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Truck-involved crashes in Thailand frequently lead to severe consequences
due to the vehicles’ large size, heavy loads, and high-speed operations.
Despite growing concerns, most previous studies have used single-level models
that overlook the hierarchical structure of crash data and fail to account
for spatial and contextual variations across regions. This study applies a
Multilevel Ordered Logit Model to examine factors influencing truck crash
severity by integrating individual-level variables (e.g., driver behavior, vehicle
condition, environmental factors) with province-level contextual factors (e.g.,
population size, AADT, Highway length). The model captures both direct effects
and cross-level interactions to assess how regional characteristics shape the
relationship between individual risk factors and crash severity. The results
reveal substantial provincial variation and demonstrate that contextual factors
significantly moderate the impact of driver behavior on crash outcomes. These
findings emphasize the importance of adopting multilevel analytical frameworks
in road safety research, especially in developing countries. The study contributes
to a more comprehensive understanding of truck-related crash mechanisms
and provides practical insights for designing targeted, context-sensitive safety
policies that align with the unique characteristics of each province.

KEYWORDS

multilevel modeling, truck crashes, injury severity, cross-level interactions, spatial
analysis

1 Introduction

Road traffic crashes remain one of the most pressing safety challenges in Thailand,
particularly those involving trucks, which tend to be more severe and result in
substantial loss of life and property. According to the World Health Organization
(World Health Organization, 2023), Thailand reports a road traffic fatality rate of 25.4
deaths per 100,000 population, among the highest in Southeast Asia. Truck-related
crashes play a significant role in this statistic due to the inherent characteristics of
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FIGURE 1

Annual truck crash rate per 10,000 registered trucks in Thailand (2012-2022).

large commercial vehicles such as their size, weight, and high-
speed operation over long distances. Data from the Department
of Land Transport indicate that, as of 2024, the number of
registered trucks in Thailand exceeded 1.24 million units, marking
a 6.70% increase from the previous year (Department of Land,
2024). As shown in Figure 1, the number of truck crashes per
10,000 registered vehicles fluctuated notably between 2012 and
2022, peaking at 48.23 incidents per 10,000 trucks in 2018, before
declining to 30.04 in 2022 (Thailand Road Safety Collaboration,
2023). This variability underscores the unpredictability of road
freight safety trends and highlights the urgent need to investigate
the underlying factors contributing to crash injury severity. Of
particular interest are driver behavior characteristics, in conjunction
with provincial-level contextual factors, which may exert hidden but
critical influences on crash outcomes.

Beyond temporal fluctuations, spatial disparities are
also evident. Figure 2 illustrates the provincial-level fatality rates
per 100,000 population across Thailand, revealing substantial
spatial disparities in road traffic risk. To effectively illustrate
these variations, the fatality rates are categorized into distinct
ranges using percentile divisions. This methodological approach
not only highlights absolute differences but also clarifies each
province’s relative position within the national spectrum of risk.
Provinces with high fatality rates (exceeding 1.76 deaths per 100,000
population) tend to cluster in specific regions, while others report
zero fatalities. These variations may reflect differences in geographic
conditions, data reporting systems, law enforcement rigor, or
road user behavior across regions. Such disparities underscore the
uneven distribution of road safety risks nationwide and highlight
the necessity of integrating spatial-level factors with individual-
level driving behaviors. A more systematic, multilevel approach is
therefore essential to uncover the underlying mechanisms shaping
the severity of traffic crashes.

Previous research has identified a wide range of risk factors
associated with the severity of traffic crashes, including driver
behavior, age, gender, fatigue, speed at the time of the crash,
physical road characteristics, and environmental conditions
(Se et al, 2024; Tahmidul Haq et al., 2021; Laphrom et al.,
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2024). However, most of these studies have relied on single-level
statistical models that assume the independence of observational
units, without accounting for the hierarchical structure of real-
world crash data. For instance, individual drivers are embedded
within distinct provincial contexts that differ in terms of social,
economic, and physical characteristics. Such analytical limitations
may lead to incomplete interpretations, as they fail to capture
contextual influences or spatial heterogeneity across provinces.
Structural-level factors such as population size (Nieminen et al.,
2002; Cespedes et al, 2024), average annual daily traffic
(AADT) (Geedipally et al., 2010; Gatari¢ et al., 2023), and road
network density (Bureau of Highway Safety, 2022a), may play a
critical role in shaping both driving behavior and crash outcomes.
In this regard, multilevel modeling has been proposed as a more
effective analytical framework for disentangling the effects of
It enables the
estimation of between-group variability and the exploration of

individual-level and contextual-level variables.

cross-level interactions.

In transportation safety research, only a limited number of
studies have explicitly adopted multilevel approaches. Chen et al.
(2015) employed a hierarchical Bayesian model to investigate truck
driver injury severity and demonstrated that failure to account for
nested crash data structures led to biased estimates of behavioral
risk factors. Chen et al. (2016) extended this line of work by
applying a hierarchical ordered logit model to rural crashes, showing
that the inclusion of crash-level random effects and cross-level
moderators substantially improved explanatory accuracy. These
studies provide strong evidence that multilevel frameworks are
superior to single-level approaches in analyzing crash severity,
as they quantify higher-level variance and capture contextual
moderation effects that would otherwise remain hidden. By contrast,
other advanced modelling contributions such as Islam et al. (2022),
Hosseinpour and Haleem (2021), Alrejjal et al. (2021), Casado-
Sanz et al. (2020) focus on unobserved heterogeneity through mixed
logit, random-parameters, correlated random-parameters, or latent-
cluster frameworks. While valuable, these approaches primarily
capture individual-level variation and do not explicitly estimate
higher-level variance or cross-level interactions. Building on these
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empirical insights, it is important to articulate the theoretical
mechanisms through which provincial-level contexts may influence

severity.
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Theoretically, provincial-level conditions such as population

density, traffic volumes, and highway length may influence injury

severity through several mechanisms. Higher traffic volumes
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can intensify time pressure and overtaking maneuvers; greater
population density may alter enforcement visibility and emergency
response times; and longer highway networks can heighten fatigue
risks for truck drivers. These pathways highlight why contextual
conditions are essential moderators of individual-level crash
determinants.

In addition, behavioural theories provide further insight
into why Risk
Homeostasis Theory (Wilde, 1982), drivers adjust their perceived
level of acceptable risk in response to environmental cues. This

contextual effects matter. According to

implies that the same risky behavior may result in different severity
outcomes depending on provincial-level conditions, reinforcing the
importance of modeling cross-level interactions.

For these reasons, this study adopts a multilevel ordered logit
model. While mixed logit frameworks account for unobserved
individual heterogeneity and generalized ordered logit models
relax the proportional odds assumption, neither directly estimates
between-province variance nor tests for cross-level moderation.
Given our research objective to examine how provincial-level
factors interact with individual-level risks in truck crashes the
multilevel ordered logit model provides the most conceptually and
methodologically appropriate framework.

To date, no known studies in Thailand have systematically
applied multilevel models to investigate truck crash severity by
integrating individual-level driver behavior with province-level
contextual factors. In particular, there is a lack of research
linking risky driving behavior to structural characteristics such as
population size, AADT, or road infrastructure, nor has there been
adequate examination of how these contextual variables moderate
the relationship between driving behavior and crash severity. This
research gap is of both theoretical and policy significance, as it
limits our ability to develop localized, evidence-based road safety
interventions tailored to regional conditions. Recognizing these
limitations, the present study seeks to fill this gap.

