:' frontiers | Frontiers in Built Environment

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Yan Li,
Nanyang Normal University, China

REVIEWED BY
Xiuze Fan,

Washington State University, United States
Zhichao Huang,

Southwest Jiaotong University, China

*CORRESPONDENCE
Yanan Zhao,
18236850373@163.com

RECEIVED 22 July 2025
ACCEPTED 25 August 2025
PUBLISHED 29 September 2025

CITATION
Zhang M, Zhao Y, Wang C, Jin D and Chen Q
(2025) Research on the pavement
performance of lignin fiber toughened foam
asphalt cold recycled mixes.

Front. Built Environ. 11:1670013.

doi: 10.3389/fbuil.2025.1670013

COPYRIGHT

© 2025 Zhang, Zhao, Wang, Jin and Chen.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Built Environment

Type Original Research
PUBLISHED 29 September 2025
pol 10.3389/fbuil.2025.1670013

Research on the pavement
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To improve the pavement performance and toughness of foam asphalt
cold recycled mixture (FACRM), the effects of lignin fiber on the pavement
performance of FACRM at 0%, 0.3%, 0.6% and 0.9% dosages (relative to foam
asphalt cold recycled mixtures) were investigated. The influence of different
fiber dosages on the performance of FACRM was investigated through the
high-temperature rutting, semi-circular bending, and freeze-thaw splitting
tests, and the microscopic morphology of the fiber on the FACRM damage
interface was observed by scanning electron microscope (SEM). The results
show that with the increase in lignin fiber dosage, the maximum dry density
of FACRM shows a decreasing trend; the optimum moisture content and the
optimum asphalt content gradually increase; dynamic stability, fracture energy,
and tensile strength ratio (TSR) show a pattern of change that first increases
and then decreases. The fiber enhancement mechanism of FACRM pavement
performance is that its dispersion as a bridge in the mixture to form a three-
dimensional network structure provides the reinforcement. The recommended
dosage is 0.3% based on a comprehensive review of the effects of lignin fiber
on the recycled mixture pavement performance and microscopic morphology
of the results.

KEYWORDS

cold recycled asphalt mixtures, foam asphalt, pavement performance, lignin fiber,
reinforcement

1 Introduction

Foam asphalt is a temporarily expanded state material formed by injecting a small
amount of cold water into hot asphalt, which combines high specific surface area and low
viscosity characteristics (Li et al., 2024). It has a wide range of applications in the field of
cold pavement rejuvenation and sustainable road construction. However, foam asphalt cold
recycled mixture (FACRM) has toughness problems, such as low early strength (Li et al,,
2016), poor durability, and weak high-temperature stability due to slow bonding caused by
room temperature construction, insufficient fusion of reclaimed asphalt pavement (RAP)
and new asphalt, and thin and uneven distribution of foam asphalt film (Song et al., 2024a).
Many researchers have studied and found a variety of technical paths to enhance the
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toughness of FACRM. Thermoplastic resins, polymer, rubber,
rejuvenating agents, and other modifiers can improve the
toughness by improving the interfacial cohesion (Song et al.,
2024a; Hu et al., 2024; Song etal., 2024b; Algraiti and Kavussi,
2023), and epoxy resin can improve the performance by forming
a highly viscous thermosetting slurry and “embedded” asphalt
molecules (Chen et al, 2025). During the addition of mineral
admixtures, cement and other mineral admixtures form a spatial
three-dimensional grid structure to play a reinforcing role (Li et al,
2019), significantly enhancing the overall stability of the foam
asphalt mortar. In terms of raw material control, controlling the
aging degree and dosage of RAP material can reduce the influence
of unfavorable factors (Ai et al., 2025; He and Wong, 2008). Research
has confirmed that fiber can effectively enhance the pavement
performance of mixtures. In terms of low-temperature crack
resistance, lignin fiber has a significantly better effect than glass fiber
(Luo et al., 2019). Existing research has shown that lignin fiber can
improve the high-temperature stability of hot-mix asphalt mortar
and modified asphalt concrete (Pang et al., 2023; Fazilah et al., 2025;
Yue et al., 2022). In terms of cost-effectiveness, lignin fiber shows
significant advantages. The raw material cost of lignin fiber is only
1/3 to 1/5 of that of petroleum-based synthetic fiber, and the price
range for conventional lignin fiber is $0.9/kg, compared to $2/kg
for comparable synthetic fiber, which gives it a very good economic
advantage. Existing research has mainly focused on the pavement
performance of fiber-reinforced asphalt mixtures and hot recycled
asphalt mixtures (Nian et al., 2024; Fei et al., 2025). However, there
are few systematic studies on the effect of fibers on the pavement
performance of FACRM in existing studies.

