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During the reconstruction and expansion of expressways, defects at the 
roadbed junction can compromise driving safety and significantly reduce the 
service life of the road. Based on engineering cases, a generalized model of 
the defective reconstructed and expanded roadbed junction was developed, 
and the propagation simulation of electromagnetic waves in the defective 
roadbed junction was performed using the finite-difference time-domain 
(FDTD) method. The simulation results demonstrated that the electromagnetic 
waves formed two sets of parallel convex hyperbolas at the circular cavity 
defects. The presence of non-compactness defects caused the overall reflected 
wave signal to exhibit an imaging characteristic with a clear upper section 
and a blurred lower section. In addition, electromagnetic waves manifested 
as multiple nearly parallel convex hyperbolas near the vertical cracks. On 
this basis, by integrating numerical simulation results with field-measured 
data, a comprehensive dataset encompassing various types of defects was 
established. Following the optimization of the YOLO algorithm training model, 
the identification accuracy rates for void, non-compactness, and crack defects 
reached 97%, 99%, and 99%, respectively. The new method proposed in this 
study has universal reference value and application potential for road defect 
detection under different geological conditions and construction standards.

KEYWORDS

reconstructed and expanded roadbed junction, ground penetrating radar, deep 
learning, defect identification, field testing 

 1 Introduction

By the end of 2023, the total mileage of highways in China had exceeded 
5.4368 million kilometers, with fourth-grade highways comprising 73.8% of the 
network and playing a crucial role in delivering transportation services. With the 
deepening of the strategy to build a strong transportation nation, reconstructing and 
expanding existing highways have become critical measures for optimizing the road 
network structure and enhancing service efficiency. However, structural defects, such 
as longitudinal cracks that frequently occur at the junction between the new and
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old roadbeds, not only significantly shorten the service life of the 
road but also increase the annual maintenance cost by 15%–30%, 
thereby posing a serious threat to driving safety (Zhang et al., 
2024). This current situation places higher demands on road defect 
detection technology.

In the field of non-destructive detection of concealed road 
defects, ground-penetrating radar (GPR) technology has gained 
widespread adoption owing to its exceptional efficiency and high-
resolution capabilities (Yu et al., 2023; Liu et al., 2025). However, 
due to the multi-phase characteristics of roadbed materials and the 
intricate morphology of defects, traditional interpretation methods 
encounter bottlenecks, including insufficient feature extraction 
and a high misjudgment rate (Wang et al., 2024; Tešić et al., 
2021; Morris et al., 2021). In recent years, GPR technology 
has made breakthrough progress in multiple dimensions: In 
terms of hardware innovation, Guo et al. (2023) revealed the 
influence of antenna quality on the imaging effect by comparing 
the performance of different antennas in railroad ballast layer 
detection. Tesic et al. (2022) elucidated the mechanism of sodium 
chloride solution distribution on GPR signaling amplitude through 
accelerated corrosion experiments. Zhang et al. (2022) developed 
a three-dimensional reconstruction model for a landfill using 
the travel time of electromagnetic waves, thereby extending 
the applicability of GPR in achieving high spatial resolution. 
At the software algorithm level, (Xu et al., 2024) adopted the 
UNet network to achieve the identification accuracy of 88% of 
the rock layer. Zhou et al. (2023) used the VRADI algorithm 
combined with DBSCAN clustering, which improved the accuracy 
of void recognition to 92.2%. Tang et al. (2022) improved 
the MPA index of crack segmentation by 12.6% through the 
Crack UNet model optimized by the attention mechanism. 
Puntu et al. (2021) developed a tunnel-lining boundary detection 
system and verified the engineering applicability of the Fresnel 
reflection coefficient. Abdelsamei et al. (2024) established an 
amplitude feature evaluation system to achieve millimeter-level 
detection accuracy of pavement thickness. It is noteworthy that 
3D GPR technology (Lv et al., 2023; Amaral et al., 2023) has 
demonstrated unique advantages in complex engineering scenarios 
through multi-channel data fusion and physical experiment
verification.

