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Today, people need personalized diet plan based on their health conditions. 
Latest technologies like Internet of Things (IoT), federated Learning, blockchain 
technology, and wearable devices help in gathering the information required to 
recommend personalized and nutritional diet plan and also maintain the data 
securely. As most of the existing system that recommend nutrition diet has many 
limitations like lack of privacy, less user engagement, usage of AI models that are 
not transparent and centralized data storage. Hence, Blockchain enabled Real- 
Time Personalized Health and Nutrition Management (BRPHM) framework is 
proposed in this paper. BRPHM is a multi-layer architecture which includes IoT 
data acquisition layer, Blockchain data management layer, federated AI 
processing layer, and a recommendation layer. BRPHM introduces a new 
parameter called Personalized Health Nutrition Index (PHNI) based on which 
recommendations are given to the user. A weighted health model based on 
environmental, nutrition, activity, physiological features determine PHNI value. 
The performance of the proposed framework is evaluated in terms of accuracy, 
recall, precision, F1-score, Mean Absolute Error (MAE), Root Mean Squared Error 
(RMSE), latency, system availability, privacy score, and scalability score and is 
compared with ESCIFS, SEDCAM-2E and PNBDF. The results indicate that the 
proposed framework, BRPHM enhances the performance by 8%–22% in terms of 
classification metrics (accuracy, precision, recall and F1-score), 33%–53% in 
terms of forecasting metrics (MAE and RMSE), 42%–59% in terms of latency, 
1.4%–2.8% in terms of system availability, 10%–27% in terms of privacy score and 
scalability score when compared to ESCIFS, SEDCAM-2E and PNBDF. The results 
also projects PHNI correlation score and Micro-action engagement score which 
indicates that the model is accurate and the system is effective.
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1 Introduction

The great transformation of personalized wellness management is experiencing by the 
healthcare industries nowadays which is derived by the convergence of Internet of Things 
(IoT) devices, wearable sensors, artificial intelligence (AI), blockchain, and data-driven 
nutritional science which together revolutionizing how the health and diet are monitored, 
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analyzed, and managed for better health and proactive treatment 
(Hsu et al., 2024; Poonguzhali and Amarabalan, 2024; Lopez- 
Barreiro et al., 2023; Jamil et al., 2021a; Kumar et al., 2025).

Several chronic diseases such as diabetes, hypertension, 
cardiovascular disorders, and also obesity are the major among 
the leading causes of global mortality and morbidity (Bhardwaj and 
Datta, 2020; Bhat et al., 2021; Nayak et al., 2023). Various scientific 
evidences are confirming that the dietary habits and lifestyle choices 
play a vital role in both the prevention and management of these 
conditions. However, Dietary recommendations of the conventional 
methods are usually generic, static, and disconnected from real-time 
physiological data. This leads to a significant gap in between the 
clinical advice and the patient’s daily diet management. Addressing 
these kinds of gaps needs intelligent framework that can integrate 
the multi-modal health signals which are capable of dynamic 
adaptation to user contexts, and provides actionable diet 
recommendations in a secured and trustworthy manner.

The most recent advances in AI-based diet recommendation 
systems have shown a favorable result in capturing food intake 
patterns, recognizing nutritional deficiencies, and also generating 
personalized diet suggestions (Logapriya et al., 2023; Garcia et al., 
2021; Sahoo et al., 2019; Toledo et al., 2019). Systems such as 
AI4FoodDB and Diet Engine have demonstrated how continuous 
monitoring is combined with deep learning will improve the 
individual nutrition tracking (Mantey et al., 2021; Theodore 
Armand et al., 2024). However, these solutions often remain 
non-transparent, and also vulnerable to privacy concerns due to 
the lack of robust mechanisms for secure data exchange and tamper- 
proof diet tracking.

A Transformative tool to address security and privacy concerns 
in healthcare and diet management systems has recently emerged 
with blockchain technology (Mantey et al., 2021; Jamil et al., 2021b; 
Zhang et al., 2022; Bosri et al., 2020). It has decentralized and 
immutable architecture which enables the secure storage, 
transparent data sharing, and also has fine-grained access control. 
Blockchain-based systems allow patients to own and control their 
dietary and health data by enabling trustworthy sharing with 
nutritionists, healthcare providers, and AI systems. Despite these 
advantages the existing blockchain healthcare systems either 
narrowly focuses on electronic health records (EHRs) 
(Poonguzhali and Amarabalan, 2024; Kumar et al., 2025) or 
disease-specific tracking systems (Bhardwaj and Datta, 2020; 
Mani et al., 2022) with a limited integration of personalized 
nutrition and real-time physiological feedback.

While AI algorithms can provide accurate health predictions as 
they often operated as “black-box” models by reducing user trust 
and interpretability. This limitations present can discourage 
adoption in sensitive domains like healthcare, current AI- 
powered diet recommenders rarely use long-term engagement 
tactics alone. Without incentives or user-centric motivators, 
compliance with the recommended dietary changes frequently 
falls over time.

To overcome these kinds of challenges, this paper proposes an 
extended framework building upon the Real-time Personalized 
Health Monitoring (RPHM) system. Which called as Blockchain- 
Enabled Real-Time Personalized Nutrition Framework (BRPHM) 
this is meant to integrate the IoT-enabled wearable devices, also 
blockchain for secure and auditable data management, along with 

federated and explainable AI for privacy-preserving and transparent 
predictions, and consists of a novel tokenized incentive mechanism 
in order to encourage user adherence to dietary plans.

The contributions of this paper can be summarized as follows.

1. Blockchain-Integrated Data Management: which is a 
permissioned blockchain layer which ensures secure, 
immutable, and auditable storage for the health and 
nutrition data, including Personalized Health Nutrition 
Index (PHNI) scores and micro-actions in order to 
overcome the privacy and trust issues in existing diet 
recommenders.

2. Federated and Explainable AI: where the AI engine employs 
federated learning to train the models across distributed user 
data without exposing any raw records leads to combined and 
explainable AI (XAI) modules that justifies each 
recommendation with nutritional and clinical evidence.

3. Nutrition-Token Incentive Model: In which a novel 
gamification strategy includes to make nutrition tokens for 
compliance with recommended diets and micro-actions. 
Tokens are recorded on blockchain and redeemable for 
health services thereby enhancing long-term engagement.

4. Dynamic PHNI-Diet Coupling: Which extends the RPHM’s 
PHNI score by integrating nutrient intake features (macro/ 
micro nutrients, hydration, circadian rhythm of diet) in order 
to create a composite diet-health index for real-time 
recommendation generation.

The proposed framework advances in the state of the art in 
personalized nutrition and preventive healthcare by combining 
trustworthy blockchain infrastructure, privacy-preserving AI 
models, dynamic nutritional indices, and gamified incentives. The 
proposed BRPHM addresses parameters like accuracy, security, 
interpretability, and user engagement by making it suitable for 
large-scale deployment in real-world healthcare ecosystems in a 
simultaneous manner unlike the existing systems.

The remainder of this paper is organized as follows: Section II 
for reviews related work on blockchain-based healthcare and AI- 
driven diet recommender systems. Section III defined to detail the 
proposed BRPHM architecture and mathematical modeling. Section 
IV represents implementation strategies and experimental design. 
Section V meant for evaluations of the framework against existing 
benchmarks. Section VI defined to discuss about implications and 
future research directions, and finally section VII concludes 
the study.

