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A current trend in the construction industry involves the development and 
employment of eco-friendly, durable, and sustainable materials. Numerous 
admixtures, including various polymers, are used to modify the properties 
of cement. Nonetheless, their effectiveness and environmental impacts are 
still a matter of discussion. In this context, this work was focused on 
the application of innovative vegetable oil-based polymeric nanodispersed 
admixtures, synthesized following green chemistry principles, such as using 
water as a solvent. The synthesized bio-based latex admixtures were 
incorporated with 30 wt% of vegetable oil-based monomers derived from 
camelina, linseed, and rapeseed oils. The produced ordinary Portland 
cement fine-grained mortars, containing 0.1 wt% of each bio-based latex 
admixture, were thoroughly examined using several instrumental methods, 
such as isothermal calorimetry and scanning electron microscopy, to gain 
a comprehensive understanding of the roles of bio-based latex admixtures 
on the physical, mechanical, and microstructural properties of the examined 
specimens. It was found that the addition of bio-based latex admixtures led 
to changes in the hydration process, mineralogical composition, and liquid 
water transport. For example, the water absorption coefficient was found to 
be approximately 40% lower compared to cement mortars produced using a 
reference latex additive without the vegetable oil-based component. Moreover, 
cement mortars with a bio-based latex admixture containing camelina oil 
exhibited comparable compressive strength to those produced solely from 
ordinary Portland cement. Thus, the newly developed bio-based polymeric 
nanodispersion represents a new class of environmentally friendly admixtures 
that may be effectively utilized for water-loaded structures.

KEYWORDS
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 1 Introduction

Cement-based materials are commonly used in construction due to their economic 
viability, durability, and versatility, which enable the shaping of diverse objects
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through casting (Barbhuiya et al., 2025). This quality differentiates 
them from other construction materials (Li G. et al., 2021). 
However, ordinary cementitious objects are heterogeneous and 
brittle materials with flaws, such as poor toughness, flexibility, and 
volume change (Van Tittelboom and De Belie, 2013; Fan et al., 
2023). Various methods were proposed to address the drawbacks 
mentioned above and extend the overall service life of cement-
based structures, such as the use of polymer admixtures (Ramli 
and Akhavan Tabassi, 2012). Polymer modification of cement-based 
materials was usually done by adding a film-forming polymer 
latex as a re-dispersible powder or by blending cement with an 
aqueous polymer dispersion. Modification was achieved through 
a combination of cement hydration and the formation of a 
polymer film (Liu Q. et al., 2023). Finally, a composite matrix 
consists of inorganic phases formed during cement hydration 
and an organic phase, such as a polymer film (Wagner, 1965;
Ohama, 1998).

Polymer latexes comprise a large group of materials that 
are widely used to positively influence various properties of 
cementitious materials, including workability, adhesion, crack 
resistance, durability, and water transport (Jenni et al., 2006; 
Kong et al., 2013; Ali et al., 2021; Bilal et al., 2021). Various 
synthetic polymer latexes were used as cement modifiers. Styrene-
butadiene (SBR) latex was found to have a positive effect on the 
workability of fresh-state mortar and the flexural strength of the 
hardened composites (Barluenga and Hernández-Olivares, 2004; 
Ukrainczyk and Rogina, 2013; Baueregger et al., 2015; Sun et al., 
2019). Portland cement mortars modified with SBR latex exhibited 
improved long-term impermeability to water and carbon dioxide 
(Eren et al., 2017). Polyacrylic ester (PAE) latex provided better 
abrasion resistance and durability of cement mortars (Jiang et al., 
2018). Styrene-acrylic ester copolymer (SAE) latex (Wang and 
Wang, 2010) enhanced the mortar’s toughness, shrinkage resistance, 
and water impermeability. SAE and SBR were also found to reduce 
the fluidity loss rate and prolong the setting time of cement pastes 
(Shi et al., 2021). Ethylene-vinyl acetate (EVA) latexes were also 
widely used for the modification of concrete and mortar. Their 
application influenced the hydration kinetics of Portland cement 
(Silva et al., 2002; Betioli et al., 2012). Epoxy latexes were used to 
improve the flexural strength of hardened Portland cement concrete
(Li P. et al., 2021).

Hardened cementitious materials comprise tiny pores and 
cracks, which decrease their lifespan in corrosive environments. 
Common mechanisms of degradation, including chemical 
degradation caused by chloride and sulfate ions or freeze-thaw 
cycles, were found to be related to the transport of external water in 
the porous network of the cementitious structure (Zhang et al., 
2017; Shah et al., 2021; Haq et al., 2022). Thus, various latex 
admixtures were used to modify cement mortar and concrete in 
terms of their water permeability. Liu Z. et al. (2023) developed 
hydroxylated hexagonal boron nitride/isobutyltriethoxysilane 
hybrid latexes to modify cement composites, decreasing their 
water absorption coefficient. Wu et al. (2023); Wu et al. (2024) 
used PAE latex admixture in cement grout which led to the 
eliminating of macropores and reducing the presence of mesopores 
and micropores. Zhang et al. (2019) investigated the impact of SAE 
latex on the mechanical properties and microstructure of various 
Portland cement mortars, finding that the SAE polymer film adhered 

the hydration products and filled the pores, thereby reduced water 
absorption.

Synthetic latexes are produced by emulsion polymerisation, 
an eco-friendly and efficient technique that generates aqueous 
dispersion of spherical polymer particles with diameters ranging 
from 0.05 to 0.50 μm. This process involves free radical 
polymerisation in an aqueous environment, beginning with the 
dispersion of monomers in water using an emulsifier, followed by the 
initiation of polymerisation of the monomers with a water-soluble 
initiator. The benefit of the emulsion polymerisation technique 
lies in the design variability of the final polymer particles, which 
can be easily modified by adjusting the monomer composition, 
particle size, or cross-link density (Wiley-VCH, 2002; Chern, 
2006; Saldívar-Guerra and Vivaldo-Lima, 2013; Machotová et al., 
2021). A wide variety of monomers can be used in emulsion 
polymerisation, most of which are petroleum-based, including 
styrene, vinyl acetate, and various esters of acrylic and methacrylic 
acids (Guerrero-Santos et al., 2013). Increasing environmental 
concerns and the finite nature of fossil resources were prompted 
research into new materials and strategies aimed at sustainable 
development, ultimately reducing the environmental impact (Lathi 
and Mattiasson, 2007; Yao and Tang, 2013; Biswas and Roy, 2015; 
Laurentino et al., 2018; Allasia et al., 2022). Among these research 
efforts, vegetable oils were proposed as a suitable alternative to 
fossil fuels due to their sustainability and abundance (Mecking, 
2004; Ragauskas et al., 2006; Williams and Hillmyer, 2008). They 
consist of triglycerides of higher fatty acids and vary in their degree 
of unsaturation (Teramoto, 2011; Quirino et al., 2015). However, 
the double bonds in their molecules are not reactive enough to 
be used successfully in emulsion polymerisation, so they must be 
modified by introducing more reactive groups. Epoxidation and 
subsequent acrylation are two possible approaches (Ferreira et al., 
2015; Moreno et al., 2015). Many vegetable oils were utilised in 
polymer synthesis, including soybean (Wu and Li, 2018), rapeseed 
(Ho et al., 2022), linseed (Wuzella et al., 2012), or camelina oil 
(Balanuca et al., 2015). However, the use of vegetable oil-based 
monomers in emulsion polymerisation remains a challenge due 
to their natural hydrophobicity, although successful attempts 
have been reported (Bunker and Wool, 2002; Delatte et al., 2014; 
Demchuk et al., 2016; Neves et al., 2018).

