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Hybrid models for simulating
Indoor temperature distribution
In air-conditioned spaces

Boris Huljak, Juan A. Acero*, Zin H. Kyaw and
Francisco Chinesta

CNRS@CREATE, Singapore, Singapore

Air conditioning systems play a vital role in enhancing thermal comfort for
building occupants in hot climates. However, their high energy consumption
and impact on outdoor air temperatures highlight the need for intelligent, fast,
and real-time information systems to ensure sustainable operation. In this study,
we evaluate the performance of various models in simulating the thermal and
airflow dynamics of a room regulated by an Air Conditioning (A/C) system. Three
modelling approaches are examined: a state-of-the-art Computational Fluid
Dynamics (CFD) model using OpenFOAM, a physics-based surrogate model
utilizing Model Order Reduction techniques, and a hybrid model that combines
the surrogate approach with a correction term based on real-time, on-site
measurements. The results indicate that while both the CFD and surrogate
models perform well overall, they fail to capture localized airflow features that
in the measuring points are accurately predicted by the hybrid model. These
findings highlight the potential of advanced data-driven models, particularly
hybrid approaches, for the intelligent and sustainable management of building
environments.

KEYWORDS
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1 Introduction

Climate change is imposing an increase of global temperatures that can threaten quality
of live in certain regions of the planet (WHO, 2004), as is the case of hot and humid
tropical regions (Moise et al., 2024; Suarez-Gutierrez et al., 2020). The implementation of
adaptative strategies is becoming urgent. Although it might not be the most environmentally
friendly solution a common action is the use of Air Conditioning (A/C) systems to adapt
indoor environments and improve thermal comfort inside buildings (Ford et al., 2022;
Kjellstrom and Crowe, 2011; Luo et al., 2018). However, these systems result in high energy
consumption (Fisk, 2015; Freire et al., 2008; Liao et al., 2022) and significant environmental
impact increasing further outdoor air temperature (Salamanca et al,, 2015; Singh et al,,
2022). Therefore, optimizing the efficiency and cooling performance of A/C systems is
essential (Chappells and Shove, 2005; Omer, 2008).

The optimization of A/C systems in buildings involves complex interactions between
thermal dynamics, airflow distribution, and occupant comfort. Computational Fluid
Dynamics (CFD) simulations are a powerful tool to analyse indoor thermal comfort,
allowing researchers and engineers to model the flow field and its characteristics within
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indoor spaces at high spatial resolution (Zhu et al., 2023). CFD
simulations provide a cost-effective alternative to experimental
campaigns, allowing detailed studies under multiple A/C operating
conditions.

The cooling performance and the airflow patterns of certain A/C
operating conditions will differ for different indoor environments
based on the external (boundary) conditions the indoor space is
exposed to, the characteristics (size and materials) of the space and
the optimal placement of A/C units (Gopaliya et al., 2021; Tian et al.,
2018). Although many CFD-based studies have been conducted for
this purpose (Bamodu et al., 2017; Kummitha et al., 2021; Patel and
Dhakar, 2018), simulations are computationally intensive and time-
consuming (Morozova et al., 2020), especially when used in iterative
design processes or real-time control applications.

To address this limitation, surrogate modelling techniques have
been introduced as an efficient alternative that allow a rapid
evaluation of distinctive design scenarios due to the relevant
reduction of computational costs (Hou and Evins, 2024; Sharif
and Hammad, 2019). These surrogate models trained on physics-
based datasets can approximate the behaviour of full-scale CFD
simulations (Goethals et al., 2012; Liu et al., 2024). However, their
performance will always depend on the quality and diversity of the
training data (Hou and Evins, 2024).

To further improve prediction accuracy, hybrid modelling
approaches can be adopted. These models combine physics-based
surrogate models with real-time sensor measurements, effectively
correcting model predictions and reducing errors (Chinesta et al.,
2020). By integrating both simulated and empirical data, hybrid
models enhance the reliability and robustness of indoor climate
predictions, offering a promising pathway towards intelligent,
adaptive, real-time response and energy-efficient cooling solutions
for buildings in hot areas dependant on A/C systems.

The hybrid approach we present in this paper goes beyond the
assimilation of data for model calibration. When simulating physical
features of the flow with a CFD (or physics-based surrogate) model
we are always considering some approximations (or even ignoring
some mechanisms). Thus, to improve the prediction accuracy we
now model the mechanisms that were ignored (using the deviations
with respect to the sensors) and create a deviation field as a function
on the model parameters. Then, by adding to the physics-based
model prediction the expected deviation, we obtain the hybrid
solution that represents accurately the observed reality.

This paper presents this hybrid approach aiming to evaluate the
air flow and thermal characteristics inside a room forced by 6 A/C
splits units. The hybrid model is driven by the characteristics of
the air flow at the A/C inlets and can provide accurate information
in real time for a suitable management of the thermal behaviour
of the room.