2 Related work

In the past few years, the blockchain has increasingly been 
explored as a way to make healthcare data more secure, 
transparent, and trustworthy. For example, various researchers 
such as Mantey et al. (2021) and Mantey et al. (2023) have used 
blockchain to protect sensitive medical recommender systems by 
ensuring that diagnoses and treatment suggestions cannot be 
tampered with. Similarly, Lopez-Barreiro et al. (2023) and Lopez- 
Barreiro et al. (2024) have proposed blockchain platforms for 
holistic health management also extended them into gamification 
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to encourage healthy habits. Other studies have looked at blockchain 
in more specific contexts: such as Jamil et al. (2021a) and Jamil et al. 
(2021b) have focused on IoT-enabled fitness frameworks and 
healthcare microservices while the other Hsu et al. (2024) and 
Poonguzhali and Amarabalan (2024) have applied blockchain to 
personal health records (PHR) and electronic health records (EHRs) 
with an emphasis on dietary guidance for chronic illnesses 
like diabetes.

Many recent works have been shifted towards the traceability 
and interoperability. Rafif et al. (2025) have demonstrated how 
blockchain could verify nutrition facts in the food industry, and 
Zhang et al. (2022) have designed a blockchain schema for managing 
chronic diets. Broader surveys and frameworks have mentioned in 
Kumar et al. (2025), Bosri et al. (2020) and Thakur et al. (2025)
argues that combining of blockchain with AI could create a 
powerful, privacy-preserving healthcare solutions. At the same 
time, researchers are beginning to look ahead at quantum- 
resistant blockchain models (Jain et al., 2024; Das et al., 2024) 
which will be critical for protecting medical records against 
future cyber threats.

Despite of these advances most of the blockchain healthcare 
systems still stop short of real-time nutrition guidance. They focus 
only on securing data or sharing records but rarely connect directly 
to dynamic diet recommendations, explainable models, or any of the 
long-term engagement strategies.

Artificial intelligence has opened the door to make much 
smarter diet management. Vision-based systems like Diet Engine 
(Logapriya et al., 2023) and NUTRIVISION (Garcia et al., 2021) has 
capabilities to recognize foods through images and estimate their 
nutritional content on the spot. Other researchers have explored 
more knowledge-driven systems: for example, Garcia et al. (2021)
had built a “Virtual Dietitian” using expert rules while the other 
Abeltino et al. (2025) highlighted about the importance of precision 
nutrition apps that are co-designed with professional input.

AI has also been applied to disease-specific nutrition. Bahirat 
et al. (2024) and Iwendi et al. (2020) have explored how the diet 
recommendations can be tailored to cure conditions like diabetes 
while the other Nayak et al. (2023) had built predictive models that 
combines disease risk with food suggestions. The balance between 
simplicity and complexity in user nutrition models where the 
systems have to be accurate but also easy for patients to 
understand and follow these are defined by Schäfer et al. (2017)
and Toledo et al. (2019).

However, even with these advances, many AI-based 
recommenders are standalone apps. They do not usually 
integrate with continuous health data from wearables, and their 
“black-box” predictions make it hard for users or clinicians to trust 
the reasoning behind recommendations. Privacy is another weak 
point: very few systems guarantee secure, tamper-proof histories 
of diet logs.

A third line of research combines IoT, federated learning, and 
edge computing to make nutrition frameworks more sustainable 
and private. For example, Ahamed and Karthikeyan (2024) have 
proposed FLBlock which marries blockchain with federated learning 
so that the health and food supply data can be shared without 
exposing raw information. Mani et al. (2022) have worked on 
storing health data blocks directly inside electronic repositories, 
and Sahoo et al. (2019) have surveyed the wearable health 

monitoring systems that can run computations partly on the 
device (edge AI) to reduce latency. The authors in Yang et al. 
(2025) and Xu et al. (2024) presented the application of blockchain 
in finance related applications.

These approaches are promising, especially for handling large- 
scale, real-time data, but most of them are general healthcare 
platforms rather than nutrition-specific frameworks. They also 
tend to focus more on the infrastructure (edge computing, 
federated learning) than on explainability, user incentives, or 
micro-action diet guidance. Comparative Analysis of Existing 
Approaches in Personalized Nutrition & Healthcare is shown in 
Table 1.

2.1 Gaps in the literature

• First the existing systems are often siloed: blockchain papers 
emphasize security, AI papers focus on prediction, and IoT 
papers highlight infrastructure but they rarely come together 
into a single unified framework.

• Second various privacy and governance are inconsistently 
addressed. Most AI recommenders do not provide verifiable 
consent or audit trails, while blockchain systems typically do 
not record the actual model training or inference events tied to 
diet recommendations.

• Third there is a lack of explainability. Users and clinicians need 
to know why a diet recommendation is being made, yet most 
systems treat AI as a black box.

• Fourth user engagement is an afterthought. Very few studies 
explore how to motivate patients to follow diet advice 
consistently. For example, through rewards or gamification.

• Finally, only a handful of works even consider future-proof 
security such as quantum-resistant blockchain.

3 Blockchain enabled real-time 
personalized health and nutrition 
management (BRPHM) framework

The multi-layered architecture of the Blockchain-Enabled 
Real-Time Personalized Nutrition Framework (BRPHM) has 
five layers they are IoT Data Acquisition Layer, Blockchain 
Data Management Layer, Federated AI Processing Layer as 
shown in Figure 1. Explainable Recommendation Layer, and 
Tokenized Incentive Layer. The four essential challenges in 
personalized nutrition systems are addressed by the proposed 
framework they are system scalability, data security and privacy, 
user engagement and compliance, trust and transparency. The 
sovereignty of the individual data is maintained by the distributed 
architecture of BRPHM. The basic principle of the system is 
monitoring the health of an individual continuously and 
generating various suitable recommendations. The real-time 
physiological signals, behavioral responses, environmental 
factors and dietary intake patterns of each user are used to 
dynamically compute and maintain Personalized Health 
Nutrition Index (PHNI) which is used to generate 
recommendations based on nutrition diet for better lifestyle 
patterns and health conditions.
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3.1 IoT data acquisition layer

The IoT layer serves as the sensory foundation for the BRPHM 
framework by capturing comprehensive health and lifestyle data 
through several diversified sensor modalities. The data collection 
strategy consists of four primary categories of the information that 
provides a complete view of the user health status along with the 
contextual factors.

Physiological sensors are meant to monitor continuously several 
major health indicators like heart rate variability, blood glucose 
levels, blood pressure, body temperature, oxygen saturation, and 
also the sleep quality metrics.

These sensors will provide the foundational health data in order 
to understand the metabolic state and nutritional needs. To track 
physical movement patterns including step count, caloric 
expenditure, exercise intensity, activity duration, and sedentary 
behavior patterns of the users the activity sensors are used. The 
collected information based on activity levels is necessary and crucial 
for calculating energy balance and adjusting nutritional 
recommendations.

Environmental sensors are meant to monitor contextual factors 
which are going to influence the nutritional needs and food choices. 
They are air quality indices, ambient temperature, humidity levels, 
UV exposure, and location-based factors these helps in 
understanding the system and external factors that may directly 
affect the metabolism, hydration needs, and food safety 
considerations. For advanced food recognition technologies, 
smart utensils, and portion estimation devices to track actual 
food intakes, meal timings, eating patterns, and hydration levels 
of the users several dietary sensors are employed.

The BRPHM implements edge computing capabilities at the IoT 
device level in order to address the privacy concerns and to 
minimize the data transmission requirements. Preliminary the 

data processing which includes the data validation, noise 
reduction, feature extraction, and anomaly detection before 
transmitting processed information to the blockchain network is 
performed by each sensor device.

There are multiple purposes served by the edge processing 
approach in which the reduction in the amount of raw data 
which needs to be transmitted and stored on the blockchain, 
minimizes the potential privacy exposure by keeping sensitive 
raw measurements in local also enables real-time responsiveness 
for critical health alerts, and reduces network bandwidth 
requirements for all the large-scale deployments.

