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Benchmarking multiple gene
ontology enrichment tools
reveals high biological
significance, ranking, and
stringency heterogeneity among
datasets

Fabio Henrique Schuster de Oliveira, Felipe Acker Gomes and
Bruno César Feltes*

Laboratory of DNA Repair and Aging, Department of Biophysics, Institute of Biosciences, Federal
University of Rio Grande do Sul, Porto Alegre, Brazil

Functional enrichment analysis (FEA) provides biological meaning from lists
of differentially expressed genes and proteins obtained through omics
experiments. FEA tools can employ numerous statistical methods and rely on
different pathway databases. In this sense, Overrepresentation Analysis (ORA)
is one of the most popular methods to perform FEA. Gene Ontology (GO)
is arguably the most widely used pathway knowledgebase in FEA. Hence,
benchmarking the biological accuracy of ORA-based GO enrichment tools is
crucial. Nevertheless, benchmark studies in FEA tend to focus excessively on
performance-based metrics rather than on the biological information contained
in enrichment results. To identify the differences between popular ORA-
based GO enrichment tools and provide data that brings insights into the
tools’ biological accuracy and, thus, better suits the application of FEA, we
tested 12 popular GO enrichment tools (i.e., DAVID, PANTHER, WebGestalt,
Enrichr, ShinyGO, limma, topGO, GOstats, clusterProfiler, g:Profiler, ClueGO,
and BiNGO) with randomized datasets as negative controls, a target-oriented
and a hallmark datasets as positive controls, and an experiment-derived dataset.
Gene sets with 500, 200, 100, and 50 genes were built for each dataset to
investigate the impact of input sizes. Using the control datasets, we calculated
the FPR and accuracy of the tools based on the semantic similarity between the
enriched terms and the target ontologies and assessed overlooked, insightful
metrics that reflect the biological informativeness of the results, such as the
specificity of enriched GO terms and the prioritization of target ontologies.
Additionally, we clustered the FEA results based on term semantic similarity,
enabling us to directly compare the biological profiles generated by each
tool. Despite employing the same method and functional database, the tools’
results diverged significantly. Our findings reveal considerable variation among
tools in terms of informativeness and interpretability of results. Some tools
demonstrated strong capabilities in prioritizing target pathways, while others
struggled, especially as input size increased. Additionally, we observed that the
degree to which the enriched ontologies are related to the expected targets
varies across tools, with some being more conservative than others. Together,
these results provide powerful insights into the performance characteristics
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of the analyzed GO enrichment tools and yield new, relevant data for
benchmarking FEA tools.
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1 Introduction

Functional enrichment analysis (FEA) is a widely used
method that provides additional biological meaning from lists
of differentially expressed genes (DEGs) and proteins obtained
primarily from high-throughput omics experiments by identifying
enriched “functional descriptions” within omics data. FEA tools
use the knowledge contained in functional databases, which
associate functional categories with gene lists, such as the
Gene Ontology (GO) knowledgebase (Ashburner et al., 2000;
2023), the Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa and Goto, 2000;
Kanehisa et al., 2025), WikiPathways (Agrawal et al, 2024),
and Reactome (Milacic et al., 2024). In this scenario, the GO is
one of the most widely used resources in the scientific community

Consortium et al,

for providing functional information on genes and gene products.
Currently, a variety of methods that rely on different databases
and statistical approaches have been developed to conduct FEA.
Most available methods can be classified into four main classes:
Overrepresentation Analysis (ORA), Functional Class Scoring
(FCS), Pathway-topology-based (PT), and Network-based (NB).
Due to their importance, FEA has become embedded in nearly
all omics analysis protocols. However, despite employing the same
method, different enrichment tools produce different outputs. Due
to such inherent heterogeneity, efforts are made to benchmark
the performance of distinct enrichment approaches and tools
(Tarca et al, 2013; Bayerlova et al, 2015; Lim et al, 2018;
Nguyen et al., 2019; Zyla et al., 2019; Geistlinger et al.,, 2021;
Buzzao et al., 2024). Nevertheless, such benchmark studies tend
to focus on comparing the statistical methods (i.e., ORA, FCS,
PT, and PT), instead of comparing the results profile generated by
them (Tarca et al., 2013; Lim et al,, 2018; Geistlinger et al., 2021;
Buzzao et al., 2024). Moreover, by using only a few tools to represent
a whole class (e.g., DAVID for ORA; GSEA for FCS), these studies
neglect the differences among software based on the same method
(Dong et al., 2016; Nguyen et al., 2019; Zyla et al., 2019). Another
commonly overlooked limitation of benchmarks in the case of FEA
is that the comparisons tend to rely solely on standard performance
metrics, such as FDR, sensitivity, accuracy, and specificity, which fail
to accurately illustrate the performance and behavior of FEA tools,
as they disregard the biological information that the results provide.
In this study, we evaluated the behavior of 12 commonly used
ORA-based tools (Table 1) that utilize the GO resource for FEA. To
evaluate the performance of the selected tools, we used an approach
focused on the biological meaning derived from the FEA. We
conducted enrichment analysis using random datasets, a Hallmark
dataset, a GO Biological Process (GOBP) gene set, and a microarray-
derived dataset, all split into lists of varying sizes. The random
group served as a negative control, while the hallmark dataset was
employed as a positive control. Furthermore, the GOBP dataset
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was constructed with predetermined target ontologies to enable the
calculation of relevant metrics, including accuracy and FPR, and
to assess the tools’ ranking abilities of the target pathways. Finally,
we constructed the Contextual lists using real high-throughput
experiment data to evaluate the differences in the results of various
tools in a realistic research scenario. We also used GO term
annotation size and depth in the ontology as measures for biological
specificity. Such an approach has been used in previous studies,
but is not commonly employed in FEA benchmarks (Lewin and
Grieve, 2006; Louie et al., 2010; Tomczak et al., 2018).

In addition to providing a comprehensive overview of how
leading ORA-based tools perform in terms of output consistency
and biological relevance, our work also proposes a novel
benchmarking strategy to guide the evaluation of future tools in
the field. The goal of this work is not to analyze the performance
of the ORA tools, but to examine the coherence and profile of the
biological information they provide across different inputs, list sizes,
and their precision in ranking and identifying expected results.

2 Materials and methods
2.1 Dataset generation

For each dataset, we created lists with 500, 200, 100, and 50
genes. Furthermore, Entrez ID gene lists were created for all lists
by converting their gene symbols using the biomaRt library in
R (Durinck et al., 2005; Durinck et al., 2009). Both lists, with
gene symbols and Entrez IDs, were used because some tools either
accepted or displayed imprecise results for one of the identifiers.
Our datasets can be acquired from [https://github.com/LARA-Lab-
Aging].

The random lists were generated by selecting 500, 200, 100, and
50 protein-coding Homo sapiens genes at random. This process was
repeated 5 times to produce 5 different lists for each size.

The Hallmark lists were built from the gene sets available in
the MSigDB human hallmarks collection (Subramanian et al., 2005;
Liberzon et al, 2011; 2015). To create the 500 genes Hallmark
list, we combined the HALLMARK HYPOXIA, HALLMARK DNA
REPAIR, and HALLMARK UV RESPONSE UP gene sets. The 200-
gene list contained only genes in the hypoxia set. The 100 and
50-gene lists were built by downsampling the 200-hypoxia dataset.

The GOBP lists were generated by combining gene sets from
different GO Biological Process datasets in the MSigDB Ontologies
collection. To build the lists, we aimed to select ontologies with
minimal overlap. The ontology gene sets that compose each gene list
are gathered in Supplementary Table S1. Additionally, all lists had
their duplicates removed.

The Contextual dataset was obtained from the lung cancer
GSE18842 dataset available in the Gene Expression Omnibus (GEO)
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TABLE 1 Selected tools for the comparative analysis and relevant information. The GO version column corresponds to the GO version used at the time of the analyses according to each tool's documentation.
The column “Raw p-value” indicates whether the tool also provides raw p-values alongside their corrected values.