Based on this, this study introduces lignin fiber into a FACRM
system, determines the optimum asphalt content, maximum dry
density, and optimum moisture content under different fiber
dosage through wet and dry splitting test and compaction test,
explores the improvement law of fiber dosage on pavement
performance of mixes based on the tests of high-temperature
rutting, semi-circular bending, and freeze-thaw splitting tests, and
analyzes the effect of fiber on the fine microscopic morphology
of the damage interface through SEM. The article then puts
forward the recommended dosage for engineering applications
and provides a theoretical basis and technical support for the
popularization and application of foam asphalt cold recycled
technology.

2 Materials and methods
2.1 Experimental materials

2.1.1 Reclaimed asphalt pavement (RAP)

The RAP used in the study was taken from the sixth
contract section of the reconstruction and expansion project of
the Suizhong-Panjin section of the Beijing—Harbin Expressway in
Liaoning Province and classified as Grade 2 RAP. The RAP was
derived from the old pavement milling material, which was crushed
and screened (dry sieving method) into three grades of aggregates:
0-5 mm, 5-10 mm, and 10-20 mm, as shown in Table 1.
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2.1.2 New aggregates

The new aggregates used in the study include 20-30-mm coarse
aggregate, 0-3-mm fine aggregate, and mineral powder. Their
technical indexes are in line with the requirements of the Technical
Specification for the Construction of Highway Asphalt Pavements
(JTG F40-2004-T0316), which were obtained by sieving the various
grades of aggregates by using the water sieving method. The sieving
results are shown in Table 2.

2.1.3 Bitumen foam

The original asphalt used in the foam asphalt preparation
process was No. 90 Grade A road petroleum asphalt produced
by China Foshan Gaofu PetroChina Company. The foaming
temperature was 155 °C-160 °C, the foaming water consumption
was 2.0%, and the final prepared foam asphalt had an expansion rate
of 10.5x and a half-life of 16 s.

2.14 Lignin fiber

The test used lignin fiber produced by Shandong Road New
Road Maintenance Materials Co., Ltd. In view of the three-
dimensional network structure of lignin fiber, which can effectively
adsorb asphalt to prevent asphalt segregation of the mixture, the
special length-to-diameter ratio can optimize the stress transfer
to effectively improve the low-temperature crack resistance and
rutting resistance of the mixture, taking into account the economy
and environmental protection, and is widely used in engineering
practice. Therefore, lignin fiber was selected as the pavement
performance toughening agent of FACRM in this study, and the
related technical indexes are shown in Table 3. Fiber dosages were
selected based on an extensive literature review (Wang et al., 2025;
Luo et al., 2019; Hui et al., 2022; Anurag et al., 2009; Alfalah et al.,
2021), indicating 0.3%-0.9% as the optimal range for FACRM. The
mass fractions of fiber blending were 0%, 0.3%, 0.6%, and 0.9%
(relative to the mass of FACRM), and the blending method was
external blending.

2.1.5 Cement

This study used ordinary Portland cement produced by China
Resources Cement Limited, with a cement strength class of 32.5. The
cement was added externally at a dosage of 1.5% (relative to the total
mass of the aggregate). The cement was in a loose, dry state, free of
lumps, and had not deteriorated due to moisture.

2.2 Aggregate gradation design

Based on the screening results of RAP and new aggregate
of various grades, an AC-25 gradation design was developed.
After adjustment, the ratio of RAP 10-20 mm:RAP 5-10 mm:RAP
0-5 mm:20-30 mm:0-3 mm:mineral powder was determined to be
21:22:28:15:10:4. The final aggregate gradation results are shown
in Table 4. The relevant Marshall volume parameter indicators
are shown in Table 5 and meet the specifications.
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TABLE 1 RAP sieving results for each grade of aggregate.

