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Coal-rock dynamic disasters, especially rock bursts, pose serious threats 
to mining safety and production efficiency in deep mining operations. To 
improve the accuracy and intelligence of coal-rock burst risk assessment, 
this paper proposes a BP neural network model optimized by Particle Swarm 
Optimization (PSO). The model integrates coal seam mechanical parameters, 
mining conditions, and surrounding rock properties as input indicators to 
construct a comprehensive evaluation system. PSO is applied to optimize the 
initial weights and thresholds of the BP neural network to avoid local minima 
and improve convergence speed and prediction accuracy. The optimized model 
is trained using field monitoring and testing data. Comparative experiments 
demonstrate that the PSO-BP model exhibits higher prediction accuracy and 
better generalization ability compared to the traditional BP network. The results 
indicate that this method can effectively evaluate the risk of coal-rock burst 
and provides technical support for early warning and disaster prevention in 
coal mines.
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 1 Introduction

Coal remains China’s primary energy source, playing a crucial role in ensuring 
national economic development. However, with increasing mining depth and more 
complex geological conditions, the frequency and intensity of dynamic disasters such 
as rock bursts have grown significantly, posing serious threats to mining safety and 
operational efficiency (Kang, 2021; He and Wang, 2023; Yun et al., 2025). Understanding the 
mechanisms of rock bursts and developing accurate risk assessment methods are therefore 
of paramount importance (Mahmood et al., 2022a; Asteris et al., 2021; Zhang et al., 2025; 
Liu et al., 2024; Tan et al., 2025).

In previous studies, scholars have proposed a variety of methods for evaluating 
coal-rock burst risk, including stress increment assessment based on self-weight stress 
superposition, the critical stress index method, fuzzy comprehensive evaluation models, 
the CW-TOPSIS model, chaos particle swarm optimization BP neural networks, and 
deep learning approaches. These achievements have provided valuable theoretical and
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methodological support for rockburst prediction. However, 
existing evaluation methods-including statistical models, BP neural 
networks, and their optimizations with PSO-still suffer from several 
limitations, such as strong subjectivity, susceptibility to local optima, 
and dependence on high-quality datasets. Moreover, most models 
fail to effectively integrate multi-source monitoring information, 
thereby restricting their robustness under complex geological 
conditions.

A deep learning framework for coal-rock burst risk (DLFR) 
was constructed based on the fractal dimension of microseismic 
information. Influencing factors were screened using gray relational 
analysis (GRA), information gain ratio (IGR), and Pearson 
correlation coefficient, while model performance was evaluated 
through indicators such as macro-F1, accuracy, and fitness curves. 
Taking Gaojiapu Coal Mine as a case study, the performance of BP 
neural network, support vector machine (SVM), and their particle 
swarm optimization (PSO)-based optimized models within this 
framework was explored, verifying the reliability of the models. 
Additionally, the quantification of mining-induced seismicity can 
address the issue of insufficient training samples, providing a basis 
for graded and precise prevention and control (Cheng et al., 2023). 
A coal mine rock burst evaluation index system was constructed, 
with the criterion layer including geological conditions, safety 
management, mining technology and other factors, and the 
index layer covering 24 factors such as mining depth and coal-
rock mechanical properties. The weights calculated by “Analytic 
Hierarchy Process (AHP) and entropy weight method” were fused, 
and the Lagrange function was introduced to build an optimized 
decision-making model. Through the Euclidean distance function, 
the preference coefficient was obtained, and then the combined 
weights of the indexes were derived. Finally, a CW-TOPSIS coal 
mine rock burst evaluation model was established to judge the 
rock burst grade (Chen et al., 2021). Moment tensors (MTs) have 
been widely applied to study the triggering mechanisms of high-
magnitude events (HMEs). However, the clustering characteristics 
of MTs prior to HMEs have rarely been systematically explored, 
which restricts the application of MTs in HME prediction and 
dynamic hazard risk management. This study aims to characterize 
the clustering properties of MTs before HMEs and apply them to 
HME prediction, and proposes a seismic clustering method suitable 
for hybrid MT inversion to obtain reliable source mechanism 
solutions (Liu et al., 2023).

A multi-parameter index-based risk assessment and prediction 
model for coal mass impact was proposed. This model considers the 
characteristics of acoustic emission and electromagnetic emission 
signals during mine impact processes, and constructs a new energy 
accumulation index S. Meanwhile, combined with microseismic 
monitoring indicators E (microseismic energy) and N (microseismic 
frequency), static and dynamic risk assessment and prediction 
models for coal mass impact were established. The study adopted 
principal component analysis and density ellipse method to 
determine index S, and then obtained the distribution and 
variation laws of acoustic emission and electromagnetic emission 
signals (Luo et al., 2022; Zhang et al., 2020; Zhang et al., 2010) 
introduced a fuzzy comprehensive evaluation method based on 
the analytic hierarchy process (AHP), constructing a multi-level 
fuzzy evaluation model to quantitatively assess both the rock burst 
hazard of coal seams and the effectiveness of roadway bolt support 

(Wang et al., 2017). Optimized BP neural networks using a particle 
swarm optimization (PSO) algorithm, and found that under an 
error threshold of 0.001, the convergence speed of the optimized 
BP neural network was 4–5 times faster than that of the standard 
BP network (Yin et al., 2016). Combined chaos theory, PSO, and 
BP neural networks to propose a chaos-PSO-BP model, which 
produced superior prediction results for rock bursts compared to 
conventional BP neural networks.