Software GO version  Custom annotation and GO files = Raw p-value Platform Version/Last updated Reference

DAVID 2025° No/No Yes Web 2003 4/1/2024 (DAVID Knowledgebase v2024q1) Huang et al., 2009; Sherman et al., 2022
PANTHER 2025-02-06 No/No Yes Web 2000 v18.0 - 17/09/2023 Mi et al. (2019)
Enrichr 2025° No/No Yes Web 2013 8/7/2023 Chen et al. (2013)
WebGestalt 2024° No/No Yes Web/R package 2005 2024 Elizarraras et al. (2024)
g:Profiler 2024° Yes/No No Web/R package 2007 ell12_eg59_pl19_25aa4782 - 2025 Kolberg et al. (2023)
ShinyGO 2022° No/No No Web 2018 v0.82 - 2/2025 Ge et al. (2020)
ClueGO 2025-03-16 Yes/Yes Yes Cytoscape 2009 v2.5.10 - 2023 Bindea et al. (2009)
BiNGO 2013° Yes/Yes Yes Cytoscape 2005 v3.0.5 - 2021 Maere et al. (2005)
topGO 2024-09-20 Yes/No Yes R package 2006 v2.58.0 - 2024 Alexa A (2024)
clusterProfiler 2024-09-20 Yes/No Yes R package 2012 v4.14.6 - 2025 Xu et al. (2024)
GOstats 2024-09-20 No/No Yes R package 2006 v2.72.0 - 2025 Falcon and Gentleman (2007)
goana (limma) 2024-09-20 No/No Yes R package 2015 Limma v3.62.2 - 01/2025 Ritchie et al. (2015)

Table legends: * updated daily; ® only the update year is mentioned.
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[https://www.ncbi.nlm.nih.gov/geo/], which comprises 46 cancer
and 45 control samples (Sanchez-Palencia etal.,, 2011). Firstly,
the dataset was imported into Gene Expression Analysis Platform
(GEAP) software, which employs underlying R-based tools through
a graphical user interface to perform microarray data analyses
(Nunes et al., 2022). Quality analysis was conducted to filter out low-
quality data within GEAP, which utilizes the arrayQualityMetrics
package internally. Samples that failed the quality metrics of at least
two of the three metrics analyzed by arrayQualityMetrics would be
discarded before the Differential Gene Expression (DGE) analysis;
however, no samples had to be discarded. Next, DGE analysis was
conducted through the “Comparison Between Two Groups” tab in
GEAP, which employs the limma package. The parameters used
were the default eBayes method and the False Discovery Rate (FDR)
correction method (Benjamini and Hochberg, 1995). Finally, the
results were filtered for logFC > 1 and p-value <0.05, yielding a table
with 3,222 DEG (overexpressed = 1,386; underexpressed = 1836).
The top 500 DEGs were selected to build the 500 contextual gene
list. The same downsampling process as described before was used
to create the smaller lists.

2.2 Tool selection and FEA

Tools were selected based on the following criteria: (i) tools
widely used in the scientific community (=500 citations on
Google Scholar), (ii) tools that have been updated in the past
5 years or allow the usage of up-to-date GO annotations and
ontology files, and (iii) tools that are functioning as described
in their available documentation. For the FEA, we attempted
to maintain the parameters as similar as possible and used
the default options when no equivalents were available. All
analyses were conducted using human GO annotations. The
whole human genome was used as background for the Random,
Hallmark, and GOBP sets, whereas the Affymetrix table from
GSE18842 served as background for the Contextual dataset.
In general, either the FDR or the Benjamini-Hochberg (BH)
correction method was used, and all ontologies with fewer than
2 genes were removed from the results. Enrichment results for
the Hallmark, Contextual, and GOBP datasets are compiled in
Supplementary Table S2. All raw outputs are available at [https://
github.com/LARA-Lab-Aging]. Additionally, gene-mapping success
rates are provided in Supplementary Table S5.

2.2.1 BINGO

Analyses that employed BiNGO were used to assess
overrepresentation and employed the hypergeometric test to
compute p-values (Maere et al., 2005). Additionally, the significance
level was set to 1, all categories were selected, and the ontology file
used was GO_Biological_Process in BINGO.

2.2.2 ClueGO

ClueGO enrichment results were obtained through the One-
sided hypergeometric test (enrichment) with the GO Biological
Process annotation set, the evidence option set to “All’, minimum
number of genes per ontology set to two, and the BH option for p-
value correction (Bindea et al., 2009). Other options available were
all unselected.
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2.2.3 DAVID

Results from DAVID were obtained by querying the
16 gene lists (Entrez IDs) in the functional annotation
tab and  selecting the GOTERM_BP_DIRECT  chart
(Huang et al., 2009; Sherman et al., 2022). The parameters used
were EASE <1, Count =2, and the maximum number of records was
set at 10,000. The correction method employed was FDR.

2.2.4 Enrichr

The results in Enrichr were obtained by querying the 16 Gene
Symbol gene lists and selecting the GO Biological Process 2025 in the
Ontologies tab (Chen et al., 2013). The correction method was BH.

2.2.5 GOstats

Analyses in the GOstatsR package were conducted through
the hyperGTest function (annotation = “org.Hs.eg.db”, ontology =
“BP”, pvalueCutoff = 1, testDirection = “over”) that is based
on the hypergeometric distribution statistical test (Falcon and
Gentleman, 2007).

2.2.6 PANTHER

Analyses in PANTHER were conducted with the Statistical
Overrepresentation test and the Biological Process complete
annotation set (Mi et al., 2019). The statistical test used was
Fisher’s exact test, and the correction method employed was FDR.
PANTHER could not map Entrez IDs properly. Thus, lists were
queried with the Gene Symbols.

2.2.7 ShinyGO

ShinyGO analyses results were generated in the Enrichment tool
with the Pathway database option set to GO Biological Process,
FDR cutoff to 1.0, and pathway minimal size to 2 (Ge et al., 2020).
The redundancy removal option was unselected. Only the top 1,000
enriched ontologies were selected, which is the maximum number
of results ShinyGO outputs.

2.2.8 WebGestalt

Analyses in WebGestalt were conducted by using the
ORA method option with the GO
Functional Database (Elizarraras et al, 2024). No redundancy

Biological ~Process
removal method was selected, and the FDR was used as the p-
value adjustment method. The top 10,000 ontologies were selected
as the results.

2.2.9 clusterProfiler

Enrichment results in clusterProfiler were obtained through
the enrichGO function (OrgDB = “org.Hs.eg.db’, ont = “BP%
pAdjustMethod “fdr”, 1, minGSSize
2), which uses the hypergeometric distribution to conduct
statistical analysis (Xu et al., 2024).

pvalueCutoft =

2.2.10 g:Profiler

The analyses with g:Profiler were conducted in the R package
gprofiler2 through the gost function (organism = “hsapiens’,
significant = F, user_threshold = 1, correction_method = “fdr”,
sources = “GO:BP”) (Kolberg et al., 2023).

frontiersin.org


https://doi.org/10.3389/fbinf.2026.1755664
https://www.ncbi.nlm.nih.gov/geo/
https://github.com/LARA-Lab-Aging
https://github.com/LARA-Lab-Aging
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Oliveira et al.

2.2.11 goana (limma)

The goana function from the limma R package was used to
conduct the analyses, with the FDR parameter set to 0.05 and the
species set to “Hs” (Ritchie et al., 2015). The custom background
option was used with the Contextual lists.

2.2.12 topGO

Analyses with topGO were conducted with the tools
default weight01 algorithm, Fisher’s exact statistical test, org.
Hs.eg.db annotation data, and the BP ontology set (Alexa, 2024).
Subsequently, p-value correction with FDR through Rs p.
adjust function before removal of ontologies annotated to less
than 2 genes in the input list to ensure adequate p-value
correction.

2.3 GO term specificity assessment

GO term biological specificity was assessed based on the
term’s annotation size and its depth in the ontology structure.
Both properties have been widely employed to root the evaluation
of term specificity (Lewin and Grieve, 2006; Louie et al., 2010;
Tomczak et al., 2018). Additionally, the link between them and
biological specificity is highly intuitive: a term tends to be more
general as more genes are associated with it, and, because the
ontology is hierarchical, terms deeper in the hierarchy tend to
be more biologically precise. Metrics were retrieved using the
GOATOOLS Python library (Klopfenstein et al., 2018).

2.4 Semantic similarity analysis

Semantic similarity (SS) analyses were conducted using
GOATOOLS, which implements multiple methods to determine
semantic similarity between two GO terms. We selected Wang’s
method (Wang et al., 2007) to conduct the SS analyses, as it relies
solely on the GO Directed Acyclic Graph structure to define SS
and attempts to translate the similarity of two ontologies into
biological meaning. The GO’s relationships ‘is_a’ and ‘part_of” with
edge scores of 0.8 and 0.6, respectively, were used to determine
Wang’s SS score.

2.5 Metrics calculation

To calculate the defined metrics, we used the enrichment results
obtained with the GOBP dataset. True positives (TP) were defined as
statistically significant ontologies (adjusted p-value < 0.05) that had
a Wang’s semantic similarity (SS) score of at least 0.7 with at least one
of the target ontologies for that input list. Conversely, false negatives
(FN) were ontologies with a Wang’s SS score of at least 0.7, but that
were not statistically significant. Similarly, false positives (FP) and
true negatives (TN) were ontologies with low maximum semantic
similarity (Wang’s SS score < 0.3) compared to the original target
pathways, which were statistically significant or not, respectively.
These Wang’s SS score thresholds were selected to center the analysis
on the ontologies that are very similar (Wang’s SS score > 0.7) to
one of the targets and are, therefore, expected in the results; and
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on ontologies that are very dissimilar (Wang’s SS score), thus are
unexpected.