Aggregate specification

10.3389/fbuil.2025.1670013

Percentage of passage through different sieve holes (mm)/%

19 16 132 ‘ 9.5 ‘ 475 236 118 06 03 0.15
RAP 10-20 mm 100 100 | 793 | 496 | 196 13 0.4 0.4 0.4 0.4 0.4 0.4 0.1
RAP 5-10 mm 100 100 100 | 100 | 970 | 456 0.7 0.7 0.7 0.7 0.7 0.7 03
RAP 0-5 mm 100 100 100 | 100 100 100 831 54.9 398 223 113 6.2 2.9

TABLE 2 Sieving results for each grade of new aggregates.

Aggregate specification

Percentage of passage through different sieve holes (mm)/%

315 | 265 19 16 | 132 95 475 236 118 06 | 0.3
20-30 mm 100 73.0 24 | 02 02 02 02 02 02 0.2 0.2 02 0.2
0-3 mm 100 100 100 | 100 100 100 99.2 65.1 444 | 249 156 117 9.5
Mineral powder 100 100 100 | 100 100 100 100 100 100 100 978 91.2 79.4

TABLE 3 Lignin fiber specifications.

Ash
content

Moisture
content

Performance Length

indicator

Lignin fiber <6 mm 18% 7.5 4%

3 Test methods
3.1 Physical parameter test

Three-layer specimens with different moisture contents (6.4%,
6.6%, 6.8%, and 7%) were prepared by the heavy-duty compaction
method, and the maximum dry density and optimum moisture
content were determined by measuring the relationship curve
between dry density and moisture content. In addition, Marshall
specimens with different foam asphalt dosages (2.8%, 3.0%, 3.2%,
3.2%, and 3.6%) were produced, and the dry and wet split strengths
of the specimens after freeze-thaw cycles were tested by referring to
the “Test Procedure for Asphalt and Asphalt Mixtures for Highway
Engineering” (JTG E20-2011-T0729) (hereinafter referred to as
the Standards) and calculating the tensile strength ratio (TSR) to
determine the optimum asphalt content.

3.2 High-temperature rutting

According to Standard (2011-T0703), milling molding length
300 mm, width 300 mm, thickness 50 mm, rutting plate, and
to Standard (2011-T0719), rutting test to evaluate the high-
temperature performance of cold recycled mixtures, the test
temperature was 60 °C, and the wheel pressure was 0.7 MPa.
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3.3 Semi-circular bending test

Semi-circular bending specimens were made by cutting the
middle 50 mm thickness portion of a 150 mm diameter Marshall
specimen, and cutting a 15 mm precast seam at the bottom center
after cutting the specimen in half along the diameter (Meng et al.,
2023). Before the test, the test piece was placed in a constant
temperature chamber at —10 °C, and the temperature was controlled
for 4 h. Then, the low-temperature crack resistance of FACRM was
evaluated by performing the low-temperature semi-circular bending
test (loading rate 50 mm/min, —10 °C) according to the “American
Association of State Highway and Transportation Officials” (TP105).

3.4 Freeze-thaw splitting test

The Material Testing System (MTS) testing machine was
used for loading and testing to determine the change rule of
force-displacement at the bottom of the specimen during the
loading process, according to the Standard (2011-T0729). The large
Marshall specimen was divided into two groups. One group was
reserved, and the other group was first kept in a vacuum for
15 min and then kept at atmospheric pressure for 0.5 h. Then, the
specimen was put into a plastic bag with 10 mL of water and taken
out of the plastic bag after the sample had been frozen for 16 h at
-20°C.

3.5 Scanning electron microscope (SEM)
A Hitachi S-340N SEM with nanometer resolution was
employed to characterize surface morphology, microstructural

features, particle distribution, and defects in asphalt and asphalt
mixtures using secondary electron detection.
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TABLE 4 Aggregate gradation.