In our previous papers (Kolář et al., 2023b; Kolář et al., 
2023a), a synthesis of acrylated vegetable oil-based monomers 
from various vegetable oils and their successful copolymerization 
with standard petroleum-based acrylic monomers via emulsion 
polymerisation, yielding partially vegetable oil-based film-forming 
latexes, were demonstrated. The increased water resistance of 
the resulting coating films with vegetable oil-based monomer 
contents ranging from 20 to 30 wt% was observed, which 
motivated this work. The presented paper, therefore, deals with 
partially vegetable oil-based film-forming latexes (vegetable 
oil-based monomer/petroleum-based monomers in the weight 
ratio of 30/70) and their application as cement admixtures 
to improve the properties of Portland cement mortars. The 
effect of copolymerized vegetable oil-based monomer type 
(given by the nature of the vegetable oil, namely, camelina, 
linseed, and rapeseed oil) on cementitious materials' physical, 
chemical, mechanical, and water transport properties was evaluated 
and compared. 
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2 Materials and methods

2.1 Materials

Partially vegetable oil-based latexes were synthesised from 
(i) petroleum-based monomers, specifically, methyl methacrylate 
(MMA, Sigma-Aldrich, Schnelldorf, Germany), butyl acrylate (BA, 
Synthomer, Sokolov, Czech Republic), and methacrylic acid (MAA, 
Sigma-Aldrich, Schnelldorf, Germany); (ii) laboratory-synthesised 
vegetable oil-based monomers; (iii) emulsifier, specifically, Disponil 
FES 993 (BASF, Prague, Czech Republic); (iv) initiator, namely, 
ammonium persulfate (Lach-Ner, Brno, Czech Republic). 2-Amino-
2-methyl-1-propanol (AMP 95, Sigma-Aldrich, Schnelldorf, 
Germany) was used for neutralising the latex. Vegetable oil-
based monomers were synthesized from the following materials: 
linseed oil (V_LO, Hb-Lak, Ústí nad Labem, Czech Republic), 
camelina oil (V_CO, The National Agricultural and Food Center, 
Pstruša, Slovakia), rapeseed oil (V_RO, Preol, Lovosice, Czech 
Republic), hydrogen peroxide (30%, technical grade, Lach-Ner, 
Brno, Czech Republic), potassium hydroxide (Lach-Ner, Brno, 
Czech Republic), potassium carbonate (Lach-Ner, Brno, Czech 
Republic), methanol (Penta, Prague, Czech Republic), formic acid 
(Penta, Prague, Czech Republic), hydroquinone (Penta, Prague, 
Czech Republic), ethyl acetate (Lach-Ner, Brno, Czech Republic), 
and sodium carbonate (Lach-Ner, Brno, Czech Republic), acrylic 
acid (Sigma-Aldrich, Schnelldorf, Germany), chromium (III) 2-
ethyl hexanoate (ThermoFisher, Kandel, Germany). All chemicals 
were used as obtained.

The cement composite specimens were prepared using the 
ordinary Portland cement 42.5 R grade (CEM I), produced by 
Heidelberg Materials CZ, Corp., Czech Republic, and meeting 
the requirements specified in EN 197-1 (2013). The chemical 
composition and physical properties of CEM I are given in our 
previous study (Zárybnická et al., 2023). As a filling material, a 
natural silica aggregate mixture (SAM, Filtrační písky, Ltd., Czech 
Republic), composed of three fractions (0.0/0.5 mm, 0.5/1.0 mm, 
and 1.0/2.0 mm) and mixed in equal weight ratios, was used. 

2.2 Preparation and characterisation of 
latex admixtures

First, the vegetable oil-based monomers with the chemical 
character of methyl esters of acrylated higher fatty acids derived 
from the respective vegetable oil V_CO, V_LO, and V_RO (see 
Figure 1a) were synthesised using procedures described in detail 
in references (Kolář et al., 2023b; Kolář et al., 2023a). In a 
simplified way, the synthesis of vegetable oil-based monomers was 
performed according to a 3-step procedure: (i) transesterification 
of vegetable oil (210 g) using methanol (46 g) and potassium 
hydroxide (1.85 g) as a catalyst at 60 °C for 90 min; (ii) epoxidation 
of the transesterification intermediate (210 g) using hydrogen 
peroxide (172.5 g) and formic acid (30.15 g) as a catalyst at 60 °C 
for 3 h (potassium carbonate was used to stop the reaction); (iii) 
acrylation of epoxidized intermediate (50 g) using acrylic acid 
(17 g), chromium (III) 2-ethyl hexanoate (0.5 g) as a catalyst, 
and hydroquinone (0.15 g) as an inhibitor (of acrylic acid 
homopolymerization) at 100 °C for 6 h. Sodium bicarbonate 

was used to neutralise the excess amount of acrylic acid, and 
a mixture of ethyl acetate with water (1:1 w/w) and sodium 
carbonate was utilised for the purification and desiccation of the 
final product, respectively. A detailed procedure of the synthesis 
pathway leading to vegetable oil-based monomers is presented in the
Supplementary Material.

