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Metabolic modelling has wide-ranging applications, including for the improved 
production of high-value compounds, understanding complex diseases 
and analysing microbial community interactions. Integrating transcriptomic 
data with genome-scale metabolic models is crucial for deepening our 
understanding of complex biological systems, as it enables the development of 
models tailored to specific conditions, such as particular tissues, environments, 
or experimental setups. Relatively little attention has been given to the validation 
and comparison of such integration methods in predicting intracellular fluxes. 
While a few validation studies offer some insights, their scope remains limited, 
particularly for organisms like cyanobacteria, for which little metabolic flux data 
are available. Cyanobacteria hold significant biotechnological potential due to 
their ability to synthesise a wide range of high-value compounds with minimal 
resource inputs. Using existing transcriptomic data, we evaluated different 
methodological options that can be taken when integrating transcriptomics with 
a genome-scale metabolic model of Synechocystis sp. PCC 6803 (iSynCJ816), 
when predicting autotrophic flux distributions. We find METRADE* (using single 
objective optimisation) to be the best-performing method in cyanobacteria 
owing to its ability to perform well across both metrics but emphasise the 
importance of configuration and scaling in achieving these outcomes.
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 1 Introduction

Metabolic models are useful tools for the prediction of metabolic fluxes and 
cellular phenotypes, with wide ranging applications across biotechnology (Yasemi and 
Jolicoeur, 2021). Constraint-based metabolic models are mathematical representations of 
cells which enable system-level analyses of metabolism. These networks, where reactions 
are modelled as edges and metabolites as nodes, encompass important biological system 
properties. Flux is allocated in a manner which obeys reaction stoichiometry with the 
overarching reaction topology facilitating the role of interconnectedness within the network. 
Gene-protein interactions are represented as Boolean expressions, useful when determining 
gene essentiality and often used when integrating external data (like in the case of 
transcriptional integration). Finally, network constraints influence and impose limits on flux
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capacity throughout the network. Thermodynamic constraints set 
reaction directionality, and nutrient availability modelling indirectly 
constrains the model. Often, constraints are applied on nutrient 
exchange reactions to reflect experimental conditions, making 
metabolic models highly useful tools for modelling adaption to 
varying environments. In the case of transcriptional integration, 
additional constraints are applied to the model to redirect flux 
predictions (Joshi et al., 2017; Smith et al., 2013; Machado and 
Herrgård, 2014; Young et al., 2011; Lea-Smith et al., 2021).

Typically, metabolic models are solved when flux is allocated 
throughout the network in order to maximise an objective (typically, 
a biomass pseudo-reaction). It is through this systems-level 
optimisation that metabolic models can predict cellular behaviour 
such as growth rates, metabolite secretion and gene/pathway 
modifications. It is this linking of the gene and reaction data 
(used to develop GEMs) to phenotypic predictions which make 
metabolic models powerful tools in biotechnology: identifying 
gene targets for high-value compound production or elucidating 
pathways of interest involved metabolic reprogramming in changing 
conditions for in vitro study. A comparative analysis for integrating 
transcriptomic data into metabolic models for cyanobacteria, 
would therefore be useful to researchers seeking to optimise and 
understand metabolism in photosynthetic bacteria.

Covert et al. (2001) published the first method to integrate 
transcriptomic data with metabolic models, enabling model 
simulations to account for gene regulation (Covert et al., 2001). 
In the following decades, many more integration methods were 
developed, allowing researchers to capture condition-specific 
properties of metabolic flux distributions, enhancing the specificity 
of downstream analyses (Bordbar et al., 2012; Zur et al., 2010; 
Caroline et al., 2009; Angione and Lió, 2015; Agren et al., 2014).