Aggregate specifications

10.3389/fbuil.2025.1670013

Percentage of passage through different sieve holes (mm)/%

315 265 19 ‘ 16 132 ‘ 9.5 475 ‘ 236 118 ‘ 06 03 015 ‘ 0.075

Determination of gradation

‘ 100 ‘ 95.9 ‘ 81 ‘ 74.5 ‘ 67.5 ‘ 52.3 ‘ 37.4 ‘ 26.1 ‘ 19.8 ‘ 13.0 ‘ 8.9 ‘ 6.8 ‘ 5.1

TABLE 5 Marshall volume parameter indicators.

Parameter Experimental Regulatory
results requirements
Air voids (AV/VV) 5.3% 49%-6%
Voids in mineral 14.7% >14%
aggregate (VMA)
Voids filled with asphalt 67.0% 65%-75%
(VFA)

4 Results and discussion

4.1 Maximum dry density, optimum
moisture content, and optimum asphalt
content

4.1.1 Maximum dry density and optimum
moisture content

Figure 1 shows the results of optimum moisture content and
maximum dry density of mixes with different fiber dosages. As
shown in the figure, with the increase of fiber doping, the maximum
dry density first decreases from 2.294 g/cm® to 2.217 g/cm® and
then tends to level off, and the optimum moisture content linearly
increases from 6.5% to 7.1%. This is mainly because the lignin
fiber density (0.4-0.7 g/cm3) is much lower than the density of
the mineral material (2.6-2.9 g/cm’). After mixing, an equivalent
volume has a decreased dry density. At the same time, the fiber
contains hydroxyl, carboxyl, and other hydrophilic groups and can
be adsorbed with water molecules to form a large number of
hydrogen bonds, so that the moisture content increases. In addition
to the surface roughness of the fiber, the adsorption optimized
distribution of the cement phase and promoted asphalt to fully
fill the mineral material (Ren et al., 2022). It can optimize the
distribution of the cementing phase and promote the asphalt to fill
the gaps in the mineral material.

4.1.2 Optimum asphalt content

Figure 2 demonstrates the optimum asphalt content for FACRM
with different fiber dosages. As shown in the figure, the optimum
asphalt content of FACRM increases with the increase of fiber dosage
(from 2.8% to 3.6%), which is due to the fact that the fiber, as a
special filler, must be encapsulated by asphalt, and its incorporation
increases the specific surface area of the mix (Shi et al., 2023).
More asphalt must be adsorbed in order to obtain the best cracking
resistance. When the fiber dosage exceeds 0.3%, the optimum
asphalt content growth rate is significantly reduced, because the fiber
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Optimum asphalt content for different fiber dosages.

dosage is lower than can be uniformly dispersed. Meanwhile, a fiber
dosage of more than 0.3% is prone to agglomeration, resulting in a
reduction in the effective adsorption at the interface and a decrease
in the macro-performance of the asphalt consumption.
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4.2 Effect of fiber incorporation on
pavement performance of cold recycled
mixes

4.2.1 High-temperature stability

Figure 3 shows the dynamic stability of the mixtures under
different fiber dosages. The dynamic stability of FACRM shows a
tendency to increase from 5,034 cycles/mm to 13,200 cycles/mm
and then decrease from 13,200 cycles/mm to 4,523 cycles/mm with
the increase of fiber dosage. It reaches the maximum value at 0.6%
dosage, and the dynamic stability at the 0.3%, 0.6%, and 0.9%
dosages is 2.5 times, 2.61 times, and 0.9 times of the original
value, respectively, which indicates that the moderate amount of
fiber dosage can significantly improve the high-temperature stability
of the mixture, and an excessive dosage can negatively affect
stability. This is because the appropriate amount of lignin fibers
can form a three-dimensional mesh structure in the mixture to
produce a reinforcing effect, and adsorption of asphalt increases
the thickness of the structural film, effectively resisting high-
temperature deformation (Wu et al., 2022; Shi et al., 2023). However,
excessive fiber content (0.9%) tends to clump and aggregate
during mixing, forming localized weak interface zones that hinder
uniform asphalt coating of aggregates and weaken interlocking
forces between aggregates; lignin fibers have an oil absorption
rate of approximately 1-2 times their own weight. At a dosage
of 0.9%, excess fibers competitively adsorb asphalt (especially
aged components in recycled asphalt), leading to a reduction in
effective asphalt film thickness, decreased lubricity of the mixture,
and exacerbated high-temperature shear deformation. Additionally,
when the fiber content exceeds 0.6%, excess fibers form a non-
continuous network structure in the mixture, disrupting the density
of the mineral aggregate skeleton, reducing the probability of
direct contact between aggregates, weakening the friction effect,
and causing a decrease in high-temperature stability (Liu et al.,
2023). Therefore, when considering only the high-temperature
stability performance of FACRM, the recommended fiber content
is 0.3% and 0.6%.