2 Materials and methods
2.1 Description of the indoor space
The thermal hybrid model was developed in an indoor space

inside the CREATE building (Singapore). The dimensions of the
room are 6.54x 10.00 x4.65 m. Figure 1 provides a visual description
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of the room. Two opposite sides of the room were made of double-
layer glass window covering an area of 20.9 m*. The glass wall
facing outdoor had a metal structure to support the glass elements
that was neglected for the study. The other 2 opposite walls were
standard walls composed of concrete. Similarly, the ceiling was made
of concrete and painted in black. The A/C inlets were hanging from
the ceiling at 3.2 m above the floor. The space between the A/C
inlets and the ceiling was full of tubes and other systems/elements.
In the model this volume was considered as porous media due to
the difficulty to consider it in detail and the minor influence in the
thermodynamics characteristics of in the rest of the room. In the
lower part of the room where users are located, the pattern of the air
flow is mainly driven/forced by the flow (directed downwards) at the
A/Cinlets (see Section 3.4). Only the light fixtures at the same height
as the A/C inlets were considered as solids elements (Figures 1, 2).

The 6 split A/C units in the room had a planar dimension of
120 x 59 cm and were spatially distributed as shown in the Figure 1.
The air flow exhausted by the split unit was through 2 parallel
and rectangular openings extending the size of the A/C unit. These
openings were parallel to the glass wall of the room. Flow was ejected
downwards 45 degrees with respect to ceiling/floor plane. Based on
information provided by the Building Management Office, the A/C
system was performing/calibrated to provide approximately 24 °C
indoor air temperature. To reach this temperature each A/C unit
worked in the following conditions:

The properties of walls are presented described in Section 2.2.1.

2.2 Physics-based model

2.2.1 Definition

The model representing the meeting room was designed to
closely match the real-world dimensions and layout of the space,
with a focus on preserving the geometrical accuracy of the elements
that significantly influence airflow and thermal distribution.

The room geometry was created using Blender, guided by
reference data from an iOS LiDAR scanning application (3D
Scanner App). The scan (Figure 3) served solely as a visual and
dimensional reference, while all critical architectural features, such
as vent openings, inlet positions, and lighting points, were validated
and adjusted using manual on-site measurements. A clean and
accurately dimensioned geometry was then remodelled from scratch
in Blender to ensure suitability for CFD simulation purposes.

To ensure a computationally tractable model, several
simplifications were applied. In particular, the upper part of the
air conditioning units, above the exhaust plane, was simplified given
its minimal impact on the downward airflow dynamics. The complex
volume of air above the A/C units, containing internal mechanical
components (e.g., pipes of chilled water), was modelled as a porous
medium to approximate its flow resistance. This way we reduced
the complexity of the mesh and the number of cells, reducing
computational cost of the simulations. However, the porous medium
approach was not validated, and thus the results of the physical
modelling apply to the occupied zone below the inlets, with possible
deviations above 3.2 m (i.e., in the porous region). Figure 2 provides
an overview of the final geometric model used in the simulation.
conducted
CFD

The entire  projects  simulations

using OpenFOAM, a

were

widely used open source
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FIGURE 1

Visual description of the location of the different elements in the simulated room.

FIGURE 2

Mesh boundary and cut representation. Elements included are A/C inlets (trapezoidal shape hanging from the ceiling), light system (cuboidal shape
hanging from the ceiling), chairs, tables and screen. Two return grilles used as outlets are in the upper part of the inner wall.

framework (Weller et al., 1998). The geometry of the room was
extracted and subsequently processed to generate a numerical
mesh using OpenFOAM’s built-in meshing utility, snappyHexMesh.
This tool enables the generation of body-fitted, predominantly
hexahedral meshes, and supports layered boundary refinement,
which is critical for resolving near-wall gradients, particularly
important for convective heat transfer modelling. Due to these
characteristics and previous experience of the team in similar
studies, a specific grid independence study was not carried out.
Given the use of a multi-region conjugate heat transfer solver
(chtMultiRegionSimpleFoam, see Section 2.2.2), the computational
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domain was divided into distinct mesh regions, each corresponding
to either a fluid (air) or solid material domain. The mesh
regions include: Air (fluid region), Ceiling, Concrete East
Wall, Concrete West Wall, Glass North Wall, Glass South
Wall and Floor.

Table 1
demonstrating the high resolution used in the air region to capture

summarizes the cell counts in each region,
detailed flow and temperature gradients. The characteristics of the
mesh in the air region are: Max Non-orthogonality: 65; Average
Non-orthogonality: 7.88; Min volume = 1.66e-08 m?; Max volume

= 1.68e-04 m?; Total volume = 300.75 m?>.
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FIGURE 3
(a) Scan Mesh from 3D Scanner App and (b) Final mesh inside Blender.