Integration methods can be broadly divided into two 
categories: switch-based and valve-based (Hyduke et al., 2013; 
Vijayakumar et al., 2018). Switch-based methods use thresholding 
to categorise reactions based on their predicted activity, with 
reactions of low predicted flux typically being switched off 
or mathematically penalised for carrying flux. This type of 
integration has predominantly been used to model human cell 
types due to its binary on/off strategy, with previous studies having 
examined the impact of specific methodological decisions during 
integration (Richelle et al., 2019; Gopalakrishnan et al., 2023; 
Joshi et al., 2020). Richelle et al. (2019) examined gene mapping 
types, thresholding and the order of those steps for the creation of 
human tissue-specific models while Gopalakrishnan et al. (2023) 
mainly focused on algorithmic details and changing thresholding 
cut-offs in E. coli, Chinese Hamster Ovary (CHO) and a renal 
cancer cell line. Joshi et al. (2020) also examined transcriptomic 
integration with a cancer cell line model, focused mainly 
on the influence of thresholding values. iMAT is a popular 
switch-based integration method with its implementations 
being used to further understand metabolic function in human 
tissues, stem cell metabolism and in identifying epigenetic 
dependencies to drug response (Shlomi et al., 2008; Lin et al., 2025; 
Shen et al., 2019b; Shen et al., 2019a).

Valve-based methods involve modifying reaction bounds in a 
continuous manner, with bounds being relaxed for upregulated 
reactions and tightly constrained for downregulated reactions. 
Although enzyme activity is not always directly correlated with 

transcript levels, these methods assume that gene expression can 
be used as a “soft” constraint to approximate an upper bound 
for reaction rates. It has been argued that valve-based approaches 
are preferable as they do not suffer from the loss of fine-
grained expression changes in the same way as switch-based 
methods (Machado and Herrgård, 2014). METRADE (Angione 
and Lió, 2015) and E-flux2 (Kim et al., 2016) [originally E-flux 
(Caroline et al., 2009)] are examples of valve-based integration 
methods, both of which have been applied to microbial metabolic 
models. In the case of the original E-flux, Caroline et al. (2009) 
used their newly developed integration method to model mycolic 
acid biosynthesis, predicting drug responses. Since then, it has 
become a popular integration method and has been followed by 
the development of a second version, E-flux2 (Kim et al., 2016). 
E-flux2 ensures flux predictions incorporate minimisation of the 
Euclidean norm alongside maximisation of the objective ensuring 
unique solutions (Kim et al., 2016). METRADE (MEtabolic and 
TRanscriptomics ADaptation Estimator), on the other hand, 
developed by Angione and Lió (2015), has been implemented as 
a multi-objective optimisation problem. Originally utilised for the 
creation of multi-omic models of E. coli, METRADE has since 
been applied to the cyanobacterial species Synechococcus sp. PCC 
7002. Using a hybrid machine learning and metabolic modelling 
pipeline, repsonse mechanisms to light and salinity fluctuations were 
detected - a finding which was not possible from the analysis of the 
transcriptomic data alone (Vijayakumar et al., 2020).

13C metabolic flux analysis (13C-MFA), in which cells are 
fed 13C-labelled substrates and enrichment patterns calculated, 
is widely accepted as the gold-standard for quantifying flux through 
central carbon metabolism (Wiechert, 2001; Zamboni et al., 2009; 
Beurton-Aimar et al., 2011). For this reason, 13C-MFA 
measurements are typically used to validate flux predictions by 
metabolic models and the use of integration methods, as they 
provide systems-wide datasets for comparison (Nielsen, 2003). 
However, 13C-MFA experiments are notoriously challenging 
to perform and costly (Kim et al., 2016). For this reason, few 
extensive 13C-MFA datasets exist (relative to transcriptomic 
studies), even for well-studied organisms such as E. coli and 
S. cerevisiae (Guo et al., 2015). Unsurprisingly, there is even 
greater dataset scarcity among cyanobacteria, with only 3 central 
carbon flux distributions having ever been published alongside 
paired transcriptomics (Bhadra-Lobo et al., 2020; You et al., 2015; 
You et al., 2014; Young et al., 2011). Methods for assessing 
flux predictions from context-specific models in cyanobacteria 
are therefore severely limited. Complicating matters further, 
cyanobacterial systems present distinct challenges compared to their 
heterotrophic counterparts. In particular, the validity of inferring 
photosynthetic fluxes from transcript profiles has yet to be robustly 
assessed, and the role of model lighting configurations, scaling 
strategies and optimal threshold combinations remain relatively 
unexplored.