4.2.2 Low-temperature crack resistance

Figure 4a shows the typical load-displacement curve schematic
of the mix, and Figure 4b shows the stress—strain curves under
different fiber dosages. As shown in the figure, with the increase of
the fiber dosage, the peak load and the load area of the FACRM
show the characteristics of the change of the first increasing and
then decreasing, which indicates that the dosage of an appropriate
amount of fibers can enhance the ability of FACRM to resist crack
generation and delay crack extension. The possible reasons for
this are: first, lignin fibers have high ductility, forming a three-
dimensional network structure in the mixture, which improves the
overall toughness of the material (Kong et al., 2022; Luo et al.,
2019). Second, the physical adsorption and chemical bonding
between the fibers and asphalt enhances the interfacial bonding
force; when the temperature is lowered, such a network structure can
effectively impede microcracks from sprouting and dispersing the
stress concentration, and at the same time, inhibit the expansion of
cracks (Kong et al., 2022; Luo et al., 2019), improve crack resistance
and delay crack extension ability of FACRM, improving the cracking
toughness of the mixture. However, when the fiber doping exceeds
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Dynamic stability at different fiber dosages.

0.6%, its dispersion uniformity decreases, and it easily forms
agglomerates, which trigger local stress concentration around the
clusters and produce microcracks, which accelerate the expansion
under low-temperature conditions and significantly weaken the low-
temperature crack resistance of the mixture (Akram et al., 2024).

As shown in Table 6, the five indices of FACRM show the
trend of increasing and then decreasing with the increase of fiber
dosage. This is because an appropriate amount of lignin fiber forms
a continuous three-dimensional network structure by adsorbing
asphalt, which effectively transmits load stress and disperses crack
propagation energy; at the same time, plastic deformation occurs
at the fiber-asphalt interface, absorbing crack propagation energy
and reducing the stress concentration factor; Furthermore, the high
oil absorption rate of lignin fiber retains sufficient free asphalt
to coat the aggregate, maintaining the flexibility of the mixture.
The rigid framework of the fiber complements the viscoelastic
properties of the asphalt to improve the crack resistance of the
mixture. Considering the comprehensive effects of lignin fiber on
asphalt mixture low-temperature performance characteristics, it is
recommended that engineering applications of lignin fiber use a
dosage of 0.3%.

4.2.3 Moisture susceptibility

Figure 5 shows that lignin fiber has a significant effect on the
moisture susceptibility of cold recycled mixes. The split strength and
residual strength ratio (TSR) both show a trend of first increasing
and then decreasing. The split strength reaches the maximum
value (0.54 MPa) at 0.3% doping, which is higher than that of
the benchmark group (0.48 MPa), and still maintains the highest
strength after freeze-thawing (0.44 MPa). However, the effect of the
increase in TSR is not significant (only 12.5%). The TSR values
decreased to 92% and 60% of the unadulterated fibers, respectively,
which is due to the strong water absorption of lignin fiber, leading
to an increase in the water absorption rate of the mix. The freezing
and thawing cycle produces volumetric expansion stress to weaken
the interfacial bond strength. High dosages tend to agglomerate the
formation of the local weak areas (Zarei et al., 2022; Wang et al.,
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TABLE 6 Effect of fiber dosage on low-temperature crack resistance of
cold recycled mixes.