With the deep integration of artificial intelligence technology, 
the GPR intelligent diagnosis system is driving the innovation 
of the detection paradigm. In terms of feature extraction, 
the frequency band dielectric spectrum analysis developed 
by Zhang et al. (2018) can identify early defects with 0.5% 
water content. Bu et al. (2025) established a time-frequency 
fusion model and improved the defect identification accuracy 
to 91.6%. At the level of algorithm optimization, Guo et al. 
(2022) proposed a CEEMD-aligned entropy noise reduction 
method to effectively suppress signal interference. Sonoda and 
Nakamichi (2024) significantly improved the robustness of deep 
learning models through Cutout data enhancement technology. 
The LSTM wavelet network designed by Geng et al. (2022) 
achieved clutter suppression without prior information. The 
high-level FDTD (2, 4) code developed by Chi et al. (2024) 
effectively improved the recognition ability of shallowly buried 
targets. Li et al. (2024) proposed an adaptive curriculum learning 
framework, reducing the false detection rate in urban scenes to 

2.1%. The MHUnet-YOLOv8 model constructed by Kan et al. 
(2024) achieved a breakthrough in void detection accuracy. 
Although existing research has established a relatively complete 
roadbed defect identification system, there is still a significant 
gap in the detection technology for the special working 
conditions of the reconstructed and expanded roadbed
junction.

In summary, numerous scholars have utilized deep learning 
to extract and learn features from classified GPA imaging data, 
establishing automatic identification technologies for roadbed 
defects. However, there are limited relevant findings regarding 
defects at the junction of reconstructed and expanded roadbeds. 
This study develops a generalized model of roadbed junction defects 
based on extensive field research and establishes a radar imaging 
data sample library for roadbed junction defects by integrating 
numerical simulations with field test data. On this basis, an 
intelligent identification model for the reconstructed and expanded 
roadbed junction is established by employing an enhanced deep 
learning algorithm, thereby providing a reliable reference for the 
maintenance of operational highways, as well as reconstruction and 
expansion projects. 

2 Forward modeling based on 
finite-difference time-domain 
methods

2.1 Basic principles of radar wave testing

GPR transmits high-frequency broadband electromagnetic 
waves into the ground through a transmitting antenna and receives 
the electromagnetic waves through a receiving antenna. Reflection 
occurs when an electromagnetic wave impinges upon the junction 
between two materials with differing dielectric properties. A 
greater difference in the dielectric properties of the two materials 
indicates a stronger reflected signal of the electromagnetic wave. 
Numerous reflected waves constitute the radar profile image, 
as shown in Figure 1. According to the waveform, amplitude, 
and echo time of the reflected wave, the geometric shape, 
material characteristics, and position of the detection target can be 
interpreted.

2.2 Finite-difference time-domain method

Finite-difference time-domain (FDTD) is a numerical method 
for solving electromagnetic field problems with high accuracy 
and stability. The FDTD method is based on Maxwell’s equations 
and the constitutive relationship of materials. It can effectively 
simulate the propagation characteristics of electromagnetic waves 
in complex media and provide theoretical support for GPR signal 
analysis. Here the Perfectly Matched Layer boundary conditions
are used.

This method demonstrates high accuracy and reliability when 
applied to the calculation of electromagnetic field problems. 
Additionally, it facilitates a deeper understanding and more precise 
prediction of the propagation characteristics of electromagnetic 
waves in complex environments.
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FIGURE 1
Working principle of GPR. (a) GPR detection principle; (b) Reflected wave signal.

Combining the Maxwell equations and the constitutive relation 
of the electromagnetic field, the Maxwell equations of TM waves in 
a two-dimensional rectangular coordinate system are obtained, as 
shown in Equations 1–3:

∂Ez

∂y
= −μ

∂Hx

∂t
− σmHx (1)

∂Ez
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∂Hy
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∂Hy
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−

∂Hx
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= ε
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where E Z  is the electric field strength in the z direction; Hx and 
Hy are the magnetic field strengths in the x and y directions, 
respectively; σm is the magnetic resistivity for calculating magnetic 
loss; σ is the electrical conductivity of the medium; ε is the relative 
dielectric constant; μ represents the magnetic permeability. The 
model established in this paper does not include magnetic materials, 
that is, σm = 0, μ = 1.