In this study, we present a novel pipeline (Figure 1) to evaluate 
the performance of integration methods for the creation of context-
specific models of Synechocystis sp. PCC 6803 (hereon referred to 
as Synechocystis) using existing expression profiles in CyanoExpress 
(Hernandez-Prieto and Futschik, 2012). We selected 7 time-series 
datasets harvested from WT and mutant cells grown in varying 
conditions for analysis. All sets of flux predictions could then be 
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FIGURE 1
An overview of the analysis pipeline: To derive a dataset of measurable traits, paired OD plots from each dataset’s respective source literature were 
used to infer relative changes in growth rates at the time of RNA harvest. This experimental data was compared to growth rate predictions by E-flux2 
and METRADE∗ and p-values calculated. In the case of iMAT, which does not explicitly predict biomass rates, we used the only published autotrophic 
MFA dataset (Young et al., 2011) to determine which threshold combinations resulted in biologically reasonable flux predictions (Supplementary
 Figure S1). Only highly performing combinations (based on R2 and RMSE metrics) were carried forward for use in PCoA analysis alongside 
METRADE∗ and E-flux2 implementations.

assessed for their ability to capture condition-specific properties of 
the data using Principle Coordinates Analysis (PCoA). This was to 
determine how well context-specific models representing specific 
conditions clustered together (Gower, 1966). For robust validation 
in the absence of comprehensive MFA data, we determined that 
an opposing metric was required to validate a separate property 
of the system predictions. Here, we propose a dual-metric set-up, 
where condition-specificity of full flux distributions is considered 
alongside predictions of a continuous measurable trait to confirm 
successful contextualisation.

2 Methods

2.1 Optimisation

Using the COBRA Toolbox version 3 (Laurent et al., 2019) for 
MATLAB, Flux Balance Analysis (FBA) was used to predict growth 
rates at different time points using the Synechocystis metabolic 
model, iSynCJ816 (Joshi et al., 2017).

In metabolic modelling, the metabolic network is represented as 
a stoichiometric matrix S, where each element Sij corresponds to the 
stoichiometric coefficient of metabolite i in reaction j. The matrix S
has dimensions m× n, where m is the number of metabolites and n
is the number of reactions. 

S =(

(

S11 S12 ⋯ S1n

S21 S22 ⋯ S2n

⋮ ⋮ ⋱ ⋮

Sm1 Sm2 ⋯ Smn

)

)

The system is assumed to be at steady-state, resulting in this 
system of linear equations: 

S ⋅ v = 0

where v is the vector of reaction fluxes. Each element vj in v
represents the flux through reaction j.

In all model setups, to simulate autotrophic growth, glucose 
import was switched off and bicarbonate import was modelled as 
the sole source of carbon to the system. 
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TABLE 1  Key features of integration methods.

Name Mapping function Thresholding Scaling Configuration Biomass 
prediction

METRADE∗ Lazy-step No One-size-fits-all Yes Yes

METRADE∗ importance Lazy-step No Reaction-specific Yes Yes

E-flux2 Linear No No No Yes

iMAT No Yes No No No

2.2 Integration methods

Key features of each integration method are shown in Table 1.

2.3 METRADE∗

For all METRADE∗- (and E-flux2-based) simulations, the 
objective function was set to the autotrophic biomass equation. 

maximize Z = cT ⋅ v

where c is a (transposed) vector that specifies the objective function 
and Z is the scalar result of the optimisation. Reaction fluxes are 
subject to upper and lower bound constraints. Ultimately, these are 
determined by the integration method.

Once reaction expressions have been derived for all reactions, 
they can be converted into new reaction bounds using a 
mapping function: 

vmin ϕ (Θ) ≤ vi ≤ vmax ϕ (Θ)

METRADE∗ uses the lazy-step mapping function (Angione 
and Lió, 2015): 

ϕ (Θ) = [1+ γ |log (Θ)|]sgn(Θ−1) (1)

where Θ is the computed reaction expression and γ is a scaling 
parameter. We tested the same γ ranges as those used by 
Vijayakumar et al. (2020) where they applied METRADE to a 
cyanobacterial model (Vijayakumar et al., 2020).

