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Truck-involved crashes in Thailand frequently lead to severe consequences 
due to the vehicles’ large size, heavy loads, and high-speed operations. 
Despite growing concerns, most previous studies have used single-level models 
that overlook the hierarchical structure of crash data and fail to account 
for spatial and contextual variations across regions. This study applies a 
Multilevel Ordered Logit Model to examine factors influencing truck crash 
severity by integrating individual-level variables (e.g., driver behavior, vehicle 
condition, environmental factors) with province-level contextual factors (e.g., 
population size, AADT, Highway length). The model captures both direct effects 
and cross-level interactions to assess how regional characteristics shape the 
relationship between individual risk factors and crash severity. The results 
reveal substantial provincial variation and demonstrate that contextual factors 
significantly moderate the impact of driver behavior on crash outcomes. These 
findings emphasize the importance of adopting multilevel analytical frameworks 
in road safety research, especially in developing countries. The study contributes 
to a more comprehensive understanding of truck-related crash mechanisms 
and provides practical insights for designing targeted, context-sensitive safety 
policies that align with the unique characteristics of each province.
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 1 Introduction

Road traffic crashes remain one of the most pressing safety challenges in Thailand, 
particularly those involving trucks, which tend to be more severe and result in 
substantial loss of life and property. According to the World Health Organization 
(World Health Organization, 2023), Thailand reports a road traffic fatality rate of 25.4 
deaths per 100,000 population, among the highest in Southeast Asia. Truck-related 
crashes play a significant role in this statistic due to the inherent characteristics of
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FIGURE 1
Annual truck crash rate per 10,000 registered trucks in Thailand (2012–2022).

large commercial vehicles such as their size, weight, and high-
speed operation over long distances. Data from the Department 
of Land Transport indicate that, as of 2024, the number of 
registered trucks in Thailand exceeded 1.24 million units, marking 
a 6.70% increase from the previous year (Department of Land, 
2024). As shown in Figure 1, the number of truck crashes per 
10,000 registered vehicles fluctuated notably between 2012 and 
2022, peaking at 48.23 incidents per 10,000 trucks in 2018, before 
declining to 30.04 in 2022 (Thailand Road Safety Collaboration, 
2023). This variability underscores the unpredictability of road 
freight safety trends and highlights the urgent need to investigate 
the underlying factors contributing to crash injury severity. Of 
particular interest are driver behavior characteristics, in conjunction 
with provincial-level contextual factors, which may exert hidden but 
critical influences on crash outcomes.

Beyond temporal fluctuations, spatial disparities are 
also evident. Figure 2 illustrates the provincial-level fatality rates 
per 100,000 population across Thailand, revealing substantial 
spatial disparities in road traffic risk. To effectively illustrate 
these variations, the fatality rates are categorized into distinct 
ranges using percentile divisions. This methodological approach 
not only highlights absolute differences but also clarifies each 
province’s relative position within the national spectrum of risk. 
Provinces with high fatality rates (exceeding 1.76 deaths per 100,000 
population) tend to cluster in specific regions, while others report 
zero fatalities. These variations may reflect differences in geographic 
conditions, data reporting systems, law enforcement rigor, or 
road user behavior across regions. Such disparities underscore the 
uneven distribution of road safety risks nationwide and highlight 
the necessity of integrating spatial-level factors with individual-
level driving behaviors. A more systematic, multilevel approach is 
therefore essential to uncover the underlying mechanisms shaping 
the severity of traffic crashes.

Previous research has identified a wide range of risk factors 
associated with the severity of traffic crashes, including driver 
behavior, age, gender, fatigue, speed at the time of the crash, 
physical road characteristics, and environmental conditions 
(Se et al., 2024; Tahmidul Haq et al., 2021; Laphrom et al., 

2024). However, most of these studies have relied on single-level 
statistical models that assume the independence of observational 
units, without accounting for the hierarchical structure of real-
world crash data. For instance, individual drivers are embedded 
within distinct provincial contexts that differ in terms of social, 
economic, and physical characteristics. Such analytical limitations 
may lead to incomplete interpretations, as they fail to capture 
contextual influences or spatial heterogeneity across provinces. 
Structural-level factors such as population size (Nieminen et al., 
2002; Cespedes et al., 2024), average annual daily traffic 
(AADT) (Geedipally et al., 2010; Gatarić et al., 2023), and road 
network density (Bureau of Highway Safety, 2022a), may play a 
critical role in shaping both driving behavior and crash outcomes. 
In this regard, multilevel modeling has been proposed as a more 
effective analytical framework for disentangling the effects of 
individual-level and contextual-level variables. It enables the 
estimation of between-group variability and the exploration of 
cross-level interactions.

In transportation safety research, only a limited number of 
studies have explicitly adopted multilevel approaches. Chen et al. 
(2015) employed a hierarchical Bayesian model to investigate truck 
driver injury severity and demonstrated that failure to account for 
nested crash data structures led to biased estimates of behavioral 
risk factors. Chen et al. (2016) extended this line of work by 
applying a hierarchical ordered logit model to rural crashes, showing 
that the inclusion of crash-level random effects and cross-level 
moderators substantially improved explanatory accuracy. These 
studies provide strong evidence that multilevel frameworks are 
superior to single-level approaches in analyzing crash severity, 
as they quantify higher-level variance and capture contextual 
moderation effects that would otherwise remain hidden. By contrast, 
other advanced modelling contributions such as Islam et al. (2022), 
Hosseinpour and Haleem (2021), Alrejjal et al. (2021), Casado-
Sanz et al. (2020) focus on unobserved heterogeneity through mixed 
logit, random-parameters, correlated random-parameters, or latent-
cluster frameworks. While valuable, these approaches primarily 
capture individual-level variation and do not explicitly estimate 
higher-level variance or cross-level interactions. Building on these 
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FIGURE 2
Spatial distribution of road traffic fatalities per 100,000 provinces in Thailand, 2022.

empirical insights, it is important to articulate the theoretical 
mechanisms through which provincial-level contexts may influence
severity.

Theoretically, provincial-level conditions such as population 
density, traffic volumes, and highway length may influence injury 
severity through several mechanisms. Higher traffic volumes 
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can intensify time pressure and overtaking maneuvers; greater 
population density may alter enforcement visibility and emergency 
response times; and longer highway networks can heighten fatigue 
risks for truck drivers. These pathways highlight why contextual 
conditions are essential moderators of individual-level crash 
determinants.

In addition, behavioural theories provide further insight 
into why contextual effects matter. According to Risk 
Homeostasis Theory (Wilde, 1982), drivers adjust their perceived 
level of acceptable risk in response to environmental cues. This 
implies that the same risky behavior may result in different severity 
outcomes depending on provincial-level conditions, reinforcing the 
importance of modeling cross-level interactions.

For these reasons, this study adopts a multilevel ordered logit 
model. While mixed logit frameworks account for unobserved 
individual heterogeneity and generalized ordered logit models 
relax the proportional odds assumption, neither directly estimates 
between-province variance nor tests for cross-level moderation. 
Given our research objective to examine how provincial-level 
factors interact with individual-level risks in truck crashes the 
multilevel ordered logit model provides the most conceptually and 
methodologically appropriate framework.

To date, no known studies in Thailand have systematically 
applied multilevel models to investigate truck crash severity by 
integrating individual-level driver behavior with province-level 
contextual factors. In particular, there is a lack of research 
linking risky driving behavior to structural characteristics such as 
population size, AADT, or road infrastructure, nor has there been 
adequate examination of how these contextual variables moderate 
the relationship between driving behavior and crash severity. This 
research gap is of both theoretical and policy significance, as it 
limits our ability to develop localized, evidence-based road safety 
interventions tailored to regional conditions. Recognizing these 
limitations, the present study seeks to fill this gap.

