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The accurate estimation of plastic rotational capacity in reinforced concrete (RC)
elements is essential for performance-based seismic design and structural safety
assessments. In this study, an extensive experimental database, comprising 258
rectangular and 151 circular RC column specimens, was compiled based on
open data available and used to train machine learning models for predicting
this parameter. Three algorithms, i.e. Support Vector Regression (SVR), Random
Forest (RF), and Extreme Gradient Boosting (XGBoost), were implemented
and optimized using grid search within a nested cross-validation framework.
The predictive performance was evaluated by averaging the coefficient of
determination (R?) across five outer folds, while final accuracy was assessed
on the test set using both R? the Mean Absolute Error (MAE), the root
mean squared error (RMSE), and the mean absolute percentage error (MAPE).
Model interpretability was improved using SHAP (SHapley Additive exPlanations)
analysis, which quantified the influence of input parameters on predictions.
Finally, a stacking ensemble model was developed to integrate the strengths of
the individual regressors. The proposed methodology demonstrates increased
accuracy and robustness in predicting the plastic rotational capacity of both
circular and rectangular RC columns, providing a valuable tool for seismic
assessment and structural reliability analysis.

reinforced concrete structures, plastic rotation capacity, machine learning, stacked
ensemble, SHAP (SHapley additive exPlanations), ensemble learning

1 Introduction

In recent years, machine learning techniques have been increasingly used in
structural engineering due to their ability to model complex nonlinear relationships
between structural parameters. Compared to analytical methods, which often rely on
simplifications and idealized assumptions, machine learning algorithms can identify
patterns directly from experimental data and provide accurate predictions for various
structural responses. Predicting plastic rotational capacity is particularly demanding,
as it is influenced by multiple factors such as axial load ratio, longitudinal and
transverse reinforcement detailing, and confinement, whose combined effects on
ductility and post-yield behavior are highly nonlinear. This complexity highlights
the need for advanced data-driven approaches such as machine learning algorithms.
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Recent contributions in structural engineering emphasize the
growing role of machine learning (ML) in improving predictive
models and supporting design practices. Solorzano and Plevris
(2022) developed an artificial neural network (ANN)-based
surrogate model to estimate the lateral load capacity of RC
shear walls, demonstrating that the proposed model can achieve
accuracy similar to that of nonlinear finite element pushover
analysis while drastically reducing the computational time and
power. Aladsani et al. (2022) employed the XGBoost algorithm
to predict the drift capacity of RC shear walls and used SHAP
values to assess the contribution of individual input parameters.
Tsiatas et al. (2022) compared several regression algorithms for
predicting deflections in laminated composite beams, using a
large synthetic dataset generated through a refined higher-order
beam theory. The best-performing algorithm (Extra-Trees model)
obtained appropriately minor prediction errors, in line with current
engineering practices. In another study, Damikoukas and Lagaros
(2025) obtained significantly improved prediction accuracy for
the seismic response of buildings by combining earthquake time
histories with ambient vibration data and a dataset comprising
1197 MDOF 2D models within a deep neural network (DNN)-
based framework. Luo and Paal (2019) proposed an optimized
SVM algorithm to estimate the plastic rotational capacity of RC
columns for different failure modes (flexure, flexure-shear, and
shear), with their regression model outperforming both the standard
SVM and empirical formulas used in current design codes. In a
separate study, Nguyen et al. (2020) demonstrated the applicability
of ANN models in structural engineering by developing an empirical
equation to predict the axial capacity of circular CFST columns.
Comparisons with the empirical equations stated in the current
design codes show that the proposed equation can predict the axial
compressive capacity more accurately. Logistic regression has also
been used to develop fragility models for bridges (Kameshwar and
Padgett, 2017), soil-structure systems (Koutsourelakis, 2010), and
RC shear walls (Yazdi et al., 2016), showing improved reliability
in estimating seismic damage probabilities. Other studies have
focused on post-earthquake visual data: German et al. (2012)
proposed an image-based method to detect spalling in RC columns
using entropy classifiers, tested on images from the 2010 Haiti
earthquake, while Mao et al. (2020) presented a time-series anomaly
detection framework for structural health monitoring, supporting
the automation of damage identification.

Despite these promising developments, several limitations remain.
Many datasets obtained from reinforced concrete members testing are
unbalanced, with fewer samples for brittle failure mechanisms. This
reduces model accuracy when predicting less frequent behaviors. In
addition, validation methods are sometimes insufficiently rigorous,
and the lack of interpretability of complex machine learning models
can limit their application in engineering practice.

In performance-based seismic design, plastic rotation capacity
is one of the most important parameters. When structures are
subjected to seismic actions, plastic hinges form in regions of
maximum bending moment, usually at the ends of beams and
columns. The ability of these regions to undergo large rotations
without significant loss of strength determines the overall ductility
and energy dissipation capacity of the structure. Estimating plastic
rotation capacity is essential for both the design of new structures
and the assessment of existing buildings. Traditional methods, such
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as empirical formulas or simplified sectional analysis, are often
inaccurate when applied to elements with non-standard cross-
sectional shapes, reinforcement, or loading conditions. This creates a
need for data-driven models that can incorporate multiple variables
and better reflect real structural behavior.

