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Stacked ensemble and 
SHAP-based approach for 
predicting plastic rotational 
capacity in RC columns
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Department of Reinforced Concrete Structures, Technical University of Civil Engineering, Faculty of 
Civil, Industrial and Agricultural Buildings, Bucharest, Romania

The accurate estimation of plastic rotational capacity in reinforced concrete (RC) 
elements is essential for performance-based seismic design and structural safety 
assessments. In this study, an extensive experimental database, comprising 258 
rectangular and 151 circular RC column specimens, was compiled based on 
open data available and used to train machine learning models for predicting 
this parameter. Three algorithms, i.e. Support Vector Regression (SVR), Random 
Forest (RF), and Extreme Gradient Boosting (XGBoost), were implemented 
and optimized using grid search within a nested cross-validation framework. 
The predictive performance was evaluated by averaging the coefficient of 
determination (R2) across five outer folds, while final accuracy was assessed 
on the test set using both R2, the Mean Absolute Error (MAE), the root 
mean squared error (RMSE), and the mean absolute percentage error (MAPE). 
Model interpretability was improved using SHAP (SHapley Additive exPlanations) 
analysis, which quantified the influence of input parameters on predictions. 
Finally, a stacking ensemble model was developed to integrate the strengths of 
the individual regressors. The proposed methodology demonstrates increased 
accuracy and robustness in predicting the plastic rotational capacity of both 
circular and rectangular RC columns, providing a valuable tool for seismic 
assessment and structural reliability analysis.

KEYWORDS

reinforced concrete structures, plastic rotation capacity, machine learning, stacked 
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 1 Introduction

In recent years, machine learning techniques have been increasingly used in 
structural engineering due to their ability to model complex nonlinear relationships 
between structural parameters. Compared to analytical methods, which often rely on 
simplifications and idealized assumptions, machine learning algorithms can identify 
patterns directly from experimental data and provide accurate predictions for various 
structural responses. Predicting plastic rotational capacity is particularly demanding, 
as it is influenced by multiple factors such as axial load ratio, longitudinal and 
transverse reinforcement detailing, and confinement, whose combined effects on 
ductility and post-yield behavior are highly nonlinear. This complexity highlights 
the need for advanced data-driven approaches such as machine learning algorithms.
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Recent contributions in structural engineering emphasize the 
growing role of machine learning (ML) in improving predictive 
models and supporting design practices. Solorzano and Plevris 
(2022) developed an artificial neural network (ANN)-based 
surrogate model to estimate the lateral load capacity of RC 
shear walls, demonstrating that the proposed model can achieve 
accuracy similar to that of nonlinear finite element pushover 
analysis while drastically reducing the computational time and 
power. Aladsani et al. (2022) employed the XGBoost algorithm 
to predict the drift capacity of RC shear walls and used SHAP 
values to assess the contribution of individual input parameters. 
Tsiatas et al. (2022) compared several regression algorithms for 
predicting deflections in laminated composite beams, using a 
large synthetic dataset generated through a refined higher-order 
beam theory. The best-performing algorithm (Extra-Trees model) 
obtained appropriately minor prediction errors, in line with current 
engineering practices. In another study, Damikoukas and Lagaros 
(2025) obtained significantly improved prediction accuracy for 
the seismic response of buildings by combining earthquake time 
histories with ambient vibration data and a dataset comprising 
1197 MDOF 2D models within a deep neural network (DNN)-
based framework. Luo and Paal (2019) proposed an optimized 
SVM algorithm to estimate the plastic rotational capacity of RC 
columns for different failure modes (flexure, flexure-shear, and 
shear), with their regression model outperforming both the standard 
SVM and empirical formulas used in current design codes. In a 
separate study, Nguyen et al. (2020) demonstrated the applicability 
of ANN models in structural engineering by developing an empirical 
equation to predict the axial capacity of circular CFST columns. 
Comparisons with the empirical equations stated in the current 
design codes show that the proposed equation can predict the axial 
compressive capacity more accurately. Logistic regression has also 
been used to develop fragility models for bridges (Kameshwar and 
Padgett, 2017), soil–structure systems (Koutsourelakis, 2010), and 
RC shear walls (Yazdi et al., 2016), showing improved reliability 
in estimating seismic damage probabilities. Other studies have 
focused on post-earthquake visual data: German et al. (2012) 
proposed an image-based method to detect spalling in RC columns 
using entropy classifiers, tested on images from the 2010 Haiti 
earthquake, while Mao et al. (2020) presented a time-series anomaly 
detection framework for structural health monitoring, supporting 
the automation of damage identification.

Despite these promising developments, several limitations remain. 
Many datasets obtained from reinforced concrete members testing are 
unbalanced, with fewer samples for brittle failure mechanisms. This 
reduces model accuracy when predicting less frequent behaviors. In 
addition, validation methods are sometimes insufficiently rigorous, 
and the lack of interpretability of complex machine learning models 
can limit their application in engineering practice. 

In performance-based seismic design, plastic rotation capacity 
is one of the most important parameters. When structures are 
subjected to seismic actions, plastic hinges form in regions of 
maximum bending moment, usually at the ends of beams and 
columns. The ability of these regions to undergo large rotations 
without significant loss of strength determines the overall ductility 
and energy dissipation capacity of the structure. Estimating plastic 
rotation capacity is essential for both the design of new structures 
and the assessment of existing buildings. Traditional methods, such 

as empirical formulas or simplified sectional analysis, are often 
inaccurate when applied to elements with non-standard cross-
sectional shapes, reinforcement, or loading conditions. This creates a 
need for data-driven models that can incorporate multiple variables 
and better reflect real structural behavior.

