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Cryptocurrency exchanges are integral to the digital asset economy; however,
their rapid growth has been accompanied by recurrent high-impact cyberattacks
that erode trust and inflict substantial losses. Guided by the PRISMA-ScR
framework, this review systematically screened peer-reviewed and industry
sources to construct a validated dataset of 220 major incidents (2009–2024)
across centralized (CEX) and decentralized (DEX) exchanges. We classify attack
vectors, analyze repeated high-impact patterns, and identify systemic
vulnerabilities spanning cryptographic mechanisms and exchange
infrastructure. Across CEX platforms, four of ten identified attack types
accounted for 62 of the 80 incidents and approximately $1.764 billion in
losses (42.1% of the $4.191 billion CEX total). Across DEX platforms, five of
eighteen attack types were responsible for 120 of 140 incidents, totaling
$3.755 billion (87.3% of the $4.303 billion DEX total). The overall losses sum to
$8.494 billion across 220 incidents (80 CEX; 140 DEX). Repeated vectors
comprised 182/220 incidents and $5.519 billion (65.0%) of losses, dominated
by wallet/key compromise (78 incidents; $2.394 billion) and DEX system/server/
protocol exploits (56 incidents; $1.939 billion); these two classes account for 134/
182 repeated incidents (79.1%) and $4.333 billion (78.5%) of repeated losses. We
examine the susceptibility of cryptographic defenses to emerging quantum
adversaries and assess the exchange readiness for post-quantum threats. This
study is the first to systematically compile and quantitatively analyze cybercrime
incidents affecting both centralized and decentralized cryptocurrency exchanges
in a unified dataset, enabling unprecedented comparability of systemic risks with
actionable insights for cybersecurity researchers, regulators, and exchange
operators seeking quantum-safe infrastructure evolution.
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1 Introduction

Cryptocurrencies and cryptocurrency exchange platforms (CExPs),
encompassing both centralized (CEX) and decentralized (DEX)
exchanges, are intrinsically linked, with exchanges providing the
essential infrastructure that facilitates transactions and drives global
adoption (Kim and Lee, 2018). In this study, we used CExPs when
referring to exchanges generically and CEX/DEX when distinguishing
between the two types. Cryptocurrency has become a global
phenomenon in the 21st century (Corbet et al., 2019b) and has
attracted increasing levels of cybercrime, particularly against CExPs,
which serve as the primary conduits for cryptocurrency transactions
(Vital, 2022;Manimuthu et al., 2019; Connolly andWall, 2019). Despite
the challenges of transacting outside formal venues, the sustained
growth in the acceptance of cryptocurrencies as an alternative to fiat
currency is underpinned by the security and trust provided by
exchanges (Bucko et al., 2015; Kawai et al., 2023). In practice,
CExPs expand cryptocurrency usability by offering user-friendly rails
for liquidity, rapid settlement, and broad accessibility (Oliva et al., 2019;
Arli et al., 2021) (Supplementary Tables S1, S2).

Since 2009, at least 220 high-impact cyberattacks have been
reported in exchanges, with a total of approximately $8.494 billion
(Chainalysis, 2022; Vidal-Tomás, 2022; Giechaskiel, 2016). These
incidents span both centralized exchanges (CEXs) and decentralized
exchanges (DEXs), the two dominant architectures in the ecosystem,
where CEXs are custodial order-book venues and DEXs are non-
custodial smart-contract protocols (e.g., AMMs or on-chain order
books). Together, CEX and DEX represent the core infrastructure of
the global cryptocurrency economy, serving over 500 million users
by 2024 and facilitating the majority of cryptocurrency liquidity and
settlement (IMARC Group, 2023; Jani, 2018). Other venues, such as
OTC desks, P2P platforms, and custodial brokers, exist, but their
transaction volumes and user bases remain marginal compared to
CEX and DEX. Hence, this study focused on these two dominant
exchange types.

Exchanges are integral to digital finance, enabling the buying,
selling, and conversion of assets such as Bitcoin and Ethereum
(Marella et al., 2021; Rejeb et al., 2021), and they play a central role in
liquidity formation, price discovery, and on-/off-ramping between
fiat and crypto (Chutipat et al., 2023). As of May 2024, over
500 exchanges were operating globally (CoinMarketCap, 2023;
Future Market Insights, 2023; Triple-A Technologies Pte. Ltd.,
2024). Binance led spot and derivatives activities, often
processing tens of billions of dollars in daily volume across
markets, while other major venues, including Coinbase, Bybit,
and Kraken, contributed materially to market liquidity and user
trust (Cambridge Centre for Alternative Finance, 2017a).

By late 2024, the global crypto market capitalization was
approximately $2 trillion (Chainalysis, 2023b). Annual trading
volumes further highlight the market’s scale: in 2024 alone, the
top-15 centralized spot exchanges (CEXs) processed $18.8 trillion;
the top-10 decentralized exchanges (DEXs) handled $1.76 trillion;
and derivatives trading volumes were even higher, reaching
$58.5 trillion on the top-10 centralized exchanges offering
perpetual contracts and $2.9 trillion on their decentralized
counterparts (CCData, 2025; DefiLlama, 2025a; DefiLlama,
2025b; DefiLlama, 2025c). In parallel, user adoption is expected
to expand to an estimated 600 million global crypto users by the end

of 2024 (IMARC Group, 2023; Jani, 2018). The growing
participation of both retail and institutional investors further
amplifies the systemic importance of crypto exchanges
(Coinpedia, 2023; Chainalysis, 2023a).

The same characteristics that make exchanges efficient, high-
throughput, deep liquidity, and global access also increase their
attractiveness to attackers (Al-Amri, 2019; Oosthoek, 2021; Ahuja,
2023; Basilan, 2024). As the value of assets under custody increases,
there is an incentive for sophisticated attacks (Rot and Blaicke,
2019). The pseudonymity and cross-jurisdictional nature of
blockchain flows complicate asset tracing and recovery, whereas
weaknesses in wallet/key management, authentication, and
transaction-validation pipelines remain persistent pressure points
(Crystal Blockchain, 2024b; Hedge with Crypto, 2024; Crystal
Blockchain, 2024a; Sigurdsson et al., 2020; Adamik and Kosta,
2019; Shaji et al., 2022). Historically, attacks have included
phishing, credential theft, malware, insider abuse, protocol and
smart contract exploits, and large-scale DDoS events that exploit
the gaps in both operational controls and cryptographic guardrails
(Feder et al., 2017; Alia, 2014). In 2024 alone, over ten major
breaches were recorded, with losses exceeding $1.018 billion
(Berry, 2022); a notable example is the WazirX incident of July
2024 (approximately $230million) (Crystal Intelligence, 2024).
These incidents further reveal critical weaknesses in wallet
security (Erinle et al., 2023), authentication protocols, and
transaction validation mechanisms (Homoliak and Perešíni,
2024), and continue to drive regulatory responses (e.g., KYC/
AML regimes) across jurisdictions (Mohsin, 2022; Mateen, 2023;
Ruiz et al., 2022; Zhou et al., 2023; Soana, 2024), which often address
symptoms rather than root causes in the system architecture.

An additional risk acceleration is the prospective impact of
quantum computing (Faruk et al., 2022; Bergstrom, 2024).
Algorithms such as Shor and Grover threaten the hardness
assumptions of widely deployed schemes (RSA and ECC) with
implications for key custody, signatures, and consensus security
(Fernández-Caramés, 2020; Easa et al., 2023; Vasavi and Latha,
2019). Given the “harvest-now, decrypt-later” risk, the key material
exfiltrated today can be decrypted by future quantum adversaries,
thereby increasing the urgency for migration to post-quantum
cryptography (PQC) (Roy, 2019; Thanalakshmi et al., 2023).
Leading PQC families, including lattice-based KEMs and signatures,
hash-based signatures, and multivariate schemes, offer candidates for
hardening key exchanges, authentication, and protocol design.

Against this backdrop, prior reviews have often conflated
exchange-related incidents with wallet-only breaches or broader
DeFi exploits, limiting comparability and obscuring systemic
vulnerabilities specific to exchange infrastructure. Wallet-only
breaches are often driven by end-user errors, such as private key
mismanagement or phishing, whereas exchange breaches expose
deeper architectural flaws in custodial systems, smart contracts and
liquidity protocols. By isolating exchange-specific incidents, this
study provides the first PRISMA-ScR scoping review that
systematically maps systemic risks across CEX and DEX
platforms. Furthermore, the 220 incidents analyzed not only
revealed recurrent attack vectors but also highlighted the fragility
of cryptographic mechanisms that face existential threats from
quantum-capable adversaries. Linking historical breach patterns
to quantum-era risks strengthens the case for urgent migration to
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post-quantum cryptography in exchange infrastructure. This dual
focus, systemic cyber risk, and quantum-era cryptographic fragility
position the study to inform both immediate resilience strategies and
long-term PQC migration pathways.

Despite the growing body of research on blockchain security,
two critical research gaps remain unaddressed. First, the literature
lacks a unified, longitudinal synthesis that isolates exchange-specific
cyber incidents and compares systemic vulnerabilities across CEX
and DEX architectures. Second, very few studies integrate post-
quantum cryptographic readiness into the analysis of exchange
security, even though quantum threats directly challenge the
cryptographic foundations of trading, custody, and consensus.
Addressing these interlinked gaps is essential to align historical
evidence with the technological transition toward quantum-resilient
infrastructures and to guide both academic inquiry and regulatory
preparedness in the digital-asset domain.

This review critically investigates the evolving cybersecurity
dynamics of cryptocurrency exchanges by examining both their
historical vulnerabilities and their readiness for quantum-era threats.
In direct response to the identified research gaps, the study pursues two
overarching aims: first, to provide a unified, exchange-specific synthesis
that compares systemic vulnerabilities across centralized (CEX) and
decentralized (DEX) platforms; and second, to evaluate the
preparedness of exchange cryptographic infrastructures for post-
quantum migration. Specifically, we (i) conduct a systematic review
and classification of repeated high-impact incidents involving
exchanges from 2009 to 2024, (ii) identify common vulnerabilities
and recurring attack vectors that have compromised exchange security,
(iii) assess quantum-era risks to current cryptographic infrastructures,
and (iv) offer actionable post-quantum–ready recommendations for
exchanges and policymakers (Navarro, 2019). Unless otherwise stated,
dollar amounts areUSD (nominal, not inflation-adjusted), and reported
volumes refer to calendar year 2024 benchmarks (CCData, 2025;
DefiLlama, 2025a; DefiLlama, 2025b; DefiLlama, 2025c).

Beyond addressing these gaps, this study contributes to both
theory and practice. Theoretically, it extends the understanding of
cybersecurity resilience in digital-asset infrastructures by providing
a longitudinal, exchange-specific taxonomy of high-impact
incidents. Methodologically, it demonstrates how a PRISMA-ScR
framework can be adapted to synthesize technical breach data across
heterogeneous blockchain ecosystems. Managerially and for policy,
the findings generate actionable insights for exchange operators,
cybersecurity agencies, and regulators seeking to strengthen
governance standards and guide post-quantum transition
strategies. Collectively, these contributions position the review as
a reference baseline for future empirical, regulatory, and
cryptographic research on exchange security.

The remainder of this paper is organized as follows: Section 2
reviews the background and related studies. Section 3 details the
PRISMA-ScR scoping methodology and data extraction pipeline.
Section 4 briefly introduces exchange platforms (CEX/DEX),
security/architecture, and frames the high-impact crimes. Section
5 presents the incident corpus and results (taxonomy, trends, cross-
platform comparisons, losses, and repeated vectors). Section 6
analyzes the attack techniques and patterns, whereas Section 7
emphasizes classical cryptographic vulnerabilities and defenses.
Section 8 expands on post-quantum threats and the PQC
readiness of the CExPs. Section 9 discusses the synthesis of the

results, limitations, research gaps, and recommendations. Finally,
Section 10 concludes the study.

2 Background and related work

Although many publications discuss cryptocurrencies and related
crimes, relatively few have analyzed the detailed mechanics of crimes
against cryptocurrency exchange platforms (CExPs). Therefore, we
review the literature most relevant to exchange security, emphasizing
recent studies (2018–2024), which are summarized in Table 1.