At the edge data validation process occurs to ensure that the 
sensor accuracy and detects the potential device malfunctions. To 
identify relevant patterns and trends from raw sensor data by 
creating compact representations that maintains the clinical 
relevance while reducing data volume, this process is done by the 
Feature extraction algorithms. Identification of unusual patterns 
that may indicate health emergencies or device failures by triggering 
appropriate alerts or data quality flags is done by the Anomaly 
detection mechanisms.

All data transmissions from IoT devices to blockchain networks 
will employ the end-to-end encryption using advanced 
cryptographic protocols. Each IoT device need to be equipped 
with unique cryptographic keys that enables the secure 
authentication and data integrity verification. The system 
implements a rotating key mechanism to prevent long-term key 
compromise and maintains secure key distribution protocols for 
new device enrollment.

Device authentication ensures that only authorized sensors can 
able to contribute data to a user’s health profile by preventing 
spoofing attacks and maintaining the data integrity. Timestamp 
verification and sequence numbering prevents replay attacks and 
ensures data freshness. Digital signatures on all transmitted data is to 

TABLE 1 Comparative analysis of existing approaches in personalized nutrition and healthcare.

Category Key features Strengths Limitations/Gaps

Blockchain in healthcare (Mantey et al., 
2021; Hsu et al., 2024; Poonguzhali and 
Amarabalan, 2024; Bhardwaj and Datta, 
2020; Lopez-Barreiro et al., 2023; Jamil et al., 
2021a; Mantey et al., 2023; Jamil et al., 
2021b; Kumar et al., 2025; Rafif et al., 2025; 
Jain et al., 2024; Zhang et al., 2022; Bosri 
et al., 2020; Thakur et al., 2025; Das et al., 
2024)

Immutable data storage, smart contracts, 
secure EHR/PHR sharing, traceability (food 
supply, diet records), emerging post- 
quantum models

Strong privacy, auditability, data 
ownership, transparency

Focus mainly on data security, not on real- 
time nutrition guidance; limited integration 
with AI explainability; few incentive/ 
engagement mechanisms

AI-based diet recommenders (Logapriya 
et al., 2023; Garcia et al., 2021; Abeltino et al., 
2025; Gami et al., 2024; Bahirat et al., 2024; 
Iwendi et al., 2020; Manoharan and Sathesh, 
2020; Nayak et al., 2023; Rehman et al., 2017; 
Sahoo et al., 2019; Schäfer et al., 2017; 
Toledo et al., 2019)

Food recognition (CV, DL), knowledge- 
based expert systems, disease-aware diet 
planning, big-data personalization

Accurate nutrient tracking, 
context-aware diet suggestions, 
flexibility across diseases

Mostly standalone apps; limited use of 
continuous IoT data; lack of secure 
provenance; AI decisions often black-box with 
little explainability; weak engagement 
strategies

IoT and Federated Frameworks (Ahamed 
and Karthikeyan, 2024; Mani et al., 2022; 
Sahoo et al., 2019)

Wearables and IoMT devices, edge/cloud 
integration, federated learning for privacy

Real-time data capture, reduced 
latency, privacy-preserving 
model training

Primarily general healthcare monitoring, not 
nutrition-focused; few systems explain diet 
recommendations; lack of tokenized incentive 
models

Overall gap – – Systems are siloed, lacking unified architecture 
that combines IoT sensing + federated AI + 
blockchain trust + interpretable 
recommendations + sustained engagement
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enable verification of data source and integrity throughout the 
processing pipeline.

3.2 Blockchain data management layer

The integration of blockchain technology in the BRPHM 
framework addresses fundamental challenges that effects the 
various existing personalized nutrition systems. Traditional 
centralized health data management systems are suffering from 
several critical vulnerabilities like single point of failures which 
can compromise entire user databases, lacking in the user control 
over personal health information, vulnerabilities to the data 
breaches and unauthorized access, difficulties in establishing trust 
between users and service providers, limited transparency provision 
in terms of how personal data is used for recommendations, and 
challenges in ensuring long-term data preservation and accessibility.

Blockchain technology provides several solutions to these 
challenges through its inherent characteristics of decentralization, 
immutability, transparency, and cryptographic security. In the 
context of personalized nutrition, the blockchain enables users to 
maintain absolute control over their health data while selectively 
giving access to healthcare providers, researchers, and AI systems. 
The distributed nature of blockchain eliminates multiple single 
point of failures and provides a possibility of creating a tamper- 
resistant record of all health-related transactions and data 
modifications.

The blockchain has immutable nature which ensures that once if 
health data is recorded it cannot be altered or deleted without 
making a permanent and verifiable health history. For the 
longitudinal health studies and establishing causal relationships 
between dietary interventions and health outcomes the same 
characteristic is valuable. The transparency of blockchain 
technology operations allows the users to verify how their data is 
being accessed and used in order to build trust in the system and 
enabling informed consent for data sharing.

The BRPHM framework employs a consortium blockchain 
model designed for healthcare applications in order to balance 
the benefits of decentralization along with the privacy and 
regulatory requirements of health data management system. The 
blockchain network consists of multiple node types, where each 
node is serving specific function within the ecosystem.

Patient nodes are created for representing individual users and 
to maintain personal health data profiles. These nodes have full 
control over their data and can grant or revoke all kind of access 
permissions to other network participants. Patient nodes have the 
possibility to participate in consensus mechanisms and can validate 
transactions related to their own data. Healthcare provider nodes 
will represent medical institutions, clinics, nutritionists, and other 
healthcare professionals who may need access of the patient data for 
clinical decision-making. These nodes must undergo verification 
and credentialing processes before being granted for the 
network access.

AI service nodes will perform computational tasks which 
includes federated learning, recommendation generation, and 
data analysis. These nodes have specialized permissions that 
allows them to access anonymized or aggregated data for model 
training while respecting all individual privacy preferences. 

Regulatory nodes will represent health authorities and 
compliance organizations that may need to audit the system 
operations while maintaining the patient privacy.

The consensus mechanism which employed in the BRPHM is a 
modified Proof of Authority (PoA) system that prioritizes healthcare 
domain expertise and regulatory compliance over computational 
power. Consensus participants are selected based on their healthcare 
credentials, data security practices, and compliance with health 
information privacy regulations.

The blockchain layer has implementation of the specialized 
smart contracts that performs automation in various aspects of 
health data management and access control. Encoding of the 
healthcare privacy regulations, consent management protocols, 
and data sharing agreements into executable code that 
automatically enforces compliance with the smart contracts.

To handle the secure storage and access control of individual 
health records the Health Data Management Contract is meant. This 
contract maintains records of encrypted health data, manages access 
permissions based on user defined policies, implements time-based 
access controls that automatically expire also tracks all data access 
events for audit purposes, and enforces the data minimization 
principles by ensuring that requesters have to receive only the 
minimum data necessary for their specific use case.

The Consent Management Contract automates the complex 
process of managing informed consent for the health data 
sharing. This contract records users consent preferences for 
different types of data sharing which automatically enforces 
consent expiration and renewal requirements also provides users 
with easy mechanisms to revoke consent, maintains detailed audit 
trails of all consent-related activities, and ensures that the data 
sharing immediately stops when consent is withdrawn.

The Nutrition Token Contract have to manage the issuance, 
distribution, and redemption of tokens that incentivize healthy 
behaviors and dietary compliance. This contract tracks the user 
compliances with recommended dietary interventions also 
automatically issues tokens for completed health actions, 
maintains token balances and transaction histories which enables 
the token redemption for health services or products, and prevents 
double-spending or fraudulent token claims.