TABLE 1 Number of cells in the mesh.

Ceiling Concrete Concrete Glass Glass
east-wall west-wall north-wall south-wall

‘ 6,192,966 ‘ 11,760 ‘ 9,790 9,540 11,800 11,710 ‘ 19,960 ‘

TABLE 2 Parameters of materials used.

Material Mol weight [g/mol] Specific heat capacity Thermal conductivity Density [kg/m3]
[3/kg.K] [W/m.K]

Glass 60 700 1.4 2500

Concrete 40 880 1.4 2200

The solid regions were constructed via extrusion of surface 2.2.2 Numerical approach and assumptions
meshes derived from triangulated wall surfaces. Each solid mesh Following the meshing phase, the simulation of the thermal
comprises 10 layers, with a progressive expansion ratio to ensure  and fluid dynamic behaviour of the meeting room was carried out
adequate resolution of temperature gradients through the material ~ using the chtMultiRegionSimpleFoam solver from the OpenFOAM
thickness, while maintaining acceptable mesh quality metrics.  framework. This solver is specifically designed to handle steady-state
Given the lower complexity of solving heat conduction in solids  conjugate heat transfer problems across multiple regions, making it
(as opposed to turbulence-resolving fluid flow), mesh quality = well-suited to simulate both the airflow within the room and the
requirements for the solid regions were relaxed compared to those ~ thermal conduction through solid surfaces such as walls, ceilings,
in the air region. and light fixtures. CFD-based studies of HVAC performance are

Special attention was given to the generation of boundary layer ~ a well-established discipline, frequently employed to guide the
meshes (inflation layers) in the air region to ensure that appropriate  sizing and placement of air conditioning units (Kokash et al.,
non-dimensional wall distance values (y+) were achieved (see  2022; Sarma and Jakhar, 2016) or to assess thermal comfort in
Section 2.2.2). This enables accurate resolution of convective heat occupied spaces (Buratti et al., 2017). In this work, however, such
transfer using wall functions within the RANS framework (Stamou  a modelling approach is not an end in itself but rather a foundation:
and Katsiris, 2006). the high-fidelity CFD simulations serve as the reference layer upon

The solid regions were grouped into two primary material ~ which reduced-order and hybrid models can be built, enabling

types, concrete and glass, each with distinct thermal properties  fast yet physically consistent predictions that go beyond traditional
such as thermal conductivity, specific heat capacity, and density. = HVAC design applications.
These material parameters are summarized in Table 2 (Cavanaugh The choice of a steady-state solver is motivated by the nature
and Speck, 2002; Crystran, 2020). To simplify, all solid envelopes  of the problem: the goal is to capture the room’s thermal and flow
were approximated to a thickness of 15 cm, including the glass  conditions after a prolonged period of air conditioning operation,
walls. Thus, a single equivalent homogeneous layer was used  representative of equilibrium conditions typically observed during
with properties that reproduced the measured interior surface  regular occupancy hours. As such, transient effects during start-up
temperatures. or occupant entry were not considered in this study.
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TABLE 3 Typicaly + values in the considered mesh.

Patch Minimum Maximum Mean

Ceiling <1 143 49
Concrete east wall <1 16 8
Concrete west wall <1 15 9
Glass north wall <1 22 14
Glass south wall <1 163 14
Ground <1 190 81

In the air region, a Reynolds-Averaged Navier-Stokes (RANS)
approach is adopted, using the k-w Shear Stress Transport (SST)
turbulence model. This formulation was chosen for the closure of
the RANS equations because it combines a near-wall k—-w behaviour
with improved free-stream robustness away from walls, making it
well suited for indoor diffuser jets that exhibit strong shear layers
and moderate buoyancy-driven stratification. This model provides a
good balance between accuracy and computational cost for indoor
airflow applications (Gangisetti et al., 2016). For near-wall treatment
we used a mesh with inflation layers and targeted a low y* so that
the SST model could resolve the viscous sublayer where possible.
An example of y* per patch can be found in Table 3. These values
reflect a predominantly low y* mesh on most interior surfaces, while
a subset of surface locations, mainly beneath strong impinging jets
and outlets, exhibit larger local y* due to high local velocities.
In OpenFOAM, the used wall functions automatically adapt their
formulation depending on the local y* value, resolving the viscous
sublayer when y* is low and applying a logarithmic wall function
when y* lies in the log-layer range. This ensures consistent treatment
across all wall regions despite local variations in mesh resolution and
flow conditions.