To address this gap, the present study aims to examine the 
factors influencing the severity of truck-involved crashes in Thailand 
using a Multilevel Ordered Logit Model. This method is well-suited 
for analyzing hierarchically structured data where individuals are 
nested within provinces. The model incorporates individual-level 
factors such as driver behavior, vehicle conditions, environmental 
settings, and collision characteristics, alongside province-level 
factors such as population size, AADT, and total highway length. The 
study also investigates provincial differences in crash severity and 
assesses whether province-level characteristics moderate the effects 
of individual-level risk factors.

This research is grounded in a conceptual framework that 
acknowledges the hierarchical nature of crash data a perspective 
that has not yet been applied to truck-related crashes in Thailand. 
By integrating micro-level behavioral data with macro-level spatial 
contexts, the study highlights the complex interconnections 
between risky behaviors and structural environments. Moreover, the 
inclusion of cross-level interaction analysis offers new insights into 
how the same behavior may have differing impacts across regions, 
underscoring the importance of flexible and context-sensitive road 
safety strategies. The findings are expected to contribute empirical 
evidence to support the development of region-specific traffic safety 
policies that are responsive to local realities. 

2 Conceptual foundations and related 
studies

2.1 Individual-level impact on the severity 
of truck injuries

The severity of injuries resulting from truck-related crashes is 
not a random occurrence, nor can it be attributed to a single factor. 
Instead, it results from the complex interplay of various individual-
level determinants, including driver behavior, vehicle technical 
conditions, environmental contexts, and the specific nature of 
the collision. A systematic investigation that clearly distinguishes 
the roles of these factor groups allows for a more profound 
understanding of the mechanisms underlying injury severity. Such 
insights are essential for designing targeted and effective policy 
interventions that correspond to the behavioral risk profiles of 
specific groups.

Based on empirical evidence and an extensive literature 
review, individual-level determinants of injury severity can be 
categorized as follows:

Environmental Factors, Environmental conditions at the time of 
the crash play a critical role in determining injury severity. Crashes 
occurring during weekends, nighttime hours (Behnood and Al-
Bdairi, 2020; Habib et al., 2025; Champahom et al., 2023; Wang et al., 
2019), or in poorly lit areas often reflect temporal and spatial 
contexts where changes in driver behavior and roadway conditions 
are more pronounced (Uddin and Huynh, 2018; Wei et al., 2022; 
Hao et al., 2016; Habib et al., 2025; Azimi et al., 2022; Uddin 
and Huynh, 2020). Furthermore, road surface conditions such 
as dry versus wet pavement may influence vehicle traction and 
visibility, thereby affecting crash outcomes (Habib et al., 2024; 
Yu et al., 2022; Chen et al., 2015; Champahom et al., 2023;
Chen and Chen, 2011).

Roadway Characteristics, Roadway characteristics represent 
critical physical factors that should be incorporated into analyses 
of crash severity. In particular, roads without a median, straight 
road segments, two-way traffic roads, and areas with direct access to 
private or commercial premises such as U-turn locations, pedestrian 
crossings with central refuges, or grade-separated intersections often 
involve complex traffic patterns. These conditions can encourage 
risky driving behaviors, such as abrupt lane changes or sudden cut-
ins, reflecting both the intricacy of traffic flow and deficiencies in 
road space management. Such features may be linked to different 
patterns of driver behavior and crash occurrence (Azimi et al., 2022; 
Alrejjal et al., 2021; Champahom et al., 2023).

Vehicle Characteristics, the technical condition of trucks such as 
defective brakes, malfunctioning steering systems, or worn tires can 
significantly influence both the occurrence and severity of crashes. 
These mechanical deficiencies represent the operational readiness of 
the vehicle and its actual condition during use. They serve as key 
indicators of roadworthiness and may play a crucial role in shaping 
crash outcomes.

Driving Risk Behaviors, Risky driving behavior is a critical 
individual-level factor that contributes both to the likelihood of 
crash occurrence and the severity of its outcomes. Common 
behaviors examined in the literature include abrupt cut-ins, driving 
under the influence of alcohol, and violations of traffic regulations 
(Chen et al., 2015; Behnood and Al-Bdairi, 2020; Champahom et al., 
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2023). Additional behaviors such as overloading beyond legal limits 
(Wang et al., 2019; Wang et al., 2021; Chen et al., 2020), excessive 
speeding (Chen et al., 2015; Wang et al., 2021), and impaired driver 
condition such as drowsiness, fatigue, or lack of attention have also 
been found to significantly affect drivers’ decision-making and their 
ability to respond to sudden hazards (Behnood and Al-Bdairi, 2020).

Collision Types, the type of collision plays an important 
role in determining the severity of injuries sustained in truck 
crashes. Common patterns such as rear-end collisions or crashes 
involving parked vehicles frequently occur in truck-related incidents 
and are often included in severity analyses. These characteristics 
provide insight into the magnitude of impact forces, pre-crash 
movement patterns, and the specific locations of impact, all 
of which may influence the extent of injury and damage in 
different scenarios (Behnood and Al-Bdairi, 2020; Behnood and 
Mannering, 2019; Uddin and Huynh, 2020).

A deep understanding of each group of individual-level factors 
is therefore crucial not only for explaining why certain crashes 
result in more severe outcomes than others, but also for identifying 
the root causes of risk with greater specificity. These causes may 
stem from driver behavior, inadequate vehicle maintenance, or poor 
management of critical environmental conditions at the time of the 
crash. Analysis at this level serves as a foundation for designing 
effective prevention strategies that can substantially reduce the 
negative impacts of truck-related crashes.

However, while individual-level factors play a significant role in 
determining crash severity, the behaviors and outcomes observed 
are also shaped by the broader spatial context in which they occur. 
These contextual conditions lie beyond an individual’s control, yet 
they may significantly influence crash severity. Therefore, the next 
section turns to provincial-level factors as contextual elements that 
may frame, amplify, or moderate the severity of truck-related crashes 
across different regions. 

2.2 Provincial-level impact on the severity 
of truck injuries

Although individual-level factors such as driving behavior 
and vehicle condition play a crucial role in explaining the 
severity of road traffic crashes, provincial-level contextual factors 
also serve as essential structural components that should not 
be overlooked. Spatial environments exert subtle but significant 
influences on driver behavior and the conditions under which 
crashes occur. Factors such as population density, Average Annual 
Daily Traffic, and the extent of the Highway Lengths as highlighted 
in previous studies (Jafari Anarkooli and Hadji Hosseinlou, 2016; 
Shinstine et al., 2016; Hosseinpour and Haleem, 2021; Islam et al., 
2022; Hao et al., 2016; Habib et al., 2025; Casado-Sanz et al., 
2020), reflect systemic risk levels, traffic complexity, and the 
region’s capacity to manage road safety. These elements can 
either mitigate or amplify the consequences of individual risk 
behaviors. Studying provincial-level factors is therefore critical not 
only for understanding the broader context in which road users 
operate, but also for uncovering the spatial mechanisms underlying 
crash severity. Such insights are essential for designing safety 
interventions that are responsive to the specific characteristics of
each region.

Figure 3 illustrates the conceptual framework employed in 
this study, which distinguishes between individual-level and 
provincial-level factors affecting the severity of truck-involved 
crashes. The individual-level domain encompasses roadway 
characteristics, environmental conditions, vehicle attributes, driving 
risk behaviors, and collision types all of which directly influence 
the outcome of crash severity. Meanwhile, the provincial-level 
context defined by factors such as population, AADT, and highway 
length represents broader structural conditions that may exert 
contextual effects or moderate individual-level influences. This 
two-level structure underpins the multilevel modeling approach 
adopted in the analysis and reflects the hierarchical nature of
crash data.

