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Metabolic modelling has wide-ranging applications, including for the improved
production of high-value compounds, understanding complex diseases
and analysing microbial community interactions. Integrating transcriptomic
data with genome-scale metabolic models is crucial for deepening our
understanding of complex biological systems, as it enables the development of
models tailored to specific conditions, such as particular tissues, environments,
or experimental setups. Relatively little attention has been given to the validation
and comparison of such integration methods in predicting intracellular fluxes.
While a few validation studies offer some insights, their scope remains limited,
particularly for organisms like cyanobacteria, for which little metabolic flux data
are available. Cyanobacteria hold significant biotechnological potential due to
their ability to synthesise a wide range of high-value compounds with minimal
resource inputs. Using existing transcriptomic data, we evaluated different
methodological options that can be taken when integrating transcriptomics with
a genome-scale metabolic model of Synechocystis sp. PCC 6803 (iSynCJ816),
when predicting autotrophic flux distributions. We find METRADE* (using single
objective optimisation) to be the best-performing method in cyanobacteria
owing to its ability to perform well across both metrics but emphasise the
importance of configuration and scaling in achieving these outcomes.

KEYWORDS

Flux Balance Analysis, autotrophic flux distributions, cellular phenotypes, central carbon
metabolism, constraint-based metabolic models, cyanobacteria, validation

1 Introduction

Metabolic models are useful tools for the prediction of metabolic fluxes and
cellular phenotypes, with wide ranging applications across biotechnology (Yasemi and
Jolicoeur, 2021). Constraint-based metabolic models are mathematical representations of
cells which enable system-level analyses of metabolism. These networks, where reactions
are modelled as edges and metabolites as nodes, encompass important biological system
properties. Flux is allocated in a manner which obeys reaction stoichiometry with the
overarching reaction topology facilitating the role of interconnectedness within the network.
Gene-protein interactions are represented as Boolean expressions, useful when determining
gene essentiality and often used when integrating external data (like in the case of
transcriptional integration). Finally, network constraints influence and impose limits on flux
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capacity throughout the network. Thermodynamic constraints set
reaction directionality, and nutrient availability modelling indirectly
constrains the model. Often, constraints are applied on nutrient
exchange reactions to reflect experimental conditions, making
metabolic models highly useful tools for modelling adaption to
varying environments. In the case of transcriptional integration,
additional constraints are applied to the model to redirect flux
predictions (Joshi et al., 2017; Smith et al., 2013; Machado and
Herrgard, 2014; Young et al., 2011; Lea-Smith et al., 2021).

Typically, metabolic models are solved when flux is allocated
throughout the network in order to maximise an objective (typically,
a biomass pseudo-reaction). It is through this systems-level
optimisation that metabolic models can predict cellular behaviour
such as growth rates, metabolite secretion and gene/pathway
modifications. It is this linking of the gene and reaction data
(used to develop GEMs) to phenotypic predictions which make
metabolic models powerful tools in biotechnology: identifying
gene targets for high-value compound production or elucidating
pathways of interest involved metabolic reprogramming in changing
conditions for in vitro study. A comparative analysis for integrating
transcriptomic data into metabolic models for cyanobacteria,
would therefore be useful to researchers seeking to optimise and
understand metabolism in photosynthetic bacteria.

Covert et al. (2001) published the first method to integrate
transcriptomic data with metabolic models, enabling model
simulations to account for gene regulation (Covert et al., 2001).
In the following decades, many more integration methods were
developed, allowing researchers to capture condition-specific
properties of metabolic flux distributions, enhancing the specificity
of downstream analyses (Bordbar et al., 2012; Zur et al, 2010;
Caroline et al., 2009; Angione and Lid, 2015; Agren et al., 2014).

Integration methods can be broadly divided into two
categories: switch-based and valve-based (Hyduke et al, 2013;
Vijayakumar et al., 2018). Switch-based methods use thresholding
to categorise reactions based on their predicted activity, with
reactions of low predicted flux typically being switched off
or mathematically penalised for carrying flux. This type of
integration has predominantly been used to model human cell
types due to its binary on/off strategy, with previous studies having
examined the impact of specific methodological decisions during
integration (Richelle et al, 2019; Gopalakrishnan et al., 2023;
Joshi et al., 2020). Richelle et al. (2019) examined gene mapping
types, thresholding and the order of those steps for the creation of
human tissue-specific models while Gopalakrishnan et al. (2023)
mainly focused on algorithmic details and changing thresholding
cut-offs in E. coli, Chinese Hamster Ovary (CHO) and a renal
cancer cell line. Joshi et al. (2020) also examined transcriptomic
integration with a cancer cell line model, focused mainly
on the influence of thresholding values. iMAT is a popular
switch-based integration method with its implementations
being used to further understand metabolic function in human
tissues, stem cell metabolism and in identifying epigenetic
dependencies to drug response (Shlomi et al., 2008; Lin et al., 2025;
Shen et al., 2019b; Shen et al., 2019a).