Rising concerns over CExP security have driven studies on
scams, cyberattacks, authentication, and cryptography, aimed at
improving transparency, accountability, and resilience against
both classical and quantum-enabled threats (Shalini and Santhi,
2019). The literature is synthesized below by theme:

2.1 Cryptocurrency exchange vulnerabilities
and attacks

Vasek and Moore classified scams into four categories: fraudulent
exchanges, Ponzi schemes, mining scams, and scam wallets,
highlighting definitional challenges and the absence of systematic
classifications (Vasek and Moore, 2018; Nabilou, 2020). Trozze et al.
identified 29 types of fraud across academic and gray sources,
underscoring research growth and the need for clearer definitions
and collaboration (Trozze et al., 2022). Bartoletti et al. propose
automated scam detection but note noisy labels and lack of a
universal taxonomy (Bartoletti et al., 2021). Sigurdsson et al.
(2020) and Chohan (2022) examined vulnerabilities (DDoS,
phishing, social engineering, malleability, and double spending)
paired with cost-raising countermeasures. Feder et al. analyzed the
impact of DDoS on Bitcoin exchanges (Feder et al., 2017), whereas
Abhishta et al. found that the activity typically normalizes within a day
(Arli et al., 2021). Vasek et al. further highlighted malware and
extortion, noting that theft declines after security upgrades (Vasek
et al., 2014). Gottipati (2020) designed a defense model using Runtime
Application Self-Protection (RASP) and Hardware Security Modules
(HSMs), but focused only on centralized exchanges. Smith and Kahn
De Saint Guilhem et al. (2020) proposed a composable framework for
key exchange against man-in-the-middle attacks, although there is a
lack of deployment evidence.

Gap: These studies propose defenses but none compile a
longitudinal, unified dataset of high-impact crimes across both
CEX and DEX.

2.2 Authentication and security in
cryptocurrency exchanges

Chenchev et al. (2021) surveyed wallet authentication methods such
as passwords, biometrics, MFA, blockchain-based methods, and stress
persistent weaknesses. Homoliak and Perešíni, 2024 introduced “k-
factor” authentication using threshold cryptography but focused
narrowly on wallets. Doe and Smith Zhang et al. (2024) propose a
privacy-preserving, threshold authentication framework, though
centralization and scalability remain issues. Alghamdi et al. (2024)

Frontiers in Blockchain frontiersin.org03

Olushola and Meenakshi 10.3389/fbloc.2025.1713637

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2025.1713637


show multimodal biometric fusion reduces attack success rates but
overlook governance and regulation. Goh et al. (2022) developed a
multimodal fingerprint/iris framework with Adaptive Feature Hashing,
offering unlinkability but lacking exchange-scale testing. Brown et al.
(2020) integrate biometrics with blockchain andML but omit stress tests
and compliance considerations. Vasavi and Latha (2019) explored
multimodal fusion with RSA, achieving accuracy but at the cost
of latency.

Gap: Authentication research is fragmented and not
systematically tied to large-scale CEX/DEX breach data.

2.3 Encryption techniques and their
challenges

Olaiya et al. (2024) surveyed symmetric, asymmetric, hybrid, and
homomorphic encryption and noted the performance, key
management, and integration trade-offs, whereas advanced

paradigms (homomorphic and PQC) remain early in deployment.
However, empirical benchmarks and migration strategies are lacking.

Gap: Few works map encryption weaknesses directly to the high-
impact vectors observed in CEX/DEX incidents.

2.4 Quantum threats and post-quantum
cryptography (PQC)

Shor-type attacks expose RSA/ECDH/ECDSA, prompting studies
on PQC for exchanges (Gill et al., 2022). Chen (2024) advocated for
PQC signatures (Dilithium) but omitted broader PQC families or
hybrid migration paths. Saha et al. integrate lattice- and hash-based
PQC into blockchain, showing performance gains but neglecting
multivariate/code-based families and live deployment (Saha et al.,
2023). Other studies have highlighted PQC’s importance of PQC
against Shor and Grover (Rosch-Grace and Straub, 2021). Chen
Dharminder et al. (2023) proposed an RLWE-based protocol with

TABLE 1 Review studies on cryptocurrency exchange vulnerabilities (2014–2024). Panel A reports yearly counts; Panel B lists study-level details.

Panel A – Yearly review-paper counts on cryptocurrency exchanges (2014–2024)

Year 2014 2015 2017 2018 2019 2020 2021 2022 2023 2024

Papers 1 1 1 3 3 3 2 2 2 3

Panel B – Review studies on cryptocurrency exchange vulnerabilities (2014–2024)

S/N Year Author Coverage Review type References

1 2014 Vasek et al. DoS attacks in bitcoin ecosystem Empirical analysis Vasek et al. (2014)

2 2015 Muthukumar Arunachalam et al. Biometric authentication with cryptography Survey CoinMarketCap (2023)

3 2017 Bayu Adhi Tama Blockchain applications and challenges Critical review Fernández-Caramés (2020)

4 2018 Kim and Lee Risk management in cryptocurrency exchanges Review Kim and Lee (2018)

5 2018 Mauro Conti et al. Bitcoin security and privacy Survey Conti et al. (2018)

6 2018 Aaron Higbee et al. Crypto-currency in cybercrime Survey Higbee et al. (2018)

7 2019 Shalini and H. Santhi et al. Attacks in bitcoin and cryptocurrency Survey Arunachalam et al. (2015)

8 2019 Arunmozhi M. Animuthu et al. Bitcoin as a global phenomenon Literature review Animuthu et al. (2019)

9 2019 Ahmed Afif Monrat Blockchain applications and opportunities Survey Monrat et al. (2019)

10 2020 Fernández-Caramés and Fraga-Lamas Post-quantum blockchain security Review Fernández-Caramés (2020)

11 2020 Shaen Cobet Crypto cybercriminality Survey Corbet et al. (2019a)

12 2020 Gudmundur Sigurdsson et al. Cryptocurrency security breaches Survey Sigurdsson et al. (2020)

13 2021 Massimo bartoletti et al. Cryptocurrency scams Survey Bartoletti et al. (2021)

14 2021 Kyle Soska et al. Cryptocurrency derivatives — BitMEX Case study survey Soska et al. (2021)

15 2022 Aditya Vikram Singh et al. Cryptocurrencies as financial assets Systematic analysis Corbet et al. (2019b)

16 2022 O. Pal Post-quantum blockchain cryptography Review Mosca et al. (2024)

17 2023 Chenchev et al. Authentication mechanisms Literature survey Chenchev et al. (2021)

18 2023 Raya Jasim Easa Quantum cybersecurity protection Survey Easa et al. (2023)

19 2024 U. Sumalatha et al. Multimodal biometric authentication Comprehensive review Sumalatha et al. (2024)

20 2024 Olaiya et al. Encryption techniques in fintech applications Comprehensive review Olaiya et al. (2024)

21 2024 Homoliak and Perešíni Cryptocurrency wallets authentication methods Security review Homoliak and Perešíni (2024)
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good performance, but it lacked privacy features and large-scale
optimization. Yi (2022) applies lattice-based cryptography to SIoT,
improving key exchange, but exchange-scale feasibility is untested.

Gap: PQC studies focus on design but rarely connect with
empirical exchange breach data which our dataset provides this
missing link.

2.5 Consumer trust and accountability
in exchanges

Marella et al. (2021), Arli et al. (2021) showed that trust recovery
requires compensation, not apologies. Chohan (2022) called for
transparency, monitoring, and accountability.

TABLE 2 Summary of problems addressed and limitations in prior studies.

Problem
addressed

Technique used Issue solved Limitation References

Cryptocurrency
Exchange scams

Classification of frauds
(fraudulent exchanges, Ponzi
schemes)

Identification of various scams
and fraudulent activities

Lack of detailed analysis of
fraudulent websites and
applications

Xia (2020)

Bitcoin fraud Review of 29 types of fraud via
academic and gray literature

Understanding the types and
scale of bitcoin fraud

Need for better definitions and
cross-sector collaboration

Charoenwong et al. (2022); Vasek and
Moore (2018)

Automated scam
detection

Automated system based on a
dataset of thousands of scams

Classification of scams to aid
detection systems

Inaccurate data and lack of a
universally accepted taxonomy

Bartoletti et al. (2021)

Security vulnerabilities
in exchanges

Analysis of phishing, social
engineering, DDoS, double-
spending

Identification of attack vectors
and suggestions for mitigation

Focus on vulnerabilities but no
definitive solutions for all threats

Chohan (2022); Sigurdsson et al. (2020)

DDoS attacks on
exchanges

Metrics like skewness and
kurtosis, economic analysis

Measured the effects of DDoS on
bitcoin exchanges’ transaction
volume

Short-term recovery, but no deep
analysis on long-term effects

Feder et al. (2017); Abhishta et al.
(2019)

Cryptocurrency
Exchange security risks

Security protocols for malware,
extortion, and DDoS attacks

Identified key risks and solutions
like security improvements

Limited to centralized exchanges,
ignoring decentralized exchanges

Vasek and Moore (2018); Conti et al.
(2018)

Phishing and man-in-
the-middle attacks

Key exchange protocols, RASP,
and HSMs

Prevents man-in-the-middle and
replay attacks

Limited to centralized exchanges
and lacks empirical validation

Oosthoek et al. (2020); Purohit et al.
(2023)

Biometric authentication
in wallets

Password-based, biometric,
multi-factor authentication

Improved authentication
security and fraud prevention

Lack of standardization and
challenges in real-world
applications

Hendrix and Lewis (2021); Brown et al.
(2020); Chenchev et al. (2021)

Authentication for
cryptocurrency wallets

k-factor authentication,
threshold cryptography

Provided a framework for
evaluating wallet security

Did not address exchange-level
security or decentralized wallets

Vasek et al. (2014)

Privacy-preserving
authentication

Threshold authentication,
Schnorr’s protocol

Balances anonymity with
traceability

Centralization risk, scalability
concerns

Crystal Blockchain (2024a)

Multimodal biometric
fusion

Fusion of fingerprint, face, age,
gender biometrics

Enhanced security and
robustness over unimodal
methods

Lack of scalability testing, privacy
concerns

Amirthalingam et al. (2014)

Adversarial attacks on
biometric systems

Multimodal biometric fusion
and attack resistance

Increased security against
adversarial biometric attacks

Did not explore privacy and
compliance issues

Kathed et al. (2019)

Encryption for
cryptocurrency systems

Symmetric, asymmetric, hybrid,
and homomorphic encryption

Addressed encryption efficiency,
key management issues

Computational inefficiencies,
lack of real-world deployment
benchmarks

Yang et al. (2023); Olaiya et al. (2024)

Post-quantum
cryptography for
blockchain

Lattice-based, hash-based PQC
algorithms

Secures cryptocurrency systems
against quantum computing
threats

Limited to specific PQCmethods,
no large-scale testing

Fernández-Caramés (2020); Gill et al.
(2022); Chen (2024)

Post-quantum
blockchain security

Lattice-based key exchange
protocols (RLWE)

Protects key exchanges from
quantum attacks

No advanced features like zero-
knowledge proofs, scalability
concerns

Fernández-Caramés (2020);
Dharminder et al. (2023); Easa et al.
(2023); Roy (2019)

Quantum threats to
blockchain

Dilithium PQC, elliptic curve
cryptography (ECC)
comparison

Improved resistance to quantum
attacks, faster transactions

Lacks broader PQC exploration,
scalability for large exchanges
uncertain

Easa et al. (2023); Chen (2024); Yang
et al. (2023); AL-Mubayedh et al.
(2019)

Consumer Trust after
cyber-attacks

Analysis of compensation,
transparency, and customer
engagement

Provided strategies to regain
consumer trust post-breach

No focus on the long-term effect
on user behavior and trust
rebuilding

Marella et al. (2021); Arli et al. (2021);
Ku-Mahamud (2019)

Regulation and
standards for exchanges

Regulatory frameworks,
certification bodies like C4

Improved credibility and user
trust through standardized
practices

Lack of global enforcement and
compliance issues

Arli et al. (2021); Kim and Lee (2018);
Mohsin (2022); Mateen (2023)
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Gap: Trust research seldom links erosion directly to the repeated
scale of CEX/DEX incidents.

2.6 Regulatory measures and
global standards

Bucko et al. (2015) discussed certification bodies (e.g., C4) and
global harmonization efforts (Xiong and Luo, 2024; Caliskan, 2022).

Gap: Regulatory work proposes frameworks but lacks quantitative
grounding in the historical trajectory of high-impact incidents.

Synthesis of Gaps: Collectively, prior research covers scams,
authentication, encryption, PQC, trust, and regulation. However,
there is no comprehensive longitudinal dataset of high-impact
incidents across the CEX and DEX. This study addresses this gap by
compiling the largest unified dataset of 220 exchange-specific incidents
(2009–2024), enabling cross-architecture comparisons, identification of
repeated vectors, and contextualization of quantum-era risks (Table 2).

3 Review methodology

Figure 1 presents an overview of the PRISMA-ScR–guided
methodology adopted in this study, illustrating the sequential
stages from scoping and article selection to eligibility screening,
data extraction, incident verification, and synthesis of results.