To address this gap, the present study aims to examine the
factors influencing the severity of truck-involved crashes in Thailand
using a Multilevel Ordered Logit Model. This method is well-suited
for analyzing hierarchically structured data where individuals are
nested within provinces. The model incorporates individual-level
factors such as driver behavior, vehicle conditions, environmental
settings, and collision characteristics, alongside province-level
factors such as population size, AADT, and total highway length. The
study also investigates provincial differences in crash severity and
assesses whether province-level characteristics moderate the effects
of individual-level risk factors.

This research is grounded in a conceptual framework that
acknowledges the hierarchical nature of crash data a perspective
that has not yet been applied to truck-related crashes in Thailand.
By integrating micro-level behavioral data with macro-level spatial
contexts, the study highlights the complex interconnections
between risky behaviors and structural environments. Moreover, the
inclusion of cross-level interaction analysis offers new insights into
how the same behavior may have differing impacts across regions,
underscoring the importance of flexible and context-sensitive road
safety strategies. The findings are expected to contribute empirical
evidence to support the development of region-specific traffic safety
policies that are responsive to local realities.
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2 Conceptual foundations and related
studies

2.1 Individual-level impact on the severity
of truck injuries

The severity of injuries resulting from truck-related crashes is
not a random occurrence, nor can it be attributed to a single factor.
Instead, it results from the complex interplay of various individual-
level determinants, including driver behavior, vehicle technical
conditions, environmental contexts, and the specific nature of
the collision. A systematic investigation that clearly distinguishes
the roles of these factor groups allows for a more profound
understanding of the mechanisms underlying injury severity. Such
insights are essential for designing targeted and effective policy
interventions that correspond to the behavioral risk profiles of
specific groups.

Based on empirical evidence and an extensive literature
review, individual-level determinants of injury severity can be
categorized as follows:

Environmental Factors, Environmental conditions at the time of
the crash play a critical role in determining injury severity. Crashes
occurring during weekends, nighttime hours (Behnood and Al-
Bdairi, 2020; Habib et al., 2025; Champahom et al., 2023; Wang et al.,
2019), or in poorly lit areas often reflect temporal and spatial
contexts where changes in driver behavior and roadway conditions
are more pronounced (Uddin and Huynh, 2018; Wei et al., 2022;
Hao et al., 2016; Habib et al., 2025; Azimi et al., 2022; Uddin
and Huynh, 2020). Furthermore, road surface conditions such
as dry versus wet pavement may influence vehicle traction and
visibility, thereby affecting crash outcomes (Habib et al., 2024;
Yu et al, 2022; Chen et al, 2015; Champahom et al., 2023;
Chen and Chen, 2011).

Roadway Characteristics, Roadway characteristics represent
critical physical factors that should be incorporated into analyses
of crash severity. In particular, roads without a median, straight
road segments, two-way traffic roads, and areas with direct access to
private or commercial premises such as U-turn locations, pedestrian
crossings with central refuges, or grade-separated intersections often
involve complex traffic patterns. These conditions can encourage
risky driving behaviors, such as abrupt lane changes or sudden cut-
ins, reflecting both the intricacy of traffic flow and deficiencies in
road space management. Such features may be linked to different
patterns of driver behavior and crash occurrence (Azimi et al., 2022;
Alrejjal et al., 2021; Champahom et al., 2023).

Vehicle Characteristics, the technical condition of trucks such as
defective brakes, malfunctioning steering systems, or worn tires can
significantly influence both the occurrence and severity of crashes.
These mechanical deficiencies represent the operational readiness of
the vehicle and its actual condition during use. They serve as key
indicators of roadworthiness and may play a crucial role in shaping
crash outcomes.

Driving Risk Behaviors, Risky driving behavior is a critical
individual-level factor that contributes both to the likelihood of
crash occurrence and the severity of its outcomes. Common
behaviors examined in the literature include abrupt cut-ins, driving
under the influence of alcohol, and violations of traffic regulations
(Chen et al., 2015; Behnood and Al-Bdairi, 2020; Champahom et al.,
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2023). Additional behaviors such as overloading beyond legal limits
(Wang et al., 2019; Wang et al., 2021; Chen et al., 2020), excessive
speeding (Chen et al., 2015; Wang et al., 2021), and impaired driver
condition such as drowsiness, fatigue, or lack of attention have also
been found to significantly affect drivers’ decision-making and their
ability to respond to sudden hazards (Behnood and Al-Bdairi, 2020).

Collision Types, the type of collision plays an important
role in determining the severity of injuries sustained in truck
crashes. Common patterns such as rear-end collisions or crashes
involving parked vehicles frequently occur in truck-related incidents
and are often included in severity analyses. These characteristics
provide insight into the magnitude of impact forces, pre-crash
movement patterns, and the specific locations of impact, all
of which may influence the extent of injury and damage in
different scenarios (Behnood and Al-Bdairi, 2020; Behnood and
Mannering, 2019; Uddin and Huynh, 2020).

A deep understanding of each group of individual-level factors
is therefore crucial not only for explaining why certain crashes
result in more severe outcomes than others, but also for identifying
the root causes of risk with greater specificity. These causes may
stem from driver behavior, inadequate vehicle maintenance, or poor
management of critical environmental conditions at the time of the
crash. Analysis at this level serves as a foundation for designing
effective prevention strategies that can substantially reduce the
negative impacts of truck-related crashes.

However, while individual-level factors play a significant role in
determining crash severity, the behaviors and outcomes observed
are also shaped by the broader spatial context in which they occur.
These contextual conditions lie beyond an individual’s control, yet
they may significantly influence crash severity. Therefore, the next
section turns to provincial-level factors as contextual elements that
may frame, amplify, or moderate the severity of truck-related crashes
across different regions.

2.2 Provincial-level impact on the severity
of truck injuries

Although individual-level factors such as driving behavior
and vehicle condition play a crucial role in explaining the
severity of road traffic crashes, provincial-level contextual factors
also serve as essential structural components that should not
be overlooked. Spatial environments exert subtle but significant
influences on driver behavior and the conditions under which
crashes occur. Factors such as population density, Average Annual
Daily Traffic, and the extent of the Highway Lengths as highlighted
in previous studies (Jafari Anarkooli and Hadji Hosseinlou, 2016;
Shinstine et al., 2016; Hosseinpour and Haleem, 2021; Islam et al.,
2022; Hao et al., 2016; Habib et al., 2025; Casado-Sanz et al.,
2020), reflect systemic risk levels, traffic complexity, and the
region’s capacity to manage road safety. These elements can
either mitigate or amplify the consequences of individual risk
behaviors. Studying provincial-level factors is therefore critical not
only for understanding the broader context in which road users
operate, but also for uncovering the spatial mechanisms underlying
crash severity. Such insights are essential for designing safety
interventions that are responsive to the specific characteristics of
each region.
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Figure 3 illustrates the conceptual framework employed in
this study, which distinguishes between individual-level and
provincial-level factors affecting the severity of truck-involved
crashes. The individual-level domain encompasses roadway
characteristics, environmental conditions, vehicle attributes, driving
risk behaviors, and collision types all of which directly influence
the outcome of crash severity. Meanwhile, the provincial-level
context defined by factors such as population, AADT, and highway
length represents broader structural conditions that may exert
contextual effects or moderate individual-level influences. This
two-level structure underpins the multilevel modeling approach
adopted in the analysis and reflects the hierarchical nature of
crash data.

