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Benchmarking multiple gene 
ontology enrichment tools 
reveals high biological 
significance, ranking, and 
stringency heterogeneity among 
datasets

Fábio Henrique Schuster de Oliveira, Felipe Acker Gomes and 
Bruno César Feltes*

Laboratory of DNA Repair and Aging, Department of Biophysics, Institute of Biosciences, Federal 
University of Rio Grande do Sul, Porto Alegre, Brazil

Functional enrichment analysis (FEA) provides biological meaning from lists 
of differentially expressed genes and proteins obtained through omics 
experiments. FEA tools can employ numerous statistical methods and rely on 
different pathway databases. In this sense, Overrepresentation Analysis (ORA) 
is one of the most popular methods to perform FEA. Gene Ontology (GO) 
is arguably the most widely used pathway knowledgebase in FEA. Hence, 
benchmarking the biological accuracy of ORA-based GO enrichment tools is 
crucial. Nevertheless, benchmark studies in FEA tend to focus excessively on 
performance-based metrics rather than on the biological information contained 
in enrichment results. To identify the differences between popular ORA-
based GO enrichment tools and provide data that brings insights into the 
tools’ biological accuracy and, thus, better suits the application of FEA, we 
tested 12 popular GO enrichment tools (i.e., DAVID, PANTHER, WebGestalt, 
Enrichr, ShinyGO, limma, topGO, GOstats, clusterProfiler, g:Profiler, ClueGO, 
and BiNGO) with randomized datasets as negative controls, a target-oriented 
and a hallmark datasets as positive controls, and an experiment-derived dataset. 
Gene sets with 500, 200, 100, and 50 genes were built for each dataset to 
investigate the impact of input sizes. Using the control datasets, we calculated 
the FPR and accuracy of the tools based on the semantic similarity between the 
enriched terms and the target ontologies and assessed overlooked, insightful 
metrics that reflect the biological informativeness of the results, such as the 
specificity of enriched GO terms and the prioritization of target ontologies. 
Additionally, we clustered the FEA results based on term semantic similarity, 
enabling us to directly compare the biological profiles generated by each 
tool. Despite employing the same method and functional database, the tools’ 
results diverged significantly. Our findings reveal considerable variation among 
tools in terms of informativeness and interpretability of results. Some tools 
demonstrated strong capabilities in prioritizing target pathways, while others 
struggled, especially as input size increased. Additionally, we observed that the 
degree to which the enriched ontologies are related to the expected targets 
varies across tools, with some being more conservative than others. Together, 
these results provide powerful insights into the performance characteristics
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of the analyzed GO enrichment tools and yield new, relevant data for 
benchmarking FEA tools.

KEYWORDS

benchmark, bioinformatics, functional enrichment, gene, ontology, overrepresentation 
analysis 

1 Introduction

Functional enrichment analysis (FEA) is a widely used 
method that provides additional biological meaning from lists 
of differentially expressed genes (DEGs) and proteins obtained 
primarily from high-throughput omics experiments by identifying 
enriched “functional descriptions” within omics data. FEA tools 
use the knowledge contained in functional databases, which 
associate functional categories with gene lists, such as the 
Gene Ontology (GO) knowledgebase (Ashburner et al., 2000; 
Consortium et al., 2023), the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (Kanehisa and Goto, 2000; 
Kanehisa et al., 2025), WikiPathways (Agrawal et al., 2024), 
and Reactome (Milacic et al., 2024). In this scenario, the GO is 
one of the most widely used resources in the scientific community 
for providing functional information on genes and gene products.

Currently, a variety of methods that rely on different databases 
and statistical approaches have been developed to conduct FEA. 
Most available methods can be classified into four main classes: 
Overrepresentation Analysis (ORA), Functional Class Scoring 
(FCS), Pathway-topology-based (PT), and Network-based (NB). 
Due to their importance, FEA has become embedded in nearly 
all omics analysis protocols. However, despite employing the same 
method, different enrichment tools produce different outputs. Due 
to such inherent heterogeneity, efforts are made to benchmark 
the performance of distinct enrichment approaches and tools 
(Tarca et al., 2013; Bayerlová et al., 2015; Lim et al., 2018; 
Nguyen et al., 2019; Zyla et al., 2019; Geistlinger et al., 2021; 
Buzzao et al., 2024). Nevertheless, such benchmark studies tend 
to focus on comparing the statistical methods (i.e., ORA, FCS, 
PT, and PT), instead of comparing the results profile generated by 
them (Tarca et al., 2013; Lim et al., 2018; Geistlinger et al., 2021; 
Buzzao et al., 2024). Moreover, by using only a few tools to represent 
a whole class (e.g., DAVID for ORA; GSEA for FCS), these studies 
neglect the differences among software based on the same method 
(Dong et al., 2016; Nguyen et al., 2019; Zyla et al., 2019). Another 
commonly overlooked limitation of benchmarks in the case of FEA 
is that the comparisons tend to rely solely on standard performance 
metrics, such as FDR, sensitivity, accuracy, and specificity, which fail 
to accurately illustrate the performance and behavior of FEA tools, 
as they disregard the biological information that the results provide.

In this study, we evaluated the behavior of 12 commonly used 
ORA-based tools (Table 1) that utilize the GO resource for FEA. To 
evaluate the performance of the selected tools, we used an approach 
focused on the biological meaning derived from the FEA. We 
conducted enrichment analysis using random datasets, a Hallmark
dataset, a GO Biological Process (GOBP) gene set, and a microarray-
derived dataset, all split into lists of varying sizes. The random 
group served as a negative control, while the hallmark dataset was 
employed as a positive control. Furthermore, the GOBP dataset 

was constructed with predetermined target ontologies to enable the 
calculation of relevant metrics, including accuracy and FPR, and 
to assess the tools’ ranking abilities of the target pathways. Finally, 
we constructed the Contextual lists using real high-throughput 
experiment data to evaluate the differences in the results of various 
tools in a realistic research scenario. We also used GO term 
annotation size and depth in the ontology as measures for biological 
specificity. Such an approach has been used in previous studies, 
but is not commonly employed in FEA benchmarks (Lewin and 
Grieve, 2006; Louie et al., 2010; Tomczak et al., 2018).

In addition to providing a comprehensive overview of how 
leading ORA-based tools perform in terms of output consistency 
and biological relevance, our work also proposes a novel 
benchmarking strategy to guide the evaluation of future tools in 
the field. The goal of this work is not to analyze the performance 
of the ORA tools, but to examine the coherence and profile of the 
biological information they provide across different inputs, list sizes, 
and their precision in ranking and identifying expected results. 

2 Materials and methods

2.1 Dataset generation

For each dataset, we created lists with 500, 200, 100, and 50 
genes. Furthermore, Entrez ID gene lists were created for all lists 
by converting their gene symbols using the biomaRt library in 
R (Durinck et al., 2005; Durinck et al., 2009). Both lists, with 
gene symbols and Entrez IDs, were used because some tools either 
accepted or displayed imprecise results for one of the identifiers. 
Our datasets can be acquired from [https://github.com/LARA-Lab-
Aging].

The random lists were generated by selecting 500, 200, 100, and 
50 protein-coding Homo sapiens genes at random. This process was 
repeated 5 times to produce 5 different lists for each size.

