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Coal-rock dynamic disasters, especially rock bursts, pose serious threats
to mining safety and production efficiency in deep mining operations. To
improve the accuracy and intelligence of coal-rock burst risk assessment,
this paper proposes a BP neural network model optimized by Particle Swarm
Optimization (PSO). The model integrates coal seam mechanical parameters,
mining conditions, and surrounding rock properties as input indicators to
construct a comprehensive evaluation system. PSO is applied to optimize the
initial weights and thresholds of the BP neural network to avoid local minima
and improve convergence speed and prediction accuracy. The optimized model
is trained using field monitoring and testing data. Comparative experiments
demonstrate that the PSO-BP model exhibits higher prediction accuracy and
better generalization ability compared to the traditional BP network. The results
indicate that this method can effectively evaluate the risk of coal-rock burst
and provides technical support for early warning and disaster prevention in
coal mines.

KEYWORDS

rock burst risk, BP neural network (BP), particle swarm optimization (PSO), risk
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1 Introduction

Coal remains Chinas primary energy source, playing a crucial role in ensuring
national economic development. However, with increasing mining depth and more
complex geological conditions, the frequency and intensity of dynamic disasters such
as rock bursts have grown significantly, posing serious threats to mining safety and
operational efficiency (Kang, 2021; He and Wang, 2023; Yun et al., 2025). Understanding the
mechanisms of rock bursts and developing accurate risk assessment methods are therefore
of paramount importance (Mahmood et al., 2022a; Asteris et al., 2021; Zhang et al., 2025;
Liu et al., 2024; Tan et al., 2025).

In previous studies, scholars have proposed a variety of methods for evaluating
coal-rock burst risk, including stress increment assessment based on self-weight stress
superposition, the critical stress index method, fuzzy comprehensive evaluation models,
the CW-TOPSIS model, chaos particle swarm optimization BP neural networks, and
deep learning approaches. These achievements have provided valuable theoretical and
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methodological support for rockburst prediction. However,
existing evaluation methods-including statistical models, BP neural
networks, and their optimizations with PSO-still suffer from several
limitations, such as strong subjectivity, susceptibility to local optima,
and dependence on high-quality datasets. Moreover, most models
fail to effectively integrate multi-source monitoring information,
thereby restricting their robustness under complex geological
conditions.

A deep learning framework for coal-rock burst risk (DLFR)
was constructed based on the fractal dimension of microseismic
information. Influencing factors were screened using gray relational
analysis (GRA), information gain ratio (IGR), and Pearson
correlation coefficient, while model performance was evaluated
through indicators such as macro-F1, accuracy, and fitness curves.
Taking Gaojiapu Coal Mine as a case study, the performance of BP
neural network, support vector machine (SVM), and their particle
swarm optimization (PSO)-based optimized models within this
framework was explored, verifying the reliability of the models.
Additionally, the quantification of mining-induced seismicity can
address the issue of insufficient training samples, providing a basis
for graded and precise prevention and control (Cheng et al., 2023).
A coal mine rock burst evaluation index system was constructed,
with the criterion layer including geological conditions, safety
management, mining technology and other factors, and the
index layer covering 24 factors such as mining depth and coal-
rock mechanical properties. The weights calculated by “Analytic
Hierarchy Process (AHP) and entropy weight method” were fused,
and the Lagrange function was introduced to build an optimized
decision-making model. Through the Euclidean distance function,
the preference coefficient was obtained, and then the combined
weights of the indexes were derived. Finally, a CW-TOPSIS coal
mine rock burst evaluation model was established to judge the
rock burst grade (Chen et al., 2021). Moment tensors (MTs) have
been widely applied to study the triggering mechanisms of high-
magnitude events (HMEs). However, the clustering characteristics
of MTs prior to HMEs have rarely been systematically explored,
which restricts the application of MTs in HME prediction and
dynamic hazard risk management. This study aims to characterize
the clustering properties of MTs before HMEs and apply them to
HME prediction, and proposes a seismic clustering method suitable
for hybrid MT inversion to obtain reliable source mechanism
solutions (Liu et al., 2023).

A multi-parameter index-based risk assessment and prediction
model for coal mass impact was proposed. This model considers the
characteristics of acoustic emission and electromagnetic emission
signals during mine impact processes, and constructs a new energy
accumulation index S. Meanwhile, combined with microseismic
monitoring indicators E (microseismic energy) and N (microseismic
frequency), static and dynamic risk assessment and prediction
models for coal mass impact were established. The study adopted
principal component analysis and density ellipse method to
determine index S, and then obtained the distribution and
variation laws of acoustic emission and electromagnetic emission
signals (Luo et al,, 2022; Zhang et al., 2020; Zhang et al., 2010)
introduced a fuzzy comprehensive evaluation method based on
the analytic hierarchy process (AHP), constructing a multi-level
fuzzy evaluation model to quantitatively assess both the rock burst
hazard of coal seams and the effectiveness of roadway bolt support
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(Wang et al., 2017). Optimized BP neural networks using a particle
swarm optimization (PSO) algorithm, and found that under an
error threshold of 0.001, the convergence speed of the optimized
BP neural network was 4-5 times faster than that of the standard
BP network (Yin et al., 2016). Combined chaos theory, PSO, and
BP neural networks to propose a chaos-PSO-BP model, which
produced superior prediction results for rock bursts compared to
conventional BP neural networks.