In an earlier study conducted by the first two authors (Kadhim 
and Craifaleanu, 2025), six supervised machine learning algorithms 
were applied to predict the plastic rotational capacity of reinforced 
concrete vertical structural members. For columns, the datasets 
comprised 171 rectangular and 151 circular specimens. Each record 
included geometric, reinforcement, and mechanical parameters, 
as well as failure modes. The best results were obtained using 
Support Vector Regression (SVR) and eXtreme Gradient Boosting 
(XGBoost). However, low and even negative values of the coefficient 
of determination, R2, were recorded during cross-validation, 
especially for elements with shear-dominated failure modes. This 
was caused by the small number of brittle failure specimens in 
the database. Additionally, the evaluation conducted in the cited 
study focused only on maximum R2 values, without analyzing 
the average predictive performance or result consistency. Also, no 
feature importance analysis was performed to assess the influence of 
each input parameter.

The observed limitations highlighted the need to improve both 
the datasets and the modeling approach. Firstly, the low number of 
brittle failures affected the training of models, making it difficult 
to obtain reliable predictions for non-ductile behavior. Secondly, 
using only the highest R2 scores did not reflect the real performance 
of the models across different subsets of data. Thirdly, the lack 
of interpretability made it challenging to understand how each 
parameter influenced the predicted values.

The present study addresses these limitations, aiming at 
improving the accuracy and robustness of machine learning models 
for predicting the plastic rotational capacity of reinforced concrete 
members. Compared to the earlier work, the current research relies 
on an expanded experimental database including 258 rectangular 
and 151 circular specimens, incorporates SHAP (SHapley Additive 
exPlanations) analysis to enhance model interpretability, and 
develops a stacking ensemble framework that integrates multiple 
regressors. Furthermore, a nested cross-validation strategy was 
adopted during hyperparameter tuning to ensure an unbiased 
evaluation protocol and avoid data leakage.

In summary, this study develops machine learning models 
that are designed to be both accurate and transparent in 
predicting the plastic rotational capacity of reinforced concrete 
columns. By combining an extended experimental database 
with advanced evaluation and interpretability techniques, the 
study contributes to more reliable predictive tools for structural 
assessment under seismic loading, supporting performance-based 
design, vulnerability analysis, and decision-making processes for 
strengthening or retrofitting reinforced concrete structures. 

2 Materials and methods

2.1 Overall approach

The database for rectangular columns was expanded with 89 
new test samples, improving the balance between failure types 
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and increasing dataset variability. The newly added data includes 
specimens with various reinforcement ratios, axial loads, and cross-
sectional dimensions, to provide broader coverage of practical 
design cases.

Particular attention was given to a deeper analysis of the datasets 
used. Statistical plots, such as violin plots, were created to visualize 
the distribution of each input parameter. Heatmaps were generated 
as well to analyze the correlation between each input parameter and 
the target output (plastic rotation capacity), separately for circular 
and rectangular column sections.

Three machine learning algorithms, SVR, Random Forest 
(RF), and XGBoost, were selected for analysis, based on the 
performance observed in (Kadhim and Craifaleanu, 2025). These 
were reimplemented and optimized using grid search and nested 
cross-validation, where the training set was divided into two subsets: 
one for hyperparameter optimization and one for model training. 
This method was applied to prevent data leakage and to ensure 
more accurate evaluation. Unlike in the first study, where only the 
highest R2 values were considered, the R2 score was computed 
as the average over five outer folds using nested cross-validation, 
where model hyperparameters were tuned within each training 
split. Subsequently, the best-performing model was retrained on 
the whole training set and evaluated on the independent test set, 
where both R2 and Mean Absolute Error (MAE) were measured. 
This approach allows a more realistic and robust evaluation of model 
accuracy and generalization.

To improve model interpretability, SHapley Additive 
exPlanations (SHAP) value plots were created for each regressor. 
These plots indicate the relative importance of each input variable 
in the prediction process. Parameters having the highest influence 
on the output in most models were identified.

An ensemble model was next developed by combining the three 
individual regressors in a stacking regressor. In this model, the 
predictions of SVR, RF, and XGBoost were used as inputs for a meta-
regressor that generates the final prediction. The goal was to obtain 
better overall results by combining the advantages of each algorithm. 

2.2 Database

The present study focuses exclusively on reinforced 
concrete columns with rectangular and circular cross sections. 
The column database was divided into two main subsets: 
the original database, extracted from the PEER Structural 
Performance Database (Berry et al., 2004), and an extended dataset, 
consisting of 86 additional rectangular column specimens collected 
from recent experimental studies.

From the PEER database, 151 circular columns and 172 
rectangular columns were used. All specimens were subjected to 
quasi-static cyclic lateral loading. The test configuration typically 
consisted of cantilever-type elements loaded laterally at the top while 
being axially compressed. The boundary conditions were idealized 
as fixed at the base. Only specimens with complete input data 
were selected.

An additional set of 86 reinforced concrete specimens with 
rectangular cross-sections was collected from recent experimental 
studies published in the literature (Tran, 2010; Wibowo et al., 
2013; Xiao and Zhang, 2007; Woods et al., 2006; Melo et al., 

2015; Pham and Li, 2014; Esaki, 1996; Wu et al., 2021; 
Ousalem et al., 2025; Li et al., 2014). These specimens were added to 
the original set of 172 rectangular columns extracted from the PEER 
database, resulting in a total of 258 rectangular columns included in 
this study.

