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During the reconstruction and expansion of expressways, defects at the
roadbed junction can compromise driving safety and significantly reduce the
service life of the road. Based on engineering cases, a generalized model of
the defective reconstructed and expanded roadbed junction was developed,
and the propagation simulation of electromagnetic waves in the defective
roadbed junction was performed using the finite-difference time-domain
(FDTD) method. The simulation results demonstrated that the electromagnetic
waves formed two sets of parallel convex hyperbolas at the circular cavity
defects. The presence of non-compactness defects caused the overall reflected
wave signal to exhibit an imaging characteristic with a clear upper section
and a blurred lower section. In addition, electromagnetic waves manifested
as multiple nearly parallel convex hyperbolas near the vertical cracks. On
this basis, by integrating numerical simulation results with field-measured
data, a comprehensive dataset encompassing various types of defects was
established. Following the optimization of the YOLO algorithm training model,
the identification accuracy rates for void, non-compactness, and crack defects
reached 97%, 99%, and 99%, respectively. The new method proposed in this
study has universal reference value and application potential for road defect
detection under different geological conditions and construction standards.

reconstructed and expanded roadbed junction, ground penetrating radar, deep
learning, defect identification, field testing

1 Introduction

By the end of 2023, the total mileage of highways in China had exceeded
5.4368 million kilometers, with fourth-grade highways comprising 73.8% of the
network and playing a crucial role in delivering transportation services. With the
deepening of the strategy to build a strong transportation nation, reconstructing and
expanding existing highways have become critical measures for optimizing the road
network structure and enhancing service efficiency. However, structural defects, such
as longitudinal cracks that frequently occur at the junction between the new and
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old roadbeds, not only significantly shorten the service life of the
road but also increase the annual maintenance cost by 15%-30%,
thereby posing a serious threat to driving safety (Zhang et al,
2024). This current situation places higher demands on road defect
detection technology.

In the field of non-destructive detection of concealed road
defects, ground-penetrating radar (GPR) technology has gained
widespread adoption owing to its exceptional efficiency and high-
resolution capabilities (Yu et al., 2023; Liu et al., 2025). However,
due to the multi-phase characteristics of roadbed materials and the
intricate morphology of defects, traditional interpretation methods
encounter bottlenecks, including insufficient feature extraction
and a high misjudgment rate (Wang et al., 2024; Tesi¢ et al,
2021; Morris et al, 2021). In recent years, GPR technology
has made breakthrough progress in multiple dimensions: In
terms of hardware innovation, Guo et al. (2023) revealed the
influence of antenna quality on the imaging effect by comparing
the performance of different antennas in railroad ballast layer
detection. Tesic et al. (2022) elucidated the mechanism of sodium
chloride solution distribution on GPR signaling amplitude through
accelerated corrosion experiments. Zhang et al. (2022) developed
a three-dimensional reconstruction model for a landfill using
the travel time of electromagnetic waves, thereby extending
the applicability of GPR in achieving high spatial resolution.
At the software algorithm level, (Xu et al, 2024) adopted the
UNet network to achieve the identification accuracy of 88% of
the rock layer. Zhou et al. (2023) used the VRADI algorithm
combined with DBSCAN clustering, which improved the accuracy
of void recognition to 92.2%. Tang et al. (2022) improved
the MPA index of crack segmentation by 12.6% through the
Crack UNet model optimized by the attention mechanism.
Puntu et al. (2021) developed a tunnel-lining boundary detection
system and verified the engineering applicability of the Fresnel
reflection coefficient. Abdelsamei et al. (2024) established an
amplitude feature evaluation system to achieve millimeter-level
detection accuracy of pavement thickness. It is noteworthy that
3D GPR technology (Lv et al, 2023; Amaral et al, 2023) has
demonstrated unique advantages in complex engineering scenarios
through multi-channel data fusion and physical experiment
verification.

