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and historical cost optimization
In construction
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Digital timecards are widely used in construction to track labor hours, equipment
usage, and productivity, yet they are prone to outliers caused by human error,
inconsistent reporting, and interface complexity. These anomalies degrade data
reliability, obstruct cost estimation, and limit the strategic use of historical
performance records. Traditional outlier detection meth-ods, such as Z-score
filtering and standard Isolation Forest, apply global thresholds that often fail to
capture the heterogeneous and context-specific nature of construction data.
This paper introduces a context-aware optimization approach that dynamically
tunes Isolation Forest contamination thresholds by learning from estimating
practices. Validation results demonstrate that, compared to Z-score filtering and
standard Isolation Forest, the proposed method pro-duces tighter clustering of
standard deviations across cost codes, eliminates extreme variance spikes, and
better aligns actual productivity distributions with estimator expectations. The
model effectively filters unreliable entries while preserving meaningful high-
cost cases, thereby improving both interpretability and reliability of historical
data. To support scalable use of these refined datasets, the authors developed
a production-grade agentic Al workflow integrating es-timating and field
management software with Google's Firebase and an OpenAl GPT-based
assistant via OpenAPI specifications. This system allows estimating and project
management teams to query their data conversationally, retrieving real-time
productivity benchmarks, unit costs, and historical trends across jobs and cost
codes. While the model currently functions as a post-correction mechanism
rather than preventing errors at the source, it provides a scalable, automated
alternative to spreadsheet-based workflows, enabling improved bidding, project
planning, and business intelligence.

KEYWORDS

outlier detection, isolation forest, agentic Al, construction data analysis, cost estimating,
generative Al, labor productivity, historical data analysis

1 Introduction

Many U.S. builders now use cloud-based software to estimate jobs, bid work, and track
progress in real time (Sayed et al., 2023; Acuity International, 2025). These systems store
current prices for materials, crew wages, and equipment, allowing estimators to develop
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reusable cost databases for future projects while giving site teams
live insight into daily spending. These days, the same software suites
include onsite datalogging tools that let crews record labor hours,
equipment use, and completed work via digital timecards, replacing
traditional timesheets and punch cards and feeding managers
live dashboards of labor productivity and labor/equipment costs
(Bonney et al., 2024; Ahmed and Omar, 2021; HCSS, 2018). The
cloud sync happens instantly, eliminating the delays of paper
reporting and letting estimators, superintendents, and project
managers compare today’s numbers with the original estimate and
catch problems fast (Spivac, 2025; Hedley, 2014). For example,
HCSS Heavyjob, a popular construction management platform
for civil contractors, lets crews clock in on a phone or laptop
and displays live dashboards of labor and equipment productivity
(HCSS, 2018). Digital timecards filled out by site foremen or crew
leaders are now central to cost tracking, payroll processing, and
productivity analysis (Poage, 2024). Crews tag every hour to the
correct job code (the overall project) and cost code (the specific
work component) and record that day’s quantities, letting managers
view labor productivity, labor hours per unit of work daily and keep
budgets on track (HCSS, 2024). Over time, the company builds a
rich history of actual costs versus estimates, which they revisit to
refine productivity rates and unit cost assumptions for new bids
(Hedley, 2014). This feedback loop only works when timecards
are accurate and coded correctly, making consistent practice of
maintaining a rich cost database essential. Accurate digital records
become a source of business intelligence, feeding benchmarks for
crew performance and equipment use that sharpen bids in the
competitive U.S. market (Hedley, 2014).

Despite these advantages, field-generated timecard data
inconsistencies and outliers

still  suffers

(hh2 Construction Connected, 2025). Simple human mistakes,

from pervasive

such as foremen mistyping hours or selecting the wrong job or
cost code while rushing at days end remain one of the most
common causes of payroll disputes and cost code misallocations
(hh2 Construction Connected, 2025; Pravdin, 2023). Connectivity
gaps compound the problem: on remote sites with weak signal, crews
often jot hours on paper and bulk-upload them later, a practice that
invites duplicate or missing entries and leaves some records stranded
offline (Pravdin, 2023). Interface complexity and language barriers
further degrade accuracy. Many U.S. craft workers are nonnative
English speakers, and when an app demands too many clicks or
presents long, unclear picklists, they default to generic codes or
skip quantity fields altogether (Pravdin, 2023). Long-standing time-
theft behaviors such as buddy punching persist as well. Surveys
show nearly half of field employees admit to padding their hours
at least occasionally, and digital systems are only as secure as the
GPS locks, biometrics, or photo checks that a contractor is willing
to enforce (hh2 Construction Connected, 2025). Collectively, these
factors inject extreme labor hours, duplicate quantities, and inflated
equipment time into the dataset, distorting day-to-day cost tracking
and, over the long term, eroding the historical record that estimators
rely on to refine productivity rates and unit cost assumptions for
future bids.