Relevant indicator Lignin fiber content

(0] 0.3% | 0.6% | 0.9%

Fracture energy G (J/m?) 51.86 222.05 202.65 67.64
Peak load (kN) 1.53 233 1.13 0.43
Cracking resistance index (mm™) 33.89 101.16 173.99 156.24
Peak-to-peak load area (kN-m) 0.1159 0.6326 0.3020 0.1322
Post-peak load area (kN-m) 0.0379 0.2068 0.3690 0.1363

2024). Therefore, it is recommended that the fiber dosage in
engineering applications is 0.3%.

4.3 Effect of fiber incorporation on the
microscopic morphology of the damage
interface of cold recycled mixtures

An SEM examination was used to reveal the effect of fiber doping
on the microscopic morphology of the FACRM damage interface.
The fracture damage interfaces of the various samples, including
RAP, the undoped fiber mixture, the 0.3% fiber-doped mixture,
and the 0.6% and 0.9% fiber-doped mixtures, respectively, were
examined, and the specific results are as follows:

4.3.1 RAP

The RAP was taken from the old asphalt pavement of the sixth
contract section of the reconstruction and expansion project of
the Suizhong-Panjin section of the Beijing—Harbin Expressway in
Liaoning Province and classified as Grade 2 RAP. Figure 6 shows
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the microscopic morphology of the RAP under magnifications of
%500, x1000, and x2000. As shown in the figure, asphalt pavement
exposed to vehicle load and environmental factors forms many
wrinkle-like raised structures. Its size distribution and molecular
chain crosslinking degree are closely related. The local area can be
seen in bright white spots, which accounted for approximately 8% ~
12% of the total area. These spots may be some of the components in
the asphalt oxidation, aggregation, and other reactions in the aging
process. The formation of some of the asphalt and the nature of
different substances experience different microcosms. These spots
may be the oxidation of some components in the asphalt during the
aging process, forming some substances with different properties
from the surrounding asphalt, which show a bright white color
under microscopic observation.

4.3.2 FACRM without fiber

As shown in Figure 7, compared with the RAP in Figure 6,
after adding foam asphalt, the aggregate surface of RAP material is
encased in a thinner and more uniform film, and there are a few
traces of air bubbles at the interface between asphalt and aggregate
and inside the asphalt film. These residual traces show some round or
oval tiny cavities, which are the water vapor escape residues during
the foaming process. Due to the good wettability and adhesion
of the foam asphalt, the thickness of the interfacial transition
zone is reduced, which is significantly improved compared with
the aged asphalt interface (Li et al., 2024; Bairgi et al.,, 2019).
Further observation shows that the boundary between the asphalt
and the aggregate becomes fuzzy, and more asphalt molecules
are physically or chemically adsorbed onto the minerals on
the aggregate surface. The asphalt evaporation residual phase
forms a honeycomb continuous network structure with a certain
void ratio. No fiber-reinforcing phase exists, and its strength
is completely dependent on the asphalt-aggregate interfacial
adhesion.
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RAP damage interface: (a) X500, (b) x1000, and (c) x2000.
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FIGURE 7
Split damage interface of cold recycled asphalt mixes without fiber foam: (a) x500, (b) x1000, and (c) x2000.
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Split damage interface of cold recycled asphalt mix with 0.3% fiber foam: (a) X500, (b) x1000, and (c) x2000.

4.3.3 FACRM with 0.3% fiber

Figure 8 shows the microscopic morphology of the foam asphalt
cold recycled mixture with 0.3% fiber under x500, x1000, and x2000
magnification. The sample presented the following characteristics:
the lignin fiber in the foam asphalt mixture inside the local
formation of a penetrating structure was uniformly dispersed. The
fibers overlap each other to form a three-dimensional network
structure that serves as a “skeleton” to limit the displacement of
asphalt and aggregates to play a reinforcing role (Li et al., 2022). The
lignin fiber varied. Long fibers produced a mechanical interlocking
effect. The relatively low 0.3% fiber doping is relatively small, and
long fibers in the asphalt can be uniformly dispersed to form a
wider range of network structures, thereby significantly improving
the asphalt’s strength, toughness, and resistance to deformation.
The enhancement effect is more obvious. Short fibers in asphalt are
relatively small and do not easily entangle with each other. Under
the action of mixing, the short fibers can be uniformly dispersed in
the asphalt system and can improve the strength of the asphalt to
a certain extent (Lin et al., 2010), but due to length limitations, the
enhancement effect is not as significant as that of the long fibers.