In an earlier study conducted by the first two authors (Kadhim
and Craifaleanu, 2025), six supervised machine learning algorithms
were applied to predict the plastic rotational capacity of reinforced
concrete vertical structural members. For columns, the datasets
comprised 171 rectangular and 151 circular specimens. Each record
included geometric, reinforcement, and mechanical parameters,
as well as failure modes. The best results were obtained using
Support Vector Regression (SVR) and eXtreme Gradient Boosting
(XGBoost). However, low and even negative values of the coefficient
of determination, R?, were recorded during cross-validation,
especially for elements with shear-dominated failure modes. This
was caused by the small number of brittle failure specimens in
the database. Additionally, the evaluation conducted in the cited
study focused only on maximum R? values, without analyzing
the average predictive performance or result consistency. Also, no
feature importance analysis was performed to assess the influence of
each input parameter.

The observed limitations highlighted the need to improve both
the datasets and the modeling approach. Firstly, the low number of
brittle failures affected the training of models, making it difficult
to obtain reliable predictions for non-ductile behavior. Secondly,
using only the highest R? scores did not reflect the real performance
of the models across different subsets of data. Thirdly, the lack
of interpretability made it challenging to understand how each
parameter influenced the predicted values.

The present study addresses these limitations, aiming at
improving the accuracy and robustness of machine learning models
for predicting the plastic rotational capacity of reinforced concrete
members. Compared to the earlier work, the current research relies
on an expanded experimental database including 258 rectangular
and 151 circular specimens, incorporates SHAP (SHapley Additive
exPlanations) analysis to enhance model interpretability, and
develops a stacking ensemble framework that integrates multiple
regressors. Furthermore, a nested cross-validation strategy was
adopted during hyperparameter tuning to ensure an unbiased
evaluation protocol and avoid data leakage.

In summary, this study develops machine learning models
that are designed to be both accurate and transparent in
predicting the plastic rotational capacity of reinforced concrete
columns. By combining an extended experimental database
with advanced evaluation and interpretability techniques, the
study contributes to more reliable predictive tools for structural
assessment under seismic loading, supporting performance-based
design, vulnerability analysis, and decision-making processes for
strengthening or retrofitting reinforced concrete structures.

2 Materials and methods
2.1 Overall approach

The database for rectangular columns was expanded with 89
new test samples, improving the balance between failure types
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and increasing dataset variability. The newly added data includes
specimens with various reinforcement ratios, axial loads, and cross-
sectional dimensions, to provide broader coverage of practical
design cases.

Particular attention was given to a deeper analysis of the datasets
used. Statistical plots, such as violin plots, were created to visualize
the distribution of each input parameter. Heatmaps were generated
as well to analyze the correlation between each input parameter and
the target output (plastic rotation capacity), separately for circular
and rectangular column sections.

Three machine learning algorithms, SVR, Random Forest
(RF), and XGBoost, were selected for analysis, based on the
performance observed in (Kadhim and Craifaleanu, 2025). These
were reimplemented and optimized using grid search and nested
cross-validation, where the training set was divided into two subsets:
one for hyperparameter optimization and one for model training.
This method was applied to prevent data leakage and to ensure
more accurate evaluation. Unlike in the first study, where only the
highest R* values were considered, the R? score was computed
as the average over five outer folds using nested cross-validation,
where model hyperparameters were tuned within each training
split. Subsequently, the best-performing model was retrained on
the whole training set and evaluated on the independent test set,
where both R? and Mean Absolute Error (MAE) were measured.
This approach allows a more realistic and robust evaluation of model
accuracy and generalization.

To SHapley  Additive
exPlanations (SHAP) value plots were created for each regressor.

improve model interpretability,
These plots indicate the relative importance of each input variable
in the prediction process. Parameters having the highest influence
on the output in most models were identified.

An ensemble model was next developed by combining the three
individual regressors in a stacking regressor. In this model, the
predictions of SVR, RE, and XGBoost were used as inputs for a meta-
regressor that generates the final prediction. The goal was to obtain

better overall results by combining the advantages of each algorithm.

2.2 Database

The present study focuses exclusively on reinforced
concrete columns with rectangular and circular cross sections.
The column database was divided into two main subsets:
the original database, extracted from the PEER Structural
Performance Database (Berry et al., 2004), and an extended dataset,
consisting of 86 additional rectangular column specimens collected
from recent experimental studies.

From the PEER database, 151 circular columns and 172
rectangular columns were used. All specimens were subjected to
quasi-static cyclic lateral loading. The test configuration typically
consisted of cantilever-type elements loaded laterally at the top while
being axially compressed. The boundary conditions were idealized
as fixed at the base. Only specimens with complete input data
were selected.