3 Methodology

3.1 Data description

This study utilized data on truck-involved crashes that occurred 
on major highways in Thailand in 2022. The data were obtained from 
the Highways Accident Information Management System (HAIMS) 
(HAIMS, 2022), maintained by the Department of Highways. A 
total of 4,462 crash cases were included in the analysis, selected 
based on the completeness of relevant variables, with missing cases 
excluded using listwise deletion. Data from a single year were used 
because this period provided the most comprehensive and internally 
consistent coverage across provinces, thereby ensuring uniform 
reporting standards and variable definitions. Such consistency is 
essential for multilevel modeling, which requires comparable data 
structures across all provinces. Moreover, because these cases were 
distributed across 77 provinces, the dataset provided not only a 
large number of Level-1 observations but also a sufficient number 
of Level-2 units for robust estimation. Previous methodological 
guidelines indicate that reliable estimation of cross-level interactions 
requires at least 30–50 groups at Level-2 with adequate within-
group cases (Hox and Maas, 2004; Snijders and Bosker, 2011). 
Accordingly, the present dataset exceeds these recommended 
thresholds, ensuring adequate statistical power for detecting cross-
level moderation effects. The dependent variable (Y) in this study 
is crash severity, classified into four ordinal levels: (1) Property 
Damage Only (PDO), denoting crashes with material damage but no 
injuries; (2) Minor Injury, involving non-hospitalized injuries; (3) 
Serious Injury, requiring hospitalization; and (4) Fatality, referring 
to crashes with at least one fatality. This classification reflects a 
logically ordered progression of crash severity, recorded according 
to official Department of Highways standards, consistent with police 
definitions, and cross-validated with hospital data for serious and 
fatal cases.

The individual-level variables, as shown in Table 1 and 
detailed in the Appendix Table A1, were also derived from the 
HAIMS database to ensure consistency in data structure and 
technical compatibility for multilevel modeling. These variables 
encompass a range of factors, including environmental conditions 
at the time of the crash (e.g., lighting and road surface), roadway 
characteristics (e.g., median type and road alignment), vehicle 
conditions, risky driving behaviors (e.g., speeding, driving under 
the influence, impaired driving), and collision types. The frequency 
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FIGURE 3
Conceptual framework of multilevel factors affecting truck crash severity.

and percentage distributions of these variables across severity 
levels provide preliminary insights into how different factors may 
contribute to increased crash severity.

In addition to individual-level characteristics, provincial-
level contextual factors were incorporated as Level-2 predictors 
to account for regional variation in crash severity. Table 2 
summarizes the provincial-level variables used as Level-2 contextual 
predictors in the multilevel analysis. These include total population 
(National Statistical Office of Thailand, 2022), annual average daily 
traffic (AADT) (Bureau of Highway Safety, 2022b), and total 
Highway Length (Bureau of Highway Safety, 2022a) under the 
jurisdiction of the Department of Highways. The mean values 
indicate that, across all provinces, the average population was 
approximately 14.44 million people, the average daily traffic volume 
was about 945,850 vehicles, and the average Highway Length 
was 745.39 km per province. These variables provide important 
contextual information for capturing inter-provincial variation in 
crash severity.

3.2 Multilevel ordinal logit model

Multilevel analysis is a statistical technique used to investigate 
relationships among variables that are structured at more than 
one level or exhibit a hierarchical (nested) data structure, 
such as individual-level data nested within group-level contexts 
(Kanjanawasee, 2011; Singer, 1998). In this study, a Multilevel 
Ordered Logit Model is employed an extension of ordinal logistic 
regression that accounts for group-level clustering to analyze the 

severity of truck-involved crashes, an outcome categorized into 
ordered levels: (1) Property Damage Only, (2) Minor Injury, (3) 
Serious Injury, and (4) Fatality. The analysis is based on individual-
level crash records nested within provincial-level contexts. These 
provincial contexts may exert influences on individual behavior and 
crash outcomes and ignoring such influences may lead to biased 
estimates. By applying a multilevel modeling framework, the study 
is able to disentangle and estimate the distinct effects of variables 
operating at both individual and provincial levels, thereby enhancing 
both the explanatory power and predictive accuracy of the model.

Parameter estimation for the Multilevel Ordered Logit Model 
was conducted using Maximum Likelihood Estimation (ML) 
implemented via Mplus version 7. To evaluate model fit, several 
key indices were employed: Akaike Information Criterion (AIC) 
(Akaike, 1998), Bayesian Information Criterion (BIC) (Gideon, 
1978), and the Likelihood Ratio Test (LRT) for comparing nested 
models. Models with lower AIC and BIC values are considered to 
have better fit, while the LRT is used to assess whether a more 
complex model provides a significant improvement in explaining 
data variability over a simpler nested model. 

3.3 Model development

To comprehensively capture both direct effects and cross-
level contextual influences, this study adopts a stepwise modeling 
strategy comprising four hierarchical models, progressing from 
a basic to a more complex structure. This modeling approach 
aligns with prior empirical studies such as Chen et al. (2015), 
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TABLE 1  Descriptive statistics of individual-level variables.

Variables Category Severity injury

PDO Minor Serious Fatal Total

Environmental Factors

Crash Day Type

WeekDay 1837 (41.17%) 969 (21.72%) 215 (4.82%) 377 (8.45%) 3,398 (76.15%)

Weekend 517 (11.59%) 330 (7.40%) 78 (1.75%) 139 (3.12%) 1,064 (23.85%)

Crash Time Period

Day 1,445 (32.38%) 733 (16.43%) 152 (3.41%) 258 (5.78%) 2,588 (58.00%)

Night 909 (20.37%) 566 (12.68%) 141 (3.16%) 258 (5.78%) 1874 (42.00%)

Lighting Condition

Dark_Lit 739 (16.56%) 447 (10.02%) 103 (2.31%) 189 (4.24%) 1,478 (33.12%)

Dark_NoLit 1,615 (36.19%) 852 (19.09%) 190 (4.26%) 327 (7.33%) 2,984 (66.88%)

Road Surface Condition

Dry 2025 (45.38%) 1,133 (25.39%) 265 (5.94%) 473 (10.60%) 3,896 (87.32%)

Wet 329 (7.37%) 166 (3.72%) 28 (0.63%) 43 (0.96%) 566 (12.68%)

Roadway Characteristics

Median

Med_No 238 (5.33%) 189 (4.24%) 48 (1.08%) 113 (2.53%) 588 (13.18%)

Med_Yes 2,116 (47.42%) 1,110 (24.88%) 245 (5.49%) 403 (9.03%) 3,874 (86.82%)

Road Alignment

Curve 383 (8.58%) 220 (4.93%) 35 (0.78%) 65 (1.46%) 703 (15.76%)

Straight 1971 (44.17%) 1,079 (24.18%) 258 (5.78%) 451 (10.11%) 3,759 (84.24%)

Road Connection

NoCon 2,334 (52.31%) 1,285 (28.80%) 287 (6.43%) 502 (11.25%) 4,408 (98.79%)

Con 20 (0.45%) 14 (0.31%) 6 (0.13%) 14 (0.31%) 54 (1.21%)

Specific Locations

Others 2,166 (48.54%) 3,188 (71.45%) 4,171 (93.48%) 3,954 (88.62%) 93 (2.08%)

U-turn 21 (0.47%) 8 (0.18%) 1 (0.02%) 4 (0.09%) 34 (0.76%)

CROSS_MED 2,275 (50.99%) 1,266 (28.37%) 290 (6.50%) 504 (11.29%) 4,335 (97.16%)

Traffic Direction

Oneway 24 (0.54%) 9 (0.20%) 1 (0.02%) 4 (0.09%) 38 (0.85%)

TwoWay 2,330 (52.22%) 1,290 (28.91%) 292 (6.54%) 512 (11.47%) 4,424 (99.15%)

Vehicle Characteristics

Other 4,309 (96.57%) 4,401 (98.63%) 4,456 (99.87%) 4,445 (99.62%) 4,225 (94.69%)

Damage_V 153 (3.43%) 61 (1.37%) 6 (0.13%) 17 (0.38%) 237 (5.31%)

(Continued on the following page)
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TABLE 1  (Continued) Descriptive statistics of individual-level variables.