The electric field and magnetic field have the characteristic of 
alternating sampling in the time series, and their sampling intervals 
differ from each other by half a time step. Therefore, the FDTD 
equation of the two-dimensional TM wave is Zhang et al. (2011) as 
shown in Equations 4–6:
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 where Ez  is the electric field intensity; Hx and Hy are the magnetic 
field intensities; Δt is the time step; n is the discrete time; Δx and 
Δy are the spatial steps of the Yee cell in the x and y directions, 
respectively; (i, j) is the grid space coordinate.

3 Simulation of electromagnetic wave 
propagation in reconstructed and 
expanded roadbeds

3.1 Generalized model of the defect at the 
reconstructed and expanded roadbed 
junction

The development of a generalized roadbed model incorporating 
various defect types serves as the foundation for analyzing 
the propagation characteristics of electromagnetic waves at the 
junction of defective reconstructed and expanded roadbeds. 
Affected by both natural and man-made factors, including 
geological characteristics, hydrological meteorology, vehicle loads, 
and construction technology, three typical defects-voids, non-
compactness, and cracks-have emerged during the reconstruction 
and expansion of roadbeds. This study focuses on a highway 
expansion and reconstruction project in Yichun City, Jiangxi 
Province. The step method was employed to widen the roadbed 
on both sides. Specifically, the step height and width were both set 
to 1 m. Half of the roadbed on each side after widening was selected 
for simulation, with the model having a side length of 8 m and a 
depth of 7 m.

Based on the reconstruction and expansion of the roadbed 
structure, the generalized model is simplified to include air, the 
existing roadbed, the newly constructed roadbed, and defects. 
Among them, the generalized model of the circular void defect 
is shown in Figure 2a, where the radius of the void is 0.3 m, and 
the void is filled with air. The horizontal position of the circular 
void is randomly determined within the range of 0.80 m–7.15 m, 
with a precision of two decimal places. The buried depth is also 
randomly assigned within the range of 0.60 m–6.50 m, maintaining 
the same level of precision. Both parameters, the horizontal position 
and the buried depth, jointly define the location of the circular 
void. A total of 82 working conditions are established based on 
these parameters. The generalized model representing the non-
compactness defect is illustrated in Figure 2b. A square region is 
defined at the junction between the new and old roadbeds. A 
random seeding approach is employed within this square region, 
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FIGURE 2
Generalized model of typical defects at the junction of the reconstructed and expanded roadbed: (a) Void, (b) Under-compacted zone, (c) Crack.

where half of the area is designated as void space to simulate a 
compaction degree of 50%. The non-compactness region has a 
total area of 0.25 m × 0.25 m. The horizontal position is randomly 
selected within the range of 0.8 m–6.9 m, with values specified 
in two decimal places. Similarly, the burial depth is randomly 
determined within the range of 0.5 m–6.0 m, also expressed in two 
decimal places. The location of the non-compactness region is jointly 
determined by both the horizontal position and the burial depth. 
A total of 82 working conditions are established for analysis. The 
generalized model of the crack defect is presented in Figure 2c. 
In this model, the crack is approximated as an assembly of small 
rectangular cavities with contacting boundaries, and various crack 
configurations are simulated through a staggered arrangement of 
these cavities. The length of the crack is 0.65 m. The horizontal 
position is randomly selected within the range of 1.60 m–7.00 m, 
with values specified to two decimal places. The burial depth is 
randomly set between 0.50 m and 6.40 m, also with values specified 
to two decimal places. The location of the crack is determined 
jointly by its horizontal position and burial depth, and a total of 82 
working conditions are established.

3.2 Assumptions

The reconstructed and expanded roadbed is mainly filled with 
coarse-grained soil. The filling soil utilized in actual engineering 
projects is not comprised of a single, homogeneous soil type but 
rather constitutes a mixture of several soils with varying properties 
and proportions. Moreover, the physical characteristics of the soil 
are subject to variation due to the impact of construction techniques 
and the specific conditions of the roadbed paving environment. The 
relative dielectric constant of soil is closely related to factors such 
as soil stone content, compaction, porosity, water content, humidity, 
temperature, ion type, and clay mineral content. These factors are 
coupled with each other and are difficult to decouple (Park et al., 
2017; Wagner et al., 2011; Ling et al., 2016). Due to the challenges in 
accurately simulating the real relative permittivity of coarse-grained 
soil in the expanded and renovated roadbed under the coupling 
effect of the aforementioned factors using existing methods and 
taking into account practical constraints such as computational 
power, the following assumptions are made when setting model 
parameters for forward simulation:
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TABLE 1  Material parameters.