The Hallmark lists were built from the gene sets available in 
the MSigDB human hallmarks collection (Subramanian et al., 2005; 
Liberzon et al., 2011; 2015). To create the 500 genes Hallmark
list, we combined the HALLMARK HYPOXIA, HALLMARK DNA 
REPAIR, and HALLMARK UV RESPONSE UP gene sets. The 200-
gene list contained only genes in the hypoxia set. The 100 and 
50-gene lists were built by downsampling the 200-hypoxia dataset.

The GOBP lists were generated by combining gene sets from 
different GO Biological Process datasets in the MSigDB Ontologies 
collection. To build the lists, we aimed to select ontologies with 
minimal overlap. The ontology gene sets that compose each gene list 
are gathered in Supplementary Table S1. Additionally, all lists had 
their duplicates removed.

The Contextual dataset was obtained from the lung cancer 
GSE18842 dataset available in the Gene Expression Omnibus (GEO) 
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TABLE 1  Selected tools for the comparative analysis and relevant information. The GO version column corresponds to the GO version used at the time of the analyses according to each tool’s documentation. 
The column “Raw p-value” indicates whether the tool also provides raw p-values alongside their corrected values.

Software GO version Custom annotation and GO files Raw p-value Platform Release Version/Last updated Reference

DAVID 2025a No/No Yes Web 2003 4/1/2024 (DAVID Knowledgebase v2024q1) Huang et al., 2009; Sherman et al., 2022

PANTHER 2025-02-06 No/No Yes Web 2000 v18.0 - 17/09/2023 Mi et al. (2019)

Enrichr 2025b No/No Yes Web 2013 8/7/2023 Chen et al. (2013)

WebGestalt 2024b No/No Yes Web/R package 2005 2024 Elizarraras et al. (2024)

g:Profiler 2024b Yes/No No Web/R package 2007 e112_eg59_p19_25aa4782 - 2025 Kolberg et al. (2023)

ShinyGO 2022b No/No No Web 2018 v0.82 - 2/2025 Ge et al. (2020)

ClueGO 2025-03-16 Yes/Yes Yes Cytoscape 2009 v2.5.10 - 2023 Bindea et al. (2009)

BiNGO 2013b Yes/Yes Yes Cytoscape 2005 v3.0.5 - 2021 Maere et al. (2005)

topGO 2024-09-20 Yes/No Yes R package 2006 v2.58.0 - 2024 Alexa A (2024)

clusterProfiler 2024-09-20 Yes/No Yes R package 2012 v4.14.6 - 2025 Xu et al. (2024)

GOstats 2024-09-20 No/No Yes R package 2006 v2.72.0 - 2025 Falcon and Gentleman (2007)

goana (limma) 2024-09-20 No/No Yes R package 2015 Limma v3.62.2 - 01/2025 Ritchie et al. (2015)

Table legends: a updated daily; b only the update year is mentioned.
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[https://www.ncbi.nlm.nih.gov/geo/], which comprises 46 cancer 
and 45 control samples (Sanchez-Palencia et al., 2011). Firstly, 
the dataset was imported into Gene Expression Analysis Platform 
(GEAP) software, which employs underlying R-based tools through 
a graphical user interface to perform microarray data analyses 
(Nunes et al., 2022). Quality analysis was conducted to filter out low-
quality data within GEAP, which utilizes the arrayQualityMetrics
package internally. Samples that failed the quality metrics of at least 
two of the three metrics analyzed by arrayQualityMetrics would be 
discarded before the Differential Gene Expression (DGE) analysis; 
however, no samples had to be discarded. Next, DGE analysis was 
conducted through the “Comparison Between Two Groups” tab in 
GEAP, which employs the limma package. The parameters used 
were the default eBayes method and the False Discovery Rate (FDR) 
correction method (Benjamini and Hochberg, 1995). Finally, the 
results were filtered for logFC > 1 and p-value < 0.05, yielding a table 
with 3,222 DEG (overexpressed = 1,386; underexpressed = 1836). 
The top 500 DEGs were selected to build the 500 contextual gene 
list. The same downsampling process as described before was used 
to create the smaller lists. 

2.2 Tool selection and FEA

Tools were selected based on the following criteria: (i) tools 
widely used in the scientific community (≥500 citations on 
Google Scholar), (ii) tools that have been updated in the past 
5 years or allow the usage of up-to-date GO annotations and 
ontology files, and (iii) tools that are functioning as described 
in their available documentation. For the FEA, we attempted 
to maintain the parameters as similar as possible and used 
the default options when no equivalents were available. All 
analyses were conducted using human GO annotations. The 
whole human genome was used as background for the Random, 
Hallmark, and GOBP sets, whereas the Affymetrix table from 
GSE18842 served as background for the Contextual dataset. 
In general, either the FDR or the Benjamini-Hochberg (BH) 
correction method was used, and all ontologies with fewer than 
2 genes were removed from the results. Enrichment results for 
the Hallmark, Contextual, and GOBP datasets are compiled in 
Supplementary Table S2. All raw outputs are available at [https://
github.com/LARA-Lab-Aging]. Additionally, gene-mapping success 
rates are provided in Supplementary Table S5. 

2.2.1 BiNGO
Analyses that employed BiNGO were used to assess 

overrepresentation and employed the hypergeometric test to 
compute p-values (Maere et al., 2005). Additionally, the significance 
level was set to 1, all categories were selected, and the ontology file 
used was GO_Biological_Process in BiNGO. 

2.2.2 ClueGO
ClueGO enrichment results were obtained through the One-

sided hypergeometric test (enrichment) with the GO Biological 
Process annotation set, the evidence option set to “All”, minimum 
number of genes per ontology set to two, and the BH option for p-
value correction (Bindea et al., 2009). Other options available were 
all unselected. 

2.2.3 DAVID
Results from DAVID were obtained by querying the 

16 gene lists (Entrez IDs) in the functional annotation 
tab and selecting the GOTERM_BP_DIRECT chart 
(Huang et al., 2009; Sherman et al., 2022). The parameters used 
were EASE ≤1, Count ≥2, and the maximum number of records was 
set at 10,000. The correction method employed was FDR. 

2.2.4 Enrichr
The results in Enrichr were obtained by querying the 16 Gene 

Symbol gene lists and selecting the GO Biological Process 2025 in the 
Ontologies tab (Chen et al., 2013). The correction method was BH. 

2.2.5 GOstats
Analyses in the GOstatsR package were conducted through 

the hyperGTest function (annotation = “org.Hs.eg.db”, ontology = 
“BP”, pvalueCutoff = 1, testDirection = “over”) that is based 
on the hypergeometric distribution statistical test (Falcon and 
Gentleman, 2007). 

2.2.6 PANTHER
Analyses in PANTHER were conducted with the Statistical 

Overrepresentation test and the Biological Process complete 
annotation set (Mi et al., 2019). The statistical test used was 
Fisher’s exact test, and the correction method employed was FDR. 
PANTHER could not map Entrez IDs properly. Thus, lists were 
queried with the Gene Symbols. 

2.2.7 ShinyGO
ShinyGO analyses results were generated in the Enrichment tool 

with the Pathway database option set to GO Biological Process, 
FDR cutoff to 1.0, and pathway minimal size to 2 (Ge et al., 2020). 
The redundancy removal option was unselected. Only the top 1,000 
enriched ontologies were selected, which is the maximum number 
of results ShinyGO outputs. 