An additional set of 86 reinforced concrete specimens with
rectangular cross-sections was collected from recent experimental
studies published in the literature (Tran, 2010; Wibowo et al.,
2013; Xiao and Zhang, 2007; Woods et al, 2006; Melo et al.,

Frontiers in Built Environment

03

10.3389/fbuil.2025.1693218

2015; Pham and Li, 2014; Esaki, 1996; Wu et al., 2021;
Ousalem et al., 2025; Li et al., 2014). These specimens were added to
the original set of 172 rectangular columns extracted from the PEER
database, resulting in a total of 258 rectangular columns included in
this study.

The inclusion of these 86 specimens improved the statistical
balance of the rectangular column dataset, especially regarding
brittle and mixed failure types, which were underrepresented in the
original set. The final dataset for rectangular columns includes 258
specimens, categorized according to their observed failure modes:
147 specimens failed predominantly in flexure, 67 exhibited a mixed
flexure-shear failure, and 44 experienced brittle failure primarily
governed by shear.

Similarly, the dataset for circular columns consists of
151 27 with
combined flexure-shear mechanisms, and 30 with shear-induced

specimens, comprising 94 flexural failures,
failure modes.

All specimens were encoded using the same input structure
and parameter definitions as in the PEER database, to ensure full
compatibility and uniform processing during model training and
evaluation.

Scatter plots illustrating the relationship between various input
parameters and plastic rotational capacity for the rectangular
columns and, respectively, circular columns in the analyzed
datasets were given in the supplementary material (Supplementary
Figures S1-S7).

2.3 Input parameters

The input parameters used in this study were selected based
on their influence on the plastic rotational capacity of reinforced
concrete columns, as observed in prior experimental and numerical
research. The following variables were used:

o concrete compressive strength ( f, [MPa]);

+ longitudinal and transverse reinforcement yield stress (f,,
Jyw [MPa]);

« longitudinal reinforcement ratio (p;);

« transverse reinforcement ratio (p,,);

o shear span to effective depth ratio (L/d);

« axial load ratio (P/Ag s

o failure mode (Flexure/Shear/Flexure - Shear).

These variables are consistent with those identified in previous
empirical models. In particular, the models proposed by Pujol et al.
(1999) and Elwood and Moehle (2005) include column aspect ratio,
concrete strength, longitudinal and transverse reinforcement ratios
and yield stresses, and axial load ratio as governing predictors.
Furthermore, Luo and Paal (2019) demonstrated the relevance
of failure mode as a predictor in machine learning-based drift
capacity models.

For each specimen, the corresponding failure mode was assigned
the value 1, while the other two were set to 0. For example, if a
column exhibited a shear failure, the ‘Shear’ variable was set to 1, and
both Flexure’ and Flexure-Shear’ were set to 0. This transformation
allowed the use of categorical information in machine learning
models that require numerical input.
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FIGURE 1
Selection of ultimate displacement for elements with brittle failure.
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The output variable used as a prediction target was the plastic
rotational capacity. In cases where this value was not explicitly
specified in the database, it was approximated as the ratio between
the displacement at failure and the shear span or effective height of
the column, expressed as a percentage. For ductile specimens, the
maximum displacement was used. For brittle or combined failure
modes, the displacement at 80% lateral strength drop was considered
(Figure 1). This definition is consistent with the approach of Elwood
and Moehle (2005), who proposed using the 80% criterion in the
presence of strength degradation, and with Luo and Paal (2019), who
adopted this method while using maximum drift for ductile cases
without strength deterioration.

2.4 Statistical distributions of data

Tables 1, 2 describe the statistical ranges of the parameters for
rectangular and circular columns in the database.

The variability and distribution of each input parameter were
assessed and visualized using violin plots for rectangular and
circular concrete columns (Figure 2).

The violin plots indicate that the distribution of concrete
compressive strength (Figure 2A) exhibits greater variability in
rectangular columns, with values ranging from approximately
13 MPa to over 120 MPa, whereas values for circular columns are
predominantly concentrated within the 20 60 MPa range.

For the reinforcement yield strength (Figures 2B,C), both cross-
sectional shapes display quite similar distributions, although circular
columns present a slightly higher concentration around the median
value, especially for the transverse reinforcement.

The longitudinal reinforcement ratio in rectangular columns
varies between 0.005 and 0.065, while circular specimens
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generally exhibit slightly lower values (Figure 2D). Transverse
reinforcement ratios (Figure 2E) show greater dispersion in
rectangular columns, reflecting the diversity of confinement
configurations across the experimental programs.

The shear span-to-depth ratio (Figure 2F) displays a wider
variation range for circular columns, including values exceeding
6, whereas rectangular columns are mainly clustered between 2
and 6. Axial load ratios (Figure 2G) are more widely dispersed
in rectangular columns, while in circular columns, they are
predominantly below 0.4, indicating more moderate axial loading
conditions. However, it can be noticed that, overall, most specimens
were tested for axial load ratios lower than 0.4.

To evaluate the statistical relationships between the input
variables and the plastic rotation capacity, correlation matrices
the (Figure 3)
and circular (Figure 4) column datasets. The Pearson correlation

were generated separately for rectangular
coeflicient, r, was used to assess the linear dependencies between
parameters, including the three failure mode indicators.