The inclusion of these 86 specimens improved the statistical 
balance of the rectangular column dataset, especially regarding 
brittle and mixed failure types, which were underrepresented in the 
original set. The final dataset for rectangular columns includes 258 
specimens, categorized according to their observed failure modes: 
147 specimens failed predominantly in flexure, 67 exhibited a mixed 
flexure–shear failure, and 44 experienced brittle failure primarily 
governed by shear.

Similarly, the dataset for circular columns consists of 
151 specimens, comprising 94 flexural failures, 27 with 
combined flexure–shear mechanisms, and 30 with shear-induced 
failure modes.

All specimens were encoded using the same input structure 
and parameter definitions as in the PEER database, to ensure full 
compatibility and uniform processing during model training and 
evaluation.

Scatter plots illustrating the relationship between various input 
parameters and plastic rotational capacity for the rectangular 
columns and, respectively, circular columns in the analyzed 
datasets were given in the supplementary material (Supplementary 
Figures S1-S7). 

2.3 Input parameters

The input parameters used in this study were selected based 
on their influence on the plastic rotational capacity of reinforced 
concrete columns, as observed in prior experimental and numerical 
research. The following variables were used:

• concrete compressive strength ( fc [MPa]);
• longitudinal and transverse reinforcement yield stress ( fy, 

fyw [MPa]);
• longitudinal reinforcement ratio (ρl);
• transverse reinforcement ratio (ρw);
• shear span to effective depth ratio (L/d);
• axial load ratio (P/Ag fc);
• failure mode (Flexure/Shear/Flexure - Shear).

These variables are consistent with those identified in previous 
empirical models. In particular, the models proposed by Pujol et al. 
(1999) and Elwood and Moehle (2005) include column aspect ratio, 
concrete strength, longitudinal and transverse reinforcement ratios 
and yield stresses, and axial load ratio as governing predictors. 
Furthermore, Luo and Paal (2019) demonstrated the relevance 
of failure mode as a predictor in machine learning-based drift 
capacity models.

For each specimen, the corresponding failure mode was assigned 
the value 1, while the other two were set to 0. For example, if a 
column exhibited a shear failure, the ‘Shear’ variable was set to 1, and 
both ‘Flexure’ and ‘Flexure–Shear’ were set to 0. This transformation 
allowed the use of categorical information in machine learning 
models that require numerical input.
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FIGURE 1
Selection of ultimate displacement for elements with brittle failure.

The output variable used as a prediction target was the plastic 
rotational capacity. In cases where this value was not explicitly 
specified in the database, it was approximated as the ratio between 
the displacement at failure and the shear span or effective height of 
the column, expressed as a percentage. For ductile specimens, the 
maximum displacement was used. For brittle or combined failure 
modes, the displacement at 80% lateral strength drop was considered 
(Figure 1). This definition is consistent with the approach of Elwood 
and Moehle (2005), who proposed using the 80% criterion in the 
presence of strength degradation, and with Luo and Paal (2019), who 
adopted this method while using maximum drift for ductile cases 
without strength deterioration.

2.4 Statistical distributions of data

Tables 1, 2 describe the statistical ranges of the parameters for 
rectangular and circular columns in the database.

The variability and distribution of each input parameter were 
assessed and visualized using violin plots for rectangular and 
circular concrete columns (Figure 2).

The violin plots indicate that the distribution of concrete 
compressive strength (Figure 2A) exhibits greater variability in 
rectangular columns, with values ranging from approximately 
13 MPa to over 120 MPa, whereas values for circular columns are 
predominantly concentrated within the 20 60 MPa range.

For the reinforcement yield strength (Figures 2B,C), both cross-
sectional shapes display quite similar distributions, although circular 
columns present a slightly higher concentration around the median 
value, especially for the transverse reinforcement.

The longitudinal reinforcement ratio in rectangular columns 
varies between 0.005 and 0.065, while circular specimens 

generally exhibit slightly lower values (Figure 2D). Transverse 
reinforcement ratios (Figure 2E) show greater dispersion in 
rectangular columns, reflecting the diversity of confinement 
configurations across the experimental programs.

The shear span-to-depth ratio (Figure 2F) displays a wider 
variation range for circular columns, including values exceeding 
6, whereas rectangular columns are mainly clustered between 2 
and 6. Axial load ratios (Figure 2G) are more widely dispersed 
in rectangular columns, while in circular columns, they are 
predominantly below 0.4, indicating more moderate axial loading 
conditions. However, it can be noticed that, overall, most specimens 
were tested for axial load ratios lower than 0.4.

To evaluate the statistical relationships between the input 
variables and the plastic rotation capacity, correlation matrices 
were generated separately for the rectangular (Figure 3) 
and circular (Figure 4) column datasets. The Pearson correlation 
coefficient, r, was used to assess the linear dependencies between 
parameters, including the three failure mode indicators.