3 Methodology
3.1 Data description

This study utilized data on truck-involved crashes that occurred
on major highways in Thailand in 2022. The data were obtained from
the Highways Accident Information Management System (HAIMS)
(HAIMS, 2022), maintained by the Department of Highways. A
total of 4,462 crash cases were included in the analysis, selected
based on the completeness of relevant variables, with missing cases
excluded using listwise deletion. Data from a single year were used
because this period provided the most comprehensive and internally
consistent coverage across provinces, thereby ensuring uniform
reporting standards and variable definitions. Such consistency is
essential for multilevel modeling, which requires comparable data
structures across all provinces. Moreover, because these cases were
distributed across 77 provinces, the dataset provided not only a
large number of Level-1 observations but also a sufficient number
of Level-2 units for robust estimation. Previous methodological
guidelines indicate that reliable estimation of cross-level interactions
requires at least 30-50 groups at Level-2 with adequate within-
group cases (Hox and Maas, 2004; Snijders and Bosker, 2011).
Accordingly, the present dataset exceeds these recommended
thresholds, ensuring adequate statistical power for detecting cross-
level moderation effects. The dependent variable (Y) in this study
is crash severity, classified into four ordinal levels: (1) Property
Damage Only (PDO), denoting crashes with material damage but no
injuries; (2) Minor Injury, involving non-hospitalized injuries; (3)
Serious Injury, requiring hospitalization; and (4) Fatality, referring
to crashes with at least one fatality. This classification reflects a
logically ordered progression of crash severity, recorded according
to official Department of Highways standards, consistent with police
definitions, and cross-validated with hospital data for serious and
fatal cases.

The individual-level variables, as shown in Tablel and
detailed in the Appendix Table Al, were also derived from the
HAIMS database to ensure consistency in data structure and
technical compatibility for multilevel modeling. These variables
encompass a range of factors, including environmental conditions
at the time of the crash (e.g., lighting and road surface), roadway
characteristics (e.g., median type and road alignment), vehicle
conditions, risky driving behaviors (e.g., speeding, driving under
the influence, impaired driving), and collision types. The frequency
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FIGURE 3
Conceptual framework of multilevel factors affecting truck crash severity.
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and percentage distributions of these variables across severity
levels provide preliminary insights into how different factors may
contribute to increased crash severity.

In addition to individual-level characteristics, provincial-
level contextual factors were incorporated as Level-2 predictors
to account for regional variation in crash severity. Table 2
summarizes the provincial-level variables used as Level-2 contextual
predictors in the multilevel analysis. These include total population
(National Statistical Office of Thailand, 2022), annual average daily
traffic (AADT) (Bureau of Highway Safety, 2022b), and total
Highway Length (Bureau of Highway Safety, 2022a) under the
jurisdiction of the Department of Highways. The mean values
indicate that, across all provinces, the average population was
approximately 14.44 million people, the average daily traffic volume
was about 945,850 vehicles, and the average Highway Length
was 745.39 km per province. These variables provide important
contextual information for capturing inter-provincial variation in
crash severity.

3.2 Multilevel ordinal logit model

Multilevel analysis is a statistical technique used to investigate
relationships among variables that are structured at more than
one level or exhibit a hierarchical (nested) data structure,
such as individual-level data nested within group-level contexts
(Kanjanawasee, 2011; Singer, 1998). In this study, a Multilevel
Ordered Logit Model is employed an extension of ordinal logistic
regression that accounts for group-level clustering to analyze the
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severity of truck-involved crashes, an outcome categorized into
ordered levels: (1) Property Damage Only, (2) Minor Injury, (3)
Serious Injury, and (4) Fatality. The analysis is based on individual-
level crash records nested within provincial-level contexts. These
provincial contexts may exert influences on individual behavior and
crash outcomes and ignoring such influences may lead to biased
estimates. By applying a multilevel modeling framework, the study
is able to disentangle and estimate the distinct effects of variables
operating at both individual and provincial levels, thereby enhancing
both the explanatory power and predictive accuracy of the model.

Parameter estimation for the Multilevel Ordered Logit Model
was conducted using Maximum Likelihood Estimation (ML)
implemented via Mplus version 7. To evaluate model fit, several
key indices were employed: Akaike Information Criterion (AIC)
(Akaike, 1998), Bayesian Information Criterion (BIC) (Gideon,
1978), and the Likelihood Ratio Test (LRT) for comparing nested
models. Models with lower AIC and BIC values are considered to
have better fit, while the LRT is used to assess whether a more
complex model provides a significant improvement in explaining
data variability over a simpler nested model.

3.3 Model development

To comprehensively capture both direct effects and cross-
level contextual influences, this study adopts a stepwise modeling
strategy comprising four hierarchical models, progressing from
a basic to a more complex structure. This modeling approach
aligns with prior empirical studies such as Chen et al. (2015),

frontiersin.org
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TABLE 1 Descriptive statistics of individual-level variables.

Variables Category Severity injury
Serious
Crash Day Type
WeekDay 1837 (41.17%) 969 (21.72%) 215 (4.82%) 377 (8.45%) 3,398 (76.15%)
Weekend 517 (11.59%) 330 (7.40%) 78 (1.75%) 139 (3.12%) 1,064 (23.85%)
Crash Time Period
Day 1,445 (32.38%) 733 (16.43%) 152 (3.41%) 258 (5.78%) 2,588 (58.00%)
Night 909 (20.37%) 566 (12.68%) 141 (3.16%) 258 (5.78%) 1874 (42.00%)
Environmental Factors
Lighting Condition
Dark_Lit 739 (16.56%) 447 (10.02%) 103 (2.31%) 189 (4.24%) 1,478 (33.12%)
Dark_NoLit 1,615 (36.19%) 852 (19.09%) 190 (4.26%) 327 (7.33%) 2,984 (66.88%)

Road Surface Condition

Dry 2025 (45.38%) 1,133 (25.39%) 265 (5.94%) 473 (10.60%) 3,896 (87.32%)
Wet 329 (7.37%) 166 (3.72%) 28 (0.63%) 43 (0.96%) 566 (12.68%)

Median

Med_No 238 (5.33%) 189 (4.24%) 48 (1.08%) 113 (2.53%) 588 (13.18%)

Med_Yes 2,116 (47.42%) 1,110 (24.88%) 245 (5.49%) 403 (9.03%) 3,874 (86.82%)
Road Alignment

Curve 383 (8.58%) 220 (4.93%) 35 (0.78%) 65 (1.46%) 703 (15.76%)

Straight 1971 (44.17%) 1,079 (24.18%) 258 (5.78%) 451 (10.11%) 3,759 (84.24%)

Road Connection

NoCon 2,334 (52.31%) 1,285 (28.80%) 287 (6.43%) 502 (11.25%) 4,408 (98.79%)

Roadway Characteristics
Con 20 (0.45%) 14 (0.31%) 6(0.13%) 14 (0.31%) 54 (1.21%)

Specific Locations

Others 2,166 (48.54%) 3,188 (71.45%) 4,171 (93.48%) 3,954 (88.62%) 93 (2.08%)
U-turn 21 (0.47%) 8 (0.18%) 1(0.02%) 4(0.09%) 34 (0.76%)
CROSS_MED 2,275 (50.99%) 1,266 (28.37%) 290 (6.50%) 504 (11.29%) 4,335 (97.16%)

Traffic Direction

Oneway 24 (0.54%) 9(0.20%) 1(0.02%) 4(0.09%) 38 (0.85%)

TwoWay 2,330 (52.22%) 1,290 (28.91%) 292 (6.54%) 512 (11.47%) 4,424 (99.15%)
Vehicle Characteristics

Other 4,309 (96.57%) 4,401 (98.63%) 4,456 (99.87%) 4,445 (99.62%) 4,225 (94.69%)

Damage_V 153 (3.43%) 61 (1.37%) 6(0.13%) 17 (0.38%) 237 (5.31%)

(Continued on the following page)
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TABLE 1 (Continued) Descriptive statistics of individual-level variables.

