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Today, people need personalized diet plan based on their health conditions.
Latest technologies like Internet of Things (loT), federated Learning, blockchain
technology, and wearable devices help in gathering the information required to
recommend personalized and nutritional diet plan and also maintain the data
securely. As most of the existing system that recommend nutrition diet has many
limitations like lack of privacy, less user engagement, usage of Al models that are
not transparent and centralized data storage. Hence, Blockchain enabled Real-
Time Personalized Health and Nutrition Management (BRPHM) framework is
proposed in this paper. BRPHM is a multi-layer architecture which includes loT
data acquisition layer, Blockchain data management layer, federated Al
processing layer, and a recommendation layer. BRPHM introduces a new
parameter called Personalized Health Nutrition Index (PHNI) based on which
recommendations are given to the user. A weighted health model based on
environmental, nutrition, activity, physiological features determine PHNI value.
The performance of the proposed framework is evaluated in terms of accuracy,
recall, precision, F1-score, Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), latency, system availability, privacy score, and scalability score and is
compared with ESCIFS, SEDCAM-2E and PNBDF. The results indicate that the
proposed framework, BRPHM enhances the performance by 8%—-22% in terms of
classification metrics (accuracy, precision, recall and Fl-score), 33%—-53% in
terms of forecasting metrics (MAE and RMSE), 42%—-59% in terms of latency,
1.4%—-2.8% in terms of system availability, 10%—-27% in terms of privacy score and
scalability score when compared to ESCIFS, SEDCAM-2E and PNBDF. The results
also projects PHNI correlation score and Micro-action engagement score which
indicates that the model is accurate and the system is effective.

blockchain, federated learning, healthcare, nutrition, PHNI, recommendation system

1 Introduction

The great transformation of personalized wellness management is experiencing by the
healthcare industries nowadays which is derived by the convergence of Internet of Things
(IoT) devices, wearable sensors, artificial intelligence (AI), blockchain, and data-driven
nutritional science which together revolutionizing how the health and diet are monitored,
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analyzed, and managed for better health and proactive treatment
(Hsu et al,, 2024; Poonguzhali and Amarabalan, 2024; Lopez-
Barreiro et al., 2023; Jamil et al., 2021a; Kumar et al., 2025).

Several chronic diseases such as diabetes, hypertension,
cardiovascular disorders, and also obesity are the major among
the leading causes of global mortality and morbidity (Bhardwaj and
Datta, 2020; Bhat et al., 2021; Nayak et al., 2023). Various scientific
evidences are confirming that the dietary habits and lifestyle choices
play a vital role in both the prevention and management of these
conditions. However, Dietary recommendations of the conventional
methods are usually generic, static, and disconnected from real-time
physiological data. This leads to a significant gap in between the
clinical advice and the patient’s daily diet management. Addressing
these kinds of gaps needs intelligent framework that can integrate
the multi-modal health signals which are capable of dynamic
adaptation to user contexts, and provides actionable diet
recommendations in a secured and trustworthy manner.

The most recent advances in Al-based diet recommendation
systems have shown a favorable result in capturing food intake
patterns, recognizing nutritional deficiencies, and also generating
personalized diet suggestions (Logapriya et al., 2023; Garcia et al.,
2021; Sahoo et al, 2019; Toledo et al, 2019). Systems such as
AI4FoodDB and Diet Engine have demonstrated how continuous
monitoring is combined with deep learning will improve the
individual nutrition tracking (Mantey et al, 2021; Theodore
Armand et al, 2024). However, these solutions often remain
non-transparent, and also vulnerable to privacy concerns due to
the lack of robust mechanisms for secure data exchange and tamper-
proof diet tracking.

A Transformative tool to address security and privacy concerns
in healthcare and diet management systems has recently emerged
with blockchain technology (Mantey et al., 2021; Jamil et al., 2021b;
Zhang et al., 2022; Bosri et al., 2020). It has decentralized and
immutable architecture which enables the secure storage,
transparent data sharing, and also has fine-grained access control.
Blockchain-based systems allow patients to own and control their
dietary and health data by enabling trustworthy sharing with
nutritionists, healthcare providers, and AI systems. Despite these
advantages the existing blockchain healthcare systems either
narrowly focuses on electronic health records (EHRs)
(Poonguzhali and Amarabalan, 2024; Kumar et al, 2025) or
disease-specific tracking systems (Bhardwaj and Datta, 2020;
Mani et al, 2022) with a limited integration of personalized
nutrition and real-time physiological feedback.

While AT algorithms can provide accurate health predictions as
they often operated as “black-box” models by reducing user trust
and interpretability. This limitations present can discourage
adoption in sensitive domains like healthcare, current AI-
powered diet recommenders rarely use long-term engagement
Without
compliance with the recommended dietary changes frequently

tactics alone. incentives or user-centric motivators,
falls over time.

To overcome these kinds of challenges, this paper proposes an
extended framework building upon the Real-time Personalized
Health Monitoring (RPHM) system. Which called as Blockchain-
Enabled Real-Time Personalized Nutrition Framework (BRPHM)
this is meant to integrate the IoT-enabled wearable devices, also
blockchain for secure and auditable data management, along with

Frontiers in Blockchain

10.3389/fbloc.2026.1765645

federated and explainable AT for privacy-preserving and transparent
predictions, and consists of a novel tokenized incentive mechanism
in order to encourage user adherence to dietary plans.
The contributions of this paper can be summarized as follows.
1. Blockchain-Integrated Data Management: which is a
which
immutable, and auditable storage for the health and
nutrition data, including Personalized Health Nutrition
Index (PHNI)
overcome the privacy and trust issues in existing diet

permissioned blockchain layer ensures secure,

scores and micro-actions in order to
recommenders.

2. Federated and Explainable AL: where the AI engine employs
federated learning to train the models across distributed user
data without exposing any raw records leads to combined and

(XAD)
recommendation with nutritional and clinical evidence.

3. Nutrition-Token
gamification strategy includes to make nutrition tokens for

explainable Al modules that justifies each

Incentive Model: In which a novel
compliance with recommended diets and micro-actions.
Tokens are recorded on blockchain and redeemable for
health services thereby enhancing long-term engagement.

4. Dynamic PHNI-Diet Coupling: Which extends the RPHM’s
PHNI score by integrating nutrient intake features (macro/
micro nutrients, hydration, circadian rhythm of diet) in order
to create a composite diet-health index for real-time
recommendation generation.

The proposed framework advances in the state of the art in
personalized nutrition and preventive healthcare by combining
trustworthy blockchain infrastructure, privacy-preserving Al
models, dynamic nutritional indices, and gamified incentives. The
proposed BRPHM addresses parameters like accuracy, security,
interpretability, and user engagement by making it suitable for
large-scale deployment in real-world healthcare ecosystems in a
simultaneous manner unlike the existing systems.

The remainder of this paper is organized as follows: Section II
for reviews related work on blockchain-based healthcare and Al-
driven diet recommender systems. Section III defined to detail the
proposed BRPHM architecture and mathematical modeling. Section
IV represents implementation strategies and experimental design.
Section V meant for evaluations of the framework against existing
benchmarks. Section VI defined to discuss about implications and
future research directions, and finally section VII concludes
the study.