For the rectangular columns considered in the study, the
plastic rotation capacity shows a moderately positive correlation
with the yield strength fy (r = 0.43) and a weaker positive
correlation with the flexural failure mode (r = 0.30) and concrete
compressive strength f, (r = 0.15). A moderate negative correlation
is observed with the shear failure mode (r = —0.46), indicating
reduced rotational capacity when shear mechanisms dominate. The
longitudinal reinforcement ratio p; has a weak positive correlation
(r = 0.13). The shear span-to-depth ratio (L/d) shows a weak
positive relationship (r = 0.27), and the axial load ratio (P/Agfc)
presents a small negative correlation (r = —0.29). The extremely high
coeflicient of variation obtained for the transverse reinforcement
ratio provides an explanation for its weak correlation with plastic
rotational capacity. For the rectangular columns, the yield strength
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TABLE 1 Statistical ranges of the selected parameters for the rectangular columns database.

Property Min. value | Max.value Average Median Standard Deviation Coefficient of Variation
f. [MPa] 13.5 116 41.65 32 253 60.7%
Jyw [MPa] 249 1126 427.6 410 117.7 27.5%
£, [MPa] 295 609 428.59 430 65.1 15.2%
Pl 0.007 0.06 0.02 0.022 0.01 50%
Py 0.002 021 0.01 0.01 0.03 300%
Span-to-Depth ratio 0.5 6.04 3.03 3 1.39 45.8%
Axial load ratio 0 0.90 0.28 021 0.19 67.8%
Drift capacity [%] 0.61 9.48 3.43 3.15 1.93 56.3%

TABLE 2 Statistical ranges of the selected parameters for the circular columns database.

Standard Deviation Coefficient of Variation

Property Min. value | Max.value Average Median

f. [MPa] 18.9 90 37.4 33 14.8 39.5%
j;,w [MPa] 200 1000 420.6 381 139.5 33.1%
fy [MPa] 240 565.4 414.4 436 59.6 14.4%
P 0.005 0.056 0.026 0.024 0.010 38.4%
Py 0.001 0.043 0.010 0.009 0.007 70%
Span-to-Depth ratio 1 10 3.45 3 2.02 58.5%
Axial load ratio 0.00 0.70 0.14 0.1 0.14 100%
Drift capacity [%] 0.41 14.58 4.70 4 2.70 57.4%

and the failure mode exert more influence on ductility than the
reinforcement ratios or the slenderness.

The significant diversity of transverse reinforcement detailing
most probably reduces the ability of this parameter to exhibit a
consistent linear relationship with the target variable. Moreover,
confinement effectiveness, which should positively contribute to
plastic rotation capacity, is highly influenced by other factors as
well, such as hoops spacing and configuration, diameter, number
and placement of longitudinal bars, shear span-to-depth ratio, and
axial load ratio, and its contribution may be very low for certain
configurations. As mentioned earlier, most of the column specimens
were tested at lower axial load ratios, in which the confinement
mechanism is not fully engaged.

For the circular columns considered in the study, the plastic
rotation capacity is strongly and positively correlated with the
shear span-to-depth ratio (r = 0.60) and shows moderate positive
relationships with the transverse reinforcement ratio (r = 0.27),
the longitudinal reinforcement yield strength (r = 0.37), and the
transverse reinforcement yield strength (r = 0.45). The concrete
strength also presents a small positive correlation (r = 0.19). A
moderate negative correlation is observed with the shear failure
mode (r = —0.49), while the axial load ratio shows a weak negative

Frontiers in Built Environment

relationship (r = —0.10). Compared to rectangular columns, circular
specimens show stronger relationships between the plastic rotation
capacity and both L/d and transverse reinforcement properties,
possibly reflecting the more uniform confinement effectiveness in
circular cross-sections.

2.5 Regressors

2.5.1 Support Vector Regression (SVR)

Support Vector Regression (SVR) is a supervised machine
learning algorithm that has been successfully applied in various
engineering fields, including structural performance modeling. In
contrast to classical regression approaches that aim to minimize
the overall prediction error, SVR constructs a regression function,
f(x), capable of predicting a continuous target variable from a set
of input features. The general form of the prediction function
is given by Equation 1:

f(x) = WD) +b 1)

where:
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Correlation Matrix Heatmap for Rectangular Columns
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FIGURE 3

Pearson correlation matrix for rectangular columns.

o f(x) is the predicted output for the input vector x,

e ® (x) is a nonlinear mapping to a high-dimensional
feature space,

« w is the weight vector,

o bis the bias term.

The SVR optimization problem aims to determine the optimal w
and b that minimize the model complexity, expressed by the squared
norm |lw|?, while allowing prediction errors within a tolerance e.
Deviations larger than ¢ are measured using slack variables §; and
Ei*, which quantify the extent to which predictions fall outside
the e-insensitive zone. The primal optimization problem can be
formulated by Equation 2:

n
. o 1 *
min, g, &+ > Wl +CY (&+&) )
i=1
subject to the conditions in Equation 3:
Vi~ (wT,gb(xi)) —b<e+;
(WT,¢(xi))+b—yi <e+i (3)
fi’ 5,* 2 0
where:
Frontiers in Built Environment
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o C is a regularization constant penalizing prediction errors
outside the ¢ tube,

o &, & are slack variables representing the extent of the
violations.