To further examine the impact of inconsistent timecard data on
estimating and project controls, the authors of this paper analyzed
historical records from a proprietary construction management
and estimating software suite used by a civil contractor based in
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Northeast Florida. This firm maintains a comprehensive internal
cost database and mandates the use of digital timecards to collect
daily labor and equipment usage data from field crews.

Figures la,b present a historical comparison of labor hours
estimated by the company’s office-based estimators and the actual
labor hours recorded on-site for two representative activities:
installation of sanitary sewer manholes (measured in labor hours
per each unit installed) and site cut/haul operations (measured
in labor hours per cubic yard). These records span more than
6 years of completed projects and provide a focused view into labor
productivity across repeated instances of common civil construction
tasks. Even after filtering clearly erroneous entries such as zero
values or extreme outliers likely introduced by manual entry errors,
the actual timecard data exhibit considerable variability. In both
activities, the distribution of actual labor hours is right-skewed
and displays higher mean values compared to the estimated hours.
This discrepancy is visualized in the KDE curves, which reveal
clear distributional shifts, multimodal tendencies, and heavy tails.
In particular, the site cut/haul activity displays scattered actual
labor values, indicating challenges in field-level reporting and the
inherently variable nature of excavation-related tasks. These findings
underscore the limitations of using raw timecard data for decision-
making. Inconsistent entry behavior, delayed reporting, and lack of
contextual awareness during data capture diminish the reliability of
productivity metrics. As a result, project managers struggle to use
this information for real-time cost control, and estimators find it
difficult to adjust productivity rates based on historical performance
(hh2 Construction Connected, 2025; Pravdin, 2023).

While traditional outlier detection methods (e.g., z-score
filtering, IQR thresholds) may help reduce noise, they operate
in a context-agnostic manner and risk discarding high-cost but
meaningful data points (Ahmad, 2019; Liang and Parthasarathy,
2016; Geeks for Geeks, 2023). In contrast, the approach proposed
in this paper employs a dynamic, context-aware contamination
optimization loop, which iteratively calibrates outlier detection
thresholds based on the interplay between estimated and actual
labor hour distributions. This ensures that legitimate, high-
variance cases are retained for their informational value, while
distortive anomalies are filtered out. Such an adaptive method
enhances the usability of timecard data, supporting both short-
term project execution and long-term business intelligence. After
the outliers have been systematically identified and removed using
the proposed context-aware dynamic optimization framework,
the cleaned datasets become significantly more interpretable and
reliable for analysis. However, despite this improvement, the
visualizations in Figures la,b reveal that these datasets remain
large and complex, often requiring project team members to
invest substantial time and effort to extract meaningful insights.
This situation leads to a common challenge in the construction
industry: information overload. Prior studies have reported that
construction professionals frequently experience cognitive fatigue
from the overwhelming volume of information they must process,
from interpreting labor and cost data to performing calculations
for average productivity, unit costs, or crew efficiency (Tang et al.,
2008; Wallin, 2023; Okoh et al., 2024). These manual efforts, often
carried out in spreadsheets, demand not only technical skill but also
time commitments that project teams may not be able to sustain in
fast-paced field environments.
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FIGURE 1

Historical Comparison of Estimated vs Actual Labor Hours for Installing Sanitary Sewer Manhole

Labor Hours

(a) Sanitary sewer manhole installation

Historical Comparison of Estimated vs Actual Labor Hours for Site CUT/HAUL Activity