With the deep integration of artificial intelligence technology,
the GPR intelligent diagnosis system is driving the innovation
of the detection paradigm. In terms of feature extraction,
the frequency band dielectric spectrum analysis developed
by Zhang et al. (2018) can identify early defects with 0.5%
water content. Bu et al. (2025) established a time-frequency
fusion model and improved the defect identification accuracy
to 91.6%. At the level of algorithm optimization, Guo et al
(2022) proposed a CEEMD-aligned entropy noise reduction
method to effectively suppress signal interference. Sonoda and
Nakamichi (2024) significantly improved the robustness of deep
learning models through Cutout data enhancement technology.
The LSTM wavelet network designed by Geng et al. (2022)
achieved clutter suppression without prior information. The
high-level FDTD (2, 4) code developed by Chi et al. (2024)
effectively improved the recognition ability of shallowly buried
targets. Li et al. (2024) proposed an adaptive curriculum learning
framework, reducing the false detection rate in urban scenes to
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2.1%. The MHUnet-YOLOvV8 model constructed by Kan et al.
(2024) achieved a breakthrough in void detection accuracy.
Although existing research has established a relatively complete
roadbed defect identification system, there is still a significant
gap in the detection technology for the special working
conditions of the reconstructed and expanded roadbed
junction.

In summary, numerous scholars have utilized deep learning
to extract and learn features from classified GPA imaging data,
establishing automatic identification technologies for roadbed
defects. However, there are limited relevant findings regarding
defects at the junction of reconstructed and expanded roadbeds.
This study develops a generalized model of roadbed junction defects
based on extensive field research and establishes a radar imaging
data sample library for roadbed junction defects by integrating
numerical simulations with field test data. On this basis, an
intelligent identification model for the reconstructed and expanded
roadbed junction is established by employing an enhanced deep
learning algorithm, thereby providing a reliable reference for the
maintenance of operational highways, as well as reconstruction and

expansion projects.

2 Forward modeling based on
finite-difference time-domain
methods

2.1 Basic principles of radar wave testing

GPR transmits high-frequency broadband electromagnetic
waves into the ground through a transmitting antenna and receives
the electromagnetic waves through a receiving antenna. Reflection
occurs when an electromagnetic wave impinges upon the junction
between two materials with differing dielectric properties. A
greater difference in the dielectric properties of the two materials
indicates a stronger reflected signal of the electromagnetic wave.
Numerous reflected waves constitute the radar profile image,
as shown in Figure 1. According to the waveform, amplitude,
and echo time of the reflected wave, the geometric shape,
material characteristics, and position of the detection target can be
interpreted.

2.2 Finite-difference time-domain method

Finite-difference time-domain (FDTD) is a numerical method
for solving electromagnetic field problems with high accuracy
and stability. The FDTD method is based on Maxwell’s equations
and the constitutive relationship of materials. It can effectively
simulate the propagation characteristics of electromagnetic waves
in complex media and provide theoretical support for GPR signal
analysis. Here the Perfectly Matched Layer boundary conditions
are used.

This method demonstrates high accuracy and reliability when
applied to the calculation of electromagnetic field problems.
Additionally, it facilitates a deeper understanding and more precise
prediction of the propagation characteristics of electromagnetic
waves in complex environments.
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FIGURE 1
Working principle of GPR. (a) GPR detection principle; (b) Reflected wave signal.

Combining the Maxwell equations and the constitutive relation
of the electromagnetic field, the Maxwell equations of TM waves in
a two-dimensional rectangular coordinate system are obtained, as
shown in Equations 1-3:
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where E , is the electric field strength in the z direction; H, and
H, are the magnetic field strengths in the x and y directions,
respectively; om is the magnetic resistivity for calculating magnetic
loss; o is the electrical conductivity of the medium; ¢ is the relative
dielectric constant; y represents the magnetic permeability. The
model established in this paper does not include magnetic materials,
that is, om = 0, = 1.