To handle nonlinear dependencies, SVR employs kernel
functions. One of the most popular kernel functions for SVR is
the Radial Basis Function (RBF). The RBF kernel allows SVR to
perform regression in the original space while modeling complex,
nonlinear relationships implicitly (Smola and Scholkopf, 2004).

As the SVR the best the
previous study (Kadhim and Craifaleanu, 2025), the model was
subsequently reimplemented and further optimized through grid

showed performance in

search within a nested cross-validation framework, aiming to
enhance its generalization capability and adapt it to the extended
database employed in the present study.

2.5.2 Random Forest regression (RF)

Random Forest (RF) is an ensemble learning algorithm that
combines the predictions of multiple decision trees to improve
accuracy and reduce overfitting. Introduced by Breiman (2001),
the method operates by constructing a multitude of regression
trees during training and outputting the mean prediction of the
individual trees.
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Correlation Matrix Heatmap for Circular Columns
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Pearson correlation matrix for circular columns.

Each tree is built from a bootstrap sample of the training dataset,
and, at each node split, a random subset of features is considered.

For M decision trees {T,(x), T5(x), ... T);(x)}, the prediction of
the RF is expressed by Equation 4:

(4)

where T, (x) is the output of the m” decision tree.

Random Forests are characterized by high generalization
capacity, the ability to handle multicollinearity, and robustness to
overfitting, particularly when applied to noisy or high-dimensional
datasets (Verikas et al., 2011). In the study performed by Kadhim
and Craifaleanu (2025), RF demonstrated high robustness and low
sensitivity to overfitting, confirming its suitability for problems
involving numerous input parameters and nonlinear interactions.

2.5.3 Extreme Gradient Boosting (XGBoost)
Extreme Gradient Boosting (XGBoost) is an advanced
implementation of gradient boosting machines, largely used recently
due to its performance and computational efficiency. The algorithm
constructs an ensemble of weak learners, typically regression trees,
in a sequential manner, where each new tree corrects the residual
errors made by the previous ensemble (Chen and Guestrin, 2016).
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At each boosting step ¢, a new function f,(x) is added
to minimize the following regularized objective function in
Equation 5:

n

L= Y Iy 0 + £i(x)) + Q(£,)

i=1

(5)

where:

« y,is the target value for the ith training sample,

. )71.(”1) is the prediction for the ith sample obtained after the (-
1)th boosting iteration,

I is a differentiable loss function (e.g., squared error),

Q(f) =yl + %/\Zjl.zlez is a regularization term penalizing
model complexity,

J is the number of leaves in the regression tree f,,

w:

; are the leaf weights.

This regularized formulation prevents overfitting and ensures
model generalization. Additionally, XGBoost uses a second-
order Taylor expansion of the loss function and employs
shrinkage (learning rate) and column subsampling, enhancing both
accuracy and speed.
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The final prediction is given by Equation 6:

Vi = Z ft(xi) (6)

where T is the total number of trees.

XGBoost was reimplemented in this study for its efficiency
and strong predictive capability when modeling nonlinear and
interaction-heavy relationships among structural parameters.

2.5.4 Stacking ensemble regression

Stacking is an ensemble learning technique that combines
multiple base regressors through a meta-model, which learns to
aggregate their outputs in an optimal way. Unlike bagging or
boosting, stacking allows the combination of heterogeneous models
such as Support Vector Regression, Random Forest, and XGBoost,
exploiting their individual strengths while compensating for their
weaknesses (Wolpert, 1992).

A typical stacking ensemble consists of two levels:

« Base learners—-multiple regressors trained on the same dataset
o Meta-learner-a linear or tree-based model trained on the
predictions made by the base learners.

In this work, SVR, RE, and XGBoost served as the base
learners, while RidgeCV (Scikit-learn Developers, 2025a). was
used as the meta-learner. This approach was adopted to exploit
the complementary strengths of the individual algorithms: the
ability of SVR to capture smooth nonlinear trends, the robustness
of RF to noise and feature interactions, and the strong performance
of XGBoost in complex, high-dimensional settings. RidgeCV
was chosen as the meta-regressor for its ability to reduce the
effects of multicollinearity between the predictions of the base
learners through L2 regularization (Scikit-learn Developers, 2025a).
It's built-in cross-validation automatically finds the optimal
regularization parameter, removing the need for a separate
tuning step. This makes the ensemble more stable and improves
generalization.

2.6 Model implementation

2.6.1 Data preprocessing

To avoid data leakage and ensure a fair evaluation protocol,
the datasets of the rectangular and circular RC columns were
split into training and testing sets using an 80/20 ratio before any
scaling or transformation was applied. If scaling were performed
on the entire dataset prior to splitting, the statistical parameters
of the transformation (mean and standard deviation in the
case of standardization) would be computed using both training
and test samples. This would implicitly transfer information
from the test set into the training process, leading to data
leakage. Such leakage results in overly optimistic performance
estimates, as the model would be indirectly influenced by data
that should remain completely unseen until final evaluation (Scikit-
learn Developers, 2025b).