2.6 Enriched GO terms network
construction and clustering

To group the enriched ontologies into functionally similar clusters,
we built interaction networks for all FEA results, in which the edge
score between two GO terms was their respective Wang’s SS scores.
The networks were then pruned with an edge-weight cutoff of 0.5 to
remove edges connecting dissimilar ontologies. The resulting ontology
similarity networks were clustered using Markov Clustering (MCL)
(Van Dongen, 2008), one of the most robust algorithms for clustering
biological data (Brohée and van Helden, 2006; Satuluri et al., 2010;
Lim et al, 2019). Of the four Markov Clustering inflation values
tested - 1.5, 2.0, 3.5, and 5.0 —, the 5.0 value yielded GO clusters with
the highest biological accuracy. Finally, we classified the 15 largest
clusters that contained 3 or more ontologies for all the clustered
FEA results (Supplementary Tables S3, S4).

Our pipeline is summarized in Figure 1.

3 Results

3.1 Some tools identify statistically
significant ontologies in random datasets

To evaluate how tools handle data with seemingly no biological
context, we conducted FEA using multiple randomized lists of
human protein-coding genes and analyzed the distributions of the
number of enriched GO terms across input sizes. In general, when
using the nominal p-value to determine significance, tools do yield
enrichment results, and the number of enriched ontologies varies
considerably across tools (Supplementary Figure S1).

Nevertheless, after adjusting for multiple comparisons, most
results for all tested tools are not statistically significant (p-value <
0.05) (Figure 2), reinforcing the importance of analyzing enrichment
results using corrected p-values, as this dramatically reduces
the number of false positives, especially when employing ORA
(Hung et al., 2012; Wijesooriya et al., 2022). However, there are tools
able to retrieve enriched GO terms despite the nature of the dataset
and the statistical correction of p-values (Figure 2). Remarkably,
ClueGO and goana consistently yielded the largest number of
enriched categories for this dataset (Figure 2). In particular, ClueGO
displayed a rather interesting behavior: there are substantially fewer
enriched GO terms for the 500-lists in comparison to the other input
sizes, despite it retrieving larger results when considering nominal p-
values (Supplementary Figure S1). Such behavior could reflect how
the p-value correction method is implemented and how detected but
not enriched GO terms are handled. Ultimately, this suggests that
both ClueGO and goana are susceptible to retrieving enriched GO
terms that are either irrelevant or insufficiently descriptive.

These results reiterate that, while ORA-based methods can
produce significant noise, this can be mitigated by appropriately
correcting p-values. Likewise, it reinforces the need to test
the coherence and filtering capabilities of biological information
provided by ORA-based tools.
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Distribution of the number of enriched GO terms for the input lists in the Random dataset. ClueGO and goana tend to yield enrichment results for data

with no biological context (i.e., false positives)

3.2 The number of enriched ontologies
varies greatly among different tools

One of the main differences we observed when comparing
results across enrichment tools was that the number of enriched
GO terms varied significantly in the Hallmark, GOBP, and
Contextual datasets (Figure 3). DAVID and topGO were the most
conservative tools, retrieving considerably fewer enriched categories
than the other tools throughout the three datasets. This could be a
double-edged sword: while it identifies fewer enriched categories,
potentially highlighting the ontologies closely related to the input,
it may also overlook unexpected ontologies that could contribute
important biological novelty.

ClueGO, GOstats, PANTHER, ShinyGO,
WebGestalt, clusterProfiler, g:Profiler, and goana yielded the largest

In contrast,

results across the analyzed datasets. In this case, identifying too
many enriched GO terms may be detrimental, as they are more
prone to false positives and allow the user to choose from an
excessively broad range of statistically significant terms, thereby
biasing the interpretation of the results toward what is relevant
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to them. We argue that in such cases, a more stringent approach
should be taken to analyze the enrichment results, such as using
smaller p-value cutoffs and filtering by term annotation size and
overlapping genes.

These results indicate that not all tools may be suitable for all
potential research questions, as they retrieve highly heterogeneous
sets of ontologies. In this sense, conservative tools might not yield
biological novelty, as they are more likely to show expected results.
In contrast, tools that retrieve thousands of GOs will not only eclipse
relevant and expected results but also force researchers to browse
overly extensive lists in search of useful findings.

3.3 The level of biological informativeness
of FEA varies across tools

To estimate the biological informativeness of the FEA results
provided by each tool, we used the median and average of both the
annotation sizes and depths of the enriched GO terms as measures
of biological specificity (Tables 2, 3). We chose to limit our analysis
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of the FEA results varies greatly across tools.
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Number of enriched ontologies per tool for each input size in the Hallmark, GOBP, and Contextual datasets. In orange, the number of enriched
ontologies (adjusted p-value < 0.05). In blue, the number of non-enriched ontologies (adjusted p-value > 0.05). (A) Number of enriched ontologies for
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to the top 20 and top 100 enriched ontologies, arranged by p-values
in ascending order, to lessen the impact of greatly varying result
sizes and to examine the tools’ ranking preferences. Additionally,
since the final step of FEA inherently involves manual interpretation,
it is reasonable to consider these portions of the results the most
relevant. Both selected metrics were analyzed for the top 20 and top
100 ranked enriched ontologies for all FEA results with the Hallmark
and Contextual datasets.

Remarkably, DAVID, Enrichr, clusterProfiler, and topGO
displayed the smallest annotation sizes and the highest depths
across all list sizes in both datasets (Tables 2, 3), indicating that
these tools tend to obtain more specific enriched ontologies and
provide more descriptive results. For example, their results with
the 500-hallmark list include, among the top-ranking enriched GO
terms, “nucleotide excision repair” (DAVID and Enrichr), “purine
ribonucleotide catabolic process” (clusterProfiler), and “canonical
glycolysis” (topGO), which are more informative compared to the
broader ontologies “primary metabolic process” and “response
to stimulus” (Supplementary Table S2).

Moreover, ClueGO’s output contained highly informative
ontologies, especially for smaller list sizes (200, 100, and 50 for the
Contextual dataset; 50 and 100 for the Hallmark dataset), but failed
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to do so with larger input lists. In this sense, as we tested the 500
lists, generic terms such as “metabolic process” and “biosynthetic
process” became much more prevalent.

Conversely, g:Profiler and goana produced substantially less
informative results, as they retrieved the largest and shallowest
GO terms, which tend to be less precise in terms of biological
significance. For instance, goana obtained the ontologies “regulation
of biological process” and “metabolic process”, among multiple other
generic descriptions, across all results with the Contextual and
Hallmark lists, respectively. On the other hand, g:Profiler yielded
more informative terms than goana, but still included rather broad
GO terms, especially with the Contextual dataset, such as “response
to stimulus” and “biological regulation”. However, we observed
that both tools obtained smaller, deeper ontologies with the 200-
and 100-lists in the Hallmark dataset, particularly in the top 20,
compared to the top 100.

The remaining tools BiINGO, GOstats, PANTHER, ShinyGO,
and WebGestalt provided intermediate results in terms of biological
specificity with the Contextual lists. Nonetheless, a pattern similar
to g:Profiler and goana with the Hallmark lists of sizes 200 and
100 can be observed. For all of these tools, these particular inputs
appear to yield more biologically informative results and place them
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TABLE 2 Table compiling the median annotation size (number of genes associated with a pathway) and the median depth (maximal level in the ontology) of the top 20 and top 100 enriched ontologies (adj P-val
<0.05) for input lists containing 50 and 500 genes for the HALLMARK dataset.

List size HALLMARK

Median annotation size Median depth Average depth

top20 top100 top100 top100

Average annotation size

1819 RARANO

SoljewIoUIOIg Ul SIS13UOI

80

Ba0"uIsIanU0Ly

BiNGO 50 242.50 172.00 937.85 727.77 4.00 4.00 4.00 3.84
100 200.50 218.00 425.65 751.54 4.50 4.00 4.35 3.65
200 152.00 269.00 336.30 839.74 4.50 4.00 4.25 3.79
500 1417.50 380.50 2088.15 903.71 3.00 4.00 3.35 3.89
ClueGO 50 176.00 122.00 206.50 141.09 5.00 6.00 5.05 6.42
100 143.00 208.00 202.85 340.03 8.00 6.00 7.60 6.29
200 143.00 310.00 187.85 765.81 8.00 5.00 7.85 5.84
500 597.50 321.00 2385.75 1269.15 5.50 5.00 5.70 5.89
DAVID 50 55.50 46.50 163.90 112.38 5.00 5.50 6.15 5.72
100 49.00 48.50 100.65 111.19 6.00 6.00 6.65 5.98
200 49.00 51.00 153.25 125.29 6.00 6.00 6.95 5.96
500 82.00 49.50 177.90 118.44 7.50 7.00 7.70 6.77
ENRICHR 50 67.00 56.50 213.60 168.55 6.00 6.00 5.85 6.58
100 59.50 44.50 158.60 134.59 6.00 6.00 6.20 6.93
200 31.00 49.00 37.15 182.12 9.00 6.00 9.00 6.73
500 54.00 49.00 104.55 140.33 8.00 7.00 7.90 7.47
GOstats 50 560.00 341.50 744.50 1116.91 4.00 4.00 3.85 5.09
100 121.00 217.00 184.10 616.74 8.00 6.00 7.45 6.17
200 116.00 256.50 156.05 650.91 8.00 5.50 7.95 6.11
500 406.00 337.00 1816.60 1368.79 7.00 5.00 6.40 5.87

(Continued on the following page)
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TABLE 2 (Continued) Table compiling the median annotation size (number of genes associated with a pathway) and the median depth (maximal level in the ontology) of the top 20 and top 100 enriched
ontologies (adj P-val <0.05) for input lists containing 50 and 500 genes for the HALLMARK dataset.