The electric field and magnetic field have the characteristic of
alternating sampling in the time series, and their sampling intervals
differ from each other by half a time step. Therefore, the FDTD
equation of the two-dimensional TM wave is Zhang et al. (2011) as
shown in Equations 4-6:
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where E_ is the electric field intensity; H, and H,, are the magnetic
field intensities; At is the time step; n is the discrete time; Ax and
Ay are the spatial steps of the Yee cell in the x and y directions,
respectively; (i, j) is the grid space coordinate.
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3 Simulation of electromagnetic wave
propagation in reconstructed and
expanded roadbeds

3.1 Generalized model of the defect at the
reconstructed and expanded roadbed
junction

The development of a generalized roadbed model incorporating
various defect types serves as the foundation for analyzing
the propagation characteristics of electromagnetic waves at the
junction of defective reconstructed and expanded roadbeds.
Affected by both natural and man-made factors, including
geological characteristics, hydrological meteorology, vehicle loads,
and construction technology, three typical defects-voids, non-
compactness, and cracks-have emerged during the reconstruction
and expansion of roadbeds. This study focuses on a highway
expansion and reconstruction project in Yichun City, Jiangxi
Province. The step method was employed to widen the roadbed
on both sides. Specifically, the step height and width were both set
to 1 m. Half of the roadbed on each side after widening was selected
for simulation, with the model having a side length of 8 m and a
depth of 7 m.

Based on the reconstruction and expansion of the roadbed
structure, the generalized model is simplified to include air, the
existing roadbed, the newly constructed roadbed, and defects.
Among them, the generalized model of the circular void defect
is shown in Figure 2a, where the radius of the void is 0.3 m, and
the void is filled with air. The horizontal position of the circular
void is randomly determined within the range of 0.80 m-7.15 m,
with a precision of two decimal places. The buried depth is also
randomly assigned within the range of 0.60 m-6.50 m, maintaining
the same level of precision. Both parameters, the horizontal position
and the buried depth, jointly define the location of the circular
void. A total of 82 working conditions are established based on
these parameters. The generalized model representing the non-
compactness defect is illustrated in Figure 2b. A square region is
defined at the junction between the new and old roadbeds. A
random seeding approach is employed within this square region,
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where half of the area is designated as void space to simulate a
compaction degree of 50%. The non-compactness region has a
total area of 0.25 m x 0.25 m. The horizontal position is randomly
selected within the range of 0.8 m-6.9 m, with values specified
in two decimal places. Similarly, the burial depth is randomly
determined within the range of 0.5 m-6.0 m, also expressed in two
decimal places. The location of the non-compactness region is jointly
determined by both the horizontal position and the burial depth.
A total of 82 working conditions are established for analysis. The
generalized model of the crack defect is presented in Figure 2c.
In this model, the crack is approximated as an assembly of small
rectangular cavities with contacting boundaries, and various crack
configurations are simulated through a staggered arrangement of
these cavities. The length of the crack is 0.65 m. The horizontal
position is randomly selected within the range of 1.60 m-7.00 m,
with values specified to two decimal places. The burial depth is
randomly set between 0.50 m and 6.40 m, also with values specified
to two decimal places. The location of the crack is determined
jointly by its horizontal position and burial depth, and a total of 82
working conditions are established.
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3.2 Assumptions

The reconstructed and expanded roadbed is mainly filled with
coarse-grained soil. The filling soil utilized in actual engineering
projects is not comprised of a single, homogeneous soil type but
rather constitutes a mixture of several soils with varying properties
and proportions. Moreover, the physical characteristics of the soil
are subject to variation due to the impact of construction techniques
and the specific conditions of the roadbed paving environment. The
relative dielectric constant of soil is closely related to factors such
as soil stone content, compaction, porosity, water content, humidity,
temperature, ion type, and clay mineral content. These factors are
coupled with each other and are difficult to decouple (Park et al.,
2017; Wagner et al., 2011; Ling et al., 2016). Due to the challenges in
accurately simulating the real relative permittivity of coarse-grained
soil in the expanded and renovated roadbed under the coupling
effect of the aforementioned factors using existing methods and
taking into account practical constraints such as computational
power, the following assumptions are made when setting model
parameters for forward simulation:
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TABLE 1 Material parameters.