A semi-continuous, non-seeded emulsion polymerisation 
technique was employed to synthesise three partially vegetable 
oil-based latex admixtures, labelled CO, LO, and RO (reflecting 
the vegetable oil type V_CO, V_LO, and V_RO, respectively). In 
these latexes, the respective vegetable oil-based monomer (30 wt% 
in the total monomer mixture) was copolymerized with commercial 
petroleum-based monomers MMA, BA, and MAA (see Table 1). A 
reference latex (REF) was also synthetised without introducing 
a vegetable oil-based monomer. The monomer composition of 
all synthesized latexes maintained a constant MMA/BA ratio 
of 21/28 (w/w) to ensure film-formation of latex films at usual 
ambient temperatures (using the Fox equation (Fox and Flory, 
1950), the glass transition temperature (Tg) was calculated to be 
approximately 0 °C for the MMA/BA/MAA (42/56/2 by weight) 
reference copolymer) and also to show the plasticizing effect of 
the vegetable oil-based monomer type. In all latex compositions, 
a constant content (2 wt%) of MAA was introduced to provide 
colloidal stability to the latexes through carboxyl functionalities. A 
schematic structure of a latex copolymer is shown in Figure 1b.

The latexes were synthesised in a 500 mL glass vessel at 85 °C 
under a nitrogen atmosphere. 32.5 g of demineralised water, 0.25 g 
of Disponil FES 993, and 0.35 g of ammonium persulfate were 
weighed into the glass vessel and heated to the polymerisation 
temperature. The monomer emulsion consisting of 100 g of the 
monomer mixture (Table 1), 115 g of demineralised water, 7.4 g 
of Disponil FES 993, and 0.7 g of ammonium persulfate was 
then dosed into the reactor during 2 h. After that, the reaction 
mixture was allowed to polymerise for 2 h. After cooling, the 
latex was filtered to remove the coagulum formed during the 
synthesis. Finally, the pH of the latex was adjusted to 10 using 
AMP 95 (50% aqueous solution). The reaction flow chart graphically 
summarizing individual synthesis steps of latex nanodisperisons 
(including vegetable oil-based monomer synthesis) is shown in the 
Supplementary Material as Supplementary Figure S1.

The solid content was determined according to EN 
3251 (2003). The test details are described in detail in the 
Supplementary Material. The apparent viscosity was measured 
at 25 °C using a Brookfield LVDV-E Viscometer (Brookfield 
Engineering Laboratories, USA) at 100 rpm according to the 
standard EN 2555 (2018). The average particle size (hydrodynamic 
diameter) and the zeta potential of the latex particles dispersed in 
water were detected at 25 °C by dynamic light scattering (DLS) using 
a Litesizer 500 instrument (Anton Paar, Austria). The concentration 
of a solid polymer in the water phase was 0.01 wt% in all DLS 
measurements. The minimum film-forming temperature (MFFT) 
was measured according to the standard ISO 2115 (1996) using an 
MFFT-60 instrument (Rhopoint Instruments, UK). The testing of 
colloidal stability against alkaline pH and CaCl2 electrolyte (i.e., 
ionic strength) was carried out by dropping a small amount (2–3 
drops) of the latex into a NaOH solution of a specific pH (10.5, 
11.0, 11.5, 12.0, 12.5, 13.0, 13.5, and 14.0) and CaCl2 solution of a 
particular concentration (1.0, 1.5, 2.0, 2.5, and 3.0 wt%), respectively. 
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FIGURE 1
Schematic structures, (a) vegetable oil-based monomer represented by methyl ester of acrylated oleic acid, (b) copolymer chain composed of MMA 
(n), BA (o), MAA (p), and vegetable oil-based monomer (q) represented by methyl ester of acrylated oleic acid.

TABLE 1  Monomeric composition of latex polymer admixtures.

Latex name Vegetable 
oil-based 

monomer/wt%

Petroleum-based 
monomer/wt%

MMA BA MAA

REF 0 42.00 56.00 2.00

Xa 30 29.16 38.84 2.00

aX is CO, LO, and RO, which reflect the type of vegetable oil (V_CO, V_LO, and V_RO, 
respectively).

If there was no precipitation, the latex was considered stable at the 
given pH or CaCl2 concentration.

Free-standing films with a thickness of approximately 0.7 mm 
were prepared by pouring the latexes into silicone molds to 
determine the dry latex polymer´s chemical composition, Tg, 
gel content, and cross-link density. The films were dried at 
ambient temperature (22 °C ± 1 °C) for 1 month. The chemical 
composition was characterized by Fourier transform infrared 
spectroscopy (FTIR). Infrared (IR) spectra were recorded on a 
Nicolet iS50 FTIR spectrometer (Thermo Fisher Scientific, Waltham, 
MA, United States), equipped with a built-in diamond attenuated 
total reflection (ATR) crystal, in the region of 4,000–400 cm–1 
(data spacing = 0.5 cm–1). The Tg was determined by differential 

scanning calorimetry (DSC) on a Pyris 1 DSC instrument (Perkin-
Elmer, Waltham, MA, United States). The measurements were 
performed under an inert (nitrogen) atmosphere at a heating rate of 
10 °C.min−1 from −50 °C to 120 °C, and the Tg value was determined 
from the second heating curve.

The gel content was determined according to EN 6427 (2014). 
Approximately 1 g of a dried polymer film was extracted in 
tetrahydrofuran for 24 h using a Soxhlet extractor.

The cross-link density, expressed as moles of cross-links per 
cm3 of a polymer network, was determined through swelling 
experiments on dry latex film specimens (approximately 0.3 g) 
submerged in toluene at 40 °C for 14 days. The calculations 
using a set of equations (Vandenburg et al., 1999) based on 
the Flory and Rehner (1943) are described in more detail in 
the Supplementary Material. Calculations were performed for the 
MMA/BA/MAA (42/56/2 by weight) copolymer using density and 
solubility parameter literature data for poly (MMA), poly (BA), and 
poly (MAA) homopolymers (Vandenburg et al., 1999; Tobing and 
Klein, 2001). 

2.3 Preparation and characterization of 
portland cement mortars

The mixing ratios of the components used to produce the 
reference mortar mix (OPC) and the latex-modified mortar mixes 
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TABLE 2  Proportions of components for the preparation of OPC and 
cement composite mortar mixes.