3.1 Scoping review

Scoping reviews systematically map the breadth and nature of
research on established or emerging topics using an iterative,
structured approach (Sarkis-Onofre et al., 2021; Mattos et al.,
2023). This study aimed to analyze, evaluate, and classify existing
studies on crimes against cryptocurrency exchange platforms
(CExPs). We reviewed both peer-reviewed and gray literature
sources (Vergara-Merino et al., 2021) on cybercrimes against
exchanges (Souza et al., 2022). The review followed the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses for
Scoping Reviews (PRISMA-ScR) guidelines, with eligibility
criteria defined a priori to ensure scope alignment and
reproducibility (Tricco et al., 2016). In this study, “crime” is
defined as any act (fraud, hacking, theft, or cyber-attack)
committed to gain financial or asset benefits from exchanges.

3.2 Article selection methods

We conducted a scoping review of the academic and gray
literature on crimes against cryptocurrency exchange platforms,
focusing on repeated high-impact attack vectors affecting
centralized (CEX) and decentralized (DEX) exchanges between
2009 and 2024. This review adhered to the PRISMA-ScR
guidelines (Munn et al., 2018; Munn et al. 2022). Eligibility was
determined based on publication type, language, topical relevance,
and direct linkage to exchange securities.

3.3 Study selection

Searches were performed in the Web of Science, Scopus, and
Google Scholar databases until 31 December 2024. In total, we
identified 735 records (630 academic and 105 Gy literature articles).
Duplicates were removed in Microsoft Excel using a two-pass
procedure (pass 1: DOI-normalized exact match; pass 2: title-
normalized + year for records without a DOI). All unique titles
and abstracts were screened.

Academic literature. Of the 630 screened academic records,
301 underwent full-text reviews. After screening, 214 articles
met all inclusion criteria and were retained, while 87 were excluded.

Gray literature. Of the 105 Gy records screened, 95 proceeded to
full-text eligibility, 78 were finally included, and 17 were excluded
during the title/abstract screening.

A total of 292 sources (214 academic and 78 Gy) met the
inclusion criteria and were included in this review. The authors
independently screened the studies, and disagreements were
resolved through discussion. As shown in Figure 2, these counts
align with the PRISMA-ScR flow diagram, ensuring full
transparency at each stage.

3.4 Eligibility criteria

Although cryptocurrency security breaches occur across wallets,
tokens, and broader DeFi protocols, this review explicitly focuses on
exchange-centric incidents (centralized exchanges (CEX) and

FIGURE 1
Workflow showing the major stages of the PRISMA-ScR
methodology used in this study.
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decentralized exchanges (DEX)). Wallet-only breaches were
excluded because they primarily involve user-side vulnerabilities
(e.g., private key mismanagement and phishing) rather than
systemic flaws in the exchange infrastructure. Including such
cases would blur the scope and reduce the comparability of the
aggregated loss data. By restricting the inclusion to exchange-
focused incidents, the review maintains analytic consistency with
PRISMA-ScR and ensures that the findings remain directly relevant
to exchange resilience, regulatory oversight, and post-quantum
preparedness.

Only studies written in English were included. Eligible sources
comprised peer-reviewed journal articles, conference papers, and
formal reports (e.g., CERT advisories, technical white papers, and
documented incident post-mortems) classified as gray literature.
Editorials, opinion pieces, marketing materials, newsletters, and
news articles were excluded from the study.

Topically, the included studies had to address crimes against
CExPs (CEX or DEX) or their direct security posture (e.g., wallet/key
management within exchanges, smart contract exchange logic, or
bridges/oracles when tied to exchange incidents). We also included
studies on quantum threats relevant to exchanges when they
explicitly connected PQ/quantum risks (e.g., RSA/ECC
compromise, Grover-related symmetric considerations) to
exchange infrastructures or incident classes.

3.5 Search strategy

The complete database-specific queries are listed in
Supplementary Table S3. Because Google Scholar restricts queries
to approximately 256 characters, we executed the query set as
multiple searches using the quoted phrases to control drift. The
search was restricted to records published between January 2009 and
December 2024. For gray literature, we restricted the results to
English-language PDF files to ensure reproducibility. Both academic

and gray searches included peer-reviewed articles, conference
papers, theses, monographs, and technical reports. Duplicates
across databases were systematically resolved using the two-pass
procedure described above. Disagreements at the full-text inclusion
stage were resolved by consensus.

3.6 Procedure for data extraction

As presented in Supplementary Table S4, we meticulously
retrieved pertinent information for the scoping review by
conducting structured searches across the Web of Science,
Scopus, and Google Scholar. Multiple search strings were
combined to extract relevant records. Google Scholar, which
offers broader indexing coverage, provided the most robust
results among the databases consulted.

3.7 Incident verification and coding

As shown in Figure 1, all steps were executed sequentially to
ensure methodological transparency and reproducibility. Each
incident was cross-verified across at least two independent
sources such as exchange post-mortems, auditor reports, and
regulatory filings to ensure authenticity and avoid double
counting. Incidents were classified as major if the reported or
independently confirmed financial loss exceeded USD 50,000 or
caused service disruption exceeding 24 h. A standardized coding
sheet was developed to capture the following variables: year,
exchange type (CEX/DEX), loss magnitude, attack vector,
recurrence status, and cryptographic relevance. Two reviewers
independently coded all incidents, and intercoder agreement was
assessed using percentage concordance (97%). Any discrepancies
were resolved by discussion to maintain reliability and alignment
with PRISMA-ScR transparency principles.

3.8 Scoping review results

Using the PRISMA-ScR framework (Stovold et al., 2014; Page
et al., 2021), our systematic review process identified 735 sources
(630 academic and 105 Gy). After removing duplicates and applying
title/abstract and full-text screening, we included 292 sources
(214 academic, 78 Gy). As shown in Figure 2, these numbers are
aligned with the PRISMA-ScR flow diagram.

4 Brief history of cryptocurrency
exchanges and cybersecurity crimes

4.1 Historical overview of
cryptocurrency exchanges

When Bitcoin (BTC) was launched in 2009, it had no fixed
market value and could only be obtained through mining or high-
risk trades (Nakamoto, 2009; Wang et al., 2024b). The early
exchange history was marked by fraud, hacks, and legal
challenges, laying the groundwork for today’s global

FIGURE 2
PRISMA-ScR flow diagram for study selection.
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infrastructure (Al-Amri, 2019; Caliskan, 2021). Currently, more
than 600 exchanges operate globally (Bartoletti et al., 2021;
CoinMarketCap, 2025). Early transactions, such as those between
Hal Finney and Satoshi Nakamoto on 12 January 2009, were
experimental (Ruoti et al., 2020).

Before the 2008 Bitcoin white paper and 2009 Genesis Block
Nakamoto (2009), trading occurred informally via forums or IRC and
relied on trust. The first exchange, bitcoinmarket. com, was launched
in March 2010 (Cryptohopper, 2023; World.org, 2023). By 2011, Mt.
Gox had become the largest exchange and the site of the first major
cybercrime (CoinDesk, 2023; Morin et al., 2023; Dimpfl and Flad,
2020). Hackers exploited a compromised hot wallet, crashing BTC
prices from $17 to nearly zero and leaking user data. Despite this, Mt.
Gox still handled 70% of global Bitcoin trade in 2013 before
registering with FinCEN. Over time, exchanges have evolved with
a greater focus on user experience and security (Gayathri et al., 2023;
Fang et al., 2022). Leading platforms have introduced secure trading
procedures (Watorek et al., 2020), although the regulatory burdens
vary across jurisdictions (Mohsin, 2022).

4.1.1 CEX and DEX platforms
Cryptocurrency exchanges are privately run platforms in which

users trade cryptocurrencies against fiat currencies or other assets
(Czapliński et al., 2019; Bhaskar and Chuen, 2024). Orders can be
executed at set prices or spot rates (Bentov et al., 2019; Keller and
Scholz, 2019). Two main models exist: centralized (CEX) and
decentralized (DEX) (Takahashi et al., 2019). Both aim to ensure
liquidity, security, and rapid settlement, with some exchanges
evolving into full trading platforms that offer analytical tools.

4.1.2 Centralized exchanges (CEXs)
In CEXs, a single authority manages the accounts and

transactions (Zhou et al., 2022). They function like digital stock
markets, earning fees and commissions (Patashkova et al., 2021). Its
advantages include high liquidity, faster fund recovery, and selective
asset listings. Drawbacks include custodial risks, centralized storage
of sensitive data, and a history of price manipulation. The major
CEXs include Binance, Bybit, Coinbase, Kraken, and KuCoin (Fu
et al., 2022; Eigelshoven et al., 2021).

4.1.3 Decentralized exchanges (DEXs)
DEXs operate on distributed ledger technology without a central

authority (Jain et al., 2021; Victor and Weintraud, 2021). Users
control their keys and trade directly from their wallets, bypassing
intermediaries and KYC requirements (Xu et al., 2023). They
typically allow swaps within the same blockchain, such as
Ethereum-based tokens. Its strengths include full custody, lower
fees, higher privacy, and distributed hosting (Patel et al., 2019;
Tripathi et al., 2023). Its weaknesses include low liquidity and
limited interoperability. Examples include Uniswap,
PancakeSwap, dYdX, and Kyber (Corbet et al., 2019a).

4.2 Overview of exchange security

4.2.1 Exchange architecture
Exchanges integrate multiple layers to enable asset trading, such

as Bitcoin and Ethereum (Marella et al., 2021; Navarro, 2019). Their

design combines security and efficiency across interconnected
components. Supplementary Table S8 summarizes the layers,
definitions, threats and defenses.

5 Cybersecurity incidents in
cryptocurrency exchanges

From 2009 to 2024, cryptocurrency exchange platforms
reported at least 220 high-impact security incidents, including
hacks, thefts, scams, fraud, and breaches, arising from exploited
vulnerabilities (Scharfman, 2023; Murugappan et al., 2023). The
quantified losses across these incidents totaled $8.494 billion from
2009 to 2024 (Chainalysis, 2022; Chainalysis 2023b; Charoenwong
et al., 2022; Chainalysis Team, 2024). As of 25 August 2023, the
ecosystem comprised ≥16,500 cryptocurrencies and ≥600 active
cryptocurrency exchanges (CoinMarketCap, 2023; CoinMarketCap,
2025), for which the 24-h trading volume was approximately
34.30 billion, with ≈68 million crypto-wallet owners and
≈430 million users (Bergstrom, 2024; Paganini, 2018). The scale
and liquidity of these markets have made exchanges attractive
targets, leading to repeated high-impact attacks and losses for
users and platforms, thereby eroding confidence in
cryptocurrencies as a fiat alternative worldwide (Hamrick et al.,
2021). To the best of our knowledge, this study compiles the largest
unified dataset of exchange-only crimes, covering both CEX and
DEX incidents from 2009 to 2024. Unlike prior reviews that mixed
exchanges with wallets or generalized DeFi exploits, our focus
isolates exchange-specific breaches, enabling an unprecedented
comparison of systemic risks across architectures.

Supplementary Table S1 (CEX) and S2 (DEX) outline the full set
of 220 major incidents with a cumulative loss of $8.494 billion from
2009 to 2024 (Aspris et al., 2021; Manthovani et al., 2023). Of these,
80 incidents involved CEX and 140 involved DEX
(Navamani, 2021).

5.1 Incidents classification

Tables 3, 5 summarize the incident taxonomy and counts for CEX
and DEX respectively; the full record of 220 incidents (CEX 80; DEX
140) is provided in Supplementary Table S1 (CEX) and S2 (DEX).

5.1.1 Corpus and sources
We compiled incidents from 2009–2024 using peer-reviewed

studies and preprints, auditor/forensic and blockchain-analytics
reports, official exchange disclosures and post-mortems,
regulatory/court materials, reputable industry media, and security
research blogs. This comprehensive multi-source triangulation
ensures that the resulting dataset is not only the broadest
compiled to date but also systematically validated and de-
duplicated, distinguishing it from earlier fragmented surveys. The
specific sources that populated the database were as follows: Corbet
et al. (2019b); Manimuthu et al. (2019); Connolly and Wall (2019);
Bucko et al. (2015); Chainalysis (2022); Vidal-Tomás (2022);
Marella et al. (2021); Chohan (2022); Chainalysis (2023b);
Chainalysis (2023a); Oosthoek (2021); Anita (2019); Bartoletti
et al. (2021); Crystal Blockchain (2024b); Hedge with Crypto
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(2024); Crystal Blockchain (2024a); Sigurdsson et al. (2020); Feder
et al. (2017); Berry (2022); Crystal Intelligence (2024); Navarro
(2019); Shalini and Santhi (2019); Trozze et al. (2022); Vasek et al.
(2014); CoinMarketCap (2025); Bit2Me Academy (2016);
Cryptohopper (2023); World.org (2023); CoinDesk (2023); Fu
et al. (2022); Eigelshoven et al. (2021); Corbet et al. (2019a);
Charoenwong et al. (2022); Chainalysis Team (2024); Hamrick
et al. (2021); Aspris et al. (2021); Manthovani et al. (2023);
Abhishta et al. (2019); Panjwani (2023); Bhusal (2021);
Blockchain (2022); Minto (2022); Badaw et al. (2020); Sengupta
et al. (2020); Nabilou (2020); Patel (2022); Horch et al. (2022); Conti
et al. (2018); Xia (2020); Oosthoek et al. (2020); Kasera (2020);
Tandon and Nayyar (2019); Astrakhantseva et al. (2021);
Shevchenko et al. (2022).