Valve-based methods involve modifying reaction bounds in a
continuous manner, with bounds being relaxed for upregulated
reactions and tightly constrained for downregulated reactions.
Although enzyme activity is not always directly correlated with
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transcript levels, these methods assume that gene expression can
be used as a “soft” constraint to approximate an upper bound
for reaction rates. It has been argued that valve-based approaches
are preferable as they do not suffer from the loss of fine-
grained expression changes in the same way as switch-based
methods (Machado and Herrgard, 2014). METRADE (Angione
and Li6, 2015) and E-flux2 (Kim et al., 2016) [originally E-flux
(Caroline et al., 2009)] are examples of valve-based integration
methods, both of which have been applied to microbial metabolic
models. In the case of the original E-flux, Caroline et al. (2009)
used their newly developed integration method to model mycolic
acid biosynthesis, predicting drug responses. Since then, it has
become a popular integration method and has been followed by
the development of a second version, E-flux2 (Kim et al., 2016).
E-flux2 ensures flux predictions incorporate minimisation of the
Euclidean norm alongside maximisation of the objective ensuring
unique solutions (Kim et al., 2016). METRADE (MEtabolic and
TRanscriptomics ADaptation Estimator), on the other hand,
developed by Angione and Li6 (2015), has been implemented as
a multi-objective optimisation problem. Originally utilised for the
creation of multi-omic models of E. coli, METRADE has since
been applied to the cyanobacterial species Synechococcus sp. PCC
7002. Using a hybrid machine learning and metabolic modelling
pipeline, repsonse mechanisms to light and salinity fluctuations were
detected - a finding which was not possible from the analysis of the
transcriptomic data alone (Vijayakumar et al., 2020).

13C metabolic flux analysis (13C-MFA), in which cells are
fed 13C-labelled substrates and enrichment patterns calculated,
is widely accepted as the gold-standard for quantifying flux through
central carbon metabolism (Wiechert, 2001; Zamboni et al., 2009;
et 2011). this 13C-MFA
measurements are typically used to validate flux predictions by

Beurton-Aimar al., For reason,
metabolic models and the use of integration methods, as they
provide systems-wide datasets for comparison (Nielsen, 2003).
However, 13C-MFA experiments are notoriously challenging
to perform and costly (Kim et al, 2016). For this reason, few
extensive 13C-MFA datasets exist (relative to transcriptomic
studies), even for well-studied organisms such as E. coli and
S. cerevisiae (Guo et al., 2015). Unsurprisingly, there is even
greater dataset scarcity among cyanobacteria, with only 3 central
carbon flux distributions having ever been published alongside
paired transcriptomics (Bhadra-Lobo et al., 2020; You et al., 2015;
You et al, 2014; Young et al, 2011). Methods for assessing
flux predictions from context-specific models in cyanobacteria
are therefore severely limited. Complicating matters further,
cyanobacterial systems present distinct challenges compared to their
heterotrophic counterparts. In particular, the validity of inferring
photosynthetic fluxes from transcript profiles has yet to be robustly
assessed, and the role of model lighting configurations, scaling
strategies and optimal threshold combinations remain relatively
unexplored.

In this study, we present a novel pipeline (Figure 1) to evaluate
the performance of integration methods for the creation of context-
specific models of Synechocystis sp. PCC 6803 (hereon referred to
as Synechocystis) using existing expression profiles in CyanoExpress
(Hernandez-Prieto and Futschik, 2012). We selected 7 time-series
datasets harvested from WT and mutant cells grown in varying
conditions for analysis. All sets of flux predictions could then be
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Compare iMAT predictions
to experimental autotrophic
flux distribution (using
paired transcriptomics)
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transcriptomic datasets
from CyanoExpress
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threshold combinations

Apply E-flux2 integration
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Apply METRADE*
integration (varying uniform
and variance-guided scaling
and configuration)

Apply iMAT integration

Perform PCoA for each
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growth rates at RNA harvest
times

WebPlotDigitize OD curves
from each dataset's source
literature

Compare biomass
predictions to experimental
data

Derive clustering p-values

FIGURE 1

METRADE® and E-flux2 implementations.

An overview of the analysis pipeline: To derive a dataset of measurable traits, paired OD plots from each dataset’s respective source literature were
used to infer relative changes in growth rates at the time of RNA harvest. This experimental data was compared to growth rate predictions by E-flux2
and METRADE" and p-values calculated. In the case of iIMAT, which does not explicitly predict biomass rates, we used the only published autotrophic
MFA dataset (Young et al., 2011) to determine which threshold combinations resulted in biologically reasonable flux predictions (Supplementary
Figure S1). Only highly performing combinations (based on R? and RMSE metrics) were carried forward for use in PCoA analysis alongside

Derive biomass prediction

p-values

assessed for their ability to capture condition-specific properties of
the data using Principle Coordinates Analysis (PCoA). This was to
determine how well context-specific models representing specific
conditions clustered together (Gower, 1966). For robust validation
in the absence of comprehensive MFA data, we determined that
an opposing metric was required to validate a separate property
of the system predictions. Here, we propose a dual-metric set-up,
where condition-specificity of full flux distributions is considered
alongside predictions of a continuous measurable trait to confirm
successful contextualisation.

2 Methods
2.1 Optimisation

Using the COBRA Toolbox version 3 (Laurent et al., 2019) for
MATLAB, Flux Balance Analysis (FBA) was used to predict growth

rates at different time points using the Synechocystis metabolic
model, iSynCJ816 (Joshi et al., 2017).

Frontiers in Bioinformatics

In metabolic modelling, the metabolic network is represented as
a stoichiometric matrix S, where each element §;; corresponds to the
stoichiometric coeflicient of metabolite i in reaction j. The matrix S
has dimensions m x n, where m is the number of metabolites and n
is the number of reactions.