2.2.8 WebGestalt
Analyses in WebGestalt were conducted by using the 

ORA method option with the Biological Process GO 
Functional Database (Elizarraras et al., 2024). No redundancy 
removal method was selected, and the FDR was used as the p-
value adjustment method. The top 10,000 ontologies were selected 
as the results. 

2.2.9 clusterProfiler
Enrichment results in clusterProfiler were obtained through 

the enrichGO function (OrgDB = “org.Hs.eg.db”, ont = “BP”, 
pAdjustMethod = “fdr”, pvalueCutoff = 1, minGSSize = 
2), which uses the hypergeometric distribution to conduct 
statistical analysis (Xu et al., 2024). 

2.2.10 g:Profiler
The analyses with g:Profiler were conducted in the R package 

gprofiler2 through the gost function (organism = “hsapiens”, 
significant = F, user_threshold = 1, correction_method = “fdr”, 
sources = “GO:BP”) (Kolberg et al., 2023). 

Frontiers in Bioinformatics 04 frontiersin.org

https://doi.org/10.3389/fbinf.2026.1755664
https://www.ncbi.nlm.nih.gov/geo/
https://github.com/LARA-Lab-Aging
https://github.com/LARA-Lab-Aging
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Oliveira et al. 10.3389/fbinf.2026.1755664

2.2.11 goana (limma)
The goana function from the limma R package was used to 

conduct the analyses, with the FDR parameter set to 0.05 and the 
species set to “Hs” (Ritchie et al., 2015). The custom background 
option was used with the Contextual lists. 

2.2.12 topGO
Analyses with topGO were conducted with the tool’s 

default weight01 algorithm, Fisher’s exact statistical test, org. 
Hs.eg.db annotation data, and the BP ontology set (Alexa, 2024). 
Subsequently, p-value correction with FDR through R’s p. 
adjust function before removal of ontologies annotated to less 
than 2 genes in the input list to ensure adequate p-value
correction. 

2.3 GO term specificity assessment

GO term biological specificity was assessed based on the 
term’s annotation size and its depth in the ontology structure. 
Both properties have been widely employed to root the evaluation 
of term specificity (Lewin and Grieve, 2006; Louie et al., 2010; 
Tomczak et al., 2018). Additionally, the link between them and 
biological specificity is highly intuitive: a term tends to be more 
general as more genes are associated with it, and, because the 
ontology is hierarchical, terms deeper in the hierarchy tend to 
be more biologically precise. Metrics were retrieved using the 
GOATOOLS Python library (Klopfenstein et al., 2018). 

2.4 Semantic similarity analysis

Semantic similarity (SS) analyses were conducted using 
GOATOOLS, which implements multiple methods to determine 
semantic similarity between two GO terms. We selected Wang’s 
method (Wang et al., 2007) to conduct the SS analyses, as it relies 
solely on the GO Directed Acyclic Graph structure to define SS 
and attempts to translate the similarity of two ontologies into 
biological meaning. The GO’s relationships ‘is_a’ and ‘part_of ’ with 
edge scores of 0.8 and 0.6, respectively, were used to determine
Wang’s SS score. 

2.5 Metrics calculation

To calculate the defined metrics, we used the enrichment results 
obtained with the GOBP dataset. True positives (TP) were defined as 
statistically significant ontologies (adjusted p-value < 0.05) that had 
a Wang’s semantic similarity (SS) score of at least 0.7 with at least one 
of the target ontologies for that input list. Conversely, false negatives 
(FN) were ontologies with a Wang’s SS score of at least 0.7, but that 
were not statistically significant. Similarly, false positives (FP) and 
true negatives (TN) were ontologies with low maximum semantic 
similarity (Wang’s SS score < 0.3) compared to the original target 
pathways, which were statistically significant or not, respectively. 
These Wang’s SS score thresholds were selected to center the analysis 
on the ontologies that are very similar (Wang’s SS score > 0.7) to 
one of the targets and are, therefore, expected in the results; and 

on ontologies that are very dissimilar (Wang’s SS score), thus are 
unexpected. 

2.6 Enriched GO terms network 
construction and clustering

To group the enriched ontologies into functionally similar clusters, 
we built interaction networks for all FEA results, in which the edge 
score between two GO terms was their respective Wang’s SS scores. 
The networks were then pruned with an edge-weight cutoff of 0.5 to 
remove edges connecting dissimilar ontologies. The resulting ontology 
similarity networks were clustered using Markov Clustering (MCL) 
(Van Dongen, 2008), one of the most robust algorithms for clustering 
biological data (Brohée and van Helden, 2006; Satuluri et al., 2010; 
Lim et al., 2019). Of the four Markov Clustering inflation values 
tested – 1.5, 2.0, 3.5, and 5.0 –, the 5.0 value yielded GO clusters with 
the highest biological accuracy. Finally, we classified the 15 largest 
clusters that contained 3 or more ontologies for all the clustered 
FEA results (Supplementary Tables S3, S4). 

Our pipeline is summarized in Figure 1.

3 Results

3.1 Some tools identify statistically 
significant ontologies in random datasets

To evaluate how tools handle data with seemingly no biological 
context, we conducted FEA using multiple randomized lists of 
human protein-coding genes and analyzed the distributions of the 
number of enriched GO terms across input sizes. In general, when 
using the nominal p-value to determine significance, tools do yield 
enrichment results, and the number of enriched ontologies varies 
considerably across tools (Supplementary Figure S1).

Nevertheless, after adjusting for multiple comparisons, most 
results for all tested tools are not statistically significant (p-value < 
0.05) (Figure 2), reinforcing the importance of analyzing enrichment 
results using corrected p-values, as this dramatically reduces 
the number of false positives, especially when employing ORA 
(Hung et al., 2012; Wijesooriya et al., 2022). However, there are tools 
able to retrieve enriched GO terms despite the nature of the dataset 
and the statistical correction of p-values (Figure 2). Remarkably, 
ClueGO and goana consistently yielded the largest number of 
enriched categories for this dataset (Figure 2). In particular, ClueGO 
displayed a rather interesting behavior: there are substantially fewer 
enriched GO terms for the 500-lists in comparison to the other input 
sizes, despite it retrieving larger results when considering nominal p-
values (Supplementary Figure S1). Such behavior could reflect how 
the p-value correction method is implemented and how detected but 
not enriched GO terms are handled. Ultimately, this suggests that 
both ClueGO and goana are susceptible to retrieving enriched GO 
terms that are either irrelevant or insufficiently descriptive.

These results reiterate that, while ORA-based methods can 
produce significant noise, this can be mitigated by appropriately 
correcting p-values. Likewise, it reinforces the need to test 
the coherence and filtering capabilities of biological information 
provided by ORA-based tools. 
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FIGURE 1
Procedure developed to evaluate the 12 ORA-based GO enrichment tools. Four different datasets were generated, each containing inputs with 500, 
200, 100, and 50 genes. FEA results were then analyzed comparatively, and tools’ performance was assessed based on (i) the number of enriched 
ontologies, (ii) the biological informativeness of their results, (iii) target prioritization, (iv) stringency levels, and (v) biological profile.

FIGURE 2
Distribution of the number of enriched GO terms for the input lists in the Random dataset. ClueGO and goana tend to yield enrichment results for data 
with no biological context (i.e., false positives).