For the solid regions, a purely conductive heat transfer model
is employed. Material properties for each region, as detailed in
Table 2, were used to define thermal conductivity, density, and
specific heat capacity. The inner surfaces of the solids, in contact
with the air region, are thermally coupled through boundary
conditions that incorporate temperature continuity and wall heat
flux continuity. The outer surfaces of the building envelope are
constrained using fixed-temperature conditions derived from in situ
surface temperature measurements obtained via thermal infrared
imaging (see Section 2.4). Based on these, the glass wall facing the
outdoors had an external temperature of 32.9 °C, while the opposite
wall (indoor) was 25.5 °C. For the other two concrete walls a value
of 27.4 °C was considered as external surface boundary condition
based on non-air-conditioned indoor areas of the building. This
provides a realistic approximation of the interaction between the
room and adjacent building spaces.

The conjugate heat transfer mechanism is resolved through tight
coupling at the air-solid interfaces, using OpenFOAM’s generalized
boundary conditions for temperature and turbulent heat transfer. To
ensure adequate resolution of thermal gradients near walls and to

Frontiers in Built Environment

05

10.3389/fbuil.2025.1690062

improve numerical stability in the solid regions, inflation layers were
applied at all air-solid boundaries during mesh generation.

Minor internal heat sources were also considered in the
model. Specifically, the heat gain from the lighting fixtures was
approximated and introduced as a surface heat source within the
air region.

The air conditioning system is represented with a simplified
geometric model of the diffuser and ducting. As described in
Section 2.1, air is introduced into the room through six ceiling-
mounted vents, which mimic the actual A/C inlets. The airflow
enters through a modelled duct and diffuser arrangement that
directs air jets at approximately 45° angles from the vertical,
in line with the observed behaviour of the real system. Outlet
boundary conditions are defined at the locations of the return
grilles (see Figure 2), under the assumption that the door remains
closed during operation.

Solar radiation effects were considered in the boundary
condition selection process. However, based on site observations,
direct solar radiation only affects the room indirectly during early
morning hours (before 9:00 AM), while diffuse solar radiation is
significantly attenuated by adjacent corridor glazing. Therefore, the
direct contribution of solar gains to the indoor thermal environment
was deemed negligible and excluded from the model.

Overall, the boundary conditions used for this study combine
empirical data and realistic simplifications. The model was
constrained using only the external surface temperatures measured
outside the simulation domain (Section 2.4). Together with detailed
material properties (Table 2), the numerical solver resolves the heat
fluxes through the building envelope with sufficient fidelity for the
purpose of Reduced-Order Model (ROM) generation (Section 2.3).

2.3 Surrogate model

After the physics-based simulation framework (Section 2.2) was
fully established and validated, the process of generating data to
train a surrogate model was undertaken. The objective was to
construct a ROM capable of reproducing the thermal and airflow
behaviour of the room under varying air conditioning settings, with
significantly lower computational cost than full CFD simulations.
In this study, the ROM approach was based on Proper Orthogonal
Decomposition (POD), a method that extracts dominant spatial
modes from the high-fidelity simulation data (Chinesta et al., 2025).
These modes capture the most energetic and representative features
of the flow and temperature fields. For any new input condition,
the A/C system response will be reconstructed by interpolating the
corresponding modal coefficients, thus enabling fast and accurate
predictions over a wide range of scenarios.

2.3.1 Design of experiment

To ensure that the surrogate model captures the relevant
dynamics of the A/C system with sufficient accuracy, an appropriate
Design of Experiment (DoE) was defined. The purpose of the DoE
is to sample the parameter space effectively, balancing the need for
precision with the practical constraints of computational cost.
distribute
efficiently across the input domain, especially in higher-

Sampling strategies aim to sample points

dimensional spaces. Various approaches exist, such as Latin
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TABLE 4 Operation conditions of all the A/C units in the room.

Split unit air flow characteristics

Air temperature Air flow Tilt angle of the flow

220°C+0.5°C

45° (downwards)

‘ 1.1 m/s ‘

Hypercube Sampling (Torregrosa et al., 2024), which ensure good
coverage with limited samples. In this study, however, only two
input parameters were considered, and the system response was
expected to be relatively smooth. For this reason, a simple uniform
grid sampling was adopted as a first step, which proved sufficient for
the intended purpose.

The two independent parameters selected as primary control
variables were the inlet air temperature and the air velocity at
the A/C diffuser nozzle. Both correspond directly to adjustable
settings of the physical A/C system and represent the main actuators
available in the building management system. These variables
play a decisive role in shaping both thermal comfort and energy
consumption within the room.

Based on discussions with the building management team, the
following parameter ranges were selected:

o Inlet temperature: from 17.8 °C to 23.8 °C, sampled at four
evenly spaced points.

o Inlet velocity: from 0.1 m/s to 2.1 m/s, sampled at eleven
evenly spaced points.