For the rectangular columns considered in the study, the 
plastic rotation capacity shows a moderately positive correlation 
with the yield strength fy (r = 0.43) and a weaker positive 
correlation with the flexural failure mode (r = 0.30) and concrete 
compressive strength fc (r = 0.15). A moderate negative correlation 
is observed with the shear failure mode (r = −0.46), indicating 
reduced rotational capacity when shear mechanisms dominate. The 
longitudinal reinforcement ratio ρl has a weak positive correlation 
(r = 0.13). The shear span-to-depth ratio (L/d) shows a weak 
positive relationship (r = 0.27), and the axial load ratio (P/Ag fc) 
presents a small negative correlation (r = −0.29). The extremely high 
coefficient of variation obtained for the transverse reinforcement 
ratio provides an explanation for its weak correlation with plastic 
rotational capacity. For the rectangular columns, the yield strength 
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TABLE 1  Statistical ranges of the selected parameters for the rectangular columns database.

Property Min. value Max. value Average Median Standard Deviation Coefficient of Variation

fc [MPa] 13.5 116 41.65 32 25.3 60.7%

fyw [MPa] 249 1126 427.6 410 117.7 27.5%

fy [MPa] 295 609 428.59 430 65.1 15.2%

 ρl 0.007 0.06 0.02 0.022 0.01 50%

 ρw 0.002 0.21 0.01 0.01 0.03 300%

Span-to-Depth ratio 0.5 6.04 3.03 3 1.39 45.8%

Axial load ratio 0 0.90 0.28 0.21 0.19 67.8%

Drift capacity [%] 0.61 9.48 3.43 3.15 1.93 56.3%

TABLE 2  Statistical ranges of the selected parameters for the circular columns database.

Property Min. value Max. value Average Median Standard Deviation Coefficient of Variation

fc [MPa] 18.9 90 37.4 33 14.8 39.5%

fyw [MPa] 200 1000 420.6 381 139.5 33.1%

fy [MPa] 240 565.4 414.4 436 59.6 14.4%

 ρl 0.005 0.056 0.026 0.024 0.010 38.4%

 ρw 0.001 0.043 0.010 0.009 0.007 70%

Span-to-Depth ratio 1 10 3.45 3 2.02 58.5%

Axial load ratio 0.00 0.70 0.14 0.1 0.14 100%

Drift capacity [%] 0.41 14.58 4.70 4 2.70 57.4%

and the failure mode exert more influence on ductility than the 
reinforcement ratios or the slenderness.

The significant diversity of transverse reinforcement detailing 
most probably reduces the ability of this parameter to exhibit a 
consistent linear relationship with the target variable. Moreover, 
confinement effectiveness, which should positively contribute to 
plastic rotation capacity, is highly influenced by other factors as 
well, such as hoops spacing and configuration, diameter, number 
and placement of longitudinal bars, shear span-to-depth ratio, and 
axial load ratio, and its contribution may be very low for certain 
configurations. As mentioned earlier, most of the column specimens 
were tested at lower axial load ratios, in which the confinement 
mechanism is not fully engaged.

For the circular columns considered in the study, the plastic 
rotation capacity is strongly and positively correlated with the 
shear span-to-depth ratio (r = 0.60) and shows moderate positive 
relationships with the transverse reinforcement ratio (r = 0.27), 
the longitudinal reinforcement yield strength (r = 0.37), and the 
transverse reinforcement yield strength (r = 0.45). The concrete 
strength also presents a small positive correlation (r = 0.19). A 
moderate negative correlation is observed with the shear failure 
mode (r = −0.49), while the axial load ratio shows a weak negative 

relationship (r = −0.10). Compared to rectangular columns, circular 
specimens show stronger relationships between the plastic rotation 
capacity and both L/d and transverse reinforcement properties, 
possibly reflecting the more uniform confinement effectiveness in 
circular cross-sections. 

2.5 Regressors

2.5.1 Support Vector Regression (SVR)
Support Vector Regression (SVR) is a supervised machine 

learning algorithm that has been successfully applied in various 
engineering fields, including structural performance modeling. In 
contrast to classical regression approaches that aim to minimize 
the overall prediction error, SVR constructs a regression function, 
f(x), capable of predicting a continuous target variable from a set 
of input features. The general form of the prediction function 
is given by Equation 1:

f(x) = wTΦ(x) + b (1)

where:
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FIGURE 2
Violin plots of parameter distributions for rectangular and circular columns: (A) concrete compressive strength, fc. (B) longitudinal reinforcement yield 
stress fy. (C) transverse reinforcement yield stress, fyw. (D) longitudinal reinforcement ratio, ρl. (E) transverse reinforcement ratio, ρw. (F) Shear span to 
effective depth ratio. (G) Axial load ratio.
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FIGURE 3
Pearson correlation matrix for rectangular columns.

• f (x) is the predicted output for the input vector x,
• Φ (x) is a nonlinear mapping to a high-dimensional 

feature space,
• w is the weight vector,
• b is the bias term.

The SVR optimization problem aims to determine the optimal w
and b that minimize the model complexity, expressed by the squared 
norm ∥w∥2, while allowing prediction errors within a tolerance ε. 
Deviations larger than ε are measured using slack variables ξi and 
ξi
∗

, which quantify the extent to which predictions fall outside 
the ε-insensitive zone. The primal optimization problem can be 
formulated by Equation 2:

minw,b, ξi + ξ∗i
1
2
‖w‖2 +C

n

∑
i=1
( ξi + ξ∗i ) (2)

subject to the conditions in Equation 3:

{{{{
{{{{
{

yi − (w
T,ϕ(xi)) − b ≤ ε+ ξi

(wT,ϕ(xi)) + b− yi ≤ ε+ ξ∗i
ξi, ξ∗i ≥ 0

(3)

where:

• C is a regularization constant penalizing prediction errors 
outside the ε tube,

• ξi, ξ∗i  are slack variables representing the extent of the 
violations.

