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Background: The recognition and prevention of plant diseases is very important 
to the growth process. At present, neural networks have achieved good 
results in plant disease identification, but the development of convolutional 
neural networks has brought a large number of network parameters and 
long recognition time, which greatly limits its application on devices that lack 
computing resources.
Methods: To solve this problem, We introduce a novel approach, dubbed 
instance-relation-matrix based knowledge distillation (IRMKD), that transfers 
mutual relations of data examples. For concrete realizations of IRMKD, we 
combine the correlation of the samples with the relationship between the 
characteristics of the instances and introducing multiple loss functions.
Results: Experimental results show that the proposed method improves 
educated student models with a significant margin. In particular, for 
traditional neural networks, our method significantly reduces memory usageand 
recognition time by an average of 92% and at the same time ensure that the 
recognition accuracy rate is above 93%, provides a new plant disease recognition 
method for devices with limited memory and computing resources.
Conclusion: IRMKD can significantly reduce the volume of the model and 
improve the recognition speed of the model on the premise of slightly reducing 
the accuracy of the verification set.

KEYWORDS

convolutional neural network, deep learning, disease identification, Knowledge 
distillation, model compression 

Introduction

Crop diseases have seriously affected the world’s agricultural economy and will cause 
severe damage to crop yields. Disease identification is the key to predicting agricultural 
yields, which is of great importance for economic stability and food security in the 
agricultural sector (Kuzuhara et al., 2020). With the development of deep learning 
technology, numerous structures or patterns of complex networks are being used to 
identify diseases. But the enormous computing complexity of these architectures has 
restricted their use in many downstream applications. In response to this situation, some 
researchers had proposed different methods of compression of models in recent years. 
Real et al. (2019) develope an image classifier that exceeds manual design, which makes the 
neural network model more compact. Deng et al. (2019) propose a compression technique 
which is not explored in the area of architecture taking into account the decomposition 
of the tensor. Zhang et al. (2018) jointly train a quantified DNN compatible with bits
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and its related quantizer to obtain the effect of the 
compression model. There are also a number of methods to 
compress network models, including prunin and knowledge 
distillation (Deng et al., 2020).

As a typical type of model compression and acceleration, 
knowledge distillation can effectively train small student models 
from large teacher models (Gou et al., 2021). Knowledge distillation 
can be divided into the following categories: response-based 
knowledge distillation, feature-based knowledge distillation, and 
relation-based knowledge distillation.

Response-based knowledge distillation: Response-based 
knowledge distillation usually means that the student network 
responds to the neurons in the last output layer of the teacher 
model. Its main idea is to directly simulate the final prediction 
of the teacher model. In recent years, some scholars have 
further explored response-based knowledge to solve the problem 
of insufficient information when the ground truth tag is the 
conditional target (Meng et al., 2019).

Feature-based knowledge distillation: Deep neural network is 
good at learning multi-level feature representation. Specifically, 
feature-based knowledge from the middle layer is a good extension 
of response-based knowledge, especially for the training of thinner 
and deeper networks. Zhang et al. (2020) propose a new task-based 
feature distillation (TOFD) method, which is a convolution layer 
trained by task loss in a data-driven way. Chen et al. (2018) proposed 
a feature mapping-based knowledge extraction method called 
knowledge extract with feature maps (KDFM), which improves the 
efficiency of knowledge extraction by learning feature maps from the 
teacher network.

Relationship-based knowledge distillation: Both response-based 
and feature-based knowledge use the output of a specific layer in 
the teacher model, while relationship-based knowledge distillation 
further discusses the relationship between different layers or data 
samples on the basis of the above two methods. Lee and Song. 
(2019). propose a knowledge distillation method based on multi-
head graphs. They explore the data relationship between any 
two feature graphs in a multi-attention network through graph 
knowledge. In order to explore the paired clues in the student 
network and the teacher network, Passalis use the student model 
to simulate the mutual information flow of the paired clues in the 
teacher model (Passalis et al., 2020).

At present, the compression method of the above model still 
has the problem of low compression rate or loss of model accuracy 
after compression. The common point of these methods is that in 
the process of knowledge distillation, they only pay attention to the 
consistency of the instance while ignoring the correlation between 
the samples (Peng et al., 2019). In fact, the correlation between 
samples is also very important for classification, because it directly 
reflects how teachers model the structure of different samples 
embedded in the feature space. Therefore, we propose a knowledge 
extraction method based on the relationship between examples. In 
addition to the widely used instance feature maps, our method also 
defines three new knowledge types: sample correlation, instance 
correlation and feature space transformations, and proposes an 
instance relation matrix (IRM) to model all types of knowledge.