3.2 The number of enriched ontologies 
varies greatly among different tools

One of the main differences we observed when comparing 
results across enrichment tools was that the number of enriched 
GO terms varied significantly in the Hallmark, GOBP, and 
Contextual datasets (Figure 3). DAVID and topGO were the most 
conservative tools, retrieving considerably fewer enriched categories 
than the other tools throughout the three datasets. This could be a 
double-edged sword: while it identifies fewer enriched categories, 
potentially highlighting the ontologies closely related to the input, 
it may also overlook unexpected ontologies that could contribute 
important biological novelty.

In contrast, ClueGO, GOstats, PANTHER, ShinyGO, 
WebGestalt, clusterProfiler, g:Profiler, and goana yielded the largest 
results across the analyzed datasets. In this case, identifying too 
many enriched GO terms may be detrimental, as they are more 
prone to false positives and allow the user to choose from an 
excessively broad range of statistically significant terms, thereby 
biasing the interpretation of the results toward what is relevant 

to them. We argue that in such cases, a more stringent approach 
should be taken to analyze the enrichment results, such as using 
smaller p-value cutoffs and filtering by term annotation size and 
overlapping genes.

These results indicate that not all tools may be suitable for all 
potential research questions, as they retrieve highly heterogeneous 
sets of ontologies. In this sense, conservative tools might not yield 
biological novelty, as they are more likely to show expected results. 
In contrast, tools that retrieve thousands of GOs will not only eclipse 
relevant and expected results but also force researchers to browse 
overly extensive lists in search of useful findings. 

3.3 The level of biological informativeness 
of FEA varies across tools

To estimate the biological informativeness of the FEA results 
provided by each tool, we used the median and average of both the 
annotation sizes and depths of the enriched GO terms as measures 
of biological specificity (Tables 2, 3). We chose to limit our analysis 
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FIGURE 3
Number of enriched ontologies per tool for each input size in the Hallmark, GOBP, and Contextual datasets. In orange, the number of enriched 
ontologies (adjusted p-value < 0.05). In blue, the number of non-enriched ontologies (adjusted p-value > 0.05). (A) Number of enriched ontologies for 
the Hallmark datasets. (B) Number of enriched ontologies in the GOBP dataset. (C) Number of enriched ontologies in the Contextual datasets. The size 
of the FEA results varies greatly across tools.

to the top 20 and top 100 enriched ontologies, arranged by p-values 
in ascending order, to lessen the impact of greatly varying result 
sizes and to examine the tools’ ranking preferences. Additionally, 
since the final step of FEA inherently involves manual interpretation, 
it is reasonable to consider these portions of the results the most 
relevant. Both selected metrics were analyzed for the top 20 and top 
100 ranked enriched ontologies for all FEA results with the Hallmark
and Contextual datasets.

Remarkably, DAVID, Enrichr, clusterProfiler, and topGO 
displayed the smallest annotation sizes and the highest depths 
across all list sizes in both datasets (Tables 2, 3), indicating that 
these tools tend to obtain more specific enriched ontologies and 
provide more descriptive results. For example, their results with 
the 500-hallmark list include, among the top-ranking enriched GO 
terms, “nucleotide excision repair” (DAVID and Enrichr), “purine 
ribonucleotide catabolic process” (clusterProfiler), and “canonical 
glycolysis” (topGO), which are more informative compared to the 
broader ontologies “primary metabolic process” and “response 
to stimulus” (Supplementary Table S2).

Moreover, ClueGO’s output contained highly informative 
ontologies, especially for smaller list sizes (200, 100, and 50 for the 
Contextual dataset; 50 and 100 for the Hallmark dataset), but failed 

to do so with larger input lists. In this sense, as we tested the 500 
lists, generic terms such as “metabolic process” and “biosynthetic 
process” became much more prevalent.

Conversely, g:Profiler and goana produced substantially less 
informative results, as they retrieved the largest and shallowest 
GO terms, which tend to be less precise in terms of biological 
significance. For instance, goana obtained the ontologies “regulation 
of biological process” and “metabolic process”, among multiple other 
generic descriptions, across all results with the Contextual and 
Hallmark lists, respectively. On the other hand, g:Profiler yielded 
more informative terms than goana, but still included rather broad 
GO terms, especially with the Contextual dataset, such as “response 
to stimulus” and “biological regulation”. However, we observed 
that both tools obtained smaller, deeper ontologies with the 200- 
and 100-lists in the Hallmark dataset, particularly in the top 20, 
compared to the top 100.

The remaining tools BiNGO, GOstats, PANTHER, ShinyGO, 
and WebGestalt provided intermediate results in terms of biological 
specificity with the Contextual lists. Nonetheless, a pattern similar 
to g:Profiler and goana with the Hallmark lists of sizes 200 and 
100 can be observed. For all of these tools, these particular inputs 
appear to yield more biologically informative results and place them 
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TABLE 2  Table compiling the median annotation size (number of genes associated with a pathway) and the median depth (maximal level in the ontology) of the top 20 and top 100 enriched ontologies (adj P-val 
≤0.05) for input lists containing 50 and 500 genes for the HALLMARK dataset.

Tools List size  HALLMARK

Median annotation size Average annotation size Median depth Average depth

top20 top100 top20 top100 top20 top100 top20 top100

BiNGO 50 242.50 172.00 937.85 727.77 4.00 4.00 4.00 3.84

100 200.50 218.00 425.65 751.54 4.50 4.00 4.35 3.65

200 152.00 269.00 336.30 839.74 4.50 4.00 4.25 3.79

500 1417.50 380.50 2088.15 903.71 3.00 4.00 3.35 3.89

ClueGO 50 176.00 122.00 206.50 141.09 5.00 6.00 5.05 6.42

100 143.00 208.00 202.85 340.03 8.00 6.00 7.60 6.29

200 143.00 310.00 187.85 765.81 8.00 5.00 7.85 5.84

500 597.50 321.00 2385.75 1269.15 5.50 5.00 5.70 5.89

DAVID 50 55.50 46.50 163.90 112.38 5.00 5.50 6.15 5.72

100 49.00 48.50 100.65 111.19 6.00 6.00 6.65 5.98

200 49.00 51.00 153.25 125.29 6.00 6.00 6.95 5.96

500 82.00 49.50 177.90 118.44 7.50 7.00 7.70 6.77

ENRICHR 50 67.00 56.50 213.60 168.55 6.00 6.00 5.85 6.58

100 59.50 44.50 158.60 134.59 6.00 6.00 6.20 6.93

200 31.00 49.00 37.15 182.12 9.00 6.00 9.00 6.73

500 54.00 49.00 104.55 140.33 8.00 7.00 7.90 7.47

GOstats 50 560.00 341.50 744.50 1116.91 4.00 4.00 3.85 5.09

100 121.00 217.00 184.10 616.74 8.00 6.00 7.45 6.17

200 116.00 256.50 156.05 650.91 8.00 5.50 7.95 6.11

500 406.00 337.00 1816.60 1368.79 7.00 5.00 6.40 5.87
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TABLE 2  (Continued) Table compiling the median annotation size (number of genes associated with a pathway) and the median depth (maximal level in the ontology) of the top 20 and top 100 enriched 
ontologies (adj P-val ≤0.05) for input lists containing 50 and 500 genes for the HALLMARK dataset.