To handle nonlinear dependencies, SVR employs kernel 
functions. One of the most popular kernel functions for SVR is 
the Radial Basis Function (RBF). The RBF kernel allows SVR to 
perform regression in the original space while modeling complex, 
nonlinear relationships implicitly (Smola and Schölkopf, 2004).

As the SVR showed the best performance in the 
previous study (Kadhim and Craifaleanu, 2025), the model was 
subsequently reimplemented and further optimized through grid 
search within a nested cross-validation framework, aiming to 
enhance its generalization capability and adapt it to the extended 
database employed in the present study. 

2.5.2 Random Forest regression (RF)
Random Forest (RF) is an ensemble learning algorithm that 

combines the predictions of multiple decision trees to improve 
accuracy and reduce overfitting. Introduced by Breiman (2001), 
the method operates by constructing a multitude of regression 
trees during training and outputting the mean prediction of the 
individual trees.
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FIGURE 4
Pearson correlation matrix for circular columns.

Each tree is built from a bootstrap sample of the training dataset, 
and, at each node split, a random subset of features is considered.

For M decision trees {T1(x), T2(x), …TM(x)}, the prediction of 
the RF is expressed by Equation 4:

̂y = 1
M

M

∑
m=1

Tm(x ) (4)

where Tm (x) is the output of the mth decision tree.
Random Forests are characterized by high generalization 

capacity, the ability to handle multicollinearity, and robustness to 
overfitting, particularly when applied to noisy or high-dimensional 
datasets (Verikas et al., 2011). In the study performed by Kadhim 
and Craifaleanu (2025), RF demonstrated high robustness and low 
sensitivity to overfitting, confirming its suitability for problems 
involving numerous input parameters and nonlinear interactions. 

2.5.3 Extreme Gradient Boosting (XGBoost)
Extreme Gradient Boosting (XGBoost) is an advanced 

implementation of gradient boosting machines, largely used recently 
due to its performance and computational efficiency. The algorithm 
constructs an ensemble of weak learners, typically regression trees, 
in a sequential manner, where each new tree corrects the residual 
errors made by the previous ensemble (Chen and Guestrin, 2016).

At each boosting step t, a new function ft(x) is added 
to minimize the following regularized objective function in
Equation 5:

Lt =
n

∑
i=1

l( yi, ̂yi
(t−1) + ft(xi)) +Ω( ft) (5)

where:

• yi is the target value for the ith training sample,
• ̂yi
(t−1) is the prediction for the ith sample obtained after the (t-

1)th boosting iteration,
• l is a differentiable loss function (e.g., squared error),
• Ω( ft) = γJ+ 1

2
λ∑J

j=1ω2
j  is a regularization term penalizing 

model complexity,
• J is the number of leaves in the regression tree ft,
• ωj are the leaf weights.

This regularized formulation prevents overfitting and ensures 
model generalization. Additionally, XGBoost uses a second-
order Taylor expansion of the loss function and employs 
shrinkage (learning rate) and column subsampling, enhancing both 
accuracy and speed.
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The final prediction is given by Equation 6:

̂yi =
T

∑
t=1

ft(xi) (6)

where T is the total number of trees.
XGBoost was reimplemented in this study for its efficiency 

and strong predictive capability when modeling nonlinear and 
interaction-heavy relationships among structural parameters. 

2.5.4 Stacking ensemble regression
Stacking is an ensemble learning technique that combines 

multiple base regressors through a meta-model, which learns to 
aggregate their outputs in an optimal way. Unlike bagging or 
boosting, stacking allows the combination of heterogeneous models 
such as Support Vector Regression, Random Forest, and XGBoost, 
exploiting their individual strengths while compensating for their 
weaknesses (Wolpert, 1992).

A typical stacking ensemble consists of two levels:

• Base learners–multiple regressors trained on the same dataset
• Meta-learner–a linear or tree-based model trained on the 

predictions made by the base learners.

In this work, SVR, RF, and XGBoost served as the base 
learners, while RidgeCV (Scikit-learn Developers, 2025a). was 
used as the meta-learner. This approach was adopted to exploit 
the complementary strengths of the individual algorithms: the 
ability of SVR to capture smooth nonlinear trends, the robustness 
of RF to noise and feature interactions, and the strong performance 
of XGBoost in complex, high-dimensional settings. RidgeCV 
was chosen as the meta-regressor for its ability to reduce the 
effects of multicollinearity between the predictions of the base 
learners through L2 regularization (Scikit-learn Developers, 2025a). 
It's built-in cross-validation automatically finds the optimal 
regularization parameter, removing the need for a separate 
tuning step. This makes the ensemble more stable and improves 
generalization. 

2.6 Model implementation

2.6.1 Data preprocessing
To avoid data leakage and ensure a fair evaluation protocol, 

the datasets of the rectangular and circular RC columns were 
split into training and testing sets using an 80/20 ratio before any 
scaling or transformation was applied. If scaling were performed 
on the entire dataset prior to splitting, the statistical parameters 
of the transformation (mean and standard deviation in the 
case of standardization) would be computed using both training 
and test samples. This would implicitly transfer information 
from the test set into the training process, leading to data 
leakage. Such leakage results in overly optimistic performance 
estimates, as the model would be indirectly influenced by data 
that should remain completely unseen until final evaluation (Scikit-
learn Developers, 2025b).