Material Composition/kg.m−3

OPC CM_
REF

CM_
CO

CM_
LO

CM_
RO

CEM I 500.0 500.0 500.0 500.0 500.0

SAM 1,500.0 1,500.0 1,500.0 1,500.0 1,500.0

Latex 0 0.5 0.5 0.5 0.5

Water 250.0 249.7 249.7 249.7 249.7

are shown in Table 2. The mortar specimens are designated OPC 
and CM_y, where y denotes the latex type (REF, CO, LO, and RO). 
The standard OPC mix consisted of Portland cement, SAM, and 
water, with a weight ratio of these components of 1.0:3.0:0.5. The 
influence of latex admixture was investigated in a series of mortars, 
where a specific latex admixture was added at a level of 0.1 wt% 
based on the weight of the Portland cement. After mixing the latex 
admixture with water, the resulting aqueous phase was combined 
with the remaining mortar composition. The same water-to-cement 
(w/c) ratio of 0.5 was maintained in all the mortar mixes prepared 
to ensure the materials were comparable. It is essential to note that 
the water contained in the latex admixture was subtracted from the 
initial water added to the batch in the case of the latex-based mortars. 
According to EN 196-6 (2010), a laboratory mixer that meets all 
requirements was used to prepare fine OPC and latex-modified 
mortars. Specimens in the shape of prisms with sizes of 40 × 40 
× 160 mm3 from fresh OPC and latex-modified mortars were cast. 
The casting and curing processes are described in detail elsewhere 
(Pokorný et al., 2021a). The prepared hardened mortar specimens 
were immersed in water for 24 h, as recommended, to prevent 
elution of the polymer from the cement matrix (Ferreira et al., 2015). 
At least 18 replicates were casted for each mix.

Isothermal conduction calorimetry (ICC) using a TAM-Air 
(TA Instruments, Germany) was employed to track the heat 
signal during the setting reaction of powder and liquid starting 
components of the same composition, as reported in Table 2. 
Specimens were equilibrated at a measurement temperature of 
25 °C, the slurry was mixed for 120 s, and heat flow was recorded 
over 7 days. A minimum of two replicates was used. The spread 
values of the produced specimens were measured following the 
recommendations described in EN 1015-3 (2000).

Following the 28-day hardening period, a series of analyses were 
conducted on the produced specimens, as described in the following 
text. X-ray powder diffraction (XRPD) patterns were collected with 
a Bragg–Brentano θ-θ diffractometer [Bruker D8 Advance, United 
States, Cu Kα radiation (λ = 1.5418 Å)] at 40 kV and 40 mA in the 
angular range 5°–60°. 2θ counting was set to 0.4 s for each step of 
0.0102°. Quantitative phase analysis (QPA) was conducted using 
the TOPAS 4.2 software (Bruker AXS) with Rietveld refinement. 
The amorphous phase was quantified using an internal standard 
method, with zinc oxide added to the specimens at a concentration
of 10 wt%.

The microstructures of the specimens were observed using 
scanning electron microscopy (SEM) with a Quanta 450 FEG 
(FEI, Czech Republic) and a secondary electron detector. An 
acceleration voltage of 20 kV was used to observe the 10 nm 
gold-coated fracture surfaces. The pore size distribution was 
measured using mercury intrusion porosimetry (MIP) using 
an Autopore IV 9500 (Micrometrics, United States). Ultrasonic 
pulse velocity (UPV) and transit time were measured using a 
Pundit Lab device (Proceq, Switzerland) with a frequency of 
250 kHz. The measuring uncertainty was 1.8°%. The flexural and 
compressive strengths were determined and calculated according to 
the methodology outlined in EN 1015-11 (1999), using a hydraulic 
press Servo Plus Evolution (Matest, S.p.A., Italy) with loading 
capacity up to 300 kN. The expanded combined uncertainty of 
strength properties assessment was in maximum 2.2%. Water 
transport measurements of vertical suction were conducted 
following the procedure outlined in the standard EN 1015-18 
(2003). The exact description of liquid transport measurements 
is provided elsewhere (Pokorný et al., 2021b; Zárybnická et al., 
2023). The combined uncertainty of the absorption coefficient 
(kg.m−2⋅s−1/2) and apparent moisture diffusivity (m2⋅s−1) did not
exceed 10.0%. 

3 Results and discussion

3.1 Vegetable oil-based latex 
characterization

The characteristic properties of the prepared liquid latex 
admixtures are listed in Table 3. The solids content of all partially 
vegetable oil-based latex admixtures was lower than the solids 
content of the REF latex, which is a result of the increased coagulum 
formation during the synthesis of the partially vegetable oil-
based latexes; 4.5–5.6 wt% of the coagulum (based on total solids) 
was formed when synthesizing the vegetable oil-based latexes, 
whereas approximately 0.1 wt% of the coagulum was collected 
after the synthesis of the REF latex. All latex admixtures exhibited 
low viscosities, suggesting favorable application and processing 
properties. The diameters of polymer particles were found not 
to be affected significantly by the type of vegetable oil-based 
monomer. They reached values typical for latex polymer products 
used in building industry applications (Scrivener et al., 2019). 
On the contrary, the zeta potentials were shown to be affected 
pronouncedly by the vegetable oil-based monomer used. The zeta 
potential, which is the electric potential at the boundary of the 
double layer surrounding the colloidal particle, represents the 
degree of electrostatic stabilization by repulsive forces between 
ionically charged colloidal particles. The REF latex admixture 
showed the lowest zeta potential (in absolute value), suggesting 
decreased colloidal stability. In contrast, the vegetable oil-based 
latexes exhibited higher zeta potential values, indicating stability 
even in harsher conditions (e.g., increased ionic strength, which 
can occur in the environment of mortar mixes). The MFFT values 
of all latex admixtures were found to be near or below 0 °C, 
which suggests the favorable adhesion and binding capability of 
latex polymer particles among mortar constituents, even at low 
application temperatures (Zarybnicka et al., 2021).
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TABLE 3  Characteristic properties of liquid latex admixtures.