Material name Material parameter values

Relative dielectric constant εr Conductivity σ Relative permeability μr Magnetic loss σ∗

Loose soil 12.00 0.001 1.00 0.00

Air 1.00 0.001 1.00 0.00

Water 81.00 0.01 1.00 0.00

1. Assuming that the soil of the reconstructed and expanded 
roadbed is a homogeneous medium composed of the same 
type of soil;

2. Assuming that the relative dielectric constant of the soil 
remains constant, the arithmetic mean of the measured field 
data is selected for analysis;

3. Assuming that the resistivity of the soil is constant, the 
arithmetic mean of the field-measured data is selected;

4. The voids in the reconstructed and expanded roadbed are 
simplified as circular shapes filled with air, while cracks and 
non-compactness regions are modeled as defects resulting 
from the interconnected combination of several minute 
rectangular voids, also filled with air;

5. Assuming that both the signal transmitting and receiving 
points are located on the contact surface between the soil and 
air of the reconstructed and expanded roadbed.

3.3 Material parameters

The reconstructed and expanded roadbed is simulated with 
loose soil, air, and water. The values of various material properties 
and their corresponding electrical characteristic parameters are 
presented in Table 1. Among them, the material simulating the 
roadbed is referred to as the primary medium, while the material 
used for defect simulation is termed the filling medium.

3.4 Propagation characteristics

The propagation of electromagnetic waves at the junction of the 
reconstructed and expanded red sandstone roadbed, which contains 
circular void defects, is illustrated in Figure 3a. By observing 
the hyperbolic features in the defect image, it can be found 
that under the influence of a single circular void defect, the 
electromagnetic wave exhibits two sets of parallel convex hyperbolas 
at the defect location. The top set of hyperbolas is clearly more 
distinct than the bottom set. The propagation of electromagnetic 
waves in the junction of the reconstructed and expanded red 
sandstone roadbed containing non-compactness regions is shown 
in Figure 3b. By analyzing the hyperbolic characteristics in the 
defect image, it is evident that the presence of non-compactness 
defects causes the overall reflected wave signal to exhibit an 
imaging feature with a sharp upper section and a diffuse lower 
section. Compared with the imaging characteristics of void defects, 
the imaging of non-compactness defects is more complicated. 

The propagation of electromagnetic waves in the junction of the 
reconstructed and expanded red sandstone roadbed with cracks 
is shown in Figure 3c. By analyzing the hyperbolic features in the 
defect image, it is evident that under the influence of a single 
vertical crack defect, the image exhibits multiple approximately 
parallel convex hyperbolas near the defect location. Among all 
the hyperbolas, the top group exhibits distinct characteristics, 
whereas the reflected signals of the other hyperbolas below this 
group at the defect locations are extremely vague and nearly 
indistinguishable.

Taking non-compactness defects as an example, the influence 
of different horizontal positions and burial depths of defects on 
radar wave propagation is explored. The electromagnetic wave 
propagation for non-compactness defects at varying horizontal 
positions and the same depth is illustrated in Figure 4a. The red 
vertical line in the model layout diagram (upper right corner) 
indicates the horizontal position of the center of the non-
compactness defect and serves as a positional reference for the 
defect imaging information presented in the upper left corner. 
Analysis reveals that at the same depth, the hyperbolic patterns in 
the electromagnetic wave propagation maps of non-compactness 
defects at different horizontal positions are essentially identical, 
with variations observed only in their horizontal locations. This 
indicates that the horizontal position of a circular void defect can be 
deduced from the location of the hyperbola in the electromagnetic 
wave propagation image. The electromagnetic wave propagation 
characteristics of a circular void defect at various horizontal 
positions but at the same depth are illustrated in Figure 4b. Analysis 
reveals that when the burial depth of the circular void is 0.5 m, the 
reflected wave signal is distinct, and there is an evident difference 
in signal strength among multiple groups of hyperbolas, with a 
relatively small curve opening. As the burial depth of the circular 
void progressively increases to 2.65 m, 3.89 m, and 5.8 m, the 
reflected wave signal gradually weakens, and the curve opening 
expands with increasing burial depth. When the burial depth 
reaches 5.8 m, the reflected wave signal becomes blurred and almost 
unrecognizable.