List size HALLMARK
Median annotation size ‘ Average annotation size Median depth ‘ Average depth
top20 top100 top20 top100 top20 top100 top20 top100
PANTHER 50 320.00 234.00 687.70 945.94 4.00 4.00 4.40 533
100 69.00 170.50 98.90 735.85 8.00 5.50 7.95 6.01
200 69.00 250.50 98.90 1080.93 8.00 5.00 7.95 5.85
500 515.50 399.00 3114.90 1607.08 5.50 5.00 5.60 5.63
ShinyGO 50 749.50 644.50 1267.30 1128.00 3.50 4.00 3.70 417
100 297.00 672.00 743.00 1054.52 4.00 4.00 445 442
200 156.00 637.50 245.20 1114.78 5.00 4.00 5.45 461
500 1172.50 652.50 2094.35 1319.82 3.00 4.00 3.65 4.59
WebGestalt 50 324.50 206.50 516.10 424.10 4.00 5.00 4.20 567
100 11550 197.00 172.90 476.56 8.00 5.50 7.45 6.05
200 111.00 247.50 152.80 521.66 8.00 5.50 7.70 5.90
500 348.50 244.00 373.60 495.86 7.00 6.00 6.85 6.10
clusterProfiler 50 191.50 145.00 200.95 170.61 5.00 5.50 5.10 6.18
100 117.00 129.00 155.30 161.49 8.00 6.00 7.65 6.48
200 117.00 156.00 137.60 179.15 8.00 6.00 8.00 6.64
500 159.00 162.50 206.55 183.64 8.00 7.00 7.45 7.04
gProfiler 50 813.50 552.50 1692.80 1087.44 3.50 4.00 3.45 4.96
100 126.50 263.50 250.50 893.26 7.50 5.00 7.30 5.70
200 113.00 255.50 172.95 743.64 8.00 5.00 7.50 5.98
500 533.50 466.50 1344.90 1437.14 5.00 5.00 530 551

(Continued on the following page)
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among the highest-ranked terms. Given that the 500 Hallmark list
is relatively more heterogeneous, as it includes genes from three
distinct biological hallmarks (DNA repair, Hypoxia, and Response
to UV radiation), while the smaller lists are comprised solely of genes
from the hypoxia hallmark, our results suggest that these tools tend
to lose specificity when analyzing more heterogeneous gene lists.
Furthermore, loss in specificity observed with the 50 Hallmark list -
which also comprises only hypoxia-related genes - is likely related to
the small size of the input. This reinforces our approach by showing
that the nature and size of the input data will strongly affect the
quality of the FEA results.

Furthermore, by analyzing the annotation size distributions
for the top 20, top 100, and all enriched GO terms from each
tool, we found that differences in distribution patterns are much
more pronounced in the top 20 and top 100 than across all
results. Specifically, DAVID, Enrichr, clusterProfiler, and topGO
consistently identify smaller ontologies among their top results,
suggesting these tools favor more specific GO terms at the top ranks.
In contrast, others spread such precise ontologies throughout their
results (Figures 4, 5). However, it is essential to note that the output
size can influence the comparisons with the full extent of the results,
especially in tools that yield larger results. The distribution of GO
terms’ annotation size is skewed, with most ontologies having fewer
genes annotated to them (Jelier et al., 2008). Consequently, as output
size increases, the distribution of annotation sizes in FEA results
typically shifts toward smaller values. Also, in the case of ShinyGO,
which only outputs up to 1,000 enriched GO terms, distributions can
be affected, as not all of the enriched ontologies are accounted for.

The findings above reflect a known issue in the field, widely
discussed among users, regarding the relevance of the retrieved GO
terms. Users are familiar with the challenge of finding relevant or
more descriptive GO terms amidst the vast number of bioprocesses
that tools might yield. It is unfeasible or impractical to manually
analyze, for instance, more than 5000 GO terms (Figure 2) to
identify relevant bioprocesses. Our results indicate that tools differ
significantly in the GO terms they rank first and in their level of
informativeness.

3.4 The degree of stringency differs among
tools

We also assessed the tools’ performance in terms of accuracy and
FPR by using Wang’s SS to construct a confusion matrix for each
FEA result with the GOBP dataset. DAVID, WebGestalt, and topGO
were the tools that exhibited the highest accuracy values (Table 4).
Since accuracy, in the context of this study and of how the
confusion matrix was defined, fundamentally denotes how similar
and dissimilar the enriched and not enriched GO terms are to the
targets for each list, this indicates that the FEA results produced by
the selected tools are highly consistent with the biological context of
the input list.

Additionally, these tools displayed the lowest FPR values,
indicating that the GO terms they enrich are highly related to the
input data. ClueGO and ShinyGO were the least accurate software in
this analysis (Table 4), primarily due to the generation of numerous
false positives (i.e., enriched ontologies unrelated to the context of
the input list) (Table 4). Moreover, both tools underperformed in
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TABLE 3 Table compiling the median annotation size (number of genes associated with a pathway) and the median depth (maximal level in the ontology) of the top 20 and top 100 enriched ontologies (adj P-val
<0.05) for input lists containing 50 and 500 genes for the CONTEXTUAL dataset.

List size CONTEXTUAL

Median annotation size

Average annotation size

Median depth Average depth

1819 RARANO

SoljewIoUIOIg Ul SIS13UOI

T

Ba0"uIsIanU0Ly

top100 top100 top100
BiINGO 50 362.00 238.00 1033.75 518.78 3.00 4.00 3.00 3.77
100 407.50 159.50 1081.00 439.40 3.50 4.00 4.05 4.50
200 435.00 165.50 901.35 439.74 3.00 4.00 3.10 442
500 503.50 156.50 1147.35 505.01 3.00 4.00 2.90 421
ClueGO 50 81.50 82.00 89.55 84.78 5.50 6.00 5.45 6.12
100 41.00 70.50 171.70 128.64 5.50 5.50 5.85 5.81
200 452.00 287.00 726.60 502.23 350 5.00 4.15 527
500 386.00 413.50 1238.75 1237.82 4.00 4.00 430 4.80
DAVID 50 52.50 121.00 142.85 267.95 5.50 6.00 5.40 5.82
100 57.50 48.50 118.50 109.42 5.00 5.50 520 5.83
200 62.00 52.50 126.00 136.57 5.50 6.00 5.55 5.85
500 63.00 48.00 103.90 98.56 6.00 6.00 5.75 5.59
ENRICHR 50 53.50 107.50 100.60 191.32 6.00 6.00 5.95 6.14
100 29.00 44.00 62.75 100.97 6.00 6.00 6.20 6.59
200 50.50 35.50 12125 125.01 5.50 6.00 6.35 6.61
500 74.00 54.50 123.65 137.87 550 6.00 6.25 6.40
GOstats 50 815.50 266.50 1351.05 985.37 3.00 4.00 335 4.64
100 511.50 350.50 1493.20 1048.72 450 4.00 4.05 4.63
200 324.00 323.50 1145.40 932.89 4.00 4.00 4.15 4.83
500 371.50 388.00 1176.10 1106.70 4.00 4.00 435 4.86

(Continued on the following page)
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TABLE 3 (Continued) Table compiling the median annotation size (number of genes associated with a pathway) and the median depth (maximal level in the ontology) of the top 20 and top 100 enriched
ontologies (adj P-val <0.05) for input lists containing 50 and 500 genes for the CONTEXTUAL dataset.