In this paper, combining the plant village disease data set 
(Hughes and Salathé, 2015) and the complex background data 
set provided by the Guangxi Academy of Agricultural Sciences, 

a lightweight convolutional neural network compression method 
based on knowledge distillation (Hinton et al., 2015) is proposed. 
The test results in the real environment show that our method 
can significantly reduce the memory usage of the model while 
maintaining or slightly reducing the accuracy of the model. In 
addition, the method we propose is versatile. Whether deploying the 
model on a cloud server or a local device, this method can improve 
the recognition speed of the model while reducing memory usage 
and training overhead. Our main contributions can be summarized 
in the following three areas: 

1. For the first time, we combine the four kinds of knowledge of 
sample correlation and instance feature, instance relationship 
and cross-layer feature space transformation to carry out 
knowledge distillation.

2. For the first time, the concept of instance relation matrix 
(IRM) is proposed, and the instance relation matrix and its 
transformation were used to model all types of knowledge. The 
instance relationship matrix can be represented by the data 
structure of the three-dimensional array IRM [i][j][k], where i
and j represent the Euclidean distance between the ith feature 
map and the jth feature map, and k represents the same the kth 
sample in the batch.

3. Introducing multiple loss functions to supervise the training 
of the student network is used to help students learn different 
kinds of knowledge stored in IRMs, and then obtain the 
final loss function LMTK by weighting, and then prove the 
superiority of the method through experimental results.

Materials and methods

Data preprocessing

The train set and validation set used in our experiments are 
based on the Plant Village dataset (Hughes and Salathé, 2015). 
It contains 82,161 pictures of plant leaves of varying sizes from 
24 plants in 55 classes. The data set contains images with clean 
background and congested background, as shown in Figure 1. 
Clean background images consist of isolated leaves with uniform 
backgrounds, while cluttered background images comprise partial 
or full images of plants taken in a natural background. The number 
of images in each class ranges from 43 to 6,359. This data set is 
divided into three different sets. PlantLeaf1 contains 18 classes which 
contain pictures with a cluttered background. None of the images 
in this dataset contains laboratory-conditioned images. PlantLeaf2 
contains 11 classes, which constitute both clean and cluttered 
images. Clean background images were used in the training, while 
cluttered background images were used in the testing of this dataset. 
PlantLeaf3 consists of 16 classes of 11 plants. These classes contain 
both clean and cluttered images, whereas the number of images per 
class varied from 892 to 5,507. This dataset consists of 10 classes 
of 10 different crop species and 6 classes of tomato plants infected 
by different diseases. The number of classes and frames for each 
PlantLeaf data set is detailed in Table 1.

To generalize the model and ensure a robust model, these 
image datasets were augmented using different data augmentation 
processes, such as flipping, random crops, rotations, shifts, and 
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FIGURE 1
Partial presentation of plant village dataset.

a combination of these techniques. Data augmentation aims to 
prevent overfitting by training the model to large data created 
artificially model. 

Overviewofour knowledge distillation 
method

In this section, a structured disease identification method and 
a lightweight neural network reduction method are proposed. The 
overall design of this study is shown in Figure 2.

Knowledge distillation is first proposed in (Weng and 
Preneel, 2011) for model compression. The key idea of knowledge 
distillation is that the soft probability of trained teachers’ network 
output contains not only class labels, but also more information 
about data points. For example, if multiple categories of high 
probability areas signed to an image, it may mean that the 
image must be located near the decision boundary between these 
categories. Therefore, forcing students to imitate these probabilities 
should enable students’ network to absorb some knowledge that 
teachers has found in the information outside the training label itself.