4 GPR field detection

4.1 Field test scheme

The test was carried out in the reconstruction and expansion 
project of the G60 Expressway, located in the Yichun section of 
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FIGURE 3
Simulation results of electromagnetic wave propagation in reconstructed red sandstone roadbeds containing different defect types. (a) Circular void 
defect (b) Non-compactness defect. (c) Crack defect.

Jiangxi Province, China, as illustrated in Figure 5. The expressway 
has been in operation for many years and the roadbed soil has 
been compacted to the maximum extent. The on-site survey results 
indicate multiple defects in the roadbed, including slope collapse, 
ruts, and voids. Additionally, numerous locations exhibit damaged 
shoulders and uneven settlement of the roadbed. Therefore, the 
newly constructed roadbed was selected for experimental testing. 
Through geological survey analysis, early construction monitoring 
measurement data, road design drawings, and other relevant 
information, while considering the road width and anticipated 
detection depth, it is comprehensively determined that the survey 
lines should be arranged symmetrically with the road centerline 
as the axis and a spacing of 3 m on both sides. This arrangement 
ensures adequate coverage and resolution for effective detection. 
For the junction area of the new and old roadbeds, the spacing 
of the measuring lines is reduced to 1 m to enhance the detection 
accuracy. The on-site detection area is shown in Figure 6a. The 
on-site testing equipment is a GPR produced by Qingdao China 
Electronics Zhongyi Intelligent Technology Development Co., Ltd. 
This equipment includes the GER-10 radar host, GER400A ground 

coupling antenna, and ranging wheel (circumference 450 mm, 
pulse number 500), as shown in Figure 6b. The antenna frequency
is 100 MHz.

4.2 GPR imaging characteristics of roadbed 
junction defects

The electromagnetic wave propagation characteristics 
for various types of defects measured in the field are 
presented in Figure 7. Multiple sets of smooth, band-shaped 
hyperbolic reflected signals extending towards the road surface 
are observed at the location of the circular void defect. These signals 
exhibit characteristics that are largely consistent with those of the 
simulated defect. The non-compactness defect develops below the 
junction between the new and old roadbeds. Compared with the 
simulated non-compactness defect, the image of the real non-
compactness defect contains more hyperbolic groups and exhibits 
greater complexity. However, there is no prominent reflected 
signal at the center of the defect. The signal intensity transitions 
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FIGURE 4
Simulation results of electromagnetic wave propagation in the expanded red sandstone roadbed with void defects. (a) Different horizontal positions (b)
Different burial depths.

FIGURE 5
Field testing location map.

from the center to both sides demonstrate a repetitive pattern 
characterized by initial attenuation, followed by enhancement, 
and then subsequent attenuation. The cracks propagate from the 
bottom to the top of the road surface and manifest as narrow 
strip signals composed of multiple groups of hyperbolas on the 
graph. At the intersection of the contact surface between the 
roadbed and the pavement with the crack, a concave reflected 
signal is observed. Compared to simulated defect imaging, the 
radar imaging of real crack defects exhibits a narrower hyperbola 

opening and a greater number of hyperbola clusters. The signal 
distributed vertically along the crack has weaker attenuation 
and better imaging. In summary, in contrast to the simulated 
defect image, the real roadbed junction defect image contains 
substantial noise resulting from non-uniform roadbed materials 
and inconsistent compaction. This is characterized by the presence 
of several densely distributed hyperbolic patterns. Therefore, in 
order to accurately identify various types of defects, it is necessary 
to process the measured GPR images.
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FIGURE 6
Measuring line layout and test equipment. (a) Measuring line layout (b) On-site testing equipment.

FIGURE 7
Simulated and measured electromagnetic wave propagation characteristics of different types of defects.

