effectively the model captured the differences between observed
(real-world) and predicted (VR) values.

Residual analysis over the horizontal surface (storage
unit) indicates that VR illumination predictions are closely
aligned with real-world values, with no significant systematic
bias. Residuals range from —12 to +18 lux, corresponding to
minor errors of approximately 4.4% underprediction and 6.6%
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274

overprediction (Figure 11). However, when evaluating predictions
across multiple spatial settings, a consistent underestimation of
real-world illuminance by the VR-based model was observed.
To correct this bias, a constant offset of +145 lux was applied,
which improved residual alignment around the zero line
and enhanced overall model accuracy. This offset remained
consistent across various lighting and spatial conditions,
supporting its validity as a calibration adjustment within empirical
validation practices.

For the vertical surface (wall in the office space), residual analysis
of vertical surfaces showed inconsistent underprediction of real-
world illuminance by the VR-based model, with correction values
ranging from +60 to +110 lux across different data points. This
contrasts with the consistent +145 lux offset applied for horizontal
surfaces. The variability in required correction indicates that the
current model does not adequately account for vertical orientation-
specific lighting behavior. Factors influencing this might include
spatial occlusion, and or limitations in simulating lighting within
the VR environment. Due to this inconsistency, a uniform offset was
not applied. These results indicate the need for a context-specific
calibration approach, supported by advanced and computationally
robust methods, to develop an improved predictive model for
cross-space application, specifically addressing vertical lighting

distribution.

6 Discussion

The study reviews and examines the discrepancies and potential
calibration models for lighting in virtual reality (VR) environments
across four distinct artificial lighting configurations. This research is
unique in its specific focus on replicating and aligning real-world
lighting setups with their VR counterparts, emphasizing accurate
lighting distribution. Initially, the study adopts a broad perspective
to explore and understand discrepancies between real-world and VR
lighting scenarios, while reviewing related studies to identify suitable
calibration approaches. Following the reporting of findings from the
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initial inquiries in the literature review, the study advances through
an experimental framework designed to address the key research
questions as follows.

6.1 Degree of disparity in lighting intensity

Currently, available research on lighting in VR environments
presents the rigorous efforts taken by the researchers to report
the difference with real-world attributes. The researchers reported
the variability in both qualitative and quantitative aspects (Abd-
Alhamid et al, 2019). Specifically, in subjective research the
responses are based on participants perception on a given scale (low
to high brightness, visual comfort - cozy to desolate, warm to cold,
sense of presence, etc.) (Chen et al., 2019; Mirdamadi et al., 2023;
Scorpio et al., 2023), which can only provide basic understanding
of illumination intensity. However, these studies supports VR as a
promising technology to map human behavior or task performance
(Bellazzi et al.,, 2022). Yet, it cannot fully replicate the complex
and multifaceted experience of light in real environments, and
results should therefore be interpreted with caution. On the other
hand, quantitative researches are highly limited, which could
provide précised lighting discrepancy for different illuminance levels
with different lighting configurations. None the less, reporting
is also required for different task-based lighting intensities to
replicate more complex lighting setups. Only one study specifically
addresses lighting distribution on the working plane based on
participants’ responses to varying lighting intensity levels. It reports
that task performance is affected at 300 and 400 lumens but
does not account for illumination differences in comparison to
in-situ conditions (Chokwitthaya et al., 2017). In contrast, this
research highlights a pronounced disparity in empirical values,
reporting a 53%-61% difference in lux levels between real-
world and VR environments on horizontal surfaces under various
lighting configurations. Additionally, the study identified an even
greater difference of 82%-88% on vertical surfaces. These higher
discrepancies on vertical surfaces are likely influenced by factors
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such as occlusion effects from nearby geometry and inaccurate
reflectance representation of material surfaces in Unreal Engine.
These conditions often lead to insufficient indirect lighting and
exaggerated shadowing on non-horizontal planes. Future calibration
strategies could involve refining reflectance parameters, improving
global illumination sampling, or employing ray-traced lighting
methods to enhance vertical surface accuracy. Furthermore, these
findings demonstrate a significant variation in lighting distribution
between real-world and VR environments. This section of the study
also provides a foundation for future research to explore light source
calibration, guided by the percentage differences reported here, and
to analyze strategies for enhancing visual fidelity.

6.2 Optimized and practical calibration
approach

In the context of lighting calibration studies, various aspects
such as display brightness (Omidfar Sawyer and Chamilothori,
2019; Kong et al., 2023), color accuracy (Murray et al., 2022), head-
mounted display (HMD) calibration (Gil Rodriguez et al., 2022),
and light source and color temperature calibration (Billger et al.,
2004) have been meaningfully explored. Many of these studies
adopt a subjective approach, offering important insights into user
perception and visual fidelity. Foundational work by Scorpio focuses
on calibration under a single light source and provides valuable
directional understanding. However, opportunities remain to
further advance this area by introducing contextualized, percentage-
based metrics and standardized unit-based reporting for broader
applicability. The present study contributes to this progression
by recommending and evaluating practical calibration models
for distinct lighting configurations in virtual environments and
proves applicability on horizontal working planes. These models
exhibit strong performance, particularly under lower lux levels,
with systematic residual patterns that can be effectively corrected.
Furthermore, the study proposes predictive models suited to linear
and grid-based lighting arrangements, while establishing the need
for more advanced approaches to address the complexity of non-
linear or random lighting scenarios. This research thus extends
existing literature by offering structured, data-driven calibration
strategies applicable to scientific studies involving real-world and
virtual lighting comparisons.