Su S Sin
S— 821 SZZ SZn
Sml SmZ Smn

The system is assumed to be at steady-state, resulting in this
system of linear equations:

S-v=0

where v is the vector of reaction fluxes. Each element v; in v
represents the flux through reaction j.

In all model setups, to simulate autotrophic growth, glucose
import was switched off and bicarbonate import was modelled as
the sole source of carbon to the system.
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TABLE 1 Key features of integration methods.

10.3389/fbinf.2026.1715377

Mapping function Thresholding Scaling Configuration Biomass
prediction
METRADE" Lazy-step No One-size-fits-all Yes Yes
METRADE" importance Lazy-step No Reaction-specific Yes Yes
E-flux2 Linear No No No Yes
iMAT No Yes No No No

2.2 Integration methods

Key features of each integration method are shown in Table 1.

2.3 METRADE"

For all METRADE"- (and E-flux2-based) simulations, the
objective function was set to the autotrophic biomass equation.

maximize Z=c'-v

where cis a (transposed) vector that specifies the objective function
and Z is the scalar result of the optimisation. Reaction fluxes are
subject to upper and lower bound constraints. Ultimately, these are
determined by the integration method.

Once reaction expressions have been derived for all reactions,
they can be converted into new reaction bounds using a
mapping function:

Vmin ¢(®) < Vi < Vmax ¢(®)

METRADE" uses the lazy-step mapping function (Angione
and Lio, 2015):

$(®) = [1+7ylog(©)]]="© Y (1

where @ is the computed reaction expression and y is a scaling
parameter. We tested the same y ranges as those used by
Vijayakumar et al. (2020) where they applied METRADE to a
cyanobacterial model (Vijayakumar et al., 2020).

In order to best predict realistic flux distributions, we modified
METRADE’s original multi-objective formulation from Angione
and Lié (2015) to maximise a single biomass objective. To
ensure unique solutions and maximise biological plausibility, L1
regularisation was ensured by implementing Parsimonious Flux
Balance Analysis (pFBA) - differing from the L2 regularisation
approach of E-flux2 (Kim et al., 2016). The use of a two-stage
linear program to find solutions maximising biomass rates while
simultaneously minimizing total metabolic flux is routed in the
idea that cells avoid energetically expensive means for achieving
optimal production. We refer to our modified single objective
of METRADE as METRADE" to distinguish it from its original
implementation (Angione and Lio, 2015):

1. Solve for maximal biomass:

maximize Z=c!-v
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2. Minimize total flux subject to optimal growth:

minimize Z [v;l
i

S-v=0
Vmin'¢(®) Sstma\x.gb(@))

The above constraints were applied to both steps, and pFBA
was solved using the Gurobi solver (Gurobi Optimization and
LLC (2024).

2.3.1 METRADE" configurations

In the context of this study, configurations refer to the initial
bound setup of the metabolic model prior to bound alteration
by an integration method. We tested integration methods starting
with two different model configurations. For both configurations,
all non-zero bounded reactions in the default model were set to
an arbitrary value of 1000 or -1000. In configuration “Baseline”,
allowable flux through the photon input reaction was set to half of
that of the rest of the system bounds (-500). The purpose of this was
to create a buffering effect so that the supply of light to the wider
system was less likely to be influenced by transcriptional changes
associated with the photosystems. For the other configuration,
“Max”, photon import was capped at the same upper bound as the
rest of the system (—1000). All bound units are mmol/gram dry
cell weight/hour.

2.3.2 METRADE" scaling

For METRADE"-based methods, we used two scaling strategies:
“one-size-fits-all” (in which y in Equation 1 was scaled to the same
value across all reactions) and “reaction-specific” - also referred
to as “importance-based” scaling: We define the importance of a
gene in the same way as Angione and Li6 (2015). The scaling
parameters tested, in the context of importance, relate to the
maximum gene importance value. For each gene in each condition,
gene variance values were computed from the expression profiles.
The maximum gene importance value was used to normalise these
variances such that

1

eneimportance = maxgeneimportance X ——
§ P § P 0;/minvar.

where o; is the variance of gene i and min var. is the minimum
variance value of the variances dataset (Angione and Li6, 2015). For
each gene in the model, we determined whether it was present in the
expression profiles. Letting G be the set of genes in the model, and
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D be the set of genes in the transcriptomic dataset, gene importance
y; is defined as:

max geneimportance
genemmp ifG, ¢ D
Yi= 2
geneimportance(G;)  ifG; € D

This approach aims to emphasise the constraint-based influence
of variably expressed genes while dampening bound changes from
stably expressed genes. Missing genes are neither amplified nor
dampened to reduce their influence on the solution space.

2.4 E-flux2

) are
set to the corresponding reaction expression values 0. For reversible

In E-flux2 (Kim et al., 2016), reaction upper bounds (v,

max

reactions, the lower bounds (v, are set to —0, and for irreversible

in)
min
reactions, they remain at zero. FBA is run using the modified model
to find a feasible flux distribution v, that maximizes the biomass
objective. (While there is no mapping function defined, the fixing
of reaction expressions as bound constraints in E-flux2 is equivalent
to the use of a linear mapping function.)

1. Solve for maximal biomass:
maximize Z=c’-v
2. A convex quadratic programming (QP) problem is solved:
minimize ) |v,|?
i

subjectto S-v=0

cTv=cl v,

Viin SVV,

min max
The above constraints were applied to both steps, and
the optimisation was solved using the Gurobi solver (Gurobi

Optimization and LLC (2024).