Tools List size  HALLMARK

Median annotation size Average annotation size Median depth Average depth

top20 top100 top20 top100 top20 top100 top20 top100

PANTHER 50 320.00 234.00 687.70 945.94 4.00 4.00 4.40 5.33

100 69.00 170.50 98.90 735.85 8.00 5.50 7.95 6.01

200 69.00 250.50 98.90 1080.93 8.00 5.00 7.95 5.85

500 515.50 399.00 3114.90 1607.08 5.50 5.00 5.60 5.63

ShinyGO 50 749.50 644.50 1267.30 1128.00 3.50 4.00 3.70 4.17

100 297.00 672.00 743.00 1054.52 4.00 4.00 4.45 4.42

200 156.00 637.50 245.20 1114.78 5.00 4.00 5.45 4.61

500 1172.50 652.50 2094.35 1319.82 3.00 4.00 3.65 4.59

WebGestalt 50 324.50 206.50 516.10 424.10 4.00 5.00 4.20 5.67

100 115.50 197.00 172.90 476.56 8.00 5.50 7.45 6.05

200 111.00 247.50 152.80 521.66 8.00 5.50 7.70 5.90

500 348.50 244.00 373.60 495.86 7.00 6.00 6.85 6.10

clusterProfiler 50 191.50 145.00 200.95 170.61 5.00 5.50 5.10 6.18

100 117.00 129.00 155.30 161.49 8.00 6.00 7.65 6.48

200 117.00 156.00 137.60 179.15 8.00 6.00 8.00 6.64

500 159.00 162.50 206.55 183.64 8.00 7.00 7.45 7.04

gProfiler 50 813.50 552.50 1692.80 1087.44 3.50 4.00 3.45 4.96

100 126.50 263.50 250.50 893.26 7.50 5.00 7.30 5.70

200 113.00 255.50 172.95 743.64 8.00 5.00 7.50 5.98

500 533.50 466.50 1344.90 1437.14 5.00 5.00 5.30 5.51
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among the highest-ranked terms. Given that the 500 Hallmark list 
is relatively more heterogeneous, as it includes genes from three 
distinct biological hallmarks (DNA repair, Hypoxia, and Response 
to UV radiation), while the smaller lists are comprised solely of genes 
from the hypoxia hallmark, our results suggest that these tools tend 
to lose specificity when analyzing more heterogeneous gene lists. 
Furthermore, loss in specificity observed with the 50 Hallmark list – 
which also comprises only hypoxia-related genes – is likely related to 
the small size of the input. This reinforces our approach by showing 
that the nature and size of the input data will strongly affect the 
quality of the FEA results.

Furthermore, by analyzing the annotation size distributions 
for the top 20, top 100, and all enriched GO terms from each 
tool, we found that differences in distribution patterns are much 
more pronounced in the top 20 and top 100 than across all 
results. Specifically, DAVID, Enrichr, clusterProfiler, and topGO 
consistently identify smaller ontologies among their top results, 
suggesting these tools favor more specific GO terms at the top ranks. 
In contrast, others spread such precise ontologies throughout their 
results (Figures 4, 5). However, it is essential to note that the output 
size can influence the comparisons with the full extent of the results, 
especially in tools that yield larger results. The distribution of GO 
terms’ annotation size is skewed, with most ontologies having fewer 
genes annotated to them (Jelier et al., 2008). Consequently, as output 
size increases, the distribution of annotation sizes in FEA results 
typically shifts toward smaller values. Also, in the case of ShinyGO, 
which only outputs up to 1,000 enriched GO terms, distributions can 
be affected, as not all of the enriched ontologies are accounted for.

The findings above reflect a known issue in the field, widely 
discussed among users, regarding the relevance of the retrieved GO 
terms. Users are familiar with the challenge of finding relevant or 
more descriptive GO terms amidst the vast number of bioprocesses 
that tools might yield. It is unfeasible or impractical to manually 
analyze, for instance, more than 5000 GO terms (Figure 2) to 
identify relevant bioprocesses. Our results indicate that tools differ 
significantly in the GO terms they rank first and in their level of 
informativeness. 

3.4 The degree of stringency differs among 
tools

We also assessed the tools’ performance in terms of accuracy and 
FPR by using Wang’s SS to construct a confusion matrix for each 
FEA result with the GOBP dataset. DAVID, WebGestalt, and topGO 
were the tools that exhibited the highest accuracy values (Table 4). 
Since accuracy, in the context of this study and of how the 
confusion matrix was defined, fundamentally denotes how similar 
and dissimilar the enriched and not enriched GO terms are to the 
targets for each list, this indicates that the FEA results produced by 
the selected tools are highly consistent with the biological context of 
the input list.

Additionally, these tools displayed the lowest FPR values, 
indicating that the GO terms they enrich are highly related to the 
input data. ClueGO and ShinyGO were the least accurate software in 
this analysis (Table 4), primarily due to the generation of numerous 
false positives (i.e., enriched ontologies unrelated to the context of 
the input list) (Table 4). Moreover, both tools underperformed in 

Frontiers in Bioinformatics 10 frontiersin.org

https://doi.org/10.3389/fbinf.2026.1755664
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


O
live

ira e
t al.

10
.3

3
8

9
/fb

in
f.2

0
2

6
.175

5
6

6
4

TABLE 3  Table compiling the median annotation size (number of genes associated with a pathway) and the median depth (maximal level in the ontology) of the top 20 and top 100 enriched ontologies (adj P-val 
≤0.05) for input lists containing 50 and 500 genes for the CONTEXTUAL dataset.

Tools List size  CONTEXTUAL

Median annotation size Average annotation size Median depth Average depth

top20 top100 top20 top100 top20 top100 top20 top100

BiNGO 50 362.00 238.00 1033.75 518.78 3.00 4.00 3.00 3.77

100 407.50 159.50 1081.00 439.40 3.50 4.00 4.05 4.50

200 435.00 165.50 901.35 439.74 3.00 4.00 3.10 4.42

500 503.50 156.50 1147.35 505.01 3.00 4.00 2.90 4.21

ClueGO 50 81.50 82.00 89.55 84.78 5.50 6.00 5.45 6.12

100 41.00 70.50 171.70 128.64 5.50 5.50 5.85 5.81

200 452.00 287.00 726.60 502.23 3.50 5.00 4.15 5.27

500 386.00 413.50 1238.75 1237.82 4.00 4.00 4.30 4.80

DAVID 50 52.50 121.00 142.85 267.95 5.50 6.00 5.40 5.82

100 57.50 48.50 118.50 109.42 5.00 5.50 5.20 5.83

200 62.00 52.50 126.00 136.57 5.50 6.00 5.55 5.85

500 63.00 48.00 103.90 98.56 6.00 6.00 5.75 5.59

ENRICHR 50 53.50 107.50 100.60 191.32 6.00 6.00 5.95 6.14

100 29.00 44.00 62.75 100.97 6.00 6.00 6.20 6.59

200 50.50 35.50 121.25 125.01 5.50 6.00 6.35 6.61

500 74.00 54.50 123.65 137.87 5.50 6.00 6.25 6.40

GOstats 50 815.50 266.50 1351.05 985.37 3.00 4.00 3.35 4.64

100 511.50 350.50 1493.20 1048.72 4.50 4.00 4.05 4.63

200 324.00 323.50 1145.40 932.89 4.00 4.00 4.15 4.83

500 371.50 388.00 1176.10 1106.70 4.00 4.00 4.35 4.86
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TABLE 3  (Continued) Table compiling the median annotation size (number of genes associated with a pathway) and the median depth (maximal level in the ontology) of the top 20 and top 100 enriched 
ontologies (adj P-val ≤0.05) for input lists containing 50 and 500 genes for the CONTEXTUAL dataset.