These values encompass the operational capabilities of a typical
commercial air conditioning unit installed in the building, while
also including the nominal setpoint provided by the building
management system (22 °C and 1.1 m/s as shown in Table 4).

By generating the full DoE, a total of 44 distinct simulation cases
were defined. Each case represents a unique combination of the two
control parameters and was simulated using the numerical CFD
setup described in Section 2.2.

2.3.2 Reduced-order model (ROM) generation

Upon completion of the Design of Experiment (DoE)
simulations, the resulting high-fidelity data were extracted and
post-processed to construct the surrogate model. These simulation
outputs, commonly referred to as suapshots, consist of the
spatial distributions of two primary fields: air temperature and
velocity within the room. Each snapshot corresponds to a unique
combination of air inlet temperature and velocity as defined
by the DoE.

To enable fast and accurate approximations of the A/C system’s
behaviour under varying input conditions, a non-intrusive ROM
was used. The method is based on POD, a widely used technique for
model order reduction in fluid dynamics and heat transfer problems.
POD identifies the dominant spatial structures, referred to as modes,
present across the dataset, allowing the high-dimensional simulation
outputs to be represented in a low-dimensional subspace.

This reduction is achieved by solving an eigenvalue problem
on the snapshot matrix, yielding a set of orthonormal modes that
optimally capture the energy content of the original fields. Each
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individual snapshot can then be reconstructed as a combination of
these modes, weighted by a set of scalar modal coefficients specific
to that parameter configuration.

Once the POD decomposition is complete, the next step
involves establishing a relationship between the input parameters
and the modal coeflicients. In this study, a simple piecewise
linear interpolation was employed for this purpose. Although
more advanced interpolation schemes exist (Antoulas et al., 2022),
the relatively dense and structured sampling used in the DoE
allowed this approach to achieve sufficient accuracy for the intended
application.

With the POD modes identified and the interpolation
framework in place, the resulting surrogate model can predict
the air temperature and velocity fields in the room for any new
combination of input parameters within the defined range. This
prediction process constitutes the online phase of the ROM and
typically executes within a few milliseconds.

The overall ROM development process, including simulation,
POD decomposition, and coefficient interpolation, is performed
only once per setup and constitutes the offline phase. This
phase incurs most of the computational cost, while the online
fast,
computational demand.

phase provides repeatable evaluations with minimal

2.4 Experimental measurements

For the aim of providing suitable boundary conditions and
validating the performance of the CFD and surrogate model, 2 types
of sensors were used (Figure 4):

a. 3 sensors (Vaisala WXT536) were deployed throughout the
room and outside the room providing data of air flow, air
temperature and relative humidity. They were mounted on a
tripod at a height of 1.2 m above the floor. 1-min records were
stored in a datalogger (Scientific Campbell CR300).

A thermal infrared camera (RayThink RT630) was used to
evaluate the surface temperature of the walls. A description of
the sensors is provided in Table 5.

The performance of the Vaisala WXT536 was evaluated inside
the room by placing them one beside the other for 3 weeks. For
air temperature, the highest mean bias error (MBE) was 0.064 °C).
This value assures that the sensors can reflect small air temperature
differences when distributed in different sites throughout the room.

For the evaluation of the air temperature and flow spatial
distribution in the room, the sensors were deployed for 10 days,
as shown in Figure 5.

Measurements of surface temperatures were done between 10:30
and 11:00. Different points/areas of the walls were evaluated, and
a mean value was extracted as representative surface temperature
of the wall. The measured data were used to fit the properties
and physical parameters of each wall (Table 2). At the time these
measurements were carried out indoor air temperature had little
fluctuation, although it was slowly decreasing and adjusting from the
night-time to the afternoon values. The A/C system started at 7 am
and was running at a steady state (Table 4). Although the thermal
and air flow were not fully stable, we did consider a steady state
situation for modelling purposes.
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FIGURE 4
(@) WXT536 Transmitter (Vaisala), (b) RT630 Thermal Infrared Camera (RayThink).

TABLE 5 Observation range and accuracy of the measurements.

Air temperature Air flow Surface temperature
Range —52...+60 °C 0...60 m/s —20 °C~+150 °C
Accuracy +0.3°C +3% at 10 m/s +2 °C or +2% of readings, whichever is greater

FIGURE 5

(a) Location of all sensors inside the room; (b) deployment of sensor S3 beside the outer glass wall.

2.5 Hybrid model

While the surrogate model provides accurate predictions
for most of the domain, certain localized effects might not
be fully captured. To address these discrepancies and improve
overall predictive performance, a hybrid modelling approach

Frontiers in Built Environment

was adopted, combining the surrogate model (section 2.3) with
sparse experimental measurements (section2.4) for targeted
corrections (Figure 6).