2.5 iIMAT

In the case of iMAT (Zur et al, 2010), gene expression
data are discretised into three categories: highly, low and neutral
expression. The assignment of reactions to each of these categories
depends upon user-defined upper and lower threshold values.
Highly and lowly expressed reactions are linked to binary variables
in the problem formulation which indicate whether reaction flux
is consistent with its expression state category. iMAT integration
therefore seeks to find a flux distribution which is maximially
consistent with the input gene expression data, through these
reaction state categories.

Highly expressed (7{): expression > upper threshold.

Lowly expressed (L£): expression between 0 and lower threshold.

Ambiguous (A): all other reactions (not constrained)

The binary variables y; € {0,1} for each reaction in HUL
indicate whether the reaction is consistent with its expression
state classification. The objective is to maximize the number of
consistent reactions:

max Z y]

jEHUL
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Subject to the following constraints:

S-v=0 (steady — state)
Vinin SV < Viag (original bounds)
vize-y VieH
ngvmax,j+('(l_yj) VieH
V]-SE~(1—yj) Vie Ll
vjzvmm,j—(-(l —y].) Vje L

y;€{0,1} VieHUL

€ is typically a small positive value (here, € = 1), and ¢ is a small
threshold (here, 1e - 8) to define nonzero flux for high-expression
reactions. Reactions in A (ambiguous) are unconstrained beyond
their default.

The optimization problem is formulated as a mixed-
integer linear program (MILP) and solved wusing the
Gurobi solver (Gurobi Optimization and LLC, 2024).

2.6 Transcriptomic data

Expression profiles deposited on CyanoExpress 2.3 (pre-
processing and normalisation details available from: http://
cyanoexpress.sysbiolab.eu/) were screened for their suitability for
downstream analysis. Each transcriptomic dataset was required
to have expression profiles from a minimum of 3 independent
timepoints and have paired OD data to infer growth rates from
(within their associated source papers). WebPlotDigitizer was
used to extract experimental data (Supplementary Figure S2)
from published OD plots (Rohatgi, 2011). Transcriptomic log-
fold change values were converted to fold-change (so that wild-
type expression was equal to 1) in all cases (except to determine
optimal threshold combinations for iMAT) before use for metabolic
modelling.

In the case of determining which iMAT threshold combinations
were carried forward to be applied to the CyanoExpress datasets,
raw normalised read counts were used as input (Young et al., 2011).
Since iMAT relies on percentile-based discretisation of the input
data, outputs and optimal thresholds are equivalent to those
which are applied to fold-change transcript data. Gene mapping
to the metabolic model required conversion of accessions using
the ASM972v1 genome assembly: https://www.ncbinlm.nih.gov/
datasets/genome/GCF_000009725.1/.

2.7 Growth rate derivation

Since absolute growth rate determination is not possible from
optical density data alone, we derived estimates for relative growth
rates. These relative growth rate traces were derived by inferring
values from fitted OD curves (Figure 2A). For each OD plot, either
an exponential, exponential rise, or logistic curve. The fitted curve’s
parameters were used to estimate the growth rate as outlined below.

The optical density is defined as,

OD(t) = -log,, (T (1)

frontiersin.org
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FIGURE 2

Growth rate methodology schematics (A) showing how optical density data associated with transcriptomic measurements at multiple timepoints were
fit with curves, allowing for growth rate estimation in cases where authors did not measure OD at the time of RNA harvest. Curve fitting thereby
extended the number of viable datasets suitable for downstream analysis. Integration methods were used to contextualise the metabolic model using
the expression profiles from each timepoint. Maximising the biomass objective function was used to generate growth predictions at each time point,
facilitating comparison of the predicted and experimentally-derived growth rate traces by computing DTW distances. (A) Snapshot of the biomass
prediction pipeline. (B) (METRADE* using uniform scaling applied to the crhR dataset) is shown. Scaling parameter changes (left panel of B) influence
the relative differences between time series biomass predictions. The right panel of (B) shows the resulting p-values after comparing observed DTW

where T(t) is the transmittance as a function of time. In the limit of
an infinitely far detector,

T(t) = exp (—olc(t))
where o is the scattering cross-section of the particles/cells, I is the

optical path, and ¢(¢) is the time-dependent concentration. If we take
the derivative of OD(%),
( 00D )
oc

Therefore, the growth rate is proportional to the rate of change
of optical density,

_de  dl

dOD _ dc de
" dt In(10)

dr  dt

dOD
dt
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dc

Gt

06

. doD , . .
If we normalise - to its maximum rate,
doD

r(t) = dtdop)

(5
Then this provides a measure of the relative growth rate,
r(f) € [0,1]

Generally, OD(#) is measured at discrete time points, so we must
fit simple functions to the data.