6.3 Practical implications

Virtual reality (VR) is rapidly becoming a transformative tool for
lighting research in built environments, enabling predictive analyses
that inform sustainable architectural design (Saeidi et al., 2015;
Fathy et al., 2023; Fathi et al., 2025). When properly calibrated,
VR can faithfully replicate real-world lighting conditions, which
is essential as lighting requirements vary widely with different
activities—ranging from walking to surgery—each demanding
precise illumination levels (Whyte, 2007; Khor et al, 20165
Konstantzos et al, 2020). This research provides built-space
designers and lighting professionals a robust methodology to bridge
the gap between virtual and actual illumination, ensuring more
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accurate horizontal lighting distribution and supporting evidence-
based design decisions. By introducing a systematic calibration
framework and validated prediction models, the study enhances the
realism and reliability of VR lighting simulations for research and
practical applications (Augenbroe, 2004). The outcomes contribute
significantly to SDG 7 (Affordable and Clean Energy) and SDG
11 (Sustainable Cities and Communities), promoting sustainable,
human-centric built environments.

7 Limitations and future research

A primary strength and limitation of this study is its focus
on quantitative illumination outcomes without incorporating
perceptual observations. Future research could benefit from
integrating both aspects to achieve a more comprehensive
understanding of lighting accuracy in virtual environments.
Secondly, the study provides reliable results for low-intensity linear
light distributions but shows limitations in modeling high-intensity
lighting with the same precision. Complex luminaire arrangements,
which are common in specialized environments, were not explored
in depth and remain an area for further study. Machine learning
or other advanced modeling techniques could be employed to
enhance the predictive capabilities of future models. Thirdly, due
to the unavailability of high-precision spectrophotometers, surface
reflectance was estimated using a lux meter by calculating the
ratio of reflected to incident light, a method commonly used
in daylighting and built-environment studies (Makaremi et al.,
2017). Color differences were analyzed using a calibrated camera
with controlled white balance. Results were validated by cross-
checking known material properties and adjusting the VR model
accordingly. Although these indirect methods may introduce minor
inaccuracies in reflectance and albedo estimation, their influence on
the overall illumination output is expected to be minimal, given the
model’s strong predictive agreement with empirical data. Fourth,
the study developed separate regression models for 1-, 2-, and 4-
light configurations but did not tested their cross-application. The
negligible coefficients (e.g., X, onward in the 4-light model) suggest
simpler configurations may perform equally well, highlighting
a need for comparative validation to determine optimal model
complexity, which can be considered for further research.

Lastly, the need for scenario-specific predictive models remains
a limitation. Future research should aim to develop a unified
framework that integrates both horizontal and vertical predictions
for broader practical applicability.

8 Conclusion

This study reveals that visual fidelity in VR cannot reliably
represent accurate illumination levels, as most VR software is
primarily developed for gaming rather than scientific lighting
analysis. It distinguishes between visually oriented applications
and those requiring precise, data-driven illumination modeling.
The research introduces a novel calibration method for multi-
light configurations, enabling more accurate lighting simulations
essential for scientific investigations in the built environment
specifically for horizontal working plane. The findings highlight
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key considerations for applying the model in research-oriented VR
applications:

« For illumination difference, both cross-diagonal and statistical
analyses confirm that DIALux reliably replicates real-
world illumination across surfaces, while Unreal Engine
significantly underestimates lighting—particularly on vertical
planes—requiring correction factors ranging from 53% to
88%. These results underscore the necessity of calibrating UE’s
lighting engine to enhance accuracy in virtual simulations of
built environments.

o The VR calibration model effectively replicates real-world lux
values on horizontal surfaces. However, for vertical surfaces,
a more advanced and context-specific calibration approach
is required. The predictive models developed in this study
exhibit strong linear relationships and statistical significance in
estimating illumination levels. Nonetheless, further refinement
is necessary, particularly under higher intensity conditions and
scenarios involving multiple luminaires.

« Cross-space validation shows the strong agreement with real-
world horizontal surface measurements (residuals: —12 to +18
lux, errors <6.6%), but a consistent —145 lux bias was corrected
via calibration. Vertical surface predictions, however, exhibited
variable underprediction (+60 to +110 lux), highlighting
orientation-dependent limitations and the need for context-
specific model refinements. These minimal, unbiased errors
confirm the model’s robustness and suitability for accurate VR-
based lighting simulations across varied spatial conditions.

Overall, the study underscores the model's adaptability
while identifying areas for improvement to enhance its broader
applicability. Nonetheless, this study identifies critical areas
requiring attention for complex lighting configurations in VR
environments and offers robust predictive models for standard
or grid-pattern luminaire arrangements, which are commonly
practiced.
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