In order to best predict realistic flux distributions, we modified 
METRADE’s original multi-objective formulation from Angione 
and Lió (2015) to maximise a single biomass objective. To 
ensure unique solutions and maximise biological plausibility, L1 
regularisation was ensured by implementing Parsimonious Flux 
Balance Analysis (pFBA) - differing from the L2 regularisation 
approach of E-flux2 (Kim et al., 2016). The use of a two-stage 
linear program to find solutions maximising biomass rates while 
simultaneously minimizing total metabolic flux is routed in the 
idea that cells avoid energetically expensive means for achieving 
optimal production. We refer to our modified single objective 
of METRADE as METRADE∗ to distinguish it from its original 
implementation (Angione and Lió, 2015):

1. Solve for maximal biomass: 

maximize Z = cT ⋅ v

2. Minimize total flux subject to optimal growth: 

minimize ∑
i
|vi|

S ⋅ v = 0

vmin ⋅ϕ (Θ) ≤ v ≤ vmax ⋅ϕ (Θ)

The above constraints were applied to both steps, and pFBA 
was solved using the Gurobi solver (Gurobi  Optimization and 
LLC (2024). 

2.3.1 METRADE∗ configurations
In the context of this study, configurations refer to the initial 

bound setup of the metabolic model prior to bound alteration 
by an integration method. We tested integration methods starting 
with two different model configurations. For both configurations, 
all non-zero bounded reactions in the default model were set to 
an arbitrary value of 1000 or -1000. In configuration “Baseline”, 
allowable flux through the photon input reaction was set to half of 
that of the rest of the system bounds (−500). The purpose of this was 
to create a buffering effect so that the supply of light to the wider 
system was less likely to be influenced by transcriptional changes 
associated with the photosystems. For the other configuration, 
“Max”, photon import was capped at the same upper bound as the 
rest of the system (−1000). All bound units are mmol/gram dry
cell weight/hour. 

2.3.2 METRADE∗ scaling
For METRADE∗-based methods, we used two scaling strategies: 

“one-size-fits-all”’ (in which γ in Equation 1 was scaled to the same 
value across all reactions) and “reaction-specific” - also referred 
to as “importance-based” scaling: We define the importance of a 
gene in the same way as Angione and Lió (2015). The scaling 
parameters tested, in the context of importance, relate to the 
maximum gene importance value. For each gene in each condition, 
gene variance values were computed from the expression profiles. 
The maximum gene importance value was used to normalise these 
variances such that 

gene importance =maxgene importance× 1
σi/minvar.

where σi is the variance of gene i and min var. is the minimum 
variance value of the variances dataset (Angione and Lió, 2015). For 
each gene in the model, we determined whether it was present in the 
expression profiles. Letting G be the set of genes in the model, and
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D be the set of genes in the transcriptomic dataset, gene importance 
γi is defined as: 

γi =
{{
{{
{

maxgene importance
2

ifGi ∉ D

gene importance(Gi) ifGi ∈ D

This approach aims to emphasise the constraint-based influence 
of variably expressed genes while dampening bound changes from 
stably expressed genes. Missing genes are neither amplified nor 
dampened to reduce their influence on the solution space. 

2.4 E-flux2

In E-flux2 (Kim et al., 2016), reaction upper bounds (vmax) are 
set to the corresponding reaction expression values θ. For reversible 
reactions, the lower bounds (vmin) are set to −θ, and for irreversible 
reactions, they remain at zero. FBA is run using the modified model 
to find a feasible flux distribution v0 that maximizes the biomass 
objective. (While there is no mapping function defined, the fixing 
of reaction expressions as bound constraints in E-flux2 is equivalent 
to the use of a linear mapping function.)

1. Solve for maximal biomass: 

maximize Z = cT ⋅ v

2. A convex quadratic programming (QP) problem is solved: 

minimize∑
i
|vi|

2

subject to S ⋅ v = 0

c⊤ ⋅ v = c⊤ ⋅ v0,

vmin ≤ v ≤ vmax

The above constraints were applied to both steps, and 
the optimisation was solved using the Gurobi solver (Gurobi 
Optimization and LLC (2024). 

2.5 iMAT

In the case of iMAT (Zur et al., 2010), gene expression 
data are discretised into three categories: highly, low and neutral 
expression. The assignment of reactions to each of these categories 
depends upon user-defined upper and lower threshold values. 
Highly and lowly expressed reactions are linked to binary variables 
in the problem formulation which indicate whether reaction flux 
is consistent with its expression state category. iMAT integration 
therefore seeks to find a flux distribution which is maximially 
consistent with the input gene expression data, through these 
reaction state categories.