Specimen Solids content
/wt%

Viscosity/mPa.s Particle diameter
/nm

Zeta potential/mV MFFT
/°C

REF 39.2 ± 0.1 11.1 ± 0.1 90.2 ± 1.4 −29.2 ± 1.3 0.7 ± 0.2

CO 37.2 ± 0.1 14.8 ± 0.2 95.0 ± 0.7 −36.7 ± 2.4 <0

LO 36.9 ± 0.2 16.0 ± 0.2 92.2 ± 1.1 −34.3 ± 1.6 <0

RO 37.0 ± 0.3 10.6 ± 0.1 90.98 ± 1.5 −40.9 ± 2.0 <0

The testing of colloidal stability against alkaline pH revealed 
that all latex admixtures remained stable up to pH = 13.5 (see 
Table 4). Since the pH of the Portland cement mortar environment 
is below 14 (Sumra et al., 2020), the risk of destabilization 
(premature aggregation of polymer particles) due to increased pH 
may be eliminated for all latex admixtures in the preparation 
process of cement composites. The testing of colloidal stability 
against CaCl2 electrolyte revealed differences between the latex 
admixtures (see Table 4). In accordance with the results of zeta 
potential measurements, the REF latex was found to be the least 
stable (coagulation occurred at a CaCl2 electrolyte concentration 
of 1.5 wt%), whereas the vegetable oil-based latexes withstood even 
the highest tested CaCl2 electrolyte concentration (3.0 wt%). This 
fact indicates stronger adsorption of the utilized anionic emulsifier 
to polymer particles in the vegetable oil-based latex formulations, 
which may result in decreased/slower/gradual desorption of 
emulsifier molecules in aqueous solutions of electrolytes at higher 
concentrations, e.g., in a fresh-mixed mortar environment. Note 
that adsorbed ionic emulsifier molecules typically represent a 
significant amount of charge on the surface of polymer particles, 
thus providing their sufficient electrostatic repulsion (Hellgren et al., 
1999). In addition, the increased electrolyte stability of the 
vegetable oil-based latex admixtures can also prevent premature 
aggregation (flocculation) of latex polymer particles in the intended 
mortar application, which should result in increased/uniform 
distribution of latex polymer in the cement composite and its higher 
binding ability.

The prepared latex admixtures were also investigated from the 
point of view of their chemical structure and the level of cross-
linking expressed by the parameters of gel content and cross-link 
density (see Table 5). The chemical structure of latex admixtures 
in terms of the vegetable oil incorporation was characterized 
by FTIR spectroscopy. The IR spectra of the vegetable oil-based 
latex admixtures (Figure 2) exhibit increased intensity of the C–H 
stretching bands of the methylene groups at 2,933 and 2,857 cm–1 
(νa (C–H; CH2 and νs (C–H); CH2, respectively), which documents 
the successful incorporation of the vegetable oil-based monomers 
into the acrylic polymer chains.

Cross-linking of latex polymers may affect their applicability 
and final properties, e.g., mechanical and chemical resistance may 
be improved due to toughening of the polymer structure. However, 
on the other hand, adhesion and coalescence can deteriorate due to 
loss of polymer particle deformability (Machotova et al., 2016). In 
our previous works on the synthesis of vegetable oil-based latexes 
for coating applications (Kolář et al., 2023a; Kolář et al., 2023b), it 

TABLE 4  Results of colloidal stability tests of liquid latex admixtures 
against alkaline pH and CaCl2 electrolyte.

Specimen Alkaline 
pH 

stabilitya

pH/-

CaCl2 electrolyte stabilitya

CaCl2 concentration/wt%

13.5 14 1.0 1.5 2.0 2.5 3.0

REF √ − √ – – – –

CO √ − √ √ √ √ √

LO √ − √ √ √ √ √

RO √ − √ √ √ √ √

aStability results are presented by symbols: “√” means no visible coagulation or no visible 
precipitation of latex in test solution; “−” means visible coagulation or precipitation of latex 
in test solution.

was demonstrated that cross-linking occurred within the individual 
latex polymer particles due to copolymerizing the vegetable oil-
based monomers containing multi-acrylated ingredients derived 
from polyunsaturated higher fatty acids (the detailed representation 
of higher fatty acids in utilized vegetable oils is provided in 
Supplementary Table S1 in the Supplementary Material). This 
phenomenon was also confirmed in this study, showing the 
significant amount of gel fraction and measurable values of cross-
link density for all partially vegetable oil-based latex polymers, 
among which the LO polymer exhibited the highest level of cross-
linking and the RO polymer was the least cross-linked, suggesting 
the most favorable sintering and adhesion of the RO latex admixture 
to mineral parts of the mortar.

The prepared latex admixtures were also investigated from 
the point of view of polymer Tg (see Table 5). This parameter 
expresses the mobility of polymer chains. It is also related to 
the deformability, adhesion, and binding capability of spherical 
latex polymer particles to mineral components of the mortar, thus 
affecting the cohesion and mechanical performance of the final 
cement composite material. It was found that the vegetable oil-
based latex polymers exhibited lower Tg values in comparison with 
the REF latex polymer. A significantly reduced Tg was found for 
the RO latex polymer, indicating increased deformability of the 
polymer particles and better adhesive and bonding ability of the RO
latex admixture. 
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TABLE 5  Characteristic properties of dry latex polymers.

Specimen Gel content/wt% Cross-link density × 10–6

/moles of cross-links × cm–3
Tg
/°C

REF -a ≅ 0 1.3 ± 1.0

CO 86.8 ± 0.5 227 ± 8 −2.0 ± 0.5

LO 90.9 ± 1.2 399 ± 10 −1.8 ± 0.9

RO 72.0 ± 0.9 32 ± 1 −13.4 ± 1.2

aThe gel fraction was not present.

FIGURE 2
IR spectra of the latex admixtures modified with different vegetable 
oil-based monomers.

3.2 Monitoring of the hydration process of 
portland cement mortars

The recorded heat and heat flow curves are depicted in Figure 3. 
The pre-induction phase is not reported as it was of a relatively 
brief duration (approximately 10–15 min), and this period is solely 
represented by the wetting of the cement grains. Subsequently, the 
initial reactions with the clinker minerals occurred. A quantity 
of hydration heat was released, accompanied by the dissolution 
of aluminates and sulfates and the formation of portlandite [CH, 
Ca(OH)2] (Lothenbach and Winnefeld, 2006). A comparison of 
the measured records indicates that the behavior of all types of 
mortars is comparable. The next phase is distinguished by a gradual 
release of hydration heat, an increase in viscosity (indicative of the 
beginning of cement solidification), and the formation of nuclei 
for calcium silicate hydrate (C-S-H) and CH crystals (Beaudoin 
and Odler, 2019). The formation of ettringite (AFt; calcium 
trisulfoaluminate hydrate) persists, accompanied by the penetration 
of water into the cement grains and the formation of new hydration 
products. The second phase of the induction period is completed 
approximately one to 2 hours after mixing. Then, the rate of 

hydration was increased, with the maximum at around 12 h. During 
this cement hydration phase, the individual mortars’ behavior 
remained comparable, with a slightly higher curve for the CM_
CO mortar.