1819 RARANO

SoljewIoUIOIg Ul SIS13UOI

4

Ba0"uIsIanU0Ly

List size CONTEXTUAL
Median annotation size ‘ Average annotation size Median depth ‘ Average depth
top20 top100 top20 top100 top20 top100 top20 top100
PANTHER 50 629.00 172.00 1395.40 1044.67 3.50 5.00 3.80 4.86
100 287.00 270.50 1404.80 845.76 5.00 5.00 4.90 497
200 843.00 271.00 1631.10 974.72 3.00 5.00 325 5.19
500 352.00 320.00 940.85 1369.69 4.00 4.50 4.05 5.08
ShinyGO 50 638.50 334.00 842.30 838.00 4.00 5.00 4.40 467
100 357.50 334.00 821.70 746.90 5.00 4.00 4.50 470
200 377.00 426.00 844.45 780.82 4.00 5.00 415 5.19
500 355.50 378.50 684.85 882.43 450 4.00 4.95 4.92
WebGestalt 50 562.00 189.00 603.80 485.86 4.00 5.00 3.90 5.15
100 318.00 296.50 657.95 481.40 450 5.00 4.20 4.84
200 318.00 277.50 644.05 476.15 4.00 4.00 435 4.95
500 317.50 306.50 568.90 496.28 5.00 5.00 4.95 521
clusterProfiler 50 114.00 100.00 154.05 155.87 5.00 6.00 5.60 6.08
100 174.50 67.50 187.25 137.12 5.00 6.00 550 5.73
200 170.00 96.50 211.65 153.25 5.50 6.00 5.60 6.10
500 170.00 135.50 216.35 180.17 6.00 6.00 6.05 6.07
gProfiler 50 1321.00 623.00 3375.20 1966.80 3.00 4.00 2.70 4.05
100 1344.50 697.50 2385.50 1520.07 3.00 4.00 3.15 422
200 1544.00 711.00 3040.55 1861.28 3.00 4.00 3.00 3.97
500 2442.50 726.00 4509.15 2094.63 2.50 4.00 2.85 4.46

(Continued on the following page)
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terms of FPR due to the nature of their results, which contained
few or none non-statistically significant GO terms, thereby biasing
FPR towards 1. This result highlights that performance metrics
are highly dependent on the method used to define them and
the specificities of the tools. Therefore, despite being undoubtedly
relevant performance measures, solely relying on such metrics to
compare different tools can be problematic in the case of FEA.

To complement the confusion matrix analysis, we evaluated the
identification and ranking of the target ontologies for each list size in
the GOBP dataset. Regarding identification abilities, most tools were
able to enrich 90% or more of the proposed target (Table 4), with
the only exceptions being BINGO and topGO, which failed to do so
(66% and 69% identification rates, respectively). In terms of ranking
capabilities, across the 100 and 50 lists, all software ranked the
identified target GO terms near the top (Figure 6; Table 4). However,
most tools lost this ability and increased the dispersion of the targets
in the ranking. DAVID, Enrichr, clusterProfiler, and topGO were the
only tools that could consistently position the targets within the top-
ranking ontologies across all list sizes (Figure 6), suggesting that they
tend to prioritize results closely related to the input.

3.5 Biological profiles are coherent across
tools, but vary in terms of priorization

We further applied MCL to cluster the enriched ontologies
for each FEA result with the Hallmark and Contextual datasets.
Headers were manually assigned to the 15 largest clusters to compare
the biological information provided by each tool. Notably, with
the Hallmark lists, most tools identified clusters directly related to
the expected biological processes (Supplementary Table S3), namely,
DNA repair, hypoxia, and response to UV radiation, since the inputs
comprised their respective hallmark genes. The only exceptions were
DAVID for the 50-lists and topGO for both 100 and 50-lists, which
did not exhibit hypoxia clusters. Both tools did, in fact, enrich at
least one hypoxia-related ontology; that enrichment, however, did
not cluster with any other enriched GO terms.

As most tools yielded results that were at least partially expected
in the Hallmark dataset, the most significant differences ultimately
come down to the interpretability of their FEA results. Remarkably,
DAVID and topGO, two of the tools that had previously produced
the most informative results, also displayed the most coherent and
precise clusters of GO terms. This observation aligns with the
previously reported high accuracy values. In contrast, tools that
generated larger and less specific outputs - for instance, BINGO,
ClueGO, GOstats, PANTHER, ShinyGO, WebGestalt, g:Profiler, and
goana - enriched a greater number of terms that were weakly aligned
with the biological context of the inputs. Clusters that pertained
to “nucleotide metabolism”, “organ and system development’, and
“regulation of cell fate and metabolism” were the most frequently
produced groupings across all lists in this dataset. Although these
are somewhat related to the expected biological processes, their
GO terms are not as strongly associated as terms such as “DNA
repair’, “response to oxygen levels’, or “response to radiation”. The
presence of large numbers of these closely related yet unspecific
ontologies might, depending on the tools’ ranking abilities, conceal
the most insightful or expected descriptions, thus hindering the
interpretability of the results.
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FIGURE 4

Distribution of the annotation sizes of the enriched ontologies for each Hallmark dataset input in the top 20 (first column), top 100 (second column),
and all results (third column). Tools display varying distributions of annotation sizes, with some exhibiting a preference for smaller GO terms. The
differences are more prominent within the top-ranking ontologies. (A—C) Distribution for the 500 Hallmark list in the top 20, 100, and all results,
respectively. (D—F) Distribution for the 200 Hallmark list in the top 20, 100, and all results, respectively. (G-I) Distribution for the 100 Hallmark list in the
top 20, 100, and all results, respectively. (J—L) Distribution for the 200 Hallmark list in the top 20, 100, and all results, respectively.

Moreover, the behaviors observed in the clustering results for
the Contextual dataset FEA analyses were consistent with those
observed in the Hallmark dataset (Supplementary Table S4). DAVID
still exhibited the most coherent and well-defined clusters for the
500-list, but did not display clustering results for the smaller lists,
as it enriched none or only a few GO terms. Similarly, topGO also
did not exhibit any clusters for any of the inputs in this dataset for
the same reason as DAVID. Nonetheless, in general, the profiles of

Frontiers in Bioinformatics

the biological groups yielded, and, thereby, the overall biological
information contained in the enrichment results, were coherent
across all tools.

As a consequence, this suggests that the main differences
in the biological information contained within the FEA results
across all tools lie mainly in their ability to prioritize what’s
most relevant in the ranking and to enrich more specific GO
terms at the top of the results.
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FIGURE 5

Distribution of the annotation sizes of the enriched ontologies for each Contextual dataset input in the top 20 (first column), top 100 (second column),
and all results (third column). Tools display varying distributions of annotation sizes, with some exhibiting a preference for smaller GO terms. The
differences are more prominent within the top-ranking ontologies. (A—C) Distribution for the 500 Contextual list in the top 20, 100, and all results,
respectively. (D—F) Distribution for the 200 Contextual list in the top 20, 100, and all results, respectively. (G-I) Distribution for the 100 Contextual list in
the top 20, 100, and all results, respectively. (J—L) Distribution for the 200 Contextual list in the top 20, 100, and all results, respectively.

4 Discussion Nevertheless, such studies overlook the biological informativeness
provided by FEA while focusing comparisons on metrics that,
FEA has become a crucial step in studies that rely on  although indispensable, fail to accurately describe the performance
omics data to drive biological discovery, as it provides a  of FEA tools. As the final step of FEA inevitably involves manual
facilitated way to interpret such information. Given its valuable interpretation by the user, it is of utmost importance, in the
role, several performance studies have been conducted to  context of FEA, to also assess the tools biological precision and
compare the various tools that employ FEA (Tarca et al, 2013;  interpretability.
Bayerlova et al, 2015; Lim et al, 2018; Nguyen et al,, 2019; In this study, we addressed the aforementioned limitation by
Zyla et al, 2019; Geistlinger et al., 2021; Buzzao et al., 2024). developing a novel benchmarking strategy centered around the
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TABLE 4 Tools performance metrics for all list sizes in the GOBP dataset.

Accuracy ’ FPR Median target rank Identified targets
500 0.43 0.59 220 10/15
200 0.44 0.57 91.5 477
BiINGO
100 0.76 0.25 5 3/4
50 0.41 0.59 4 2/3
500 0.36 0.66 155 15/15
200 0.28 0.74 28 717
ClueGO
100 0.16 0.86 3 4/4
50 0.04 1.00 6 3/3
500 0.77 0.22 22 14/15
200 0.81 0.18 17 7/7
DAVID
100 0.87 0.12 25 4/4
50 0.87 0.13 9 2/3
500 0.53 0.49 24 13/15
200 0.50 0.51 8 7/7
Enrichr
100 0.67 0.34 3 4/4
50 0.48 0.52 15 2/3
500 0.40 0.62 134 15/15
200 0.43 0.58 28 717
GOstats
100 0.64 0.37 4 4/4
50 0.44 0.57 6 3/3
500 0.45 0.57 163 15/15
200 0.49 0.52 37 717
PANTHER
100 0.78 0.22 35 4/4
50 0.54 0.46 28.5 2/3
500 0.12 1.00 165 15/15
200 0.05 1.00 51 7/7
ShinyGO
100 0.19 0.82 4 4/4
50 0.02 1.00 4 3/3
500 0.63 0.38 102 15/15
200 0.70 0.29 22 7/7
WebGestalt
100 0.89 0.11 4.5 4/4
50 0.77 0.23 7 3/3

(Continued on the following page)
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TABLE 4 (Continued) Tools performance metrics for all list sizes in the GOBP dataset.