Based on the seismic data and 24 coal burst records during 
the period of 16 months, a risk assessment method including three 
indexes (Static Intensity Index (SII), Dynamic Intensity Index (DII), 
and Risk Assessment Index (RAI)) was derived from seismic energy 
attenuation. In consideration of the static and dynamic response, the 
superposition effects of seismic energy were proposed to improve 
the performance of risk assessment (Liu et al., 2022). A BP neural 
network-based impact risk assessment method is proposed. This 
method uses existing impact pressure data to construct a regression 
model through the BP network, and adopts the particle swarm 
optimization (PSO) algorithm to optimize the connection weights, 
so as to improve the problems of slow convergence and proneness 
to falling into local optimum of the BP network. Verified with 
mine risk assessment as an example, the results show that this 
method has accuracy and overall applicability (Zhang, 2021). To 
assess the rock burst-prone areas in the lower seams during multi-
seam mining, a method for evaluating rock burst hazards in multi-
seam mining was established, and an energy density risk index 
(EDRI) was developed. It is demonstrated that EDRI can more 
accurately reflect potential rock burst areas compared with the 
multi-factor coupling analysis method. The EDRI of the upper 
coal seam was used to divide the rock burst risk zones of the 
lower coal seam, thus establishing a rock burst hazard assessment 
method for multi-seam mining (Shen et al., 2017). Recent research 
has increasingly focused on hybrid intelligent models to improve 
prediction reliability (Wang et al., 2023). Improved the BP neural 
network framework by applying the Levenberg-Marquardt training 
algorithm with normalized data. Their model achieved superior 
prediction accuracy-peaking at 97%-with performance improving 
as sample size increased (Yuan et al., 2023) introduced a PCA-
PSO-ELM model, combining principal component analysis (PCA), 
particle swarm optimization (PSO), and extreme learning machine 
(ELM). This integrated approach mitigated randomness in ELM 
inputs and hidden thresholds, achieving 100% accuracy on test 
data and demonstrating rapid learning speed, strong generalization, 
and high robustness (Fu et al., 2024) applied a Bayesian-optimized 
LSTM model (BO-LSTM) to 3 years of microseismic data. By 
identifying key daily indicators-total energy, maximum energy, 
and frequency-their model outperformed alternative deep learning 
approaches, illustrating effective time-series feature extraction for 
predictive tasks (Wojtecki et al., 2024) tackled the challenge of 
distinguishing rare rock bursts from numerous non-destructive 
tremors using an ensemble of machine learning classifiers, balanced 
by the ADASYN algorithm.

Numerous studies on machine learning applications. A 
study based on ASTM and BS standards examined the effects 
of different sand gradations and water-reducing polymers 
(WRP) on the properties of cement grout. The results showed 
that WRP significantly reduced the water–cement ratio and 
improved both fluidity and compressive strength, with the strength 
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enhancement varying by curing period and dosage. Fine-grained 
sand exhibited superior strength performance under identical 
conditions (Mahmood et al., 2022b). A study employed ensemble 
soft computing models to predict the liquefaction potential index 
(LPI) of fine-grained soils. XGBoost achieved 99% accuracy in 
predicting liquefaction potential, serving as a reliable alternative 
to empirical methods (Ghani et al., 2024). A WOA-LMBPNN 
model is proposed to predict reinforced concrete beam deflection, 
showing higher accuracy and robustness than PSO-LMBPNN 
(Zhao et al., 2022). Two hybrid fuzzy systems (FS-DE, FS-FFA) are 
proposed to predict the axial capacity of circular CFST columns, 
achieving 9.68% and 6.58% accuracy improvements over the 
base model and outperforming design codes (Liao et al., 2021). 
A study developed artificial neural networks to predict rock 
unconfined compressive strength using Schmidt hammer number, 
compressional wave velocity, and porosity. Among ANN-LM, 
ANN-PSO, and ANN-ICA models, ANN-ICA achieved the highest 
accuracy, with predictions within ±20% of experimental values for 
86% of samples. A closed-form equation and GUI are provided for 
verification (Le et al., 2022).

Despite these advancements, current evaluation methods still 
exhibit subjectivity and inconsistency due to differences in the 
selection and weighting of influencing factors. In this study, we 
first select key indicators for evaluating coal–rock burst risk and 
construct a dataset. Through correlation analysis, we identify 
dominant factors affecting burst potential. Based on these factors, 
we establish a PSO-optimized BP neural network model and verify 
its applicability through field tests conducted in underground coal 
mines. The novelty of this study lies in the customized improvement 
of the traditional PSO-BP model for coal–rock dynamic disaster 
prediction. Instead of relying on random initialization, the initial 
weights and thresholds of the BP network are optimized using 
PSO with an adaptive mutation mechanism, which to some extent 
addresses the challenges of “slow convergence and susceptibility 
to overfitting” in conventional BP models. Unlike existing hybrid 
models such as chaos-PSO-BP, the proposed framework is capable 
of integrating multiple inputs and multi-physical parameters to 
effectively handle the coupled data from field monitoring in 
coal mines.

The structure of this paper is organized as follows: 
Section 3 introduces the research methodology and the 
PSO-BP neural network framework; Section 4 presents the 
experimental data and results; Section 5 provides an engineering 
case analysis; and Section 6 offers future perspectives and 
concludes the paper. 

2 Research significance

Although numerous studies have been conducted on rock 
burst prediction and risk assessment, existing approaches still face 
limitations such as insufficient feature extraction, low adaptability 
to complex geological conditions, and susceptibility to local optima. 
These challenges restrict the robustness and generalization ability of 
current models.

This study addresses, to some extent, the challenges of slow 
convergence and overfitting in the BP model for coal–rock dynamic 
disaster prediction, providing a customized improvement tailored to 

scenarios characterized by limited samples and strong nonlinearity. 
By proposing a systematic framework that integrates field validation 
with computational intelligence, this research enriches the existing 
body of knowledge. The results not only broaden the application 
scope of hybrid neural network models in rock burst risk assessment 
but also offer practical reference for risk prevention in deep mining 
engineering. 

3 Selection of impact risk indicators 
and dataset construction

3.1 Case studies of rock burst incidents

3.1.1 Rock burst at working face 109
Working face 109 is the first fully mechanized mining face in 

its panel and is flanked by solid coal seams on both sides. The 
designed mining length along the strike is 220 m, with a recoverable 
strike length of 2,340 m. The coal seam dip angle ranges from less 
than 5°–10°. The maximum absolute gas emission from the face is 
32.35 m3/min. The mining method employed is fully mechanized 
top coal caving, with roof management by full caving. The average 
burial depth of the face is 825.27 m. The roof consists of a composite 
structure dominated by siltstone and coarse-grained sandstone, 
while the floor mainly comprises aluminous mudstone, which easily 
swells when exposed to water.