5.1.2 Inclusion and exclusion
We included exchange-platform security incidents (CEX or DEX)

with (i) a clearly described compromise vector and (ii) a documented
or conservatively estimated their financial impacts. We excluded non-
exchange scams with no platform compromise, purely off-chain fraud
that does not involve exchange infrastructure or duplicates.

5.1.3 Screening and de-duplication
All candidate items were screened and then de-duplicated by

matching venue + date/time window + transaction or On-chain
evidence and narrative details. Conflicting loss figures were
reconciled by preferring primary disclosures and multi-source
concordance, and unresolved ranges were conservatively
recorded. This process yielded 220 unique incidents.

5.1.4 Normalization and coding
For each incident we coded: platform type (CEX/DEX), venue,

date (UTC), region, attack vector (mapped to the 10-vector CEX and
18-vector DEX taxonomies), loss amount (USD; normalized at the

time of reporting), and citation set. Ambiguous geography is tagged
as unknown/global. The resulting database underlies all the figures
and tables in §5.1.7.1–§5.1.7.6.

5.1.5 Focus on repeated high-impact vectors
From this corpus, we flagged vectors that recurred more than

four times and caused losses exceeding $50,000 per incident
(excluding non-property crimes). Applying this dual threshold
ensures an analytical focus on patterns that are both persistent
and financially material while filtering out one-off or low-impact
breaches. These repeated high-impact records (CEX top-4; DEX
top-5) drive the comparative analyses and the bar charts in
§5.1.7.5–5.1.7.6, including the cross-platform private key (CEX +
DEX) aggregate (78 incidents; ≈2.40B). This approach, consistent
with incident analysis practices in breach reporting and cybercrime
research (Shevchenko et al., 2022; Chainalysis, 2023a), allowed for
the first rigorous identification of recurrent and high-impact attack
vectors across both CEX and DEX. This provides a level of
longitudinal granularity and cross-platform comparability that
has previously been absent from the literature.

5.1.6 Data generation and curation
The curated incident lists for CEX (Supplementary Table S1;

2009–2024) and DEX (Supplementary Table S2; 2014–2024)
constituted the canonical dataset used in this study. Each record
includes the event date, venue, platform type, region, attack vector
(mapped to the CEX 10-vector/DEX 18-vector taxonomies), loss
amount (USD), and source citations. All figures and tables in
§5.1.7.1–§5.1.7.6 are reproducible from these two supplementary
tables by grouped aggregation over the vector, platform, year, and
region fields. Tables 3, 5 define the taxonomies used to construct the
summaries, and any total reported in the text (e.g., private key (CEX
+ DEX) = 78 incidents; ≈2.40B) can be recomputed directly from
S1+S2 under these mappings. The complete source list for the

TABLE 3 Summarized high impact CEX exchange crimes from 2009–2024. Full list of incidence in Supplementary Table S1.

Date Exchange Platform Cause of hack Loss (M$)

31/05/2024 DMM bitcoin CEX Private key hack 305

22/06/2024 BtcTurk CEX Hot wallet hack 55

18/07/2024 WazirX CEX Phishing tactics 230

20/09/2024 BingX Exchange CEX Security breach 26

11/09/2024 Indodax CEX Hot wallet security breach 22

09/04/2023 GDAC CEX Access to hot wallet 13

12/11/2022 FTX CEX Unauthorized access 600

01/11/2022 Deribit CEX Access to hot wallet 28

17/01/2022 Crypto.com CEX Unknown 34

09/01/2022 LCX CEX Access to hot wallet 6.8

11/12/2021 AscendEX CEX Access to hot wallet 80

05/12/2021 BitMart CEX Access to hot wallet 150

19/08/2021 Liquid CEX Access to hot wallet 97

28/01/2015 Bitstamp CEX Social engineering 5
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dataset is provided in the citations above, and the full 220-incident
inventory is presented in Supplementary Tables S1, S2.

5.1.7 Incident results: taxonomy, trends, insights,
and impact (2009–2024)

These analyses were enabled by a unified dataset of 220 incidents
(the largest exchange-only compilation to date), which provides a
longitudinal basis for trend analysis and cross-platform insights.
Drawing on the curated 220-incident dataset (Supplementary Tables
S1, S2) and the sources cited above, we analyzed, extracted, and
categorized the exchange security incidents as follows:

1. Crimes on centralized exchanges (2009–2024): incident
taxonomy and counts. See Section 5.1.7.1.

2. Crimes on decentralized exchanges (2009–2024): incident
taxonomy and counts. See Section 5.1.7.2.

3. Annual losses on CEX and DEX platforms (2009–2024). See
Section 5.1.7.3.

4. CEX–DEX incident comparison (and most-attacked
platforms). See Section 5.1.7.4.

5. Repeated and common high-impact attacks on CEX and DEX.
See Section 5.1.7.5.

6. Most common attack vector across all exchanges. See
Section 5.1.7.6.

7. Incident trends over time. See Section 5.1.7.7.
8. Repeated attacks over time. See Section 5.1.8.
9. Financial impact and loss distribution. See Section 5.1.9.

5.1.7.1 Crimes on centralized exchanges (2009–2024)
As summarized in Table 3; Supplementary Table S1, we identified

80 major CEX incidents between 2009 and 2024. Our taxonomy
comprises ten attack vectors, including hot wallet/private key
compromise, compromised systems/servers, insider exploits, data
leaks, and phishing via fake sites. Less frequent categories included
protocol/implementation vulnerabilities and 2FA bypass. In
aggregate, the quantified CEX losses totaled $4.191 billion; the top
four vectors account for 62 of 80 incidents and approximately
$1.764 billion (42.1%) of losses (Hong, 2019; Abhishta et al., 2019)
(see Table 7 for aggregate losses and Table 4 for vector frequencies).
Among the ten identified vectors, hacking/unauthorized access to hot
wallets was the most prevalent (Panjwani, 2023; Bhusal, 2021), with
39 of the 80 incidents (nearly 50%). Internal mistakes have a low
recurrence rate, whereas compromised servers and hot-wallet access
remain persistent vulnerabilities. In 2022, the largest CEX loss was the
FTX unauthorized transaction incident, exceeding $400M (Fu et al.,
2022; Sigalos, 2023).

5.1.7.2 Crimes on decentralized exchanges (2009–2024)
As summarized in Table 5; Supplementary Table S2, we

identified at least 140 DEX incidents spanning 18 distinct attack
vectors between 2009 and 2024. Representative vectors include
smart contract/protocol exploits (e.g., re-entrancy, logic bugs,
oracle/manipulation errors), social engineering attacks, price-
manipulation schemes (Blockchain, 2022), rug pulls, website/UI
vulnerabilities, private-key compromise (admin/treasury/multisig),
cross-chain and bridge weaknesses, double-spend attempts,
malicious governance proposals, and flash-loan-enabled exploits.

As shown in Table 6, system exploits (n = 56, 40.0%) and server/
private key hacks (n = 39, 27.9%) are by far the most recurrent,
together accounting for 95 of the 140 incidents (67.9%). These are
followed by flash loan exploits (n = 12, 8.6%), price manipulation
attacks (n = 6, 4.3%), and smart contract exploits (n = 7, 5.0%).
Collectively, the top five vectors represented 120 of 140 attacks
(85.7%). Recent DEX incidents have also produced large aggregate
losses relative to many CEX events, thereby reflecting the scale and
composability of on-chain protocols (Barbon, 2021). In aggregate,
quantified DEX losses totaled $4.303 billion; the top five vectors
account for approximately $3.755 billion (87.3%) of the losses
(Hong, 2019; Abhishta et al., 2019); see Table 7.

5.1.7.3 Annual losses on CEX and DEX
platforms (2009–2024)

Centralized exchanges (CEX) preceded the later arrival of
decentralized exchanges (DEX), and their early adoption made
CEX the dominant trading model. In 2023, CEX platforms
reported an estimated 80 million regular unique users, compared
with a peak of 7.5 million unique DEX users in 2021 (Coinweb, 2023;
Makridis et al., 2023; Pandya et al., 2019). The broad adoption of
both models has attracted persistent criminal activity since 2009
(Collins, 2022; Higbee et al., 2018; Vidal-Tomás, 2021).

CEX yearly losses: Figure 5 illustrates the yearly losses on the CEX
platforms grouped by our study’s attack-vector taxonomy. From
2009 to 2022, at least 80 reported incidents resulted in officially
reported losses of over $4.191 billion. The largest annual losses
occurred in 2018 ($869 million), followed by 2022 ($668.8 million),
and 2016 ($628.8 million). From 2014 onward, CEX platforms
experienced steady yearly attacks, while incident counts fell during
2019–2022 (13→ 12 → 5 → 4), 2022 still produced a major spike in
financial losses Chainalysis (2022), Chainalysis (2023b). The most
recurrent CEX vector is the private key/hot wallet/server compromise,
accounting for 41 of 80 incidents (51%) and nearly $0.99 billion in
aggregate losses (Chainalysis, 2022; Chainalysis 2023b).

DEX yearly losses. Figure 3 shows a breakdown of the total
amount lost per year since DEX’s inception of DEX in 2014 owing to

TABLE 4 Common Attack vectors on CEX platforms and their frequency.

Common attack vectors CEX Attack frequency

Hack/Access to hot wallet 39

Compromised System/Servers 10

Insider Exploit 7

Data leak/Breach 6

Bugs and Re-entrancy attack 5

Malware 4

Vulnerability in protocol 3

Bypass 2FA on the server Host 2

Unauthorized transactions 2

Internal Staff Error/Mistake 2

Total attacks 80

Total attacks represent the cumulative frequency of all documented CEX attack vectors

from 2009–2024.
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different crimes perpetrated against DEX platforms. In aggregate,
the quantified losses on DEX totaled $4.303 billion, with
2022 recording the largest annual loss at over $1.918 billion. In
recent years, attacks on DEX platforms have increased, reflecting
multiple exploitable vulnerabilities in composable on-chain
protocols (Badaw et al., 2020).

Peak year across platforms. As shown in Figure 6, the single
largest combined annual loss occurred in 2022, totaling
$2.587 billion across exchanges–$1.918 billion on DEX and
$668.8 million on CEX. This peak substantially exceeds adjacent
years (e.g., 2021 at ~$1.823 billion and year-to-date 2024 at
~$1.018 billion) and coincides with clusters of high-impact DEX
exploits and major CEX losses.

Overall total loss. Across 2009–2024, the cumulative losses
across exchanges amounted to $8.494 billion ($4.191 B CEX;
$4.303 B DEX), consistent with the “Total” bars in Figure 4.

5.1.7.4 CEX–DEX incident comparison (and most-
attacked platforms)

Figure 3C compares the incident frequencies of the CEX and
DEX platforms. The data show that DEX venues experienced more
cybersecurity incidents than CEX venues. Although DEXs provide
decentralization, permissionless access, and user autonomy, these
benefits come with reduced centralized oversight and weaker
runtime controls, smart contract vulnerabilities, composability
risks, and the absence of centralized monitoring, exposing DEXs
to repeated high-impact attacks Chainalysis, 2022; Chainalysis
2023b; Chainalysis Team, 2024).

In contrast, CEXs, despite high-value breaches, tend to operate
with stronger operational safeguards (custodial monitoring, layered

access control, and compliance/audit programs) that lower the
relative frequency of successful incidents (Chohan, 2022).
However, both models remain materially exposed and require
continuous hardening to ensure their reliability.

Most-attacked platforms. Figure 5 shows venue-level dispersion.
In our dataset, the Uniswap DEX platform recorded the highest
incidence of attacks, whereas the Binance CEX platform recorded
the lowest among the major venues. This aligns with the
mechanism-of-risk distinction above: DEX venues inherit smart
contracts and composability risk (including human error and
governance/upgrade pitfalls), whereas CEX venues benefit from
centralized monitoring and coordinated incident responses.