3.3 Federated AI processing layer

Fundamental tension between personalization and privacy in 
health recommendations is addressed by the AI processing layer. 
Centralized data collection which also poses in significant privacy 
risks and regulatory challenges in healthcare domains is required by 
the traditional machine learning approaches. BRPHM will resolve 
this challenge through federated learning which enables 
collaborative model training without centralizing sensitive 
health data.

In the federated learning approach, each of the patient node 
maintains a local machine learning model that is trained exclusively 
on their personal health data. This ensures that sensitive information 
will never leave the individual’s control while still enabling the 
benefits of large-scale machine learning. The local models have to 
learn patterns which are specific to individual users, capturing 
personal preferences, metabolic responses, and health conditions.
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Periodically, the local models share only their learned 
parameters or gradients with the federated learning coordinator 
rather than sharing raw data. The coordinator will aggregate these 
parameters to create a global model that captures population-level 
patterns and knowledge. The updated global model is then need to 
distribute back to the individual nodes where it is to be combined 
with local learning to create personalized recommendations.

Based on this approach provision of several advantages are there 
over traditional centralized learning. The first one is enhanced 
privacy protection as the raw health data never leaves individual 
devices, the second one is improved model robustness through 
exposure to diverse patient populations, third one is reduced 
communication overhead compared to raw data sharing, fourth 
one is compliance with health data privacy regulations, and fifth one 
is resilience to node failures or network disruptions.

Multi-objective optimization techniques have to be employed by 
the AI engine have in order to balance the complex and often 
competing requirements of the personalized nutrition 
recommendations. The traditional nutrition systems typically 
optimized only for single objectives such as caloric balance or 
specific nutrient targets but in the real-world nutrition decisions 
involving in multiple competing factors that must be simultaneously 
considered.

Balanced recommendations generation is the task of the 
optimization framework which considers four primary objectives 
that must be nutritional adequate which ensures that 

recommendations meet established dietary guidelines and 
prevents nutrient deficiencies while avoiding excessive intakes 
that may lead health risks. Disease risk minimization will be 
focusing on reducing the likelihood of diet-related chronic 
diseases based on the individual risk factors, genetic 
predispositions, and current health status.

User preference satisfaction will acknowledge that the dietary 
recommendations must be acceptable and enjoyable to users to 
ensure the long-term compliance. The system learns about the 
individual taste preferences, cultural dietary patterns, and food 
aversions to generate recommendations that users are likely to 
follow. Practical constraints which include budget limitations, 
food accessibility, cooking skills, and time availability are 
incorporated to ensure that recommendations are feasible for 
individual users.

The multi-objective optimization process generates a Pareto- 
optimal solutions that represents the best possible trade-offs in 
between competing objectives. System presents to the users with 
a set of alternative options that optimizes different aspects of their 
nutritional needs by allowing informed decision-making based on 
personal priorities and circumstances, instead of providing a single 
recommendation.

FedAvg aggregation strategy is used to implement federated 
learning. Local model is trained for 5 epochs by each client and then 
only the updated encrypted model is shared and after each 
communication cycle, the global aggregation is made. 

FIGURE 1 
BRPHM framework.
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Information leakage is prevented by applying differential privacy, 
ε = 1.0 while updating the model.

3.4 Explainable recommendation layer

Component level explanations for dietary recommendations 
and PHNI are generated in this module. Thus, transparency is 
being provided by this module. Attribution scores for 
physiological, nutrition, activity and environmental features are 
computed. These scores help the clinicians and user to know the 
contribution of each factor towards recommendation. Moreover, 
recommendations are justified using nutritional constraints 
which are based on rules. This justification enhances the 
clinical interpretability and trust.

3.5 Tokenized incentive layer - personalized 
health nutrition index (PHNI) development

To incorporate the comprehensive nutritional and lifestyle 
factors which influences the health outcomes, the traditional 
Personalized Health Index is significantly enhanced in BRPHM. 
the overall health status which able to adapt changes in conditions 
and provides the foundation for personalized nutrition 
recommendations is achieved by PHNI score.

Incorporation of traditional vital signs and biomarkers while 
adding nutrition-specific indicators such as metabolic rate, glucose 
tolerance, lipid profiles, inflammatory markers, and micronutrient 
status in the physiological component of the PHNI score. This 
comprehensive physiological assessment will provide the medical 
foundation for nutrition recommendations of the system.

These factors tracking like physical exercise, daily activity 
patterns like sedentary behavior, sleep quality, and circadian 
rhythm regularity by the activity component significantly 
influence the nutritional needs and the effectiveness of dietary 
interventions by making them as the essential components of the 
health assessment.

Detailed analysis of the dietary patterns, nutrient intake 
adequacy, meal timing, hydration status, and dietary diversity are 
incorporated by the nutrition component. This component meant to 
learn about the individual metabolic responses to different foods and 
nutrients by enabling highly personalized recommendations.

Several external factors which influence the health and nutrition 
including air quality, climate conditions, seasonal variations and 
stress levels are considered by environmental component. For 
adaption of recommendations in the changing circumstances and 
environmental challenges these contextual elements will help.

The PHNI score is calculated through the dynamic weighting 
of these components is based on individual health goals, current 
health status, and risk factors. Machine learning algorithms 
meant for continuously adjusting the relative importance of 
different components because they learn from user responses 
and health outcomes by creating a truly personalized health 
assessment tool that evolves with changing health needs and 
circumstances.

Context awareness, real-time adaptability and nutrition specific 
parameters are lacking in the existing health indices. They are static 
in nature. These existing systems are not suitable for recommending 
personalized nutrition as they did not consider environmental 
factors, activity levels, hydration, time of meal, food intake, etc.

All these factors are integrated and considered for computation 
of PHNI. Hence, it is more suitable for providing nutritional 
recommendations. Also, PHNI is dynamic in nature as it adapts 
to the changes in the values of the features considered. This dynamic 
nature of PHNI made it more apt for personalized and real-time diet 
recommendation.

4 Mathematical model for personalized 
health nutrition index (PHNI) model

Four main components are involved in the calculation of PHNI 
as given in Equation 1. Weights are considered for each component. 
These weights are initialized with population average, updated using 
gradient descent approach and made adaptive over time. 

TABLE 2 Hardware and software specifications.

Category Details

Processor (CPU) 11th Gen Intel Core i7-11700 @ 2.50 GHz, Intel64 Family 6 Model 167 Stepping 1

System memory (RAM) 32 GB DDR4

GPU resources AMD Radeon RX 640 (4 GB VRAM) and Intel UHD Graphics 750 (2 GB VRAM)

Driver status Both GPUs running latest stable driver versions

Hardware role Backbone for all BRPHM computational and simulation workloads

Python environment Python 3.10 (Conda environment)

CPU/GPU computation mode CPU-optimized execution (no CUDA/ROCm support on available GPUs)

Core scientific libraries NumPy, SciPy, Pandas, Matplotlib, Scikit-learn

Deep learning frameworks PyTorch (CPU-only) and TensorFlow-CPU

Simulation and optimization libraries SimPy (system simulation), Optuna (hyperparameter tuning) and Flower (federated learning orchestration)

Purpose of software stack Supports BRPHM simulation workflows, federated learning, model training, feature processing, optimization, and evaluation
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PHNI t( ) � α1.Φ t( ) + α2.ψ t( ) + α3.Ω t( ) + α4.Ξ t( ) (1)

Where, PHNI(t) is the Personalized Health Nutrition Index at 
time t, Φ(t) is the Physiological component computed using Equation 
2, ψ(t) is the Activity component computed using Equation 4, Ω(t) is 
the Nutrition component computed using Equation 9, Ξ(t) is the 
Environmental component, computed using Equation 14 and α1, α2, 
α3, α4 are dynamic weights where 􏽘 αi = 1, αi ∈ [0, 1]. Gradient 
descent method is used to update the weights dynamically.