Labor Hours

(b) Site cut/haul activity

Comparison of estimated vs actual labor hours from digital timecards for (a) sanitary sewer manhole installation and (b) site cut/haul activity.
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To address this problem, the authors of this paper developed
an agentic Al workflow that enables project teams to interact
with their cleaned datasets using natural language. Rather than
relying on static dashboards or manual spreadsheet operations, this
conversational interface allows users to query their data for insights
such as mean labor productivity by cost code, equipment usage, and
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cost trends for a particular job. It can also help identify year-over-
year cost fluctuations and the impacts of high-risk periods such as
hurricanes, inflation spikes, or supply chain disruptions on work
hours. This generative Al-driven, agentic tool supports real-time,
interactive data exploration and visualization. It transforms passive
historical records into actionable business intelligence, enabling
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users to automatically generate summary statistics, visual plots, and
context-aware insights that inform both operational decisions and
long-term strategic planning. The solution is scalable, integrates
directly with digital timecard and estimating software, and reduces
the need for manual interpretation, thereby reducing the burden
of information overload and supporting informed decision-making.
It is important to recognize that many timecard errors originate
directly at the job site, and preventing such errors at their source
is a more sustainable long-term solution than removing anomalies
after they have already entered the dataset. Modern construction
management platforms now offer in-built checks and safeguards to
reduce data-entry mistakes in real time. However, large amounts of
historical data accumulated over years of software use, including
older entries recorded before these safeguards were available still
remain noisy and underutilized. This paper therefore focuses on
how to unlock the value of these existing historical datasets by
applying context-aware outlier detection and agentic AT workflows.
By refining and repurposing legacy data, the developed approach
transforms passive records into actionable business intelligence. It
reduces human effort in combing through large spreadsheets or
datasheets and enables project teams to derive consistent insights
from their past performance. For this study, the system was validated
using one Northeast Florida contractor’s dataset spanning the last
8 years, consisting of over 100,000 records (more than half a
million individual data points across 12 fields). The agentic AI
was tested to conversationally retrieve cleaned historical cost data,
directly supporting bidding and estimating workflows. The authors
anticipate that the demonstrated success of these preliminary tests
will, together with this publication, encourage additional industry
collaborators to adopt and test the system across diverse project
types and regions, thereby evaluating its generalizability at a
larger scale.

Combining the two core challenges faced by the construction
industry: information overload caused by noisy and inconsistent
field data, and the manual burden of interpreting that data
for meaningful project insights, the key contributions of this
research include:

1. Dynamic Contamination Optimization for Outlier Removal:
This research introduces a novel outlier detection methodology
using the Isolation Forest algorithm enhanced by a dynamic
contamination loop (Liu et al., 2008). The approach is context-
aware, leveraging the relationship between estimated and
actual labor hours to iteratively adjust thresholds.

2. Agentic Generative AT Workflow for Construction Analytics:
The paper presents a scalable, automated, and conversational
Al solution that integrates estimating platforms, digital
timecard systems, and generative AI models. This replaces
spreadsheet-based analysis with accessible, AI-driven business
intelligence.

2 Development of agentic Al workflow

To achieve a production-grade agentic AI workflow, the authors
of this paper developed an integrated system that connects the
contractor’s internal estimating and construction management
software with Google’s Firebase and OpenATs ChatGPT via
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APIs (Google, 2024; OpenAl, 2024). This architecture is fully
automated and requires no manual intervention once deployed.
The system is designed to continuously retrieve, clean, process,
and analyze cost and productivity data, enabling both real-time
project support and long-term business intelligence. Figure 2
presents a detailed flowchart illustrating the full lifecycle of the
system from raw data ingestion to AI-driven insights. The flowchart
includes core computational steps such as data preprocessing,
metric computation, dynamic outlier removal, and data export, with
each functional domain color-coded: green for internal software
components, orange for Firebase operations, and blue for the
GPT interface. This section outlines the technical methodology
underlying this workflow, describing how each component
contributes to enabling real-time project cost optimization and high-
quality decision-making for both estimators and project managers.
The following subsections detail each stage of the system, starting
from data ingestion and preprocessing to context-aware generative
Al-based user interaction.

2.1 Data ingestion, filtration, and metric
computation in the agentic Al workflow

As the first step in the agentic AI architecture, a fully
automated data retrieval pipeline was established to extract relevant
information directly from the contractor’s integrated estimating
and construction management software suite. This extraction is
managed via a custom-built Data Retrieval API, which serves as
the central point of connection between the software ecosystem
and Googles Firebase cloud database. The retrieved raw data
includes detailed cost and productivity records from both pre-
construction estimates and field-generated digital timecards. Each
record contains fields such as:

e Job Code and Cost Code

e Unit of Measure

e Estimated vs Actual Quantities

e Estimated vs Actual Labor Hours

o Estimated vs Actual Labor and Equipment Costs

Once the API pulls this data, it triggers a real-time upload
into Firebase, which initiates the preprocessing stage. This event
serves as a trigger for a custom algorithm hosted within the Firebase
environment. The algorithm begins by executing a filtration and
validation process designed to clean the dataset before analysis. The
preprocessing pipeline begins by eliminating invalid or incomplete
records that would compromise downstream calculations. The
system removes:

e Records missing critical values (e.g., units, cost codes, actual
hours, or costs).

e Records with zero or NaN entries in any required fields.

e Entries that cannot be used to compute core metrics such as
productivity or unit cost.