2.7.1 Exponential growth
If the experiment only measures growth in the initial
exponential phase, then the growth curve will follow:

OD(f) = ae
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where a is a constant (starting OD) and k is the rate constant.
Therefore, the growth rate is

dfi)_tD = akek = kOD (£)

So, the relative growth rate is

_ kOD(#) OD(#)
" max(kOD(#))  max(OD ()

r(t)

2.7.2 Saturating growth
If the measurement only captures the linear phase followed by
saturation, then the OD curve should fit

OD () = 0D, (1-¢™)

where OD,, is the maximum optical density. Taking the derivative:
—dgtD = 0D, ke ™™

and normalising to the maximum rate

0 oD, ke
r(t) = ———m——————— =
max (ODmaxke_kt)
2.7.3 Logistic growth

If the measurement captures full logistic growth, then the
OD curve fits:

max

1+ ¢ Kt)

OD(t) =

where k is the logistic growth constant and ¢, is the time at which
OD reaches half of its maximum:

oD
OD (to) — max
Taking the derivative:
doD ke K
dt

max * (1 N e—k(f—fo))z

Normalising to the maximum rate:

doD

i 4 e*k(tfto)
dOD

max(T) (1 + e’k(Hﬂ))2

r(t) =

2.8 Assessment of predictions

2.8.1 Data normalisation

To allow meaningful comparisons between predicted and
experimentally-derived growth rate traces, both datasets were scaled
to a 0-1 range (Figure 2A). Given a set of reference data y, =

0 )2 ,yi")} and prediction data y, = {y,,)" 1 min-

V20 CRERE V252 o)
max normalisation for each data point y;” was performed using:

y(j) ~ Vmin

max ~ Vmin

0o

ynorm -

where y_. and y_ . are the minimum and maximum values of the
dataset, respectively.
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2.8.2 Dynamic time warping

DTW was used to assess temporal growth rate trace similarity.
Given a reference y, and prediction trace y,, for each pair of points
(3,7), the squared difference (cost) between the elements of the
sequences was computed as follows:

cost(i,) = (y(li) —yg))z

The DTW matrix was populated using the following
recurrence relation:

DTW (i,j) = cost (i,j) + min (DTW (i - 1,j),
DTW (i,j—1),DTW(i-1,j— 1))

where i €{1,2,...,n} and j € {1,2,...,m}. The final DTW distance
between the two traces is then given by:

DTW distance = \\DTW (1, m)

The final distance gives the optimal alignment that minimises
the cumulative distance between both growth rate traces.

2.8.3 P-value derivation

For each set of predictions from a particular integration method,
condition-specific growth traces were individually normalised to
facilitate comparison using DTW. For each condition, random
growth rates were computed for each time-point in the condition
dataset, with the resulting growth trace max-min normalised. For
this normalised growth trace,a DTW distance was computed against
the relevant condition’s experimentally derived growth trace. This
process of randomly generating DTW distances was repeated for
each condition 100,000 times (determined using a convergence
analysis) to form condition-specific null distributions. P-values were
then computed as the proportion of randomly generated DTW
distances lower than an integration method’s prediction (Figure 2B).

2.9 Condition discrimination

2.9.1 Principal coordinates analysis (PCoA)

To visualise structural similarities between predicted flux
distributions across different conditions, PCoA was performed. To
ensure consistency between all flux vector dimensions between
methods (prior to pre-processing) and to remove negative flux
values, all reversible reactions were modelled as separate forward
and backward reactions (as performed by pFBA by default). For
each integration method, predicted fluxes below solver tolerance
(<107'%) were set to zero, and reactions with zero flux across
all conditions were excluded. Column-wise total normalisation
was performed (with each set of flux distributions summing
to 1) before the removal of low variance reactions (standard
deviation <107%) and reaction fluxes were z-score normalised across
reactions. We produced a projection for every integration method
individually, each with flux predictions from all conditions. Pairwise
Euclidean distances were computed between all condition vectors
to generate a dissimilarity matrix and classical multidimensional
scaling (MDS) was applied to this matrix using the scikit-
learn implementation; mathematically equivalent to PCoA. The
first two principal coordinates were retained, and resulting 2D
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TABLE 2 Expression profile labels and their source publications - more details available from CyanoExpress (Hernandez-Prieto and Futschik, 2012).

Plotting name ‘ Description Sample size References
Cd Cadmium stress 9 Houot et al. (2007)
Blue light Blue light growth 6 Singh et al. (2009)
High light High light stress 6 Singh et al. (2008)
CrhR CrhR-mutant; Low temperature 3 Prakash et al. (2010)
S starvation (H) Sulphur starvation (no HEPES) 3 Zhang et al. (2008)
S starvation Sulphur starvation 7 Zhang et al. (2008)
Iron stress Iron stress 5 Hernandez-Prieto et al. (2012)

embeddings used for visualisation. The proportion of variance
explained was estimated from the variance of the MDS embedding
along each dimension and normalising by the total variance.

2.9.2 P-value derivation

We performed permutation tests comparing intra-condition
mean Euclidean distances to a null distribution to quantify
each integration method’s ability to capture condition-specific
properties. For each condition group (Table 2) within a given
integration method’s set of predictions, we computed the mean
pairwise Euclidean distance between samples in the projection
belonging to the same condition set. Using all samples in the
projection, we randomly sampled groups of the same size (without
replacement) and computed their average pairwise distances for
100,000 iterations (determined using a convergence analysis). A
p-value for a particular condition was calculated as the proportion
of random permutation-derived mean Euclidean distances lower
than that observed from the actual condition set. For each
integration method, we performed this analysis for each of the
7 condition sets to yield a distribution of p-values, plotted in
Figure 3A. (An example is provided on GitHub: https://github.com/
ThomasPugsley/Evaluating_transcriptomic_integration and a
schematic is available: Supplementary Figure S3.).