Tools List size  CONTEXTUAL

Median annotation size Average annotation size Median depth Average depth

top20 top100 top20 top100 top20 top100 top20 top100

PANTHER 50 629.00 172.00 1395.40 1044.67 3.50 5.00 3.80 4.86

100 287.00 270.50 1404.80 845.76 5.00 5.00 4.90 4.97

200 843.00 271.00 1631.10 974.72 3.00 5.00 3.25 5.19

500 352.00 320.00 940.85 1369.69 4.00 4.50 4.05 5.08

ShinyGO 50 638.50 334.00 842.30 838.00 4.00 5.00 4.40 4.67

100 357.50 334.00 821.70 746.90 5.00 4.00 4.50 4.70

200 377.00 426.00 844.45 780.82 4.00 5.00 4.15 5.19

500 355.50 378.50 684.85 882.43 4.50 4.00 4.95 4.92

WebGestalt 50 562.00 189.00 603.80 485.86 4.00 5.00 3.90 5.15

100 318.00 296.50 657.95 481.40 4.50 5.00 4.20 4.84

200 318.00 277.50 644.05 476.15 4.00 4.00 4.35 4.95

500 317.50 306.50 568.90 496.28 5.00 5.00 4.95 5.21

clusterProfiler 50 114.00 100.00 154.05 155.87 5.00 6.00 5.60 6.08

100 174.50 67.50 187.25 137.12 5.00 6.00 5.50 5.73

200 170.00 96.50 211.65 153.25 5.50 6.00 5.60 6.10

500 170.00 135.50 216.35 180.17 6.00 6.00 6.05 6.07

gProfiler 50 1321.00 623.00 3375.20 1966.80 3.00 4.00 2.70 4.05

100 1344.50 697.50 2385.50 1520.07 3.00 4.00 3.15 4.22

200 1544.00 711.00 3040.55 1861.28 3.00 4.00 3.00 3.97

500 2442.50 726.00 4509.15 2094.63 2.50 4.00 2.85 4.46

(Continued on the following page)

Fro
n

tie
rs in

 B
io

in
fo

rm
atics

12
fro

n
tie

rsin
.o

rg

https://doi.org/10.3389/fbinf.2026.1755664
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Oliveira et al. 10.3389/fbinf.2026.1755664
T

A
B

LE
 3
  (C

o
n
ti
n
u
ed

) T
ab

le
 c

o
m

p
ili

n
g

 t
h

e 
m

ed
ia

n
 a

n
n

o
ta

ti
o

n
 s

iz
e 

(n
u

m
b

er
 o

f 
g

en
es

 a
ss

o
ci

at
ed

 w
it

h
 a

 p
at

h
w

ay
) a

n
d

 t
h

e 
m

ed
ia

n
 d

ep
th

 (m
ax

im
al

 le
ve

l i
n

 t
h

e 
o

n
to

lo
g

y)
 o

f 
th

e 
to

p
 2

0
 a

n
d

 t
o

p
 1

0
0

 e
n

ri
ch

ed
 

o
n

to
lo

g
ie

s 
(a

d
j P

-v
al

 ≤
0

.0
5

) f
o

r 
in

p
u

t 
lis

ts
 c

o
n

ta
in

in
g

 5
0

 a
n

d
 5

0
0

 g
en

es
 f

o
r 

th
e 

C
O

N
T

E
X

T
U

A
L d

at
as

et
.

To
o

ls
Li

st
 s

iz
e

 C
O

N
T

E
X

T
U

A
L

M
e

d
ia

n
 a

n
n

o
ta

ti
o

n
 s

iz
e

A
ve

ra
g

e
 a

n
n

o
ta

ti
o

n
 s

iz
e

M
e

d
ia

n
 d

e
p

th
A

ve
ra

g
e

 d
e

p
th

to
p

2
0

to
p

10
0

to
p

2
0

to
p

10
0

to
p

2
0

to
p

10
0

to
p

2
0

to
p

10
0

go
an

a
50

29
66

.0
0

65
5.

50
41

82
.3

5
20

89
.3

5
3.

00
4.

00
2.

55
4.

17

10
0

14
91

.0
0

89
8.

00
32

15
.4

0
21

02
.8

9
3.

00
4.

00
3.

45
3.

96

20
0

28
23

.5
0

85
6.

00
42

70
.3

5
20

03
.3

6
2.

50
3.

50
2.

80
3.

94

50
0

39
67

.0
0

72
0.

00
48

61
.7

5
20

06
.6

0
3.

00
4.

00
2.

95
4.

49

to
pG

O
50

39
4.

50
44

1.
50

43
7.

10
79

3.
67

5.
00

5.
00

5.
30

5.
27

10
0

80
.5

0
15

1.
50

27
0.

75
31

8.
02

7.
00

5.
00

7.
10

5.
76

20
0

86
.0

0
12

9.
50

25
1.

65
23

5.
31

7.
00

6.
00

7.
20

6.
27

50
0

60
.5

0
24

.5
0

10
1.

65
11

1.
66

6.
00

6.
00

6.
65

5.
95

terms of FPR due to the nature of their results, which contained 
few or none non-statistically significant GO terms, thereby biasing 
FPR towards 1. This result highlights that performance metrics 
are highly dependent on the method used to define them and 
the specificities of the tools. Therefore, despite being undoubtedly 
relevant performance measures, solely relying on such metrics to 
compare different tools can be problematic in the case of FEA.

To complement the confusion matrix analysis, we evaluated the 
identification and ranking of the target ontologies for each list size in 
the GOBP dataset. Regarding identification abilities, most tools were 
able to enrich 90% or more of the proposed target (Table 4), with 
the only exceptions being BiNGO and topGO, which failed to do so 
(66% and 69% identification rates, respectively). In terms of ranking 
capabilities, across the 100 and 50 lists, all software ranked the 
identified target GO terms near the top (Figure 6; Table 4). However, 
most tools lost this ability and increased the dispersion of the targets 
in the ranking. DAVID, Enrichr, clusterProfiler, and topGO were the 
only tools that could consistently position the targets within the top-
ranking ontologies across all list sizes (Figure 6), suggesting that they 
tend to prioritize results closely related to the input.

3.5 Biological profiles are coherent across 
tools, but vary in terms of priorization

We further applied MCL to cluster the enriched ontologies 
for each FEA result with the Hallmark and Contextual datasets. 
Headers were manually assigned to the 15 largest clusters to compare 
the biological information provided by each tool. Notably, with 
the Hallmark lists, most tools identified clusters directly related to 
the expected biological processes (Supplementary Table S3), namely, 
DNA repair, hypoxia, and response to UV radiation, since the inputs 
comprised their respective hallmark genes. The only exceptions were 
DAVID for the 50-lists and topGO for both 100 and 50-lists, which 
did not exhibit hypoxia clusters. Both tools did, in fact, enrich at 
least one hypoxia-related ontology; that enrichment, however, did 
not cluster with any other enriched GO terms.