4.3 GPR image processing

After acquiring the GPR image of the red sandstone roadbed 
with defects, a series of preprocessing steps are necessary to enhance 
the quality of the model input data and improve the detection 
performance. The detailed procedures are illustrated in Figure 8. 
GPR detection aims to comprehensively collect the response signals 
of the internal structure to radar waves, including effective waves 
and interference waves. In order to remove the interference signal, 
filter processing is adopted. Since the time window zero point 
typically does not align with the ground position, the ground 
position must be calibrated when calculating the target depth. This 
involves adjusting the zero point to ensure accurate measurements. 

Considering the undulations of the terrain, manual adjustment of 
the zero point may not achieve perfect alignment. Therefore, zero-
point correction is employed to automatically detect and adjust for 
ground position. After correction, the data is balanced by seeking the 
maximum (positive phase) and minimum (negative phase) values 
at the specified sampling point. In addition, the electromagnetic 
wave energy attenuates during medium propagation, necessitating 
gain adjustment to enhance the imaging features associated with 
the defect. A common method is to manually adjust the number of 
gain points and their gain values. Manual gain refers to the process 
of converting the original data into a gain curve y(t) = Ax(t) ×
eat. The purpose of gain is achieved by changing the adjustment
coefficient a.
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FIGURE 8
GPR imaging process.

5 Intelligent identification model of 
roadbed defects based on the YOLO 
network

5.1 Defect sample dataset

When using convolutional neural networks for object detection 
in images, the composition of the dataset affects the recognition 
accuracy. The above-mentioned simulations of the propagation of 
electromagnetic waves in the reconstructed and expanded roadbed, 
which contains defects of various types, burial depths, horizontal 
positions, and geometric sizes, were conducted. A total of 343 
ground-penetrating radar forward simulation images of the defects 
at the junction of the reconstructed and expanded roadbed were 
generated. To identify the defects occurring at the junction of 
reconstructed and expanded roadbeds, GPR was employed for on-
site detection. This process yielded a total of 900 images depicting 
voids, cracks, and non-compactness defects at the roadbed junction. 
Subsequently, a comprehensive roadbed junction defect dataset was 
constructed, encompassing 1243 images that captured various types 
of voids, cracks, and non-compactness defects. In order to avoid 
overfitting and other problems, Mosaic enhancement, random affine 
transformation, MixUp enhancement, and HSV data enhancement 
technology were used to expand 5590 GPR images of roadbed 
junction defects. This model creates and edits annotation boxes 
on the sample library images through the open source image 
annotation tool LbelImg, which is used to mark the location and 
category of the objects. Combined with the original 1,243 images, 
a dataset comprising 6,833 roadbed junction defect samples was 
constructed for subsequent model training. The defects included 
1,479 rectangular voids, 1,476 circular voids, 1,476 cracks, and 2,402 
non-compactness regions. The dataset was split into training and 
testing sets according to an 8:2 ratio. 

5.2 Model architecture

YOLO network is an advanced object detection algorithm based 
on deep learning. Its core feature is the ability to simultaneously 
complete the localization and classification of targets on a single 
image. Compared with traditional object detection algorithms (such 
as the R-CNN series algorithms), it features fast detection speed, 
high global perception and positioning accuracy, good adaptability 

to complex scenes, and a simple model that is easy to deploy, 
balancing efficiency and practicality, which makes it widely used 
in scenarios with high real-time requirements. In the YOLOv5 
network, target detection is achieved through the output part 
composed of a loss function and non-maximum suppression (NMS). 
This algorithm will force the scores of adjacent detection boxes 
to zero, resulting in failure to detect the object, which is not 
conducive to the identification of multiple adjacent defects in the 
same radar image of the reconstructed and expanded roadbed. 
Therefore, the overall architecture based on the YOLO algorithm 
was constructed (Wanyan et al., 2024), featuring a backbone network 
composed of several groups of “CBS-C3” layers and an SPPF 
layer. Additionally, the head part was designed by integrating 
C3, upsampling, and multi-scale feature map tensor concatenation 
operations, thereby forming a “top-down, bottom-up” multi-scale 
feature fusion algorithm architecture, as illustrated in Figure 9. 
This architecture can prevent the inability to effectively identify 
multiple defects in the same location within the reconstructed and 
expanded roadbed.