No faults are developed within the face area, and geological 
structures have minimal impact on rock burst occurrences. 
However, two rock burst events have occurred in the same coal 
seam at this level. The in-situ stress field in this area is dominated 
by horizontal stress, with the maximum principal horizontal stress 
reaching up to 30.6 MPa, while the vertical stress is the minimum 
principal stress.

During the retreat phase, dynamic phenomena in the coal 
seam became increasingly frequent and intense during roadway 
excavation. Notable manifestations included loud explosive sounds 
(coal cannon phenomena) and coal block ejection in unsupported 
zones. The roof exhibited significant subsidence, and the steel 
supports in the roadway were compressed, deformed, or even 
fractured. 

3.1.2 Rock burst at working face 1416
Working face 1416 has an average mining depth of 565.6 m, 

with a designed recoverable strike length of 1,688 m and an inclined 
length of 220 m. The coal seam dip is generally less than 10°, with 
minimal variation. The maximum absolute gas emission ranges from 
18 to 22 m3/min. The immediate roof consists of sandy mudstone, 
while the floor is mudstone, which easily softens and swells upon 
water exposure.

Although no prominent fault structures are present within the 
face, it is located on the northwestern flank of the Yuangou syncline, 
where a secondary anticline and syncline are also developed. These 
folds have a significant influence on rock burst occurrence. Borehole 
stress monitoring of coal pillars within the face recorded a stress 
value of 23.02 MPa. No rock bursts were recorded in the same coal 
seam during the development phase.

However, during retreat mining, dynamic manifestations 
attributed to rock bursts were observed, including sudden floor 
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heaving and minor rib deformation forming mesh-like patterns. 
In densely excavated areas such as roadways and chambers, rock 
burst events occurred more frequently, often characterized by skin 
delamination, material ejection, and other dynamic responses. These 
phenomena were mostly concentrated in high-stress areas induced 
by folds and fault interactions. 

3.1.3 Rock burst at working face 224
Working face 224 has an average burial depth of 577.98 m and a 

coal seam dip between 2° and 7°, with stable occurrence conditions. 
According to gas geological data, the face is located within a high-gas 
zone, with absolute gas emission during retreat mining ranging from 
18 to 37 m3/min. The immediate roof comprises siltstone, while 
the floor is made up of carbonaceous mudstone. The topographic 
contour variations in the area are relatively gentle, and the region is 
affected by a syncline-like structure.

This working face is mined beneath a protective seam, where 
tectonic stress is significantly released during protective seam 
extraction. A 74 m coal pillar was left between the return air roadway 
and the adjacent goaf, while the other side of the face had not yet 
been mined and was not influenced by coal pillar stress. The mine 
had previously experienced a rock burst during retreat mining in 
the isolated working face 220.

During retreat at face 224, a rock burst occurred, characterized 
by violent vibrations, coal dust dispersion, and floor uplift at the 
center. Two roof fall events were also reported, along with significant 
roadway deformation. 

3.2 Determination of evaluation indicators 
and dataset construction

The selection of evaluation indicators is a critical step for 
accurately assessing the risk of coal-rock bursts. As demonstrated by 
the case analyses above, rock bursts do not follow a fixed occurrence 
pattern nor are they directly tied to a single factor; rather, they are 
often induced by the combined effect of multiple factors. Therefore, 
when identifying influencing factors, considerations should include 
the feasibility of data acquisition and the effectiveness of each 
factor in representing key influences. Suitable parameters should be 
selected accordingly.

Based on the above case studies and existing research, this study 
incorporates coal body stress as one of the essential influencing 
factors for rock burst risk. A total of ten indicators affecting 
coal-rock burst risk are identified, including: mining depth (Z1), 
coal seam dip angle (Z2), width of the coal pillar section (Z3), 
uniaxial compressive strength (Z4), coal body stress (Z5), geological 
structure (Z6), historical frequency of rock bursts in the same 
horizontal coal seam (number of events n, Z7), roof management 
(Z8), pressure relief condition of protective seams (Z9), and the 
spatial relationship between the working face and adjacent goaf areas 
(Z10). The influencing factors include mining depth, coal seam dip 
angle, sectional coal pillar width, uniaxial compressive strength, 
in-situ coal stress, geological structures, history of rock burst 
occurrences in adjacent coal seams, roof control measures, pressure 
relief conditions of protective seams, and the spatial relationship 
between the working face and adjacent goaf areas.

By collecting dynamic records of rock burst phenomena from 
multiple mining faces, this study compiles a representative dataset 
comprising 111 original rock burst samples summarized in Table 1. 
The rock burst risk levels are classified into four categories: no risk, 
weak risk, moderate risk, and strong risk.

In the established sample dataset (as shown in Figure 1), there 
are 22 samples classified as having no rock burst risk, accounting for 
19.8% of the total; 34 samples with weak rock burst risk, accounting 
for 30.6%; 30 samples with moderate risk, accounting for 27.0%; and 
25 samples with strong risk, accounting for 22.5%. The distribution 
of samples among different risk categories is therefore imbalanced.

During the machine learning model training process, such 
class imbalance can cause the classifier to be biased toward the 
majority classes, which negatively impacts the recognition accuracy 
for minority classes. To mitigate this issue, the dataset was first 
randomly shuffled, and then an oversampling technique was applied 
to randomly replicate samples from minority classes, thereby 
balancing the dataset and improving the model’s sensitivity to 
less represented categories. The quantitative assignment of impact 
hazard influence factors is shown in Table 2.

Furthermore, data standardization was performed prior to 
training to enhance the stability and convergence of the model.

Correlation analysis is a quantitative method used to describe 
the relationship between two or more variables, aiming to reveal 
the degree of association between them. The Pearson correlation 
coefficient is one of the most commonly used metrics for correlation 
analysis, with values ranging from −1, to 1. This coefficient primarily 
measures the linear relationship between variables. When r = 0, it 
indicates the absence of a linear correlation but does not necessarily 
imply that the variables are completely independent. The larger 
the absolute value of the correlation coefficient, the stronger the 
correlation between the variables. Values close to ±1 indicate a 
strong positive or negative linear relationship, while values near 
zero suggest a weak correlation. Prior to conducting correlation 
analysis between indicators, a significance test is required to ensure 
that the observed correlations are not due to random fluctuations. 
The results indicate that the significance probability p-value is less 
than 0.05, confirming that the calculated correlation coefficients are 
statistically significant and suitable for further analysis.