Population-level average health statistics are used to initialize α1, 
α2, α3, α4. The feedback of the health outcome and the error 
predicted are considered by the gradient descent procedure is 
used to update these weights. The PHNI model is able to learn 
the importance of the various components considered as these 
weights are dynamically updated and hence it is able to perform 
the assessment of time-varying and personalized health-nutrition.

4.1 Physiological component model

Φ t( ) �􏽘
n

i�1
wphy i.φi t( ) (2)

Where, wphy i is the weight associated with each physiological 
parameter and φi(t) represents normalized physiological parameters: 
Heart rate variability (HRV) score, Blood glucose level normalized, 
Blood pressure score, Body temperature deviation, Oxygen 
saturation score, Sleep quality metric, Metabolic rate indicator, 
Inflammatory markers score for i = 1 to 8 respectively.

Normalized value of each parameter is computed using 
Equation 3: 

φi t( )� 1 − |vi t( )− v
opt

i

􏼌􏼌􏼌􏼌􏼮 vi
max − vi min( 􏼁 (3)

Where, vi(t) is the Raw sensor value at time t, vopti is the optimal 
value for parameter i computed as population average of healthy 
individuals, vi max and vi min are the maximum and minimum safe 
values (Clinical Safety Thresholds).

4.2 Activity component model

ψ t( ) � wact 1.A t( ) + wact 2.S t( ) + wact 3.E t( ) + wact 4.C t( ) (4)

Where, A(t) is the daily activity score computed using Equation 
5, S(t) is the sedentary behavior score computed using Equation 6, 
E(t) is the Exercise intensity score computed using Equation 7, C(t)
is Circadian sleep score computed using Equation 8. These scores 
are calculated as follows: 

A t( ) �
actual no. of steps taken on day

target steps
(5)

S t( ) � 1 −
sedentary hours t( )

24
(6)

E t( ) �
active minutes t( ).intensity factor

target active minutes
(7)

C t( ) � cos 2π.
sleep time t( )− optimal sleep time

24
􏼠 􏼡 (8)

4.3 Nutrition component model

Ω t( ) � wnut 1.N t( ) + wnut 2.M t( ) + wnut 3.H t( ) + wnut 4.D t( )

(9)

Where, N(t) is the Nutrient adequacy score computed using 
Equation 10, M(t) is the Meal timing score computed using Equation 
11, H(t) is the Hydration score and computed using Equation 12
D(t) is the Dietary diversity score computed using Equation 13. These 
scores are computed as follows: 

N t( ) �
1
k
􏽘

k

j�1
min

nj t( )

RDAj

, 1􏼠 􏼡 (10)

Where, nj(t) is the intake of nutrient j at time t, RDAj is 
recommended daily allowance for nutrient j, and k is the total 
number of tracked nutrients. 

M t( ) � exp −􏽘
M

m�1

tm − toptm( 􏼁
2

2σ2
m

􏼠 􏼡 (11)

Where, tm is the actual time of meal m, toptm is the optimal time 
for meal m, σm is the tolerance window for meal timing. 

H t( ) � min
total fluid intake t( )

target fluid intake
, 1.2􏼠 􏼡 (12)

Where, target fluid intake(t) is the total fluid consumed on 
day t and target fluid intake is the personalized daily hydration goal. 

D t( ) �􏽘
G

g�1
wg. min

items in group g t( )

target items g
, 1􏼠 􏼡􏼠 􏼡 (13)

Where, G is the total number of food groups, wg is the weight of 
food group g, items in group g(t) is the number of different items 
consumed from group g, target items g is the target variety within 
group g.

4.4 Environmental component model

Ξ t( ) � wenv 1.Q t( ) + wenv 2.T t( ) + wenv 3.St t( ) (14)

Where, Q(t) is the normalized air quality index computed using 
Equation 15, T(t) is the temperature comfort score computed using 
Equation 16, and St(t) is the stress level computed using Equation 
17. These scores are computed as follows: 

Q t( ) � 1 −
AQI t( )−AQImin
AQImax −AQImin

(15)

Where, AQI(t) is the Air Quality Index at time t, AQImin is the 
minimum value of AQI used for normalization, AQImax is the 
maximum value of AQI used for normalization. 

Frontiers in Blockchain frontiersin.org08

Venkata Krishna et al. 10.3389/fbloc.2026.1765645

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2026.1765645


T t( ) � 1 −
Tactual t( ) −Toptimal
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

Trange
(16)

Where, Tactual(t) is the actual temperature at time t, Toptimal is the 
user’s comfortable temperature which is personalized based on age/ 
activity/season, and Trange is the tolerance range of temperature. 

St t( ) � 1 − normalize stress level t( )( ) (17)

Where, stress level(t) is the stress level measured at time t from 
physiological indicators.

5 Experimental setup and performance 
evaluation

Hardware and software specifications used for implementing 
BRPHM framework is shown in Table 2.

5.1 Dataset strategy

To validate the BRPHM framework, a large synthetic dataset is 
created that simulates real-world personalized nutrition situations 
while protecting privacy. The dataset strategy aimed to guarantee 
demographic diversity, ecological validity, and enough complexity 

to test the framework rigorously while providing accurate 
information for evaluation. The dataset distribution is shown 
in Figure 2.

There are 10,000 diversified individual profiles in the dataset. 
Age distribution is considered to be between 18 and 65+ to represent 
with different stages of life. Distribution of gender is balanced. Five 
different categories of activity levels are considered in physical 
activity: sedentary, lightly active, moderately active, very active 
and extra active. Five categories in health condition considered 
with balanced representation are: healthy, heart disease, obesity, 
hypertension and diabetes. The dietary preference of the user is 
considered as Mediterranean, ketogenic, vegan, vegetarian and 
omnivore. BMI is considered to on average 25 with standard 
deviation of 5, initial PHNI is distributed between 0.3 and 0.9, 
data privacy level indicates the choice of users to share their data and 
it is considered to be high, low or medium. This distribution strategy 
was chosen to ensure unbiased evaluations across all demographic 
groups and stop the model from biasing towards majority groups 
which is a common issue in real-world healthcare systems. The 
physiological parameter values used for simulation are shown 
in Table 3.

The data is considered for 200 users over 30 days generating 
6,000 time-series records of data for analysis.

Air quality index is considered to be uniformly distributed 
between 50 and 150.

FIGURE 2 
Dataset distribution.
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Initially, diversified user profiles are constructed and then 
physiological, dietary, environment and activity related 
parameters are generated using probabilistic modeling and are 
based on clinical value distributions. Then, time-series archives 
are constructed for every user to gather everyday variations, 
PHNI values are initialized and updated periodically using the 
proposed model. This structured generation procedure 
guarantees preservation of privacy, stability, practicality and 
reproducibility.

5.2 Evaluation methodology

70% of the dataset is considered to be training set, 15% of the 
dataset is considered to be validation set and remaining 15% of the 
dataset is considered to be as the testing set also the simulation is run 
for 50 epochs to guarantee the reliable and generalizable results.

This is indicating that the number of users considered in 
training set are 7,000 with 4,200 time-series records. Where the 
number of users considered in validation set are 1,500 with 
900 time-series records and the number of users considered in 
testing set are 1,500 with 900 time-series records. For the first 
21 days of data is considered for training and the last 9 days of 
data is considered for testing purpose.