To scale the predictors, excluding the categorical parameters
such as failure modes, the StandardScaler from scikit-learn (Scikit-
learn Developers, 2025c) was fit exclusively on the training subset
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and then applied to both training and test sets independently. While
scaling is not strictly necessary for tree-based models such as RF
and XGBoost, it was applied uniformly to ensure comparability
between models and to facilitate consistent integration within the
stacking ensemble, where base learners operate on inputs of similar
magnitude.

To obtain robust and unbiased estimates of model performance,
a nested cross-validation (CV) strategy was implemented. This
method is especially appropriate when hyperparameter tuning
is involved, as it separates model selection from performance
evaluation. The nested CV procedure consisted of two levels:

o Outer loop: Estimated the generalization performance by
partitioning the training data into five folds using KFold (Scikit-
learn Developers, 2025d). Each fold served once as a validation
fold, while the remaining four folds were used for training and
hyperparameter tuning.

Inner loop: Within each outer fold’s training data, a second 5-
fold CV was conducted to identify the optimal hyperparameters
using GridSearchCV  (Scikit-learn Developers, 2025¢). The
configuration achieving the best mean score across the inner
folds was selected for model training in that outer loop.

After completing the nested CV procedure, GridSearchCV was
rerun on the entire training dataset (80% of the specimens) to
select the globally optimal hyperparameters. Each model was then
retrained on this complete training set and evaluated once on the
independent 20% hold-out test set, which was never used in any
stage of training or tuning. This protocol, combined with the strict
separation of preprocessing steps between training and test data,
ensures that no information leakage or overfitting could occur.

2.6.2 Hyperparameter tuning

The present study performed systematic hyperparameter tuning
to maximize predictive accuracy and improve generalization. For
each model, a predefined search space of relevant hyperparameter
values was established. The tuning was performed using the
GridSearchCV function (Scikit-learn Developers, 2025¢), which
evaluates every possible combination of hyperparameter values by
training the model on the training set and assessing its performance
through K-Fold cross-validation (Scikit-learn Developers, 2025c).
At each fold, the model is fitted on K-1 subsets and validated on
the remaining subset, ensuring that all data points are used for both
training and validation. GridSearchCV computes the coefficient of
determination (R?) for every hyperparameter combination across
all cross-validation splits. The configuration yielding the highest
average R? score is selected as optimal. Once identified, the
model is retrained on the full training set using these optimal
hyperparameters.

The following hyperparameters

were optimized in

each regressor:

« SVR:
coefficient (y), epsilon-insensitive tube (¢), and degree (for

regularization parameter C, kernel type, kernel
polynomial kernels).

o RF: number of trees, maximum tree depth, and minimum
samples required to split a node.
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« XGBoost: number of boosting rounds, maximum tree depth,
learning rate, and row subsampling ratio.

o Stacking Regressor: base-level models set to their tuned
configurations, with RidgeCV as the meta-learner.

2.6.3 Model interpretation

Model interpretability was examined using SHAP (SHapley
Additive exPlanations) (Lundberg, 2018), a method that breaks
down each individual prediction into the contributions made by
each input feature. Based on concepts from game theory, SHAP
values indicate how much each variable increases or decreases
the predicted output. This analysis was applied only to the three
individual regressors (SVR, RE, and XGBoost). The results provided
a clearer view of the internal decision-making process, highlighting
the most influential parameters and allowing comparison of feature
importance across models.

2.7 Performance evaluation metrics

To assess the predictive capability of each regression model,
several performance metrics were employed: the coeflicient of
determination (R?), the adjusted coefficient of determination
(Adjusted R?), the mean absolute error (MAE), the root mean
squared error (RMSE), and the mean absolute percentage
error (MAPE).

The reported nested CV R? values represent the average
performance computed across the five outer folds of the nested
cross-validation, based on the respective test subsets. After
hyperparameter tuning, each optimized model was retrained on
the whole training dataset and evaluated on the independent test
set, where all metrics (R?, Adjusted R*, MAE, RMSE, and MAPE)
were reported to ensure a comprehensive assessment of model
performance.

The coefficient of determination R? (Scikit-learn Developers,
2025f) measures the proportion of variance in the dependent
variable that is predictable from the independent variables. It is
defined by Equation 7:

Zn
i=1

(}’i*yi)z

Z?Zl(yi_)_’)z

R*=1- (7)

where:

e y,is the true value,
o j, is the predicted value,
o yis the mean of the observed values.

The adjusted coefficient of determination (Adjusted R?) corrects
the value of R? by taking into account the number of predictors
relative to the sample size, thus providing a more unbiased estimate
of model performance. It is defined by Equation 8:

1-R)H(n-1)
R? s=1- L (8)
a n-p-1
where:
o R?is the coeflicient of determination,
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« 1 is the number of observations,
o p is the number of predictors.