This ensures that only analytically viable data enters the
agentic workflow. Once the raw dataset is cleansed, the hosted
algorithm computes a set of baseline metrics for each valid record.
These include:
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Missing Entries) Found ?
_ | Adjust Contamination
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\ . Estimating and CM Software O Google’s Firebase . Open Al's GPT Interface /
FIGURE 2
Agentic Al workflow integrating construction data ingestion, context-aware outlier filtering using Isolation Forest, and natural language interaction via
GPT through OpenAPI.

e Labor Productivity: Units completed per actual labor hour
(units/hour).

e Unit Labor Cost: Dollar cost per unit of work ($/unit).

e Unit Equipment Cost: Equipment cost per unit of work
($/unit).

These calculations are performed across all available data
points, regardless of whether a point is eventually flagged as an
outlier. Following this computation, a secondary trigger initiates
the context-aware outlier detection process, which iteratively cleans
the dataset using estimated values as a reference and preserves
meaningful high-cost cases.

2.2 Context-aware outlier detection via
adaptive isolation forest

To eliminate unreliable records while preserving domain-
significant variations, the authors developed a context-aware outlier
removal process. This approach avoids static, context-agnostic
techniques (e.g., z-score, IQR), which risk discarding high-cost
data that may be informative for estimators and project managers.
Our method is grounded in the Isolation Forest (IF) algorithm, a
robust ensemble-based model that isolates anomalies by recursively
partitioning the data. Crucially, IF requires a contamination
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parameter ¢ € (0,0.5), which controls the proportion of data points
labeled as outliers. Instead of relying on an arbitrary contamination
value ¢, the developed model dynamically determines an optimal
contamination value ¢* specifically tailored to each group context
(e.g., by cost code or job code).

Step 1: Label Assignment via Isolation Forest For each tuple d; €
D,.,, in the multi-row group (defined by unique combinations of Job
Code, Cost Code, and Unit), IF returns an anomaly label:

-1
Vi= 1

Step 2: Contamination Tuning via Agentic Self-Calibration The
goal is to tune ¢ such that the standard deviation of the actual
(filtered) data better aligns with the variability expected from the
estimates. For each group g, let:

° crg%,: standard deviation of the estimated values
o ngt(c): standard deviation of the actual values affer filtering

with IF using contamination ¢

if d; is an outlier,

otherwise.

We define the optimization objective as:

(k)

(k)
Toct (©)

~ Oexp

1

= argminz
c
8k

This equation captures our assumption that well-aligned actual
and estimated data should exhibit similar variance when no extreme
anomalies skew the actual distribution.
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Step 3: Adaptive Loop for Optimal ¢* The contamination tuning
process follows this iterative loop:

1. Search Grid: Define a grid of contamination values
¢ € {0.005,0.010,...,0.050}

2. For each c:
e Apply IF on each group g,

e Retain inliers y, = 1

e Compute new standard deviation o(a’z)t(c)

e Evaluate the absolute deviation from aﬁ’f&,

3. Loss Aggregation: Sum these deviations across all k

4. Select ¢*: Choose the that

global loss in Equation 1

c minimizes the

This loop enables agentic self-calibration by contextually
adapting to the data distribution, preserving high-cost, meaningful
signals while effectively removing statistical noise.

2.2.1 Rationale and impact

This dynamic contamination detection process aligns statistical
filtering with domain knowledge. It leverages the intuition
that estimators do not significantly deviate from operational
performance in normal scenarios. High deviation between
estimated and actual values typically signals data entry errors
or exogenous disruptions, precisely the types of records this
loop identifies and removes. Once ¢ is selected and outliers
are filtered, the final actual metrics (e.g., labor productivity, unit
labor/equipment cost) are computed from the remaining inliers.
These are then paired with estimated values and exported as a
clean, structured JSON object, which fuels downstream business
intelligence workflows.