Highly expressed (H): expression ≥ upper threshold.
Lowly expressed (L): expression between 0 and lower threshold.
Ambiguous (A): all other reactions (not constrained)
The binary variables yj ∈ {0,1} for each reaction in H∪L

indicate whether the reaction is consistent with its expression 
state classification. The objective is to maximize the number of 
consistent reactions: 

max ∑
j∈H∪L

yj

Subject to the following constraints: 

S ⋅ v = 0 (steady− state)

vmin ≤ v ≤ vmax (originalbounds)

vj ≥ ε ⋅ yj ∀j ∈H

vj ≤ vmax,j + ϵ ⋅ (1− yj) ∀j ∈H

vj ≤ ϵ ⋅ (1− yj) ∀j ∈ L

vj ≥ vmin,j − ϵ ⋅ (1− yj) ∀j ∈ L

yj ∈ {0,1} ∀j ∈H∪L

ϵ is typically a small positive value (here, ϵ = 1), and ε is a small 
threshold (here, 1e− 8) to define nonzero flux for high-expression 
reactions. Reactions in A (ambiguous) are unconstrained beyond 
their default.

The optimization problem is formulated as a mixed-
integer linear program (MILP) and solved using the 
Gurobi solver (Gurobi Optimization and LLC, 2024). 

2.6 Transcriptomic data

Expression profiles deposited on CyanoExpress 2.3 (pre-
processing and normalisation details available from: http://
cyanoexpress.sysbiolab.eu/) were screened for their suitability for 
downstream analysis. Each transcriptomic dataset was required 
to have expression profiles from a minimum of 3 independent 
timepoints and have paired OD data to infer growth rates from 
(within their associated source papers). WebPlotDigitizer was 
used to extract experimental data (Supplementary Figure S2) 
from published OD plots (Rohatgi, 2011). Transcriptomic log-
fold change values were converted to fold-change (so that wild-
type expression was equal to 1) in all cases (except to determine 
optimal threshold combinations for iMAT) before use for metabolic
modelling.

In the case of determining which iMAT threshold combinations 
were carried forward to be applied to the CyanoExpress datasets, 
raw normalised read counts were used as input (Young et al., 2011). 
Since iMAT relies on percentile-based discretisation of the input 
data, outputs and optimal thresholds are equivalent to those 
which are applied to fold-change transcript data. Gene mapping 
to the metabolic model required conversion of accessions using 
the ASM972v1 genome assembly: https://www.ncbi.nlm.nih.gov/
datasets/genome/GCF_000009725.1/. 

2.7 Growth rate derivation

Since absolute growth rate determination is not possible from 
optical density data alone, we derived estimates for relative growth 
rates. These relative growth rate traces were derived by inferring 
values from fitted OD curves (Figure 2A). For each OD plot, either 
an exponential, exponential rise, or logistic curve. The fitted curve’s 
parameters were used to estimate the growth rate as outlined below.

The optical density is defined as, 

OD (t) = −log10 (T (t))
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FIGURE 2
Growth rate methodology schematics (A) showing how optical density data associated with transcriptomic measurements at multiple timepoints were 
fit with curves, allowing for growth rate estimation in cases where authors did not measure OD at the time of RNA harvest. Curve fitting thereby 
extended the number of viable datasets suitable for downstream analysis. Integration methods were used to contextualise the metabolic model using 
the expression profiles from each timepoint. Maximising the biomass objective function was used to generate growth predictions at each time point, 
facilitating comparison of the predicted and experimentally-derived growth rate traces by computing DTW distances. (A) Snapshot of the biomass 
prediction pipeline. (B) (METRADE∗ using uniform scaling applied to the crhR dataset) is shown. Scaling parameter changes (left panel of B) influence 
the relative differences between time series biomass predictions. The right panel of (B) shows the resulting p-values after comparing observed DTW 
values (in blue; left panel) to the null distribution.

where T(t) is the transmittance as a function of time. In the limit of 
an infinitely far detector, 

T (t) = exp (−σlc (t))

where σ is the scattering cross-section of the particles/cells, l is the 
optical path, and c(t) is the time-dependent concentration. If we take 
the derivative of OD(t), 

dOD
dt
= dc

dt
⋅ (∂OD

∂c
) = dc

dt
⋅ σl

ln (10)

Therefore, the growth rate is proportional to the rate of change 
of optical density, 

dOD
dt
∝ dc

dt

If we normalise dOD
dt

 to its maximum rate, 

r (t) =
dOD

dt

max( dOD
dt
)

Then this provides a measure of the relative growth rate, 

r (t) ∈ [0,1]

Generally, OD(t) is measured at discrete time points, so we must 
fit simple functions to the data. 