Based on the seismic data and 24 coal burst records during
the period of 16 months, a risk assessment method including three
indexes (Static Intensity Index (SII), Dynamic Intensity Index (DII),
and Risk Assessment Index (RAI)) was derived from seismic energy
attenuation. In consideration of the static and dynamic response, the
superposition effects of seismic energy were proposed to improve
the performance of risk assessment (Liu et al., 2022). A BP neural
network-based impact risk assessment method is proposed. This
method uses existing impact pressure data to construct a regression
model through the BP network, and adopts the particle swarm
optimization (PSO) algorithm to optimize the connection weights,
so as to improve the problems of slow convergence and proneness
to falling into local optimum of the BP network. Verified with
mine risk assessment as an example, the results show that this
method has accuracy and overall applicability (Zhang, 2021). To
assess the rock burst-prone areas in the lower seams during multi-
seam mining, a method for evaluating rock burst hazards in multi-
seam mining was established, and an energy density risk index
(EDRI) was developed. It is demonstrated that EDRI can more
accurately reflect potential rock burst areas compared with the
multi-factor coupling analysis method. The EDRI of the upper
coal seam was used to divide the rock burst risk zones of the
lower coal seam, thus establishing a rock burst hazard assessment
method for multi-seam mining (Shen et al., 2017). Recent research
has increasingly focused on hybrid intelligent models to improve
prediction reliability (Wang et al., 2023). Improved the BP neural
network framework by applying the Levenberg-Marquardt training
algorithm with normalized data. Their model achieved superior
prediction accuracy-peaking at 97%-with performance improving
as sample size increased (Yuan et al., 2023) introduced a PCA-
PSO-ELM model, combining principal component analysis (PCA),
particle swarm optimization (PSO), and extreme learning machine
(ELM). This integrated approach mitigated randomness in ELM
inputs and hidden thresholds, achieving 100% accuracy on test
data and demonstrating rapid learning speed, strong generalization,
and high robustness (Fu et al., 2024) applied a Bayesian-optimized
LSTM model (BO-LSTM) to 3years of microseismic data. By
identifying key daily indicators-total energy, maximum energy,
and frequency-their model outperformed alternative deep learning
approaches, illustrating effective time-series feature extraction for
predictive tasks (Wojtecki et al., 2024) tackled the challenge of
distinguishing rare rock bursts from numerous non-destructive
tremors using an ensemble of machine learning classifiers, balanced
by the ADASYN algorithm.

Numerous studies on machine learning applications. A
study based on ASTM and BS standards examined the effects
of different sand gradations and water-reducing polymers
(WRP) on the properties of cement grout. The results showed
that WRP significantly reduced the water-cement ratio and
improved both fluidity and compressive strength, with the strength
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enhancement varying by curing period and dosage. Fine-grained
sand exhibited superior strength performance under identical
conditions (Mahmood et al., 2022b). A study employed ensemble
soft computing models to predict the liquefaction potential index
(LPI) of fine-grained soils. XGBoost achieved 99% accuracy in
predicting liquefaction potential, serving as a reliable alternative
to empirical methods (Ghani et al., 2024). A WOA-LMBPNN
model is proposed to predict reinforced concrete beam deflection,
showing higher accuracy and robustness than PSO-LMBPNN
(Zhao et al,, 2022). Two hybrid fuzzy systems (FS-DE, FS-FFA) are
proposed to predict the axial capacity of circular CFST columns,
achieving 9.68% and 6.58% accuracy improvements over the
base model and outperforming design codes (Liao et al,, 2021).
A study developed artificial neural networks to predict rock
unconfined compressive strength using Schmidt hammer number,
compressional wave velocity, and porosity. Among ANN-LM,
ANN-PSO, and ANN-ICA models, ANN-ICA achieved the highest
accuracy, with predictions within #20% of experimental values for
86% of samples. A closed-form equation and GUI are provided for
verification (Le et al., 2022).

Despite these advancements, current evaluation methods still
exhibit subjectivity and inconsistency due to differences in the
selection and weighting of influencing factors. In this study, we
first select key indicators for evaluating coal-rock burst risk and
construct a dataset. Through correlation analysis, we identify
dominant factors affecting burst potential. Based on these factors,
we establish a PSO-optimized BP neural network model and verify
its applicability through field tests conducted in underground coal
mines. The novelty of this study lies in the customized improvement
of the traditional PSO-BP model for coal-rock dynamic disaster
prediction. Instead of relying on random initialization, the initial
weights and thresholds of the BP network are optimized using
PSO with an adaptive mutation mechanism, which to some extent
addresses the challenges of “slow convergence and susceptibility
to overfitting” in conventional BP models. Unlike existing hybrid
models such as chaos-PSO-BP, the proposed framework is capable
of integrating multiple inputs and multi-physical parameters to
effectively handle the coupled data from field monitoring in
coal mines.

The structure of this paper is organized as follows:
the research methodology and the
PSO-BP neural network framework; Section4 presents the

Section 3 introduces
experimental data and results; Section 5 provides an engineering
case analysis; and Section 6 offers future perspectives and
concludes the paper.

2 Research significance

Although numerous studies have been conducted on rock
burst prediction and risk assessment, existing approaches still face
limitations such as insufficient feature extraction, low adaptability
to complex geological conditions, and susceptibility to local optima.
These challenges restrict the robustness and generalization ability of
current models.

This study addresses, to some extent, the challenges of slow
convergence and overfitting in the BP model for coal-rock dynamic
disaster prediction, providing a customized improvement tailored to
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scenarios characterized by limited samples and strong nonlinearity.
By proposing a systematic framework that integrates field validation
with computational intelligence, this research enriches the existing
body of knowledge. The results not only broaden the application
scope of hybrid neural network models in rock burst risk assessment
but also offer practical reference for risk prevention in deep mining
engineering.

3 Selection of impact risk indicators
and dataset construction

3.1 Case studies of rock burst incidents

3.1.1 Rock burst at working face 109

Working face 109 is the first fully mechanized mining face in
its panel and is flanked by solid coal seams on both sides. The
designed mining length along the strike is 220 m, with a recoverable
strike length of 2,340 m. The coal seam dip angle ranges from less
than 5°-10°. The maximum absolute gas emission from the face is
32.35 m*/min. The mining method employed is fully mechanized
top coal caving, with roof management by full caving. The average
burial depth of the face is 825.27 m. The roof consists of a composite
structure dominated by siltstone and coarse-grained sandstone,
while the floor mainly comprises aluminous mudstone, which easily
swells when exposed to water.