2 Related work

In the past few years, the blockchain has increasingly been
explored as a way to make healthcare data more secure,
transparent, and trustworthy. For example, various researchers
such as Mantey et al. (2021) and Mantey et al. (2023) have used
blockchain to protect sensitive medical recommender systems by
ensuring that diagnoses and treatment suggestions cannot be
tampered with. Similarly, Lopez-Barreiro et al. (2023) and Lopez-
Barreiro et al. (2024) have proposed blockchain platforms for
holistic health management also extended them into gamification
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to encourage healthy habits. Other studies have looked at blockchain
in more specific contexts: such as Jamil et al. (2021a) and Jamil et al.
(2021b) have focused on IoT-enabled fitness frameworks and
healthcare microservices while the other Hsu et al. (2024) and
Poonguzhali and Amarabalan (2024) have applied blockchain to
personal health records (PHR) and electronic health records (EHRs)
with an emphasis on dietary guidance for chronic illnesses
like diabetes.

Many recent works have been shifted towards the traceability
and interoperability. Rafif et al. (2025) have demonstrated how
blockchain could verify nutrition facts in the food industry, and
Zhang et al. (2022) have designed a blockchain schema for managing
chronic diets. Broader surveys and frameworks have mentioned in
Kumar et al. (2025), Bosri et al. (2020) and Thakur et al. (2025)
argues that combining of blockchain with AI could create a
powerful, privacy-preserving healthcare solutions. At the same
time, researchers are beginning to look ahead at quantum-
resistant blockchain models (Jain et al., 2024; Das et al., 2024)
which will be critical for protecting medical records against
future cyber threats.

Despite of these advances most of the blockchain healthcare
systems still stop short of real-time nutrition guidance. They focus
only on securing data or sharing records but rarely connect directly
to dynamic diet recommendations, explainable models, or any of the
long-term engagement strategies.

Artificial intelligence has opened the door to make much
smarter diet management. Vision-based systems like Diet Engine
(Logapriya et al., 2023) and NUTRIVISION (Garcia et al., 2021) has
capabilities to recognize foods through images and estimate their
nutritional content on the spot. Other researchers have explored
more knowledge-driven systems: for example, Garcia et al. (2021)
had built a “Virtual Dietitian” using expert rules while the other
Abeltino et al. (2025) highlighted about the importance of precision
nutrition apps that are co-designed with professional input.

AT has also been applied to disease-specific nutrition. Bahirat
et al. (2024) and Iwendi et al. (2020) have explored how the diet
recommendations can be tailored to cure conditions like diabetes
while the other Nayak et al. (2023) had built predictive models that
combines disease risk with food suggestions. The balance between
simplicity and complexity in user nutrition models where the
systems have to be accurate but also easy for patients to
understand and follow these are defined by Schifer et al. (2017)
and Toledo et al. (2019).
even with these
recommenders are standalone apps. They do not usually

However, advances, many Al-based
integrate with continuous health data from wearables, and their
“black-box” predictions make it hard for users or clinicians to trust
the reasoning behind recommendations. Privacy is another weak
point: very few systems guarantee secure, tamper-proof histories
of diet logs.

A third line of research combines IoT, federated learning, and
edge computing to make nutrition frameworks more sustainable
and private. For example, Ahamed and Karthikeyan (2024) have
proposed FLBlock which marries blockchain with federated learning
so that the health and food supply data can be shared without
exposing raw information. Mani et al. (2022) have worked on
storing health data blocks directly inside electronic repositories,
and Sahoo et al. (2019) have surveyed the wearable health
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monitoring systems that can run computations partly on the
device (edge AI) to reduce latency. The authors in Yang et al.
(2025) and Xu et al. (2024) presented the application of blockchain
in finance related applications.

These approaches are promising, especially for handling large-
scale, real-time data, but most of them are general healthcare
platforms rather than nutrition-specific frameworks. They also
tend to focus more on the infrastructure (edge computing,
federated learning) than on explainability, user incentives, or
micro-action diet guidance. Comparative Analysis of Existing
Approaches in Personalized Nutrition & Healthcare is shown in
Table 1.

2.1 Gaps in the literature

First the existing systems are often siloed: blockchain papers
emphasize security, Al papers focus on prediction, and IoT
papers highlight infrastructure but they rarely come together
into a single unified framework.

» Second various privacy and governance are inconsistently
addressed. Most Al recommenders do not provide verifiable
consent or audit trails, while blockchain systems typically do
not record the actual model training or inference events tied to
diet recommendations.

Third there is a lack of explainability. Users and clinicians need
to know why a diet recommendation is being made, yet most
systems treat Al as a black box.

« Fourth user engagement is an afterthought. Very few studies
explore how to motivate patients to follow diet advice
consistently. For example, through rewards or gamification.

Finally, only a handful of works even consider future-proof
security such as quantum-resistant blockchain.

3 Blockchain enabled real-time
personalized health and nutrition
management (BRPHM) framework

The multi-layered architecture of the Blockchain-Enabled
Real-Time Personalized Nutrition Framework (BRPHM) has
five layers they are IoT Data Acquisition Layer, Blockchain
Data Management Layer, Federated AI Processing Layer as
shown in Figure 1. Explainable Recommendation Layer, and
Tokenized Incentive Layer. The four essential challenges in
personalized nutrition systems are addressed by the proposed
framework they are system scalability, data security and privacy,
user engagement and compliance, trust and transparency. The
sovereignty of the individual data is maintained by the distributed
architecture of BRPHM. The basic principle of the system is
monitoring the health of an individual continuously and
generating various suitable recommendations. The real-time
physiological
factors and dietary intake patterns of each user are used to

signals, behavioral responses, environmental

dynamically compute and maintain Personalized Health
(PHNI)
recommendations based on nutrition diet for better lifestyle

Nutrition Index which is used to generate

patterns and health conditions.
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TABLE 1 Comparative analysis of existing approaches in personalized nutrition and healthcare.

Category Key features
Blockchain in healthcare (Mantey et al.,
2021; Hsu et al., 2024; Poonguzhali and
Amarabalan, 2024; Bhardwaj and Datta,
2020; Lopez-Barreiro et al., 2023; Jamil et al.,
2021a; Mantey et al., 2023; Jamil et al,,
2021b; Kumar et al., 2025; Rafif et al., 2025;
Jain et al., 2024; Zhang et al., 2022; Bosri
et al., 2020; Thakur et al., 2025; Das et al.,
2024)

supply, diet records), emerging post-
quantum models

Al-based diet recommenders (Logapriya
etal.,, 2023; Garcia et al., 2021; Abeltino et al.,
2025; Gami et al., 2024; Bahirat et al., 2024;
Iwendi et al., 2020; Manoharan and Sathesh,
2020; Nayak et al., 2023; Rehman et al.,, 2017;
Sahoo et al.,, 2019; Schifer et al., 2017;
Toledo et al., 2019)

Food recognition (CV, DL), knowledge-
based expert systems, disease-aware diet
planning, big-data personalization

IoT and Federated Frameworks (Ahamed
and Karthikeyan, 2024; Mani et al., 2022;
Sahoo et al., 2019)

Overall gap -

3.1 loT data acquisition layer

The IoT layer serves as the sensory foundation for the BRPHM
framework by capturing comprehensive health and lifestyle data
through several diversified sensor modalities. The data collection
strategy consists of four primary categories of the information that
provides a complete view of the user health status along with the
contextual factors.