5.3 Performance evaluation and results

The performance of the proposed framework, BRPHM is 
compared with ESCIFS, SEDCAM-2E, PNBDF in terms of 
classification metrics (Accuracy, Precision, Recall and F1-Score) 
and is shown in Figure 3. BRPHM achieved 94% accuracy which 
is 8.05% improvement over ESCIFS, 14.63% enhancement over 
SEDCAM-2E and 18.99% increase on PNBDF. Federated 
learning architecture used in training diversified data and various 

privacy procedures used in securing the data made the proposed 
BRPHM framework perform well in terms of accuracy. The global 
model is balanced as it is getting trained with the federated approach 
using 10,000 different users which can include wide and diversified 
data. As the PHNI depends on environmental factors, nutrition and 
activity besides the heart rate and temperature, the complete details 
of the health related to an individual is clearer because of which the 
accuracy of BRPHM is enhanced whereas only limited physiological 
parameters are used by the other systems.

BRPHM exhibits 92% precision whereas ESCIFS gives 84%, 
SEDCAM-2E projects 80%, and PNBDF provides 76% precision 
which demonstrates that the BRPHM outperforms when 
compared to the legacy systems. This shows that the proposed 
BRPHM framework avoids false positive classifications which 
might create unwanted tension in the users indicating that 
their health is at risk even though it is not actually. This 
parameter is very important to gain the trust of the users 
otherwise the system would get rejected by the users. i.e., users 
might not use it as it is giving false information repeatedly. 
BRPHM exhibits high precision as it adjusts the disease risk 
models carefully. The well-balanced training data helps the 
framework to learn how every nutrient affects each disease. To 
avoid overfitting problem, regularization is performed in the 
BRPHM. The use of blockchain guarantees that the data is 
reliable and clean which helps in avoiding the BRPHM learn 
from mistakes.

BRPHM achieved 91% Recall which is 9.64% improvement over 
ESCIFS, 16.67% enhancement over SEDCAM-2E and 22.97% 
increase on PNBDF. The enhancement in recall indicates that 
BRPHM is able correctly identify the risk factor of most of the 
people which helps in preventing chronic disease where early 
detection can increase the possibility of curing the disease and 
save the life of people. Consideration of air quality index while 
computing PHNI value also affects the recall performance. The 
features that are focused vary from individual to individual based on 

TABLE 3 Physiological parameter values.

S. no Physiological parameter Average value Standard deviation

1 Heart rate 75 bpm 12

2 Blood glucose 95 mg/dL 15

3 Blood pressure with systolic values 120 mmHg 15

4 Blood pressure with diastolic values 80 mmHg 10

5 Oxygen saturation 98% 1

6 Body temperature 98.6°F 0.5°F

7 Daily steps 10,000 2000

8 Sleep hours 7.5 1.2

9 Calories burned 2,000 kcal 300 kcal

10 Exercise minutes 45 15

11 Food intake 2,100 calories 400 calories

12 Hydration 2,000 mL 500 mL

13 Ambient temperature 22 °C 5 °C
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their health status in BRPHM. i.e., the weights of the features are 
different whereas it is fixed in other systems which might miss 
patterns that are specific to the conditions.

BRPHM achieved 91.5% F1-score which is 9.58% improvement 
over ESCIFS, 15.82% enhancement over SEDCAM-2E and 22% 
increase on PNBDF. F1-score is defined as the harmonic mean of 
precision and recall. Good performance in terms of recall indicate 
the BRPHM is able to avoid false positives and false negatives and 
this is achieved using multi-objective optimization.

The performance of BRPHM in terms of forecasting metrics 
(Mean Absolute Error (MAE) and Root Mean Squared Error 
(RMSE)) is evaluated and compared with ESCIFS, SEDCAM-2E, 
and PNBDF and the results are shown in Figure 4. The enhancement 
in the performance of BRPHM indicate that the nutrition 
requirement and the health status of an individual is predicted 
appropriately by BRPHM. The enhancement of MAE by BRPHM 
when compared with ESCIFS, SEDCAM-2E, and PNBDF is 33.3%, 
45.45% and 52% respectively. The low MAE comes from BRPHM’s 
use of recurrent neural network layers in its federated model 
architecture. This system models how today’s nutrition affects 
tomorrow’s health through metabolic carry-over effects. 
Competing frameworks usually rely on static models that treat 
each time point independently. They miss the important time- 
based dynamics of nutrition’s delayed effects on health signs. 
BRPHM’s improved PHNI calculation includes meal timing 
scores that capture chronobiological patterns. It determines that 
the same metabolic responses are produced by the same meals based 
on the time of the day. The time at which exercise is being done 
affects the rate of metabolism and how the nutrients are used 
throughout the rest of the day determines the circadian 
weighting of the activity component. The proposed framework, 
BRPHM learns how the choice of food of an individual affect their 
health over time using these features that are based on the time. 

BRPHM learns the true relation between cause and effect, i.e., what 
an individual is taking as food and how it is affecting their body. 
Hence, the accuracy of the predictions is enhanced and helps in 
recommending changes in the lifestyle or new diet.

The performance of BRPHM in terms of Root Mean Squared 
Error (RMSE) is enhanced by 34.8%, 46.4%, and 53.1% when 
compared to ESCIFS, SEDCAM-2E and PNBDF respectively and 
the results are projected in Figure 4. This indicates that BRPHM will 
be able to handle errors in the predictions effectively. Better RMSE 
indicates the prediction is good which leads to correct dietary 
recommendations. This is important in the healthcare field as the 
incorrect dietary recommendations might worsen the health of an 
individual. Better RMSE is achieved by BRPHM because of federated 
architecture. Here, 100 local models are trained on different users 
and the predictions from these local models are integrated efficiently 
by the global model. This mechanism helps in minimizing the 
variance in the predictions made by local models. As the 
BRPHM prediction is good, the optimization algorithm can 
boldly provide strong recommendations to improve the health of 
an individual. If the RMSE is high, the optimization algorithm 
should be more effective and play its role efficiently by giving only 
limited recommendations as the risk cannot be taken with the health 
of the user. Usage of blockchain also helps in reducing RMSE as the 
prediction depends on the past data in the case of temporal models. 
Here, blockchain helps in securing the data and keeping the data safe 
without getting modified or tampered. Dietary recommendations 
are always dependent on the past and present health records. In this 
way, the federated architecture and the blockchain integration in 
BRPHM helps in reducing RMSE.

The performance of the proposed framework, BRPHM is 
evaluated in terms of average latency and is compared to the 
performance of ESCIFS, SEDCAM-2E, and PNBDF. The results 
are projected in Figure 5. The performance of BRPHM is improved 

FIGURE 3 
Comparison of BRPHM with ESCIFS, SEDCAM-2E, and PNBDF in terms of classification metrics (Accuracy, Precision, Recall and F1-Score).
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by 42%, 34%, and 59% when compared to ESCIFS, SEDCAM-2E 
and PNBDF respectively. The improvement in latency makes the 
recommendations faster as soon as physiological changes occur. The 
reason for better performance in terms of latency is due to edge 
computing architecture as the local devices processes the IoT sensor 

data and transmits only processed features to the cloud which helps 
in generating the recommendation. Here, the noise is eliminated 
using Kalman filtering, quality of the data is eliminated anomalies 
and extracted only useful features. Hence, the data to be transmitted 
to the cloud will be reduced by 70% approximately due to edge 

FIGURE 4 
Comparison of BRPHM with ESCIFS, SEDCAM-2E, and PNBDF in terms of forecasting metrics (MAE and RMSE).