No faults are developed within the face area, and geological
structures have minimal impact on rock burst occurrences.
However, two rock burst events have occurred in the same coal
seam at this level. The in-situ stress field in this area is dominated
by horizontal stress, with the maximum principal horizontal stress
reaching up to 30.6 MPa, while the vertical stress is the minimum
principal stress.

During the retreat phase, dynamic phenomena in the coal
seam became increasingly frequent and intense during roadway
excavation. Notable manifestations included loud explosive sounds
(coal cannon phenomena) and coal block ejection in unsupported
zones. The roof exhibited significant subsidence, and the steel
supports in the roadway were compressed, deformed, or even
fractured.

3.1.2 Rock burst at working face 1416

Working face 1416 has an average mining depth of 565.6 m,
with a designed recoverable strike length of 1,688 m and an inclined
length of 220 m. The coal seam dip is generally less than 10°, with
minimal variation. The maximum absolute gas emission ranges from
18 to 22 m>®/min. The immediate roof consists of sandy mudstone,
while the floor is mudstone, which easily softens and swells upon
water exposure.

Although no prominent fault structures are present within the
face, it is located on the northwestern flank of the Yuangou syncline,
where a secondary anticline and syncline are also developed. These
folds have a significant influence on rock burst occurrence. Borehole
stress monitoring of coal pillars within the face recorded a stress
value of 23.02 MPa. No rock bursts were recorded in the same coal
seam during the development phase.

However, during retreat mining, dynamic manifestations
attributed to rock bursts were observed, including sudden floor
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heaving and minor rib deformation forming mesh-like patterns.
In densely excavated areas such as roadways and chambers, rock
burst events occurred more frequently, often characterized by skin
delamination, material ejection, and other dynamic responses. These
phenomena were mostly concentrated in high-stress areas induced
by folds and fault interactions.

3.1.3 Rock burst at working face 224

Working face 224 has an average burial depth of 577.98 m and a
coal seam dip between 2° and 7°, with stable occurrence conditions.
According to gas geological data, the face is located within a high-gas
zone, with absolute gas emission during retreat mining ranging from
18 to 37 m®/min. The immediate roof comprises siltstone, while
the floor is made up of carbonaceous mudstone. The topographic
contour variations in the area are relatively gentle, and the region is
affected by a syncline-like structure.

This working face is mined beneath a protective seam, where
tectonic stress is significantly released during protective seam
extraction. A 74 m coal pillar was left between the return air roadway
and the adjacent goaf, while the other side of the face had not yet
been mined and was not influenced by coal pillar stress. The mine
had previously experienced a rock burst during retreat mining in
the isolated working face 220.

During retreat at face 224, a rock burst occurred, characterized
by violent vibrations, coal dust dispersion, and floor uplift at the
center. Two roof fall events were also reported, along with significant
roadway deformation.

3.2 Determination of evaluation indicators
and dataset construction

The selection of evaluation indicators is a critical step for
accurately assessing the risk of coal-rock bursts. As demonstrated by
the case analyses above, rock bursts do not follow a fixed occurrence
pattern nor are they directly tied to a single factor; rather, they are
often induced by the combined effect of multiple factors. Therefore,
when identifying influencing factors, considerations should include
the feasibility of data acquisition and the effectiveness of each
factor in representing key influences. Suitable parameters should be
selected accordingly.

Based on the above case studies and existing research, this study
incorporates coal body stress as one of the essential influencing
factors for rock burst risk. A total of ten indicators affecting
coal-rock burst risk are identified, including: mining depth (Z,),
coal seam dip angle (Z,), width of the coal pillar section (Z;),
uniaxial compressive strength (Z,), coal body stress (Z5), geological
structure (Zg), historical frequency of rock bursts in the same
horizontal coal seam (number of events n, Z,), roof management
(Zg), pressure relief condition of protective seams (Z,), and the
spatial relationship between the working face and adjacent goaf areas
(Z,)- The influencing factors include mining depth, coal seam dip
angle, sectional coal pillar width, uniaxial compressive strength,
in-situ coal stress, geological structures, history of rock burst
occurrences in adjacent coal seams, roof control measures, pressure
relief conditions of protective seams, and the spatial relationship
between the working face and adjacent goaf areas.
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By collecting dynamic records of rock burst phenomena from
multiple mining faces, this study compiles a representative dataset
comprising 111 original rock burst samples summarized in Table 1.
The rock burst risk levels are classified into four categories: no risk,
weak risk, moderate risk, and strong risk.

In the established sample dataset (as shown in Figure 1), there
are 22 samples classified as having no rock burst risk, accounting for
19.8% of the total; 34 samples with weak rock burst risk, accounting
for 30.6%; 30 samples with moderate risk, accounting for 27.0%; and
25 samples with strong risk, accounting for 22.5%. The distribution
of samples among different risk categories is therefore imbalanced.

During the machine learning model training process, such
class imbalance can cause the classifier to be biased toward the
majority classes, which negatively impacts the recognition accuracy
for minority classes. To mitigate this issue, the dataset was first
randomly shuffled, and then an oversampling technique was applied
to randomly replicate samples from minority classes, thereby
balancing the dataset and improving the models sensitivity to
less represented categories. The quantitative assignment of impact
hazard influence factors is shown in Table 2.

Furthermore, data standardization was performed prior to
training to enhance the stability and convergence of the model.

Correlation analysis is a quantitative method used to describe
the relationship between two or more variables, aiming to reveal
the degree of association between them. The Pearson correlation
coefficient is one of the most commonly used metrics for correlation
analysis, with values ranging from -1, to 1. This coefficient primarily
measures the linear relationship between variables. When r = 0, it
indicates the absence of a linear correlation but does not necessarily
imply that the variables are completely independent. The larger
the absolute value of the correlation coefficient, the stronger the
correlation between the variables. Values close to +1 indicate a
strong positive or negative linear relationship, while values near
zero suggest a weak correlation. Prior to conducting correlation
analysis between indicators, a significance test is required to ensure
that the observed correlations are not due to random fluctuations.
The results indicate that the significance probability p-value is less
than 0.05, confirming that the calculated correlation coeflicients are
statistically significant and suitable for further analysis.