The next step is characterized by the rapid reaction of Alite 
(C3S, tricalcium silicate) and formation of long-fiber silicate C-S-
H and CH crystals. The cement grains are approached by each 
other because of the growth of crystals of hydration products 
(Scrivener et al., 2019). During this period, the fundamental 
structures of cement are established (Brown et al., 1984). The fine-
fiber C-S-H is formed in the following phase of the hydration 
process, and AFt gradually transforms into monosulfate (AFm), 
belite (C2S) undergoes hydration, and the generation of heat 
decreases. Diffusion then controls the hydration reactions. After 
approximately 30 h of hydration, a distinct change in heat flow 
curves was observed in the CM_RO and CM_REF mortars, 
characterized by reduced heat generation. The process of hydration 
of the CM_CO, CM_LO, and OPC mortars was comparable up 
to 48 h, after which a decrease in heat generation was observed 
compared to OPC. The total heat of hydration was measured after 
7 days, with the highest values determined for OPC (339 J.g−1), 
CM_LO (297.5 J.g−1), and CM_CO (277.4) J.g−1. The lowest values 
were calculated for CM_RO (253.2 J.g−1) and CM_REF (256.7 J.g−1). 
Concerning the testing of mechanical properties, it was found 
that the mortars with the highest total heat demonstrated the 
optimal performance, a finding substantiated in the following 
text. The shape and progress of detected heat and heat flow 
curves of cement hydration processes, as well as total heat, were 
found to be comparable with previously described isocalorimetric 
measurements of cement composites produced using different types 
of admixtures like e.g., acrylic latexes (Zárybnická et al., 2023; 
Machotová et al., 2025) and/or latex copolymer of carboxylate 
styrene-butadiene (Baueregger et al., 2015). 

3.3 Mineralogical composition of hardened 
portland cement mortars

From a qualitative point of view, quartz (Si, SiO2), CH, calcite 
(CC̄, CaCO3) together with its metastable polymorphs – aragonite 
and vaterite (both CaCO3), gypsum (CSH2, CaSO4.2H2O), 
unreacted clinker phases (C3S, C2S) and Aft, the product of the 
reaction between C3S and CSH2 during cement hydration, were 
detected. The quantitative mineralogical analysis of the collected 
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FIGURE 3
Isothermal calorimeter records for all mortars.

XRPD patterns, including quantification of the amorphous phase, is 
summarized in Table 6.

In contrast to our previous works focused solely on the 
petroleum based polymeric admixtures (Zárybnická et al., 2023; 
Machotová et al., 2025), no or only a negligible amount of vaterite 
phase was detected in hardened CM specimens, probably as a 
consequence of the modification of hydration and/or carbonation 
pathways due to the effects of the different chemical nature of 
applied latexes. Generally, the presence of CaCO3 may be explained 
by the partial release of Ca2+ ions from amorphous C-S-H phases 
(Sevelsted and Skibsted, 2015) or due to the carbonation reaction 
(Liang et al., 2024). To highlight the effects of incorporated vegetable 
oil-based derivatives in latexes, the results of the quantitative phase 
analysis were recalculated, excluding quartz that was detected in 
the specimens due to the used aggregate fraction, and the graphical 
output is visualized in Figure 4.

As visible in Figure 4, the significant difference between 
vegetable oil-based latex mortar specimens and OPC and CM_
REF specimens was found to be in the amount of CaCO3 and 
amorphous phases. Compared to CM_REF, specimens containing 
vegetable oil-based latex admixtures with linseed (CM_LO) and, 
especially, rapeseed oil (CM_RO) showed lower concentrations 
of CaCO3 and higher amounts of amorphous phase – assumed 
to be mainly composed of C-S-H (Bullard et al., 2011). On 

the contrary, the opposite trend was detected for specimens 
with the vegetable oil-based latex admixture containing camelina 
oil (CM_CO). The tremendous effects of various admixtures 
and admixtures on the reaction kinetics and pathways of both 
hydration and carbonation reactions in cementitious and lime-based 
systems are well documented (Cheung et al., 2011; Rodriguez-
Navarro et al., 2023). 

3.4 Microstructure of hardened portland 
cement mortars

The gallery of SEM micrographs collected on fractured mortar 
specimens is depicted in Figure 5. All specimens have shown well-
compacted dense internal microstructure, including OPC, which 
was already reported in our previous work (Zárybnická et al., 2023). 
In Figure 5a, long needle-like AFt crystals (Tosun and Baradan, 
2010) attached to hydrated clinker phases are visible. As reported 
in the work on petroleum-based acrylic latexes (Ševčík et al., 2023; 
Zárybnická et al., 2023), also the partially vegetable oil-based latexes 
exhibited sufficient bridging capability, for example, the bridge 
between the cement matrix and silica aggregate is depicted in 
Figure 5b (area highlighted by the inserted arrow) and in Figure 5e, 
in which the exact location (delaminated in a white rectangle) is 
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TABLE 6  The mineralogical composition of selected 28-day hardened mortars as determined using Rietveld refinement.

Phase Content/wt%

OPC CM_REF CM_CO CM_LO CM_RO

Quartz (S) 42.2 (4) 55.4 (5) 68.1 (5) 45.7 (4) 57.4 (4)

Portlandite (CH) 3.6 (1) 5.5 (1) 2.9 (1) 5.2 (9) 4.5 (1)

Calcite (CC ̄) 3.6 (3) 6.0 (3) 4.2 (3) 7.3 (3) 2.4 (2)

Alite (C3S) 0.6 (2) 0.6 (2) 0.9 (2) 0.9 (2) 0.8 (2)

Aragonite 13.9 (3) 3.3 (4) 4.9 (5) 2.7 (3) 2.8 (3)

Vaterite 5.4 (3) - - 0.5 (2) -

Ettringite (Aft) 2.7 (3) 4.5 (3) 2.8 (3) 3.8 (3) 4.1 (3)

Gypsum (CSH2) 0.9 (2) 2.2 (2) 1.8 (2) 1.9 (2) 1.6 (2)

Belite (C2S) 0.4 (1) 0.9 (2) 0.7 (3) 1.2 (3) 0.9 (2)

Amorphous 26.9 (9) 21.4 (9) 13.8 (9) 30.9 (8) 25.6 (8)

FIGURE 4
Recalculated phase concentrations in hardened mortar specimens 
after removing the quartz content.

shown at higher magnification. In CM_LO, a porous space partially 
filled with a polymer film was detected (Figure 5c, highlighted by 
an arrow). Observation at higher magnification (see Figure 5f in 
which cracks formed due to radiation damage by electron beam are 
visible inside the area highlighted by a white rectangle) confirmed 
the presence of latex polymer material. Moreover, in the central part 
of Figure 5d, C-S-H-phases (Chiang et al., 2014) in close connection 
with plate-like CH (Cizer et al., 2012) and Aft crystals is well visible.