5.1.7.5 Repeated and common high-impact attacks on CEX
and DEX

As discussed in Section 5.1.5, we define repeated high-impact
attacks as vectors that (i) recur more than four times (> 4 distinct
occurrences) and (ii) cause losses exceeding $50,000 per incident.
Non-property crimes were excluded from this analysis. We
enumerated all incidents, tagged recurrent vectors, and tracked
both frequency and loss (Tables 7, 8) (McCorry et al., 2018;
Holub et al., 2018; Shevchenko et al., 2022). An attack is
considered to have a high impact only when it satisfies both criteria.

CEX (repeated high-impact). Using the 10-vector taxonomy
(Table 4), four vectors, as shown in Figure 4a exceeded the
recurrence threshold and dominated the losses: Unauthorized
Wallet Access (39), Server Exploit (10), Insider Exploit (7), and
Data Leak/Breach (6). Together, they account for 62 of the
80 incidents (77.5%) and approximately $1.764 billion of
$4.191 billion total CEX losses (42.1%). The dominant pattern

TABLE 5 Summarized high impact dex exchange crimes from 2009–2024. Full List of incidence in Supplementary Table S1.

Date Exchange Platform Cause of hack Loss (M$)

10/06/2024 UwU Lend DEX Hack 19.3

19/04/2024 Hedgey finance DEX Security breach 44

09/02/2024 PlayDapp DEX Private key vulnerability 290

03/09/2024 Penpie breach DEX Market manipulation 27

02/05/2023 Level finance DEX Security breach 1

28/04/2023 0vix DEX Flash-loan exploit 2

27/04/2023 Merlin DEX Hack 1.82

15/04/2023 Hundred finance DEX Hack 7.4

13/04/2023 Yearn DEX Exploit 11

09/04/2023 SushiSwap DEX Exploit 3.3

01/04/2023 AllBridge DEX Exploit 0.573

29/03/2023 SafeMoon DEX Manipulation 9

13/03/2023 Euler finance DEX Flash loan attack 200

09/03/2023 Hedera DEX Smart contract exploit n/a

06/03/2023 PeopleDAO DEX Social engineering hack 0.12

27/02/2023 LaunchZone DEX Exploit 0.7

22/12/2021 Visor finance DEX Smart contract exploit 8.1
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involves access to hot wallets, which is often enabled by phishing or
social engineering techniques (Agarwal et al., 2023).

DEX (repeated high-impact): Of the 18 attack types forming the
140 total DEX incidents (Table 6), five clear the recurrence
threshold: System Exploit (56), Server/Private Keys Hacks (39),

Flash-Loan Exploit (12), Smart Contract Exploit (7), and Price
Manipulation Attack (6). These top five accounted for 120 of
140 incidents (85.7%) and $3.755 billion of $4.303 billion total
DEX losses (87.3%) (see Figure 4b; Table 7.)

Combined view. Across both platforms, the repeated high-
impact vectors sum to 182 of 220 incidents (82.7%) and
$5.519 billion of $8.494 billion combined losses (65.0%), as
shown in Figure 4d. This persistence indicates the structural
weaknesses that adversaries repeatedly exploit.

Most common attack vectors(CEX vs. DEX): Figures 3d, 6b
From our findings, attackers commonly use five attack vectors
including API exploits, insider threats, phishing, smart-contract
exploits, and unauthorized wallet breaches across CEX and DEX.
In CEX, repeated high-impact categories frequently manifest as
wallet breaches (often delivered through phishing/API misuse)
and insider/API problems. On DEX, smart contracts are
exploited, and wallet breaches are dominant. These patterns align
with the architectural risk surfaces of each platform (custody and
server-side signing on CEX; contract logic, oracles, governance, and
cross-chain bridges on DEX).

5.1.7.6 Most common attack vector across all exchanges
As shown in Figures 6a,b and Table 7), the dominant repeated

vector across platforms is a wallet/key compromise (private key, hot
wallet, or server access). This occurred 78 times (39 CEX; 39 DEX):
35.5% of all incidents (78/220) and 42.9% of repeated incidents (78/
182), with combined losses of $2.394 B (43.4% of repeated-vector
losses and 28.2% of the $8.494 B overall). The next most frequently
repeated vectors are the system or server exploits of CEX(10) and
DEX(56), that is, (66/182 repeated incidents with $1.979 B lost).
Together, these two vectors account for 144/182 repeated incidents
(79.1%) and $4.333 B of $5.518 B repeated losses (78.5%); that is,
approximately 51% of the overall losses($8.494 B) across
220 incidents) as seen in Figure 6a.

The other repeated vectors (in Figure 4c). Beyond the two
platform leaders, four additional repeated vectors show the
material impact, listed in the same order as the chart: CEX

TABLE 6 Common Attack Vectors on DEX platforms and their frequency.

Common attack vectors on DEX Attack frequency

System Exploit 56

Server/Private keys hacks 39

Flash-loan Exploit 12

Smart contract Exploit 7

Price manipulation attack 6

Manipulation 5

Access to the private keys 4

Security breach 2

Rugpull 2

Social engineering hack 1

Code that was in the wrong order 1

Vulnerability website Exploit 1

Malicious governance proposal 1

Platform security incident 1

Fake Token 1

Arbitraging for huge Profits 1

Re-entrancy attack 1

Double-spend attack 1

Total attacks 140

Total attacks represent the cumulative frequency of all documented DEX attack vectors

from 2009–2024.

TABLE 7 Repeated and high impact attacks vectors on CEX and DEX (2009–2024). Data extracted from Supplementary Tables S1, S2.

Attack vector Loss (millions $) Platform Frequency

Unauthorized wallet access 1208.413 CEX 39

Syetem or servers Exploit 39.135 CEX 10

Data leak 291.027 CEX 6

Insider Exploit 225.380 CEX 7

Total 1763.955 62

Flash loan Exploit 448.272 DEX 12

Price manipulation 168.560 DEX 6

System or server Exploit 1939.855 DEX 56

Smart contract Exploit 12.070 DEX 7

Unauthorized wallet access 1186.469 DEX 39

Total 3755.226 120

CEX totals include aggregated financial losses and incident counts for 2009. DEX totals include aggregated financial losses and incident counts for 2009–2024.
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Insider/Trusted (7 incidents; $0.23 B; ≈$32.9 M/incident), CEX
Data Leak/Breach (4; $0.28 B; ≈$70 M/incident), DEX Flash loan
(9; $0.41 B; ≈$45.6 M/incident), and DEX Private key/hot wallet/
server (repeated subset count) (5; $0.55 B; ≈$110 M/incident).

Two patterns stand out: (i) although less frequent than re-
entrancy, DEX private-key compromises are the costliest per
incident, and (ii) on CEX, data-leak breaches are rarer but
unusually severe on a per-event basis.

The appeal of key and wallet compromise remains clear:
attackers obtain signing authority via phishing, social
engineering, credential theft, or by breaching the server-side
signing infrastructure (Bartoletti et al., 2021; Crystal Blockchain,
2024b; Hedge with Crypto, 2024; Crystal Blockchain, 2024a). A
high-profile case is the FTX unauthorized transaction incident in
2022 (approximately $600 M) Fu et al. (2022), after which the
platform leadership was criminally prosecuted (Minto, 2022). These
observations reinforce the need to harden custody architecture and
server-side signing (e.g., HSM/MPC) on CEX while prioritizing
secure smart contract development, auditing, and runtime
monitoring on DEX.

5.1.7.7 Incidence trends over time
Figure 5a shows the incident counts per year (2009–2024) across

all exchanges. Incidents started near zero in 2009–2010 and then
rose modestly through 2014 (7) and 2018 (9), before a sharp increase
in 2020 (28) and a peak in 2021 (66). The activity remained elevated
in 2022 (45) and retreated in 2023 (19) and 2024 (9, year-to-date).
Overall, the series showed episodic surges followed by partial
pullbacks, consistent with cyclical exposure to a small set of
recurrent vectors (see §5.1.7.5).

Figure 6d shows incidents by region (2009–2024). Asia and
North America accounted for the largest share, with 60 (27.3%) and
59 (26.8%) incidents, respectively, followed by unknown/global 56
(25.5%), Europe 33 (15.0%), Oceania 10 (4.5%), and Africa 2 (0.9%).
The concentrations in Asia and North America likely reflect the
scale of their crypto ecosystems and attack surfaces (Cambridge
Centre for Alternative Finance, 2017b).

5.1.8 Repeated attacks over time
Figure 6c summarizes the recurrent attack patterns from

2009 to 2024 across five representative vectors: API Exploits,

FIGURE 3
(a) Total CEX attack 2009_2024 (b) Total DEX 2009_2024 (c) CEX vs. DEX incidents (d) Attack vectors CEX vs. DEX.
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FIGURE 4
Repeated high impact attacks: (a) repeated high impact attacks CEX (b) repeated high impact attacks DEX (c) high impact vectors CEX_DEX (d)
summary_repeated attacks.

FIGURE 5
(a) Incident trends (b) Cumulative loss (c) Year-wise CEX DEX (d) Incidents by year.
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Insider Threats, Phishing, Smart Contract Exploits, and Wallet
Breaches. Wallet Breaches are the most frequent and peak
notably in 2012 and 2023. Smart contract exploits show
consistent activity, with a high point in 2020. Phishing peaked
between 2012 and 2020 and subsequently declined, whereas
Insider Threats remained relatively stable with minor
fluctuations. A modest increase was observed in the discovered
API Exploits. Overall, these trends indicate that adversaries
repeatedly return to a small set of structurally exposed vectors,
which is consistent with the high-impact concentrations
quantified in §5.1.7.5.

5.1.9 Financial impact of incidents
Figure 4c summarizes the total loss caused by repeated attack

vectors (2009–2024). Using a harmonized taxonomy over the
merged dataset, cumulative losses (USD billions) are as follows:
Smart-contract exploits ≈$2.216 B; Wallet breaches/key-access
≈$2.108 B; Flash loans ≈$0.440 B; Data leaks/breaches ≈$0.276 B;
Phishing/social engineering ≈$0.230 B; Insider/trusted ≈$0.225 B;
Compromised system/server ≈$0.039 B; and other/unspecified
≈$2.958 B. Thus, smart contract–related failures and key material
compromise together explain roughly ~4.32B (~51%) of the
~8.494B cross-platform baseline.

TABLE 8 Attack vectors, methodologies, evolution, primary targets, defensive mechanisms, and references.

Attack
vector

Methods Evolution Target Classical
defenses

Quantum
defenses

References

Phishing Social engineering,
fake websites,
phishing emails

Early: basic deceptive
emails evolved: spear-
phishing, advanced social
engineering

User
credentials
and keys

Multi-factor
authentication
(MFA), training

AI-based detection,
quantum-safe
encryption

Birthriya et al. (2024); Gupta et al.
(2024b); Ayeni et al. (2024); Bucko
et al. (2015); Crystal Intelligence
(2024); Holub et al. (2018); Bhusal
(2021); Prendi et al. (2023); Mohsin
(2022)

API exploits Unsecured APIs,
exposed keys

Early: Key theft evolved:
Credential stuffing,
misconfigs

Exchange
APIs, trading
bots

Rate-limiting, API
authentication

PQC-based API
authentication

Kamruzzaman et al. (2024); Gupta
et al. (2024a); Homoliak and Perešíni
(2024); Sigurdsson et al. (2020);
Munn et al. (2022); Oliva et al. (2019)

Smart
contracts

Re-entrancy, oracle
manipulation

Early: simple coding bugs
evolved: front-running,
complex exploits

Smart
contracts

Formal verification,
bug bounty

PQC tools, AI bug
detection

Jiao et al. (2024); Shou et al. (2024);
Wang et al. (2024a); Bashir (2020);
Gorkhali et al. (2020); Feder et al.
(2017); Easa et al. (2023); Animuthu
et al. (2019)

Wallet
breaches

Malware, phishing,
weak storage

Early: poor key storage
evolved: malware attacks

Hot and
custodial
wallets

Hardware wallets,
encryption,
multisig

PQC wallets, cold
storage

Alauthman et al. (2024); Santhosh
and Subramanian (2024a); RANI
(2024); Kawai et al. (2023); Olaiya
et al. (2024); Faruk et al. (2022)

Insider
threats

Unauthorized access,
collusion

Early: negligence evolved:
insider–external collab

Internal infra,
funds

Zero-trust,
privileged access
mgmt

Real-time PQC
anomaly detection

Inayat et al. (2024); Alzaabi and
Mehmood (2024); Zewdie et al.
(2024); Arli et al. (2021); Homoliak
and Perešíni (2024);
Fernández-Caramés (2020)