3 Results and discussion

After screening the datasets in CyanoExpress, 7 sets of
expression proiles were deemed suitable for downstream analysis
(Table 2). We implemented our novel dual-metric pipelines using
the 7 transcriptomic datasets (Figure 1).

PCoA clustering revealed marked differences in performance
metrics across methods used for condition discrimination
(Figure 3). Of the methods tested, iMAT’s performance appeared
most heavily influenced by input parameter choices. The more
unusual 35th and 15th Local percentile thresholding combination
resulted in surprisingly tight condition clusters, outcompeting
Eflux-2 and with a median roughly on par with the more typical
iMAT implementation using 75th and 20th percentile thresholds.
METRADE", in contrast, demonstrated a reasonable level of
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robustness across scaling parameters and scaling strategies,
particularly for predictions using gamma values greater than 1,
and maximum importance values greater than 10. E-flux2, which
does not require any user-specified input parameters, performed
moderately well with a median p-value of ~0.4 (Figure 3A). The
majority of METRADE" implementations, however, outcompeted
E-flux2. Among the METRADE" implementations tested, variance-
based scaling, using maximum importance values of 100, 1000
(in the case of the max configuration) and 10,000, resulted in the
tightest condition clusters. This is unsurprising since the scaling
strategy ensures that genes with greatly altered expression across
the time-series, have their bounds modified to a greater extent
than those which are invariant. Importantly, uniformly-scaled
METRADE" also performed well, and had greater robustness across
scaling parameter choices.
METRADE" configuration
minimal impact on the capacity of the model to discriminate
between conditions in PCoA space. While uniformly-scaled
METRADE" seemed to favour the Max configuration for the
majority of implementations, the dependency seems to switch at

changes seemed to  have

gamma = 10. METRADE"s apparent robustness to changes in
configuration is surprising as the Baseline setup creates buffering,
forcing the reshaped solution space to exert more influence deeper
within the reaction network, rather than causing more localised
changes in flux utilisation, for example, around photosynthesis -
the point of entry for flux to the system. It is unsurprising that for
low gamma values, the Max configuration was clearly favoured since
buffering creates a larger gap between the new bounds and allowable
flux, meaning a “stronger” mapping is required for contextualisation
to take effect.

The initial configuration of the model has the potential to alter
predictive accuracy as the treatment of the model’s Boolean gene-
reaction rules assume reaction fluxes are controlled by enzymes.
Cyanobacterial photosystems, which are not themselves regulated
like enzymes, are represented in iSynCJ816’s photosystem reactions,
and are the first point at which transcriptional integration can
influence light entering the wider system. It can therefore be argued
that these “points of entry” for light should not be subject to strict
bound changes based on expression profiles, due to an inappropriate
assumption that they are regulated in the same manner as enzymatic

frontiersin.org
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Distribution of p-values obtained for all integration method implementations. Condition discrimination p-values represent the ability of an integration
method to form condition-specific clusters in low dimensionality space with all 7 condition datasets (A). Growth p-values indicate the ability of an
integration method to match estimated relative growth rate traces for all conditions (B). In the case of iMAT, x-axis labels refer to upper and lower
percentile input thresholds. For METRADE", one-size-fits-all scaling values are uniform gamma values while x labels for the reaction-specific
METRADE" is maximum importance. [Boxes represent 25th and 75th percentiles with median values indicated in the centre. Whiskers show smallest
and largest values within 1.5 IQR and circles are outliers. Figure made using Matplotlib (Hunter, 2007)].

reactions. To illustrate a violation of this assumption, a typical
high light stress response can be considered. It would be expected
that as a long-term strategy, photosystem proteins would be
downregulated to prevent oxidative damage, as excitation input
would exceed electron sink capacity of downstream of downstream
photosynthetic pathways. Without specifying explicit estimates
for photon input in the metabolic model, after integration with
transcriptomic data, such a response at the genetic level would
result in a reduction of potential flux entering the system due to the
shrinking of flux bounds at the photosystems. Such an assumption
is inappropriate given the numerous non-transcriptional regulatory
mechanisms which act to maintain flux through photosystem
reactions (Uzuner Odongo et al., 2025; Shen et al., 2019a; Beurton-
Aimar et al,, 2011). Energy redistribution through phycobiliosome
state transitions and dissipation of excess energy by non-
photochemical quenching are key examples of this, both of which
act with near immediacy (Joshi et al., 2017; Shlomi et al., 2008).
Therefore, in our analyses, the “Baseline” configuration (for
METRADE" analyses) was set up so that the upper bounds of the
photosystem reactions (and all other reactions in the system) were
twice as large as the available light, creating a buffer between any
transcription-induced bound modification and light entering the
system. In the “Max” configuration, photosystem upper bounds
were set to equal the available light, meaning any modification of
the photosystem bounds could reduce light entering the system
based on the gene-reaction rules.
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It may be expected that Baseline versions of METRADE" would
perform better when capitalising upon light input buffering as
they would be less susceptible to severe bound changes near
the photosystems. However, for simulations with adequately
large scaling values, there appeared to be no clear difference in
performance using each configuration. The Max configuration,
more expectedly, was preferred when predicting growth rates
across the majority of implementations (Figure 3B). This is
likely due to flux inference at photosynthesis being closely tied
to overall productivity and therefore biomass rates. Since the
Max configuration encourages solution space reshaping around
photosynthesis, it appears the most reliable configuration for
predicting growth rates, despite the assumptions outlined above. It is
important to acknowledge that while biomass predictions are useful
for gauging proportionate transcriptional integration ‘strength;
some metabolite secretion rates may not benefit so dramatically
from using the Max configuration if they are determined by solution
reshaping deeper within the network. Both performance metrics
suggest that use of uniform scaling with METRADE" can be suitable
for successful contextualisation but agree that gamma values need
to be sufficiently high to accurately model cellular metabolism
(Figures 3A,B). Using dual-metric visualisation, it becomes evident
that some input setups allow for successful condition discrimination
but remain unable to predict growth rates with good accuracy
(Figure 4). When using uniform scaling, METRADE" performed
better when using higher scaling parameters, with the best
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Distribution of p-values for condition discrimination offset against growth rate predictions. Different methods are indicated above graphs - E-flux2 is
included as a benchmark. Colours reflect the two types of metric, consistent with coloured labelling in Figure 1. [Boxes represent 25th and 75th
percentiles with median values indicated in the centre. Whiskers show smallest and largest values within 1.5 IQR and circles are outliers. Figure made