4.3.4 FACRM with 0.6% and 0.9% fibers

When the fiber content is 0.6% (Figure 9), a three-dimensional
network structure has already formed, but the uniformity of
fiber dispersion decreases, with slight bundle-like aggregation
occurring in some areas. A small number of fibers are inadequately
wrapped, resulting in micro-voids at the interface with asphalt.
The mechanical properties are still superior to those of the fiber-
free group, but the overall performance is lower than that of the
optimal fiber content of 0.3%. Fiber doping at 0.9% (Figure 10) is
the most significant. Asphalt adsorption increased significantly, and
the aggregate surface asphalt film thickness is abnormally thick.
Asphalt film that is too thick is not only a waste of material, but
also, at high temperatures, it is prone to flow, flooding oil, and
other problems, affecting the smoothness and performance of the
pavement (Gong et al., 2025; Sengoz and Agar, 2007). Too many
fibers entangled with other fibers can disrupt the continuity of the
asphalt film. When the mixture is stressed, the discontinuous asphalt
membrane cannot effectively transfer the stress. Such a mixture
readily concentrates stress in the weak parts, thus reducing the
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overall strength of the mixture. In addition, when the fiber doping is
too high, the fibers compete with each other for the asphalt, resulting
in some of the fibers not being adequately wetted by the asphalt and
bonding, thereby weakening the interfacial adhesion between the
fiber and the asphalt (Wu et al., 2015). Further observation found
that too much fiber in the aggregate surface formed a thick layer of
fiber, hindering the direct contact between asphalt and aggregate,
reducing the bond strength between the aggregate and asphalt
interface. Excessive fiber will also form a too dense and complex
network structure. This network structure is too rigid and lacks
sufficient flexibility and adaptability. When the mixture is impacted
by water flow, the network structure is too disordered to work
together effectively and is unable to disperse the load uniformly,
inducing asphalt film spalling.

5 Conclusion

In this article, the influence of different dosages of lignin fiber on
FACRM pavement performance and the microscopic morphology of
recycled mixes was investigated. The main findings and conclusions
are as follows:

o The high-temperature stability of FACRM showed a significant
increase and decrease with the increase of lignin fiber doping.
The dynamic stability was increased by 150% and 162% at 0.3%
and 0.6% fiber doping compared to the undoped sample.

The low-temperature crack resistance of FACRM showed a
tendency to increase and then decrease with the increase in
lignin fiber dosages, and the resistance at fiber dosages of
0.6% and 0.9% was only 74% and 28% of the samples without
fiber. Fiber doping of 0.3% can increase the fracture energy
by 328%, the peak load by 52%, and the cracking resistance
index by 200%.

The moisture susceptibility of FACRM with the increase of
lignin fiber doping showed a trend of increasing and then
decreasing, and the growth effect is not significant. The
moisture susceptibility of FACRM at the optimal doping rate of
0.3% is only 1.01 times that of the recycled mixes without fiber.
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However, too high a dosage will have a large negative impact on
the moisture susceptibility of the mixture.

o The addition of foam asphalt allows asphalt to cover
the surface of RAP aggregate with a thinner and more
uniform film. Lignin fiber in the mixture provides uniform
internal dispersion, mutual overlap, and the formation
of a three-dimensional, mesh-reinforced structure. Too

much fiber breaks the continuity of the original asphalt

film, resulting in a decline in pavement performance
of the asphalt mixtures. The recommended lignin fiber

dosage is 0.3%.

6 Future research recommendations

Study will
foam

address the mechanism of aging asphalt,
and  fiber establish
composition-structure-interface model. A different study will

asphalt, to a  quantitative
introduce digital image correlation (DIC) to track the crack
evolution process, combined with the viscoelastic finite element
model to establish the rut depth prediction model and the fatigue

damage accumulation criterion.
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