DDoS Botnets,
amplification

Early: simple floods
evolved: amplified botnets

Exchange
uptime

Load balancing,
anti-DDoS

Distributed
quantum networks

Kumar et al. (2024); Falowo et al.
(2024); Poonia and Tinker (2024);
Chen (2024); Crystal Intelligence
(2024); Cherniei et al. (2021)

Sybil attacks Fake nodes,
consensus
manipulation

Early: small network
evolved: resource-heavy

Blockchain
consensus

PoS, monitoring PQC consensus
protocols

Zhang et al. (2019); Antony and
Revathy (2024); Bhatt and Sisodia
(2024); Chutipat et al. (2023);
Rosch-Grace and Straub (2021);
Collins (2022)

Malware Keyloggers, trojans,
cryptojacking

Early: basic malware
evolved: multi-stage
malware

User devices Antivirus, endpoint
security

AI + PQC detection Shandilya et al. (2024); Mohammadi
et al. (2024); Edwards (2024);
Chainalysis (2022); Berry (2022);
Alfieri (2022)

Double-
spending

51% attacks, timing
manipulation

Early: low-hash networks
evolved: PoW exploits

Blockchain
transactions

High hash rates,
multisig

PQC consensus,
secure payments

Santhosh and Subramanian (2024b);
Behzadi and Joseph (2024); Asare
(2024); Limdrian et al. (2024); Chen
(2024); Munn et al. (2022); Bentov
et al. (2019)

Social Eng Impersonation, fake
requests

Early: simple scams
evolved: complex
manipulation

User trust Education, behavior
analysis

AI-driven anomaly
detection

Birthriya et al. (2024); Hasan et al.
(2024); Olaniyan and Ogunola
(2024); Zaoui et al. (2024); Bucko
et al. (2015); Ruiz et al. (2022); Wang
et al. (2023)
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Figure 7a shows the annual losses across exchanges. Loss peaks
in 2022 at ~2.587B, remain elevated in 2021 (~1.823B) and 2018
(~0.869B), and are relatively low in 2019 (~0.222B) and 2016
(~0.629B). Year-to-date 2024 total ~1.018B.

Figure 7b details the regional loss distribution (2009–2024): Asia
~4.146B, North America ~2.196B, Unknown/Global ~1.029B,
Europe ~0.786B, Africa ~0.301B, and Oceania ~0.036B. Asia
registered the largest cumulative losses, whereas Oceania had
minimal cumulative losses during the period.

6 Analysis of attacks techniques
and patterns

Table 8 presents an in-depth analysis of numerous attack
vectors, methodologies, evolutions, classical defence mechanisms,
and widely used quantum defence mechanisms.

As the ecosystem surrounding cryptocurrencies grows in size
and development, criminals seeking to identify vulnerabilities in
these systems have a level of sophistication (Magizov et al., 2019).
The tactics applied by these attackers have grown dynamically, from
hacks, phishing, and social engineering to breaches. Quantum
computing, which is slowly becoming more prevalent, will open
up additional issues, particularly in cryptographic systems tasked
with ensuring CExP security. To protect against both classical and

quantum attacks, it is important to integrate quantum-safe
cryptographic algorithms (Mosca et al., 2024), AI-based anomaly
detection, and strong security authentication measures, such as
multi-factor authentication and cold storage solutions (Badaw
et al., 2020). By following these procedures, cryptocurrency
exchanges can strengthen their defenses and mitigate the risks of
current and future cyberattacks.

6.1 Impact of cybersecurity attacks on users,
exchanges, and the industry

Cyberattacks on cryptocurrency exchanges have serious
consequences for users, exchanges, and the broader ecosystem
(Navarro, 2019; Alfieri, 2022). Their impacts include:

6.1.1 Impact on users
1. Financial Losses: Phishing, wallet breaches, and malware can

lead to direct loss of funds and private keys (Purohit
et al., 2023).

2. Loss of Trust: High-profile hacks erode user confidence, as in
the Mt. Gox collapse (Bucko et al., 2015).

3. Personal Data Exposure: Breaches often leak sensitive
information (emails, phone numbers, IDs), enabling identity
theft and further attacks (Arli et al., 2021).

FIGURE 6
Attack vectors/types: (a) dominant attack vectors cex VS dex (b)most frequent attack methods (c) recurring attack types over time (d) Incidents by
region and platform.
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4. Psychological Impact: Anxiety and stress may drive users away
from cryptocurrencies.

6.1.2 Impact on exchanges
1. Reputation Damage: Breaches harm credibility and deter new

users (Marella et al., 2021).
2. Regulatory Scrutiny: Attacks trigger stricter oversight, often

requiring stronger KYC/AML compliance (Mohsin, 2022;
Mateen, 2023).

3. Financial Costs: Exchanges face compensation, restoration,
and investigation expenses (Prendi et al., 2023).

4. Operational Downtime: Attacks often halt trading,
withdrawals, and deposits, affecting liquidity and user activity.

6.1.3 Impact on the ecosystem
1. Reduced Adoption and Trust: Frequent attacks damage public

confidence and slow adoption (Illia et al., 2023).
2. Higher Compliance Costs: Regulations like EU MiCA and

FATF proposals increase operational costs (Cherniei
et al., 2021).

3. Innovation Slowdown: Post-breach investigations divert
resources from R&D.

4. Cybersecurity Investment: Exchanges invest heavily in bug
bounties, AI anomaly detection, and quantum-safe
cryptography (Sengupta et al., 2020).

6.1.4 Broader economic impacts
1. Market Volatility: Breaches intensify sell-offs and price drops

(e.g., Mt. Gox 2014) (Li et al., 2022).
2. Migration to DEXs: Security concerns push users from CEXs to

decentralized platforms, though DEXs face smart-contract
risks (Krafft et al., 2018).

Having quantified the prevalent attack vectors, we next examine
the security of the cryptographic primitives underpinning
exchanges, both classical and quantum-resilient.

7 Classical cryptographic vulnerabilities
and their defense in
cryptocurrency exchanges

Classical cryptography defines conventional methods for data
and communication security, in which established cryptographic
algorithms are applied. Many of these methods are widely applied in
the modern digital world to protect information, although they are
vulnerable to the growing power of quantum computing
(Szymanski, 2022). The following is an overview of classical
cryptographic methods. The following is an overview of classical
cryptography methods.

7.1 Classical cryptographic mechanisms

Traditional cryptographic measures in cryptocurrency
exchanges include public-key encryption, hashing algorithms,
multi-signature wallets, and digital signatures (Supplementary
Table S5). All these security measures help protect users’ cash,
ensure the integrity of transactions, and create a safe channel of
communication between exchanges and users (Subramani et al.,
2023). They also encounter different challenges, such as the
requirement for careful key management to avoid losses and
vulnerabilities from cryptographic attacks. In any case, both of
the above solutions will certainly play a substantial role in
further development and help maintain consistency and security
of exchanges in the cryptocurrency ecosystem (Banoth and
Regar, 2023).

7.2 Various defense measures on exchanges

Supplementary Table S6 explains the different measures of
defence in exchanges.

1. Public-Key Encryption: It finds wide applications in securing
transactions, wallets, and messages due to the fact that it offers
confidentiality and authentication (Subramani et al., 2023).

FIGURE 7
Financial impact views: (a) Financial Impact Over Time (b) Financial Impact by Region.
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2. Symmetric Encryption: The most used symmetric encryption
algorithm is Advanced Encryption Standard, generally known
as AES. Although AES is more resistant to quantum attacks
compared to RSA, larger key sizes are preferred, such as AES-
256, for better security (Banoth and Regar, 2023).

3. Homomorphic Encryption: A technique performs
computation over encrypted data without revealing sensitive
information.

4. Two-Factor Authentication: Used mostly with exchanges, 2FA
will ask for two types of identity/password and something else-
OTP, biometrical data-before allowing the user to log into their
accounts. This approach provides increased security and is
most common in protecting accounts from phishing and theft
of credentials (Kiraz, 2016).

5. Multi-Factor Authentication (MFA): In supplementing the
Two-Factor Authentication (2FA) with additional
authentication levels, the MFA uses biometric or hardware
tokens to finally reduce the possibility of an unwanted account
access, in case of a password compromise (Tom et al., 2023).

6. Advanced Security Protocols Tokenization: Sensitive data,
such as credit card numbers or user information, is replaced
with random tokens. Tokens, even if intercepted, possess no
intrinsic value, thus diminishing the possible consequences of
a breach.

7. Hardware Security Modules, better known as HSMs, are
physical devices involved in the process of creating, storing,
and managing keys for cryptocurrency payments. They are a
must in protecting exchange wallets and the cash that users
have on their accounts due to the high level of security offered
for cryptographic keys (Bentov et al., 2019; Rezaeighaleh and
Zou, 2020).

8. Security protocols, such as Transport Layer Security (TLS) and
Virtual Private Networks (VPNs), ensure that all data
transferred between users and exchanges is encrypted, hence
reducing the likelihood of data being intercepted while it is
being transmitted.

Cryptographic systems are fundamental to ensuring the security
of cryptocurrency exchange systems. However, attackers can exploit
several weaknesses and vulnerabilities. Table 6 summarizes the key
vulnerabilities and defense strategies.

8 Post-quantum cryptography and
cryptocurrency exchanges

8.1 From classical defenses to
quantum threats

Cryptocurrency exchanges currently rely on classical
cryptographic mechanisms and layered defence strategies to
secure their platforms and protect users from cyberattacks
(Weichbroth et al., 2023). These include public key encryption,
hashing algorithms, multi-signature wallets, and digital signatures
that underpin authentication, transaction integrity, and custodial
security. Although these defenses remain effective against current
adversaries, they are increasingly strained by the growing
sophistication of attacks.

Simultaneously, advances in quantum computing have led to a
paradigm shift in cryptographic security. By applying the principles
of quantum physics, quantum computers can perform computations
beyond the capacity of classical machines (Gill et al., 2022; Rosch-
Grace and Straub, 2021). Unlike binary bits, quantum bits (qubits)
exist in superposition and enable massive parallelism, thereby
allowing quantum systems to solve certain problems
exponentially faster than classical systems (Gyongyosi and Imre,
2019; Preskill, 2018). This creates both opportunities and threats:
algorithms such as Shor’s and Grover’s jeopardize the hardness
assumptions underlying RSA and ECC, exposing exchange
infrastructure to harvest-now and decrypt-later risks.
Consequently, post-quantum cryptography (PQC) has emerged
as a critical frontier for improving exchange resilience.

8.2 Post-quantum cryptography

Post-quantum Cryptography(PQC) denotes cryptographic
algorithms designed to withstand the computational power of
quantum computers (Fernández-Caramés, 2020; Chen, 2024).
Quantum computing poses a potential threat to classic systems,
including RSA, ECC, and DH, because their security depends on
mathematical problems that any quantum computer can efficiently
solve using methods such as Shor’s algorithm. Given the recent
advances in quantum computing, the security of conventional
cryptography public-key systems has become increasingly
insecure. Therefore, quantum-resistant cryptography protocols
are urgently required (Mosca et al., 2024; Yi, 2022; National
Institute of Standards and Technology, 2024).

The urgency of PQC arises not only from theoretical concerns
but also from real-world practices such as “harvest now, decrypt
later” attacks, where adversaries store encrypted blockchain traffic
today with the intent to decrypt it in the quantum future
(Marchsreiter and Sepúlveda, 2023). In response, the NIST PQC
standardization project selected lattice-based Kyber (ML-KEM) and
Dilithium (ML-DSA) as primary standards (Chen, 2024; Cherkaoui
et al., 2024; National Institute of Standards and Technology, 2024),
while also advancing Falcon and SPHINCS + for specific use cases
(Chen, 2024). This marks a critical turning point in the integration
of post-quantum algorithms into the cryptocurrency ecosystem.
Crypto-agility, the ability to swiftly migrate to stronger schemes,
is now viewed as essential for blockchain protocols (Marchsreiter
and Sepúlveda, 2023).

8.3 Types of post-quantum cryptographic
algorithms

Table 9 summarizes the different types of post-quantum
cryptographic(PQC) algorithms used.

1. Lattice-Based Cryptography: Lattice-based cryptography
protects digital systems from classical and quantum attacks
(Wang et al., 2023; Bandara et al., 2022). Security relies on the
intractability of solving problems such as LWE and SVP, which
remain impractical even for quantum computers (Zheng, 2022;
John et al., 2023). Lattice-based schemes resist quantum
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algorithms, such as Shor’s algorithm, unlike RSA and ECC.
Features include fully homomorphic encryption (FHE) for
multiparty computation with the leading standards
CRYSTALS-Kyber (key exchange) and CRYSTALS-
Dilithium (digital signatures) (Chen, 2024; National
Institute of Standards and Technology, 2024). Despite
barriers such as large key sizes and computational
overheads, lattice-based cryptography is a core component
of quantum-safe infrastructure for exchanges, wallets, and
blockchains.