Physiological sensors are meant to monitor continuously several
major health indicators like heart rate variability, blood glucose
levels, blood pressure, body temperature, oxygen saturation, and
also the sleep quality metrics.

These sensors will provide the foundational health data in order
to understand the metabolic state and nutritional needs. To track
step count,
expenditure, exercise intensity, activity duration, and sedentary

physical movement patterns including caloric
behavior patterns of the users the activity sensors are used. The
collected information based on activity levels is necessary and crucial
for calculating energy balance and adjusting nutritional
recommendations.

Environmental sensors are meant to monitor contextual factors
which are going to influence the nutritional needs and food choices.
They are air quality indices, ambient temperature, humidity levels,
uv
understanding the system and external factors that may directly
affect the metabolism, hydration needs, and food safety

considerations. For advanced food recognition technologies,

exposure, and location-based factors these helps in

smart utensils, and portion estimation devices to track actual
food intakes, meal timings, eating patterns, and hydration levels
of the users several dietary sensors are employed.

The BRPHM implements edge computing capabilities at the IoT
device level in order to address the privacy concerns and to
minimize the data transmission requirements. Preliminary the
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Immutable data storage, smart contracts,
secure EHR/PHR sharing, traceability (food

Wearables and IoMT devices, edge/cloud
integration, federated learning for privacy

04

Strengths Limitations/Gaps

Strong privacy, auditability, data
ownership, transparency

Focus mainly on data security, not on real-
time nutrition guidance; limited integration
with AT explainability; few incentive/
engagement mechanisms

Accurate nutrient tracking,
context-aware diet suggestions,
flexibility across diseases

Mostly standalone apps; limited use of
continuous IoT data; lack of secure
provenance; Al decisions often black-box with
little explainability; weak engagement
strategies

Real-time data capture, reduced
latency, privacy-preserving
model training

Primarily general healthcare monitoring, not
nutrition-focused; few systems explain diet
recommendations; lack of tokenized incentive
models

- Systems are siloed, lacking unified architecture
that combines IoT sensing + federated Al +
blockchain trust + interpretable
recommendations + sustained engagement

data processing which includes the data validation, noise
reduction, feature extraction, and anomaly detection before
transmitting processed information to the blockchain network is
performed by each sensor device.

There are multiple purposes served by the edge processing
approach in which the reduction in the amount of raw data
which needs to be transmitted and stored on the blockchain,
minimizes the potential privacy exposure by keeping sensitive
raw measurements in local also enables real-time responsiveness
for critical health alerts, and reduces network bandwidth
requirements for all the large-scale deployments.

At the edge data validation process occurs to ensure that the
sensor accuracy and detects the potential device malfunctions. To
identify relevant patterns and trends from raw sensor data by
creating compact representations that maintains the clinical
relevance while reducing data volume, this process is done by the
Feature extraction algorithms. Identification of unusual patterns
that may indicate health emergencies or device failures by triggering
appropriate alerts or data quality flags is done by the Anomaly
detection mechanisms.

All data transmissions from IoT devices to blockchain networks

will employ the end-to-end encryption using advanced
cryptographic protocols. Each IoT device need to be equipped
with unique cryptographic keys that enables the secure
authentication and data integrity verification. The system

implements a rotating key mechanism to prevent long-term key
compromise and maintains secure key distribution protocols for
new device enrollment.

Device authentication ensures that only authorized sensors can
able to contribute data to a user’s health profile by preventing
spoofing attacks and maintaining the data integrity. Timestamp
verification and sequence numbering prevents replay attacks and
ensures data freshness. Digital signatures on all transmitted data is to
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enable verification of data source and integrity throughout the
processing pipeline.

3.2 Blockchain data management layer

The integration of blockchain technology in the BRPHM
framework addresses fundamental challenges that effects the
various existing personalized nutrition systems. Traditional
centralized health data management systems are suffering from
several critical vulnerabilities like single point of failures which
can compromise entire user databases, lacking in the user control
over personal health information, vulnerabilities to the data
breaches and unauthorized access, difficulties in establishing trust
between users and service providers, limited transparency provision
in terms of how personal data is used for recommendations, and
challenges in ensuring long-term data preservation and accessibility.

Blockchain technology provides several solutions to these
challenges through its inherent characteristics of decentralization,
immutability, transparency, and cryptographic security. In the
context of personalized nutrition, the blockchain enables users to
maintain absolute control over their health data while selectively
giving access to healthcare providers, researchers, and Al systems.
The distributed nature of blockchain eliminates multiple single
point of failures and provides a possibility of creating a tamper-
resistant record of all health-related transactions and data
modifications.

The blockchain has immutable nature which ensures that once if
health data is recorded it cannot be altered or deleted without
making a permanent and verifiable health history. For the
longitudinal health studies and establishing causal relationships
between dietary interventions and health outcomes the same
characteristic is valuable. The transparency of blockchain
technology operations allows the users to verify how their data is
being accessed and used in order to build trust in the system and
enabling informed consent for data sharing.

The BRPHM framework employs a consortium blockchain
model designed for healthcare applications in order to balance
the benefits of decentralization along with the privacy and
regulatory requirements of health data management system. The
blockchain network consists of multiple node types, where each
node is serving specific function within the ecosystem.

Patient nodes are created for representing individual users and
to maintain personal health data profiles. These nodes have full
control over their data and can grant or revoke all kind of access
permissions to other network participants. Patient nodes have the
possibility to participate in consensus mechanisms and can validate
transactions related to their own data. Healthcare provider nodes
will represent medical institutions, clinics, nutritionists, and other
healthcare professionals who may need access of the patient data for
clinical decision-making. These nodes must undergo verification
and credentialing processes before being granted for the
network access.

Al service nodes will perform computational tasks which
includes federated learning, recommendation generation, and
data analysis. These nodes have specialized permissions that
allows them to access anonymized or aggregated data for model
training while respecting all individual privacy preferences.
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health
compliance organizations that may need to audit the system

Regulatory nodes will represent authorities and
operations while maintaining the patient privacy.

The consensus mechanism which employed in the BRPHM is a
modified Proof of Authority (PoA) system that prioritizes healthcare
domain expertise and regulatory compliance over computational
power. Consensus participants are selected based on their healthcare
credentials, data security practices, and compliance with health
information privacy regulations.

The blockchain layer has implementation of the specialized
smart contracts that performs automation in various aspects of
health data management and access control. Encoding of the
healthcare privacy regulations, consent management protocols,
and data sharing agreements that
automatically enforces compliance with the smart contracts.

into executable code

To handle the secure storage and access control of individual
health records the Health Data Management Contract is meant. This
contract maintains records of encrypted health data, manages access
permissions based on user defined policies, implements time-based
access controls that automatically expire also tracks all data access
events for audit purposes, and enforces the data minimization
principles by ensuring that requesters have to receive only the
minimum data necessary for their specific use case.

The Consent Management Contract automates the complex
process of managing informed consent for the health data
sharing. This contract records users consent preferences for
different types of data sharing which automatically enforces
consent expiration and renewal requirements also provides users
with easy mechanisms to revoke consent, maintains detailed audit
trails of all consent-related activities, and ensures that the data
sharing immediately stops when consent is withdrawn.

The Nutrition Token Contract have to manage the issuance,
distribution, and redemption of tokens that incentivize healthy
behaviors and dietary compliance. This contract tracks the user
with
automatically issues

compliances recommended dietary interventions also

tokens for completed health actions,
maintains token balances and transaction histories which enables
the token redemption for health services or products, and prevents

double-spending or fraudulent token claims.