The correction strategy involves defining a new correction field
representing the difference between the temperature field predicted
by the surrogate model and the measured real-world temperature
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Real-time
Smart Data
(Sensors)
INTELLIGENT
MODELLING
Ignorance
(Correction)
HYBRID
TWIN
Physics Reduced
Knowledge Model
(Surrogate)
FIGURE 6
Schematic diagram for the hybrid mode consisting of a Surrogate model and ignorance/correction model based on the difference between the physics
simulations and the real on-site measurements.

values at those points. It is then assumed that this correction field
can itself be approximated as a linear combination of the previously
extracted POD modes. This assumption is motivated by the fact
that the original POD basis was generated from a wide range of
simulation scenarios with diverse boundary conditions and flow
patterns, suggesting that the correction field, while not directly in
the snapshot set, lies within the span of these modes.

However, in the present case, only three measurement points
were available in the room. A natural approach would be to use
only three POD modes, yielding a fully determined linear system.
Yet, practical experiments revealed that such a low-dimensional
basis was insufficient to adequately represent the observed deviation.
Instead, a larger basis of 30 POD modes was selected for the
correction, offering more flexibility in representing the complex
error field.

Given the underdetermined nature of this setup, three
measurements versus 30 unknown modal coefficients, an iterative
optimization approach was adopted. Specifically, a gradient descent
algorithm was used to minimize the error between the corrected
model and the sensor readings, iteratively adjusting the modal
coefficients through a first loss function.

To ensure that the correction remains physically plausible
and consistent with the expected flow structure, an additional
regularization term was introduced into the loss function. This
term penalizes deviations from the simulated case based on the
setup while measuring (Section 2.2 and 2.3). Since the simulation
corresponding to the sensor input parameters was possible, even if
not fully accurate, it was assumed that the overall flow structures and
large-scale temperature patterns were reasonably representative. The
goal was to enforce that the corrected field maintains this general
structure while allowing localized corrections based on sensor data.

The total loss function thus comprises two components:

o A sensor fitting term, minimizing the difference between

corrected field values and measured temperatures at the sensor
locations.
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o A physics regularization term, minimizing the L2 norm (or
Euclidian Norm) between the corrected field and the original
simulated prediction.

These two terms are balanced using a scalar weight parameter a,
which acts as a passive scalar to control the trade-off between data
fidelity and physical structure consistency. A smaller & emphasizes
fitting to sensor data, while a larger a preserves the original surrogate
field structure. For the current study, a value of & = 0.5 was
selected (see Section 3.3). This value was found to deliver satisfactory
results for the hybrid model outcomes.

Thus, the correction process for the hybrid model is formulated
as a constrained minimization problem, where the goal is to identify
the optimal set of POD coefficients that minimize a combined
loss function (L) incorporating both sensor alignment and
physics-based regularization (Equation 1). The full formulation of
this objective function is provided in Equation 1, where T4
represents the corrected temperature field of the hybrid model,
Tgurrogate the prediction from the surrogate model, and T
the reference field obtained from the high-fidelity simulation under

simulated

the measurement conditions. The corrective field AT, eciion 1S
expressed as a linear combination of the extracted modes 0; from
the surrogate model, weighted by the unknown coeflicients ¢; to be
determined.

The optimization of the POD coefficients was performed using
the Adam optimizer, a stochastic gradient-based optimization
method. The learning rate (step size) was set to 0.1, and the
optimization was run for 5,000 iterations. No explicit stopping
tolerance was imposed beyond this fixed iteration limit, as
convergence of the loss was typically observed well before reaching
5,000 steps. Although the optimization problem is relatively simple
and could be solved with standard gradient descent, Adam was
chosen for its robustness and stable convergence behaviour without

requiring manual tuning of momentum or step-size schedules.

1

Thybrid(x) = Tsurrogate (x)- ATcorrection ()
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FIGURE 7

Temporal evolution of the air temperature in the room throughout the campaign.

Nonodes
ATcorrection(x) = z C,@i(x)
i-0
Ltotul = aLsensor + (l - a)Lfield

L

sensor —

" Thybrid(xsensor) - Tsensor(xxensar) "2

T 2

Lfield = || Thybrid(x) surrogute(x) "

3 Results and discussion
3.1 Outcomes of the sensors

Figure 7 shows the temporal evolution of the air temperature in
the room throughout the campaign. Records show a clear pattern
driven by the A/C system, following its operating hours. During
daytime, air temperature in the room is ~23.2 °C with an amplitude
of ~1°C between the hottest and coldest sites inside the room.
During the evening, when A/C is switched off, air temperature in
the room tends to be homogenized (negligible spatial differences)
increasing up to ~27°C just before the A/C system starts the
following morning. This diurnal cycle is quite constant throughout
the measurement period except during the weekend when the A/C
system is not working.