To clarify the actual influence degree of each factor on rock
burst risk, Pearson correlation coefficients were calculated between
the selected 10 evaluation indicators and the observed rock burst
risk levels. As shown in Figure 2, indicators such as mining
depth, coal body stress, and geological structure exhibit significant
positive correlations with rock burst risk levels. This indicates that
deep burial environments, high-stress conditions, and complex
geological structures significantly increase the likelihood of rock
burst occurrence. Among all indicators, coal body stress has the
highest correlation coefficient of 0.76 with rock burst risk level,
confirming its critical role in the mechanism of rock burst disasters.

The correlation coeflicients between the sectional coal pillar
width, the relationship between the working face and adjacent
goaf, and the actual risk level are relatively low at 0.21 and 0.10,
respectively. The reason for these lower values is that some data
samples are adjacent to solid coal pillars rather than goaf areas,
which reduces the apparent correlation. Therefore, these lower
coeflicients do not imply that the above two indicators have minimal
impact on rock burst occurrence.
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TABLE 1 Selected rock burst hazard sample data.

10.3389/fbuil.2025.1699662

Number  Z1 h/m Z2 Z3 h/m Z4 Z5 Z6 | Z7 Z8 Z9 710 | Actual category
Rc/MPa a/MPa
1 565 5 1 12.8 12.14 2 2 2 3 1 2
2 760 1 3 2045 19.87 3 4 2 3 2 3
3 565 3 1 10.54 12.87 1 2 2 2 2 2
4 564 4 2 12.29 13.11 1 2 1 1 1 1
5 580 7 1 14.6 15.67 3 3 3 3 3 3
6 750 3 3 18.64 17.65 3 4 3 3 2 4
7 758 1 3 21.47 20.89 3 4 3 4 2 4
8 594 7 2 15.64 17.82 3 2 3 3 3 3
9 819 3 1 17.91 18.81 4 4 3 3 1 4
10 598 6 2 14.58 16.47 2 2 3 2 2 3
11 767 1 3 25.73 21.61 3 4 2 3 2 3
12 761 1 3 21.64 21.66 4 4 3 3 2 4
106 822 4 1 18.14 19.05 3 4 2 4 1 3
107 556 4 1 14.37 13.56 1 2 1 1 2 1
108 575 4 2 15.14 16.14 3 2 3 2 2 2
109 807 3 1 17.63 1851 3 4 2 3 1 3
110 760 1 3 21.59 21.76 3 4 4 3 2 4
111 794 8 1 17.68 1657 3 2 3 4 3 3

4 PSO-BP neural network structure
and parameter determination

4.1 Basic principles of BP neural network

In practical applications, the Backpropagation (BP) algorithm
remains one of the most widely used models within artificial neural
networks. The core characteristic of the BP neural network lies in
the synergy between its multilayer feedforward architecture and
adaptive learning mechanism. As a typical artificial feedforward
neural network, its structure transforms linear weighted inputs into
nonlinear responses through nonlinear activation functions such as
Sigmoid or ReLU, enabling the network output to be more “flexible”
and granting the network the capability to classify complex patterns.
Compared to a single-layer perceptron, BP networks can achieve
hierarchical mapping from raw input data to high-level semantic
representations.

In constructing neural network models, the determination of
core parameters is not governed by explicit rules or standards;
instead, it largely relies on empirical formulas or repeated trials to
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identify optimal values. The key parameters typically include the
number of network layers, the number of neurons in the input and
hidden layers, the number of hidden nodes, the activation functions,
and the learning rate.

For a backpropagation (BP) neural network, the number of
hidden layers can theoretically be set arbitrarily. However, increasing
the number of hidden layers also increases the complexity of the
network. In practice, a single hidden layer is generally sufficient to
meet most problem-solving requirements. Therefore, in this study,
the BP neural network model for evaluating coal-rock burst risk
adopts a single hidden layer.

To facilitate the output of burst risk levels, the risk was
categorized into four classes: no risk, low risk, moderate risk, and
high risk. Accordingly, the output layer consists of four neurons.
Based on Kolmogorov’s theorem, the number of hidden nodes
was initially set at 10, and then adjusted within the range of
1-10 additional nodes to achieve optimal performance under error
constraints.

The choice of activation function directly affects the network’s
expressive power, convergence speed, and stability. Since the
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Moderate Risk
0.3(27%)

Weak Risk
0.3(30.6%)

Strong Risk
0.2(22.5%)

No Risk
0.2(19.8%)

FIGURE 1
Distribution proportion of rock burst hazard sample data.

10.3389/fbuil.2025.1699662

TABLE 2 Quantitative assignment of impact hazard influence factors.

Influence factor Category Evaluation
index
n=0 1
Occurrence history of n=1 2
rock burst in the same
coal seam level n=2 3
n=3 4
Simple geological 1
structure
Moderately complex 2

geological structure

Geological structure
Relatively complex 3
geological structure

BP neural network is designed to address nonlinear problems,
incorporating nonlinear activation functions enhances its
representational capacity. In this study, the hidden layer employs
the hyperbolic tangent sigmoid function (tansig), available in
the MATLAB toolbox, with a value range of (-1, 1). For the
output layer, the Softmax function is applied. This function not
only considers the input to each neuron but also incorporates the
outputs of other neurons, transforming the network outputs into a
probability distribution. Consequently, cross-entropy is selected as
the loss function to measure the divergence between the predicted
and actual distributions. Unlike the mean squared error (MSE)
function, cross-entropy exhibits monotonicity in classification tasks,
and larger errors produce larger gradients, thereby accelerating
weight updates during backpropagation. To prevent overfitting,
regularization techniques were applied in the model, and PSO
optimization was employed to provide improved initial weights and
thresholds, thereby stabilizing the training process and reducing the
risk of overfitting.