3.3 Federated Al processing layer

Fundamental tension between personalization and privacy in
health recommendations is addressed by the AI processing layer.
Centralized data collection which also poses in significant privacy
risks and regulatory challenges in healthcare domains is required by
the traditional machine learning approaches. BRPHM will resolve
this challenge through federated
collaborative model
health data.

In the federated learning approach, each of the patient node

learning which enables

training without centralizing sensitive

maintains a local machine learning model that is trained exclusively
on their personal health data. This ensures that sensitive information
will never leave the individual’s control while still enabling the
benefits of large-scale machine learning. The local models have to
learn patterns which are specific to individual users, capturing
personal preferences, metabolic responses, and health conditions.

frontiersin.org


https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2026.1765645

Venkata Krishna et al.

10.3389/fbloc.2026.1765645

ulti-modal Data collection

Edge Computing and Privacy
Preserving Processing

Secure Data Transmission and
Authentication

Physiological Component Model

Activity Component Model

Nutrition Component Model

wawdoaAd( INHJ

Environment Component Model

FIGURE 1

BRPHM framework.
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Periodically, the local models share only their learned
parameters or gradients with the federated learning coordinator
rather than sharing raw data. The coordinator will aggregate these
parameters to create a global model that captures population-level
patterns and knowledge. The updated global model is then need to
distribute back to the individual nodes where it is to be combined
with local learning to create personalized recommendations.

Based on this approach provision of several advantages are there
over traditional centralized learning. The first one is enhanced
privacy protection as the raw health data never leaves individual
devices, the second one is improved model robustness through
exposure to diverse patient populations, third one is reduced
communication overhead compared to raw data sharing, fourth
one is compliance with health data privacy regulations, and fifth one
is resilience to node failures or network disruptions.

Multi-objective optimization techniques have to be employed by
the AI engine have in order to balance the complex and often
competing requirements of the
recommendations. The traditional nutrition systems typically
optimized only for single objectives such as caloric balance or
specific nutrient targets but in the real-world nutrition decisions
involving in multiple competing factors that must be simultaneously

personalized  nutrition

considered.

Balanced recommendations generation is the task of the
optimization framework which considers four primary objectives
that adequate which ensures that

must be nutritional

Frontiers in Blockchain

recommendations meet established dietary guidelines and
prevents nutrient deficiencies while avoiding excessive intakes
that may lead health risks. Disease risk minimization will be
focusing on reducing the likelihood of diet-related chronic
diseases based on the individual risk factors, genetic
predispositions, and current health status.

User preference satisfaction will acknowledge that the dietary
recommendations must be acceptable and enjoyable to users to
ensure the long-term compliance. The system learns about the
individual taste preferences, cultural dietary patterns, and food
aversions to generate recommendations that users are likely to
follow. Practical constraints which include budget limitations,
food accessibility, cooking skills, and time availability are
incorporated to ensure that recommendations are feasible for
individual users.

The multi-objective optimization process generates a Pareto-
optimal solutions that represents the best possible trade-offs in
between competing objectives. System presents to the users with
a set of alternative options that optimizes different aspects of their
nutritional needs by allowing informed decision-making based on
personal priorities and circumstances, instead of providing a single
recommendation.

FedAvg aggregation strategy is used to implement federated
learning. Local model is trained for 5 epochs by each client and then
only the updated encrypted model is shared and after each
global aggregation is made.

communication cycle, the
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TABLE 2 Hardware and software specifications.

10.3389/fbloc.2026.1765645

Category Details

Processor (CPU)

11th Gen Intel Core i7-11700 @ 2.50 GHz, Intel64 Family 6 Model 167 Stepping 1

System memory (RAM) 32 GB DDR4

GPU resources

AMD Radeon RX 640 (4 GB VRAM) and Intel UHD Graphics 750 (2 GB VRAM)

Driver status

Hardware role

Both GPUs running latest stable driver versions

Backbone for all BRPHM computational and simulation workloads

Python environment Python 3.10 (Conda environment)
CPU/GPU computation mode
Core scientific libraries

Deep learning frameworks

Simulation and optimization libraries

Purpose of software stack

Information leakage is prevented by applying differential privacy,
¢ = 1.0 while updating the model.

3.4 Explainable recommendation layer

Component level explanations for dietary recommendations
and PHNI are generated in this module. Thus, transparency is
Attribution
physiological, nutrition, activity and environmental features are

being provided by this module. scores for
computed. These scores help the clinicians and user to know the
contribution of each factor towards recommendation. Moreover,
recommendations are justified using nutritional constraints
which are based on rules. This justification enhances the

clinical interpretability and trust.

3.5 Tokenized incentive layer - personalized
health nutrition index (PHNI) development

To incorporate the comprehensive nutritional and lifestyle
factors which influences the health outcomes, the traditional
Personalized Health Index is significantly enhanced in BRPHM.
the overall health status which able to adapt changes in conditions
and provides the foundation for personalized nutrition
recommendations is achieved by PHNI score.

Incorporation of traditional vital signs and biomarkers while
adding nutrition-specific indicators such as metabolic rate, glucose
tolerance, lipid profiles, inflammatory markers, and micronutrient
status in the physiological component of the PHNI score. This
comprehensive physiological assessment will provide the medical
foundation for nutrition recommendations of the system.

These factors tracking like physical exercise, daily activity
patterns like sedentary behavior, sleep quality, and circadian
rhythm regularity by the activity component significantly
influence the nutritional needs and the effectiveness of dietary
interventions by making them as the essential components of the
health assessment.

Frontiers in Blockchain

PyTorch (CPU-only) and TensorFlow-CPU

CPU-optimized execution (no CUDA/ROCm support on available GPUs)

NumPy, SciPy, Pandas, Matplotlib, Scikit-learn

SimPy (system simulation), Optuna (hyperparameter tuning) and Flower (federated learning orchestration)

Supports BRPHM simulation workflows, federated learning, model training, feature processing, optimization, and evaluation

Detailed analysis of the dietary patterns, nutrient intake
adequacy, meal timing, hydration status, and dietary diversity are
incorporated by the nutrition component. This component meant to
learn about the individual metabolic responses to different foods and
nutrients by enabling highly personalized recommendations.

Several external factors which influence the health and nutrition
including air quality, climate conditions, seasonal variations and
stress levels are considered by environmental component. For
adaption of recommendations in the changing circumstances and
environmental challenges these contextual elements will help.

The PHNI score is calculated through the dynamic weighting
of these components is based on individual health goals, current
health status, and risk factors. Machine learning algorithms
meant for continuously adjusting the relative importance of
different components because they learn from user responses
and health outcomes by creating a truly personalized health
assessment tool that evolves with changing health needs and
circumstances.

Context awareness, real-time adaptability and nutrition specific
parameters are lacking in the existing health indices. They are static
in nature. These existing systems are not suitable for reccommending
personalized nutrition as they did not consider environmental
factors, activity levels, hydration, time of meal, food intake, etc.