To clarify the actual influence degree of each factor on rock 
burst risk, Pearson correlation coefficients were calculated between 
the selected 10 evaluation indicators and the observed rock burst 
risk levels. As shown in Figure 2, indicators such as mining 
depth, coal body stress, and geological structure exhibit significant 
positive correlations with rock burst risk levels. This indicates that 
deep burial environments, high-stress conditions, and complex 
geological structures significantly increase the likelihood of rock 
burst occurrence. Among all indicators, coal body stress has the 
highest correlation coefficient of 0.76 with rock burst risk level, 
confirming its critical role in the mechanism of rock burst disasters.

The correlation coefficients between the sectional coal pillar 
width, the relationship between the working face and adjacent 
goaf, and the actual risk level are relatively low at 0.21 and 0.10, 
respectively. The reason for these lower values is that some data 
samples are adjacent to solid coal pillars rather than goaf areas, 
which reduces the apparent correlation. Therefore, these lower 
coefficients do not imply that the above two indicators have minimal 
impact on rock burst occurrence. 
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TABLE 1  Selected rock burst hazard sample data.

Number Z1 h/m Z2
/°

Z3 h/m Z4
Rc/MPa

Z5
σ/MPa

Z6 Z7 Z8 Z9 Z10 Actual category

1 565 5 1 12.8 12.14 2 2 2 3 1 2

2 760 1 3 20.45 19.87 3 4 2 3 2 3

3 565 3 1 10.54 12.87 1 2 2 2 2 2

4 564 4 2 12.29 13.11 1 2 1 1 1 1

5 580 7 1 14.6 15.67 3 3 3 3 3 3

6 750 3 3 18.64 17.65 3 4 3 3 2 4

7 758 1 3 21.47 20.89 3 4 3 4 2 4

8 594 7 2 15.64 17.82 3 2 3 3 3 3

9 819 3 1 17.91 18.81 4 4 3 3 1 4

10 598 6 2 14.58 16.47 2 2 3 2 2 3

11 767 1 3 25.73 21.61 3 4 2 3 2 3

12 761 1 3 21.64 21.66 4 4 3 3 2 4

… … … … … … … … … … … …

106 822 4 1 18.14 19.05 3 4 2 4 1 3

107 556 4 1 14.37 13.56 1 2 1 1 2 1

108 575 4 2 15.14 16.14 3 2 3 2 2 2

109 807 3 1 17.63 18.51 3 4 2 3 1 3

110 760 1 3 21.59 21.76 3 4 4 3 2 4

111 794 8 1 17.68 16.57 3 2 3 4 3 3

4 PSO-BP neural network structure 
and parameter determination

4.1 Basic principles of BP neural network

In practical applications, the Backpropagation (BP) algorithm 
remains one of the most widely used models within artificial neural 
networks. The core characteristic of the BP neural network lies in 
the synergy between its multilayer feedforward architecture and 
adaptive learning mechanism. As a typical artificial feedforward 
neural network, its structure transforms linear weighted inputs into 
nonlinear responses through nonlinear activation functions such as 
Sigmoid or ReLU, enabling the network output to be more “flexible” 
and granting the network the capability to classify complex patterns. 
Compared to a single-layer perceptron, BP networks can achieve 
hierarchical mapping from raw input data to high-level semantic 
representations.

In constructing neural network models, the determination of 
core parameters is not governed by explicit rules or standards; 
instead, it largely relies on empirical formulas or repeated trials to 

identify optimal values. The key parameters typically include the 
number of network layers, the number of neurons in the input and 
hidden layers, the number of hidden nodes, the activation functions, 
and the learning rate.

For a backpropagation (BP) neural network, the number of 
hidden layers can theoretically be set arbitrarily. However, increasing 
the number of hidden layers also increases the complexity of the 
network. In practice, a single hidden layer is generally sufficient to 
meet most problem-solving requirements. Therefore, in this study, 
the BP neural network model for evaluating coal–rock burst risk 
adopts a single hidden layer.

To facilitate the output of burst risk levels, the risk was 
categorized into four classes: no risk, low risk, moderate risk, and 
high risk. Accordingly, the output layer consists of four neurons. 
Based on Kolmogorov’s theorem, the number of hidden nodes 
was initially set at 10, and then adjusted within the range of 
1–10 additional nodes to achieve optimal performance under error 
constraints.

The choice of activation function directly affects the network’s 
expressive power, convergence speed, and stability. Since the 
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FIGURE 1
Distribution proportion of rock burst hazard sample data.

BP neural network is designed to address nonlinear problems, 
incorporating nonlinear activation functions enhances its 
representational capacity. In this study, the hidden layer employs 
the hyperbolic tangent sigmoid function (tansig), available in 
the MATLAB toolbox, with a value range of (−1, 1). For the 
output layer, the Softmax function is applied. This function not 
only considers the input to each neuron but also incorporates the 
outputs of other neurons, transforming the network outputs into a 
probability distribution. Consequently, cross-entropy is selected as 
the loss function to measure the divergence between the predicted 
and actual distributions. Unlike the mean squared error (MSE) 
function, cross-entropy exhibits monotonicity in classification tasks, 
and larger errors produce larger gradients, thereby accelerating 
weight updates during backpropagation. To prevent overfitting, 
regularization techniques were applied in the model, and PSO 
optimization was employed to provide improved initial weights and 
thresholds, thereby stabilizing the training process and reducing the 
risk of overfitting.

The theoretical foundation of the BP neural network lies in 
the gradient descent algorithm, where the learning rate determines 
the step size for parameter updates. If the learning rate is set 
too high, the optimization process may overshoot the optimal 
solution; if too low, convergence will be excessively slow. In 
engineering practice, relatively low learning rates are preferred to 
enable fine-tuning and ensure stable convergence. In this study, the 
learning rate was determined to be 0.01 through feedback from the 
command algorithm. The specific parameter settings of the model 
are shown in Table 3.