Variables Category Severity injury

PDO Minor Serious Fatal Total

Driving Risk Behaviors

Others 2,598 (58.22%) 3,420 (76.64%) 4,221 (94.61%) 4,022 (90.14%) 875 (19.61%)

OverLoad 42 (0.94%) 15 (0.34%) 0 (0.00%) 3 (0.07%) 60 (1.34%)

OverSpeed 1,555 (34.85%) 874 (19.59%) 194 (4.35%) 341 (7.64%) 2,964 (66.43%)

CUT_IN 155 (3.47%) 101 (2.26%) 31 (0.69%) 52 (1.17%) 339 (7.60%)

IMP_DRV 78 (1.75%) 23 (0.52%) 6 (0.13%) 13 (0.29%) 120 (2.69%)

TF_VIOL 27 (0.61%) 24 (0.54%) 8 (0.18%) 26 (0.58%) 85 (1.90%)

Drunk 7 (0.16%) 5 (0.11%) 2 (0.04%) 5 (0.11%) 19 (0.43%)

Collision Type

Other 3,604 (80.77%) 4,070 (91.22%) 4,369 (97.91%) 4,354 (97.58%) 3,011 (67.48%)

REAREND 771 (17.28%) 353 (7.91%) 78 (1.75%) 88 (1.97%) 1,290 (28.91%)

HITPCAR 87 (1.95%) 39 (0.87%) 15 (0.34%) 20 (0.45%) 161 (3.61%)

TABLE 2  Descriptive statistics of provincial-level variables.

Variables Mean Unit

Population 1444035.27 Persons

Annual Average Daily Traffic (AADT) 945850.30 Vehicles per day

Highway Length 745.39 Kilometers (km)

who employed a hierarchical Bayesian multinomial logit model 
to examine truck driver injury severity in rural crashes, explicitly 
incorporating cross-level interaction effects. Similarly, Chen et al. 
(2016) utilized a hierarchical ordered logit model that integrated 
crash-level random effects to account for within-crash correlations 
and between-crash heterogeneity, emphasizing the importance of 
acknowledging the nested structure commonly found in traffic
safety data.

Following these methodological precedents, the present study 
begins with Model 1, the Null Model, which excludes explanatory 
variables and instead focuses solely on estimating the proportion of 
variance in crash severity attributable to provincial-level differences. 
This is assessed using the Intraclass Correlation Coefficient (ICC), 
where a value exceeding 0.05 (Heck and Thomas, 2009). Indicates 
substantial between-group variance and thus supports the use of 
multilevel modeling. The Null Model serves as a baseline for 
evaluating the added explanatory power of more advanced models 
in subsequent stages.

Model 2 extends the analysis by incorporating both individual-
level (Level 1) and provincial-level (Level 2) explanatory variables 

as fixed effects to examine the direct impact of various factors on 
crash severity. This model assumes that the effects of all predictors 
are constant across provinces, thereby disallowing any variation in 
the strength of associations by contextual settings (i.e., no random 
slopes). Such an approach is appropriate for identifying direct 
effects of environmental, infrastructural, and behavioral factors on 
the severity outcomes, under the assumption of uniform influence 
across all provinces.

However, the assumption of constant effects across provinces 
in Model 2 may not fully capture the spatial heterogeneity 
present in real-world settings. To address this limitation, Model 
3 introduces additional complexity by allowing random slopes 
for selected behavioral and vehicle-related predictors. As noted 
by Grilli and Rampichini (2015), relaxing the assumption of 
constant effects is often necessary when contextual differences 
are expected to influence the relationship between predictors 
and outcomes. In line with this reasoning, the predictors in our 
study were chosen because their impacts on crash severity are 
plausibly shaped by provincial differences such as enforcement 
rigor, inspection practices, infrastructure conditions, and traffic 
environments. Recent evidence from Thailand supports this 
approach: Champahom et al. (2021) showed that risky driving 
behaviors, including abrupt lane changes and rear-end crashes, vary 
significantly across provinces, indicating context-dependent effects. 
Similarly, Salgado et al. (2022) found that mechanical failure risks 
differed across cities depending on inspection and maintenance 
systems, while Ben Laoula et al. (2023) documented that traffic 
violations such as speeding and license-related offenses were more 
prevalent in certain districts. By specifying random slopes for these 
predictors, Model 3 accounts for realistic cross-provincial variability 
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and better reflects how contextual characteristics can moderate the 
effects of individual-level risk factors.

Finally, Model 4, the most comprehensive and complex model in 
this study, incorporates cross-level interactions to examine whether 
provincial-level characteristics such as population size, average 
annual daily traffic (AADT), and total highway length under the 
Department of Highways moderate the relationships between 
individual-level behaviors and crash severity. This modeling 
approach allows for a nuanced understanding of how macro-level 
contextual factors can amplify or mitigate the effects of micro-level 
behaviors. A similar four-stage hierarchical modeling framework 
was adopted in a previous study by Chen and Jou (2019), which 
analyzed traffic crash risks in relation to public transportation 
systems in metropolitan Taiwan. Their use of nested structures and 
interaction effects highlights the importance of capturing contextual 
variability in transportation safety research.

Such an analysis provides significant policy-relevant insights, 
particularly for the development of area-based road safety 
interventions. By identifying where and how context modifies risk 
patterns, Model 4 supports the design of more targeted, efficient, 
and contextually appropriate safety measures that align with the 
geographic and infrastructural diversity of Thailand. 

4 Results

4.1 Multilevel model estimation results

All four models converged successfully with stable log-
likelihood values after a reasonable number of iterations. Parameter 
estimates were within admissible ranges, and standard errors were 
of acceptable magnitude, confirming the stability and robustness 
of the estimation process. No convergence failures or estimation 
problems were detected. Although the primary aim of this model 
development was not to select the model with the best statistical fit, 
the stepwise progression from Model 1 to Model 4 reflects a logical 
advancement in the analysis and reveals contextual mechanisms 
that are not identifiable in the initial baseline models. The inclusion 
of provincial-level variables and the examination of cross-level 
interactions play a crucial role in explaining complex phenomena, 
particularly in the context of highway crashes, which are influenced 
by both individual-level factors and broader spatial structures. The 
estimation results for all models are summarized in Tables 3–5.

4.1.1 Null Model
The analysis began with Model 1 (Null Model), which included 

no explanatory variables at either the individual or provincial 
levels. This baseline model aimed to assess whether there were 
significant differences in crash severity across provinces. The results 
indicated that the intraclass correlation coefficient (ICC) was 0.051, 
which is considered relatively substantial and statistically significant. 
This suggests that approximately 5.1% of the total variance in 
crash severity can be attributed to differences between provinces. 
Therefore, it is appropriate to apply a multilevel modeling approach 
instead of a single-level model, which would be inadequate for 
capturing the contextual effects at the provincial level. 
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TABLE 4  Random effects and cross-level interactions from multilevel ordered logit models (Models 1–4).