All these factors are integrated and considered for computation
of PHNIL Hence, it is more suitable for providing nutritional
recommendations. Also, PHNI is dynamic in nature as it adapts
to the changes in the values of the features considered. This dynamic
nature of PHNI made it more apt for personalized and real-time diet
recommendation.

ersonalized
[) model

4 Mathematical model for
health nutrition index (PH

Four main components are involved in the calculation of PHNI
as given in Equation 1. Weights are considered for each component.
These weights are initialized with population average, updated using
gradient descent approach and made adaptive over time.
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PHNI(t) = 0. ®(t) + ay(t) + 05.Q () + . B(1) (1)

Where, PHNI (t) is the Personalized Health Nutrition Index at
time t, (t) is the Physiological component computed using Equation
2, y(t) is the Activity component computed using Equation 4, Q (t) is
the Nutrition component computed using Equation 9, E(t) is the
Environmental component, computed using Equation 14 and a3, ay,
as, a4 are dynamic weights where Za,- =1, a; € [0,1]. Gradient
descent method is used to update the weights dynamically.

Population-level average health statistics are used to initialize a;,
Ay, a3, a4. The feedback of the health outcome and the error
predicted are considered by the gradient descent procedure is
used to update these weights. The PHNI model is able to learn
the importance of the various components considered as these
weights are dynamically updated and hence it is able to perform
the assessment of time-varying and personalized health-nutrition.

4.1 Physiological component model

(1) = Y w9, (t) @)

i=1

Where, wp,_; is the weight associated with each physiological
parameter and ¢;(t) represents normalized physiological parameters:
Heart rate variability (HRV) score, Blood glucose level normalized,
Blood pressure score, Body temperature deviation, Oxygen
saturation score, Sleep quality metric, Metabolic rate indicator,
Inflammatory markers score for i = 1 to 8 respectively.

Normalized value of each parameter is computed using
Equation 3:

()= 1= [vi (£) = v{™'| [ (v ™ = v, ™™ (3)

Where, v; (t) is the Raw sensor value at time t, vfp " is the optimal
value for parameter i computed as population average of healthy
individuals, v; ™** and v; ™" are the maximum and minimum safe
values (Clinical Safety Thresholds).

min

4.2 Activity component model

W(t) = wuct,l-A(t) + wact,2~S(t) + wucr,3-E (t) + wact,4-c(t) (4)

Where, A (t) is the daily activity score computed using Equation
5, S(t) is the sedentary behavior score computed using Equation 6,
E (t) is the Exercise intensity score computed using Equation 7, C(t)
is Circadian sleep score computed using Equation 8. These scores
are calculated as follows:

actualno. of stepstakenonday

A(t) =
®) tar get steps %)
() =1- sedentar y_hours (t) ©)
24
active_minutes (t).intensit y_ f actor
E(t) = O ntensity 1 @)

tar get_active_minutes
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C(#) = cos <2n’sleep_tzme t) - optzmal-sleep-tzme) ®)

24

4.3 Nutrition component model

Q(t) = wnut_1~N (t) + wnut_2~M (t) + wnut_S-H(t) + wnut_4-D (t)
©)

Where, N (t) is the Nutrient adequacy score computed using
Equation 10, M (t) is the Meal timing score computed using Equation
11, H(t) is the Hydration score and computed using Equation 12
D (t) is the Dietary diversity score computed using Equation 13. These
scores are computed as follows:

1ok o ni(t)
N(t) = Ezj‘:l m1n<R;)Aj, 1> (10)

Where, n;j(t) is the intake of nutrient j at time t, RDA; is
recommended daily allowance for nutrient j, and k is the total

number of tracked nutrients.

M) = exp<—zM (o =t7) > (11)

m=1 . 202

Where, t,,, is the actual time of meal m, tfft is the optimal time
for meal m, g, is the tolerance window for meal timing.

(12)

H(t) = min(total_flmd_mtake (1) )

target_ fluid_intake’

Where, target_ fluid_intake(t) is the total fluid consumed on
day tand target _ fluid_intake is the personalized daily hydration goal.

D(t) = Z;;(wg.min(items_in_group_g (t), 1)) (13)

target_items_g

Where, G is the total number of food groups, wy is the weight of
food group g, items_in_group_g (t) is the number of different items
consumed from group g, tar get_items_g is the target variety within

group g.

4.4 Environmental component model

) (t) = wenv,l-Q(t) + wem/,z-T(t) + Weny_3.St (t) (14)

Where, Q (t) is the normalized air quality index computed using
Equation 15, T'(¢) is the temperature comfort score computed using
Equation 16, and St (t) is the stress level computed using Equation
17. These scores are computed as follows:

AQI (t) - AQImin
Q(t)=1- = /7 min (15)
AQImax - AQImin

Where, AQI (t) is the Air Quality Index at time t, AQI,;, is the
minimum value of AQI used for normalization, AQI,,., is the
maximum value of AQI used for normalization.
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T actuat(ty = Toptimal
T(t)Zl—I actual (t) optmal (16)

Trange

Where, Tactual (1) is the actual temperature at time t, Toprimar is the
user’s comfortable temperature which is personalized based on age/
activity/season, and T'rang. is the tolerance range of temperature.

St (t) = 1 —normalize (stress_level (t)) (17)

Where, stress_level (t) is the stress level measured at time t from
physiological indicators.

5 Experimental setup and performance

evaluation

Hardware and software specifications used for implementing
BRPHM framework is shown in Table 2.

5.1 Dataset strategy

To validate the BRPHM framework, a large synthetic dataset is
created that simulates real-world personalized nutrition situations
while protecting privacy. The dataset strategy aimed to guarantee
demographic diversity, ecological validity, and enough complexity
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8000 8100 6200 830¢ 1000 1590 2000 2500 3000 3500
Deily Steos food Intace (calories)
to test the framework rigorously while providing accurate

information for evaluation. The dataset distribution is shown
in Figure 2.

There are 10,000 diversified individual profiles in the dataset.
Age distribution is considered to be between 18 and 65+ to represent
with different stages of life. Distribution of gender is balanced. Five
different categories of activity levels are considered in physical
activity: sedentary, lightly active, moderately active, very active
and extra active. Five categories in health condition considered
with balanced representation are: healthy, heart disease, obesity,
hypertension and diabetes. The dietary preference of the user is
considered as Mediterranean, ketogenic, vegan, vegetarian and
omnivore. BMI is considered to on average 25 with standard
deviation of 5, initial PHNI is distributed between 0.3 and 0.9,
data privacy level indicates the choice of users to share their data and
itis considered to be high, low or medium. This distribution strategy
was chosen to ensure unbiased evaluations across all demographic
groups and stop the model from biasing towards majority groups
which is a common issue in real-world healthcare systems. The
physiological parameter values used for simulation are shown
in Table 3.

The data is considered for 200 users over 30 days generating
6,000 time-series records of data for analysis.

Air quality index is considered to be uniformly distributed
between 50 and 150.
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TABLE 3 Physiological parameter values.
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S. no Physiological parameter Average value Standard deviation
1 Heart rate 75 bpm 12

2 Blood glucose 95 mg/dL 15

3 Blood pressure with systolic values 120 mmHg 15

4 Blood pressure with diastolic values 80 mmHg 10

5 Oxygen saturation 98% 1

6 Body temperature 98.6°F 0.5°F

7 Daily steps 10,000 2000

8 Sleep hours 7.5 1.2

9 Calories burned 2,000 kcal 300 kcal

10 Exercise minutes 45 15

11 Food intake 2,100 calories 400 calories
12 Hydration 2,000 mL 500 mL

13 Ambient temperature 22°C 5°C

Initially, diversified user profiles are constructed and then
related
parameters are generated using probabilistic modeling and are

physiological, dietary, environment and activity
based on clinical value distributions. Then, time-series archives
are constructed for every user to gather everyday variations,
PHNI values are initialized and updated periodically using the
This
guarantees preservation of privacy, stability, practicality and

reproducibility.

proposed  model. structured  generation  procedure

5.2 Evaluation methodology

70% of the dataset is considered to be training set, 15% of the
dataset is considered to be validation set and remaining 15% of the
dataset is considered to be as the testing set also the simulation is run
for 50 epochs to guarantee the reliable and generalizable results.