Unfortunately, the application of latex admixtures in cement 
mortar and concrete is often associated with a bubble-forming effect, 
resulting in increased porosity of hardened cementitious materials. 
This phenomenon was ascribed to the desorption of emulsifiers 

from polymer particles, which subsequently entrain air during 
mortar mixing (Wang and Wang, 2011). Therefore, MIP analysis 
was performed (see Table 7; Figure 6). All specimens comprising 
the vegetable oil-based latex admixture, regardless of its type, 
reported a higher rate of open porosity in comparison with OPC 
and CM_REF. Compared with CM_REF, the porosity was found to 
be 13.9, 19.0, and 20.4% higher for CM_CO, CM_LO, and CM_
RO, respectively. An increased porosity of hardened latex-based 
composites is related to the foamy effect of latex admixtures in fresh 
mixes (Łaźniewska-Piekarczyk, 2013; Zárybnická et al., 2023). In 
previous works (Zárybnická et al., 2023; Machotová et al., 2025), 
the increased amount of added petroleum/based admixtures into 
cement composites resulted in the gradual increase of total porosity 
and increased pore volumes in all three pores diameters regions: 
gel pores, capillaries and macropores. As demonstrated in Figure 6, 
showing a graphical representation of the results of the size pore 
distribution for all specimens, it can be summarized that the CM_
LO and CM_RO specimens exhibited a higher content of capillaries 
and macropores than the OPC specimen. Conversely, the content 
of capillaries was lower for the CM_REF and CM_CO specimens 
than for OPC. Gel pores were detected at higher quantities in 
cement composite specimens comprising the vegetable oil-based 
latex admixtures, while the OPC and CM_REF specimens were 
comparable.

Upon examining the information regarding MIP with the 
stability testing and zeta potentials of the prepared latex admixtures 
(Tables 3, 4), it can be assumed that in more stable latexes (the RO 
latex was found to be the most stable, while the REF latex was the 
least stable) the desorption of the emulsifier from polymer particles 
in the fresh mortar mix occurred, but more slowly. To draw the 
following conclusion, these assumptions must be taken into account: 
(i) the desorbed emulsifier, which in the fresh mortar mix functions 
as a surfactant (reducing the interfacial tension between liquid and 
gas), captures air, stabilizes, and also retains air bubbles in the fresh 
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FIGURE 5
Microstructure of 28-day hardened specimens, (a) CM_REF; (b) CM_CO; (c) CM_LO; (d) CM_RO; (e) detail CM_CO; (f) detail CM_LO.

TABLE 7  Porosity (MIP) and ultrasonic characteristics of 28-day hardened OPC and cement composite specimens.

Specimen MIP/% Ultrasonic velocity/m.s−1 Transit time/µS

OPC 13.8 40.0 ± 1.5 4,087 ± 36.8

CM_REF 13.7 42.2 ± 0.2 3,788 ± 13.2

CM_CO 15.6 42.7 ± 0.3 3,750 ± 22.2

CM_LO 16.3 44.8 ± 0.5 3,572 ± 42.1

CM_RO 16.5 43.9 ± 0.3 3,645 ± 25.0

mortar mixture, (ii) large bubbles have a greater chance of escaping 
from the cement material during the mortar vibrating period. With 
delayed desorption of the emulsifier, the air present in the mortar 
mix will still be captured, however, it will probably be present in 
the form of a higher number of fine bubbles, which, however, will 
remain trapped in the cement material due to their small size and 
the advanced stage of mortar hardening. 

3.5 Physical-mechanical properties of 
hardened portland cement mortars

Ultrasonic waves are primarily employed to predict the strength 
of mortar and concrete (Abo-Qudais, 2005), however, this method 
can also be utilized to identify internal defects, such as cracks 
(Malhotra and Carino, 2003). It can be assumed that an increase 
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FIGURE 6
Pore size distribution for the hardened mortar specimens.

in transit time and a reduction in ultrasonic velocity result in 
a more compact structure formation with a lower abundance of 
internal defects. As reported in Table 7, the most compact specimen 
appeared to be OPC, which showed the lowest ultrasonic velocity 
value and, at the same time, the highest transit time value. CM 
specimens could be sorted into two groups with comparable values 
represented by CM_REF and CM_CO specimens with values of 
ultrasonic velocity and transition time around 42.3 m.s−1 and 
3,775 µS, respectively, and other two specimens (CM_LO and CM_
RO) with ca. 5% higher velocities values, and, simultaneously, 5% 
lower transition time values. As discussed in the following text, the 
ultrasonic characteristics of mortar specimens are closely associated 
with compressive strength values (Fǎcǎoaru, 1970).

The results of the mechanical characteristics, namely, the 
compressive and flexural strengths, are listed in Table 8. In the 
case of compressive strength, produced specimens could be, as 
in the case of ultrasonic wave tests, divided into 3 groups: (i) 
the highest compressive strength - OPC, CM_REF and CM_CO 
of; (ii) the moderate compressive strength - CM_LO; (iii) the 
lowest compressive strength - CM_RO. Regarding the vegetable oil-
based latex admixture type, negligible differences in compressive 
strength values were detected for CM_CO compared to OPC. 
On the contrary, CM_LO and, especially, CM_RO showed lower 

compressive strength values (reduction of 15.4% for CM_RO versus 
OPC). An explanation of this compressive behavior could be 
related to the increased porosity of specimens produced using 
vegetable oil-based latex admixtures, as discussed above. Looking 
closely at the flexural strength, specimens containing vegetable 
oil-based latex admixtures showed comparable values with no 
significant differences. In previous papers (Ismail et al., 2011; 
Zárybnická et al., 2023), latex concentration was found to play a 
major role in the flexural strength of cement-based materials, most 
probably as a consequence of altered air entrapment during the 
mixing procedure. As possible method to reduce negative impact 
of the polymeric admixtures on compressive strengths of produced 
cement composites, a partial substitution of cement with fly ash 
was proposed (Liu et al., 2020).

The compactness of the inner structure of hardened mortar 
specimens is also related to properties that describe the transport 
of liquid water into the cementitious matrix. In general, water 
constitutes a suitable solvent medium that allows the penetration 
of different harmful substances (salts, acids, etc.) into the porous 
structure of cementitious building materials, causing negative 
impacts in long-term periods (Luo et al., 2024). The detected 
characteristics of the liquid water transport results of the produced 
mortar specimens are summarized in Table 9. The positive effect 
of vegetable oil-based latex admixtures on mitigating liquid water-
related transport through the structure of the produced mortars was 
observed. For example, the positive effect on the permeability of the 
produced cement composites were observed also for applications 
of styrene-butadiene rubber latex, polyacrylic ester emulsion and 
organic silicon waterproof agent (Liu et al., 2020). The intensity of 
the water suction of mortar specimens indicated by the absorption 
coefficient values showed the minimal effect of the REF latex 
admixture – 5.0% (vs. OPC). On the other hand, specimens 
comprising the vegetable oil-based latexes were found to be very 
effective in reducing water suction: in contrast to CM_REF, the 
absorption coefficient was reduced by 27.8% for CM_LO and 
38.9% for both CM_CO and CM_RO, probably as a consequence 
of their increased effectivity in formation of hydrophobic films 
inside cement matrix (see Figure 5) that substantially hindered water 
transport (Knapen and Van Gemert, 2015). The higher porosity 
of these specimens is responsible for higher capillary saturated 
water content, but despite that, apparent moisture diffusivity is 
significantly mitigated from 1.51 × 10−8 (OPC) up to 0.27 × 
10−8 m2⋅s−1 (CM_RO). The positive effect of the vegetable oil-based 
latex admixtures can be attributed mainly to the influence of the 

TABLE 8  Mechanical characteristics for 28-day hardened mortar specimens.