Material name

10.3389/fbuil.2025.1679410

Material parameter values

Relative dielectric constant e, Conductivity o Relative permeability 4, Magnetic loss o«
Loose soil 12.00 0.001 1.00 0.00
Air 1.00 0.001 1.00 0.00
Water 81.00 0.01 1.00 0.00

1. Assuming that the soil of the reconstructed and expanded

roadbed is a homogeneous medium composed of the same

type of soil;

Assuming that the relative dielectric constant of the soil

remains constant, the arithmetic mean of the measured field

data is selected for analysis;

3. Assuming that the resistivity of the soil is constant, the

arithmetic mean of the field-measured data is selected;

The voids in the reconstructed and expanded roadbed are

simplified as circular shapes filled with air, while cracks and

non-compactness regions are modeled as defects resulting

from the interconnected combination of several minute

rectangular voids, also filled with air;

5. Assuming that both the signal transmitting and receiving
points are located on the contact surface between the soil and
air of the reconstructed and expanded roadbed.

3.3 Material parameters

The reconstructed and expanded roadbed is simulated with
loose soil, air, and water. The values of various material properties
and their corresponding electrical characteristic parameters are
presented in Table 1. Among them, the material simulating the
roadbed is referred to as the primary medium, while the material
used for defect simulation is termed the filling medium.

3.4 Propagation characteristics

The propagation of electromagnetic waves at the junction of the
reconstructed and expanded red sandstone roadbed, which contains
circular void defects, is illustrated in Figure 3a. By observing
the hyperbolic features in the defect image, it can be found
that under the influence of a single circular void defect, the
electromagnetic wave exhibits two sets of parallel convex hyperbolas
at the defect location. The top set of hyperbolas is clearly more
distinct than the bottom set. The propagation of electromagnetic
waves in the junction of the reconstructed and expanded red
sandstone roadbed containing non-compactness regions is shown
in Figure 3b. By analyzing the hyperbolic characteristics in the
defect image, it is evident that the presence of non-compactness
defects causes the overall reflected wave signal to exhibit an
imaging feature with a sharp upper section and a diffuse lower
section. Compared with the imaging characteristics of void defects,
the imaging of non-compactness defects is more complicated.
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The propagation of electromagnetic waves in the junction of the
reconstructed and expanded red sandstone roadbed with cracks
is shown in Figure 3c. By analyzing the hyperbolic features in the
defect image, it is evident that under the influence of a single
vertical crack defect, the image exhibits multiple approximately
parallel convex hyperbolas near the defect location. Among all
the hyperbolas, the top group exhibits distinct characteristics,
whereas the reflected signals of the other hyperbolas below this
group at the defect locations are extremely vague and nearly
indistinguishable.

Taking non-compactness defects as an example, the influence
of different horizontal positions and burial depths of defects on
radar wave propagation is explored. The electromagnetic wave
propagation for non-compactness defects at varying horizontal
positions and the same depth is illustrated in Figure 4a. The red
vertical line in the model layout diagram (upper right corner)
indicates the horizontal position of the center of the non-
compactness defect and serves as a positional reference for the
defect imaging information presented in the upper left corner.
Analysis reveals that at the same depth, the hyperbolic patterns in
the electromagnetic wave propagation maps of non-compactness
defects at different horizontal positions are essentially identical,
with variations observed only in their horizontal locations. This
indicates that the horizontal position of a circular void defect can be
deduced from the location of the hyperbola in the electromagnetic
wave propagation image. The electromagnetic wave propagation
characteristics of a circular void defect at various horizontal
positions but at the same depth are illustrated in Figure 4b. Analysis
reveals that when the burial depth of the circular void is 0.5 m, the
reflected wave signal is distinct, and there is an evident difference
in signal strength among multiple groups of hyperbolas, with a
relatively small curve opening. As the burial depth of the circular
void progressively increases to 2.65m, 3.89 m, and 5.8 m, the
reflected wave signal gradually weakens, and the curve opening
expands with increasing burial depth. When the burial depth
reaches 5.8 m, the reflected wave signal becomes blurred and almost
unrecognizable.

4 GPR field detection
4.1 Field test scheme

The test was carried out in the reconstruction and expansion
project of the G60 Expressway, located in the Yichun section of
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Simulation results of electromagnetic wave propagation in reconstructed red sandstone roadbeds containing different defect types. (a) Circular void

defect (b) Non-compactness defect. (c) Crack defect.