2.3 Agentic GPT integration

The final component of the agentic AT workflow developed
in this research is the integration of a domain-specific GPT
interface that enables users to interact with cleaned construction cost
and productivity data through natural language. This component
transforms static historical records into an interactive business
intelligence system designed for project teams. Once the context-
aware outlier detection algorithm completes its run and exports the
cleaned metrics as a JSON object including job code, cost code, labor
productivity, and unit labor and equipment costs, the authors of
this paper directed Google’s Firebase to store the processed dataset.
At this stage, the Firebase system also retrieves corresponding
job and cost code descriptions from the Data Retrieval API,
ensuring that the stored data is both human-readable and
contextually complete.

To operationalize this enriched dataset, the authors developed
a custom GPT using OpenATs ChatGPT platform. The developed
GPT, titled the Cost Code Data Analyst, was designed with a
structured knowledge context so that it could act like a specialized
internal analyst. For the version developed within the scope of this
paper, the authors directly utilized GPT via API calls, providing
constrained instructions on when to access Firebase, how to
retrieve the cleaned dataset, and how to present results to the
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user. This configuration functions as a semi-tailored assistant: it
does not have access to the internet or any external knowledge
base beyond Google Firebase, and it is limited to natural language
interaction with coding and math capabilities to interpret cost
data and generate figures for users. The developed GPT context
included explicit behavioral and usage rules: the GPT accessed only
structured data retrieved via the API and stored in Firebase; it
defaulted to actual productivity and cost values unless otherwise
specified; it clearly communicated limitations when answers were
not found; it rounded numerical responses appropriately and
labeled them with precise units (e.g., units per labor hour, dollars
per unit); and it avoided unsupported computations, ensuring
reliable and interpretable results. This design made the GPT highly
reliable in retrieving data and directly interpreting it for the user.
To validate this reliability, the authors manually cross-checked
GPT outputs against the corresponding JSON records stored in
Firebase, confirming that the retrieval and interpretation processes
consistently returned accurate results. Importantly, the developed
GPT does not generate or extrapolate values beyond what is present
in the Firebase storage; instead, it is constrained by the OpenAPI
3.1 specification to return only verified data retrieved from the
contractor’s database, ensuring reliability and eliminating the risk of
unsupported interpretations.

The GPT was connected to the Firebase backend using an
OpenAPI 3.1 specification, which the authors of this paper
implemented to define the schema for interacting with Firebase
endpoints. This allowed the GPT to autonomously query the
backend. For example, when a user asked, “What is the average
productivity for hauling dirt?” the GPT, guided by the OpenAPI
specification, first identified the relevant cost codes using the
estimating software’s descriptions, then queried the Firebase
database for those codes and their associated units, and finally
returned the requested statistics (e.g., mean, median, or mode) in
a user-friendly response.

Through this design, the authors established an agentic control
loop in which the GPT autonomously interprets ambiguous user
queries, identifies the relevant cost and job codes, retrieves the
appropriate data, and delivers accurate and context-aware responses.
The developed GPT was also programmed to guide users in refining
vague queries, creating a conversational workflow that minimizes
the need for manual spreadsheet analysis. To ensure that users
always interact with the most recent data, the authors incorporated
a monthly automated refresh trigger within Firebase. This task re-
executes the entire workflow from data extraction and filtration
through outlier detection and metric computation, updating the API
and the GPT with the most current dataset. Contractors may also
adjust the refresh frequency to daily, weekly, or quarterly, depending
on operational needs.

By developing this system, the authors of this paper transformed
the GPT from a generic chatbot into a domain-specific business
intelligence assistant. The GPT provides scalable, reliable, and real-
time access to essential project metrics, supporting both short-term
project controls and long-term strategic planning. By embedding
domain-specific knowledge, reducing barriers to insight extraction,
and enabling conversational interaction with construction data, the
developed agentic AI workflow provides a significant advancement
in the use of generative AI for construction productivity and
cost analysis.
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3 Results: evaluating results of context
aware outlier removal for estimating
and field operations

This section presents the results of the developed context-
aware outlier detection algorithm powered by Isolation Forest with
dynamic contamination optimization. The goal of the model is to
support estimating and construction management (CM) operations
by improving the reliability and usability of historical data. To
evaluate its performance, the authors analyzed a representative
subset of high-volume cost codes, covering a wide range of
activities and units commonly used in construction estimation
and field reporting. Figure 3 presents two KDE plots showing the
distributions of mean values for Labor Productivity (Figure 3a) and
Unit Labor Cost (Figure 3b).