Variables Model 1 Model 2 Model 3 Model 4

Est. Est. OR SE CI 95% Est. OR SE CI 95% Est. OR SE CI 95%

Random Effect

DAMAGE_V - - - - - 0.09 1.094 0.076 (0.943–1.270) 0.074 1.077 0.063 (0.952–1.218)

CUT_IN - - - - - 0.375∗∗ 1.455 0.163 (1.057–2.003) 0.273 1.314 0.195 (0.897–1.926)

TF_VIOL - - - - - 0.55 1.733 0.545 (0.596–5.044) 0.297 1.346 0.271 (0.791–2.289)

OVERLOAD - - - - - 1.043∗ 2.838 0.55 (0.966–8.339) 0.843 2.323 0.579 (0.747–7.227)

REAREND - - - - - 0.124 1.132 0.082 (0.964–1.329) 0.199 1.220 0.159 (0.893–1.666)

Cross-Interaction

DAMAGE_V ×
POP

- - - - - - - - - −0.09 0.914 0.331 (0.478–1.749)

DAMAGE_V ×
AADT

- - - - - - - - - 0.076 1.079 0.291 (0.610–1.909)

DAMAGE_V ×
HW

- - - - - - - - - 0.217 1.242 0.221 (0.806–1.916)

CUT_IN ×
POP

- - - - - - - - - −0.695∗∗ 0.499 0.33 (0.261–0.953)

CUT_IN × 
AADT

- - - - - - - - - 0.167 1.182 0.277 (0.687–2.034)

CUT_IN × HW - - - - - - - - - 0.599∗∗ 1.820 0.255 (1.104–3.001)

TF_VIOL × 
POP

- - - - - - - - - −1.288 0.276 0.807 (0.057–1.341)

TF_VIOL × 
AADT

- - - - - - - - - 0.131 1.140 0.399 (0.522–2.492)

TF_VIOL × 
HW

- - - - - - - - - 0.334 1.397 0.34 (0.717–2.719)

OVERLOAD ×
POP

- - - - - - - - - 2.199∗∗∗ 9.016 0.308 (4.930–16.489)

OVERLOAD ×
AADT

- - - - - - - - - −0.797 0.451 0.572 (0.147–1.383)

OVERLOAD ×
HW

- - - - - - - - - −0.396 0.673 0.394 (0.311–1.457)

REAREND × 
POP

- - - - - - - - - 0.401 1.493 0.304 (0.823–2.710)

REAREND × 
AADT

- - - - - - - - - −0.734∗∗ 0.480 0.267 (0.284–0.810)

REAREND × 
HW

- - - - - - - - - −0.018 0.982 0.248 (0.604–1.597)

(Continued on the following page)
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TABLE 4  (Continued) Random effects and cross-level interactions from multilevel ordered logit models (Models 1–4).

Model 1 Model 2 Model 3 Model 4

Est Est OR SE CI 95% Est OR SE CI 95% Est OR SE CI 95%

Thresholds

PDO 0.110∗∗∗ 0.834 - 1.191 - 2.261∗∗ - 0.865 - −0.097∗ - 0.057 -

Minor 1.508∗∗∗ 2.332∗∗ - 1.192 - 3.780∗∗∗ - 0.87 - 1.426∗∗∗ - 0.061 -

Serious 2.034∗∗∗ 2.888∗∗ - 1.193 - 4.343∗∗∗ - 0.873 - 1.991∗∗∗ - 0.066 -

Est. = estimates; OR, odds ratio; SE, standard error; ∗p-value <0.1; ∗∗p-value <0.05; ∗∗∗p-value <0.01.

TABLE 5  Model fit statistics for multilevel ordered logit models (models 1–4).

Model fit Model 1  Model 2  Model 3 Model 4

AIC 10044.676 9743.178 9736.899 9732.572

BIC 10063.886 9909.665 9935.403 10027.127

LL −5019.338 −4845.589 −4837.449 −4820.286

-2LL 10038.676 9691.178 9674.898 9640.572

Likelihood Ratio Test (LRT) - 0.000 0.006 0.003

Number of parameters 3 26 31 46

4.1.2 Individual-level predictors
In Model 2, individual-level (Level-1) variables were introduced, 

encompassing road characteristics, environmental conditions, 
vehicle condition, driving behaviors, and collision types. The aim 
was to identify preliminary risk factors associated with crash 
severity. The results revealed that several factors were significantly 
correlated with the severity of crashes.

Notably, certain physical characteristics of roads showed 
strong associations. Roads without a central median increased 
the likelihood of severe outcomes by approximately 55.30%–62%, 
while straight road segments were associated with a 30.90%–39.60% 
higher risk. U-turn zones also exhibited a heightened probability of 
severe crashes.

Regarding environmental conditions, crashes occurring at night 
and on weekends tended to be more severe, particularly those 
at night, which increased the risk by around 36.20%–37.80%. 
Interestingly, wet road surfaces were associated with a reduction 
in crash severity by about 23.80%–26.00%, possibly reflecting more 
cautious driving behavior in adverse road conditions.

As for vehicle-related factors, trucks with mechanical defects 
were associated with a 33.20% reduction in severity, which might 
be due to more careful driving when vehicle issues are known. In 
terms of driver behavior, driving under the influence of alcohol 
was the most critical risk factor, increasing the likelihood of severe 
crashes by 121.60%–147.50%. Conversely, drivers with impaired 
performance due to fatigue or drowsiness showed a decrease in 
severity, potentially because of increased caution while driving in 
such conditions. Speeding was associated with increased severity 
only in specific areas.

Finally, regarding collision types, rear-end crashes were 
associated with a reduction in severity by about 23.70%, likely due 
to their occurrence at lower speeds. Collisions involving parked 
vehicles showed a slight decrease in severity but were not statistically 
significant.

These findings indicate that crash severity results from specific 
risk behaviors and localized environmental conditions, forming a 
solid foundation for advancing to higher-level models. 

4.1.3 Provincial-level predictors
In Model 3, provincial-level (Level-2) variables were 

incorporated, including population size, average annual daily 
traffic (AADT), and total highway length in each province, to 
examine whether spatial context contributes to crash severity. 
The results indicated that AADT had a statistically significant 
negative coefficient, suggesting that provinces with higher traffic 
volumes tend to experience less severe crashes. This may reflect the 
effects of slower traffic speeds or improved road infrastructure in 
high-volume areas.

Additionally, the total highway length in a province was also 
negatively associated with crash severity, implying that greater road 
coverage may contribute to better traffic dispersion or access to 
safer routes. However, provincial population size did not show a 
significant association at this stage, although its influence becomes 
more apparent in Model 4 when cross-level interactions are 
considered.

The inclusion of Level-2 variables also led to a reduction in 
the residual variance of certain driving behaviors, indicating that 
crash severity is not solely the result of individual-level risk factors. 
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Instead, it is also shaped by the structural characteristics of the 
province in which the driver operates. 

4.1.4 Cross-level interactions
Finally, Model 4 introduced an additional layer of complexity 

by incorporating cross-level interactions between individual-level 
factors and provincial-level contextual variables. This step aimed 
to examine whether the effects of certain risk behaviors vary 
depending on the spatial characteristics of the province where the 
crash occurred.