Variables Category Severity injury
Serious
Driving Risk Behaviors
Others 2,598 (58.22%) 3,420 (76.64%) 4,221 (94.61%) 4,022 (90.14%) 875 (19.61%)
OverLoad 42 (0.94%) 15 (0.34%) 0 (0.00%) 3(0.07%) 60 (1.34%)
OverSpeed 1,555 (34.85%) 874 (19.59%) 194 (4.35%) 341 (7.64%) 2,964 (66.43%)
CUT_IN 155 (3.47%) 101 (2.26%) 31 (0.69%) 52 (1.17%) 339 (7.60%)
IMP_DRV 78 (1.75%) 23 (0.52%) 6 (0.13%) 13 (0.29%) 120 (2.69%)
TE_VIOL 27 (0.61%) 24 (0.54%) 8 (0.18%) 26 (0.58%) 85 (1.90%)
Drunk 7 (0.16%) 5(0.11%) 2 (0.04%) 5(0.11%) 19 (0.43%)
Collision Type
Other 3,604 (80.77%) 4,070 (91.22%) 4,369 (97.91%) 4,354 (97.58%) 3,011 (67.48%)
REAREND 771 (17.28%) 353 (7.91%) 78 (1.75%) 88 (1.97%) 1,290 (28.91%)
HITPCAR 87 (1.95%) 39 (0.87%) 15 (0.34%) 20 (0.45%) 161 (3.61%)
TABLE 2 Descriptive statistics of provincial-level variables. as fixed effects to examine the direct impact of various factors on
Variables Mean Unit crash severity. This mod-el assumes that 'the effe-cts of all pr'ed.ictolrs
are constant across provinces, thereby disallowing any variation in
Population 1444035.27 Persons the strength of associations by contextual settings (i.e., no random
slopes). Such an approach is appropriate for identifying direct
Annual Average Daily Traffic (AADT) 945850.30 Vehicles per day effects of environmental, infrastructural, and behavioral factors on
Highway Length 24539 Kilometers (k) the severity outcomes, under the assumption of uniform influence

across all provinces.

However, the assumption of constant effects across provinces

in Model 2 may not fully capture the spatial heterogeneity

who employed a hierarchical Bayesian multinomial logit model present in real-world settings. To address this limitation, Model
to examine truck driver injury severity in rural crashes, explicitly ~ > introduces additional complexity by allowing random slopes
incorporating cross-level interaction effects. Similarly, Chen et al.
(2016) utilized a hierarchical ordered logit model that integrated
crash-level random effects to account for within-crash correlations ~ constant effects is often necessary when contextual differences
and between-crash heterogeneity, emphasizing the importance of ~ aré expected to influence the relationship between predictors
acknowledging the nested structure commonly found in traffic and outcomes. In line with this reasoning, the predictors in our
safety data. study were chosen because their impacts on crash severity are
Following these methodological precedents, the present study ~ Plausibly shaped by provincial differences such as enforcement
begins with Model 1, the Null Model, which excludes explanatory ~ rigor, inspection practices, infrastructure conditions, and traffic
variables and instead focuses solely on estimating the proportion of ~ environments. Recent evidence from Thailand supports this
variance in crash severity attributable to provincial-level differences. ~ approach: Champahom et al. (2021) showed that risky driving
'This is assessed using the Intraclass Correlation Coefficient (ICC), ~ behaviors, including abrupt lane changes and rear-end crashes, vary
where a value exceeding 0.05 (Heck and Thomas, 2009). Indicates  significantly across provinces, indicating context-dependent effects.
substantial between-group variance and thus supports the use of ~ Similarly, Salgado et al. (2022) found that mechanical failure risks
multilevel modeling. The Null Model serves as a baseline for  differed across cities depending on inspection and maintenance
evaluating the added explanatory power of more advanced models ~ systems, while Ben Laoula et al. (2023) documented that traffic
in subsequent stages. violations such as speeding and license-related offenses were more

for selected behavioral and vehicle-related predictors. As noted
by Grilli and Rampichini (2015), relaxing the assumption of

Model 2 extends the analysis by incorporating both individual- ~ prevalent in certain districts. By specifying random slopes for these
level (Level 1) and provincial-level (Level 2) explanatory variables  predictors, Model 3 accounts for realistic cross-provincial variability
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and better reflects how contextual characteristics can moderate the
effects of individual-level risk factors.

Finally, Model 4, the most comprehensive and complex model in
this study, incorporates cross-level interactions to examine whether
provincial-level characteristics such as population size, average
annual daily traffic (AADT), and total highway length under the
Department of Highways moderate the relationships between
individual-level behaviors and crash severity. This modeling
approach allows for a nuanced understanding of how macro-level
contextual factors can amplify or mitigate the effects of micro-level
behaviors. A similar four-stage hierarchical modeling framework
was adopted in a previous study by Chen and Jou (2019), which
analyzed traffic crash risks in relation to public transportation
systems in metropolitan Taiwan. Their use of nested structures and
interaction effects highlights the importance of capturing contextual
variability in transportation safety research.

Such an analysis provides significant policy-relevant insights,
particularly for the development of area-based road safety
interventions. By identifying where and how context modifies risk
patterns, Model 4 supports the design of more targeted, efficient,
and contextually appropriate safety measures that align with the
geographic and infrastructural diversity of Thailand.

4 Results
4.1 Multilevel model estimation results

All four models converged successfully with stable log-
likelihood values after a reasonable number of iterations. Parameter
estimates were within admissible ranges, and standard errors were
of acceptable magnitude, confirming the stability and robustness
of the estimation process. No convergence failures or estimation
problems were detected. Although the primary aim of this model
development was not to select the model with the best statistical fit,
the stepwise progression from Model 1 to Model 4 reflects a logical
advancement in the analysis and reveals contextual mechanisms
that are not identifiable in the initial baseline models. The inclusion
of provincial-level variables and the examination of cross-level
interactions play a crucial role in explaining complex phenomena,
particularly in the context of highway crashes, which are influenced
by both individual-level factors and broader spatial structures. The
estimation results for all models are summarized in Tables 3-5.

4.1.1 Null Model

The analysis began with Model 1 (Null Model), which included
no explanatory variables at either the individual or provincial
levels. This baseline model aimed to assess whether there were
significant differences in crash severity across provinces. The results
indicated that the intraclass correlation coefficient (ICC) was 0.051,
which is considered relatively substantial and statistically significant.
This suggests that approximately 5.1% of the total variance in
crash severity can be attributed to differences between provinces.
Therefore, it is appropriate to apply a multilevel modeling approach
instead of a single-level model, which would be inadequate for
capturing the contextual effects at the provincial level.
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TABLE 4 Random effects and cross-level interactions from multilevel ordered logit models (Models 1-4).