Jiangxi Province, China, as illustrated in Figure 5. The expressway
has been in operation for many years and the roadbed soil has
been compacted to the maximum extent. The on-site survey results
indicate multiple defects in the roadbed, including slope collapse,
ruts, and voids. Additionally, numerous locations exhibit damaged
shoulders and uneven settlement of the roadbed. Therefore, the
newly constructed roadbed was selected for experimental testing.
Through geological survey analysis, early construction monitoring
measurement data, road design drawings, and other relevant
information, while considering the road width and anticipated
detection depth, it is comprehensively determined that the survey
lines should be arranged symmetrically with the road centerline
as the axis and a spacing of 3 m on both sides. This arrangement
ensures adequate coverage and resolution for effective detection.
For the junction area of the new and old roadbeds, the spacing
of the measuring lines is reduced to 1 m to enhance the detection
accuracy. The on-site detection area is shown in Figure 6a. The
on-site testing equipment is a GPR produced by Qingdao China
Electronics Zhongyi Intelligent Technology Development Co., Ltd.
This equipment includes the GER-10 radar host, GER400A ground
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coupling antenna, and ranging wheel (circumference 450 mm,
pulse number 500), as shown in Figure 6b. The antenna frequency
is 100 MHz.

4.2 GPR imaging characteristics of roadbed
junction defects

The
for various

electromagnetic  wave characteristics
types of defects in the field are
presented in Figure 7. Multiple sets of smooth, band-shaped
hyperbolic reflected signals extending towards the road surface
are observed at the location of the circular void defect. These signals
exhibit characteristics that are largely consistent with those of the
simulated defect. The non-compactness defect develops below the
junction between the new and old roadbeds. Compared with the
simulated non-compactness defect, the image of the real non-
compactness defect contains more hyperbolic groups and exhibits
greater complexity. However, there is no prominent reflected
signal at the center of the defect. The signal intensity transitions

propagation
measured
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Yichun City Yuanzhou District

from the center to both sides demonstrate a repetitive pattern
characterized by initial attenuation, followed by enhancement,
and then subsequent attenuation. The cracks propagate from the
bottom to the top of the road surface and manifest as narrow
strip signals composed of multiple groups of hyperbolas on the
graph. At the intersection of the contact surface between the
roadbed and the pavement with the crack, a concave reflected
signal is observed. Compared to simulated defect imaging, the
radar imaging of real crack defects exhibits a narrower hyperbola
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opening and a greater number of hyperbola clusters. The signal
distributed vertically along the crack has weaker attenuation
and better imaging. In summary, in contrast to the simulated
defect image, the real roadbed junction defect image contains
substantial noise resulting from non-uniform roadbed materials
and inconsistent compaction. This is characterized by the presence
of several densely distributed hyperbolic patterns. Therefore, in
order to accurately identify various types of defects, it is necessary
to process the measured GPR images.
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4.3 GPR image processing Considering the undulations of the terrain, manual adjustment of
the zero point may not achieve perfect alignment. Therefore, zero-
After acquiring the GPR image of the red sandstone roadbed  point correction is employed to automatically detect and adjust for
with defects, a series of preprocessing steps are necessary to enhance  ground position. After correction, the data is balanced by seeking the
the quality of the model input data and improve the detection = maximum (positive phase) and minimum (negative phase) values
performance. The detailed procedures are illustrated in Figure 8.  at the specified sampling point. In addition, the electromagnetic
GPR detection aims to comprehensively collect the response signals ~ wave energy attenuates during medium propagation, necessitating
of the internal structure to radar waves, including effective waves ~ gain adjustment to enhance the imaging features associated with
and interference waves. In order to remove the interference signal,  the defect. A common method is to manually adjust the number of
filter processing is adopted. Since the time window zero point  gain points and their gain values. Manual gain refers to the process
typically does not align with the ground position, the ground  of converting the original data into a gain curve y(t) = Ax(f) x
position must be calibrated when calculating the target depth. This ~ e*. The purpose of gain is achieved by changing the adjustment
involves adjusting the zero point to ensure accurate measurements.  coefficient a.
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FIGURE 8
GPR imaging process.
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5 Intelligent identification model of
roadbed defects based on the YOLO
network