2.7.1 Exponential growth
If the experiment only measures growth in the initial 

exponential phase, then the growth curve will follow: 

OD (t) = aekt
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where a is a constant (starting OD) and k is the rate constant. 
Therefore, the growth rate is 

dOD
dt
= akekt = kOD (t)

So, the relative growth rate is 

r (t) =
kOD (t)

max (kOD (t))
=

OD (t)
max (OD (t)) 

2.7.2 Saturating growth
If the measurement only captures the linear phase followed by 

saturation, then the OD curve should fit 

OD (t) =ODmax (1− e−kt)

where ODmax is the maximum optical density. Taking the derivative: 

dOD
dt
=ODmaxke−kt

and normalising to the maximum rate 

r (t) =
ODmaxke−kt

max(ODmaxke−kt)
= e−kt

 

2.7.3 Logistic growth
If the measurement captures full logistic growth, then the 

OD curve fits: 

OD (t) =
ODmax

1+ e−k(t−t0)

where k is the logistic growth constant and t0 is the time at which 
OD reaches half of its maximum: 

OD(t0) =
ODmax

2

Taking the derivative: 

dOD
dt
=ODmax ⋅

ke−k(t−t0)

(1+ e−k(t−t0))2

Normalising to the maximum rate: 

r (t) =
dOD

dt

max( dOD
dt
)
= 4e−k(t−t0)

(1+ e−k(t−t0))2 

2.8 Assessment of predictions

2.8.1 Data normalisation
To allow meaningful comparisons between predicted and 

experimentally-derived growth rate traces, both datasets were scaled 
to a 0–1 range (Figure 2A). Given a set of reference data y1 =
{y(1)1 ,y

(2)
1 ,…,y

(n)
1 } and prediction data y2 = {y

(1)
2 ,y
(2)
2 ,…,y

(m)
2 }, min-

max normalisation for each data point y(j)i  was performed using: 

y(j)norm =
y(j) − ymin

ymax − ymin

where ymin and ymax are the minimum and maximum values of the 
dataset, respectively. 

2.8.2 Dynamic time warping
DTW was used to assess temporal growth rate trace similarity. 

Given a reference y1 and prediction trace y2, for each pair of points 
(i, j), the squared difference (cost) between the elements of the 
sequences was computed as follows: 

cost (i, j) = (y(i)1 − y(j)2 )
2

The DTW matrix was populated using the following 
recurrence relation: 

DTW (i, j) = cost (i, j) +min (DTW (i− 1, j) ,

DTW (i, j− 1) ,DTW (i− 1, j− 1))

where i ∈ {1,2,…,n} and j ∈ {1,2,…,m}. The final DTW distance 
between the two traces is then given by: 

DTWdistance = √DTW (n,m)

The final distance gives the optimal alignment that minimises 
the cumulative distance between both growth rate traces. 

2.8.3 P-value derivation
For each set of predictions from a particular integration method, 

condition-specific growth traces were individually normalised to 
facilitate comparison using DTW. For each condition, random 
growth rates were computed for each time-point in the condition 
dataset, with the resulting growth trace max-min normalised. For 
this normalised growth trace, a DTW distance was computed against 
the relevant condition’s experimentally derived growth trace. This 
process of randomly generating DTW distances was repeated for 
each condition 100,000 times (determined using a convergence 
analysis) to form condition-specific null distributions. P-values were 
then computed as the proportion of randomly generated DTW 
distances lower than an integration method’s prediction (Figure 2B). 