Variables Model 1 Model 2 Model 3 \YoTo [] 3

Est. Estt. OR SE | CI95%  Est. ‘ OR SE ‘ Cl95% Est. ‘OR SE ‘ Cl95%

Random Effect
DAMAGE_V - - - - - 0.09 1.094 | 0.076 = (0.943-1.270) 0.074 1.077 | 0.063 | (0.952-1.218)
CUT_IN - - - - - 0.375** | 1.455 | 0.163 | (1.057-2.003) 0.273 1314 | 0195 | (0.897-1.926)
TF_VIOL - - - - - 0.55 1.733 | 0.545 | (0.596-5.044) 0.297 1.346 | 0271 @ (0.791-2.289)
OVERLOAD - - - - - 1.043* | 2838 | 0.55 | (0.966-8.339) 0.843 2323 | 0579 | (0.747-7.227)
REAREND - - - - - 0.124 1132 | 0.082 = (0.964-1.329) 0.199 1220 | 0.159 | (0.893-1.666)
Cross-Interaction
DAMAGE_V x - - - - - - - - - -0.09 0914 | 0331 | (0.478-1.749)
POP
DAMAGE_V x - - - - - - - - - 0.076 1.079 | 0291 | (0.610-1.909)
AADT
DAMAGE_V x - - - - - - - - - 0.217 1242 | 0221 @ (0.806-1.916)
HW
CUT_IN x - - - - - - - - - -0.695" | 0499 = 033 | (0.261-0.953)
POP
CUT_IN x - - - - - - - - - 0.167 1.182 | 0277 @ (0.687-2.034)
AADT
CUT_IN x HW - - - - - - - - - 0.599* 1.820 | 0.255 | (1.104-3.001)
TF_VIOL x - - - - - - - - - -1.288 0.276 | 0.807 = (0.057-1.341)
POP
TF_VIOL x - - - - - - - - - 0.131 1.140 | 0399 | (0.522-2.492)
AADT
TF_VIOL x - - - - - - - - - 0.334 1.397 | 034 | (0.717-2.719)
HW
OVERLOAD x - - - - - - - - - 2.199** | 9.016 | 0.308 @ (4.930-16.489)
POP
OVERLOAD x - - - - - - - - - -0.797 0.451 | 0.572 | (0.147-1.383)
AADT
OVERLOAD x - - - - - - - - - -0.396 0.673 | 0.394 | (0.311-1.457)
HW
REAREND x - - - - - - - - - 0.401 1493 | 0304  (0.823-2.710)
POP
REAREND x - - - - - - - - - —-0.734" | 0480 = 0.267 = (0.284-0.810)
AADT
REAREND x - - - - - - - - - -0.018 0.982 | 0248 | (0.604-1.597)
HW

(Continued on the following page)

Frontiers in Built Environment 12 frontiersin.org


https://doi.org/10.3389/fbuil.2025.1684955
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org

Nanthawong et al.

10.3389/fbuil.2025.1684955

TABLE 4 (Continued) Random effects and cross-level interactions from multilevel ordered logit models (Models 1-4).

Model 1 Model 2 ‘ Model 3 Model 4
Est OR | SE Cl95% Est OR SE Cl95% ‘ Est ’ OR SE ’ Cl 95%
Thresholds
PDO 0.110** 0.834 - 1.191 - 2.261% - 0.865 - —-0.097* - 0.057 -
Minor 1.508"** 2.332™ - 1.192 - 3.780™ - 0.87 - 1.426"** - 0.061 -
Serious 2.034™" 2.888"* - 1.193 - 4.343" - 0.873 - 1.991°** - 0.066 -
Est. = estimates; OR, odds ratio; SE, standard error; “p-value <0.1; “p-value <0.05; ***p-value <0.01.
TABLE 5 Model fit statistics for multilevel ordered logit models (models 1-4).
Model fit Model 1 Model 2 Model 3 Model 4
AIC 10044.676 9743.178 9736.899 9732.572
BIC 10063.886 9909.665 9935.403 10027.127
LL -5019.338 —4845.589 —4837.449 —4820.286
-2LL 10038.676 9691.178 9674.898 9640.572
Likelihood Ratio Test (LRT) - 0.000 0.006 0.003
Number of parameters 3 26 31 46

4.1.2 Individual-level predictors

In Model 2, individual-level (Level-1) variables were introduced,
encompassing road characteristics, environmental conditions,
vehicle condition, driving behaviors, and collision types. The aim
was to identify preliminary risk factors associated with crash
severity. The results revealed that several factors were significantly
correlated with the severity of crashes.

Notably, certain physical characteristics of roads showed
strong associations. Roads without a central median increased
the likelihood of severe outcomes by approximately 55.30%-62%,
while straight road segments were associated with a 30.90%-39.60%
higher risk. U-turn zones also exhibited a heightened probability of
severe crashes.

Regarding environmental conditions, crashes occurring at night
and on weekends tended to be more severe, particularly those
at night, which increased the risk by around 36.20%-37.80%.
Interestingly, wet road surfaces were associated with a reduction
in crash severity by about 23.80%-26.00%, possibly reflecting more
cautious driving behavior in adverse road conditions.

As for vehicle-related factors, trucks with mechanical defects
were associated with a 33.20% reduction in severity, which might
be due to more careful driving when vehicle issues are known. In
terms of driver behavior, driving under the influence of alcohol
was the most critical risk factor, increasing the likelihood of severe
crashes by 121.60%-147.50%. Conversely, drivers with impaired
performance due to fatigue or drowsiness showed a decrease in
severity, potentially because of increased caution while driving in
such conditions. Speeding was associated with increased severity
only in specific areas.

Frontiers in Built Environment 13

Finally, regarding collision types, rear-end crashes were
associated with a reduction in severity by about 23.70%, likely due
to their occurrence at lower speeds. Collisions involving parked
vehicles showed a slight decrease in severity but were not statistically
significant.

These findings indicate that crash severity results from specific
risk behaviors and localized environmental conditions, forming a

solid foundation for advancing to higher-level models.

4.1.3 Provincial-level predictors

(Level-2)
incorporated, including population size, average annual daily
traffic (AADT), and total highway length in each province, to
examine whether spatial context contributes to crash severity.
The results indicated that AADT had a statistically significant
negative coefficient, suggesting that provinces with higher traffic
volumes tend to experience less severe crashes. This may reflect the
effects of slower traffic speeds or improved road infrastructure in

In Model 3, provincial-level variables were

high-volume areas.

Additionally, the total highway length in a province was also
negatively associated with crash severity, implying that greater road
coverage may contribute to better traffic dispersion or access to
safer routes. However, provincial population size did not show a
significant association at this stage, although its influence becomes
more apparent in Model 4 when cross-level interactions are
considered.

The inclusion of Level-2 variables also led to a reduction in
the residual variance of certain driving behaviors, indicating that
crash severity is not solely the result of individual-level risk factors.

frontiersin.org
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Instead, it is also shaped by the structural characteristics of the
province in which the driver operates.