predictions at gamma = 10 (using the Max configuration). There
was substantial variability in predictions when using importance-
based scaling. Predictions using maximum importance values of
10,000 were, however, the best across all methods tested (only
marginally in the case of Max) and broadly consistent across both
configurations (Figure 4).

Autotrophic constraint-based systems present unique challenges
for contextualisation. The dominance of light input as an essential
energy source for autotrophs means the single photon exchange
reaction has a disproportionately high uptake rate compared to other
essential model reactions such as bicarbonate and water exchange
(Joshi et al., 2017). Transcriptomic integration with heterotrophic
systems is less susceptible to the biases introduced by such a ‘top-
heavy’ setup as they rely on multiple essential exchange reactions
like carbohydrate, oxygen and nitrogen import - all carrying flux
at rates typically within an order of magnitude of each other
(Van ‘t Hof et al., 2022; Blazquez et al., 2023). For methods like
METRADE, where all default “unconstrained” reaction bounds
(prior to integration) are set to the same magnitude, exchange
reactions and their associated downstream pathways which support
high flux rates, will be more susceptible to influence from bound
modification. The subsequent disproportionate influence of these
reactions (photon input in the case of autotrophically-growing
organisms) on flux distributions may be viewed as problematic,
because one portion of the solution space is more susceptible
to reshaping while the rest of the network remains relatively
unconstrained. In our results, however, METRADE" generally
outperformed other methods when discriminating between
conditions in PCoA and configuration choice seemed only to result
in minimal differences in condition clustering, largely dispelling
these concerns.

While not directly addressing the “top heaviness” of autotrophic
systems, specifying bound constraints for key exchange reactions
can lead to more robust solutions, with methods to quantify
exchange reaction bounds having been proposed (Lin et al., 2025;
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Vijayakumar et al, 2020). Most previous validation studies,
and case studies using continuous integration methods, focus
on modelling cases where some experimental uptake rates are
defined (even if there may be some methodological ambiguity in
their determination), helping to shape final flux solutions (Lea-
Smith et al,, 2021; Joshi et al, 2020; Angione and Li6, 2015;
Vijayakumar et al., 2018). A given integration method’s inferred
predictive performance can vary greatly, however, depending on
whether these uptake rates are manually set or left unconstrained
(Lea-Smith et al., 2021; Blazquez et al, 2023). While E-flux2
and METRADE" have typically been implemented using specified
uptake rates, it should also be noted that poorly substantiated
input assumptions have the potential to bias output distributions -
an important consideration since there is no uniform standard
for defining such rates in autotrophic systems (Lin et al., 2025;
Vijayakumar et al., 2018). In our analysis, we only specified the
light input rate to facilitate a comparison between buffered and non-
buffered configurations, leaving all other uptake rates undefined.
In each case, light input flux was capped at an arbitrary baseline
and subsequent growth rate predictions assessed in terms of
their relative changes - a configuration similar to the “AC” (all
possible carbon source) setup defined in previous validation studies
(Joshi et al., 2020; Blazquez et al., 2023; Nielsen, 2003).

This approach was taken in the interest of maximising the
number of viable conditions for analysis while also acknowledging
that specific flux input rates are often not possible to obtain from
previously published papers. For example, previous cyanobacterial
metabolic modelling studies have calculated light available to cells
using the culture surface area and dry cell weight per culture volume
(Vijayakumar et al., 2020). The light availability value can be used
to set specific photon exchange reaction bounds to reflect different
lighting conditions. There is, however, no strict convention for
reporting the values necessary for this light availability calculation
among published work. For instance, flask type, height of the culture
and dry cell weight measurements [which may require inference
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from a calibration curve at a suitable OD (Vijayakumar et al., 2018)]
are often not included in transcriptomic publications. Even in cases
where absolute or relative differences in light consumption by cells
can be accurately estimated, the configuration of the starting bounds
should remain an important consideration, because transcript-
based photosystem regulation inference may still erroneously alter
the entry of flux to the wider system, even if the extent of its influence
is decreased.