5.1 Defect sample dataset

When using convolutional neural networks for object detection
in images, the composition of the dataset affects the recognition
accuracy. The above-mentioned simulations of the propagation of
electromagnetic waves in the reconstructed and expanded roadbed,
which contains defects of various types, burial depths, horizontal
positions, and geometric sizes, were conducted. A total of 343
ground-penetrating radar forward simulation images of the defects
at the junction of the reconstructed and expanded roadbed were
generated. To identify the defects occurring at the junction of
reconstructed and expanded roadbeds, GPR was employed for on-
site detection. This process yielded a total of 900 images depicting
voids, cracks, and non-compactness defects at the roadbed junction.
Subsequently, a comprehensive roadbed junction defect dataset was
constructed, encompassing 1243 images that captured various types
of voids, cracks, and non-compactness defects. In order to avoid
overfitting and other problems, Mosaic enhancement, random affine
transformation, MixUp enhancement, and HSV data enhancement
technology were used to expand 5590 GPR images of roadbed
junction defects. This model creates and edits annotation boxes
on the sample library images through the open source image
annotation tool Lbellmg, which is used to mark the location and
category of the objects. Combined with the original 1,243 images,
a dataset comprising 6,833 roadbed junction defect samples was
constructed for subsequent model training. The defects included
1,479 rectangular voids, 1,476 circular voids, 1,476 cracks, and 2,402
non-compactness regions. The dataset was split into training and
testing sets according to an 8:2 ratio.

5.2 Model architecture

YOLO network is an advanced object detection algorithm based
on deep learning. Its core feature is the ability to simultaneously
complete the localization and classification of targets on a single
image. Compared with traditional object detection algorithms (such
as the R-CNN series algorithms), it features fast detection speed,
high global perception and positioning accuracy, good adaptability
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to complex scenes, and a simple model that is easy to deploy,
balancing efficiency and practicality, which makes it widely used
in scenarios with high real-time requirements. In the YOLOvV5
network, target detection is achieved through the output part
composed of aloss function and non-maximum suppression (NMS).
This algorithm will force the scores of adjacent detection boxes
to zero, resulting in failure to detect the object, which is not
conducive to the identification of multiple adjacent defects in the
same radar image of the reconstructed and expanded roadbed.
Therefore, the overall architecture based on the YOLO algorithm
was constructed (Wanyan et al., 2024), featuring a backbone network
composed of several groups of “CBS-C3” layers and an SPPF
layer. Additionally, the head part was designed by integrating
C3, upsampling, and multi-scale feature map tensor concatenation
operations, thereby forming a “top-down, bottom-up” multi-scale
feature fusion algorithm architecture, as illustrated in Figure 9.
This architecture can prevent the inability to effectively identify
multiple defects in the same location within the reconstructed and
expanded roadbed.

To prevent the forced zeroing of scores for adjacent detection
boxes from causing object detection failure, after completing the
aforementioned computational process, a variable is introduced.
This variable represents the intersection area between each other,
the bounding box in the image, and the current bounding box.
Subsequently, the IoU (Intersection over Union) between each
anchor box and the current anchor box is calculated. If the
computed IoU value exceeds a predefined threshold, the score of
the corresponding bounding box is attenuated using the following
equation to adjust the confidence score accordingly (Qinggang and

Xueming, 2020) as shown in Equation 7:

o0
Newscore=e ¢ (7)

where Newscore represents the new score of the bounding box; IoU
is the JoU between other anchor boxes and the current anchor box;
o denotes the decay rate control variable.

5.3 Model training results

The constructed roadbed junction defect database is used to
train different types of defects using the constructed target detection
algorithm. The performance data of the model training results
are shown below. The confusion matrix is a visualization of the
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Yolov5 model after training, which is used to show the classification
effect of the model on different categories. In this model, three
categories of non-compactness, voids, and cracks are set up, and the
confusion matrix is a 4 x 4 matrix. As can be seen from Figure 10,
after the training of this model, the recognition accuracy of non-
compactness, cavity and crack defects in the test set is 0.99, 0.97,
and 0.99, respectively.