2. Code-Based Cryptography: Proposed by McEliece in 1978,
code-based cryptography relies on the difficulty of decoding
linear error-correcting codes without a private key (Weger
et al., 2022; Wachter-Zeh et al., 2022). Classic McEliece, BIKE,
and HQC remain strong candidates, though their large public
keys challenge lightweight implementation. Applications
include wallet encryption, key management, and
authentication (Singh, 2022). Research has aimed to reduce
overhead and improve scalability (Horlemann, 2023; Gueron
et al., 2022); Ren and Zhang, 2022), while keeping code-based
schemes relevant for post-quantum security.

3. Multivariate Polynomial Cryptography: This approach makes
it difficult to solve nonlinear multivariate equations in finite
fields (Kuang et al., 2022; Sobral, 2022). It enables high-speed
signing and efficient verification and is suitable for IoT and
embedded devices (Dey and Dutta, 2023; Ikematsu et al., 2023).
Examples include Rainbow, a former NIST finalist known for
its compact signatures. The benefits include efficiency and low
verification cost, whereas the challenges include key-size
optimization and algebraic attack resistance (Kuang et al.,
2022; Gong, 2024). In contrast, multivariate schemes
support user authentication, integrity, and key management.

4. Hash-Based Cryptography: Hash-based schemes use one-way
collision-resistant functions, avoiding algebraic structures
vulnerable to quantum algorithms such as Shor’s algorithm
(Fathalla and Azab, 2024; Srivastava et al., 2023; Nagarajan
et al., 2024; Algazy et al., 2024). SPHINCS+ is a leading stateless
hash-based signature scheme that provides strong guarantees
without requiring state management. Exchanges use this for
transaction signing, wallet authentication, and blockchain
verification. Its limitations include large signatures and
slower key generation; however, ongoing research has
improved its efficiency, making hash-based cryptography a
reliable option (Panthi and Bhuyan, 2023; Mamatha
et al., 2024).

5. Isogeny-Based Cryptography: Isogeny-based schemes derive
security from the difficulty of computing isogenies between
elliptic curves, which are resistant to Shor’s algorithm (Dey
et al., 2022; Drzazga and Krzywiecki, 2022). SIKE is a notable
candidate in the NIST process, valued for its compact keys and
low bandwidths (Veroni, 2023; Leroux, 2022b). Although
vulnerabilities exist, they offer lightweight solutions for IoT
and mobile wallets (Reijnders, 2023). With further research,
isogeny-based systems can protect exchanges from quantum
threats (Leroux, 2022a).

6. Quantum-Secure Symmetric Algorithms: Symmetric
algorithms are less vulnerable to quantum attacks but face
Grover’s algorithm, which halves the effective security. AES-

256 and SHA-3 remain quantum-safe by relying on larger key
lengths (María, 2024; Malviya et al., 2022; Pan et al., 2024;
Khosravi and Eghlidos, 2023). They secure wallets,
transactions, and blockchain communication and are
efficient in IoT and mobile environments. Research has
explored improving key management and resilience to
ensure robustness against future attacks (Nosouhi et al.,
2024; Feng et al., 2022).

7. Hybrid Cryptographic Systems: Hybrid systems combine
classical schemes (RSA and ECC) with PQC algorithms
(lattice, hash, or code-based) to provide both short- and
long-term security (Ricci et al., 2024; Giron et al., 2023).
They support wallet authentication, key exchange, and TLS
protocols and blend ECC for real-time use with Kyber or
Dilithium for quantum resistance. This transitional approach
balances current deployment with future security demands
(Cherkaoui et al., 2024; Zeng et al., 2024).

Currently, research is being conducted to make hybrid systems
more efficient in terms of performance, scalability, and efficiency to
ensure resistance against emerging threats while providing a smooth
transition towards a totally post-quantum-secure setting.

8.4 Impact of quantum computing on
classical cryptography

Most cryptocurrency exchange transactions rely on RSA and
ECC (Rezaeighaleh and Zou, 2020; Islam et al., 2018); however,
quantum computing poses a significant threat to these systems.
Shor’s algorithm (Faruk et al., 2022; Kapoor and Thakur, 2022) can
efficiently solve the difficult problems underlying these schemes,
which modern classical computers cannot (Hussain, 2023; Sharma
et al., 2022).

RSA’s security of RSA is based on the difficulty of factoring large
numbers (Gangele, 2024); however, Shor’s algorithm can break it in
polynomial time, rendering RSA insecure for future quantum
adversaries (Vasavi and Latha, 2019; Moussa, 2020). Similarly,
ECC, built on the hardness of the discrete logarithm problem, is
equally vulnerable to Shor’s algorithm, thereby significantly
compromising its security (Olaiya et al., 2024; Padhiar and Mori,
2022). Thus, widely deployed cryptography is obsolete in the
quantum era, underscoring the urgency of quantum-resistant
alternatives.

8.5 Emerging quantum threats

Quantum computing introduces threats that undermine the
foundations of cryptography (See Supplementary Table S7). Mosca
(2018); Mosca et al. (2024) warned that the timeline for “Q-day”
may be shorter than expected, stressing the need for proactive
migration through the inequality of data shelf-life and
cryptographic transition. More recently, Reynolds (2025)
reported that experts estimate a significant chance of Q-day
before 2035, underscoring the urgency of adopting post-
quantum defenses and preparing for harvest-now-decrypt-later
(HN-DL) attacks.
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1. Quantum Decryption: Shor’s algorithm enables efficient
factoring and discrete logarithm solutions, undermining
encryption protocols and exposing exchange transactions
(Faruk et al., 2022).

2. Quantum-Enhanced Brute Force: Grover’s algorithm
accelerates brute-force key searches, weakening symmetric
encryption and reducing key lifetimes (Fernández-Caramés,
2020; Easa et al., 2023).

8.6 Challenges in the post-quantum ERA

Quantum computing challenges can be addressed in
several ways.

1. Smart Contract Vulnerability: Contracts secured with classical
cryptography become exposed to quantum-enabled attacks
(Chen, 2024).

2. Migration Complexity: Integrating PQC into deployed systems
requires extensive testing for compatibility (Wang et al., 2023).

3. Scalability: Many PQC algorithms demand more resources,
reducing transaction throughput (Dharminder et al., 2023).

4. Lack of Standardization: Consensus on quantum-safe
algorithms remains pending, complicating adoption (Yi, 2022).

5. Time Sensitivity: Rapid migration is needed to pre-empt
harvest-now, decrypt-later attacks.

Backward compatibility further complicates adoption. Many
exchanges rely on ECC for wallets and smart contracts (Ghinea
et al., 2023). Migration often requires hybrid approaches (e.g., ECC
with Kyber or Dilithium), which increase the payload size and
computation, stressing mobile and IoT devices (Ghinea et al.,

2023; Cherkaoui et al., 2024; National Institute of Standards and
Technology, 2024; Marchsreiter and Sepúlveda, 2023).

8.7 Post-quantum cryptography for
cryptocurrency exchanges

Given the reliance on public key cryptography for signatures and
secure communication, exchanges must transition to PQC (Chen,
2024; Marchsreiter and Sepúlveda, 2023). Therefore, phased
adoption is recommended.

1. Quantum-Resistant Signatures: Schemes such as XMSS and
LMS protect transactions in a quantum era (National Institute
of Standards and Technology, 2024).

2. Quantum-Secure Key Exchange: Kyber can replace ECDH for
secure channel establishment (Cherkaoui et al., 2024).

3. Lattice-Based Encryption: Ensures sensitive data remain safe
even if classical schemes are broken (John et al., 2023).

8.8 Threat timeline and policy implications

Although the exact timeline for scalable quantum computers
remains uncertain, experts have estimated practical threats within
10–15 years (Chen, 2024). Harvest-now and decrypt-later risks
require immediate preparation (Marchsreiter and Sepúlveda,
2023). Regulators such as NIST, ETSI, and NSA encourage
proactive PQC migration (Chen, 2024; National Institute of
Standards and Technology, 2024). Exchanges must implement
crypto-agility and begin testing NIST-approved schemes to
mitigate systemic risks (Marchsreiter and Sepúlveda, 2023).

TABLE 9 Post-quantum cryptographic algorithms.

Cryptography
type

Algorithms
used

Description Security References

Lattice-based NTRU, kyber, SABER,
dilithium

Based on the hardness of lattice
problems, such as the shortest vector
problem (SVP)

Resistant to quantum attacks,
efficient for key exchange

Wang et al. (2023); Bandara et al. (2022);
Zheng (2022); John et al. (2023)

Hash-based XMSS, SPHINCS+ Utilizes cryptographic hash functions
for digital signatures

Quantum-safe, robust for
authentication

Fathalla and Azab (2024); Srivastava et al.
(2023); Nagarajan et al. (2024); Algazy et al.
(2024)

Multivariate UOV, rainbow Relies on solving systems of multivariate
polynomial equations

Secure for signatures/
encryption, though rainbow
was broken

Kuang et al. (2022); Sobral (2022); Dey and
Dutta (2023); Ikematsu et al. (2023)

Code-based McEliece, niederreiter Uses error-correcting codes for secure
encryption

Quantum-resistant but
requires large key sizes

Weger et al. (2022); Wachter-Zeh et al.
(2022); Horlemann (2023); Singh (2022)

Isogeny-based SIDH, SIKE and elliptic curve isogeny-based Compact key exchange, but
SIKE has been broken

Dey et al. (2022); Drzazga and Krzywiecki
(2022); Veroni (2023); Leroux (2022b)

Symmetric key AES, SHA-3 Standard encryption and hashing
algorithms

Secure with doubled key
lengths against Grover’s
algorithm

María (2024); Malviya et al. (2022); Pan
et al. (2024); Khosravi and Eghlidos (2023)

Hybrid systems Classical + PQC
combinations

Integrates PQC with classical schemes
for compatibility

Transition path with
enhanced security

Cherkaoui et al. (2024); Zeng et al. (2024);
Ghinea et al. (2023); Marchsreiter and
Sepúlveda (2023)
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9 Discussion

9.1 Research gaps

This review highlights that despite substantial progress in
cryptography and blockchain research, important gaps remain in
securing cryptocurrency exchanges against classical and quantum
adversaries. By curating the first PRISMA-ScR-guided dataset of
220 exchange-only breaches drawn from academic studies, industry
reports, and technical disclosures, this study provides a structured
evidence base that was absent in previous studies. Our synthesis
demonstrates that vulnerabilities are not isolated events but recur
systematically; however, existing scholarship has not sufficiently
addressed this. These observations build directly on the dataset of
220 validated exchange-only incidents summarized in Section 5,
which revealed that vulnerabilities frequently recurred across
platforms and years, confirming the systemic nature of the risks
discussed here.

First, relatively few studies have examined how the
authentication infrastructure of exchanges is exposed to both
classical and quantum threats (Chainalysis, 2022; Chainalysis
2023b; IMARC Group, 2023; Oosthoek, 2021; Faruk et al., 2022;
Vasavi and Latha, 2019; Olaiya et al., 2024; Sarkis-Onofre et al.,
2021). Second, quantum-safe cryptographic algorithms are rarely
tailored to the operational realities of exchanges, where latency,
throughput, and interoperability are critical (Faruk et al., 2022;
Fernández-Caramés, 2020; Easa et al., 2023). Third, multimodal
or hybrid post-quantum authentication frameworks are virtually
absent in the literature, even though exchanges remain high-value
targets (Olaiya et al., 2024; Chen, 2024; Saha et al., 2023;
Dharminder et al., 2023; Yi, 2022). Beyond algorithms, practical
deployment is rarely simulated in live or large-scale exchange
environments (Bucko et al., 2015; De Saint Guilhem et al., 2020;
Zhang et al., 2024; Chen, 2024; Saha et al., 2023; Yi, 2022; Panthi and
Bhuyan, 2023; Mamatha et al., 2024). Moreover, economic
assessments of migration remain underdeveloped, and few
studies have quantified the cost-benefit trade-offs of PQC
adoption across heterogeneous blockchain ecosystems (Saha
et al., 2023; Yi, 2022). Scalability also persists as a problem, with
most post-quantum crypto systems untested under high-throughput
real-world conditions (Rezaeighaleh and Zou, 2020; Prabakaran and
Ramachandran, 2022; Nagarajan et al., 2024; Cherkaoui et al., 2024).
Finally, the integration pathways for legacy systems are not clearly
articulated, leaving exchange operators without transition roadmaps
(John et al., 2023; Dey et al., 2022; Giron et al., 2023). Together, these
gaps indicate that both technical design and sociotechnical adoption
strategies require further research attention.