4.1.4 Cross-level interactions

Finally, Model 4 introduced an additional layer of complexity
by incorporating cross-level interactions between individual-level
factors and provincial-level contextual variables. This step aimed
to examine whether the effects of certain risk behaviors vary
depending on the spatial characteristics of the province where the
crash occurred.

The results indicate that the influence of risky driving behaviors
among truck drivers is significantly moderated by contextual
characteristics at the provincial level. Notably, abrupt cut-in
behavior was associated with lower crash severity in provinces with
higher population density, likely due to reduced average speeds
and more defensive driving in congested urban environments.
In contrast, the same behavior was linked to increased severity
in provinces with greater Highway Length, which typically
reflects rural areas where higher travel speeds and limited safety
infrastructure heighten the consequences of such maneuvers.

For overloading behavior, a significant positive interaction with
population density was observed, suggesting that crashes involving
overloaded trucks tend to be more severe in densely populated
areas. This may stem from a higher likelihood of collisions involving
vulnerable road users such as pedestrians and motorcyclists. In
contrast, rear-end collisions demonstrated a negative interaction
with average annual daily traffic (AADT). In provinces with high
AADT often urbanized areas with frequent congestion slower speeds
likely mitigate the severity of such crashes due to reduced kinetic
energy upon impact.

Taken together, these findings underscore that the relationship
between truck driver behavior and crash severity is not
homogeneous across space. Instead, it is shaped by interactions
with regional-level characteristics, emphasizing the importance of
incorporating contextual variables into models assessing crash risk.

4.1.5 Model fit evaluation and methodological
implications

Beyond parameter estimation, model fit indices such as
the Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), and the -2 Log-Likelihood (-2LL) offer valuable
insights into the explanatory performance of the models developed.
From Model 1 to Model 4, both AIC and -2LL consistently declined
(e.g., from 10,044.676 to 10,038.676 in Model 1 to 9,733.306 and
9,640.572 in Model 4), suggesting improvements in model fit and
a reduction in residual deviance as model complexity increased.

In addition, Likelihood Ratio Tests (LRT) used to compare
nested models indicated that incorporating random slopes and
cross-level interactions (from Model 2 to 3 and from Model 3-4)
significantly enhanced the ability to account for variance in the
outcome variable. This reflects the contribution of hierarchical
model structures to capturing latent heterogeneity across provinces.

On the other hand, BIC values showed a slight increase
in later models, particularly in Model 4 (10,027.860), despite
improvements in log-likelihood. This occurs because BIC applies
a stronger penalty for model complexity, which is sensitive to
both the number of parameters and the sample size. Accordingly,
while AIC and -2LL consistently indicated improved explanatory
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performance as complexity increased, BIC values reflected a more
conservative stance that prioritizes parsimony and the avoidance
of overfitting (Burnham and Anderson, 2004; Raftery, 1995). This
divergence illustrates the expected trade-off between favoring richer
explanatory structures versus maintaining model simplicity.

In this study, the primary objective was not to identify a single
“best” model based solely on statistical fit, but rather to uncover
how individual-level driver behaviors interact with provincial-level
contextual factors. From this perspective, the added complexity of
Models 3 and 4 is substantively justified, as these specifications
revealed cross-level interactions and contextual heterogeneity that
would not be visible in simpler structures. Thus, fit indices must
be interpreted alongside the study’s analytical goals: although
BIC favors parsimony, the richer models offer greater theoretical
insight and policy relevance. From a methodological perspective,
changes in fit indices should therefore be viewed in conjunction
with the research objectives. The progression from basic to more
contextually nuanced models was aimed not only at improving
statistical fit but also at identifying underlying behavioral and
contextual mechanisms driving crash severity.

For instance, results from Models 3 and 4 highlighted that
the effects of certain driver behaviors (e.g., straight-path driving,
traffic violations) can vary by province. Moreover, provincial-level
attributes such as population size and AADT appear to influence
the strength of individual-level risk factors interactions that were
not evident in the more basic models. These findings illustrate the
methodological value of incorporating both random effects and
cross-level interactions. While some fit indices may favor simpler
structures, richer models enable more nuanced interpretations of
behavioral dynamics and contextual influences, offering deeper
insight into the mechanisms driving crash severity.

5 Discussion
5.1 Interpretation and contextual insights

The results of the multilevel model indicate that the severity
of truck-involved crashes is not solely the result of driver behavior
but is also significantly influenced by the contextual characteristics
of the crash location. This finding highlights the importance of
analytical approaches capable of handling nested data structures,
where observations are organized at multiple levels. The statistically
significant intraclass correlation coefficient (ICC = 0.051) supports
the fundamental assumption that crash severity is not uniformly
distributed across provinces in Thailand, thereby reinforcing the
hypothesis of spatial heterogeneity in road safety research.

At the individual level, roadway design features emerged as
critical determinants of crash severity. Roads lacking median
barriers consistently exhibited higher risks of severe outcomes,
consistent with Russo and Savolainen (2018), who showed that
median-crossover crashes are among the most hazardous events
and that the installation of barriers substantially reduces severity.
In Thailand, Se et al. (2024) further demonstrated that roadway
geometry, alignment, and median openings significantly shape
truck crash outcomes, with effects varying over time. Similarly,
Ahmed et al. (2018) found that heavy truck crashes on state and
interstate highways in the United States were two to four times
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more likely to be severe than those on local roads, highlighting
the role of road classification and geometry. Evidence from other
developing countries also corroborates these patterns: Rahimi et al.
(2020) reported in Iran that roadway alignment, curvature, and
classification strongly influenced the likelihood of severe truck
crashes, while Tian et al. (2024) found in China that alignment,
visibility, and section type were critical determinants of heavy
truck crash severity. Taken together, these studies reinforce the
robustness of our findings by showing that straight segments, U-turn
points, and the absence of median barriers consistently exacerbate
truck crash severity not only in Thailand but also across diverse
developing contexts. The influence of proximity to access points of
public or commercial areas was evident only in preliminary models
and diminished after controlling for provincial-level variables.
This suggests that increased risk is more attributable to broader
contextual factors such as urban density, land-use patterns, and the
complexity of the road network, rather than the mere presence of
access points.

Environmental and temporal factors also played a significant
role. Nighttime crashes showed higher severity, likely due to reduced
visibility, fatigue, and higher speeds in low-traffic periods, while
weekend crashes were more severe (Anderson and Hernandez,
2017), reflecting altered freight travel patterns and delivery
pressures. Comparable evidence has been reported in other
developing countries. For instance, Bhuiyan et al. (2022), analyzing
crash severity in Bangladesh, identified environmental conditions
such as the day and time of crash as significant determinants of
injury outcomes. Similarly, Junaid et al. (2025) found in Pakistan that
involvement of heavy vehicles, rainy weather, and the presence of
only painted medians significantly increased the likelihood of severe
injuries among vulnerable road users. This convergence of findings
indicates that temporal and environmental risk factors are not
unique to Thailand but represent broader patterns across developing
contexts where enforcement gaps and fatigue accumulation further
exacerbate crash severity.