4.2 Construction and analysis of the BP 
neural network model

4.2.1 Model construction
Due to the differences in orders of magnitude between 

experimental conditions and test results, directly inputting 

TABLE 2  Quantitative assignment of impact hazard influence factors.

Influence factor Category Evaluation 
index

Occurrence history of 
rock burst in the same 

coal seam level

n = 0 1

n = 1 2

n = 2 3

n ≥ 3 4

Geological structure

Simple geological 
structure

1

Moderately complex 
geological structure

2

Relatively complex 
geological structure

3

Complex geological 
structure

4

Roof management

Good condition 1

Fair condition 2

Average condition 3

Poor/No support 4

Pressure relief of 
protective seam

Good 1

Moderate 2

Average 3

Poor 4

Relationship between 
working face and 

adjacent goaf areas

Solid coal working face 1

Goaf on one side 2

Goaf on both sides 3

Goaf on three or more 
sides

4

unnormalized data into the model may cause certain features 
to dominate the training process, thereby masking other critical 
variables. In this study, min–max normalization was employed 
to map all variables into the [0,1] range, ensuring consistency 
across features and preventing gradient vanishing or explosion 
(Asteris et al., 2020; Asteris et al., 2025). This approach facilitates 
model convergence and supports the stable training of BP 
neural networks as well as metaheuristic optimization models 
such as PSO-BP.

The training of the BP neural network involves two main 
processes: (i) forward propagation, where the network produces 
prediction results, and (ii) backward propagation, where the 
model parameters are optimized via gradient descent to 
approximate the true targets. Its algorithmic implementation can 
be summarized as follows: 
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FIGURE 2
Heatmap of correlations among selected indicators.

1. Network Initialization: Based on the system input–output 
sequence (X, Y), the numbers of neurons in the input, hidden, 
and output layers (n, l, m) are determined. The connection 
weights (w11, wq1) between neurons in adjacent layers, the 
hidden layer thresholds (aj), and the output layer thresholds 
(bk) are initialized randomly, providing the network with 
an initial “cognitive baseline”. The learning rate η, activation 
functions, network depth, and neuron count per layer are also
specified.

2. Hidden Layer Output Calculation: Given the input vector 
X, the output of the hidden layer Z is computed from 
the input–hidden layer weights w11 and thresholds aj
(Equation 1):

Zj = f(
n

∑
i=1

ω11xi + aj) j = 1,2,3, l (1)

where n is the number of input neurons (set to 10 in this model) and 
l is the number of hidden layer neurons (set to 8 in this model). The 
choice of the activation function f(⋅) greatly influences the prediction 
accuracy. In this study, the following activation function is used 
(Equation 2):

f(x) = ex − e−x

ex + e−x
(2)

3. Output Layer Output Calculation: Using the hidden layer 
output Zj, the output layer result Yk is computed from 
the hidden–output layer weights wq1 and thresholds 
bk (Equation 3):

Yk =
l

∑
j=1

ωq1Zj + bk k = 1,2,3,m (3)

where m is the number of output neurons (set to 4 in this model). 

4. Error Calculation: The network error function ek is defined 
based on the predicted output Yk and the expected output 
Ok (Equation 4):

ek = Yk −Ok k = 1,2,3,m (4)

5. Weight Update and Iteration: Based on the prediction error ek, 
the connection weights w11 and wq1 are updated using gradient 
descent (Equations 5, 6):

ω11 = ω11 + ηZj(1−Zj)xi

m

∑
k=1

ωq1ek (5)

ωq1 = ωq1 + ηZjek (6)

where η is the learning rate (set to 0.01 in this model), i = 1,2 · ··,10; 
j = 1,2, · · ·,8; k = 1,2, · · ·,4. 

6. Threshold Update: The thresholds are updated according to 
the error function ek, Adjustment of the network thresholds 
(aj and bk)) is performed to enhance model performance 
(Equations 7, 8):

aj = aj + ηZj(1−Zj)
m

∑
k=1

ωq1ek (7)

bk = bk + ηek (8)

 

4.2.2 Algorithm implementation and prediction 
results analysis

The collected impact hazard indicator data were used as the 
input variables for the BP neural network model. Among the 111 
available datasets, 90 were randomly selected as the training set 
for model learning, and the remaining 21 were used as the test set 
for model evaluation. The training process parameters, including 
the number of iterations and the minimum error. During training, 
the prediction error decreased progressively with the increase in 
iterations, reaching convergence after 11 iterations, with a minimum 
error value of 0.17985.

As shown in Figure 3, the prediction accuracy for the training 
set was 82.22%. For the 21 test samples, the predicted hazard levels 
produced by the BP neural network matched the actual hazard levels 
in 15 cases, corresponding to a test accuracy of 71.42%. The relatively 
higher error rate indicates that the prediction accuracy requires 
further improvement.

Multi-feature classification aims to determine the categorical 
label of a sample based on multiple feature variables. As a classic 
neural network model, the BP algorithm can effectively handle 
complex classification problems. However, it has certain limitations, 
including relatively slow convergence and susceptibility to becoming 
trapped in local minima of the objective function. In the standard 
BP neural network, each neuron receives input solely from the 
previous layer, and weight updates, parameter optimization, and 
error adjustments are generally performed via gradient descent. 
This approach makes the model’s convergence highly sensitive 
to the initialization of weights and thresholds. In complex 
high-dimensional feature spaces, the existence of multiple local 
minima means that once the algorithm converges to a suboptimal 
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TABLE 3  Basic parameters of the BP neural network.

Parameter Value Network architecture diagram

Number of layers 3

Number of hidden neurons 8

Learning rate 0.01

Maximum iterations 1000

Target training error 1× 10−6

Hidden layer activation function
Output layer activation function

Tansig function
Softmax function

Number of input neurons
Number of output neurons

10
4

FIGURE 3
Training results of the BP model. (a) Prediction results for the training set. (b) Prediction results for the testing set.
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point, it is difficult to escape and find the global optimum, 
thereby reducing both classification accuracy and generalization
capability. 