The results indicate that the influence of risky driving behaviors 
among truck drivers is significantly moderated by contextual 
characteristics at the provincial level. Notably, abrupt cut-in 
behavior was associated with lower crash severity in provinces with 
higher population density, likely due to reduced average speeds 
and more defensive driving in congested urban environments. 
In contrast, the same behavior was linked to increased severity 
in provinces with greater Highway Length, which typically 
reflects rural areas where higher travel speeds and limited safety 
infrastructure heighten the consequences of such maneuvers.

For overloading behavior, a significant positive interaction with 
population density was observed, suggesting that crashes involving 
overloaded trucks tend to be more severe in densely populated 
areas. This may stem from a higher likelihood of collisions involving 
vulnerable road users such as pedestrians and motorcyclists. In 
contrast, rear-end collisions demonstrated a negative interaction 
with average annual daily traffic (AADT). In provinces with high 
AADT often urbanized areas with frequent congestion slower speeds 
likely mitigate the severity of such crashes due to reduced kinetic 
energy upon impact.

Taken together, these findings underscore that the relationship 
between truck driver behavior and crash severity is not 
homogeneous across space. Instead, it is shaped by interactions 
with regional-level characteristics, emphasizing the importance of 
incorporating contextual variables into models assessing crash risk. 

4.1.5 Model fit evaluation and methodological 
implications

Beyond parameter estimation, model fit indices such as 
the Akaike Information Criterion (AIC), Bayesian Information 
Criterion (BIC), and the −2 Log-Likelihood (-2LL) offer valuable 
insights into the explanatory performance of the models developed. 
From Model 1 to Model 4, both AIC and -2LL consistently declined 
(e.g., from 10,044.676 to 10,038.676 in Model 1 to 9,733.306 and 
9,640.572 in Model 4), suggesting improvements in model fit and 
a reduction in residual deviance as model complexity increased.

In addition, Likelihood Ratio Tests (LRT) used to compare 
nested models indicated that incorporating random slopes and 
cross-level interactions (from Model 2 to 3 and from Model 3–4) 
significantly enhanced the ability to account for variance in the 
outcome variable. This reflects the contribution of hierarchical 
model structures to capturing latent heterogeneity across provinces.

On the other hand, BIC values showed a slight increase 
in later models, particularly in Model 4 (10,027.860), despite 
improvements in log-likelihood. This occurs because BIC applies 
a stronger penalty for model complexity, which is sensitive to 
both the number of parameters and the sample size. Accordingly, 
while AIC and -2LL consistently indicated improved explanatory 

performance as complexity increased, BIC values reflected a more 
conservative stance that prioritizes parsimony and the avoidance 
of overfitting (Burnham and Anderson, 2004; Raftery, 1995). This 
divergence illustrates the expected trade-off between favoring richer 
explanatory structures versus maintaining model simplicity.

In this study, the primary objective was not to identify a single 
“best” model based solely on statistical fit, but rather to uncover 
how individual-level driver behaviors interact with provincial-level 
contextual factors. From this perspective, the added complexity of 
Models 3 and 4 is substantively justified, as these specifications 
revealed cross-level interactions and contextual heterogeneity that 
would not be visible in simpler structures. Thus, fit indices must 
be interpreted alongside the study’s analytical goals: although 
BIC favors parsimony, the richer models offer greater theoretical 
insight and policy relevance. From a methodological perspective, 
changes in fit indices should therefore be viewed in conjunction 
with the research objectives. The progression from basic to more 
contextually nuanced models was aimed not only at improving 
statistical fit but also at identifying underlying behavioral and 
contextual mechanisms driving crash severity.

For instance, results from Models 3 and 4 highlighted that 
the effects of certain driver behaviors (e.g., straight-path driving, 
traffic violations) can vary by province. Moreover, provincial-level 
attributes such as population size and AADT appear to influence 
the strength of individual-level risk factors interactions that were 
not evident in the more basic models. These findings illustrate the 
methodological value of incorporating both random effects and 
cross-level interactions. While some fit indices may favor simpler 
structures, richer models enable more nuanced interpretations of 
behavioral dynamics and contextual influences, offering deeper 
insight into the mechanisms driving crash severity. 

5 Discussion

5.1 Interpretation and contextual insights

The results of the multilevel model indicate that the severity 
of truck-involved crashes is not solely the result of driver behavior 
but is also significantly influenced by the contextual characteristics 
of the crash location. This finding highlights the importance of 
analytical approaches capable of handling nested data structures, 
where observations are organized at multiple levels. The statistically 
significant intraclass correlation coefficient (ICC = 0.051) supports 
the fundamental assumption that crash severity is not uniformly 
distributed across provinces in Thailand, thereby reinforcing the 
hypothesis of spatial heterogeneity in road safety research.

At the individual level, roadway design features emerged as 
critical determinants of crash severity. Roads lacking median 
barriers consistently exhibited higher risks of severe outcomes, 
consistent with Russo and Savolainen (2018), who showed that 
median-crossover crashes are among the most hazardous events 
and that the installation of barriers substantially reduces severity. 
In Thailand, Se et al. (2024) further demonstrated that roadway 
geometry, alignment, and median openings significantly shape 
truck crash outcomes, with effects varying over time. Similarly, 
Ahmed et al. (2018) found that heavy truck crashes on state and 
interstate highways in the United States were two to four times 
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more likely to be severe than those on local roads, highlighting 
the role of road classification and geometry. Evidence from other 
developing countries also corroborates these patterns: Rahimi et al. 
(2020) reported in Iran that roadway alignment, curvature, and 
classification strongly influenced the likelihood of severe truck 
crashes, while Tian et al. (2024) found in China that alignment, 
visibility, and section type were critical determinants of heavy 
truck crash severity. Taken together, these studies reinforce the 
robustness of our findings by showing that straight segments, U-turn 
points, and the absence of median barriers consistently exacerbate 
truck crash severity not only in Thailand but also across diverse 
developing contexts. The influence of proximity to access points of 
public or commercial areas was evident only in preliminary models 
and diminished after controlling for provincial-level variables. 
This suggests that increased risk is more attributable to broader 
contextual factors such as urban density, land-use patterns, and the 
complexity of the road network, rather than the mere presence of 
access points.

Environmental and temporal factors also played a significant 
role. Nighttime crashes showed higher severity, likely due to reduced 
visibility, fatigue, and higher speeds in low-traffic periods, while 
weekend crashes were more severe (Anderson and Hernandez, 
2017), reflecting altered freight travel patterns and delivery 
pressures. Comparable evidence has been reported in other 
developing countries. For instance, Bhuiyan et al. (2022), analyzing 
crash severity in Bangladesh, identified environmental conditions 
such as the day and time of crash as significant determinants of 
injury outcomes. Similarly, Junaid et al. (2025) found in Pakistan that 
involvement of heavy vehicles, rainy weather, and the presence of 
only painted medians significantly increased the likelihood of severe 
injuries among vulnerable road users. This convergence of findings 
indicates that temporal and environmental risk factors are not 
unique to Thailand but represent broader patterns across developing 
contexts where enforcement gaps and fatigue accumulation further 
exacerbate crash severity.