To prevent the forced zeroing of scores for adjacent detection 
boxes from causing object detection failure, after completing the 
aforementioned computational process, a variable is introduced. 
This variable represents the intersection area between each other, 
the bounding box in the image, and the current bounding box. 
Subsequently, the IoU (Intersection over Union) between each 
anchor box and the current anchor box is calculated. If the 
computed IoU value exceeds a predefined threshold, the score of 
the corresponding bounding box is attenuated using the following 
equation to adjust the confidence score accordingly (Qinggang and 
Xueming, 2020) as shown in Equation 7:

Newscore = e
IoU2

σ (7)

where Newscore represents the new score of the bounding box; IoU
is the IoU between other anchor boxes and the current anchor box; 
σ denotes the decay rate control variable. 

5.3 Model training results

The constructed roadbed junction defect database is used to 
train different types of defects using the constructed target detection 
algorithm. The performance data of the model training results 
are shown below. The confusion matrix is a visualization of the 
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FIGURE 9
Improved algorithm architecture for roadbed defect detection and target recognition based on YOLOv5 network.

Yolov5 model after training, which is used to show the classification 
effect of the model on different categories. In this model, three 
categories of non-compactness, voids, and cracks are set up, and the 
confusion matrix is a 4 × 4 matrix. As can be seen from Figure 10, 
after the training of this model, the recognition accuracy of non-
compactness, cavity and crack defects in the test set is 0.99, 0.97, 
and 0.99, respectively.

Precision reflects the overall accuracy of the model in terms 
of target recognition and classification at the given iteration. 
A model prediction accuracy closer to 1 indicates superior 
performance. From the analysis of Figure 11a, it can be observed 
that the prediction accuracy of the model exhibits an overall 
upward trend as the number of iterations increases. When 
the number of iterations is small, the prediction accuracy of 
the model initially increases and then decreases, followed by 
oscillations without convergence as it continues to increase. As 
the number of iterations gradually increases, the model accuracy 
gradually stabilizes. When the number of iterations reached 200, 
the overall prediction rate reached 0.987. Figure 11b illustrates 
that as the number of model iterations increases, the recall 
rate exhibits an overall trend of initially rising rapidly, followed 
by fluctuations, and eventually stabilizing. When the number 
of iterations reaches 200, the final recall rate of the model
reaches 0.969.

FIGURE 10
Confusion matrix of model training results.

Classification loss refers to whether the model is correct in 
calculating the anchor box and the corresponding recognition 
category. As can be seen from Figure 11c, with the increase in the 
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FIGURE 11
Model training results. (a) Precision (b) Recall. (c) Classification loss (d) F1 Score.

number of iterations, the model classification loss shows a tendency 
to decrease rapidly, and then the rate slows down and gradually 
converges to 0 (in the classification loss, a smaller the value means 
more accurate classification). When the iteration number reaches 
200, the loss rate of the model reaches 2.97 × 10−4. F1 Score is the 
harmonic average of accuracy and recall rate, and its value ranges 
from 0 to 1. A higher score indicates a better prediction performance 
of the model. Figure 11d illustrates the variation of the F1 Score 
for different confidence thresholds. Based on the above analysis, as 
the confidence threshold gradually increases, the F1 Score exhibits 
a trend of initially increasing and subsequently decreasing. When 
the confidence threshold is around 0.2, the F1 Score reaches its 
maximum value and maintains this value until the confidence 
threshold increases to around 0.8. Although the model F1 Score 
decreases with the increase in confidence, the overall recognition 
performance remains satisfactory.

Based on the evaluation of the index results following 
the aforementioned model training, it is evident that the 
trained model is capable of accurately identifying the locations 
and categories of non-compactness, voids, and cracks in 
radar imaging of reconstructed and expanded roadbeds. 
Furthermore, the overall recognition accuracy achieves a high level
of 98.7%. 

5.4 Defect identification results

The GPR images of the roadbed junctions were preprocessed, 
followed by the application of the proposed target detection 
algorithm to identify and classify the geological radar images 
corresponding to the suspected roadbed defect sections.