The theoretical foundation of the BP neural network lies in
the gradient descent algorithm, where the learning rate determines
the step size for parameter updates. If the learning rate is set
too high, the optimization process may overshoot the optimal
solution; if too low, convergence will be excessively slow. In
engineering practice, relatively low learning rates are preferred to
enable fine-tuning and ensure stable convergence. In this study, the
learning rate was determined to be 0.01 through feedback from the
command algorithm. The specific parameter settings of the model
are shown in Table 3.

4.2 Construction and analysis of the BP
neural network model

4.2.1 Model construction

Due to the differences in orders of magnitude between
experimental conditions and test results, directly inputting
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Complex geological 4
structure
Good condition 1
Fair condition 2
Roof management
Average condition 3
Poor/No support 4
Good 1
Moderate 2
Pressure relief of
protective seam
Average 3
Poor 4
Solid coal working face 1
. . Goaf on one side 2
Relationship between
working face and
. 6 Goaf on both sides 3
adjacent goaf areas

Goaf on three or more 4

sides

unnormalized data into the model may cause certain features
to dominate the training process, thereby masking other critical
variables. In this study, min-max normalization was employed
to map all variables into the [0,1] range, ensuring consistency
across features and preventing gradient vanishing or explosion
(Asteris et al., 2020; Asteris et al., 2025). This approach facilitates
model convergence and supports the stable training of BP
neural networks as well as metaheuristic optimization models
such as PSO-BP.

The training of the BP neural network involves two main
processes: (i) forward propagation, where the network produces
prediction results, and (ii) backward propagation, where the
model parameters are optimized via gradient descent to
approximate the true targets. Its algorithmic implementation can
be summarized as follows:
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FIGURE 2
Heatmap of correlations among selected indicators.

1. Network Initialization: Based on the system input-output
sequence (X, Y), the numbers of neurons in the input, hidden,
and output layers (n, I, m) are determined. The connection
weights (w;;, w,;) between neurons in adjacent layers, the
hidden layer thresholds (aj), and the output layer thresholds
(by) are initialized randomly, providing the network with
an initial ‘cognitive baseline”. The learning rate #, activation
functions, network depth, and neuron count per layer are also
specified.

. Hidden Layer Output Calculation: Given the input vector
X, the output of the hidden layer Z is computed from

the input-hidden layer weights w;; and thresholds a;
(Equation 1):
Zj:f<2w11xi+aj> j=1,2,3,1 (1)
i=1

where 7 is the number of input neurons (set to 10 in this model) and
I is the number of hidden layer neurons (set to 8 in this model). The
choice of the activation function f{-) greatly influences the prediction
accuracy. In this study, the following activation function is used
(Equation 2):

_ e —e*
e +e™

fx)

)

3. Output Layer Output Calculation: Using the hidden layer
output Z;, the output layer result Y, is computed from
the hidden-output layer weights w,; and thresholds

by (Equation 3):

!
Yp=Y w,Z+b, k=1,23m
=1

©)

where m is the number of output neurons (set to 4 in this model).

4. Error Calculation: The network error function e is defined
based on the predicted output Y and the expected output
O, (Equation 4):
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ek:Yk—Ok k:1;2>3:m (4)

5. Weight Update and Iteration: Based on the prediction error e,
the connection weights w;; and w,; are updated using gradient
descent (Equations 5, 6):

m
Wy, =wll+an(1—Zj)xiqu1ek (5)
k=1

(6)

wa = wa + anek

where 7 is the learning rate (set to 0.01 in this model), i = 1,2 -,10;
j=1,2,-8k=1,2,---,4.

6. Threshold Update: The thresholds are updated according to
the error function e, Adjustment of the network thresholds
(aj and b)) is performed to enhance model performance
(Equations 7, 8):

m
aj:aj+an(1—Z]-)k;waek (7)

(®)

by = by + ey

4.2.2 Algorithm implementation and prediction
results analysis

The collected impact hazard indicator data were used as the
input variables for the BP neural network model. Among the 111
available datasets, 90 were randomly selected as the training set
for model learning, and the remaining 21 were used as the test set
for model evaluation. The training process parameters, including
the number of iterations and the minimum error. During training,
the prediction error decreased progressively with the increase in
iterations, reaching convergence after 11 iterations, with a minimum
error value of 0.17985.

As shown in Figure 3, the prediction accuracy for the training
set was 82.22%. For the 21 test samples, the predicted hazard levels
produced by the BP neural network matched the actual hazard levels
in 15 cases, corresponding to a test accuracy of 71.42%. The relatively
higher error rate indicates that the prediction accuracy requires
further improvement.

Multi-feature classification aims to determine the categorical
label of a sample based on multiple feature variables. As a classic
neural network model, the BP algorithm can effectively handle
complex classification problems. However, it has certain limitations,
including relatively slow convergence and susceptibility to becoming
trapped in local minima of the objective function. In the standard
BP neural network, each neuron receives input solely from the
previous layer, and weight updates, parameter optimization, and
error adjustments are generally performed via gradient descent.
This approach makes the model’s convergence highly sensitive
to the initialization of weights and thresholds. In complex
high-dimensional feature spaces, the existence of multiple local
minima means that once the algorithm converges to a suboptimal
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TABLE 3 Basic parameters of the BP neural network.
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FIGURE 3

Parameter Value Network architecture diagram
Number of layers 3 gt
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Training results of the BP model. (a) Prediction results for the training set. (b) Prediction results for the testing set.
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point, it is difficult to escape and find the global optimum,
thereby reducing both classification accuracy and generalization
capability.