Regarding driver behavior, driving under the influence of 
alcohol emerged as a primary risk factor, consistently doubling the 
likelihood of severe crashes across all models. This underscores 
the critical need for stringent law enforcement and targeted 
interventions, especially among commercial drivers. Similar 
findings have been reported in developing countries, where weak 
enforcement of drink-driving regulations has been linked to 
heightened severity in heavy-vehicle crashes (Rahimi et al., 2020). 
Conversely, conditions indicative of impaired driver capacity such 
as drowsiness, fatigue, or distraction were associated with reduced 
crash severity, possibly reflecting more cautious driving behavior 
when drivers are aware of their limitations, although such effects 
remain inconsistent across real-world settings. Speeding violations 
were also linked to increased severity in certain models, indicating 
potential interactions between speed and regional contextual 
factors. This highlights that increased speed not only raises the 
probability of crash occurrence but also directly exacerbates injury 
severity for drivers and other road users involved in truck-related 
incidents (Chen and Chen, 2011; Ahmed et al., 2018). Collision 
types also influenced severity outcomes. Rear-end collisions 
generally resulted in lower severity compared to other types, 
although this effect was not statistically significant after adjusting for 
provincial factors. Random slope analyses indicated that the effect 

of rear-end collisions was consistent across provinces. Collisions 
involving stationary vehicles showed a trend toward reduced severity 
but lacked statistical significance.

Some findings appeared counterintuitive. Notably, crash severity 
was found to decrease in wet road conditions and when vehicles 
had mechanical defects. While unexpected, such outcomes can 
be understood through risk compensation theory (Wilde, 1982), 
which posits that drivers consciously or subconsciously adjust 
their behavior when they perceive higher risks. For instance, in 
the presence of wet road surfaces or mechanical defects, drivers 
may reduce speed or adopt more cautious driving styles, thereby 
lowering the likelihood of severe outcomes (Chen and Chen, 
2011). Importantly, these results should not be interpreted as 
suggesting that adverse conditions are protective factors; rather, 
they reflect temporary behavioral adaptations that may buffer 
severity in specific contexts. To avoid misinterpretation, this study 
acknowledges the limitation that such compensatory behaviors may 
not consistently occur in real-world settings, and future research 
should incorporate behavioral or telematics data to validate these 
mechanisms. Accordingly, safety policies should integrate direct risk 
mitigation with strategies that enhance drivers’ risk perception and 
self-regulation.

Meanwhile, the analysis at the provincial level reveals that 
structural characteristics of geographical areas significantly 
influence the severity of truck-involved crashes. Key contextual 
factors such as population size, average annual daily traffic (AADT), 
and the total length of highways under the responsibility of the 
Department of Highways exert varying effects on crash outcomes. 
Provinces with higher population density tend to experience more 
severe crashes, likely due to the increased complexity of traffic 
environments and heightened risk of conflicts between various types 
of road users (Cespedes et al., 2024). In contrast, provinces with 
higher AADT levels typically report crashes of lower severity. This 
inverse relationship may be attributed to the fact that in areas with 
high traffic volumes, average driving speeds tend to be lower, thereby 
reducing the likelihood of severe crashes. This finding aligns with 
prior studies Golob Thomas and Recker Wilfred (2003), Golob et al. 
(2004), which have noted that crash severity tends to be negatively 
associated with overall traffic volume. Comparable evidence has 
also been reported in other developing contexts. Zhang et al. (2013), 
analyzing over 7,000 crashes annually in Guangdong Province, 
China, found that roadway and environmental conditions were 
significant predictors of accident severity, and highlighted that 
traffic exposure and insufficient enforcement aggravated fatality 
risks. Their results reinforce that AADT, and related exposure 
measures are structural determinants of crash severity across 
rapidly developing economies. On the other hand, provinces with 
longer highway networks under government jurisdiction tend to 
experience more severe crashes. This may be because such roads 
are often located in rural or interurban areas where average vehicle 
speeds are higher, and enforcement of traffic regulations as well 
as the availability of safety infrastructure are limited. As a result, 
crashes in these settings are more likely to lead to serious injuries or 
fatalities.

Further insight is gained through the analysis of cross-level 
interaction results provide critical insights into how the severity of 
truck-involved crashes is shaped by the interplay between individual 
driving behavior and regional contextual factors. As illustrated in 
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FIGURE 4
Cross-level interaction effects from the multilevel ordered logit models. (A) Cut-in × Population: severity decreases in high-population areas, (B)
Cut-in × Highway Length: severity increases with longer distance, (C) Overload × Population: severity rises in high-population areas, (D) Rear-end × 
AADT: severity decreases with higher traffic volume.

Figure 4A, cut-in maneuvers were more consequential in provinces 
with lower population density, where higher operating speeds 
and weaker safety infrastructure exacerbate the risks of abrupt 
lane changes. Conversely, Figure 4B shows that cut-in severity was 
heightened in provinces dominated by long-distance highways, 
underscoring the role of traffic speed and road type in amplifying 
crash outcomes. These spatial dynamics magnify the consequences 
of risk-taking behaviors in rural contexts where crash energy is 
amplified, and protective infrastructure is often lacking.

The vehicle-related interactions also confirm the influence of 
contextual moderators. Figure 4C demonstrates that overloading 
leads to disproportionately severe crashes in densely populated 
provinces, highlighting the risks of heavy trucks operating in 
constrained urban environments with limited maneuvering space. 

Meanwhile, Figure 4D shows that rear-end collisions appear to be 
less harmful in high-AADT areas, suggesting that traffic congestion 
and reduced operating speeds can buffer the severity of impacts. 
Taken together, these findings emphasize the dual influence of socio-
demographic and infrastructural conditions on the relationship 
between driver behavior and crash severity.

Collectively, these findings underscore the importance of 
designing context-sensitive road safety interventions for heavy 
vehicles. One-size-fits-all policies may fail to account for how local 
traffic environments interact with driver behaviors. Policymakers 
should therefore account for provincial heterogeneity considering 
variations in highway extent, traffic exposure, and population 
density when developing targeted strategies. By tailoring safety 
measures to reflect both behavioral and contextual dynamics, greater 
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effectiveness and efficiency in reducing severe outcomes can be 
achieved, such as stricter enforcement of lane-change violations in 
rural provinces, enhanced monitoring of truck overloading in urban 
areas, and targeted interventions to mitigate rear-end crashes in 
low-AADT settings. 

5.2 Policy implications

Based on the empirical analysis, this study proposes targeted 
policy recommendations aligned with key risk factors in truck-
related crashes. These recommendations are organized by four major 
domains environmental factors, roadway characteristics, driving 
risk behaviors, and collision types each of which significantly 
influences crash severity and requires context-specific policy 
responses.

Environmental Factors, including crash day type, crash time 
period, lighting conditions, and road surface conditions, are 
critical determinants of crash severity involving trucks. Wet road 
surfaces, although associated with a lower severity level, may 
still correspond with an increased frequency of crashes during 
adverse weather conditions. This finding likely reflects behavioral 
adaptation, whereby truck drivers reduce their speed or drive more 
cautiously. Nonetheless, adverse weather can still elevate crash 
risk. Therefore, policy recommendations include the development 
of real-time weather alert systems, adaptive speed limit signage 
responsive to weather changes, and infrastructure investments in 
high-friction pavement and effective drainage systems to prevent 
skidding and loss of control under wet conditions. With regard to 
lighting, enhancing nighttime illumination and visibility through 
signage especially at conflict-prone locations such as intersections 
and U-turn areas can significantly improve safety. Additionally, 
time-specific crash patterns, such as incidents during nighttime 
or holidays, should inform targeted enforcement schedules and 
possible restrictions on truck operations during high-risk periods.

Roadway Characteristics, including median presence, road 
alignment, intersection design, and traffic direction, strongly 
influence crash severity in truck-related incidents. Roads lacking 
central medians are significantly associated with higher severity due 
to the increased risk of head-on collisions involving heavy trucks. 
Consequently, these locations should be prioritized for median 
installation, particularly along truck-dense corridors. Moreover, 
long straight segments, often perceived as safe, can encourage 
speeding and driver inattention in truck operators. Accordingly, 
infrastructure countermeasures such as rumble strips, dynamic 
speed displays, and variable speed limits should be implemented. 
Special attention is also needed for geometric design at critical 
points like U-turns or merging zones. Design standards must 
accommodate the turning radius and braking characteristics of large 
trucks while ensuring sufficient sight distance to reduce crash risk 
with smaller vehicles.