The mean absolute error (MAE) (Scikit-learn Developers,
2025g) quantifies the average magnitude of the absolute differences
between predicted and observed values, without considering their
direction (Equation 9):

1 n
MAE = n zbji _J7i| ©)
iz

MAE is expressed in the same unit as the target variable and
provides an intuitive understanding of average prediction error.

The root mean squared error (RMSE) (Scikit-learn Developers,
2025h), also expressed in the same unit as the target variable, is
defined as the square root of the mean squared error (Equation 10)
and penalizes larger deviations more strongly than MAE:

(10)

Finally, the mean absolute percentage error (MAPE) (Scikit-
learn Developers, 2025i) expresses the prediction error as a
percentage relative to the observed values (Equation 11):

n
Mapg = 120
n

Vi

(11)

Yi=Ji ‘
i=1
The evaluation was carried out separately for each model and for

both column cross-section types (rectangular and circular) to allow
a consistent and interpretable comparison across all methods.

3 Results and discussion

Following optimization, the best-performing models were
trained on the entire training set and subsequently evaluated on
the independent test set using a comprehensive set of performance
metrics, namely, the coefficient of determination (R?), the adjusted
coefficient of determination (Adjusted R?), the mean absolute error
(MAE), the root mean squared error (RMSE), and the mean absolute
percentage error (MAPE).The optimized hyperparameters for each
model are summarized in Table 3.

The statistical indicators obtained on the test set, together
with the nested CV average R? scores for the three base models,
applied separately to circular and rectangular columns, are presented
in Table 4 and illustrated in Figure 5. All models demonstrated
very good predictive accuracy, with slightly higher performance
on the rectangular column dataset, as indicated by higher R* and
Adjusted R? values and lower MAE, RMSE, and MAPE values on
the corresponding test sets.

« Rectangular columns: XGBoost achieved the highest average R*
(0.71) across the five outer folds during hyperparameter tuning,
while SVR yielded the best test set performance (R* = 0.83, Adj.
R? = 0.79, MAE = 0.64, RMSE = 0.75, MAPE = 20.5%).

o Circular columns: Random Forest attained the highest average
R? during optimization (0.61), closely followed by SVR (0.60).
On the test set, SVR again provided the best performance (R? =
0.79, Adj. R?=0.70, MAE = 0.92, RMSE = 1.11, MAPE = 20.9%).
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TABLE 3 Optimized hyperparameters for each model.

10.3389/fbuil.2025.1693218

Model Best Parameters
SVR C =10, kernel = “rbf”, y = “auto’, & = 0.2, degree = null

RandomForest n_estimators = 200, max_depth = null, min_samples_split = 2

XGBoost n_estimators = 200, max_depth = 3, learning_rate = 0.05, subsample = 0.8

TABLE 4 Performance metrics of the optimized models on the test sets
for rectangular and circular columns.

Metric Rectangular Circular columns
columns

SVR RF ’ XGB ’ SVR RF XGB
CVR? 0.59 0.65 0.71 0.60 0.61 0.56
R? 0.83 0.77 0.80 0.79 0.77 0.74
Adj. R? 0.79 0.72 0.76 0.70 0.66 0.63
MAE 0.64 0.69 0.68 0.92 0.98 1.03
RMSE 0.75 0.80 0.84 L11 1.35 1.37
MAPE 021 021 022 021 031 032

Regarding the most influential input parameters, for rectangular
columns, both SHAP and Pearson correlation analyses consistently
identified yield strength (f,) as a key factor influencing plastic
rotational capacity. Pearson coefficients show a moderate positive
correlation for fy (r = 0.43), while SHAP values rank f}, among the
top predictors across all three models. The shear span-to-depth ratio
(L/d) also appears in both analyses, with Pearson showing a weaker
correlation (r = 0.27) and SHAP revealing a stronger nonlinear
contribution in all models. In contrast, parameters like transverse
reinforcement ratio (p,,) have negligible Pearson correlation but
are given moderate importance by SHAP, indicating nonlinear or
interaction effects not captured by linear correlation.

For circular columns, both methods highlight L/d and transverse
reinforcement yield strength (f,,) as important. Pearson analysis
reports a strong correlation for L/d (r = 0.60) and moderate for f,,, (r
=0.45), which aligns with their high SHAP importance across SVR,
RE, and XGBoost. Axial load ratio shows a weak Pearson correlation
(r = - 0.10) but is given higher SHAP significance in the models,
again suggesting nonlinear influence.

Pearson correlations indicate that the main variables show
weak linear associations with each other (e.g., axial load ratio and
transverse reinforcement r = 0.02 for rectangular and r = 0.37 for
circular columns; axial load ratio and longitudinal reinforcement
r=005and r =
between span-to-depth ratio and transverse reinforcement is almost

-0.22, respectively). Similarly, the correlation

negligible (r = 0.04 for rectangular, r = 0.08 for circular). Despite
these near-zero values, SHAP analysis highlights that the combined
action of these parameters plays a decisive role in governing