Regarding driver behavior, driving under the influence of
alcohol emerged as a primary risk factor, consistently doubling the
likelihood of severe crashes across all models. This underscores
the critical need for stringent law enforcement and targeted
interventions, especially among commercial drivers. Similar
findings have been reported in developing countries, where weak
enforcement of drink-driving regulations has been linked to
heightened severity in heavy-vehicle crashes (Rahimi et al., 2020).
Conversely, conditions indicative of impaired driver capacity such
as drowsiness, fatigue, or distraction were associated with reduced
crash severity, possibly reflecting more cautious driving behavior
when drivers are aware of their limitations, although such effects
remain inconsistent across real-world settings. Speeding violations
were also linked to increased severity in certain models, indicating
potential interactions between speed and regional contextual
factors. This highlights that increased speed not only raises the
probability of crash occurrence but also directly exacerbates injury
severity for drivers and other road users involved in truck-related
incidents (Chen and Chen, 2011; Ahmed et al., 2018). Collision
types also influenced severity outcomes. Rear-end collisions
generally resulted in lower severity compared to other types,
although this effect was not statistically significant after adjusting for
provincial factors. Random slope analyses indicated that the effect
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of rear-end collisions was consistent across provinces. Collisions
involving stationary vehicles showed a trend toward reduced severity
but lacked statistical significance.

Some findings appeared counterintuitive. Notably, crash severity
was found to decrease in wet road conditions and when vehicles
had mechanical defects. While unexpected, such outcomes can
be understood through risk compensation theory (Wilde, 1982),
which posits that drivers consciously or subconsciously adjust
their behavior when they perceive higher risks. For instance, in
the presence of wet road surfaces or mechanical defects, drivers
may reduce speed or adopt more cautious driving styles, thereby
lowering the likelihood of severe outcomes (Chen and Chen,
2011). Importantly, these results should not be interpreted as
suggesting that adverse conditions are protective factors; rather,
they reflect temporary behavioral adaptations that may buffer
severity in specific contexts. To avoid misinterpretation, this study
acknowledges the limitation that such compensatory behaviors may
not consistently occur in real-world settings, and future research
should incorporate behavioral or telematics data to validate these
mechanisms. Accordingly, safety policies should integrate direct risk
mitigation with strategies that enhance drivers’ risk perception and
self-regulation.

Meanwhile, the analysis at the provincial level reveals that
structural characteristics of geographical areas significantly
influence the severity of truck-involved crashes. Key contextual
factors such as population size, average annual daily traffic (AADT),
and the total length of highways under the responsibility of the
Department of Highways exert varying effects on crash outcomes.
Provinces with higher population density tend to experience more
severe crashes, likely due to the increased complexity of traffic
environments and heightened risk of conflicts between various types
of road users (Cespedes et al., 2024). In contrast, provinces with
higher AADT levels typically report crashes of lower severity. This
inverse relationship may be attributed to the fact that in areas with
high traffic volumes, average driving speeds tend to be lower, thereby
reducing the likelihood of severe crashes. This finding aligns with
prior studies Golob Thomas and Recker Wilfred (2003), Golob et al.
(2004), which have noted that crash severity tends to be negatively
associated with overall traffic volume. Comparable evidence has
also been reported in other developing contexts. Zhang et al. (2013),
analyzing over 7,000 crashes annually in Guangdong Province,
China, found that roadway and environmental conditions were
significant predictors of accident severity, and highlighted that
traffic exposure and insufficient enforcement aggravated fatality
risks. Their results reinforce that AADT, and related exposure
measures are structural determinants of crash severity across
rapidly developing economies. On the other hand, provinces with
longer highway networks under government jurisdiction tend to
experience more severe crashes. This may be because such roads
are often located in rural or interurban areas where average vehicle
speeds are higher, and enforcement of traffic regulations as well
as the availability of safety infrastructure are limited. As a result,
crashes in these settings are more likely to lead to serious injuries or
fatalities.

Further insight is gained through the analysis of cross-level
interaction results provide critical insights into how the severity of
truck-involved crashes is shaped by the interplay between individual
driving behavior and regional contextual factors. As illustrated in
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AADT: severity decreases with higher traffic volume.
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Figure 4A, cut-in maneuvers were more consequential in provinces
with lower population density, where higher operating speeds
and weaker safety infrastructure exacerbate the risks of abrupt
lane changes. Conversely, Figure 4B shows that cut-in severity was
heightened in provinces dominated by long-distance highways,
underscoring the role of traffic speed and road type in amplifying
crash outcomes. These spatial dynamics magnify the consequences
of risk-taking behaviors in rural contexts where crash energy is
amplified, and protective infrastructure is often lacking.

The vehicle-related interactions also confirm the influence of
contextual moderators. Figure 4C demonstrates that overloading
leads to disproportionately severe crashes in densely populated
provinces, highlighting the risks of heavy trucks operating in
constrained urban environments with limited maneuvering space.
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Meanwhile, Figure 4D shows that rear-end collisions appear to be
less harmful in high-AADT areas, suggesting that traffic congestion
and reduced operating speeds can buffer the severity of impacts.
Taken together, these findings emphasize the dual influence of socio-
demographic and infrastructural conditions on the relationship
between driver behavior and crash severity.

Collectively, these findings underscore the importance of
designing context-sensitive road safety interventions for heavy
vehicles. One-size-fits-all policies may fail to account for how local
traffic environments interact with driver behaviors. Policymakers
should therefore account for provincial heterogeneity considering
variations in highway extent, traffic exposure, and population
density when developing targeted strategies. By tailoring safety
measures to reflect both behavioral and contextual dynamics, greater
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effectiveness and efficiency in reducing severe outcomes can be
achieved, such as stricter enforcement of lane-change violations in
rural provinces, enhanced monitoring of truck overloading in urban
areas, and targeted interventions to mitigate rear-end crashes in
low-AADT settings.

5.2 Policy implications

Based on the empirical analysis, this study proposes targeted
policy recommendations aligned with key risk factors in truck-
related crashes. These recommendations are organized by four major
domains environmental factors, roadway characteristics, driving
risk behaviors, and collision types each of which significantly
influences crash severity and requires context-specific policy
responses.

Environmental Factors, including crash day type, crash time
period, lighting conditions, and road surface conditions, are
critical determinants of crash severity involving trucks. Wet road
surfaces, although associated with a lower severity level, may
still correspond with an increased frequency of crashes during
adverse weather conditions. This finding likely reflects behavioral
adaptation, whereby truck drivers reduce their speed or drive more
cautiously. Nonetheless, adverse weather can still elevate crash
risk. Therefore, policy recommendations include the development
of real-time weather alert systems, adaptive speed limit signage
responsive to weather changes, and infrastructure investments in
high-friction pavement and effective drainage systems to prevent
skidding and loss of control under wet conditions. With regard to
lighting, enhancing nighttime illumination and visibility through
signage especially at conflict-prone locations such as intersections
and U-turn areas can significantly improve safety. Additionally,
time-specific crash patterns, such as incidents during nighttime
or holidays, should inform targeted enforcement schedules and
possible restrictions on truck operations during high-risk periods.

Roadway Characteristics, including median presence, road
alignment, intersection design, and traffic direction, strongly
influence crash severity in truck-related incidents. Roads lacking
central medians are significantly associated with higher severity due
to the increased risk of head-on collisions involving heavy trucks.
Consequently, these locations should be prioritized for median
installation, particularly along truck-dense corridors. Moreover,
long straight segments, often perceived as safe, can encourage
speeding and driver inattention in truck operators. Accordingly,
infrastructure countermeasures such as rumble strips, dynamic
speed displays, and variable speed limits should be implemented.
Special attention is also needed for geometric design at critical
points like U-turns or merging zones. Design standards must
accommodate the turning radius and braking characteristics of large
trucks while ensuring sufficient sight distance to reduce crash risk
with smaller vehicles.