3.1 METRADE" and E-flux2

Continuous methods, like E-flux2 and METRADE®, are
sometimes preferred to discrete methods because they better reflect
fine-grained expression changes while also avoiding categorisation
of reaction expressions by somewhat arbitrary thresholds. This is
partly supported by our findings, however, E-flux2 does not achieve
the same level of success in condition separation as METRADE".
The ability of almost all METRADE" methods to outperform E-
flux2 suggests there is a significant advantage in the use of the
lazy-step mapping function with togglable scaling relative to E-
flux2’s relative unit approach. The benefit of altering the “strength of
mapping” appears largely reponsible for this difference, given that
many of E-flux2’s model predictions achieve similar metrics to those
of METRADE" with uniform scaling around 1 (“low strength”).

It is interesting that some methods which resulted in some
of the tightest forming condition clusters in PCoA space, did
not predict growth rates with the highest degree of accuracy. It
appears, therefore, that clustering may be insufficient alone to
determine the success of model contextualisation. This is probably
because applying new constraints to a model has the capacity
to separate conditions well in low-dimensionality space but risks
overemphasising these differences beyond what would reasonably
be expected in the true biological system. Growth rate accuracy
can therefore serve to oppose clustering metrics by ensuring
consistent relative differences between different time points in a
manner which reflects those observed experimentally. We propose
that successful model predictions should perform well across both
metrics to ensure biologically feasible predictions. With this in
mind, the best performing implementations tested (which are
largely unaffected by configuration) are METRADE" with uniform
scaling at gamma = 10, and variance-based scaling with maximum
importance at 10,000 (Figure 4).

3.2 iIMAT

Since iMAT is solved as a MILP, it does not rely on maximising
a biomass equation (or any pre-computed objective function)
to yield flux distributions. This, in theory, allows for increased
flexibility within the solution space, potentially permitting more
extreme changes between conditions. E-flux2- and METRADE"-
based methods have objectives more rigidly defined, relying more
heavily on solution space reshaping to guide flux distributions.
Interestingly, in our PCoA simulations, biomass objective-reliant
integration methods performed particularly strongly for condition
clustering, in contrast to the highly variable performance seen
among iMAT predictions (Figure 3A). Shifts in iMAT performance

Frontiers in Bioinformatics

11

10.3389/fbinf.2026.1715377

could be explained by the flexibility of MILPs, however, this
flexibility seems to come at the cost of input parameter robustness.

While 13C-MFA is undoubtedly the preferred method for
capturing the behaviour of cellular systems, it has rarely been
used to select thresholds for switch-based methods. This analysis
should be informative as iMAT thresholding decisions dictate which
reactions are considered up- and downregulated, which in turn
shapes the objective for optimisation. If the resulting objective
demands flux in a manner which matches the fluxes across central
carbon metabolism, we assume it is appropriate for modelling in the
cyanobacterial model. Although this process acts as the opposing
analysis to iMAT PCoA clustering (Supplementary Figure S1), it
heavily relies on the assumption that the results are applicable
to transcriptomic data from stress conditions and mutants (all
infered from a WT transcript profile). Such an assumption is not
easily testable given the lack of MFA data for Synechocystis, and
therefore any iMAT PCoA clustering results should be interpreted
with caution. While some more unusual percentile combinations
showed great promise when assessed in low dimensionality space
(particularly 0.35, 0.15), iMAT"’s inability to predict biomass rates
limits the confidence with which we can assess the biological
plausibility of solutions with an opposing metric (as implemented
for METRADE" and E-flux2) in this analysis.

3.3 Considerations

As Machado and Herrgard (2014) point out, transcriptomic
integration methods are often tailored to address specific research
questions; not necessarily for the precise prediction of intracellular
fluxes (Machado and Herrgard, 2014). For example, across
systems biology, integrative metabolic modelling is frequently
used for the qualitative assessment of system behaviour or for
comparative analyses between conditions (Vijayakumar et al., 2020;
Uzuner Odongo et al., 2025; Tang et al., 2025).

In our analyses with METRADE", we noted implementations
that produced the tightest condition-specific clusters in PCoA
tended to underperform in predicting growth rates. These types
of outcomes suggest that when analysis pipelines are developed to
detect fluxomic patterns associated with metabolic reprogramming,
implementations which result in more distinct condition-specific
clusters may be more effective at identifying relevant signals.

Inferred growth rates from OD measurements served as
useful continuous trait targets for context-specific models. OD
data, however, only allows for the estimation of relative growth
rates, since it is not possible to determine absolute cell numbers
from existing data. We accounted for the non-linear relationship
between absorbance and cell number using the derivations
described in Section 2.7. Curve fitting was relied upon to interpolate
growth rates at time points where RNA was harvested but OD not
explicitly measured. Fitted curves were checked visually and using
standard goodness-of-fit metrics (R* and RMSE).

4 Conclusion
Overall, this study evaluated the impact of different

transcriptomic integration methods, making use of existing data
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from CyanoExpress. The report serves as a starting point for
benchmarking integration methods in cyanobacteria and proposes
strategies for reliable intracellular flux predictions. We quantifed
the success with which iMAT, E-flux2 and METRADE" are able to
produce context-specific model predictions which cluster in low-
dimensional space. We also derived and used time-series growth rate
traces, alongside clustering, to determine optimal scaling parameters
and strategies when applying METRADE"- the best performing
method given appropriate parameter choices. We observe how there
is a trade-off between predicting growth rates and condition-specific
clustering in low-dimensional space and discuss how different
implementations may be considered optimal depending on the
use case. Based on our results, METRADE" is the best choice
for transcriptomic integration in Synechocystis metabolic models
for the prediction of flux distributions retaining condition-specific
properties, and for predicting growth rates.
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