Figure 12 illustrates the GPR image and recognition result 
of a void defect, where irregular curve features are consistent 
with electromagnetic wave propagation simulations. The optimized 
YOLOv5 model accurately marked the void boundaries, which 
closely matched the actual defect, and remained robust even with 
slight variations in burial depth. Figure 13 shows the imaging 
characteristics of a looseness defect, with clear reflections in the 
upper part and blurred signals in the lower part due to pore 
scattering and signal attenuation. The model successfully identified 
the looseness region, demonstrating good adaptability and tolerance 
to defects without clear geometric boundaries. Figure 14 presents 
the GPR image of a vertical crack, where typical convex hyperbolic 
reflections were observed. The model precisely delineated the crack 
distribution, highly consistent with the actual path, highlighting its 
high accuracy in detecting complex linear defects.

In summary, the proposed model can effectively locate and 
identify the voids, non-compactness, and cracks at the junction of 
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FIGURE 12
Void defect identification results.

the reconstructed and expanded roadbed. The recognition results 
of the three defect types are highly consistent with electromagnetic 
wave propagation patterns. This confirms the effectiveness and 
generalization capability of the proposed method across various 
defect forms and signal qualities, providing reliable support for the 
rapid screening of subgrade defects in practice.

This study aims to accurately identify typical defects at 
junctions of reconstructed and expanded expressway subgrades, 
including voids, looseness, and cracks. To this end, the optimized 
YOLOv5 was chosen as the core recognition algorithm due to its 
efficiency and adaptability in object detection. Adopting an end-
to-end framework, it enables rapid dataset processing and result 
output, meeting practical requirements for fast defect screening. 
It also supports multi-class detection, allowing simultaneous 
identification of voids, looseness, and cracks without separate 
models for each type. The optimized YOLOv5 achieved recognition 
accuracies of 97%, 99%, and 99% for voids, looseness, and cracks, 
respectively, demonstrating high precision in multi-class defect
detection.

The proposed method has been developed into a 
“simulation–field measurement–intelligent recognition” technical 
framework, offering a novel approach for defect detection 
and maintenance at roadbed junctions. It shows strong 
robustness and generalization: the dataset covers multiple 
defect types and integrates generalized simulation results from 
engineering cases with field measurements, capturing common 
features of real-world defects. YOLOv5 is trained on actual 

defect features, so its recognition logic is not limited to a
single case.

Nevertheless, some limitations remain. Simplified model 
parameters, idealized defect morphologies, geological constraints of 
field data, and challenges in detecting small or deep-seated defects 
indicate areas for further improvement. Despite these, the method 
shows potential applicability in other practical cases with similar 
subgrade junction defects. 

6 Conclusion

In view of the prevalent road defects in highway reconstruction 
and expansion projects, as well as the limited means and 
insufficient accuracy of existing internal defect detection methods, 
this paper focuses on identifying defects at the junction of 
reconstructed and expanded roadbeds. By integrating numerical 
simulation, field experiments, and deep learning techniques, the 
study investigates the application of target detection deep learning 
algorithms in GPR imaging for defect detection and identification 
at the reconstructed and expanded roadbed junction. The main 
conclusions are as follows: 

1. The electromagnetic waves exhibit two sets of parallel convex 
hyperbolas within the circular cavity defects. The existence 
of non-compactness defects causes the overall reflected wave 
signal to display a distinct upper portion and a blurred 
lower portion in the imaging feature. Additionally, the
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FIGURE 13
Non-compactness defect identification results.

FIGURE 14
Crack defect identification results.
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electromagnetic waves show multiple nearly parallel convex 
hyperbolas in proximity to vertical cracks.

2. The type of defect can significantly influence the detection 
imaging effect. Specifically, defects located at different 
horizontal positions will only alter the horizontal position 
of the hyperbola in the imaging result without affecting 
the overall characteristics of the generated image features. 
The defects of different burial depths greatly influence 
the hyperbolic imaging effect. As the burial depth of the 
defect increases, the amplitude of the hyperbola decreases 
significantly. For the same defect at varying burial depths, the 
opening size of the hyperbola increases with increasing burial 
depth. This may lead to confusion between the hyperbolas 
generated by small-sized defects in the deep layer and those 
generated by large-sized defects in the shallow layer, potentially 
resulting in misjudgment.

3. The enhanced target recognition algorithm for junction defect 
detection, which is based on the YOLOv5 network, has 
achieved accuracy rates of 97% for cavity defect recognition, 
99% for non-compactness defects, and 99% for crack defects.
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