Table 6 presents some statistical results of the air temperature
records between 10:30 and 11:00 am (excluding the weekend
period). Results show that the site close to the glass wall facing
the outdoor corridor (S3) was the warmest with a difference of
0.6 °C with respect to the opposite glass wall facing the indoor
corridor (S1). The lowest air temperature was in the centre of the
room (S2), 1.1 °C lower than S3. During this period of the day,
air temperature registered at each sensor was quite stable. The
highest amplitude of values (1.1 °C) was in the site close to the
outdoor corridor (S3) due to the influence of the conditions outside
the building.
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Measurements of surface temperature using the thermal camera
are presented in Table 7.

3.2 Validation of the physics-based model

The steady-state simulation of the existing boundary conditions
and the operating conditions of the A/C system was validated
using measurement data collected between 10:30 and 11:00 a.m.,,
a time window during which room conditions were stable and
representative of equilibrium operation.

Table 8 presents a comparison between measured values and
simulated outputs at key locations within the room. These include
air temperature, and surface temperature measurements taken
both inside and outside the simulated domain. Notably, surface
temperatures were obtained using a thermal infrared (IR) camera,
and air-related quantities were recorded using calibrated sensors.

Despite the model using only the external surface temperatures
measured as boundary conditions, the simulation was able to
reproduce interior surface temperatures that match the IR camera
measurements, providing confidence in the accuracy of the
modelled wall conduction and convective coupling with the
air domain. Figure 8 displays an example of the validation conducted
on the wall within the room.

Overall, the results demonstrate satisfactory agreement between
the steady-state simulation and the experimental observations, both
surface and air temperature. This supports the validity of the physics-
based model and its capacity to capture the dominant thermal and
fluid phenomena within the room.

3.3 Performance of surrogate and hybrid
model

The performance of the derived surrogate model is assessed
by comparison with the observed temperature data (Table 8).
Overall, the surrogate model demonstrates strong agreement with
measured values, confirming its capacity to capture the dominant
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TABLE 6 Air temperature (°C) in the measuring sites inside the room between 10:30 and 11:00 am (without weekend).

Sites Room location Mean Stand dev Max Min Median
S1 Close to indoor glass wall 23.1°C 0.2 23.5 229 23.0
S2 Centre 22.6°C 0.3 23.4 22.4 22.5
S3 Close to outdoor glass wall 23.7°C 0.3 24.5 234 23.6

TABLE 7 Mean surface temperature (°C) of the interior walls of the room between 10:30 and 11:00 a.m.

Wall Number of samples Mean Stand dev

Glass wall to the indoor corridor 5 24.1 0.1

Glass wall to the outdoor corridor 5 26.9 0.6
Ceiling 5 27.2 0

Standard walls 8 26.6 0.6

TABLE 8 Comparison of measurements inside the room with different models.

Location (Sensor) Temperature Physics-based Surrogate model [°C] | Hybrid model [°C]
measurement [°C] simulations [°C]
Near to indoor glass wall (S1) 23.1 23.3 23.3 23.1
Centre (S2) 226 234 233 227
Near to outdoor glass wall (S3) 23.7 23.9 23.9 23.7

Measured: 27°C Measured: 27.1°C

Measured: 26.2°C sl Measured: 26.2°C
-

Model: 26.6°C Model: 26.4°C Model: 26.9°C Model: 27°C

FIGURE 8
Example of the physics-based model validation: measurements vs. modelled surface temperature inside the room.
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FIGURE 9
Effect of alpha on (a) air temperature at measuring sites, and (b) RMSE (considering the average measured values in the validation period (Table 6) of all
the measuring sites). Higher values of alpha indicate the hybrid model getting closer to the sensor measurements but will diminish features of the
spatial distribution of air temperature (Figure 10).

thermal behaviour of the room. However, a notable discrepancy
was observed in the central area of the room, where the model
fails to capture the local temperature drop. This discrepancy is
aligned with the fact that the physics-based model (training data)
cannot represent this localized phenomenon and thus neither can
the reduced-order model.

By introducing a hybrid modelling approach, which integrates
sparse sensor data into the surrogate prediction, we are able to
correct this discrepancy. The hybrid model, after calibration using
the sensor data and regularized optimization, significantly improves
the temperature prediction in the central region. Additionally, the
model also refines the temperature estimates at the other two sensor
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locations, reducing residual errors while preserving the overall
structure of the temperature field.

These results clearly demonstrate the superior accuracy of the
hybrid model, particularly in the central region where the largest
error was previously observed. The hybrid approach effectively
bridges the gap between model-based prediction and empirical
observation, without overfitting to the sparse measurement set.