Specimen Compressive strength/MPa Flexural strength/MPa

OPC 53.1 ± 1.9 8.3 ± 0.2

CM_REF 49.6 ± 1.4 8.2 ± 0.5

CM_CO 52.1 ± 1.3 7.2 ± 0.7

CM_LO 48.3 ± 0.5 7.6 ± 0.5

CM_RO 44.9 ± 0.6 7.6 ± 0.1
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TABLE 9  Liquid water transport characteristics and open porosity of 28-day hardened mortar specimens.

Specimen Absorption 
coefficient/kg⋅m−2⋅s−1/2

Capillary saturated 
water content/kg⋅m−3

Apparent moisture 
diffusivity/×10−8 m2⋅s−1

Sorptivity/×10−5 m⋅s−1/2

OPC 0.019 154.2 1.51 1.90

CM_REF 0.018 162.2 1.23 1.18

CM_CO 0.011 177.1 0.41 1.13

CM_LO 0.013 191.1 0.47 1.31

CM_RO 0.011 203.4 0.27 1.05

FIGURE 7
Comparative radar charts [(a) using lines; (b) using area to highlight the changes] illustrating the influence of the type of latex admixture on mortar 
properties.
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polymer’s Tg which was significantly lower in the case of the RO latex 
polymer compared with CO and LO polymers (see Table 5). The 
low Tg makes latex polymer particles more deformable, enhancing 
their ability to coalesce and form a continuous, cohesive polymer 
film within the pores of the cement mortar. This film effectively 
coats and seals the inner structure, acting as a hydrophobic barrier 
that lines the pores that would otherwise serve as pathways for 
water ingress. Moreover, the LO and CO polymer particles exhibited 
significantly higher levels of internal cross-linking (see Table 5), 
which made their particles more rigid. The lower level of cross-
linking within individual polymer particles of the RO latex enhanced 
the polymers' flexibility, provided by its low Tg, further promoting 
its sintering and adhesion to the mortar constituents. Thus, the 
RO latex with the lowest Tg and cross-linking level coated and 
sealed the inner structure of the cementitious material to the greatest 
extent, resulting in reduced water ingress. These findings suggest the 
high effectiveness of the newly produced vegetable oil-based latex 
admixtures, particularly the RO type, in hindering water penetration 
into the porous structure of mortar and concrete.

In Figure 7 and Supplementary Figure S2 in the 
Supplementary Material, the radar charts are depicted, illustrating 
the significant changes in the selected properties of the produced 
specimens. The close relation of porosity to some properties is 
visible. For example, the higher porosity values were found to be 
reflected in the higher values of capillary saturated water content 
and ultrasonic velocity and lower values of flexural strength. 
The trends are not so straightforward in the case of compressive 
strength and, e.g., apparent moisture diffusivity, where the type of 
the synthesized vegetable oil-based latex admixture considerably 
influenced the detected values, as already mentioned above. The CO 
latex admixture seems to be good candidate for the preparation and 
testing of Portland cement-based mortars intended for structures 
where high compressive strengths with reduced water transport 
properties and/or greater durability against weathering (Pang et al., 
2025) are needed. In general, water transport properties of the 
produced mortar specimens were found to be most affected by the 
application of the RO latex admixture, however, at the cost of the 
highest decrease in compressive strength. Nevertheless, a decrease 
in the sorptivity of cementitious materials has been identified 
as a crucial parameter to predict their lifetime (Tukimat et al., 
2017). However, to determine the long-term behavior of produced 
composites using polymeric bio-based nanodispersed admixtures 
will need to be comprehensively evaluated, for example, using for 
accelerated aging tests. 

4 Conclusion

This work dealt with novel vegetable oil-based latex admixtures 
synthesized from derivatives of vegetable oils – camelina, linseed, 
and rapeseed. The role of these bio-based admixtures in modifying 
chemical, physical, and mechanical properties of Portland cement 
mortars were investigated. According to the obtained experimental 
data using a combination of instrumental techniques, the following 
conclusions were found.

The vegetable oil-based latexes exhibited pH stability up to 13.5 
and, compared to the standard latex without the vegetable oil-
based component, the better colloidal stability in CaCl2 electrolyte, 

increased cross-link density, and lower glass transition temperatures 
were detected.

The hydration process of the mortars was found to be 
significantly affected by the incorporation of the vegetable oil-based 
latexes after 7 days, with the lowest values of total heat being achieved 
by specimens CM_REF and CM_RO. In contrast, the highest levels 
of heat development were recorded for the reference specimen OPC.

The application of latex admixtures in mortars resulted in 
the reduced formation of metastable CaCO3 polymorphs and, 
especially in the case of CM_RO, increased abundance of the 
amorphous phase.

SEM observations revealed good bridging capability and pores 
filling capacity of the vegetable oil-based admixtures.

The open porosity of mortar specimens containing vegetable oil-
based latex admixtures was found to be around 14%–20% higher, 
most probably due to increased air entrainment during the mixing 
procedure.

The increased porosity of mortar specimens with vegetable 
oil-based latex admixtures was reflected in decreased mechanical 
performance, except for the CM_CO specimen, in which 
compressive strength was found to be comparable to OPC.

Water transport was significantly reduced in the mortar 
specimens produced with the vegetable oil-based latex admixtures. 
The absorption coefficient was 30–40% lower versus OPC and CM_
REF. The vegetable oil-based latex admixtures, according to their 
increased effectivity to alter liquid water transport, could be sorted 
as RO > CO > LO.

It can be concluded, that bio-based polymeric nanodispersion 
represents a novel, environmentally friendly, class of cement 
admixtures that may find utilization in case of structures that are 
strongly loaded with water and/or water soluble salts.
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