Each plot compares three distributions:

the

preconstruction estimating software.

e Blue represents raw estimated values from the

o Red shows the raw actual values directly derived from digital
timecards.

e Green illustrates the analyzed actual values after applying the

proposed context-aware Isolation Forest algorithm.

In both the figures, the green curves (post-outlier removal)
consistently shift toward and more closely align with the blue curves,
which represent the estimator’s intended performance expectations.
Meanwhile, the red curves show significant skewness and long tails,
indicating the presence of statistical noise and extreme anomalies in
the raw actual data. These visual patterns highlight the effectiveness
of the proposed algorithm in filtering unreliable entries without
discarding valuable high-cost or high-productivity signals. The cleaned
distributions retain variability necessary for field-based risk assessment
while suppressing noise that could bias planning decisions.

From a technical standpoint, the system begins with a low
contamination value in Isolation Forest and iteratively increases it
until the standard deviation of the cleaned actual data best aligns with
the spread of the estimated data for each group (e.g., by job code or cost
code). This iterative search identifies the optimal contamination value
c*, enabling context-aware, self-calibrating anomaly detection. By
tailoring outlier thresholds to specific operational groupings, the model
avoids the pitfalls of one-size-fits-all filters and instead enhances the
signal quality of the dataset. This is particularly valuable for estimating
teams aiming to benchmark performance and for CM teams needing
accurate, anomaly-free trend data. In summary, the cleaned (green)
distributions in Figure 3 demonstrate the model’s ability to transform
noisy raw inputs (red) into structured, business-ready datasets that
better reflect estimating expectations (blue). These improvements
directly support productivity benchmarking, cost forecasting, and
strategic decision-making in construction operations.

While the KDE distributions illustrate alignment between
cleaned and estimated data, it is also important to benchmark
the proposed context-aware Isolation Forest (CA-IF) against
conventional outlier detection methods. Figure 3¢ compares the
standard deviations of productivity values across cost codes after
applying three approaches: CA-IE, Z-score filtering, and a standard
Isolation Forest without contextual tuning. The Z-score method
(middle panel) applies a global threshold that assumes normally
distributed data across all cost codes. As shown, this approach
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produces high variability in the resulting standard deviations, with
several cost codes exhibiting extreme spikes above 150, reflecting
over- or under-filtering. The standard Isolation Forest (right panel)
performs moderately better but still lacks contextual sensitivity,
leading to inconsistent stabilization and residual variance spikes. In
contrast, the CA-IF (left panel) achieves a much tighter clustering
of standard deviations and effectively eliminates extreme anomalies
while aligning post-filter variability with historical expectations for
each cost code. This validates the adaptive contamination tuning
mechanism, which iteratively calibrates the anomaly detection
threshold until the filtered data’s variability matches the distribution
of the estimator’s expected values. These results confirm that CA-
IF provides more stable, interpretable, and domain-relevant filtering
compared to baseline methods. By dynamically adapting thresholds
to cost code and unit-level context, the model not only reduces
noise but also preserves meaningful high-cost signals essential for
estimating and construction management workflows.

To further evaluate the internal organization and structure of
the cleaned dataset, the authors projected the multi-dimensional
records comprising labor productivity, unit labor cost, and unit
equipment cost onto a two-dimensional principal component space
using PCA (Yang et al., 2004). Within this reduced space, three
unsupervised clustering quality metrics were computed to assess
whether the outlier removal process led to clearer, more usable data
groupings. The Silhouette Score was measured at 0.733, indicating
strong cohesion within clusters and distinct separation between
them. The Davies-Bouldin Index was calculated as 0.458, suggesting
low inter-cluster overlap and high compactness. Additionally, the
Calinski-Harabasz Score reached 1249.99, reflecting a favorable
ratio between inter-cluster dispersion and intra-cluster variance.
Together, these scores confirm that the signal-to-noise ratio was
substantially improved by the adaptive Isolation Forest algorithm,
resulting in a well-structured and interpretable feature space. This
structure is critical not just for backend modeling but for enabling
intuitive, production-grade analytics. The cleaned dataset now
supports efficient clustering, reliable machine learning modeling,
and pattern recognition tasks. More importantly, it serves as
a robust foundation for enabling GPT-4 to deliver intelligent,
context-aware interactions with business users. Through natural
language queries, estimating and project management teams can
retrieve accurate metrics, compare job performance trends, generate
visualizations, and explore their historical data without touching
spreadsheets or writing code. By tightly integrating statistical
modeling, dynamic anomaly filtering, and generative Al interfaces,
the authors’ architecture transforms noisy field records into a
continuously improving knowledge system. This pipeline not only
supports proactive operational decision-making but also lays the
groundwork for scalable, intelligent forecasting and long-term
business process optimization.