To scale the predictors, excluding the categorical parameters 
such as failure modes, the StandardScaler from scikit-learn (Scikit-
learn Developers, 2025c) was fit exclusively on the training subset 

and then applied to both training and test sets independently. While 
scaling is not strictly necessary for tree-based models such as RF 
and XGBoost, it was applied uniformly to ensure comparability 
between models and to facilitate consistent integration within the 
stacking ensemble, where base learners operate on inputs of similar 
magnitude.

To obtain robust and unbiased estimates of model performance, 
a nested cross-validation (CV) strategy was implemented. This 
method is especially appropriate when hyperparameter tuning 
is involved, as it separates model selection from performance 
evaluation. The nested CV procedure consisted of two levels:

• Outer loop: Estimated the generalization performance by 
partitioning the training data into five folds using KFold (Scikit-
learn Developers, 2025d). Each fold served once as a validation 
fold, while the remaining four folds were used for training and 
hyperparameter tuning.

• Inner loop: Within each outer fold’s training data, a second 5-
fold CV was conducted to identify the optimal hyperparameters 
using GridSearchCV (Scikit-learn Developers, 2025e). The 
configuration achieving the best mean score across the inner 
folds was selected for model training in that outer loop.

After completing the nested CV procedure, GridSearchCV was 
rerun on the entire training dataset (80% of the specimens) to 
select the globally optimal hyperparameters. Each model was then 
retrained on this complete training set and evaluated once on the 
independent 20% hold-out test set, which was never used in any 
stage of training or tuning. This protocol, combined with the strict 
separation of preprocessing steps between training and test data, 
ensures that no information leakage or overfitting could occur. 

2.6.2 Hyperparameter tuning
The present study performed systematic hyperparameter tuning 

to maximize predictive accuracy and improve generalization. For 
each model, a predefined search space of relevant hyperparameter 
values was established. The tuning was performed using the 
GridSearchCV function (Scikit-learn Developers, 2025e), which 
evaluates every possible combination of hyperparameter values by 
training the model on the training set and assessing its performance 
through K-Fold cross-validation (Scikit-learn Developers, 2025c). 
At each fold, the model is fitted on K−1 subsets and validated on 
the remaining subset, ensuring that all data points are used for both 
training and validation. GridSearchCV computes the coefficient of 
determination (R2) for every hyperparameter combination across 
all cross-validation splits. The configuration yielding the highest 
average R2 score is selected as optimal. Once identified, the 
model is retrained on the full training set using these optimal 
hyperparameters.

The following hyperparameters were optimized in 
each regressor:

• SVR: regularization parameter C, kernel type, kernel 
coefficient (γ), epsilon-insensitive tube (ε), and degree (for 
polynomial kernels).

• RF: number of trees, maximum tree depth, and minimum 
samples required to split a node.
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• XGBoost: number of boosting rounds, maximum tree depth, 
learning rate, and row subsampling ratio.

• Stacking Regressor: base-level models set to their tuned 
configurations, with RidgeCV as the meta-learner.

2.6.3 Model interpretation
Model interpretability was examined using SHAP (SHapley 

Additive exPlanations) (Lundberg, 2018), a method that breaks 
down each individual prediction into the contributions made by 
each input feature. Based on concepts from game theory, SHAP 
values indicate how much each variable increases or decreases 
the predicted output. This analysis was applied only to the three 
individual regressors (SVR, RF, and XGBoost). The results provided 
a clearer view of the internal decision-making process, highlighting 
the most influential parameters and allowing comparison of feature 
importance across models. 

2.7 Performance evaluation metrics

To assess the predictive capability of each regression model, 
several performance metrics were employed: the coefficient of 
determination (R2), the adjusted coefficient of determination 
(Adjusted R2), the mean absolute error (MAE), the root mean 
squared error (RMSE), and the mean absolute percentage 
error (MAPE).

The reported nested CV R2 values represent the average 
performance computed across the five outer folds of the nested 
cross-validation, based on the respective test subsets. After 
hyperparameter tuning, each optimized model was retrained on 
the whole training dataset and evaluated on the independent test 
set, where all metrics (R2, Adjusted R2, MAE, RMSE, and MAPE) 
were reported to ensure a comprehensive assessment of model 
performance.

The coefficient of determination R2 (Scikit-learn Developers, 
2025f) measures the proportion of variance in the dependent 
variable that is predictable from the independent variables. It is 
defined by Equation 7:

R2 = 1−
∑n

i=1
( yi − ̂yi)

2

∑n
i=1
( yi − y)2

(7)

where:

• yi is the true value,
• ̂yi is the predicted value,
• y is the mean of the observed values.

The adjusted coefficient of determination (Adjusted R2) corrects 
the value of R2 by taking into account the number of predictors 
relative to the sample size, thus providing a more unbiased estimate 
of model performance. It is defined by Equation 8:

R2
adj = 1−

(1−R2)(n− 1)
n− p− 1

(8)

where:

• R2 is the coefficient of determination,

• n is the number of observations,
• p is the number of predictors.

The mean absolute error (MAE) (Scikit-learn Developers, 
2025g) quantifies the average magnitude of the absolute differences 
between predicted and observed values, without considering their 
direction (Equation 9):

MAE = 1
n

n

∑
i=1
|yi − ̂yi| (9)

MAE is expressed in the same unit as the target variable and 
provides an intuitive understanding of average prediction error.