Frontiers in Built Environment 11

plastic rotational capacity. For example, transverse reinforcement
improves confinement and ductility, but this beneficial effect is
significantly reduced when the axial load ratio is high, as the
enlarged concrete compression zone limits deformation capacity.
Moreover, the yield stress of transverse reinforcement (f,,,,) directly
influences shear capacity, and low shear resistance often results in
brittle failures. Likewise, small L/d ratios are typically associated
with brittle shear-controlled failures, and SHAP shows that this
effect is exacerbated when transverse reinforcement is insufficient.
Longitudinal reinforcement ratio exhibits a dual influence: high
percentages of tensile reinforcement relative to the compressed bars
increase the size of the concrete compression zone and reduce
ductility, particularly under high axial load, whereas very low
reinforcement levels may result in reduced flexural strength and
premature rupture of the tensile bars before displacement demands
are reached. In addition, longitudinal reinforcement yield stress (f)
governs flexural strength, such that low f, (lower strength steels)
reduces moment capacity. However, in exchange, lower strength
steels typically exhibit increased strain ductility, as compared with
those of higher strength, which contributes to increasing the
plastic deformation capacity. These findings demonstrate that SHAP
uncovers nonlinear interaction effects between parameters that
appear nearly uncorrelated in Pearson analysis, underlining the
importance of multivariate interactions in explaining ductility and
rotational capacity. From a design perspective, these results highlight
the need to ensure a balanced combination of axial load level,
span-to-depth ratio, and reinforcement detailing to avoid brittle
failure and to achieve reliable ductile performance.Overall, the
agreement between SHAP and Pearson is strongest for variables
with direct physical links to rotational capacity (L/d, f,, f,,)
while discrepancies arise mainly for parameters with nonlinear
or interaction-driven effects, where SHAP provides additional
insights beyond the linear relationships measured by Pearson
coefficients.

Figure 6 shows the SHAP feature importance for each
base model.

To further enhance accuracy, the three base models were
integrated into a Stacking Ensemble Regressor, with RidgeCV as
the meta-learner. The ensemble approach provided the best overall
accuracy, achieving superior values of R* and MAE compared to the
individual models:

 Rectangular columns: R? =0.82, Adj. R? = 0.78, MAE = 0.51,
RMSE = 0.82, MAPE = 22.8%

« Circular columns: R* = 0.83, Adj. R? = 0.76, MAE = 0.76, RMSE
=1.19, MAPE = 21.5%
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While RMSE and MAPE values were slightly higher than those
obtained with SVR, the ensemble consistently improved the most
widely used indicators of regression accuracy (R* and MAE). This
confirms that combining models increases predictive stability and
robustness across both ductile and brittle failure modes, as also
illustrated in Figure 7.

4 Conclusion

The present study investigated the capacity of four machine
learning models (Support Vector Regression (SVR), Random Forest
(RF), XGBoost, and a Stacking Ensemble) to predict the plastic
rotational capacity of reinforced concrete columns with rectangular
and circular cross-sections.

Two experimental databases were employed. The dataset for
rectangular columns comprised 258 specimens, of which 147 failed
in flexure, 67 exhibited a combination of flexure-shear failure, and
44 failed in a brittle manner due to shear. The dataset for circular
columns contained 151 specimens, of which 94 experienced flexural
failure, 27 failed due to combined flexure-shear mechanisms, and 30
failed primarily due to shear.

Hyperparameter tuning was carried out using grid search
within a nested cross-validation framework, where the training data
was split into inner folds for hyperparameter tuning and outer
folds for performance evaluation. R* scores averaged over the five
outer folds were used to evaluate model generalization, while the
final models were assessed on an independent test set using a
comprehensive set of indicators, namely, R?, Adjusted R?, MAE,
RMSE, and MAPE.SHapley Additive exPlanations (SHAP) analysis
was used for interpreting the contribution of each input parameter
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to the predictions generated by the three base models (SVR,
RE and XGBoost). The results confirmed the dominant influence
of longitudinal and transverse reinforcement yield strengths and
of span-to-depth ratio on plastic rotational capacity, while also
revealing nonlinear effects for parameters such as transverse
reinforcement ratio and axial load ratio that were not evident from
Pearson correlation analysis.

The integrated use of hyperparameter tuning, nested cross-
validation, and SHAP-based interpretability substantially improved
the accuracy, robustness, and transparency of the models, compared
to previous studies.

Among the individual regressors, SVR achieved the most
accurate predictions on the independent test sets, while XGBoost
provided the most consistent cross-validation performance and
Random Forest showed good robustness to dataset variability.

The Stacking Ensemble Regressor offered the most balanced
performance overall, improving R*> and MAE compared to the
base models. Although not all error measures were superior to
those of SVR, the ensemble provided greater robustness and
reliability, confirming the advantage of model integration.Despite
these results, the main limitation of the study remains the relatively
small number of available experimental tests worldwide, particularly
for brittle shear failures. This underrepresentation led to an
imbalanced dataset that may affect generalization for these specific
failure types.

Opverall, the study highlighted, as well, the importance of data
sufficiency and accuracy, implementation of advanced validation
techniques, systematic hyperparameter tuning, and application of
SHAP-based interpretability in obtaining more accurate and reliable
models for predicting plastic rotational capacity, in support of
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their potential application in seismic assessment and performance-
based design.
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