Precision reflects the overall accuracy of the model in terms
of target recognition and classification at the given iteration.
A model prediction accuracy closer to 1 indicates superior
performance. From the analysis of Figure 11a, it can be observed
that the prediction accuracy of the model exhibits an overall
upward trend as the number of iterations increases. When
the number of iterations is small, the prediction accuracy of
the model initially increases and then decreases, followed by
oscillations without convergence as it continues to increase. As
the number of iterations gradually increases, the model accuracy
gradually stabilizes. When the number of iterations reached 200,
the overall prediction rate reached 0.987. Figure 11b illustrates
that as the number of model iterations increases, the recall
rate exhibits an overall trend of initially rising rapidly, followed
by fluctuations, and eventually stabilizing. When the number
of iterations reaches 200, the final recall rate of the model
reaches 0.969.

Frontiers in Built Environment

0.9
bumish
0.8
0.7
kongdong 0.6
o
2
o
B 10.5
2
~
. 10.4
liefeng
10.3
10.2
background [ (.01 0.03 0.01 ol
A . . . Lo
bumish kongdong liefeng background
FIGURE 10
Confusion matrix of model training results.

Classification loss refers to whether the model is correct in
calculating the anchor box and the corresponding recognition
category. As can be seen from Figure 11c, with the increase in the
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number of iterations, the model classification loss shows a tendency
to decrease rapidly, and then the rate slows down and gradually
converges to 0 (in the classification loss, a smaller the value means
more accurate classification). When the iteration number reaches
200, the loss rate of the model reaches 2.97 x 107, F1 Score is the
harmonic average of accuracy and recall rate, and its value ranges
from 0 to 1. A higher score indicates a better prediction performance
of the model. Figure 11d illustrates the variation of the F1 Score
for different confidence thresholds. Based on the above analysis, as
the confidence threshold gradually increases, the F1 Score exhibits
a trend of initially increasing and subsequently decreasing. When
the confidence threshold is around 0.2, the F1 Score reaches its
maximum value and maintains this value until the confidence
threshold increases to around 0.8. Although the model F1 Score
decreases with the increase in confidence, the overall recognition
performance remains satisfactory.

Based on the evaluation of the index results following
the aforementioned model training, it is evident that the
trained model is capable of accurately identifying the locations
and categories of non-compactness, voids, and cracks in
radar imaging of reconstructed and expanded roadbeds.
Furthermore, the overall recognition accuracy achieves a high level
of 98.7%.
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5.4 Defect identification results

The GPR images of the roadbed junctions were preprocessed,
followed by the application of the proposed target detection
algorithm to identify and classify the geological radar images
corresponding to the suspected roadbed defect sections.

Figure 12 illustrates the GPR image and recognition result
of a void defect, where irregular curve features are consistent
with electromagnetic wave propagation simulations. The optimized
YOLOvV5 model accurately marked the void boundaries, which
closely matched the actual defect, and remained robust even with
slight variations in burial depth. Figure 13 shows the imaging
characteristics of a looseness defect, with clear reflections in the
upper part and blurred signals in the lower part due to pore
scattering and signal attenuation. The model successfully identified
the looseness region, demonstrating good adaptability and tolerance
to defects without clear geometric boundaries. Figure 14 presents
the GPR image of a vertical crack, where typical convex hyperbolic
reflections were observed. The model precisely delineated the crack
distribution, highly consistent with the actual path, highlighting its
high accuracy in detecting complex linear defects.

In summary, the proposed model can effectively locate and
identify the voids, non-compactness, and cracks at the junction of
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the reconstructed and expanded roadbed. The recognition results
of the three defect types are highly consistent with electromagnetic
wave propagation patterns. This confirms the effectiveness and
generalization capability of the proposed method across various
defect forms and signal qualities, providing reliable support for the
rapid screening of subgrade defects in practice.