For our case study, the use of only three sensors seems enough
since the deviation with respect to the sensors was moderate. In
the case of larger deviations, it might be necessary to include more
sensors or extend the spatial coverage of these (changing positions)
in order to have more data to enable richer approximations.
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Simulated Target

FIGURE 10
Representation of the simulated air temperature (°C) target and effect of a on the reconstructed field. Higher values of a will match better the

measurements of the sensors (Figure 9) but the spatial distribution of air temperature will diverge from the target simulation. The opposite will occur
with low values of a.

FIGURE 11
Visualisation of the spatial distribution of air temperature (°C) and air movement (streamlines) provided by hybrid model when the A/C work in different

conditions (a) lowest speed (0.1 m/s) and temperature (17.8 °C), and (b) highest speed (2.1 m/s) and lowest temperature (17.8 °C).

Results presented in the Table 7 use a regulation weight @ of =~ model (Section 2.5). To highlight the hybrid model’s sensitivity to
0.5, balancing the fit between sensor data and the preservation of  this parameter, Figure 9a illustrates the evolution of the predicted
the expected physical features of the flow field from the surrogate ~ temperature values at the three sensor locations as a function
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of &, while Figure 9b presents RMSE (including all sensors) as a
function of «, showing that & = 0.5 can be considered the point
on the curve where the improvement starts to level off. Beyond
this point, increasing a further gives less gains while the physical
structure/features of the flow could be affected. While the best results
are obtained for a = 0.9 (RMSE = 0.030 °C), a = 0.5 achieves an
acceptable RMSE = 0.087 °C.

Figure 10 further provides a spatial visualization through a cut
in the domain, of the temperature field, showing how different values
of a influence the overall shape and intensity of the correction field.

3.4 Spatial distribution of air temperature
and flow

With the hybrid model now established, it becomes possible
to simulate and visualize air temperature and flow patterns across
different A/C operating conditions defined by the DOE, with
response times in the order of milliseconds.

To demonstrate the model’s capabilities, several representative
scenarios are presented, covering extreme operating conditions.

In the first case, the air conditioning system operates at its
lowest settings, with minimal inlet velocity and the lowest supply
temperature. Under these conditions, the system introduces little
forced convection into the space. The resulting flow pattern is largely
governed by natural convection and thermal stratification. A vertical
gradient in air temperature is observed (Figure 11a), illustrating the
tendency of warmer air to rise and cooler air to remain near the floor.
The area directly below the A/C does show a cooler zone, but the
system struggles to cool down the room.

At the opposite end of the operating range, maximum inlet
velocity and lowest air temperature, the flow is dominated by
strong forced convection. The air temperature field becomes more
homogenized, with significantly reduced stratification (Figure 11b).
Notably, localized cold spots appear near zones directly impacted by
the cold air jet, particularly around the walls and floor around the
supply diffusers, and where the diffuser’s flow impact each other’s.

These examples illustrate how the hybrid model, in combination
with the real-time interface, can provide valuable insights into the
spatial dynamics of indoor climate control, supporting both analysis
and design optimization for air-conditioned spaces.

4 Conclusion

This study introduces and tests a hybrid modelling framework
for predicting airflow and thermal conditions in a meeting room
equipped with multiple A/C split units. The approach combined a
high-fidelity multi-region CFD model, a ROM derived via POD, and
sparse in situ measurements to enhance accuracy.

The physics-based model, validated against measured air and
surface temperatures (at occupant level), provided a reliable baseline
representation of the thermal and flow behaviour. However, the
model was not validated for upper region of the meeting room where
a porous medium was considered. The ROM, built from a limited
set of only 44 high-fidelity simulations, delivered millisecond-
scale predictions while closely matching most experimental data.
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However, certain localised phenomena, such as the observed central
temperature drop, remained beyond the reach of the surrogate alone.
The hybrid approach addressed these limitations by integrating
just three temperature sensors into the correction process. Despite
the sparsity of both the training simulations and the measurement
set, the method significantly reduced residual errors, restored the
missing local temperature feature, and improved accuracy across
all monitored points, while preserving physically plausible flow
structures. However, a thorough validation of the model using
independent measuring sites was not carried out, being this a
limitation of the study and a task to consider in the future.

While the present formulation employs a global L2
regularisation term to constrain corrections, further improvement
could be achieved by adopting more localised error metrics, such
as norms computed via convolution kernels, to better capture and
correct spatially confined discrepancies.

Overall, the results highlight that real-time, and physically
consistent indoor climate predictions can be achieved with minimal
simulation effort and sparse sensor deployment when coupled with
a robust hybrid modelling framework.

Although this study focuses on a case study in Singapore, the
methodology can be applied to different building types, climates
and A/C systems by including in the hybrid model the relevant
parameters that govern the variables to be simulated.
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