Vehicle Defects Interestingly, vehicle defects are associated with
lower crash severity, possibly due to more cautious driving when
mechanical issues are present. While this may reflect behavioral
compensation, it does not diminish the need for proactive policies.
Regular vehicle inspections, preventive maintenance certifications,
and in-vehicle diagnostic systems are essential to ensure mechanical
safety and reduce crash risk.
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Driving Risk Behaviors among truck drivers most notably
alcohol-impaired driving and overloading emerge as key
contributors to crash severity. Alcohol use behind the wheel
significantly increases the likelihood of fatal outcomes, more than
doubling the risk. Effective countermeasures include mandatory
installation of in-cab alcohol ignition interlocks for repeat offenders
and stricter legal penalties. Overloading also exhibits context-
dependent effects, particularly exacerbating severity in high-
population provinces. This highlights the need for localized
enforcement strategies, such as mobile weigh-in-motion (WIM)
technology, expanded random inspections in urban freight
corridors, and differentiated fines based on area-specific risk. These
approaches ensure more efficient enforcement aligned with local
risk patterns.

Collision Type plays a defining role in injury outcomes among
truck crashes. Specifically, rear-end collisions are associated with
comparatively lower severity, potentially due to reduced impact
force or lower speeds in congested conditions. However, given the
high frequency of rear-end crashes in truck operations, preventive
measures remain essential. Policy actions include installing forward
collision warning systems, automatic emergency braking (AEB)
technologies, and head-up displays (HUDs) providing real-time
distance monitoring to reduce abrupt braking and improve reaction
time in high-risk zones.

Cross-Level Policy Insights, Multilevel analysis reveals that
the effects of risk behaviors vary according to provincial-level
characteristics. In densely populated provinces, overloading
significantly increases crash severity suggesting the need for
intensified enforcement and urban-specific inspection protocols.
Conversely, cut-in behaviors (i.e., abrupt lane changes) are more
hazardous in provinces with longer highway networks and higher
average speeds. These findings underscore the need for safer
entry/exit designs, location-specific enforcement via surveillance
technology, and hazard signage. Rear-end collisions, although less
severe in provinces with higher AADT, still occur frequently and
warrant continuous implementation of in-vehicle warning systems.

In summary, effective truck safety policy must be spatially
adaptive taking into account both driver behavior and the structural
features of each province. This context-aware approach can more
precisely address localized risk patterns and reduce the severity of
crashes involving heavy vehicles.

6 Conclusion

This study provides compelling evidence that the severity
of truck-involved crashes is shaped by a dynamic interplay
between driver behavior and the spatial characteristics of the crash
environment. By employing a multilevel modeling framework, the
research reveals hidden contextual mechanisms and cross-level
interactions that challenge the conventional assumption of uniform
risk patterns across regions. Key findings include the elevated
severity associated with overloading in densely populated provinces,
the mitigating role of high traffic volumes in rear-end crashes, and
the variation in crash outcomes caused by abrupt driving maneuvers
depending on highway characteristics.

These results highlight the need for safety strategies that go
beyond individual behavior modification. Effective road safety
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interventions must be spatially adaptive incorporating regional
infrastructure, enforcement capabilities, traffic density, and
demographic factors. Tailoring safety measures to align with the
local conditions of each province will enhance the precision and
equity of policy implementation.

Ultimately, this study contributes to the broader discourse in
transportation safety research by demonstrating the methodological
and practical value of multilevel analysis. It calls for a paradigm
shift in national safety planning: from standardized, one-size-
fits-all approaches to differentiated, evidence-based strategies that
reflect Thailand’s spatial diversity. Such a direction is critical for
sustainably reducing the burden of severe truck-related crashes
and improving road safety outcomes at both individual and
provincial levels.

7 Limitations and future research

Although this study provides valuable insights through the
application of a multilevel framework, several considerations should
be noted. The use of cross-sectional data offers a complete and
consistent view of truck-involved crashes; however, such a design
restricts causal inference, and the results should therefore be
interpreted as associations rather than causal relationships. In this
regard, potential endogeneity between AADT and crash severity
cannot be fully ruled out, as reverse causality or unobserved
confounding may still exist despite the inclusion of provincial-level
controls. Extending future research to longitudinal or multi-year
datasets would allow for a more dynamic assessment of how crash
severity patterns evolve over time and under changing policy or
infrastructural conditions, and would also permit more rigorous
treatment of endogeneity, for example, through panel designs or
instrumental variable approaches.
the HAIMS database,
comprehensive, may be influenced by differences in reporting

In addition, while official and
practices and data accessibility across provinces. Such variation
affect the
studies could benefit from triangulating HAIMS records with

can comparability at provincial level. Future
complementary sources such as hospital injury registries, police
data, or insurance claims to strengthen both representativeness
and validity.

Moreover, the stepwise progression from Models 1 to 4
provided an internal form of robustness assessment, as the main
findings remained consistent across increasingly complex model
specifications. Building on this, future research could further extend
robustness evaluations by exploring alternative modeling strategies
or integrating complementary datasets to enhance the stability and
generalizability of the results.

While the multilevel analysis identifies significant contextual
relationships at the provincial level, it does not fully explain the
underlying mechanisms through which regional characteristics
influence driver behavior and crash outcomes. Further studies
should incorporate qualitative methods, such as in-depth interviews,
or more granular quantitative approaches, including spatial
analytics or vehicle mobility data, to gain deeper insight into
how structural contexts shape risky driving behaviors and crash

severity.
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Appendix

TABLE Al Variable descriptions.

Variable Category ‘ Description
Provincial-level factors
Population Total population of the province
AADT Average Annual Daily Traffic on provincial highways
Highway Length Total length (in kilometers) of highways under the Department of Highways within the province
Individual-level factors
Environmental factors
Weekday Monday to Friday
Crash Day Type
‘Weekend Saturday and Sunday
Day 06:01-18:00
Crash Time Period
Night 18:01-06:00
Dark_Lit Dark with street lighting
Lighting Condition
Dark_NoLit Dark without street lighting
Dry Dry road surface
Road Surface Condition
Wet Wet or slippery road surface
Roadway Characteristics
Med_Yes Presence of central median
Median Presence
Med_No No central median
Curve Curved road segment
Road Alignment
Straight Straight road segment
NoCon No road connection
Road Connection
Con Presence of road connection or merging point
Others Other locations
Specific Locations U-turn U-turn area
CROSS_MED Median crossing area
Traffic Direction Oneway One-way traffic
TwoWay Two-way traffic
Vehicle Characteristics
Others Vehicle without mechanical defects
Damage_V Vehicle with mechanical defects
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TABLE Al (Continued) Variable descriptions.

Variable Category ‘ Description
Others Other risky driving behaviors
OverLoad Vehicle overloaded
Speed Speeding behavior

Driving Risk Behaviors CUT_IN Cut-in or abrupt lane changes
IMP_DRV Improper driving
TF_VIOL Traffic violation
Drunk Driving under the influence of alcohol
Other Other types of collisions

Collision Type REAREND Rear-end collision
HITPCAR Collision with a parked vehicle on the roadside
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