9.2 Repeated and dominant attack vectors

Hot wallet compromises are disproportionately prevalent
because of the inherent trade-off between accessibility and
security issues. Exchanges must maintain hot wallets online to
ensure continuous liquidity and rapid settlement; however, this
design exposes the private keys to adversaries. Even with
safeguards such as multi-signature schemes or withdrawal limits,
the online nature of hot wallets increases their susceptibility to theft

(Crystal Blockchain, 2024b); Erinle et al., 2023; Sigurdsson et al.,
2020). As a result, attackers repeatedly exploit these systemic
vulnerabilities, making hot wallet breaches a dominant incident
vector. This interpretation aligns with the results showing that wallet
and key-management breaches accounted for 78 of the 220 incidents
(35%) and approximately $2.39 billion in cumulative losses,
confirming their disproportionate impact.

For decentralized exchanges (DEXs), the higher frequency of
incidents (140 for DEX vs. 80 for CEXs) yet comparable aggregate
losses can be explained by the concentration of attacks on protocols
with significant Total Value Locked (TVL). When numerous small-
scale exploits occur, adversaries disproportionately target high-value
liquidity pools and automated market makers. A single breach in a
system protocol with billions of TVL can generate losses equivalent
to those in custodial CEX incidents (DefiLlama, 2025a; Chainalysis,
2023b; Nabilou, 2020). This reflects a systemic difference: CEX
incidents are commonly tied to custodial infrastructure and
authentication, whereas DEX breaches stem from protocol-level
weaknesses in smart contracts and governance. As detailed in
Table 7; Figure 4, DEX platforms accounted for 140 total
incidents, of which 120 (85.7%) were repeated high-impact
attacks. Despite the decentralized architecture, these attacks
concentrated on high-TVL (Total Value Locked) protocols
platforms holding large volumes of user funds, resulting in
aggregate losses comparable to centralized exchanges.

9.3 Security of exchanges in the
quantum era

Approximately 12% of the incidents in the dataset involved
cryptographic or key-management weaknesses, providing the
empirical foundation for assessing how quantum algorithms
could amplify these vulnerabilities. Our analysis of the incident
vectors underscores the need for exchanges to prioritize quantum
resilience. Wallet and private key compromises and DEX protocol
exploitation dominate historical breaches. In the quantum era, these
vectors have become even more dangerous: Shor’s algorithm
threatens RSA and ECC, whereas Grover’s algorithm reduces the
effective strength of symmetric primitives. As Mosca (2018) warned,
the timeline for “Q-day” may be shorter than expected, requiring
proactive migration rather than reactive defence.

Our findings have led to the emergence of practical strategies.
Continuous monitoring of quantum algorithmic progress must be
institutionalized by the exchange operators. Gradual migration to
lattice-based encryption (e.g., Kyber) and hash-based signatures (e.g.,
XMSS and SPHINCS+) should occur through hybrid deployments
that preserve backward compatibility with existing RSA/ECC
infrastructure. Exchanges must also upgrade Hardware Security
Modules (HSMs), authentication servers, and wallet architectures
to support PQC natively. Regular quantum-aware risk assessments
coupled with third-party audits are essential for validating compliance
with emerging standards. Importantly, quantum security cannot be
achieved in isolation; collaboration with cybersecurity firms and
standardization bodies, such as the NIST, will be vital to ensure
interoperability and coordinated adoption.

In this study, post-quantum readiness was assessed using a
structured set of indicators derived from both technical and
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organizational dimensions. At the technical level, we analyzed the
proportion of incidents linked to cryptographic or key-management
weaknesses (12% of the dataset) (Suga et al., 2020; Oosthoek et al.,
2020; Monrat et al., 2019) and evaluated the extent to which
exchanges had adopted or tested quantum-safe primitives such as
lattice-, hash-, and isogeny-based schemes (Leroux, 2022b;
Reijnders, 2023; Ricci et al., 2024; Giron et al., 2023;
Singamaneni and Muhammad, 2024). At the organizational level,
readiness was gauged through the presence of formal migration
planning, use of hardware security modules (HSMs) with PQC
compatibility, and evidence of alignment with emerging
frameworks such as the NIST PQC standardization roadmap and
ETSI QSC guidelines (National Institute of Standards and
Technology, 2024; Nosouhi et al., 2024; Mosca, 2018). These
indicators collectively formed the basis for evaluating institutional
preparedness and quantum-era migration maturity within the
exchange ecosystem.

9.4 Implications for operators and regulators

For exchange operators, the dataset shows that 67.9% of
recorded incidents stem from two repeated vectors: key
compromise and system exploitation. This concentration of risk
reflects underlying structural weaknesses in exchange
architecture–particularly hot wallet custodianship, key
management, and protocol-level controls–that continue to enable
repeated exploitation. This finding corresponds to the quantitative
pattern in which two repeated vectors–wallet/key compromise and
protocol exploitation–jointly accounted for 65% of total recorded
losses, highlighting where mitigation should concentrate. Therefore,
operators must adopt hybrid PQC schemes in the near term while
preparing to transition fully once the standards stabilize.
Investments in training, simulation of quantum attacks, and joint
R&D with academic partners will accelerate preparedness.

These longitudinal findings, drawn from the 2009–2024 dataset,
emphasize that regulatory interventions must address historically
recurrent weaknesses rather than isolated breaches. For regulators,
this dataset offers a rare longitudinal map of systemic vulnerability.
This evidence highlights the urgency of regulatory harmonization,
echoing trends seen in frameworks such as the EU Markets in
Crypto-Assets (MiCA) regulation and MAS oversight in Singapore.
Regulators should define explicit PQC adoption timelines, mandate
quantum security audits, and develop incident response protocols
that are adapted for quantum-enabled breaches. Without
coordinated oversight, fragmented PQC adoption risks leaving
exchanges, and, by extension, retail investors are exposed to
asymmetric quantum advantages, which highlights the urgency of
harmonized oversight, as emphasized in efforts to build standards
from past exchange failures (Suga et al., 2020; Johnson, 2020).

9.5 Recommendations for
exchange security

The following recommendations derive from empirical patterns
identified in Section 5, particularly the dominance of wallet/key and
protocol-exploitation vectors responsible for most repeated

incidents and financial losses. Several best practices flow directly
from this analysis. First, operators must prioritize quantum-resistant
cryptography (lattice-based, isogeny-based, and hash-based
schemes) for transaction signing and custodianship. Second,
mandatory multi-factor authentication must extend beyond SMS
or app tokens to include biometric and hardware devices. Third,
penetration testing and security audits must explicitly evaluate the
implementation of PQC under realistic workloads. Fourth, APIs
should be secured through strong authentication, rate limiting, and
encryption to reduce the attack surface. Fifth, robust key
management practices, including key rotation, segmentation, and
HSM-backed cold storage, must be enforced. Finally, layered defense
strategies, user education campaigns, and continuous engagement
with regulators provide the depth required to withstand both
classical and quantum threats.

9.6 Overall significance of the review

This systematic review contributes to the advancement of
exchange security scholarship on three levels. Theoretically, it
extends cyber-risk and cryptographic migration literature by
linking recurrent attack vectors to the technological horizon of
quantum computing. Managerially, it provides a longitudinal
evidence base that exchange operators can use to prioritize
investment in post-quantum architectures, authentication
frameworks, and incident-response design. For policy and
regulation, it offers empirical benchmarks to inform harmonized
oversight, PQC adoption timelines, and audit standards.
Collectively, these insights strengthen both scholarly
understanding and institutional decision-making for building
resilient, quantum-secure digital-asset ecosystems. Together, these
contributions position this review as a foundational empirical
reference for guiding the secure and quantum-ready evolution of
global cryptocurrency exchange infrastructure.

9.7 Limitations

This study has several limitations that should be acknowledged.
First, the dataset relies on publicly reported breaches, which may
omit incidents suppressed for legal, regulatory, or reputational
reasons, introducing a degree of under-reporting bias. Second,
the analysis focuses specifically on CEX and DEX platforms,
excluding broader DeFi protocols and Layer-2 scaling systems
that may exhibit distinct vulnerability patterns and data
incompleteness. Third, the evaluation of post-quantum readiness
remains forward-looking, as PQC schemes have yet to be widely
deployed and tested in live exchange environments. Despite these
constraints, the systematic scope of this review provides a robust
empirical foundation for future research and policy development.

9.8 Future research directions

Future studies should address these gaps in several ways.
Technical research should benchmark PQC schemes under high-
throughput exchange workloads to provide empirical evidence of

Frontiers in Blockchain frontiersin.org22

Olushola and Meenakshi 10.3389/fbloc.2025.1713637

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2025.1713637


latency and cost effects. Research on crypto-agility,the ability to
rapidly switch between cryptographic algorithms, is crucial for
managing transitions as PQC standards evolve. Sociotechnical
studies are needed to evaluate the user acceptance of PQC-
enabled multi-factor authentication, particularly for retail
investors. Finally, comparative policy studies should analyze how
different jurisdictions mandate PQC migration with a view towards
harmonization. Addressing these questions will accelerate scholarly
understanding and practical readiness for quantum-secure financial
ecosystems.

10 Conclusion

10.1 Summary of findings

The global acceptance and resilience of cryptocurrency
exchanges critically depend on the robustness of their
cybersecurity infrastructure. This systematic review synthesizes
high-impact cybersecurity incidents from 2009 to 2024, analyses
attack patterns, and explores the evolving threat landscape in the
quantum-computing era. Crucially, this review establishes the
largest unified database of 220 exchange-only incidents, which
were meticulously extracted from peer-reviewed articles, auditor
reports, court records, and technical disclosures. To the best of
our knowledge, no prior study has compiled a dataset of this scale
and scope across both CEX and DEX. This exclusive focus on
exchange breaches, rather than wallets or generalized DeFi hacks,
provides regulators, operators, and researchers with a unique
evidence base for systemic risk analysis and cross-architecture
comparability.

• Cryptocurrency exchanges are susceptible to both classical
cyberattacks–such as phishing, API vulnerabilities, and
smart contract exploits and emerging quantum-enabled
threats that challenge the foundational cryptographic
primitives.

• Widely adopted cryptographic algorithms like RSA and elliptic
curve cryptography are vulnerable to quantum algorithms,
necessitating a transition to post-quantum alternatives such as
lattice-based and hash-based cryptography.

• Quantum computing represents both a threat and an
opportunity: it enables advanced attacks on existing
encryption, yet fosters new cryptographic techniques
capable of securing digital assets in the post-quantum era.

• Despite advances in post-quantum cryptography, real-world
integration into cryptocurrency platforms remains limited.
This highlights the urgent need for collaborative efforts
among researchers, developers, and exchange operators to
bridge the gap between theory and practice.

10.2 Significance of the study

This review highlights the urgency of transitioning to quantum-
resilient cryptographic frameworks to mitigate future threats. As
quantum computing matures, the risk of cryptographic failure in

virtual asset exchanges increases, thereby threatening the integrity of
digital transactions and user trust.

Unlike previous reviews that included wallets or generalized
DeFi exploits, this is the first systematic PRISMA-ScR scoping
review to assemble and quantitatively analyze the largest unified
dataset of CEX and DEX incidents. The novelty lies not only in its
exchange-only lens but also in the unprecedented comparability of
systemic risks across custodial and non-custodial architectures. By
linking 15 years of empirical breach data to emerging quantum risks,
this study bridges the gap between retrospective incident analyses
and forward-looking post-quantum readiness.

This study contributes to the literature in several ways.

• Providing the first structured classification of major
cybersecurity incidents across 15 years of exchange
operations in a unified dataset.

• Identifying systemic vulnerabilities linked to repeated attack
vectors and connecting them to post-quantum fragilities.

• Offering actionable insights for exchange security evolution in
both the classical and quantum threat landscapes.

10.3 Call for action

Considering the increasing sophistication of cyberattacks and
the approaching threat of quantum computing, this study advocates
coordinated, forward-looking actions. The key recommendations
are as follows.

• Urgent adoption of quantum-resistant cryptographic
algorithms across all layers of cryptocurrency exchange
infrastructure to ensure long-term data and
transaction integrity.

• Strengthening of layered defense mechanisms, includingMFA,
secure APIs, anomaly detection systems, and periodic
quantum-readiness audits.

• Development and enforcement of international standards for
post-quantum cryptography to promote interoperability,
security compliance, and sector-wide resilience.

The forward path requires sustained collaboration among
regulators, exchange operators, cybersecurity experts, and
cryptographers. Through joint efforts, the digital asset ecosystem
can be fortified against emerging threats, enabling secure and
trustworthy financial innovations in the quantum era.
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