The root mean squared error (RMSE) (Scikit-learn Developers, 
2025h), also expressed in the same unit as the target variable, is 
defined as the square root of the mean squared error (Equation 10) 
and penalizes larger deviations more strongly than MAE:

RMSE = √ 1
n

n

∑
i=1
(yi − ̂yi)

2 (10)

Finally, the mean absolute percentage error (MAPE) (Scikit-
learn Developers, 2025i) expresses the prediction error as a 
percentage relative to the observed values (Equation 11):

MAPE = 100
n

n

∑
i=1
|

yi − ̂yi

yi
| (11)

The evaluation was carried out separately for each model and for 
both column cross-section types (rectangular and circular) to allow 
a consistent and interpretable comparison across all methods. 

3 Results and discussion

Following optimization, the best-performing models were 
trained on the entire training set and subsequently evaluated on 
the independent test set using a comprehensive set of performance 
metrics, namely, the coefficient of determination (R2), the adjusted 
coefficient of determination (Adjusted R2), the mean absolute error 
(MAE), the root mean squared error (RMSE), and the mean absolute 
percentage error (MAPE).The optimized hyperparameters for each 
model are summarized in Table 3.

The statistical indicators obtained on the test set, together 
with the nested CV average R2 scores for the three base models, 
applied separately to circular and rectangular columns, are presented 
in Table 4 and illustrated in Figure 5. All models demonstrated 
very good predictive accuracy, with slightly higher performance 
on the rectangular column dataset, as indicated by higher R2 and 
Adjusted R2 values and lower MAE, RMSE, and MAPE values on 
the corresponding test sets.

• Rectangular columns: XGBoost achieved the highest average R2 
(0.71) across the five outer folds during hyperparameter tuning, 
while SVR yielded the best test set performance (R2 = 0.83, Adj. 
R2 = 0.79, MAE = 0.64, RMSE = 0.75, MAPE = 20.5%).

• Circular columns: Random Forest attained the highest average 
R2 during optimization (0.61), closely followed by SVR (0.60). 
On the test set, SVR again provided the best performance (R2 = 
0.79, Adj. R2 = 0.70, MAE = 0.92, RMSE = 1.11, MAPE = 20.9%).
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TABLE 3  Optimized hyperparameters for each model.

Model Best Parameters

SVR C = 10, kernel = “rbf ”, γ = “auto”, ε = 0.2, degree = null

RandomForest n_estimators = 200, max_depth = null, min_samples_split = 2

XGBoost n_estimators = 200, max_depth = 3, learning_rate = 0.05, subsample = 0.8

TABLE 4  Performance metrics of the optimized models on the test sets 
for rectangular and circular columns.

Metric Rectangular 
columns

Circular columns

SVR RF XGB SVR RF XGB

CV R2 0.59 0.65 0.71 0.60 0.61 0.56

R2 0.83 0.77 0.80 0.79 0.77 0.74

Adj. R2 0.79 0.72 0.76 0.70 0.66 0.63

MAE 0.64 0.69 0.68 0.92 0.98 1.03

RMSE 0.75 0.80 0.84 1.11 1.35 1.37

MAPE 0.21 0.21 0.22 0.21 0.31 0.32

Regarding the most influential input parameters, for rectangular 
columns, both SHAP and Pearson correlation analyses consistently 
identified yield strength ( fy) as a key factor influencing plastic 
rotational capacity. Pearson coefficients show a moderate positive 
correlation for fy (r = 0.43), while SHAP values rank fy among the 
top predictors across all three models. The shear span-to-depth ratio 
(L/d) also appears in both analyses, with Pearson showing a weaker 
correlation (r = 0.27) and SHAP revealing a stronger nonlinear 
contribution in all models. In contrast, parameters like transverse 
reinforcement ratio (ρw) have negligible Pearson correlation but 
are given moderate importance by SHAP, indicating nonlinear or 
interaction effects not captured by linear correlation.

For circular columns, both methods highlight L/d and transverse 
reinforcement yield strength ( fyw) as important. Pearson analysis 
reports a strong correlation for L/d (r = 0.60) and moderate for fyw (r
= 0.45), which aligns with their high SHAP importance across SVR, 
RF, and XGBoost. Axial load ratio shows a weak Pearson correlation 
(r = – 0.10) but is given higher SHAP significance in the models, 
again suggesting nonlinear influence.

Pearson correlations indicate that the main variables show 
weak linear associations with each other (e.g., axial load ratio and 
transverse reinforcement r = 0.02 for rectangular and r = 0.37 for 
circular columns; axial load ratio and longitudinal reinforcement 
r = 0.05 and r = −0.22, respectively). Similarly, the correlation 
between span-to-depth ratio and transverse reinforcement is almost 
negligible (r = 0.04 for rectangular, r = 0.08 for circular). Despite 
these near-zero values, SHAP analysis highlights that the combined 
action of these parameters plays a decisive role in governing 