FIGURE 5 
Comparison of BRPHM with ESCIFS, SEDCAM-2E, and PNBDF in terms of average latency.
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computing architecture. Thereby, latency is reduced when 
compared to the legacy systems, ESCIFS and PNBDF which 
transmit the raw data directly to the cloud. SEDCAM-2E uses 
edge computing but feature extraction is not implemented. 
Hence, BRPHM outperforms SEDCAM-2E also. The Practical 
Byzantine Fault Tolerance (PBFT) used by blockchain consensus 
mechanism helps to create the blocks in 3s and handle 
1,000 transactions per second which makes BRPHM as well as 
recommendations faster. As public Ethereum is used by PNBDF, it 
experiences low throughput and 13s block time which increases the 
latency. As the federated learning architecture enables the BRPHM 
to run local models on user devices itself, interpret faster and 
generate the recommendations instantaneously. This helps 
BRPHM to provide results faster when compared to the 
legacy systems.

The performance of the proposed framework, BRPHM is evaluated 
in terms of system availability and is compared to the performance of 
ESCIFS, SEDCAM-2E, and PNBDF. The results are projected in 
Figure 6. It can be observed that BRPHM outperforms ESCIFS, 
SEDCAM-2E, and PNBDF. As the proposed framework deployed 
distributed architecture, it can function continuously even when any 
node is failed. At the same time, all the nodes need not function in the 
case of federated learning and 3 Byzantine failures for every 10 nodes 
can be tolerated because blockchain consensus mechanism. Hence, the 
system availability is high in the case of BRPHM. If the centralized 
systems are deployed, the system availability is decreased as it is not 
available upon failure. Even 1.4%–2.8% enhancement in system 
availability indicates that 120 to 240 more hours can be monitored 
and can avoid missing important health measures.

BRPHM has notable advantages in protecting sensitive health 
information while keeping system performance high as user 

numbers increase is shown by the comparison of privacy and 
scalability. This addresses two key obstacles to adopting 
personalized nutrition systems.

BRPHM has a privacy score of 0.95 which is significantly higher 
than ESCIFS at 0.72, SEDCAM-2E at 0.85, and PNBDF at 0.68 as 
shown in Figure 7. These scores represent an improvement of 
10–27 percentage points in privacy protection and also this score 
measures how hard it is to re-identify the users from data breaches 
or inference attacks. It is calculated as one minus the chance that 
someone with additional information could link anonymized health 
records to individuals. BRPHM achieves its strong privacy through 
several mechanisms that works together as its federated learning 
structure ensures that raw health data stays on user devices. Only 
encrypted model parameters are sent during training which avoids 
creating centralized databases. These databases are prime targets for 
data breaches in the centralized frameworks like ESCIFS 
and PNBDF.

Differential privacy adds noise with epsilon will set to 1.0 this 
provides strong privacy guarantees. It ensures that model 
parameters and aggregate statistics reveal almost no details about 
individual contributors even in the worst-case scenarios. The 
k-anonymity transformation with k set to 5 makes sure each 
record looks like at least four others based on identifiers like age, 
gender, and location. This prevents re-identification even when 
anonymized data is mixed with external datasets such as social 
media profiles or public records.

The blockchain framework adds to privacy through attribute- 
based encryption which controls access in a detailed way using 
cryptographic protocols as this is better than relying on application- 
level security which can be bypassed. Smart contracts create consent 
management policies in code that cannot be changed by database 

FIGURE 6 
Comparison of BRPHM with ESCIFS, SEDCAM-2E, and PNBDF in terms of system availability.
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administrators or compromised by privilege escalation. Audit 
logging on the blockchain provides a permanent and tamper- 
proof record of all data access events. This helps detect 
unauthorized access and provides accountability which can deter 
insiders who might misuse their access to look at celebrity health 
records or sell data to insurance companies. In contrast, other 
frameworks like SEDCAM-2E use centralized access control, 
which can be overridden by administrators, and PNBDF’s public 
blockchain approach can actually lower privacy by exposing 
transaction patterns.

The privacy benefits lead to more users wanting to share their 
health data. Studies show that users are three to four times more 
likely to agree to detailed health monitoring when they receive 
strong privacy guarantees, like those offered by BRPHM. This 
encourages more data sharing, leading to better models, more 
accurate recommendations, and higher user satisfaction. In turn, 
this increases further data sharing, which explains the superior 
engagement metrics for BRPHM. Competing systems that lack 
credible privacy assurances face user distrust. This limits data 
collection to just the legally required minimum, hurting model 
quality and trapping them in a cycle of poor recommendations 
and user drop-off.

BRPHM’s scalability score of 0.88 outstrips ESCIFS at 0.65, 
SEDCAM-2E at 0.70, and PNBDF at 0.62 as shown in Figure 7. 
These scores indicate improvements of 18–26 percentage points in 
the system’s performance as user populations has grown from 
thousands to millions. This score reflects how system latency, 
accuracy, and availability decline as load increases. It is calculated 
through systematic testing with user groups of the active users 
ranging from 1,000 to 100,000. BRPHM’s superior scalability comes 
from design choices made explicitly for large-scale use. The 

federated learning approach spreads the computing workload 
across user devices while avoiding the bottlenecks found in 
centralized servers. It achieves almost linear scaling it is meaning 
that adding users also adds computing resources. In contrast, 
centralized frameworks must heavily invest in rapidly increasing 
server infrastructure as their user bases grow as this often incurs 
costs that outpace revenue in typical freemium models where most 
users do not pay.

The blockchain framework supports scalability through 
horizontal partitioning where this distributes transaction loads 
across multiple channels by avoiding bottlenecks in a single 
ledger. It handles about 1,000 transactions per second while 
supporting 10,000 users each generating 100 daily health updates. 
The Practical Byzantine Fault Tolerance consensus mechanism 
provides much higher throughput than proof-of-work or proof- 
of-stake methods used by other blockchain systems. The voting- 
based consensus among approved validators wraps up quickly 
unlike the public blockchains which can take minutes or hours. 
The smart contracts are designed for efficient execution by ensuring 
that operations complete quickly which keeps costs down as 
transaction volumes rise.

The edge computing structure also boosts scalability as it moves 
about 70% of data processing onto local devices which cuts down on 
the need for cloud resources and reduces network bandwidth use. 
Competing frameworks need costly GPU server farms for deep 
learning tasks for millions of users. In contrast, BRPHM conducts 
these tasks on user’s smartphones and wearables by turning capital 
expenses into operating costs spread over the user base. This 
approach allows BRPHM to reach profitability with far fewer 
users than competing centralized systems by making the 
personalized nutrition service more economically viable.

FIGURE 7 
Comparison of BRPHM with ESCIFS, SEDCAM-2E, and PNBDF in terms of privacy score and scalability score.
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The combined privacy and scalability improvements tackle two 
essential success factors for personalized health systems. BRPHM’s 
distributed architecture not only offers better machine learning 
performance but also provides the operational traits needed for 
real-world deployment at large scales, all while maintaining user 
trust with strong privacy protections.

The innovation metrics visualization here shows two 
complementary distribution analyses that highlight BRPHM’s 
effectiveness in capturing meaningful health relationships and 
encouraging users to change their behavior over time. These are 
the ultimate goals of the personalized nutrition systems which go 
beyond just technical performance metrics. PHNI correlation score 
and Micro-Action Engagement Distribution is shown in Figure 8.

The PHNI correlation distribution reveals a mean correlation 
score of 0.709 in between calculated Personalized Health Nutrition 
Index (PHNI) values and actual health outcomes which are 
measured through clinical biomarkers and physician assessments. 
The distribution is approximately normal and centred near 0.71 with 
a standard deviation of about 0.05. This indicates that for most users 
BRPHM’s real-time PHNI calculation is accurately tracking true 
health status changes over a 30-day evaluation period. This strong 
correlation validates the design choices of the improved PHNI 
formula especially the inclusion of nutritional and environmental 
components in addition to the traditional vital signs. It also confirms 
that the dynamic weight adaptation mechanism personalizes the 
PHNI calculation to fit into each individual’s unique physiology and 
health conditions. The tail of the distribution extends above 0.80 for 
about 15% of users which suggesting that for a significant minority 
where the PHNI correlation exceeds 0.80 it is nearing the reliability 
of clinical measurements. These high-correlation users usually have 
consistent lifestyle patterns that creates a clear cause-and-effect 
relationships between dietary changes and health outcomes. This 
provides valuable training data for the federated learning models 
which use these patterns to help other users benefit from the 
global model.