As most tools yielded results that were at least partially expected 
in the Hallmark dataset, the most significant differences ultimately 
come down to the interpretability of their FEA results. Remarkably, 
DAVID and topGO, two of the tools that had previously produced 
the most informative results, also displayed the most coherent and 
precise clusters of GO terms. This observation aligns with the 
previously reported high accuracy values. In contrast, tools that 
generated larger and less specific outputs – for instance, BiNGO, 
ClueGO, GOstats, PANTHER, ShinyGO, WebGestalt, g:Profiler, and 
goana – enriched a greater number of terms that were weakly aligned 
with the biological context of the inputs. Clusters that pertained 
to “nucleotide metabolism”, “organ and system development”, and 
“regulation of cell fate and metabolism” were the most frequently 
produced groupings across all lists in this dataset. Although these 
are somewhat related to the expected biological processes, their 
GO terms are not as strongly associated as terms such as “DNA 
repair”, “response to oxygen levels”, or “response to radiation”. The 
presence of large numbers of these closely related yet unspecific 
ontologies might, depending on the tools’ ranking abilities, conceal 
the most insightful or expected descriptions, thus hindering the 
interpretability of the results.
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FIGURE 4
Distribution of the annotation sizes of the enriched ontologies for each Hallmark dataset input in the top 20 (first column), top 100 (second column), 
and all results (third column). Tools display varying distributions of annotation sizes, with some exhibiting a preference for smaller GO terms. The 
differences are more prominent within the top-ranking ontologies. (A–C) Distribution for the 500 Hallmark list in the top 20, 100, and all results, 
respectively. (D–F) Distribution for the 200 Hallmark list in the top 20, 100, and all results, respectively. (G–I) Distribution for the 100 Hallmark list in the 
top 20, 100, and all results, respectively. (J–L) Distribution for the 200 Hallmark list in the top 20, 100, and all results, respectively.

Moreover, the behaviors observed in the clustering results for 
the Contextual dataset FEA analyses were consistent with those 
observed in the Hallmark dataset (Supplementary Table S4). DAVID 
still exhibited the most coherent and well-defined clusters for the 
500-list, but did not display clustering results for the smaller lists, 
as it enriched none or only a few GO terms. Similarly, topGO also 
did not exhibit any clusters for any of the inputs in this dataset for 
the same reason as DAVID. Nonetheless, in general, the profiles of 

the biological groups yielded, and, thereby, the overall biological 
information contained in the enrichment results, were coherent 
across all tools.

As a consequence, this suggests that the main differences 
in the biological information contained within the FEA results 
across all tools lie mainly in their ability to prioritize what’s 
most relevant in the ranking and to enrich more specific GO 
terms at the top of the results. 
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FIGURE 5
Distribution of the annotation sizes of the enriched ontologies for each Contextual dataset input in the top 20 (first column), top 100 (second column), 
and all results (third column). Tools display varying distributions of annotation sizes, with some exhibiting a preference for smaller GO terms. The 
differences are more prominent within the top-ranking ontologies. (A–C) Distribution for the 500 Contextual list in the top 20, 100, and all results, 
respectively. (D–F) Distribution for the 200 Contextual list in the top 20, 100, and all results, respectively. (G–I) Distribution for the 100 Contextual list in 
the top 20, 100, and all results, respectively. (J–L) Distribution for the 200 Contextual list in the top 20, 100, and all results, respectively.

4 Discussion

FEA has become a crucial step in studies that rely on 
omics data to drive biological discovery, as it provides a 
facilitated way to interpret such information. Given its valuable 
role, several performance studies have been conducted to 
compare the various tools that employ FEA (Tarca et al., 2013; 
Bayerlová et al., 2015; Lim et al., 2018; Nguyen et al., 2019; 
Zyla et al., 2019; Geistlinger et al., 2021; Buzzao et al., 2024). 

Nevertheless, such studies overlook the biological informativeness 
provided by FEA while focusing comparisons on metrics that, 
although indispensable, fail to accurately describe the performance 
of FEA tools. As the final step of FEA inevitably involves manual 
interpretation by the user, it is of utmost importance, in the 
context of FEA, to also assess the tools’ biological precision and
interpretability.

In this study, we addressed the aforementioned limitation by 
developing a novel benchmarking strategy centered around the 
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TABLE 4  Tools performance metrics for all list sizes in the GOBP dataset.

Tool Size Accuracy FPR Median target rank Identified targets

BiNGO

500 0.43 0.59 220 10/15

200 0.44 0.57 91.5 4/7

100 0.76 0.25 5 3/4

50 0.41 0.59 4 2/3

ClueGO

500 0.36 0.66 155 15/15

200 0.28 0.74 28 7/7

100 0.16 0.86 3 4/4

50 0.04 1.00 6 3/3

DAVID

500 0.77 0.22 22 14/15

200 0.81 0.18 17 7/7

100 0.87 0.12 2.5 4/4

50 0.87 0.13 9 2/3

Enrichr

500 0.53 0.49 24 13/15

200 0.50 0.51 8 7/7

100 0.67 0.34 3 4/4

50 0.48 0.52 1.5 2/3

GOstats

500 0.40 0.62 134 15/15

200 0.43 0.58 28 7/7

100 0.64 0.37 4 4/4

50 0.44 0.57 6 3/3

PANTHER

500 0.45 0.57 163 15/15

200 0.49 0.52 37 7/7

100 0.78 0.22 3.5 4/4

50 0.54 0.46 28.5 2/3

ShinyGO

500 0.12 1.00 165 15/15

200 0.05 1.00 51 7/7

100 0.19 0.82 4 4/4

50 0.02 1.00 4 3/3

WebGestalt

500 0.63 0.38 102 15/15

200 0.70 0.29 22 7/7

100 0.89 0.11 4.5 4/4

50 0.77 0.23 7 3/3

(Continued on the following page)
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TABLE 4  (Continued) Tools performance metrics for all list sizes in the GOBP dataset.

Tool Size Accuracy FPR Median target rank Identified targets

clusterProfiler

500 0.40 0.62 51 15/15

200 0.46 0.55 13 7/7

100 0.69 0.31 3 4/4

50 0.41 0.60 6 3/3

gProfiler

500 0.33 0.70 168 15/15

200 0.36 0.66 43 7/7

100 0.52 0.48 4 4/4

50 0.38 0.63 6 3/3

goana

500 0.34 0.69 232 15/15

200 0.41 0.60 59 7/7

100 0.61 0.39 4 4/4

50 0.45 0.56 6 3/3

topGO

500 0.79 0.19 17.5 10/15

200 0.79 0.21 9 6/7

100 0.74 0.24 1 1/4

50 0.76 0.24 12 3/3

FIGURE 6
Ranks of the target ontologies for each list in the GOBP dataset. The results show that tools tend to spread the targets throughout the results, 
especially with bigger inputs. DAVID, Enricher, clusterProfiler, and topGO were less likely to disperse them.

biological significance of the results. We also provide an extensive 
analysis of 12 widely used ORA-based GO FEA tools.