In the learning process of knowledge distillation (Shorten 
and Khoshgoftaar), the student model is trained by imitating the 
output of the teacher model in the same sample. In the traditional
Softmax classifier, given any input image, the model generates 
a vector St(x) = [St

1(x),S
t
2(x),…,S

t
K(x)] where St(x) represents the 

score corresponding to the kth disease. We use Softmax as the 
classifier at the end of the neural network to convert the output 
St(x) of the neural network into probability Distribution pt(x), 
as shown in Formula 1. 

pt
k (x) =

est
k(x)

∑
j
est

j(x)
(1)

Hinton et al. (2015) proposed that the output of a well-trained 
teacher model would be infinitely close to the real output of One-Hot 
coding, which causes useful inter class information to be ignored 
in the training process, and directly lead to the unsatisfactory 
training effect of the student model. Therefore, it is necessary to 
use the temperature scale to “soften” these probabilities, as shown 
in Formula 2. 

̃pt
k (x) =

est
k(x)/T

∑
j
est

j(x)/T
(2)

where T > 1 is an adjustable super parameter. By adding the 
parameter T to classifier, students wound similarly produce a 
softer classification probability distribution ̃ps(x), thus preserving 
the probability relationship between different categories of samples. 
Compared with the traditional One-Hot coding hard tag as the 
training target, because the soft target output by the teacher 
model after the Soft-Softmax classifier well retains the probability 
relationship between different categories of samples, it usually 
bring better performance. The loss function of students is a linear 
combination of the typical cross entropy loss function Lcls and the 
loss function LKD in the process of knowledge distillation (Kim and 
Rush, 2016), as shown in Formula 3–5. 

L = αLcls + (1− α)LKD (3)

LKD = −T2∑
k
̃pt
k (x) log ̃pt

k (x) (4)

Lcls = −∑
k

qk log ̃pt
k (x) (5)

where T and α are adjustable super parameters. The common choices 
are T ∈ 3,4,5 and α = ∈ [0.5,0.9], qk(x) is the real label of the sample. 
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TABLE 1  Generated database for training and validation.

Class name Plant common name Disease common name Disease scientific name Images (number)

C01 Apple Apple scab Venturia inaequalis 630

C02 Apple Apple black rot Botryosphaeria obtusa 621

C03 Apple Cedar apple rust Gymnosporangium juniperi-virginianae 275

C04 Apple Healthy — 1,645

C05 Blueberry Healthy — 1,502

C06 Cherry Healthy — 854

C07 Cherry Powdery mildew Podosphaera spp 1,052

C08 Corn Cercospora leaf spot Cercospora zeae-maydis 513

C09 Corn Common rust Puccinia sorghi 1,192

C10 Corn Northern leaf blight Exserohilum turcicum 985

C11 Corn Healthy — 1,162

C12 Grape Black rot Guignardia bidwellii 1,180

C13 Grape Black measles Pc 1,383

C14 Grape Isariopsis leaf spot Pseudocercospora vitis 1,076

C15 Grape Healthy — 423

C16 Orange Huanglongbing Candidatus liberibacter 5,507

C17 Peach Bacterial spot Xanthomonas campestris 2,297

C18 Peach Healthy 360

C19 Pepper Bacterial spot Xanthomonas campestris 997

C20 Pepper Healthy — 1,478

C21 Potato Early blight Alternaria solani 1,000

C22 Potato Late blight Phytophthora infestans 1,000

C23 Potato Healthy — 152

C24 Raspberry Healthy — 371

C25 Soybean Healthy — 5,090

C26 Squash Powdery mildew Erysiphe cichoracearum 1835

C27 Strawberry Leaf scorch Diplocarpon earlianum 1,109

C28 Strawberry Healthy — 456

C29 Tomato Bacterial spot Xanthomonas campestris 2,127

C30 Tomato Early blight Alternaria solani 1,000

C31 Tomato Late blight Phytophthora infestans 1909

C32 Tomato Leaf mold Fulvia fulva 952

C33 Tomato Septoria leaf spot Septoria lycopersici 1771

(Continued on the following page)
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TABLE 1  (Continued) Generated database for training and validation.

Class name Plant common name Disease common name Disease scientific name Images (number)

C34 Tomato Spider mites Tetranychus urticae 1,676

C35 Tomato Target spot Corynespora cassiicola 1,404

C36 Tomato Tomato mosaic virus Tomato mosaic virus 373

C37 Tomato Yellow leaf curl virus Begomovirus 5,357

C38 Tomato Healthy — 1,591

Total 54,305

FIGURE 2
The overview of IRMKD.

TABLE 2  Accuracy of different knowledge distillation methods under different network structures.