This is indicating that the number of users considered in
training set are 7,000 with 4,200 time-series records. Where the
number of users considered in validation set are 1,500 with
900 time-series records and the number of users considered in
testing set are 1,500 with 900 time-series records. For the first
21 days of data is considered for training and the last 9 days of
data is considered for testing purpose.

5.3 Performance evaluation and results

The performance of the proposed framework, BRPHM is
compared with ESCIFS, SEDCAM-2E, PNBDF in terms of
classification metrics (Accuracy, Precision, Recall and F1-Score)
and is shown in Figure 3. BRPHM achieved 94% accuracy which
is 8.05% improvement over ESCIFS, 14.63% enhancement over
SEDCAM-2E and 18.99% increase on PNBDF. Federated
learning architecture used in training diversified data and various
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privacy procedures used in securing the data made the proposed
BRPHM framework perform well in terms of accuracy. The global
model is balanced as it is getting trained with the federated approach
using 10,000 different users which can include wide and diversified
data. As the PHNI depends on environmental factors, nutrition and
activity besides the heart rate and temperature, the complete details
of the health related to an individual is clearer because of which the
accuracy of BRPHM is enhanced whereas only limited physiological
parameters are used by the other systems.

BRPHM exhibits 92% precision whereas ESCIFS gives 84%,
SEDCAM-2E projects 80%, and PNBDF provides 76% precision
which demonstrates that the BRPHM outperforms when
compared to the legacy systems. This shows that the proposed
BRPHM framework avoids false positive classifications which
might create unwanted tension in the users indicating that
their health is at risk even though it is not actually. This
parameter is very important to gain the trust of the users
otherwise the system would get rejected by the users. i.e., users
might not use it as it is giving false information repeatedly.
BRPHM exhibits high precision as it adjusts the disease risk
models carefully. The well-balanced training data helps the
framework to learn how every nutrient affects each disease. To
avoid overfitting problem, regularization is performed in the
BRPHM. The use of blockchain guarantees that the data is
reliable and clean which helps in avoiding the BRPHM learn
from mistakes.

BRPHM achieved 91% Recall which is 9.64% improvement over
ESCIFS, 16.67% enhancement over SEDCAM-2E and 22.97%
increase on PNBDF. The enhancement in recall indicates that
BRPHM is able correctly identify the risk factor of most of the
people which helps in preventing chronic disease where early
detection can increase the possibility of curing the disease and
save the life of people. Consideration of air quality index while
computing PHNI value also affects the recall performance. The
features that are focused vary from individual to individual based on
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Comparison of BRPHM with ESCIFS, SEDCAM-2E, and PNBDF in terms of classification metrics (Accuracy, Precision, Recall and F1-Score).

their health status in BRPHM. i.e., the weights of the features are
different whereas it is fixed in other systems which might miss
patterns that are specific to the conditions.

BRPHM achieved 91.5% F1-score which is 9.58% improvement
over ESCIFS, 15.82% enhancement over SEDCAM-2E and 22%
increase on PNBDF. Fl-score is defined as the harmonic mean of
precision and recall. Good performance in terms of recall indicate
the BRPHM is able to avoid false positives and false negatives and
this is achieved using multi-objective optimization.

The performance of BRPHM in terms of forecasting metrics
(Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE)) is evaluated and compared with ESCIFS, SEDCAM-2E,
and PNBDF and the results are shown in Figure 4. The enhancement
in the performance of BRPHM indicate that the nutrition
requirement and the health status of an individual is predicted
appropriately by BRPHM. The enhancement of MAE by BRPHM
when compared with ESCIFS, SEDCAM-2E, and PNBDF is 33.3%,
45.45% and 52% respectively. The low MAE comes from BRPHM’s
use of recurrent neural network layers in its federated model
architecture. This system models how today’s nutrition affects
health carry-over effects.
Competing frameworks usually rely on static models that treat

tomorrow’s through  metabolic
each time point independently. They miss the important time-
based dynamics of nutrition’s delayed effects on health signs.
BRPHM’s improved PHNI calculation includes meal timing
scores that capture chronobiological patterns. It determines that
the same metabolic responses are produced by the same meals based
on the time of the day. The time at which exercise is being done
affects the rate of metabolism and how the nutrients are used
throughout the rest of the day determines the circadian
weighting of the activity component. The proposed framework,
BRPHM learns how the choice of food of an individual affect their
health over time using these features that are based on the time.

Frontiers in Blockchain

11

BRPHM learns the true relation between cause and effect, i.e., what
an individual is taking as food and how it is affecting their body.
Hence, the accuracy of the predictions is enhanced and helps in
recommending changes in the lifestyle or new diet.

The performance of BRPHM in terms of Root Mean Squared
Error (RMSE) is enhanced by 34.8%, 46.4%, and 53.1% when
compared to ESCIFS, SEDCAM-2E and PNBDF respectively and
the results are projected in Figure 4. This indicates that BRPHM will
be able to handle errors in the predictions effectively. Better RMSE
indicates the prediction is good which leads to correct dietary
recommendations. This is important in the healthcare field as the
incorrect dietary recommendations might worsen the health of an
individual. Better RMSE is achieved by BRPHM because of federated
architecture. Here, 100 local models are trained on different users
and the predictions from these local models are integrated efficiently
by the global model. This mechanism helps in minimizing the
variance in the predictions made by local models. As the
BRPHM prediction is good, the optimization algorithm can
boldly provide strong recommendations to improve the health of
an individual. If the RMSE is high, the optimization algorithm
should be more effective and play its role efficiently by giving only
limited recommendations as the risk cannot be taken with the health
of the user. Usage of blockchain also helps in reducing RMSE as the
prediction depends on the past data in the case of temporal models.
Here, blockchain helps in securing the data and keeping the data safe
without getting modified or tampered. Dietary recommendations
are always dependent on the past and present health records. In this
way, the federated architecture and the blockchain integration in
BRPHM helps in reducing RMSE.

The performance of the proposed framework, BRPHM is
evaluated in terms of average latency and is compared to the
performance of ESCIFS, SEDCAM-2E, and PNBDEF. The results
are projected in Figure 5. The performance of BRPHM is improved
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by 42%, 34%, and 59% when compared to ESCIFS, SEDCAM-2E
and PNBDF respectively. The improvement in latency makes the
recommendations faster as soon as physiological changes occur. The
reason for better performance in terms of latency is due to edge
computing architecture as the local devices processes the IoT sensor
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data and transmits only processed features to the cloud which helps
in generating the recommendation. Here, the noise is eliminated
using Kalman filtering, quality of the data is eliminated anomalies
and extracted only useful features. Hence, the data to be transmitted
to the cloud will be reduced by 70% approximately due to edge
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computing architecture. Thereby, latency is reduced when
compared to the legacy systems, ESCIFS and PNBDF which
transmit the raw data directly to the cloud. SEDCAM-2E uses
edge computing but feature extraction is not implemented.
Hence, BRPHM outperforms SEDCAM-2E also. The Practical
Byzantine Fault Tolerance (PBFT) used by blockchain consensus
mechanism helps to create the blocks in 3s and handle
1,000 transactions per second which makes BRPHM as well as
recommendations faster. As public Ethereum is used by PNBDF, it
experiences low throughput and 13s block time which increases the
latency. As the federated learning architecture enables the BRPHM
to run local models on user devices itself, interpret faster and
generate the recommendations instantaneously. This helps
BRPHM to provide results faster when compared to the
legacy systems.