By exploiting the GO structure and assessing the biological 
specificity of the enriched GO terms through their annotation 
size and depth, we identified insightful tendencies commonly 
overlooked in other studies. Our results show that DAVID, Enrichr, 
clusterProfiler, and topGO yield more informative results than 
the other tools, especially compared with goana and g:Profiler, 
which tend to enrich more generic ontologies. It is essential to 

note that alternative methods exist for evaluating the specificity 
of a GO term. For instance, Information Content (IC), which is 
essentially calculated based on the annotation size of an ontology 
and its offspring, and the number of offspring GO terms, are 
two viable options (Louie et al., 2010; Tomczak et al., 2018). 
However, the measures employed here, annotation size and depth, 
are much more straightforward to grasp for the average FEA 
user, as they are direct properties of the GO and don’t require 
additional techniques to evaluate them.
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Nonetheless, there is currently no gold-standard method for 
assessing GO term biological specificity, and these metrics display 
inherent limitations. For instance, the annotation size is directly 
affected by annotation coverage, which is particularly problematic 
when dealing with non-model organisms. Additionally, two terms 
being at the same depth in the ontology does not necessarily imply 
that both descriptions are equally specific. Despite these limitations, 
leveraging the GO’s properties (i.e., term annotation size and depth) 
to estimate specificity remains an intuitive and valid strategy (Lewin 
and Grieve, 2006; Louie et al., 2010; Tomczak et al., 2018). Regardless 
of the chosen method, we advocate incorporating metrics that reflect 
the informativeness of results in FEA benchmark studies, such as 
those described above.

Additionally, our results suggest that the interpretability of 
each tool’s results may be a key factor in the differences between 
the selected tools. In this regard, we argue that output sizes and 
ranking abilities are direct measures of the intelligibility of the 
biological context provided by FEA. Large results can be challenging 
to interpret, and the most insightful GO terms may be overlooked 
amid the ocean of enriched ontologies. Likewise, the ability to 
position the most relevant terms at the top of the results is a 
quality instrumental in the case of FEA. Tools with such tendencies 
may benefit from the usage of additional techniques that make 
their results more interpretable. Redundancy reduction strategies 
have been developed to facilitate the interpretation of FEA results 
(Jantzen et al., 2011; Ozisik et al., 2022); however, it is crucial 
to ensure that such approaches don’t remove the most specific 
descriptions while retaining the less informative generic terms. 
For example, using subsets of the GO that contain no redundant 
terms, such as the GO slim, may decrease redundancy in FEA 
results but at the cost of informativeness, as these downsized subsets 
tend to span broader ontologies. Besides, methods that group the 
enriched GO terms into functional clusters, as we did in this study 
using MCL, can be compelling for uncovering the biological profile 
of the results, further increasing interpretability, especially since 
functionally related ontologies might be scattered across the full 
extent of the results.

Furthermore, resources that implement GO term clustering 
commonly rely on the GO structure or semantic similarity to 
determine functionally related clusters (Klopfenstein et al., 2018; 
Xin et al., 2022; Xu et al., 2024). Nonetheless, most platforms 
of this kind are optimized to work only with their own imbued 
FEA outputs. Tools capable of universally conducting such 
interpretability-oriented techniques to FEA outputs – regardless 
of the tools that produced them – are still needed in the field.

We also tested the tools with four different input sizes to 
investigate their impact on the generated GO profile. The analyses 
we conducted revealed that input size primarily affects output sizes 
and the tools’ ranking abilities by dispersing the expected targets 
for larger sizes. Tools are affected differently: DAVID, Enrichr, 
clusterProfiler, and topGO, which, curiously, were also the ones to 
provide more biologically specific results, prioritized the targets by 
placing them closer to the top of the results, and were less prone 
to dispersing them. This suggests that these tools tend to position 
the GO terms strongly related to the input among the top-ranking 
categories, thereby displaying results that are easier for the user 
to interpret. For the user, this is relevant because it helps select 
the most appropriate tool based on the research question. In this 

sense, hypothesis-oriented studies may take advantage of tools that 
yield larger, less stringent results, while studies aiming to confirm a 
biological response will mostly benefit from more conservative tools. 
Likewise, our results might aid researchers in selecting tools that 
better fit their input size, as different software exhibit heterogeneous 
ranking and GO identification performance across input sizes.

The results presented here demonstrate that, even when using 
the same FEA method, different tools can yield substantially 
different results. These discrepancies are primarily attributable to 
(i) variations in GO and annotation versions, (ii) modifications 
within the statistical approaches themselves, and (iii) the unique 
algorithms each tool employs for statistical testing. The GO database 
is regularly updated, with terms being added or removed and 
annotation sources being revised. Such updates can significantly 
affect FEA results and change their biological interpretation 
(Tomczak et al., 2018). Additionally, the implementation of the ORA 
method and the statistical correction can vary slightly across tools. 
For example, DAVID uses a modified version of Fisher’s Exact Test, 
known as the EASE score, which subtracts 01 from the number 
of input genes mapped to a given pathway, thereby conferring 
more conservative performance than the original Fisher’s Exact 
Test. Similarly, differences in how statistical correction methods 
are implemented can also influence results and their biological 
interpretation (Ziemann et al., 2024). Finally, the algorithms used to 
perform multiple statistical tests and generate outputs can produce 
significant differences in results across tools. For instance, the 
default algorithm in topGO implements a technique that essentially 
filters out redundant terms while retaining the ontologies that 
best characterize the input list, thereby preserving its biological 
relevance. Likewise, g:Profiler, WebGestalt, clusterProfiler, and 
ClueGO include built-in options that perform similar functions, but 
they were outside the scope of this study, as they are optional post-
processing steps rather than core components of the algorithms. 
Users should be mindful of the selected tool’s specific features to 
ensure they obtain the most meaningful results from FEA.

Ultimately, the choice of the appropriate tool is determined 
primarily by the user’s analysis objectives and the nature of the 
input data. For analyses aimed at investigating novel biological 
pathways that have not been previously described within a given 
condition, tools that yield a larger number of enriched terms 
and more specific terms, such as clusterProfiler and Enrichr, are 
preferable. Furthermore, these tools and others that retrieve broader 
terms (i.e., BiNGO, ClueGO, GOstats, PANTHER, WebGestalt, 
and g:Profiler) are also suitable for highly heterogeneous data, as 
more stringent software may exclude loosely related yet potentially 
interesting descriptions. Conversely, more conservative approaches, 
exemplified by tools like DAVID and topGO, may be more suitable 
when the primary objective is to validate existing hypotheses and 
the input data is coherent, such as when the biological condition 
in question is known to be associated with specific bioprocesses 
or when the study focuses mainly on genes known to participate 
in overlapping pathways. Moreover, the user should be aware 
of the tools’ characteristics and outputs when selecting software 
and performing FEA. For instance, tools that yield larger and 
broader results may require filtering and visualization strategies to 
facilitate interpretation. Many of the tools selected in this study 
include such features embedded in the software. For example, 
ClueGO, clusterProfiler, and DAVID provide functional clustering
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options. Similarly, ClueGO, ShinyGO, WebGestalt, clusterProfiler, 
and g:Profiler all provide filtering strategies (e.g., redundancy 
removal functions, GO term size filtering, and GO term depth 
filtering) and built-in visualizations. Such features significantly 
increase the usability of FEA tools. Likewise, users should consider 
tools’ characteristics that are not directly related to the FEA itself. As 
mentioned earlier, FEA tools offer a wide range of additional features 
that can significantly impact analysis efficiency; consequently, the 
quality of documentation and tutorials plays a central role in FEA 
tool selection. Exceptionally, all the tools included in our study have 
satisfactory documentation on practical usability. However, some 
of them do not report key information, for example, the exact GO 
and annotation versions being used to conduct FEA, and that is 
quite problematic in the FEA field, especially because it hinders 
reproducibility.

Taken together, our results highlight aspects of the FEA 
tool’s behavior that are typically overlooked and provide relevant 
information that better guides the selection of FEA software.
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