Teacher net. Student net. Baseline KD AT SP LIRM LMTK TNA

VGG16 (304.0 MB) MobileNet (20.8 MB) 91.57% 91.20% 92.27% 93.86% 92.58% 93.96% 95.85%

AlexNet (356.6 MB) MobileNet (20.8 MB) 91.45% 90.89% 93.37% 93.64% 92.46% 93.87% 94.46%

GoogleNet (36.6 MB) MobileNet (20.8 MB) 91.48% 91.14% 91.98% 92.45% 92.67% 93.32% 93.28%

ResNet (179.8 MB) MobileNet (20.8 MB) 91.53% 90.17% 91.67% 91.23% 92.08% 93.35% 93.40%

Bold values indicate the highest accuracy.

Relational knowledge distillation based on 
IRM

As shown in Figure 3, for multiple DNN layers of the 
teacher model, an matrix is constructed, where is the number of 
DNN layers selected, and each element in the matrix represents 
the Euclidean distance between two characteristic graphs with 
corresponding subscripts. The matrix provides sufficient and general 
information about the characteristic distribution, so that the 

extracted knowledge can guide student networks with different 
structures. At present, most teacher-student frameworks based 
on knowledge distillation rely on strong constraints at the
instance level.

At the same time, the correlation among multiple samples is also 
valuable for knowledge distillation. Using the sample correlation, the 
student model can better learn the relationship between different 
samples. Therefore, in the process of knowledge distillation, this 
paper takesn samples as the input of neural network at the same time. 

Frontiers in Bioinformatics 05 frontiersin.org

https://doi.org/10.3389/fbinf.2026.1761574
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Huang et al. 10.3389/fbinf.2026.1761574

FIGURE 4
Visual verification set accuracy.

FIGURE 5
Visualization of disease spot extraction and convolution layer.

FIGURE 6
The influence of iterations on Model recognition accuracy and 
loss function.

Because each sample will generate a m×m matrix, we will finally 
obtain a n×m×m three-dimensional matrix, which is IRM.

Let the input data set of the network be X = {x1,x2,…,xn}, n is 
the sample number of Mini-batch, CT

i (xi) and CS
i (xi) are the output 

characteristic graphs of the ith sample in the j layer of teacher and 
student models respectively, fT

a.h (xi) an mapping fS
a.h (xi) represents 

the Euclidean distances of the output characteristic graphs of the 
gth and hth layers in the teacher student model. Let FT

i  and FS
i

represents the set of distances between the jth layer and each layer 
in the mth layer in the teacher and student models, respectively via 
Formulas 6.1, 6.2: 

FT
j (xi) =matrix ( fT

j,1 (xi) , fT
j,2 (xi) ,…, fT

j,m (xi)) (6.1)

FS
j (xi) =matrix ( fS

j,1 (xi) , f
S
j,2 (xi) ,…, f

S
j,m (xi)) (6.2)

At the same time, the mapping functions are introduced as 
follows (Formulas 7.1, 7.2): 

θ:F→ G ∈Wmxm (7.1)

φ:G→H ∈ Enxmxm (7.2)

where G is the distance matrix of m×m and H is the three-
dimensional matrix of n×m×m, each element in H represents the 
distance between the characteristic graph of layer Cg and layer Ch in 
the input ith sample.

The IRM formula can be expressed as follows (Formula 8): 

LIRM = Ψ(φT (χ) ,φS (χ)) (8)

where Ψ is the loss function as Formula 9: 

Ψ(HT,HS) = ∑
i∈[1,n]

j,k∈[1,m]

‖hT
i,j,k − hT

i,j,k‖
2

2
(9)

In order to avoid too strict constraints, cross layer feature 
space transformation is introduced as the third type of knowledge, 
and an IRM transformation is proposed to model the knowledge. 
The feature space transformation is a more relaxed description 
than the dense fitting of teacher’s case features in the middle 
layer. By combining IRM with IRM transformation, this method 
has more general, moderate and sufficient knowledge than the 
existing methods. Finally, two loss functions for IRM and IRM 
transformation are designed and optimized to improve the 
performance of the student model. Firstly, the mapping function 
is defined as follows (Formula 10): 

Φ:χ→ D ∈ Rn×n (10)

where D is a two-dimensional matrix of n× n, let each element 
of DT

i  and DS
i  represents the distance of the output characteristic 

graph of the xi sample and the xi′  sample input in the teacher 
and student models at the jth layer respectively. LIRM−t extracted 
the transformation knowledge of feature space by calculating the 
difference change of the feature graph between two layers in the 
network model, DT

g (χ) −DT
h (χ) is the amount of knowledge flow 

information from layer g to layer h in the teacher network, then 
IRM-t formula can be defined as follows (Formula 11): 

LIRM−t = ‖(DT
g (χ) −DT

h (χ)) − (D
S
g (χ) −DS

h (χ))‖
2
2 (11)
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TABLE 3  Comparison with other research methods.