Tool Size ‘ Accuracy FPR Median target rank Identified targets
500 0.40 0.62 51 15/15
200 0.46 0.55 13 717
clusterProfiler
100 0.69 0.31 3 4/4
50 0.41 0.60 6 3/3
500 0.33 0.70 168 15/15
200 0.36 0.66 43 717
gProfiler
100 0.52 0.48 4 4/4
50 0.38 0.63 6 3/3
500 0.34 0.69 232 15/15
200 0.41 0.60 59 717
goana
100 0.61 0.39 4 4/4
50 0.45 0.56 6 3/3
500 0.79 0.19 17.5 10/15
200 0.79 0.21 9 6/7
topGO
100 0.74 0.24 1 1/4
50 0.76 0.24 12 3/3
Tools
1200 BiNGO ClueGO DAVID Enrichr GOstats PANTHER ShinyGO WebGestalt clusterProfiler  gProfiler goana topGO
~ °
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FIGURE 6
Ranks of the target ontologies for each list in the GOBP dataset. The results show that tools tend to spread the targets throughout the results,
especially with bigger inputs. DAVID, Enricher, clusterProfiler, and topGO were less likely to disperse them.

biological significance of the results. We also provide an extensive
analysis of 12 widely used ORA-based GO FEA tools.

By exploiting the GO structure and assessing the biological
specificity of the enriched GO terms through their annotation
size and depth, we identified insightful tendencies commonly
overlooked in other studies. Our results show that DAVID, Enrichr,
clusterProfiler, and topGO yield more informative results than
the other tools, especially compared with goana and g:Profiler,
which tend to enrich more generic ontologies. It is essential to
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note that alternative methods exist for evaluating the specificity
of a GO term. For instance, Information Content (IC), which is
essentially calculated based on the annotation size of an ontology
and its offspring, and the number of offspring GO terms, are
two viable options (Louie et al, 2010; Tomczak et al, 2018).
However, the measures employed here, annotation size and depth,
are much more straightforward to grasp for the average FEA
user, as they are direct properties of the GO and dont require
additional techniques to evaluate them.

frontiersin.org


https://doi.org/10.3389/fbinf.2026.1755664
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Oliveira et al.

Nonetheless, there is currently no gold-standard method for
assessing GO term biological specificity, and these metrics display
inherent limitations. For instance, the annotation size is directly
affected by annotation coverage, which is particularly problematic
when dealing with non-model organisms. Additionally, two terms
being at the same depth in the ontology does not necessarily imply
that both descriptions are equally specific. Despite these limitations,
leveraging the GO’s properties (i.e., term annotation size and depth)
to estimate specificity remains an intuitive and valid strategy (Lewin
and Grieve, 2006; Louie et al., 2010; Tomczak et al., 2018). Regardless
of the chosen method, we advocate incorporating metrics that reflect
the informativeness of results in FEA benchmark studies, such as
those described above.

Additionally, our results suggest that the interpretability of
each tool’s results may be a key factor in the differences between
the selected tools. In this regard, we argue that output sizes and
ranking abilities are direct measures of the intelligibility of the
biological context provided by FEA. Large results can be challenging
to interpret, and the most insightful GO terms may be overlooked
amid the ocean of enriched ontologies. Likewise, the ability to
position the most relevant terms at the top of the results is a
quality instrumental in the case of FEA. Tools with such tendencies
may benefit from the usage of additional techniques that make
their results more interpretable. Redundancy reduction strategies
have been developed to facilitate the interpretation of FEA results
(Jantzen etal.,, 2011; Ozisik etal., 2022); however, it is crucial
to ensure that such approaches don’t remove the most specific
descriptions while retaining the less informative generic terms.
For example, using subsets of the GO that contain no redundant
terms, such as the GO slim, may decrease redundancy in FEA
results but at the cost of informativeness, as these downsized subsets
tend to span broader ontologies. Besides, methods that group the
enriched GO terms into functional clusters, as we did in this study
using MCL, can be compelling for uncovering the biological profile
of the results, further increasing interpretability, especially since
functionally related ontologies might be scattered across the full
extent of the results.

Furthermore, resources that implement GO term clustering
commonly rely on the GO structure or semantic similarity to
determine functionally related clusters (Klopfenstein et al., 2018;
Xin et al., 2022; Xu et al, 2024). Nonetheless, most platforms
of this kind are optimized to work only with their own imbued
FEA outputs. Tools capable of universally conducting such
interpretability-oriented techniques to FEA outputs - regardless
of the tools that produced them - are still needed in the field.

We also tested the tools with four different input sizes to
investigate their impact on the generated GO profile. The analyses
we conducted revealed that input size primarily affects output sizes
and the tools’ ranking abilities by dispersing the expected targets
for larger sizes. Tools are affected differently: DAVID, Enrichr,
clusterProfiler, and topGO, which, curiously, were also the ones to
provide more biologically specific results, prioritized the targets by
placing them closer to the top of the results, and were less prone
to dispersing them. This suggests that these tools tend to position
the GO terms strongly related to the input among the top-ranking
categories, thereby displaying results that are easier for the user
to interpret. For the user, this is relevant because it helps select
the most appropriate tool based on the research question. In this
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sense, hypothesis-oriented studies may take advantage of tools that
yield larger, less stringent results, while studies aiming to confirm a
biological response will mostly benefit from more conservative tools.
Likewise, our results might aid researchers in selecting tools that
better fit their input size, as different software exhibit heterogeneous
ranking and GO identification performance across input sizes.

The results presented here demonstrate that, even when using
the same FEA method, different tools can yield substantially
different results. These discrepancies are primarily attributable to
(i) variations in GO and annotation versions, (ii) modifications
within the statistical approaches themselves, and (iii) the unique
algorithms each tool employs for statistical testing. The GO database
is regularly updated, with terms being added or removed and
annotation sources being revised. Such updates can significantly
affect FEA results and change their biological interpretation
(Tomczak et al., 2018). Additionally, the implementation of the ORA
method and the statistical correction can vary slightly across tools.
For example, DAVID uses a modified version of Fisher’s Exact Test,
known as the EASE score, which subtracts 01 from the number
of input genes mapped to a given pathway, thereby conferring
more conservative performance than the original Fisher’s Exact
Test. Similarly, differences in how statistical correction methods
are implemented can also influence results and their biological
interpretation (Ziemann et al., 2024). Finally, the algorithms used to
perform multiple statistical tests and generate outputs can produce
significant differences in results across tools. For instance, the
default algorithm in topGO implements a technique that essentially
filters out redundant terms while retaining the ontologies that
best characterize the input list, thereby preserving its biological
relevance. Likewise, g:Profiler, WebGestalt, clusterProfiler, and
ClueGO include built-in options that perform similar functions, but
they were outside the scope of this study, as they are optional post-
processing steps rather than core components of the algorithms.
Users should be mindful of the selected tool’s specific features to
ensure they obtain the most meaningful results from FEA.

Ultimately, the choice of the appropriate tool is determined
primarily by the user’s analysis objectives and the nature of the
input data. For analyses aimed at investigating novel biological
pathways that have not been previously described within a given
condition, tools that yield a larger number of enriched terms
and more specific terms, such as clusterProfiler and Enrichr, are
preferable. Furthermore, these tools and others that retrieve broader
terms (i.e., BINGO, ClueGO, GOstats, PANTHER, WebGestalt,
and g:Profiler) are also suitable for highly heterogeneous data, as
more stringent software may exclude loosely related yet potentially
interesting descriptions. Conversely, more conservative approaches,
exemplified by tools like DAVID and topGO, may be more suitable
when the primary objective is to validate existing hypotheses and
the input data is coherent, such as when the biological condition
in question is known to be associated with specific bioprocesses
or when the study focuses mainly on genes known to participate
in overlapping pathways. Moreover, the user should be aware
of the tools’ characteristics and outputs when selecting software
and performing FEA. For instance, tools that yield larger and
broader results may require filtering and visualization strategies to
facilitate interpretation. Many of the tools selected in this study
include such features embedded in the software. For example,
ClueGO, clusterProfiler, and DAVID provide functional clustering
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options. Similarly, ClueGO, ShinyGO, WebGestalt, clusterProfiler,
and g:Profiler all provide filtering strategies (e.g., redundancy
removal functions, GO term size filtering, and GO term depth
filtering) and built-in visualizations. Such features significantly
increase the usability of FEA tools. Likewise, users should consider
tools’ characteristics that are not directly related to the FEA itself. As
mentioned earlier, FEA tools offer a wide range of additional features
that can significantly impact analysis efficiency; consequently, the
quality of documentation and tutorials plays a central role in FEA
tool selection. Exceptionally, all the tools included in our study have
satisfactory documentation on practical usability. However, some
of them do not report key information, for example, the exact GO
and annotation versions being used to conduct FEA, and that is
quite problematic in the FEA field, especially because it hinders
reproducibility.