The performance of the proposed framework, BRPHM is evaluated
in terms of system availability and is compared to the performance of
ESCIFS, SEDCAM-2E, and PNBDF. The results are projected in
Figure 6. It can be observed that BRPHM outperforms ESCIFS,
SEDCAM-2E, and PNBDF. As the proposed framework deployed
distributed architecture, it can function continuously even when any
node is failed. At the same time, all the nodes need not function in the
case of federated learning and 3 Byzantine failures for every 10 nodes
can be tolerated because blockchain consensus mechanism. Hence, the
system availability is high in the case of BRPHM. If the centralized
systems are deployed, the system availability is decreased as it is not
available upon failure. Even 1.4%-2.8% enhancement in system
availability indicates that 120 to 240 more hours can be monitored
and can avoid missing important health measures.

BRPHM has notable advantages in protecting sensitive health
information while keeping system performance high as user
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numbers increase is shown by the comparison of privacy and
scalability. This to adopting
personalized nutrition systems.

addresses two key obstacles

BRPHM has a privacy score of 0.95 which is significantly higher
than ESCIFES at 0.72, SEDCAM-2E at 0.85, and PNBDF at 0.68 as
shown in Figure 7. These scores represent an improvement of
10-27 percentage points in privacy protection and also this score
measures how hard it is to re-identify the users from data breaches
or inference attacks. It is calculated as one minus the chance that
someone with additional information could link anonymized health
records to individuals. BRPHM achieves its strong privacy through
several mechanisms that works together as its federated learning
structure ensures that raw health data stays on user devices. Only
encrypted model parameters are sent during training which avoids
creating centralized databases. These databases are prime targets for
data breaches in the centralized frameworks like ESCIFS
and PNBDF.

Differential privacy adds noise with epsilon will set to 1.0 this
provides strong privacy guarantees. It ensures that model
parameters and aggregate statistics reveal almost no details about
individual contributors even in the worst-case scenarios. The
k-anonymity transformation with k set to 5 makes sure each
record looks like at least four others based on identifiers like age,
gender, and location. This prevents re-identification even when
anonymized data is mixed with external datasets such as social
media profiles or public records.

The blockchain framework adds to privacy through attribute-
based encryption which controls access in a detailed way using
cryptographic protocols as this is better than relying on application-
level security which can be bypassed. Smart contracts create consent
management policies in code that cannot be changed by database
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administrators or compromised by privilege escalation. Audit
logging on the blockchain provides a permanent and tamper-
proof record of all data access events. This helps detect
unauthorized access and provides accountability which can deter
insiders who might misuse their access to look at celebrity health
records or sell data to insurance companies. In contrast, other
frameworks like SEDCAM-2E use centralized access control,
which can be overridden by administrators, and PNBDF’s public
blockchain approach can actually lower privacy by exposing
transaction patterns.

The privacy benefits lead to more users wanting to share their
health data. Studies show that users are three to four times more
likely to agree to detailed health monitoring when they receive
strong privacy guarantees, like those offered by BRPHM. This
encourages more data sharing, leading to better models, more
accurate recommendations, and higher user satisfaction. In turn,
this increases further data sharing, which explains the superior
engagement metrics for BRPHM. Competing systems that lack
credible privacy assurances face user distrust. This limits data
collection to just the legally required minimum, hurting model
quality and trapping them in a cycle of poor recommendations
and user drop-off.

BRPHM'’s scalability score of 0.88 outstrips ESCIES at 0.65,
SEDCAM-2E at 0.70, and PNBDF at 0.62 as shown in Figure 7.
These scores indicate improvements of 18-26 percentage points in
the system’s performance as user populations has grown from
thousands to millions. This score reflects how system latency,
accuracy, and availability decline as load increases. It is calculated
through systematic testing with user groups of the active users
ranging from 1,000 to 100,000. BRPHM’s superior scalability comes
from design choices made explicitly for large-scale use. The
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federated learning approach spreads the computing workload
across user devices while avoiding the bottlenecks found in
centralized servers. It achieves almost linear scaling it is meaning
that adding users also adds computing resources. In contrast,
centralized frameworks must heavily invest in rapidly increasing
server infrastructure as their user bases grow as this often incurs
costs that outpace revenue in typical freemium models where most
users do not pay.

The blockchain framework supports scalability through
horizontal partitioning where this distributes transaction loads
across multiple channels by avoiding bottlenecks in a single
ledger. It handles about 1,000 transactions per second while
supporting 10,000 users each generating 100 daily health updates.
The Practical Byzantine Fault Tolerance consensus mechanism
provides much higher throughput than proof-of-work or proof-
of-stake methods used by other blockchain systems. The voting-
based consensus among approved validators wraps up quickly
unlike the public blockchains which can take minutes or hours.
The smart contracts are designed for efficient execution by ensuring
that operations complete quickly which keeps costs down as
transaction volumes rise.

The edge computing structure also boosts scalability as it moves
about 70% of data processing onto local devices which cuts down on
the need for cloud resources and reduces network bandwidth use.
Competing frameworks need costly GPU server farms for deep
learning tasks for millions of users. In contrast, BRPHM conducts
these tasks on user’s smartphones and wearables by turning capital
expenses into operating costs spread over the user base. This
approach allows BRPHM to reach profitability with far fewer
users than competing centralized systems by making the
personalized nutrition service more economically viable.
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Performance of BRPHM in terms of PHNI correlation score and micro-action engagement distribution.

The combined privacy and scalability improvements tackle two
essential success factors for personalized health systems. BRPHM’s
distributed architecture not only offers better machine learning
performance but also provides the operational traits needed for
real-world deployment at large scales, all while maintaining user
trust with strong privacy protections.

The visualization here two
complementary distribution analyses that highlight BRPHM’s
effectiveness in capturing meaningful health relationships and

innovation metrics shows

encouraging users to change their behavior over time. These are
the ultimate goals of the personalized nutrition systems which go
beyond just technical performance metrics. PHNI correlation score
and Micro-Action Engagement Distribution is shown in Figure 8.

The PHNI correlation distribution reveals a mean correlation
score of 0.709 in between calculated Personalized Health Nutrition
Index (PHNI) values and actual health outcomes which are
measured through clinical biomarkers and physician assessments.
The distribution is approximately normal and centred near 0.71 with
a standard deviation of about 0.05. This indicates that for most users
BRPHM'’s real-time PHNI calculation is accurately tracking true
health status changes over a 30-day evaluation period. This strong
correlation validates the design choices of the improved PHNI
formula especially the inclusion of nutritional and environmental
components in addition to the traditional vital signs. It also confirms
that the dynamic weight adaptation mechanism personalizes the
PHNI calculation to fit into each individual’s unique physiology and
health conditions. The tail of the distribution extends above 0.80 for
about 15% of users which suggesting that for a significant minority
where the PHNI correlation exceeds 0.80 it is nearing the reliability
of clinical measurements. These high-correlation users usually have
consistent lifestyle patterns that creates a clear cause-and-effect
relationships between dietary changes and health outcomes. This
provides valuable training data for the federated learning models
which use these patterns to help other users benefit from the
global model.