4.3 PSO-BP neural network model for 
rockburst hazard evaluation

4.3.1 Model construction
To enhance the prediction accuracy of the BP neural network 

model, the Particle Swarm Optimization (PSO) algorithm was 
incorporated to search for optimal weights and thresholds. This 
approach mitigates the issues of local optima and slow convergence 
caused by random initialization. The PSO-BP neural network is a 
hybrid model that combines the global search capability of PSO with 
the local optimization capability of BP.

During optimization, PSO iteratively updates particle 
positions and velocities, gradually reducing individual fitness 
values. When the optimal fitness is achieved or the predefined 
iteration limit is reached, the algorithm terminates, yielding 
the optimal connection weights and thresholds for the BP
neural network. 

1. Based on the pre-established BP neural network evaluation 
model, initialize PSO parameters, including population size, 
particle velocity range, and maximum number of iterations, to 
construct the PSO-BP evaluation model.

2. Randomly divide the dataset into training and testing subsets, 
and import them into the constructed model.

3. Begin training: calculate each particle’s fitness value via the 
fitness function, obtain the personal best (P-Best) and global 
best (G-Best) values, and update them iteratively. If the P-Best 
does not meet the convergence criterion within the specified 
accuracy, continue iterations until termination conditions are 
satisfied.

4. Use the final G-Best solution as the initial weights and 
thresholds for the BP neural network, train the model, and 
output the optimal prediction results.

4.3.2 Algorithm implementation and evaluation 
results analysis

To verify whether the prediction accuracy of the rock burst 
risk assessment model optimized by the particle swarm algorithm 
improves, the model was trained and tested using evaluation 
indicator data.

To ensure reproducibility and control the randomness in PSO 
initialization, we fixed the random seed using rng (1,2,3). We also 
verified with alternative seeds (4,5,6 and 7,8,9), and the accuracy 
variation was within ±2%. For the learning rate, we conducted 
controlled tests with values of 0.001, 0.01, and 0.1. Results showed 
that a learning rate of 0.001 led to extremely slow convergence, while 
0.1 caused oscillations and divergence. A value of 0.01 achieved 
a balanced trade-off, enabling stable convergence to the target 
error within 2000 iterations. Regarding the hidden node number, 
comparative experiments with 5 repetitions indicated that nine 
nodes yielded the highest accuracy on both training and testing 
sets. For the PSO parameters, we tested combinations of sizepop 
= 3/5/10 and maxgen = 20/30/50. The setting of sizepop = 5 and 

maxgen = 30 was found optimal, as it consistently identified the best 
BP initialization while balancing accuracy and computational 14 
efficiency. Increasing either population size or iterations improved 
accuracy but also significantly increased computation time. These 
experimental details have been added to the revised manuscript. A 
fixed inertia weight is suitable for small-sample experiments and 
preliminary validations, as it is easy to understand and implement. 
For high-dimensional problems or when more precise convergence 
control is required, a linearly decreasing or adaptive inertia weight 
strategy should be considered. Therefore, this study adopts a fixed 
inertia weight. To examine the sensitivity of PSO parameters, this 
study first conducted small-scale experiments within the range of 
C1, C2∈ [1,4]. The results showed that the model accuracy fluctuated 
between 61.9% and 80.9%, indicating that different parameter 
combinations had a noticeable impact on performance. Although 
certain settings (e.g., C1 = 2.0, C2 = 4.0) achieved relatively high 
accuracy, the final choice was C1 = C2 = 4.49, a parameter setting 
widely recommended in theory. According to the Clerc-Kennedy 
constriction factor theory, this configuration provides a stable 
balance between exploration and exploitation, preventing excessive 
oscillations or premature convergence under complex working 
conditions. Parameter configurations for the PSO-BP model are 
detailed in Table 4.

First, the dataset containing rock burst hazard assessment 
indicators was loaded, and a subset of the data was randomly 
selected as the training set, with the remaining samples used as the 
testing set. The testing set was further divided into 8, 14, and 21 
samples, corresponding to training sets of 103, 97, and 90 samples, 
respectively.

Since the BP neural network is inherently sensitive to both the 
size and quality of the training set, an increase in the testing set 
size (and a corresponding reduction in the training set) inevitably 
affects prediction accuracy. When the prediction accuracy for all 
three testing scenarios exceeded 85%, it indicated that the BP neural 
network—after optimization—achieved a notable improvement in 
predictive performance.

As shown in Figure 4, the PSO-optimized BP neural network 
achieved 100% accuracy in predicting rock burst hazard levels. This 
demonstrates that the global search strategy of the PSO algorithm 
effectively alleviates the original BP network’s tendency to overfit the 
training data distribution, while also enhancing the model’s ability to 
identify low-probability events.

From Figure 5, it can be seen that although the reduction 
in training sample size led to a slight drop in prediction 
precision, only one misclassification occurred, and the model 
still maintained high accuracy. Specifically, when the testing 
set sizes were 8 samples (Figure 4), 14 samples (Figure 5), and 
21 samples (Figure 6), the corresponding prediction accuracies were 
100%, 92.86%, and 85.71%, respectively. As the size of the testing 
set increased and the training set decreased, prediction errors 
rose accordingly; however, overall accuracy consistently remained
above 85%.

Figure 7 shows the confusion matrix of the prediction results 
for the test set when the test set size is 21 samples, the constructed 
model performs well overall in classifying the four categories, with 
an overall accuracy of about 85%. Among them, the recognition of 
Category 1 and Category 2 is the most effective: Category 1 achieves 
a recall rate of 100%, and Category 2 reaches a precision of 100%, 
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TABLE 4  Parameter settings of the PSO-BP model.

Parameter Target 
training 

error

Max 
training 
epochs

Learning 
rate

Learning 
factors (C1, 

C2)

Population 
iterations

Inertia 
weight

Population 
size

Value 0.000001 2000 0.01 4.49 60 [0.4,0.9] 10

FIGURE 4
Training results of the PSO-BP model (testing set size: 8 samples). (a) Prediction results for the training set. (b) Prediction results for the testing set.