Taken together, our results highlight aspects of the FEA
tool’s behavior that are typically overlooked and provide relevant
information that better guides the selection of FEA software.

Data availability statement

The input datasets and scripts can be acquired from https://
github.com/LARA-Lab-Aging.

Author contributions

Fd: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Validation, Visualization, Writing -
original draft, Writing - review and editing. FG: Formal Analysis,
Validation, Writing - review and editing. BF: Conceptualization,
Data curation, Formal Analysis, Funding acquisition, Investigation,
Methodology, Project administration, Resources, Supervision,

Visualization, Writing - original draft, Writing - review and editing.

Funding

The author(s) declared that financial support was received for
this work and/or its publication. This work was funded by the
Coordenagdo de Aperfeicoamento de Pessoal de Nivel Superior

References

Agrawal, A., Balci, H., Hanspers, K., Coort, S. L., Martens, M., Slenter, D. N., et al.
(2024). WikiPathways 2024: next generation pathway database. Nucleic Acids Res. 52,
D679-D689. doi:10.1093/NAR/GKAD9Y60

Alexa, R. J. (2024). topGO:
doi:10.18129/B9.bioc.topGO

Ashburner, M., Ball, C. A,, Blake, J. A,, Botstein, D., Butler, H., Cherry, J. M., et al.
(2000). Gene ontology: tool for the unification of biology. Nat. Genet. 25 (1), 25-29.
doi:10.1038/75556

Bayerlovd, M., Jung, K., Kramer, E, Klemm, E, Bleckmann, A., and Beifibarth,
T. (2015). Comparative study on gene set and pathway topology-based enrichment
methods. BMC Bioinforma. 16. doi:10.1186/s12859-015-0751-5

enrichment analysis for gene ontology.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a
practical and powerful approach to multiple.

Frontiers in Bioinformatics

19

10.3389/fbinf.2026.1755664

(CAPES, Brazil; Finance code 001) and the Fundagao de Amparo
a Pesquisa do Estado do Rio Grande do Sul (FAPERGS) [24/2551-
0001277-0].

Acknowledgements

We thank CAPES, FAPERGS, and CNPq for financial support.

Conflict of interest

The author(s) declared that this work was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declared that generative Al was not used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material
The this

found online at: https://www.frontiersin.org/articles/10.3389/
tbinf.2026.1755664/full#supplementary-material

Supplementary Material for article can be

Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P, Tosolini, M., Kirilovsky,
A, et al. (2009). ClueGO: a cytoscape plug-in to decipher functionally grouped
gene ontology and pathway annotation networks. Bioinformatics 25, 1091-1093.
doi:10.1093/BIOINFORMATICS/BTP101

Brohée, S., and van Helden, J. (2006). Evaluation of clustering algorithms for
protein-protein interaction networks. BMC Bioinforma. 7, 488. doi:10.1186/1471-2105-
7-488

Buzzao, D., Castresana-Aguirre, M., Guala, D., and Sonnhammer, E. L. L. (2024).
Benchmarking enrichment analysis methods with the disease pathway network. Brief.
Bioinform 25, bbae069. doi:10.1093/bib/bbae069

Chen, E. Y, Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V,, et al. (2013).
Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC
Bioinforma. 14, 128. doi:10.1186/1471-2105-14-128

frontiersin.org


https://doi.org/10.3389/fbinf.2026.1755664
https://github.com/LARA-Lab-Aging
https://github.com/LARA-Lab-Aging
https://www.frontiersin.org/articles/10.3389/fbinf.2026.1755664/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbinf.2026.1755664/full#supplementary-material
https://doi.org/10.1093/NAR/GKAD960
https://doi.org/10.18129/B9.bioc.topGO
https://doi.org/10.1038/75556
https://doi.org/10.1186/s12859-015-0751-5
https://doi.org/10.1093/BIOINFORMATICS/BTP101
https://doi.org/10.1186/1471-2105-7-488
https://doi.org/10.1186/1471-2105-7-488
https://doi.org/10.1093/bib/bbae069
https://doi.org/10.1186/1471-2105-14-128
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Oliveira et al.

Consortium, T. G. O., Aleksander, S. A., Balhoff, J., Carbon, S., Cherry, J. M., Drabkin,
H. J., et al. (2023). The gene ontology knowledgebase in 2023. Genetics 224, iyad031.
doi:10.1093/GENETICS/IYADO031

Dong, X., Hao, Y., Wang, X., and Tian, W. (2016). LEGO: a novel method for gene set
over-representation analysis by incorporating network-based gene weights. Sci. Rep. 6,
18871. doi:10.1038/srep18871

Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S.,, De Moor, B., Brazma, A.,
et al. (2005). BioMart and bioconductor: a powerful link between biological
databases and microarray data analysis. Bioinformatics 21, 3439-3440.
doi:10.1093/BIOINFORMATICS/BT1525

Durinck, S., Spellman, P. T,, Birney, E., and Huber, W. (2009). Mapping identifiers
for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat.
Protoc. 4 (8), 1184-1191. doi:10.1038/nprot.2009.97

Elizarraras, J. M., Liao, Y., Shi, Z., Zhu, Q., Pico, A. R., and Zhang, B. (2024).
WebGestalt 2024: faster gene set analysis and new support for metabolomics and
multi-omics. Nucleic Acids Res. 52, W415-W421. doi:10.1093/NAR/GKAE456

Falcon, S., and Gentleman, R. (2007). Using GOstats to test gene lists for GO term
association. Bioinformatics 23, 257-258. doi:10.1093/BIOINFORMATICS/BTL567

Ge, S. X, Jung, D, Jung, D, and Yao, R. (2020). ShinyGO: a graphical
gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628-2629.
doi:10.1093/BIOINFORMATICS/BTZ931

Geistlinger, L., Csaba, G., Santarelli, M., Ramos, M., Schiffer, L., Turaga, N., et al.
(2021). Toward a gold standard for benchmarking gene set enrichment analysis. Brief.
Bioinform 22, 545-556. doi:10.1093/bib/bbz158

Huang, D. W, Sherman, B. T., and Lempicki, R. A. (2009). Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57.
doi:10.1038/NPROT.2008.211

Hung, J. H., Yang, T. H., Hu, Z., Weng, Z., and DeLisi, C. (2012). Gene set enrichment
analysis: performance evaluation and usage guidelines. Brief. Bioinform 13, 281-291.
doi:10.1093/bib/bbr049

Jantzen, S. G., Sutherland, B. J., Minkley, D. R., and Koop, B. E. (2011). GO trimming:
systematically reducing redundancy in large Gene Ontology datasets. BMC Res. Notes
4,267 doi:10.1186/1756-0500-4-267

Jelier, R., Schuemie, M., Roes, P., Vanmulligen, E., and Kors, J. (2008). Literature-
based concept profiles for gene annotation: the issue of weighting. Int. J. Med. Inf. 77,
354-362. doi:10.1016/j.ijmedinf.2007.07.004

Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 28, 27-30. doi:10.1093/NAR/28.1.27

Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y., and Ishiguro-Watanabe, M.
(2025). KEGG: biological systems database as a model of the real world. Nucleic Acids
Res. 53, D672-D677. doi:10.1093/NAR/GKAE909

Klopfenstein, D. V., Zhang, L., Pedersen, B. S., Ramirez, E, Vesztrocy, A. W,, Naldi,
A, etal. (2018). GOATOOLS: a python library for gene ontology analyses. Sci. Rep. 8,
10872. doi:10.1038/541598-018-28948-z

Kolberg, L., Raudvere, U, Kuzmin, I, Adler, P, Vilo, J., and Peterson, H.
(2023). g:Profiler—interoperable web service for functional enrichment analysis
and gene identifier mapping (2023 update). Nucleic Acids Res. 51, W207-W212.
doi:10.1093/NAR/GKAD347

Lewin, A., and Grieve, I. C. (2006). Grouping gene ontology terms to improve
the assessment of gene set enrichment in microarray data. BMC Bioinforma. 7, 426.
doi:10.1186/1471-2105-7-426

Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdéttir, H., Tamayo, P., and
Mesirov, J. P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics 27,
1739-1740. doi:10.1093/BIOINFORMATICS/BTR260

Liberzon, A., Birger, C., Thorvaldsdéttir, H., Ghandi, M., Mesirov, J. P, and Tamayo,
P. (2015). The molecular signatures database (MSigDB) hallmark gene set collection.
Cell Syst. 1, 417-425. doi:10.1016/].CELS.2015.12.004

Lim, S., Lee, S., Jung, I, Rhee, S., and Kim, S. (2018). Comprehensive and critical
evaluation of individualized pathway activity measurement tools on pan-cancer data.
Brief. Bioinform 21, 36-46. doi:10.1093/bib/bby097

Lim, Y,, Yu, I, Seo, D., Kang, U,, and Sael, L. (2019). PS-MCL: parallel shotgun
coarsened Markov clustering of protein interaction networks. BMC Bioinforma. 20, 381.
doi:10.1186/512859-019-2856-8

Louie, B., Bergen, S., Higdon, R., and Kolker, E. (2010). Quantifying protein function
specificity in the gene ontology. Stand Genomic Sci. 2, 238-244. doi:10.4056/sigs.561626

Frontiers in Bioinformatics

20

10.3389/fbinf.2026.1755664

Maere, S., Karel, H., and Martin, K.(2005). BINGO: a cytoscape plugin to assess
overrepresentation of gene ontology categories in biological networks. Bioinformatics
21(16), 3448-3449.