The strong PHNI allowing BRPHM’s
recommendation engine to generate interventions with high

correlation s

confidence in their predicted health impacts of the user. The
objective for minimizing disease risk relies on accurately
forecasting how proposed dietary changes will affect the future
PHNI values. If the PHNI does not track actual health well then,

Frontiers in Blockchain

the optimization process becomes largely random which it may
inadvertently recommend harmful interventions. This explains why
competing frameworks produce lower quality recommendations but
BRPHM'’s mean correlation of 0.709 significantly exceeds the typical
correlations of 0.5-0.6 which is found in traditional health risk
assessment tool as it relies solely on demographics and self-reported
health status. This reinforces the value of continuous IoT
monitoring and thorough feature engineering that includes
environmental and behavioral factors. There the improvement in
correlation comes directly from BRPHM’s innovations by including
edge processing that captures short-term physiological responses
that cloud-only systems miss due to delays, federated learning that
takes advantage of population diversity to identify general health
patterns, and blockchain data integrity that ensures PHNI
calculations use accurate historical data without issues that could
distort true relationships.

The micro-action engagement distribution shows a mean
engagement rate of 0.786 where it indicates that users successfully
complete about 78.6% of the small and incremental behavioral
recommendations generated by BRPHM’s micro-action framework.
The distribution is approximately uniform and it is spanning from
0.60 to 0.95 revealing considerable individual variation in engagement.
About 20% of users achieve over 90% completion rates while around
10% struggle with rates below 65%. This pattern suggests that
BRPHM’s recommendation engine effectively adjusts the difficulty
of recommendations to suit most users while avoiding overwhelming
suggestions that could lead to learned helplessness, as well as trivial
ones that do not promote meaningful behavior change. The high
mean engagement rate of 78.6% far surpasses the typical adherence
rates of 30%-50% found in traditional dietary counseling which often
requires simultaneous changes across multiple behaviors. This
supports BRPHM’s strategy of breaking large health goals into
small and manageable steps that build up over time.

The engagement benefits come from BRPHM’s multi-objective
optimization which explicitly models practical feasibility. This
penalizes recommendations that demand excessive cost, time, or
cooking skills that users may be lacking. Competing frameworks
optimizes only for nutritional adequacy and disease risk reduction,
generating theoretically ideal recommendations that may not be
feasible for many other users. This leads to failures that discourage
further engagement but BRPHM’s handling of constraints ensures
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that all recommendations respect user-specified practical limits.
Meanwhile, the Pareto optimization presents multiple alternative
options by allowing users to choose recommendations based on
their current situations and preferences. This increases the sense of
autonomy which psychological research shows is crucial for
sustaining behavior change. The preference learning feature uses
collaborative filtering in order to identify foods users are likely to
enjoy based on similarities to other users with comparable tastes.
This ensures that the recommendations are both nutritionally sound
and enjoyable also addressing a major reason why dietary
interventions often fail.

The blockchain-based token reward system helps in maintaining
user engagement by offering tangible incentives for completing
recommended micro-actions as users can redeem tokens for
healthy foods, fitness services, or lower insurance premiums.
Smart contracts automatically issue tokens when the IoT sensors
verify completion by providing immediate reinforcement that
behavioral psychology studies show to be more effective than
delayed rewards. The secure audit trail prevents token fraud
while clear issuance rules are built for user trust in the fairness
of the reward system by boosting motivation to earn tokens.
Competing frameworks usually lack incentive systems or
implement them through centralized point systems that are open
to manipulation by administrators or hackers by reducing user
confidence in the integrity of the reward programs.

Overall, the innovation metrics show that how the BRPHM
meets the key objectives of personalized nutrition systems as it
accurately tracks health status through validated indices and
effectively motivates sustained behavior changes with engaging
with  feasible These go beyond
traditional performance measures and reflect real-world impacts

recommendations. results
on user health behaviors and clinical outcomes. This supports
BRPHM'’s comprehensive approach which combines IoT sensing,
federated AI, blockchain data management, multi-objective
optimization, and behavioral science into a single framework that
outperforms competing systems across all evaluated areas.

There are many deep-seated reasons for the better performance
of BRPHM. (1) PHNI considers health, nutritional, activity levels,
environmental features which help in providing more useful and
distinct representations of features when compared to existing
(2) Noise and bias are reduced;

indices. accuracy and

generalization are enhanced wusing federated learning as
diversified user patterns are used in learning process. (3)
Reliability of decision is improved and latency is decreased using
edge processing and explainable Al (4) Reliable and high-quality
inputs are guaranteed by blockchain based consent management
and data integrity. Finally, the choice of these algorithms and
architecture together led to the constant enhancements in

scalability, privacy, latency, forecasting and accuracy.

5.4 Practical applications of BRPHM

Digital nutrition and smart healthcare are the platforms where
the proposed framework, BRPHM can be deployed practically. IoT
and wearable data can be used to provide trustworthy, personalized
and real-time recommendations of diet. It is more appropriate
where dynamic nutrition guidance and continuous monitoring
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are required. For example, in the case of wellness programs and
management of chronic diseases (hypertension, obesity, diabetes,
etc.). The BRPHM can also be deployed in the case of telehealth
servicers, fitness applications, hospital remote monitoring systems.

6 Conclusion

A reliable and powerful personalized nutrition recommendation
framework is proposed by integrating IoT, federated learning and
blockchain technology. Federated learning is used to run local models
on the devices itself to reduce latency and multi-objective optimization
module helps in generating recommendations of personalized diet.
Explainable AI module helps in enhancing the transparency.
Blockchain is used to provide privacy and enhance security to the
user information. Physiological, activity, nutrition, and environmental
component values are used to estimate the value of PHNI and thereby
recommending the nutritional diet to the user. The results indicate the
proposed framework, BRPHM outperforms in terms of classification
metrics, forecasting metrics, latency, system availability, privacy and
scalability score when compared to ESCIFS, SEDCAM-2E and
PNBDF. BRPHM is a scalable, transparent and secure framework
which recommends personalized and nutrition diet to the users.
Integration of large language models could generate context-aware,
conversational recommendation, infer PHNI and improve
explainability.

There are three limitations related to BRPHM. Usage of
synthetic dataset as it might not observe complete real-time
physiological and behavioral variations. Also, socioeconomic and
genetic components are not incorporated in PHNI computation
which might affect long term diet. As federated learning and
blockchain are integrated in BRPHM, computational overhead
might impose challenges in the case of low-resource devices.

As a part of future work, real-time clinical dataset will be used to
evaluate the performance of BRPHM. Mental health and genomic
components also will be incorporated in the computation of PHNI
The BRPHM will be optimized to overcome the overhead due to
federated learning and blockchain which help to deploy BRPHM in
lightweight devices. It can also be extended to integrate large language

models to evaluate user adherence and long-term health outcomes.
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