FIGURE 5
Training results of the PSO-BP model (testing set size: 14 samples). (a) Prediction results for the training set. (b) Prediction results for the testing set.

indicating that the model can stably identify and accurately predict 
these two categories. In contrast, the classification performance 
of Category 3 and Category 4 is slightly lower. Category 3 has 
a precision of 75%, and Category 4 has a recall rate of 75%, 
suggesting that in some cases the model tends to misclassify 
these samples into other categories. This confusion may be related 
to data imbalance and insufficient feature differences between 

certain categories. Overall, the model can effectively distinguish 
the four categories, though there remains room for improvement 
in the classification of Category 3 and Category 4. The PSO-BP 
classification performance metrics are shown in Table 5. These 
results confirm that integrating PSO into the BP neural network 
effectively improves the prediction accuracy of rock burst hazard
assessment models.
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FIGURE 6
Training results of the PSO-BP model (testing set size: 21 samples). (a) Prediction results for the training set. (b) Prediction results for the testing set.

FIGURE 7
Confusion matrix for test data (PSO-BP).

5 Engineering case study

5.1 Overview of the working face

The 224 working face is located at a coal seam depth 
of 508.1–647.7 m, approximately 74 m from the transportation 
roadway of the shallower 222 working face. Vertically above it lies the 
goaf of the 3–2 coal seam’s 2302 working face, which was completely 

mined out by 31 October 2015. The roadway layout follows a “U-
shaped” configuration, consisting of a transportation roadway, a cut-
through, and a return airway. Both the transportation and return 
roadways are arranged parallel to the coal seam’s strike.

The 224 transportation roadway lies 21–39 m vertically below 
and 44 m offset in parallel from the 2302 transportation roadway, 
while the 224 return airway is 24–37 m vertically below and 
15 m offset from the 2302 return airway. The 224 working face 
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TABLE 5  PSO-BP classification performance metrics.

Category Precision Recall F1

1 0.83 1 0.91

2 1 0.8 0.89

3 0.75 0.86 0.8

4 1 0.75 0.86

extracts the 4–2 coal seam, which is stable, black, stratified, and 
classified as medium-hard coal. The seam thickness ranges from 
5.6 to 14.2 m, averaging 8.2 m, with a complex internal structure 
containing 3–7 layers of partings. These partings are 0.3–1.0 m 
thick, with a high ash content at the base gradually transitioning to 
carbonaceous mudstone.

The immediate roof consists of dark grey to grey-black siltstone, 
thinly bedded, with a thickness of 3.7–38.4 m (average 21.76 m). 
The floor is composed of carbonaceous mudstone, gradually 
transitioning from the 4-2 coal seam, occasionally interbedded with 
dark grey siltstone, averaging 6.16 m in thickness. The coal seam’s 
contour lines are relatively gentle, with minor folds and synclinal 
structures lacking prominent axial features. Local undulations are 
present, but no major faults have been detected.

As mining depth has progressively increased, the 224 working 
face has experienced intense rock burst phenomena during both 
roadway excavation and production. In roadways, these manifest as 
localized roof falls, severe spalling, poor roadway formation, and 
difficulties in support installation. In the retreating working face, 
typical issues include severe floor heave in exposed roadways, minor 
sidewall deformation, and mesh-bag formation.

Rock burst incidents are more frequent in areas with dense 
roadways and chambers, sometimes accompanied by dynamic 
phenomena such as spalling of rock skin. Investigations revealed that 
stress concentration induced by geological structures is particularly 
significant in this region, with most events occurring in coal mass 
zones affected by folding or faulting. Abnormal stress accumulation 
triggers energy build-up and sudden release within the coal, greatly 
increasing the risk of dynamic instability in surrounding rock. 
Therefore, accurate rock burst hazard assessment prior to mining is 
critical for safe production. 

5.2 Engineering application of the rock 
burst hazard evaluation model

This study identifies ten evaluation indicators: mining depth 
(Z1), coal seam dip angle (Z2), sectional coal pillar width (Z3), 
uniaxial compressive strength (Z4), coal mass stress (Z5), geological 
structure (Z6), historical rock burst occurrences at the same seam 
level (Z7, occurrence count), roof management conditions (Z8), 
stress relief from protective seam mining (Z9), and the relationship 
between the working face and adjacent goaf areas (Z10).

Based on drilling data, geological records, and monitoring 
information, six sample datasets-including the 14# drill site—were 

compiled as the testing set (Table 6) to verify the applicability 
of the model.

The selected samples were fed into the PSO-BP model for 
training, and the results are shown in Figure 8.

As illustrated, the PSO-BP model provides reliable evaluations of 
coal–rock burst hazards, with predictions largely consistent with on-
site observations, demonstrating strong engineering applicability.

From the actual field conditions, an analysis of rock burst 
phenomena at the six selected testing locations was conducted 
from three perspectives: acoustic signs, roof–floor conditions, 
and sidewall behavior. Prior to the occurrence of a rock burst, 
the internal stress within the coal–rock mass becomes sharply 
concentrated. The coal and rock strata often experience fracturing 
or rapid displacement, frequently accompanied by crisp splitting 
sounds; during drilling operations, muffled, thunder-like blasting 
noises may occasionally be heard.

As shown in Figure 9, in terms of the roof, distinct delamination 
can be observed along the interface between the roof and coal–rock 
strata. Sudden roof pressure events may occur in the working face 
or roadway, causing rapid roof subsidence that crushes the support 
structures. Regarding the sidewalls, phenomena such as coal wall 
spalling or bulging are commonly observed, while the floor may 
exhibit noticeable heaving.

6 Discussion

This study proposes a PSO-optimized BP neural network 
model for coal-rock burst risk evaluation, and its key findings and 
implications can be discussed as follows: 

a. The PSO-BP model effectively addresses the limitations of 
traditional BP neural networks, such as susceptibility to local 
optima and slow convergence. By optimizing initial weights 
and thresholds through PSO’s global search capability, the 
model achieves higher prediction accuracy (over 85% for 
various test set sizes) and stronger generalization ability. This 
outperforms conventional methods like analytic hierarchy 
process (AHP), fuzzy comprehensive evaluation, and even 
standard BP networks, highlighting its potential for intelligent 
risk assessment in complex mining environments.

b. Correlation analysis identifies coal body stress as the most 
critical indicator (correlation coefficient = 0.76) for rock burst 
risk, followed by mining depth and geological structure. This 
aligns with field observations that high stress concentration, 
deep burial, and complex geological conditions are primary 
triggers of dynamic disasters, providing a mechanistic basis for 
indicator selection in risk evaluation.

c. The model’s validation in the 224 working face demonstrates 
good consistency between predicted results and on-site rock 
burst phenomena (e.g., roof delamination, floor heave, and 
coal wall spalling). This confirms its practical value for 
guiding safety measures such as pressure relief and support 
optimization in underground mines.