Original images Pre-processed images

Model Accuracy (%) Parameters 
(M)

Time (S/Epoch) Accuracy (%) Parameters (M) Time (S/Epoch)

GRNNs 97.27 165.35 6,714 96.54 165.24 6,102

PNNs 98.06 247.52 7,039 96.17 248.11 6,421

RBF 96.06 214.89 6,273 97.36 215.36 5,926

PCA and BP 95.44 156.16 5,452 98.26 153.23 4,857

IRMKD 93.45 19.8 1,206 94.67 20.2 1,087

FIGURE 3
Knowledge distillation structure diagram.

Llogits formula represents the Softmax loss of teachers’ network 
output and students’ network output as Formula 12: 

Llogits = ‖YT −YS‖2
2

(12)

Finally, we define an LMTK loss function is used to train student 
network, which is based on IRM-t transform loss (LIRM−t), IRM loss 
(LIRM) and Softmax loss (Llogits ,LGT) as follows Formula 13. 

LMTK = αLIRM−t + (1− α)LIRM + βLlogits + γLGT (13)

where LGT is the loss function between the real tag and the student 
network output, and α, β, γ are the super parameters. Using MTK 
loss can optimize the student network and obtains three types of 
knowledge from the teacher network. 

Experiment results and discussion

The hardware environment of this experiment includes 
Intel i9-10900x (3.20ghz) 10 core 20 thread CPU, NVIDIA 
geforce RTX2080ti 11 GB∗2 server. The software environment is 
Windows10 64 bit system, CUDA 9.0, cudnn 7.0, PyCharm 2018.2. 
The front end and back end of the experimental framework for 
training model are keras and tensorflow, respectively.

In this paper, 128 ×  128 three channel RGB images are used 
to train 200 epochs. The size of batchis 512, the initial learning 
rate is 0.1, the momentum is 0.9, the weight depth is 10−4, and the 
number of classes is,the random seed is 2. The experimental results 
of different knowledge distillation methods under different network 
structures are shown in Table 2.

In our experiment, VGG16, AlexNet, GoogleNet and ResNetis 
used as the teacher’s network structure, and MobileNet is used 
as the student’s network structure. The teacher column represents 
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the accuracy of the teacher model. First, a teacher model 
is trained on plant village with 4 different neural network. 
After 120 iterations, the heighest accuracy of 4 teacher model 
reaches 95.85%. The column “baseline” indicates the accuracy 
of the basic student model. The same sample is used to train 
the student model on MobileNet and the model parameteris 
only 28.0 MB. Under the same conditions, the accuracy of the 
model is 91.57%. Figure 4 shows the accuracy change curve 
of the verification set during the training of four different 
teacher models.

The KD column represents the accuracy of the training results 
after the distillation of basic knowledge. From the table, we 
can see that the accuracy of the model after the distillation of 
knowledge has improved compared with the baseline column. AT 
and SP are the model accuracy of other knowledge distillation 
methods, LIRM and LIRM−t are the model accuracy of the proposed 
method. It can be seen that using the knowledge distillation 
method based on the instance relation matrix to transfer the 
knowledge from the pretrained teacher model VGG16 to the 
untrained student model MobileNet, the accuracy of the model had 
been significantly improved, with the highest accuracy of 93.60%. 
The network structures of teachers and students used are VGG16 
(304.0 MB) and MobileNet (28.0M), and the accuracy is only 2.25% 
different from that of the teacher model. Moreover, the accuracy 
of the model with multiple loss functions is higher than that 
with only IRM loss, which proves that the IRM transformation 
loss(LIRM−t) is useful. Figure 5 shows the visualizations of the 
activation effects of different convolutional layers after IRMKD 
distillation. As can be seen from the figure, the model has 
effectively learned to extract and activate the disease spots on the 
sample leaves.