4.3 PSO-BP neural network model for
rockburst hazard evaluation

4.3.1 Model construction

To enhance the prediction accuracy of the BP neural network
model, the Particle Swarm Optimization (PSO) algorithm was
incorporated to search for optimal weights and thresholds. This
approach mitigates the issues of local optima and slow convergence
caused by random initialization. The PSO-BP neural network is a
hybrid model that combines the global search capability of PSO with
the local optimization capability of BP.
PSO
positions and velocities, gradually reducing individual fitness

During optimization, iteratively updates particle
values. When the optimal fitness is achieved or the predefined
iteration limit is reached, the algorithm terminates, yielding
the optimal connection weights and thresholds for the BP

neural network.

1. Based on the pre-established BP neural network evaluation
model, initialize PSO parameters, including population size,
particle velocity range, and maximum number of iterations, to
construct the PSO-BP evaluation model.

2. Randomly divide the dataset into training and testing subsets,
and import them into the constructed model.

3. Begin training: calculate each particle’s fitness value via the
fitness function, obtain the personal best (P-Best) and global
best (G-Best) values, and update them iteratively. If the P-Best
does not meet the convergence criterion within the specified
accuracy, continue iterations until termination conditions are
satisfied.

4. Use the final G-Best solution as the initial weights and
thresholds for the BP neural network, train the model, and
output the optimal prediction results.

4.3.2 Algorithm implementation and evaluation
results analysis

To verify whether the prediction accuracy of the rock burst
risk assessment model optimized by the particle swarm algorithm
improves, the model was trained and tested using evaluation
indicator data.

To ensure reproducibility and control the randomness in PSO
initialization, we fixed the random seed using rng (1,2,3). We also
verified with alternative seeds (4,5,6 and 7,8,9), and the accuracy
variation was within +2%. For the learning rate, we conducted
controlled tests with values of 0.001, 0.01, and 0.1. Results showed
that a learning rate of 0.001 led to extremely slow convergence, while
0.1 caused oscillations and divergence. A value of 0.01 achieved
a balanced trade-off, enabling stable convergence to the target
error within 2000 iterations. Regarding the hidden node number,
comparative experiments with 5 repetitions indicated that nine
nodes yielded the highest accuracy on both training and testing
sets. For the PSO parameters, we tested combinations of sizepop
= 3/5/10 and maxgen = 20/30/50. The setting of sizepop = 5 and
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maxgen = 30 was found optimal, as it consistently identified the best
BP initialization while balancing accuracy and computational 14
efficiency. Increasing either population size or iterations improved
accuracy but also significantly increased computation time. These
experimental details have been added to the revised manuscript. A
fixed inertia weight is suitable for small-sample experiments and
preliminary validations, as it is easy to understand and implement.
For high-dimensional problems or when more precise convergence
control is required, a linearly decreasing or adaptive inertia weight
strategy should be considered. Therefore, this study adopts a fixed
inertia weight. To examine the sensitivity of PSO parameters, this
study first conducted small-scale experiments within the range of
Cl1, C2€ [1,4]. The results showed that the model accuracy fluctuated
between 61.9% and 80.9%, indicating that different parameter
combinations had a noticeable impact on performance. Although
certain settings (e.g., C1 = 2.0, C2 = 4.0) achieved relatively high
accuracy, the final choice was C1 = C2 = 4.49, a parameter setting
widely recommended in theory. According to the Clerc-Kennedy
constriction factor theory, this configuration provides a stable
balance between exploration and exploitation, preventing excessive
oscillations or premature convergence under complex working
conditions. Parameter configurations for the PSO-BP model are
detailed in Table 4.

First, the dataset containing rock burst hazard assessment
indicators was loaded, and a subset of the data was randomly
selected as the training set, with the remaining samples used as the
testing set. The testing set was further divided into 8, 14, and 21
samples, corresponding to training sets of 103, 97, and 90 samples,
respectively.

Since the BP neural network is inherently sensitive to both the
size and quality of the training set, an increase in the testing set
size (and a corresponding reduction in the training set) inevitably
affects prediction accuracy. When the prediction accuracy for all
three testing scenarios exceeded 85%, it indicated that the BP neural
network—after optimization—achieved a notable improvement in
predictive performance.

As shown in Figure 4, the PSO-optimized BP neural network
achieved 100% accuracy in predicting rock burst hazard levels. This
demonstrates that the global search strategy of the PSO algorithm
effectively alleviates the original BP network’s tendency to overfit the
training data distribution, while also enhancing the model’s ability to
identify low-probability events.

From Figure 5, it can be seen that although the reduction
in training sample size led to a slight drop in prediction
precision, only one misclassification occurred, and the model
still maintained high accuracy. Specificall, when the testing
set sizes were 8 samples (Figure 4), 14 samples (Figure 5), and
21 samples (Figure 6), the corresponding prediction accuracies were
100%, 92.86%, and 85.71%, respectively. As the size of the testing
set increased and the training set decreased, prediction errors
rose accordingly; however, overall accuracy consistently remained
above 85%.

Figure 7 shows the confusion matrix of the prediction results
for the test set when the test set size is 21 samples, the constructed
model performs well overall in classifying the four categories, with
an overall accuracy of about 85%. Among them, the recognition of
Category 1 and Category 2 is the most effective: Category 1 achieves
a recall rate of 100%, and Category 2 reaches a precision of 100%,
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TABLE 4 Parameter settings of the PSO-BP model.
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Parameter Target Max Learning Learning Population Inertia Population
training training rate factors (C1, iterations weight size
error epochs C2)
Value 0.000001 2000 0.01 4.49 60 [0.4,0.9] 10
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FIGURE 4
Training results of the PSO-BP model (testing set size: 8 samples). (a) Prediction results for the training set. (b) Prediction results for the testing set.
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Training results of the PSO-BP model (testing set size: 14 samples). (a) Prediction results for the training set. (b) Prediction results for the testing set.
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indicating that the model can stably identify and accurately predict
these two categories. In contrast, the classification performance
of Category 3 and Category 4 is slightly lower. Category 3 has
a precision of 75%, and Category 4 has a recall rate of 75%,
suggesting that in some cases the model tends to misclassify
these samples into other categories. This confusion may be related
to data imbalance and insufficient feature differences between
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certain categories. Overall, the model can effectively distinguish
the four categories, though there remains room for improvement
in the classification of Category 3 and Category 4. The PSO-BP
classification performance metrics are shown in Table 5. These
results confirm that integrating PSO into the BP neural network
effectively improves the prediction accuracy of rock burst hazard
assessment models.
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FIGURE 6