For the purpose of comparing classification predictions, the 
authors conducted data classification and prediction using a support 
vector machine, and the confusion matrix is shown in Figure 10. 
The classification performance for Category 1 and Category 2 
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TABLE 6  Rock burst risk evaluation data for the 224 working face.

Drilling site position Indicators affecting coal-rock burst risk

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

14# Drill Site 1 562 4 1 11.47 20.83 2 2 2 2 1

14# Drill Site 2 562 2 1 10.74 19.85 3 2 2 1 2

224 Transport Gateway 1 565 5 1 12.8 16.14 2 2 2 3 2

224 Transport Gateway 2 567 5 1 13.41 18.15 2 2 3 2 2

224 Return Airway 1 563 4 1 14.16 18.64 1 2 2 2 2

224 Return Airway 2 564 1 1 10.47 15.45 2 2 1 1 1

FIGURE 8
Rock burst risk prediction results for the 224 working face. (a) Prediction results for the training set. (b) Prediction results for the testing set.

FIGURE 9
On-site rock burst conditions at the working face. (a) Damage to roadway support in the transportation gateway. (b) Rock burst on roadway coal wall.
(c) Floor heave in the return airway.

is relatively weak. The main issues are that Category 1 has a 
relatively high missed detection rate, and Category 2 has a certain 
misjudgment rate during prediction.

In this study, k-fold cross-validation, statistical significance 
testing, and robustness analysis were incorporated into the 
traditional BP network framework to comprehensively evaluate 
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FIGURE 10
Confusion matrix for test data (SVM).

FIGURE 11
Comparison of model accuracy under cross-validation and noise 
conditions.

the PSO-BP model. Through 5-fold cross-validation, the PSO-BP 
model achieved an average accuracy of 58%–82%, outperforming 
the baseline BP model (48%–70%). The significance test indicated no 
statistical difference, which may be attributed to the limited sample 
size. The comparison of model accuracy under cross-validation and 
noise conditions is shown in Figure 11. The robustness analysis 
further 20 showed that, after adding Gaussian noise, the PSO-BP 
maintained an accuracy of 63%–71%, with only a slight decline and 
improved stability. These results suggest that the introduction of 
PSO optimization enhances both the predictive accuracy and noise 
resistance of the BP model, thereby supporting its applicability in 
challenging geological environments.

Although the dataset is relatively limited in size, it encompasses 
the mechanical properties and stress conditions relevant to coal-rock 
dynamic hazard risks. Nevertheless, future research should aim to 
expand the dataset to cover a broader range of parameter values. 

Although the PSO-BP model demonstrates strong performance, 
its generalization ability remains influenced by data diversity and 
distribution. The PSO-BP model shows promising performance 
under the tested dataset. However, broader validation on larger 
and independent datasets is required before recommending field 
deployment. Subsequent studies will emphasize dataset expansion, 
real-time validation, and the integration of multi-source monitoring 
data, aiming to further enhance the classification accuracy and 
robustness of the model.

In this study, several limitations of the PSO-BP model warrant 
reflection. First, potential bias may exist in data selection and 
feature design. The evaluation indicators adopted in this work were 
primarily derived from the geological and mining conditions of 
a specific coal mine, which inevitably limits the generalizability 
of the model. Moreover, although ten relatively comprehensive 
indicators were considered, other critical factors influencing rock 
burst hazards may have been overlooked, introducing potential 
feature selection bias. The PSO-BP model involves random 
initialization and iterative updates during the optimization process, 
which may lead to fluctuations in experimental results and 
affect reproducibility. While multiple runs and averaging were 
used to stabilize outcomes, ensuring complete reproducibility 
would require more transparent disclosure of hyperparameters 
and, where possible, open access to the dataset. Compared with 
traditional empirical criteria for rock burst assessment (e.g., 
critical burial depth criterion and energy index method), empirical 
models still offer irreplaceable advantages in terms of simplicity, 
interpretability, and practical applicability. This suggests that a 
balance must be sought between predictive performance and 
operational feasibility in engineering practice. Future research 
could explore hybrid frameworks that integrate empirical criteria 
with machine learning, or adopt interpretable machine learning 
methods to simultaneously improve accuracy and enhance practical 
applicability. 

7 Conclusion

1. Based on a comprehensive review of existing research 
and documented rock burst cases, ten evaluation 
indicators—including mining depth and coal mass 
stress—were selected as key variables for coal–rock burst 
hazard assessment. A corresponding evaluation dataset 
was established, and correlation analysis revealed that 
coal mass stress exhibited a strong relationship with the
hazard level.

2. A BP neural network model was developed for coal–rock 
burst hazard evaluation, with its architecture and training 
parameters appropriately configured. The results demonstrated 
that, although the BP neural network can effectively learn 
the mapping between input features and hazard levels, 
it still suffers from slow convergence and a tendency to 
become trapped in local optima. To enhance performance, the 
particle swarm optimization (PSO) algorithm was employed to 
optimize the initial weights and thresholds of the BP network. 
Experimental results showed that the PSO-BP model achieved 
higher prediction accuracy on both the training and testing 
datasets compared to the standard BP model, confirming
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the effectiveness of PSO in improving BP network predictive 
capability.

3. The PSO-BP model was applied to hazard evaluation for 
selected areas of the 224 working face. By optimizing the 
BP neural network with the particle swarm optimization 
algorithm, the model effectively addressed the nonlinear 
interactions among influencing factors in the rock burst 
process. It demonstrated a certain capability in distinguishing 
between different risk levels, and the field validation results 
were satisfactory.
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