Mi, H., Muruganujan, A., Huang, X., Ebert, D., Mills, C., Guo, X,, et al. (2019).
Protocol update for large-scale genome and gene function analysis with the PANTHER
classification system (v.14.0). Nat. Protoc. 14 (14), 703-721. doi:10.1038/s41596-019-
0128-8

Milacic, M., Beavers, D., Conley, P, Gong, C., Gillespie, M., Griss, J., et al. (2024).
The reactome pathway knowledgebase 2024. Nucleic Acids Res. 52, D672-D678.
doi:10.1093/NAR/GKAD1025

Nguyen, T. M., Shafi, A., Nguyen, T., and Draghici, S. (2019). Identifying significantly
impacted pathways: a comprehensive review and assessment. Genome Biol. 20, 203.
doi:10.1186/s13059-019-1790-4

Nunes, L. J. G., Recamonde-Mendoza, M., and Feltes, B. C. (2022). Gene expression
analysis platform (GEAP): a highly customizable, fast, versatile and ready-to-use
microarray analysis platform. Genet. Mol. Biol. 45, €20210077. doi:10.1590/1678-4685-
GMB-2021-0077

Ozisik, O., Térézol, M., and Baudot, A.(2022). Orsum: a python package for filtering
and comparing enrichment analyses using a simple principle. BMC Bioinform. 23.
doi:10.1186/512859-022-04828-2

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W,, Shi, W,, et al. (2015). Limma
powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 43, e47. doi:10.1093/NAR/GKV007

Sanchez-Palencia, A., Gomez-Morales, M., Gomez-Capilla, J. A., Pedraza, V., Boyero,
L., Rosell, R, et al. (2011). Gene expression profiling reveals novel biomarkers in
nonsmall cell lung cancer. Int. J. Cancer 129 (2), 355-364.

Satuluri, V., Parthasarathy, S., and Ucar, D. (2010). “Markov clustering of protein
interaction networks with improved balance and scalability,” in Proceedings of the First
ACM International Conference on Bioinformatics and Computational Biology (New
York, NY, USA: ACM), 247-256. doi:10.1145/1854776.1854812

Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W,, Lane, H. C,, et al. (2022).
DAVID: a web server for functional enrichment analysis and functional annotation
of gene lists (2021 update). Nucleic Acids Res. 50, W216-W221. doi:10.1093/nar/
gkac194

Subramanian, A., Tamayo, P, Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A, et al. (2005). Gene set enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102,
15545-15550. doi:10.1073/PNAS.0506580102

Tarca, A. L., Bhatti, G., and Romero, R. (2013). A comparison of gene set analysis
methods in terms of sensitivity, prioritization and specificity. PLoS One 8, €79217.
doi:10.1371/journal.pone.0079217

Tomczak, A., Mortensen, J. M., Winnenburg, R., Liu, C., Alessi, D. T., Swamy, V.,
et al. (2018). Interpretation of biological experiments changes with evolution of the
gene ontology and its annotations. Sci. Rep. 2018 8 (8), 1-10. d0i:10.1038/s41598-018-
23395-2

Van Dongen, S. (2008). Graph clustering via a discrete uncoupling process. SIAM J.
Matrix Analysis Appl. 30, 121-141. doi:10.1137/040608635

Wang, J. Z., Du, Z., Payattakool, R, Yu, P. S,, and Chen, C. E (2007). A new
method to measure the semantic similarity of GO terms. Bioinformatics 23, 1274-1281.
doi:10.1093/bioinformatics/btm087

Wijesooriya, K., Jadaan, S. A., Perera, K. L., Kaur, T., and Ziemann, M. (2022). Urgent
need for consistent standards in functional enrichment analysis. PLoS Comput. Biol. 18,
€1009935. doi:10.1371/journal.pcbi.1009935

Xin, Z., Cai, Y,, Dang, L. T,, Burke, H. M. S., Revote, J., Charitakis, N., et al.
(2022). MonaGO: a novel gene ontology enrichment analysis visualisation system. BMC
Bioinforma. 23, 69. doi:10.1186/s12859-022-04594-1

Xu, S., Hu, E., Cai, Y, Xie, Z., Luo, X., Zhan, L., et al. (2024). Using clusterProfiler
to characterize multiomics data. Nat. Protoc. 19 (11), 3292-3320. doi:10.1038/s41596-
024-01020-z

subtle
vbael59.

Two
4,

and Bora, A.
analysis.  Bioinforma.

(2024).
Adbv.

Ziemann, M., Schroeter, B,
problems with overrepresentation
doi:10.1093/BIOADV/VBAE159

Zyla, J., Marczyk, M., Domaszewska, T., Kaufmann, S. H. E. Polanska,
J, and Weiner, J. (2019). Gene set enrichment for reproducible science:
comparison of CERNO and eight other algorithms. Bioinformatics 35, 5146-5154.
doi:10.1093/bioinformatics/btz447

frontiersin.org


https://doi.org/10.3389/fbinf.2026.1755664
https://doi.org/10.1093/GENETICS/IYAD031
https://doi.org/10.1038/srep18871
https://doi.org/10.1093/BIOINFORMATICS/BTI525
https://doi.org/10.1038/nprot.2009.97
https://doi.org/10.1093/NAR/GKAE456
https://doi.org/10.1093/BIOINFORMATICS/BTL567
https://doi.org/10.1093/BIOINFORMATICS/BTZ931
https://doi.org/10.1093/bib/bbz158
https://doi.org/10.1038/NPROT.2008.211
https://doi.org/10.1093/bib/bbr049
https://doi.org/10.1186/1756-0500-4-267
https://doi.org/10.1016/j.ijmedinf.2007.07.004
https://doi.org/10.1093/NAR/28.1.27
https://doi.org/10.1093/NAR/GKAE909
https://doi.org/10.1038/s41598-018-28948-z
https://doi.org/10.1093/NAR/GKAD347
https://doi.org/10.1186/1471-2105-7-426
https://doi.org/10.1093/BIOINFORMATICS/BTR260
https://doi.org/10.1016/J.CELS.2015.12.004
https://doi.org/10.1093/bib/bby097
https://doi.org/10.1186/s12859-019-2856-8
https://doi.org/10.4056/sigs.561626
https://doi.org/10.1038/s41596-019-0128-8
https://doi.org/10.1038/s41596-019-0128-8
https://doi.org/10.1093/NAR/GKAD1025
https://doi.org/10.1186/s13059-019-1790-4
https://doi.org/10.1590/1678-4685-GMB-2021-0077
https://doi.org/10.1590/1678-4685-GMB-2021-0077
https://doi.org/10.1186/s12859-022-04828-2
https://doi.org/10.1093/NAR/GKV007
https://doi.org/10.1145/1854776.1854812
https://doi.org/10.1093/nar/ gkac194
https://doi.org/10.1093/nar/ gkac194
https://doi.org/10.1073/PNAS.0506580102
https://doi.org/10.1371/journal.pone.0079217
https://doi.org/10.1038/s41598-018-23395-2
https://doi.org/10.1038/s41598-018-23395-2
https://doi.org/10.1137/040608635
https://doi.org/10.1093/bioinformatics/btm087
https://doi.org/10.1371/journal.pcbi.1009935
https://doi.org/10.1186/s12859-022-04594-1
https://doi.org/10.1038/s41596-024-01020-z
https://doi.org/10.1038/s41596-024-01020-z
https://doi.org/10.1093/BIOADV/VBAE159
https://doi.org/10.1093/bioinformatics/btz447
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 Dataset generation
	2.2 Tool selection and FEA
	2.2.1 BiNGO
	2.2.2 ClueGO
	2.2.3 DAVID
	2.2.4 Enrichr
	2.2.5 GOstats
	2.2.6 PANTHER
	2.2.7 ShinyGO
	2.2.8 WebGestalt
	2.2.9 clusterProfiler
	2.2.10 g:Profiler
	2.2.11 goana (limma)
	2.2.12 topGO

	2.3 GO term specificity assessment
	2.4 Semantic similarity analysis
	2.5 Metrics calculation
	2.6 Enriched GO terms network construction and clustering

	3 Results
	3.1 Some tools identify statistically significant ontologies in random datasets
	3.2 The number of enriched ontologies varies greatly among different tools
	3.3 The level of biological informativeness of FEA varies across tools
	3.4 The degree of stringency differs among tools
	3.5 Biological profiles are coherent across tools, but vary in terms of priorization

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgements
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