This study aims to accurately identify typical defects at
junctions of reconstructed and expanded expressway subgrades,
including voids, looseness, and cracks. To this end, the optimized
YOLOvV5 was chosen as the core recognition algorithm due to its
efficiency and adaptability in object detection. Adopting an end-
to-end framework, it enables rapid dataset processing and result
output, meeting practical requirements for fast defect screening.
It also supports multi-class detection, allowing simultaneous
identification of voids, looseness, and cracks without separate
models for each type. The optimized YOLOV5 achieved recognition
accuracies of 97%, 99%, and 99% for voids, looseness, and cracks,
respectively, demonstrating high precision in multi-class defect
detection.

The
“simulation-field measurement-intelligent recognition” technical

proposed method has been developed into a
framework, offering a novel approach for defect detection
It

robustness and generalization: the dataset covers multiple

and maintenance at roadbed junctions. shows strong
defect types and integrates generalized simulation results from
engineering cases with field measurements, capturing common

features of real-world defects. YOLOv5 is trained on actual
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defect features, so its recognition logic is not limited to a
single case.

Nevertheless, some limitations remain. Simplified model
parameters, idealized defect morphologies, geological constraints of
field data, and challenges in detecting small or deep-seated defects
indicate areas for further improvement. Despite these, the method
shows potential applicability in other practical cases with similar
subgrade junction defects.

6 Conclusion

In view of the prevalent road defects in highway reconstruction
and expansion projects, as well as the limited means and
insufficient accuracy of existing internal defect detection methods,
this paper focuses on identifying defects at the junction of
reconstructed and expanded roadbeds. By integrating numerical
simulation, field experiments, and deep learning techniques, the
study investigates the application of target detection deep learning
algorithms in GPR imaging for defect detection and identification
at the reconstructed and expanded roadbed junction. The main
conclusions are as follows:

1. The electromagnetic waves exhibit two sets of parallel convex
hyperbolas within the circular cavity defects. The existence
of non-compactness defects causes the overall reflected wave
signal to display a distinct upper portion and a blurred
lower portion in the imaging feature. Additionally, the

frontiersin.org


https://doi.org/10.3389/fbuil.2025.1679410
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org

Rong et al.

- N ".

Under-compacted zone 0.69

.

A

-'

Under-compacted zone 0.62
-

ad S V.

160

szrse  ser sznre
|

10.3389/fbuil.2025.1679410
O none oL W0 Wi @una e e ties o wie sz sz
L g e g e P

er-compacted zone 0.96

Under-compacted

5829310

s e e r s o5

83060

Under-compacted zone 0.36 "

Under-compacted zone 0.75

—— -

-
N ——
FIGURE 13
Non-compactness defect identification results.
540185.0 540186.0 540187.0 540188.0 540189.0 540190.0 600185.0 600186.0 600187.0 600188.0 600189.0 600190.0 600142.0 600143.0 600144.0 600145.0
Crack 0.66
Crack 093

597053.0 597054.0 597055.0 597056.0 597057.0 597058.0 602384.0 602385.0
Crack 0.97

- B ——.

1 -

FIGURE 14

Crack defect identification results.

Frontiers in Built Environment

600146.0

Crack 0.54

602386.0 602387.0 60238t 602389.0 578056.0 578057.0 578058.0 578059.0 578060.0

Crack 0.94

600147.0

13

frontiersin.org


https://doi.org/10.3389/fbuil.2025.1679410
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org

Rong et al.

electromagnetic waves show multiple nearly parallel convex
hyperbolas in proximity to vertical cracks.

2. The type of defect can significantly influence the detection
imaging effect. Specifically, defects located at different
horizontal positions will only alter the horizontal position
of the hyperbola in the imaging result without affecting
the overall characteristics of the generated image features.
The defects of different burial depths greatly influence
the hyperbolic imaging effect. As the burial depth of the
defect increases, the amplitude of the hyperbola decreases
significantly. For the same defect at varying burial depths, the
opening size of the hyperbola increases with increasing burial
depth. This may lead to confusion between the hyperbolas
generated by small-sized defects in the deep layer and those
generated by large-sized defects in the shallow layer, potentially
resulting in misjudgment.

3. The enhanced target recognition algorithm for junction defect
detection, which is based on the YOLOV5 network, has
achieved accuracy rates of 97% for cavity defect recognition,
99% for non-compactness defects, and 99% for crack defects.
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