plastic rotational capacity. For example, transverse reinforcement 
improves confinement and ductility, but this beneficial effect is 
significantly reduced when the axial load ratio is high, as the 
enlarged concrete compression zone limits deformation capacity. 
Moreover, the yield stress of transverse reinforcement ( fyw) directly 
influences shear capacity, and low shear resistance often results in 
brittle failures. Likewise, small L/d ratios are typically associated 
with brittle shear-controlled failures, and SHAP shows that this 
effect is exacerbated when transverse reinforcement is insufficient. 
Longitudinal reinforcement ratio exhibits a dual influence: high 
percentages of tensile reinforcement relative to the compressed bars 
increase the size of the concrete compression zone and reduce 
ductility, particularly under high axial load, whereas very low 
reinforcement levels may result in reduced flexural strength and 
premature rupture of the tensile bars before displacement demands 
are reached. In addition, longitudinal reinforcement yield stress ( fy) 
governs flexural strength, such that low fy (lower strength steels) 
reduces moment capacity. However, in exchange, lower strength 
steels typically exhibit increased strain ductility, as compared with 
those of higher strength, which contributes to increasing the 
plastic deformation capacity. These findings demonstrate that SHAP 
uncovers nonlinear interaction effects between parameters that 
appear nearly uncorrelated in Pearson analysis, underlining the 
importance of multivariate interactions in explaining ductility and 
rotational capacity. From a design perspective, these results highlight 
the need to ensure a balanced combination of axial load level, 
span-to-depth ratio, and reinforcement detailing to avoid brittle 
failure and to achieve reliable ductile performance.Overall, the 
agreement between SHAP and Pearson is strongest for variables 
with direct physical links to rotational capacity (L/d, fy, fyw), 
while discrepancies arise mainly for parameters with nonlinear 
or interaction-driven effects, where SHAP provides additional 
insights beyond the linear relationships measured by Pearson
coefficients.

Figure 6 shows the SHAP feature importance for each 
base model.

To further enhance accuracy, the three base models were 
integrated into a Stacking Ensemble Regressor, with RidgeCV as 
the meta-learner. The ensemble approach provided the best overall 
accuracy, achieving superior values of R2 and MAE compared to the 
individual models:

• Rectangular columns: R2 = 0.82, Adj. R2 = 0.78, MAE = 0.51, 
RMSE = 0.82, MAPE = 22.8%

• Circular columns: R2 = 0.83, Adj. R2 = 0.76, MAE = 0.76, RMSE 
= 1.19, MAPE = 21.5%
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FIGURE 5
Predicted vs. observed values for (A) rectangular SVR, (B) circular SVR, (C) rectangular RF, (D) circular RF, (E) rectangular XGBoost, and (F)
circular XGBoost.
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FIGURE 6
SHAP feature importance for (A) rectangular SVR, (B) circular SVR, (C) rectangular RF, (D) circular RF, (E) rectangular XGBoost, and (F) circular XGBoost.
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FIGURE 7
Stacking Ensemble Regressor predictions for (A) rectangular and (B) circular columns.

While RMSE and MAPE values were slightly higher than those 
obtained with SVR, the ensemble consistently improved the most 
widely used indicators of regression accuracy (R2 and MAE). This 
confirms that combining models increases predictive stability and 
robustness across both ductile and brittle failure modes, as also 
illustrated in Figure 7.

4 Conclusion

The present study investigated the capacity of four machine 
learning models (Support Vector Regression (SVR), Random Forest 
(RF), XGBoost, and a Stacking Ensemble) to predict the plastic 
rotational capacity of reinforced concrete columns with rectangular 
and circular cross-sections.

Two experimental databases were employed. The dataset for 
rectangular columns comprised 258 specimens, of which 147 failed 
in flexure, 67 exhibited a combination of flexure–shear failure, and 
44 failed in a brittle manner due to shear. The dataset for circular 
columns contained 151 specimens, of which 94 experienced flexural 
failure, 27 failed due to combined flexure–shear mechanisms, and 30 
failed primarily due to shear.

Hyperparameter tuning was carried out using grid search 
within a nested cross-validation framework, where the training data 
was split into inner folds for hyperparameter tuning and outer 
folds for performance evaluation. R2 scores averaged over the five 
outer folds were used to evaluate model generalization, while the 
final models were assessed on an independent test set using a 
comprehensive set of indicators, namely, R2, Adjusted R2, MAE, 
RMSE, and MAPE.SHapley Additive exPlanations (SHAP) analysis 
was used for interpreting the contribution of each input parameter 

to the predictions generated by the three base models (SVR, 
RF, and XGBoost). The results confirmed the dominant influence 
of longitudinal and transverse reinforcement yield strengths and 
of span-to-depth ratio on plastic rotational capacity, while also 
revealing nonlinear effects for parameters such as transverse 
reinforcement ratio and axial load ratio that were not evident from 
Pearson correlation analysis.

The integrated use of hyperparameter tuning, nested cross-
validation, and SHAP-based interpretability substantially improved 
the accuracy, robustness, and transparency of the models, compared 
to previous studies.

Among the individual regressors, SVR achieved the most 
accurate predictions on the independent test sets, while XGBoost 
provided the most consistent cross-validation performance and 
Random Forest showed good robustness to dataset variability.

The Stacking Ensemble Regressor offered the most balanced 
performance overall, improving R2 and MAE compared to the 
base models. Although not all error measures were superior to 
those of SVR, the ensemble provided greater robustness and 
reliability, confirming the advantage of model integration.Despite 
these results, the main limitation of the study remains the relatively 
small number of available experimental tests worldwide, particularly 
for brittle shear failures. This underrepresentation led to an 
imbalanced dataset that may affect generalization for these specific
failure types.

Overall, the study highlighted, as well, the importance of data 
sufficiency and accuracy, implementation of advanced validation 
techniques, systematic hyperparameter tuning, and application of 
SHAP-based interpretability in obtaining more accurate and reliable 
models for predicting plastic rotational capacity, in support of
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their potential application in seismic assessment and performance-
based design.
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