To evaluate the performance of the IRMKD method in 
real-world scenarios, this paper tested the MobileNet model 
trained using this method on the mango powdery mildew 
dataset provided by the Plant Protection Research Institute of 
the Guangxi Academy of Agricultural Sciences. The changes in 
accuracy and loss function during the model training process 
are illustrated in Figure 6. From the figure, it can be observed 
that during the training process, the loss function decreases, and 
simultaneously, the prediction accuracy on the test set shows an 
overall increasing trend. Moreover, the model converges rapidly, 
achieving a good convergence state after 50 iterations, the highest 
accuracy reached is 95.54%.

This experiment compares VGG16, AlexNet, GoogleNet and 
Resnet four main neural network structures, and LMTK model’s 
verification set accuracy, parameter size in three-channel RGB image 
of 128 ×  128 sizes. The network with higher verification set accuracy 
and model parameter quantity is taken as teacher model. Otherwise, 
it is taken as a student model. It can be seen from the table that 
MobileNet had the least network parameters, and its accuracy is 
slightly lower than VGG16 and Resnet. Therefore, this paper chose 
MobileNet as the student model in knowledge distillation. The 
results show that VGG16 can make the model the highest accuracy 
in the search space. At the same time, the average accuracy of 
LMTK model optimized by knowledge distillation method is 97.62%, 
which is slightly improved compared with the other four network 
structures. The distributed MobileNet model has better performance 
in memory and average recognition time than other networks. The 

average recognition time is shortened to 0.218 s, and the model size 
compression is only 19.83MB, in general, the model after knowledge 
distillation has higher recognition performance, and can meet the 
requirements of different application scenarios in recognition time 
and disk occupation. This proves the effectiveness and feasibility of 
this method.

In order to compare the performance between our proposed 
method and other plant disease recognition models, we compared 
the four methods: generalized regression networks (GRNNs) 
(Wang et al., 2012a), probabilistic neural networks (PNNs), radial 
basis function (RBF) (Wang et al., 2012b), BP network with PAC 
(Wang et al., 2012c). The experimental results are shown in Table 3. 
The test results show that GRNN and PNN have the highest driving 
accuracy, 97.27%, 98.06% respectively. It can be seen that these 
four methods have higher recognition accuracy. The accuracy of 
RBF neural network, PCA and BP network are 96.06% and 95.44%, 
respectively, which is slightly lower than the previous four methods. 
Furthermore, although our method is not as accurate as the 6 
methods above, it is clearly ahead of the other methods in terms of 
model parameters and training speed. In addition, the experimental 
results also show that the accuracy of the model after pre-processing 
is improved compared to the model without pre-processing, with an 
average increase of 0.54%.

Finally, the accuracy of verification set and the change of IRM 
loss value are visualized. It can be seen that within 100 iterations, 
with the increase of the number of iterations, the accuracy of 
verification set increases from about 65% to about 92%, and the loss 
value of IRM decreases from about 0.6 to about 0.2. The model effect 
is significantly improved.

Conclusion

Aiming at the problem of redundancy and low accuracy of 
traditional plant disease identification methods, this paper proposes 
a structured compression method based on knowledge distillation. 
Compared with the classic convolutional neural network model, 
this method has advantages in performance. Our method can 
slightly improve the accuracy rate, while greatly reducing the 
amount of parameters, shortening the recognition time, so that 
the model can meet higher real-time requirements. This article 
compares and analyzes the performance of different models. 
The main experimental results and conclusions obtained are
as follows: 

1. We compare the performance of different knowledge 
distillation methods on the Plant Village dataset in 4 network 
structures of VGG, AlexNet, GoogleNet and ResNet. The 
experimental results show that the highest accuracy of IRMKD 
is 93.96% when VGG is used as the teacher model.

2. Compared with other latest knowledge distillation methods, 
the results show that the Distilled-MobileNet model can 
slightly improve the accuracy rate while significantly reducing 
the parameter amount and memory of the model, and 
speeding up the model recognition speed.

3. In this paper, the model trained by IRMKD method is 
compared with other state of the art plant disease recognition 
methods. The experimental results show that IRMKD can 
significantly reduce the volume of the model and improve

Frontiers in Bioinformatics 08 frontiersin.org

https://doi.org/10.3389/fbinf.2026.1761574
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Huang et al. 10.3389/fbinf.2026.1761574

the recognition speed of the model on the premise of slightly 
reducing the accuracy of the verification set.
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