4 Discussion: enabling business
intelligence with agentic Al

A key contribution of this research is the development of an
agentic Al architecture that enables project teams to interact with
their cleaned historical data through natural language conversations.
This integration transforms traditional, spreadsheet-based analytics
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FIGURE 3
KDE plots showing improved alignment of actuals with estimates after outlier removal for (a) labor productivity and (b) unit labor cost (c) Box Plot
Showing Differences of STD in Outlier Detection Techniques.

into a scalable, automated decision-support system for both real-  completed per labor hour), as well as unit labor and equipment
time project management and long-term business intelligence.  costs (measured in dollars per unit). The mean provides an up-
Using this system, users can retrieve essential metrics such as the  to-date average that allows teams to compare actual performance
mean, median, and mode for labor productivity (measured in units ~ against original estimates, supporting more accurate forecasting

Frontiers in Built Environment 08 frontiersin.org


https://doi.org/10.3389/fbuil.2025.1678156
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org

Kalasapudi et al.

Cost Code Data Analyst 40 v

50 what is the average productivity and mean labor and equipment
costs for the activity Site CUT/Haul

For the activity Site Cut/Haul (cost code 25-112, unit CY), here are the average values based on actual

data:

Average Actual Productivity
« Labor Productivity: 33.99 Units per Labor Hour

+ Shift Productivity: 305.93 Units per Shift

Mean Actual Costs
* Labor Cost: $3.07 per Unit

+ Equipment Cost: $3.76 per Unit

Let me know if you'd like to compare this to estimated values or to other cost codes.

0PV v

wthing

(a) Site cut/haul activity

FIGURE 4

10.3389/fbuil.2025.1678156

Cost Code Data Analyst 40

Actual Vs. Estimated Mean Unit Labor Cost Activity: Install

The chart above displays a side-by-side comparison of actual and estimated mean unit labor costs for

the activity Installing Sewer Manhole ac: he three job codes:
« Job 21166:

« Actual: $225.27

« Estimated: $344.52
« Job 21167:

« Actual: $408.19

- Estimated: $453.75

« Job22185:

Let me know if you would like to include equipment costs, explore more job codes, or analyze variances
further. <>

e 6 P

Dd v

|ask anything

e

(b) Sanitary sewer manhole installation

GPT Cost Code Data Analyst interaction and output generation: (a) Response to a user query about hauling productivity, including labor and
equipment cost retrieval; (b) Trend visualization of unit labor costs across three comparable job codes.

for future bids. The median serves as a robust central tendency
for guiding current field operations, especially when encouraging
crews to maintain consistent productivity. The mode, meanwhile,
allows for rapid detection of the most frequently observed behaviors,
helping teams identify recurring performance trends and evaluate
the reliability of their estimating assumptions.

To further enhance analytical precision, the collaborating
contractor implemented a 5-digit job coding convention where the
first two digits represent the year and the last three digits correspond
to the sequential job number (e.g., job code 24112 indicates the
112nd job performed in the year 2024). This system was integrated
into the Al pipeline, allowing users to isolate and compare cost and
productivity metrics by specific job, project year, or environmental
context (e.g., periods impacted by extreme weather events). This
level of granularity enables estimators and project managers to
draw insights not just from company-wide averages, but also from
specific, relevant project conditions.

Figure 4 illustrates how this agentic Al system interacts with
users to deliver actionable intelligence. In Figure 4a, a user asks
a simple question about hauling productivity. The GPT model
linked to the API via OpenAPI specifications first identifies the
relevant cost code by interpreting the user’s intent and referencing
the estimating software’s cost code descriptions. It then retrieves
the corresponding mean productivity from Firebase and responds
with the correct value and unit (e.g., CY/hr). In Figure 4b, the user
requests a trend analysis of labor costs across three comparable jobs.
The GPT agent again leverages the API to identify the appropriate
job codes, fetches the mean labor cost for each, determines the
most effective chart format, and generates a visual plot in real-time.
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This dynamic, visual feedback empowers estimators to recognize
trends and anomalies without needing to manually sort, filter, or
analyze raw data.