Training results of the PSO-BP model (testing set size: 21 samples). (a) Prediction results for the training set. (b) Prediction results for the testing set.
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FIGURE 7
Confusion matrix for test data (PSO-BP).
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5 Engineering case study
5.1 Overview of the working face

The 224 working face is located at a coal seam depth
of 508.1-647.7 m, approximately 74 m from the transportation

roadway of the shallower 222 working face. Vertically above it lies the
goaf of the 3-2 coal seam’s 2302 working face, which was completely
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mined out by 31 October 2015. The roadway layout follows a “U-
shaped” configuration, consisting of a transportation roadway, a cut-
through, and a return airway. Both the transportation and return
roadways are arranged parallel to the coal seam’s strike.

The 224 transportation roadway lies 21-39 m vertically below
and 44 m offset in parallel from the 2302 transportation roadway,
while the 224 return airway is 24-37 m vertically below and
15m offset from the 2302 return airway. The 224 working face
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TABLE 5 PSO-BP classification performance metrics.

Category ’ Precision Recall F1
1 0.83 1 0.91
2 1 0.8 0.89
3 0.75 0.86 0.8
4 1 0.75 0.86

extracts the 4-2 coal seam, which is stable, black, stratified, and
classified as medium-hard coal. The seam thickness ranges from
5.6 to 14.2 m, averaging 8.2 m, with a complex internal structure
containing 3-7 layers of partings. These partings are 0.3-1.0 m
thick, with a high ash content at the base gradually transitioning to
carbonaceous mudstone.

The immediate roof consists of dark grey to grey-black siltstone,
thinly bedded, with a thickness of 3.7-38.4 m (average 21.76 m).
The floor is composed of carbonaceous mudstone, gradually
transitioning from the 4-2 coal seam, occasionally interbedded with
dark grey siltstone, averaging 6.16 m in thickness. The coal seam’s
contour lines are relatively gentle, with minor folds and synclinal
structures lacking prominent axial features. Local undulations are
present, but no major faults have been detected.

As mining depth has progressively increased, the 224 working
face has experienced intense rock burst phenomena during both
roadway excavation and production. In roadways, these manifest as
localized roof falls, severe spalling, poor roadway formation, and
difficulties in support installation. In the retreating working face,
typical issues include severe floor heave in exposed roadways, minor
sidewall deformation, and mesh-bag formation.

Rock burst incidents are more frequent in areas with dense
roadways and chambers, sometimes accompanied by dynamic
phenomena such as spalling of rock skin. Investigations revealed that
stress concentration induced by geological structures is particularly
significant in this region, with most events occurring in coal mass
zones affected by folding or faulting. Abnormal stress accumulation
triggers energy build-up and sudden release within the coal, greatly
increasing the risk of dynamic instability in surrounding rock.
Therefore, accurate rock burst hazard assessment prior to mining is
critical for safe production.

5.2 Engineering application of the rock
burst hazard evaluation model

This study identifies ten evaluation indicators: mining depth
(Z1), coal seam dip angle (Z2), sectional coal pillar width (Z3),
uniaxial compressive strength (Z4), coal mass stress (Z5), geological
structure (Z6), historical rock burst occurrences at the same seam
level (Z7, occurrence count), roof management conditions (Z8),
stress relief from protective seam mining (Z9), and the relationship
between the working face and adjacent goaf areas (Z210).

Based on drilling data, geological records, and monitoring
information, six sample datasets-including the 14# drill site—were

Frontiers in Built Environment

10.3389/fbuil.2025.1699662

compiled as the testing set (Table 6) to verify the applicability
of the model.

The selected samples were fed into the PSO-BP model for
training, and the results are shown in Figure 8.

Asillustrated, the PSO-BP model provides reliable evaluations of
coal-rock burst hazards, with predictions largely consistent with on-
site observations, demonstrating strong engineering applicability.

From the actual field conditions, an analysis of rock burst
phenomena at the six selected testing locations was conducted
from three perspectives: acoustic signs, roof-floor conditions,
and sidewall behavior. Prior to the occurrence of a rock burst,
the internal stress within the coal-rock mass becomes sharply
concentrated. The coal and rock strata often experience fracturing
or rapid displacement, frequently accompanied by crisp splitting
sounds; during drilling operations, muffled, thunder-like blasting
noises may occasionally be heard.

As shown in Figure 9, in terms of the roof, distinct delamination
can be observed along the interface between the roof and coal-rock
strata. Sudden roof pressure events may occur in the working face
or roadway, causing rapid roof subsidence that crushes the support
structures. Regarding the sidewalls, phenomena such as coal wall
spalling or bulging are commonly observed, while the floor may
exhibit noticeable heaving.

6 Discussion

This study proposes a PSO-optimized BP neural network
model for coal-rock burst risk evaluation, and its key findings and
implications can be discussed as follows:

a. The PSO-BP model effectively addresses the limitations of
traditional BP neural networks, such as susceptibility to local
optima and slow convergence. By optimizing initial weights
and thresholds through PSO’s global search capability, the
model achieves higher prediction accuracy (over 85% for
various test set sizes) and stronger generalization ability. This
outperforms conventional methods like analytic hierarchy
process (AHP), fuzzy comprehensive evaluation, and even
standard BP networks, highlighting its potential for intelligent
risk assessment in complex mining environments.

b. Correlation analysis identifies coal body stress as the most
critical indicator (correlation coefficient = 0.76) for rock burst
risk, followed by mining depth and geological structure. This
aligns with field observations that high stress concentration,
deep burial, and complex geological conditions are primary
triggers of dynamic disasters, providing a mechanistic basis for
indicator selection in risk evaluation.

c. The model’s validation in the 224 working face demonstrates
good consistency between predicted results and on-site rock
burst phenomena (e.g., roof delamination, floor heave, and
coal wall spalling). This confirms its practical value for
guiding safety measures such as pressure relief and support
optimization in underground mines.