The strong PHNI correlation is allowing BRPHM’s 
recommendation engine to generate interventions with high 
confidence in their predicted health impacts of the user. The 
objective for minimizing disease risk relies on accurately 
forecasting how proposed dietary changes will affect the future 
PHNI values. If the PHNI does not track actual health well then, 

the optimization process becomes largely random which it may 
inadvertently recommend harmful interventions. This explains why 
competing frameworks produce lower quality recommendations but 
BRPHM’s mean correlation of 0.709 significantly exceeds the typical 
correlations of 0.5–0.6 which is found in traditional health risk 
assessment tool as it relies solely on demographics and self-reported 
health status. This reinforces the value of continuous IoT 
monitoring and thorough feature engineering that includes 
environmental and behavioral factors. There the improvement in 
correlation comes directly from BRPHM’s innovations by including 
edge processing that captures short-term physiological responses 
that cloud-only systems miss due to delays, federated learning that 
takes advantage of population diversity to identify general health 
patterns, and blockchain data integrity that ensures PHNI 
calculations use accurate historical data without issues that could 
distort true relationships.

The micro-action engagement distribution shows a mean 
engagement rate of 0.786 where it indicates that users successfully 
complete about 78.6% of the small and incremental behavioral 
recommendations generated by BRPHM’s micro-action framework. 
The distribution is approximately uniform and it is spanning from 
0.60 to 0.95 revealing considerable individual variation in engagement. 
About 20% of users achieve over 90% completion rates while around 
10% struggle with rates below 65%. This pattern suggests that 
BRPHM’s recommendation engine effectively adjusts the difficulty 
of recommendations to suit most users while avoiding overwhelming 
suggestions that could lead to learned helplessness, as well as trivial 
ones that do not promote meaningful behavior change. The high 
mean engagement rate of 78.6% far surpasses the typical adherence 
rates of 30%–50% found in traditional dietary counseling which often 
requires simultaneous changes across multiple behaviors. This 
supports BRPHM’s strategy of breaking large health goals into 
small and manageable steps that build up over time.

The engagement benefits come from BRPHM’s multi-objective 
optimization which explicitly models practical feasibility. This 
penalizes recommendations that demand excessive cost, time, or 
cooking skills that users may be lacking. Competing frameworks 
optimizes only for nutritional adequacy and disease risk reduction, 
generating theoretically ideal recommendations that may not be 
feasible for many other users. This leads to failures that discourage 
further engagement but BRPHM’s handling of constraints ensures 

FIGURE 8 
Performance of BRPHM in terms of PHNI correlation score and micro-action engagement distribution.
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that all recommendations respect user-specified practical limits. 
Meanwhile, the Pareto optimization presents multiple alternative 
options by allowing users to choose recommendations based on 
their current situations and preferences. This increases the sense of 
autonomy which psychological research shows is crucial for 
sustaining behavior change. The preference learning feature uses 
collaborative filtering in order to identify foods users are likely to 
enjoy based on similarities to other users with comparable tastes. 
This ensures that the recommendations are both nutritionally sound 
and enjoyable also addressing a major reason why dietary 
interventions often fail.

The blockchain-based token reward system helps in maintaining 
user engagement by offering tangible incentives for completing 
recommended micro-actions as users can redeem tokens for 
healthy foods, fitness services, or lower insurance premiums. 
Smart contracts automatically issue tokens when the IoT sensors 
verify completion by providing immediate reinforcement that 
behavioral psychology studies show to be more effective than 
delayed rewards. The secure audit trail prevents token fraud 
while clear issuance rules are built for user trust in the fairness 
of the reward system by boosting motivation to earn tokens. 
Competing frameworks usually lack incentive systems or 
implement them through centralized point systems that are open 
to manipulation by administrators or hackers by reducing user 
confidence in the integrity of the reward programs.

Overall, the innovation metrics show that how the BRPHM 
meets the key objectives of personalized nutrition systems as it 
accurately tracks health status through validated indices and 
effectively motivates sustained behavior changes with engaging 
with feasible recommendations. These results go beyond 
traditional performance measures and reflect real-world impacts 
on user health behaviors and clinical outcomes. This supports 
BRPHM’s comprehensive approach which combines IoT sensing, 
federated AI, blockchain data management, multi-objective 
optimization, and behavioral science into a single framework that 
outperforms competing systems across all evaluated areas.

There are many deep-seated reasons for the better performance 
of BRPHM. (1) PHNI considers health, nutritional, activity levels, 
environmental features which help in providing more useful and 
distinct representations of features when compared to existing 
indices. (2) Noise and bias are reduced; accuracy and 
generalization are enhanced using federated learning as 
diversified user patterns are used in learning process. (3) 
Reliability of decision is improved and latency is decreased using 
edge processing and explainable AI. (4) Reliable and high-quality 
inputs are guaranteed by blockchain based consent management 
and data integrity. Finally, the choice of these algorithms and 
architecture together led to the constant enhancements in 
scalability, privacy, latency, forecasting and accuracy.

5.4 Practical applications of BRPHM

Digital nutrition and smart healthcare are the platforms where 
the proposed framework, BRPHM can be deployed practically. IoT 
and wearable data can be used to provide trustworthy, personalized 
and real-time recommendations of diet. It is more appropriate 
where dynamic nutrition guidance and continuous monitoring 

are required. For example, in the case of wellness programs and 
management of chronic diseases (hypertension, obesity, diabetes, 
etc.). The BRPHM can also be deployed in the case of telehealth 
servicers, fitness applications, hospital remote monitoring systems.

6 Conclusion

A reliable and powerful personalized nutrition recommendation 
framework is proposed by integrating IoT, federated learning and 
blockchain technology. Federated learning is used to run local models 
on the devices itself to reduce latency and multi-objective optimization 
module helps in generating recommendations of personalized diet. 
Explainable AI module helps in enhancing the transparency. 
Blockchain is used to provide privacy and enhance security to the 
user information. Physiological, activity, nutrition, and environmental 
component values are used to estimate the value of PHNI and thereby 
recommending the nutritional diet to the user. The results indicate the 
proposed framework, BRPHM outperforms in terms of classification 
metrics, forecasting metrics, latency, system availability, privacy and 
scalability score when compared to ESCIFS, SEDCAM-2E and 
PNBDF. BRPHM is a scalable, transparent and secure framework 
which recommends personalized and nutrition diet to the users. 
Integration of large language models could generate context-aware, 
conversational recommendation, infer PHNI and improve 
explainability.

There are three limitations related to BRPHM. Usage of 
synthetic dataset as it might not observe complete real-time 
physiological and behavioral variations. Also, socioeconomic and 
genetic components are not incorporated in PHNI computation 
which might affect long term diet. As federated learning and 
blockchain are integrated in BRPHM, computational overhead 
might impose challenges in the case of low-resource devices.

As a part of future work, real-time clinical dataset will be used to 
evaluate the performance of BRPHM. Mental health and genomic 
components also will be incorporated in the computation of PHNI. 
The BRPHM will be optimized to overcome the overhead due to 
federated learning and blockchain which help to deploy BRPHM in 
lightweight devices. It can also be extended to integrate large language 
models to evaluate user adherence and long-term health outcomes.
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