5 User feedback and conclusion
5.1 Deployment and impact

By making historical performance data conversationally
accessible, this system empowers field teams to make data-informed
decisions directly on-site and enables estimators to refine cost and
productivity assumptions during pre-bid strategy sessions. The tool
has already been deployed in a production environment and is
actively used by the contractor’s estimating team to support bid
preparation. A forthcoming update will introduce standardized cost
code conventions across the organization, further improving the
consistency and interpretability of field-to-estimate comparisons and
reinforcing data-driven strategies for business resilience and growth.

5.2 User feedback

Initial feedback from end-users has been consistently positive,
highlighting both the immediate value and future potential of the
system. Estimators emphasized that the GPT-based cost code chat
interface made it “very easy to access the data” and retrieve historical
production rates in seconds. Users noted that this approach
is far more efficient than the traditional method of searching
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project-by-project, which was time-consuming and labor-intensive.
Several users specifically praised the context-aware outlier removal,
describing it as “critical to include and very helpful in making the
information more accurate and useful for our estimators and team”
They reported that the cleaned data provided stronger support for
estimate preparation and reduced the risk of relying on misleading
anomalies. One estimator stated that the system “drastically reduced
the amount of time spent looking up productions and allowed us to
spend more time focused on what's important, creating more value
in the estimates”. Feedback also highlighted desired enhancements to
improve the system’s utility. Users expressed interest in categorizing
production rates by project type (e.g., site development, public
works, or water resources) and filtering by job size or scope to make
comparisons more relevant. Suggestions also included incorporating
seasonal information to capture weather-related performance trends
and embedding the GPT interface directly into Microsoft Teams
for easier day-to-day access. Overall, these responses confirm
the system’s effectiveness in reducing information overload and
improving estimator efficiency, while also offering clear direction for
future development and broader deployment.

5.3 Limitations and future work

While the results are promising, the approach has several
limitations. The model relies heavily on the accuracy of the
estimating tean’s baseline estimates, which may introduce bias. This
reliance is especially important to note since the dataset currently
spans only 8 years, a relatively short period compared to broader
historical analyses. Future studies should incorporate full project-
and budget-level analysis to reduce dependence on estimating data
alone and to build context from overall project outcomes. For the
present scope, the authors focused on developing a GPT interface
connected via API calls to the cleaned Firebase database rather
than creating a fully fine-tuned domain-specific model, as the core
of the developed agentic system in this paper lies in the context-
aware outlier detection algorithm that prepares reliable data for
retrieval. The authors plan to explore in future work the development
of a custom fine-tuned GPT that learns directly from historical
data, project records, bid proposals, contractor documents, project
progress reports, and other project-related sources. Incorporating
these additional knowledge bases would significantly improve the
robustness of the model, strengthen its domain adaptation, and
further enhance its ability to provide reliable business intelligence
for construction professionals.

Additionally, the industry collaborator is in the process of
making a major update to this system by generalizing cost codes
and streamlining data entry. These improvements are expected
to reduce errors at the source, prevent inconsistent entries, and
ultimately improve the quality of outlier detection. Once this update
is complete, the authors will be able to conduct larger-scale testing
across multiple projects and scenarios. For the scope of this paper,
the validation has been preliminary, focusing on representative
cost codes and early user feedback. Additionally, the model has
so far been developed and validated using the dataset of a single
contractor. While this has provided valuable insights and practical
deployment experience, the broader applicability of the approach
still needs to be tested. Future work should focus on implementing
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and evaluating the model across multiple industry collaborators with
varying project types, organizational practices, and cost-tracking
conventions. Such cross-industry testing would provide stronger
evidence of generalizability and help refine the agentic AI workflow
for diverse construction settings. As a result, it is recommended
that estimating teams adopt the tool cautiously at first, continuously
updating the context and providing feedback to enhance its long-
term reliability and usefulness. Over time, as data quality improves
and testing expands, the system has the potential to become a
robust, industry-wide solution for productivity benchmarking, cost
forecasting, and data-driven project planning.
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