For the purpose of comparing classification predictions, the
authors conducted data classification and prediction using a support
vector machine, and the confusion matrix is shown in Figure 10.
The classification performance for Category 1 and Category 2
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TABLE 6 Rock burst risk evaluation data for the 224 working face.

Drilling site position Indicators affecting coal-rock burst risk
BRI
14# Drill Site 1 562 4 1 11.47 20.83 2 2 2 2 1
14# Drill Site 2 562 2 1 10.74 19.85 3 2 2 1 2
224 Transport Gateway 1 565 5 1 12.8 16.14 2 2 2 3 2
224 Transport Gateway 2 567 5 1 13.41 18.15 2 2 3 2 2
224 Return Airway 1 563 4 1 14.16 18.64 1 2 2 2 2
224 Return Airway 2 564 1 1 10.47 15.45 2 2 1 1 1
5 . 5 5 . 5
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FIGURE 8
Rock burst risk prediction results for the 224 working face. (a) Prediction results for the training set. (b) Prediction results for the testing set.

(a) Damage to roadway support (b) Rock burst on roadway coal ~ (¢) Floor heave in the return airway
in the transportation gateway wall
FIGURE 9

On-site rock burst conditions at the working face. (a) Damage to roadway support in the transportation gateway. (b) Rock burst on roadway coal wall
(c) Floor heave in the return airway.

is relatively weak. The main issues are that Category 1 has a In this study, k-fold cross-validation, statistical significance
relatively high missed detection rate, and Category 2 has a certain  testing, and robustness analysis were incorporated into the
misjudgment rate during prediction. traditional BP network framework to comprehensively evaluate
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FIGURE 10
Confusion matrix for test data (SVM).
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FIGURE 11
Comparison of model accuracy under cross-validation and noise
conditions.

the PSO-BP model. Through 5-fold cross-validation, the PSO-BP
model achieved an average accuracy of 58%-82%, outperforming
the baseline BP model (48%-70%). The significance test indicated no
statistical difference, which may be attributed to the limited sample
size. The comparison of model accuracy under cross-validation and
noise conditions is shown in Figure 11. The robustness analysis
further 20 showed that, after adding Gaussian noise, the PSO-BP
maintained an accuracy of 63%-71%, with only a slight decline and
improved stability. These results suggest that the introduction of
PSO optimization enhances both the predictive accuracy and noise
resistance of the BP model, thereby supporting its applicability in
challenging geological environments.

Although the dataset is relatively limited in size, it encompasses
the mechanical properties and stress conditions relevant to coal-rock
dynamic hazard risks. Nevertheless, future research should aim to
expand the dataset to cover a broader range of parameter values.
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Although the PSO-BP model demonstrates strong performance,
its generalization ability remains influenced by data diversity and
distribution. The PSO-BP model shows promising performance
under the tested dataset. However, broader validation on larger
and independent datasets is required before recommending field
deployment. Subsequent studies will emphasize dataset expansion,
real-time validation, and the integration of multi-source monitoring
data, aiming to further enhance the classification accuracy and
robustness of the model.

In this study, several limitations of the PSO-BP model warrant
reflection. First, potential bias may exist in data selection and
feature design. The evaluation indicators adopted in this work were
primarily derived from the geological and mining conditions of
a specific coal mine, which inevitably limits the generalizability
of the model. Moreover, although ten relatively comprehensive
indicators were considered, other critical factors influencing rock
burst hazards may have been overlooked, introducing potential
The PSO-BP model involves random
initialization and iterative updates during the optimization process,

feature selection bias.

which may lead to fluctuations in experimental results and
affect reproducibility. While multiple runs and averaging were
used to stabilize outcomes, ensuring complete reproducibility
would require more transparent disclosure of hyperparameters
and, where possible, open access to the dataset. Compared with
traditional empirical criteria for rock burst assessment (e.g.,
critical burial depth criterion and energy index method), empirical
models still offer irreplaceable advantages in terms of simplicity,
interpretability, and practical applicability. This suggests that a
balance must be sought between predictive performance and
operational feasibility in engineering practice. Future research
could explore hybrid frameworks that integrate empirical criteria
with machine learning, or adopt interpretable machine learning
methods to simultaneously improve accuracy and enhance practical
applicability.

7 Conclusion

1. Based on a comprehensive review of existing research

and documented rock burst cases, ten evaluation

indicators—including mining depth and coal mass
stress—were selected as key variables for coal-rock burst
hazard assessment. A corresponding evaluation dataset
was established, and correlation analysis revealed that
coal mass stress exhibited a strong relationship with the
hazard level.

. A BP neural network model was developed for coal-rock
burst hazard evaluation, with its architecture and training
parameters appropriately configured. The results demonstrated
that, although the BP neural network can effectively learn
the mapping between input features and hazard levels,
it still suffers from slow convergence and a tendency to
become trapped in local optima. To enhance performance, the
particle swarm optimization (PSO) algorithm was employed to
optimize the initial weights and thresholds of the BP network.
Experimental results showed that the PSO-BP model achieved
higher prediction accuracy on both the training and testing

datasets compared to the standard BP model, confirming
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the effectiveness of PSO in improving BP network predictive
capability.

3. The PSO-BP model was applied to hazard evaluation for
selected areas of the 224 working face. By optimizing the
BP neural network with the particle swarm optimization
algorithm, the model effectively addressed the nonlinear
interactions among influencing factors in the rock burst
process. It demonstrated a certain capability in distinguishing
between different risk levels, and the field validation results
were satisfactory.
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