Vehicle Defects Interestingly, vehicle defects are associated with 
lower crash severity, possibly due to more cautious driving when 
mechanical issues are present. While this may reflect behavioral 
compensation, it does not diminish the need for proactive policies. 
Regular vehicle inspections, preventive maintenance certifications, 
and in-vehicle diagnostic systems are essential to ensure mechanical 
safety and reduce crash risk.

Driving Risk Behaviors among truck drivers most notably 
alcohol-impaired driving and overloading emerge as key 
contributors to crash severity. Alcohol use behind the wheel 
significantly increases the likelihood of fatal outcomes, more than 
doubling the risk. Effective countermeasures include mandatory 
installation of in-cab alcohol ignition interlocks for repeat offenders 
and stricter legal penalties. Overloading also exhibits context-
dependent effects, particularly exacerbating severity in high-
population provinces. This highlights the need for localized 
enforcement strategies, such as mobile weigh-in-motion (WIM) 
technology, expanded random inspections in urban freight 
corridors, and differentiated fines based on area-specific risk. These 
approaches ensure more efficient enforcement aligned with local 
risk patterns.

Collision Type plays a defining role in injury outcomes among 
truck crashes. Specifically, rear-end collisions are associated with 
comparatively lower severity, potentially due to reduced impact 
force or lower speeds in congested conditions. However, given the 
high frequency of rear-end crashes in truck operations, preventive 
measures remain essential. Policy actions include installing forward 
collision warning systems, automatic emergency braking (AEB) 
technologies, and head-up displays (HUDs) providing real-time 
distance monitoring to reduce abrupt braking and improve reaction 
time in high-risk zones.

Cross-Level Policy Insights, Multilevel analysis reveals that 
the effects of risk behaviors vary according to provincial-level 
characteristics. In densely populated provinces, overloading 
significantly increases crash severity suggesting the need for 
intensified enforcement and urban-specific inspection protocols. 
Conversely, cut-in behaviors (i.e., abrupt lane changes) are more 
hazardous in provinces with longer highway networks and higher 
average speeds. These findings underscore the need for safer 
entry/exit designs, location-specific enforcement via surveillance 
technology, and hazard signage. Rear-end collisions, although less 
severe in provinces with higher AADT, still occur frequently and 
warrant continuous implementation of in-vehicle warning systems.

In summary, effective truck safety policy must be spatially 
adaptive taking into account both driver behavior and the structural 
features of each province. This context-aware approach can more 
precisely address localized risk patterns and reduce the severity of 
crashes involving heavy vehicles. 

6 Conclusion

This study provides compelling evidence that the severity 
of truck-involved crashes is shaped by a dynamic interplay 
between driver behavior and the spatial characteristics of the crash 
environment. By employing a multilevel modeling framework, the 
research reveals hidden contextual mechanisms and cross-level 
interactions that challenge the conventional assumption of uniform 
risk patterns across regions. Key findings include the elevated 
severity associated with overloading in densely populated provinces, 
the mitigating role of high traffic volumes in rear-end crashes, and 
the variation in crash outcomes caused by abrupt driving maneuvers 
depending on highway characteristics.

These results highlight the need for safety strategies that go 
beyond individual behavior modification. Effective road safety 
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interventions must be spatially adaptive incorporating regional 
infrastructure, enforcement capabilities, traffic density, and 
demographic factors. Tailoring safety measures to align with the 
local conditions of each province will enhance the precision and 
equity of policy implementation.

Ultimately, this study contributes to the broader discourse in 
transportation safety research by demonstrating the methodological 
and practical value of multilevel analysis. It calls for a paradigm 
shift in national safety planning: from standardized, one-size-
fits-all approaches to differentiated, evidence-based strategies that 
reflect Thailand’s spatial diversity. Such a direction is critical for 
sustainably reducing the burden of severe truck-related crashes 
and improving road safety outcomes at both individual and
provincial levels. 

7 Limitations and future research

Although this study provides valuable insights through the 
application of a multilevel framework, several considerations should 
be noted. The use of cross-sectional data offers a complete and 
consistent view of truck-involved crashes; however, such a design 
restricts causal inference, and the results should therefore be 
interpreted as associations rather than causal relationships. In this 
regard, potential endogeneity between AADT and crash severity 
cannot be fully ruled out, as reverse causality or unobserved 
confounding may still exist despite the inclusion of provincial-level 
controls. Extending future research to longitudinal or multi-year 
datasets would allow for a more dynamic assessment of how crash 
severity patterns evolve over time and under changing policy or 
infrastructural conditions, and would also permit more rigorous 
treatment of endogeneity, for example, through panel designs or 
instrumental variable approaches.

In addition, the HAIMS database, while official and 
comprehensive, may be influenced by differences in reporting 
practices and data accessibility across provinces. Such variation 
can affect comparability at the provincial level. Future 
studies could benefit from triangulating HAIMS records with 
complementary sources such as hospital injury registries, police 
data, or insurance claims to strengthen both representativeness
and validity.

Moreover, the stepwise progression from Models 1 to 4 
provided an internal form of robustness assessment, as the main 
findings remained consistent across increasingly complex model 
specifications. Building on this, future research could further extend 
robustness evaluations by exploring alternative modeling strategies 
or integrating complementary datasets to enhance the stability and 
generalizability of the results.

While the multilevel analysis identifies significant contextual 
relationships at the provincial level, it does not fully explain the 
underlying mechanisms through which regional characteristics 
influence driver behavior and crash outcomes. Further studies 
should incorporate qualitative methods, such as in-depth interviews, 
or more granular quantitative approaches, including spatial 
analytics or vehicle mobility data, to gain deeper insight into 
how structural contexts shape risky driving behaviors and crash
severity.
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Appendix

TABLE A1  Variable descriptions.

Variable Category Description

Provincial-level factors

Population Total population of the province

AADT Average Annual Daily Traffic on provincial highways

Highway Length Total length (in kilometers) of highways under the Department of Highways within the province

Individual-level factors

Environmental factors

Crash Day Type
Weekday Monday to Friday

Weekend Saturday and Sunday

Crash Time Period
Day 06:01–18:00

Night 18:01–06:00

Lighting Condition
Dark_Lit Dark with street lighting

Dark_NoLit Dark without street lighting

Road Surface Condition
Dry Dry road surface

Wet Wet or slippery road surface

Roadway Characteristics

Median Presence
Med_Yes Presence of central median

Med_No No central median

Road Alignment
Curve Curved road segment

Straight Straight road segment

Road Connection
NoCon No road connection

Con Presence of road connection or merging point

Specific Locations

Others Other locations

U-turn U-turn area

CROSS_MED Median crossing area

Traffic Direction Oneway One-way traffic

TwoWay Two-way traffic

Vehicle Characteristics

Others Vehicle without mechanical defects

Damage_V Vehicle with mechanical defects
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TABLE A1  (Continued) Variable descriptions.

Variable Category Description

Driving Risk Behaviors

Others Other risky driving behaviors

OverLoad Vehicle overloaded

Speed Speeding behavior

CUT_IN Cut-in or abrupt lane changes

IMP_DRV Improper driving

TF_VIOL Traffic violation

Drunk Driving under the influence of alcohol

Collision Type

Other Other types of collisions

REAREND Rear-end collision

HITPCAR Collision with a parked vehicle on the roadside
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