2.9 Condition discrimination

2.9.1 Principal coordinates analysis (PCoA)
To visualise structural similarities between predicted flux 

distributions across different conditions, PCoA was performed. To 
ensure consistency between all flux vector dimensions between 
methods (prior to pre-processing) and to remove negative flux 
values, all reversible reactions were modelled as separate forward 
and backward reactions (as performed by pFBA by default). For 
each integration method, predicted fluxes below solver tolerance 
( < 10−10) were set to zero, and reactions with zero flux across 
all conditions were excluded. Column-wise total normalisation 
was performed (with each set of flux distributions summing 
to 1) before the removal of low variance reactions (standard 
deviation <10−3) and reaction fluxes were z-score normalised across 
reactions. We produced a projection for every integration method 
individually, each with flux predictions from all conditions. Pairwise 
Euclidean distances were computed between all condition vectors 
to generate a dissimilarity matrix and classical multidimensional 
scaling (MDS) was applied to this matrix using the scikit-
learn implementation; mathematically equivalent to PCoA. The 
first two principal coordinates were retained, and resulting 2D 
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TABLE 2  Expression profile labels and their source publications - more details available from CyanoExpress (Hernandez-Prieto and Futschik, 2012).

Plotting name Description Sample size References

Cd Cadmium stress 9 Houot et al. (2007)

Blue light Blue light growth 6 Singh et al. (2009)

High light High light stress 6 Singh et al. (2008)

CrhR CrhR-mutant; Low temperature 3 Prakash et al. (2010)

S starvation (H) Sulphur starvation (no HEPES) 3 Zhang et al. (2008)

S starvation Sulphur starvation 7 Zhang et al. (2008)

Iron stress Iron stress 5 Hernández-Prieto et al. (2012)

embeddings used for visualisation. The proportion of variance 
explained was estimated from the variance of the MDS embedding 
along each dimension and normalising by the total variance. 

2.9.2 P-value derivation
We performed permutation tests comparing intra-condition 

mean Euclidean distances to a null distribution to quantify 
each integration method’s ability to capture condition-specific 
properties. For each condition group (Table 2) within a given 
integration method’s set of predictions, we computed the mean 
pairwise Euclidean distance between samples in the projection 
belonging to the same condition set. Using all samples in the 
projection, we randomly sampled groups of the same size (without 
replacement) and computed their average pairwise distances for 
100,000 iterations (determined using a convergence analysis). A 
p-value for a particular condition was calculated as the proportion 
of random permutation-derived mean Euclidean distances lower 
than that observed from the actual condition set. For each 
integration method, we performed this analysis for each of the 
7 condition sets to yield a distribution of p-values, plotted in 
Figure 3A. (An example is provided on GitHub: https://github.com/
ThomasPugsley/Evaluating_transcriptomic_integration and a 
schematic is available: Supplementary Figure S3.).

3 Results and discussion

After screening the datasets in CyanoExpress, 7 sets of 
expression proiles were deemed suitable for downstream analysis 
(Table 2). We implemented our novel dual-metric pipelines using 
the 7 transcriptomic datasets (Figure 1).

PCoA clustering revealed marked differences in performance 
metrics across methods used for condition discrimination 
(Figure 3). Of the methods tested, iMAT’s performance appeared 
most heavily influenced by input parameter choices. The more 
unusual 35th and 15th Local percentile thresholding combination 
resulted in surprisingly tight condition clusters, outcompeting 
Eflux-2 and with a median roughly on par with the more typical 
iMAT implementation using 75th and 20th percentile thresholds. 
METRADE∗, in contrast, demonstrated a reasonable level of 

robustness across scaling parameters and scaling strategies, 
particularly for predictions using gamma values greater than 1, 
and maximum importance values greater than 10. E-flux2, which 
does not require any user-specified input parameters, performed 
moderately well with a median p-value of ∼0.4 (Figure 3A). The 
majority of METRADE∗ implementations, however, outcompeted 
E-flux2. Among the METRADE∗ implementations tested, variance-
based scaling, using maximum importance values of 100, 1000 
(in the case of the max configuration) and 10,000, resulted in the 
tightest condition clusters. This is unsurprising since the scaling 
strategy ensures that genes with greatly altered expression across 
the time-series, have their bounds modified to a greater extent 
than those which are invariant. Importantly, uniformly-scaled 
METRADE∗ also performed well, and had greater robustness across 
scaling parameter choices.

METRADE∗ configuration changes seemed to have 
minimal impact on the capacity of the model to discriminate 
between conditions in PCoA space. While uniformly-scaled 
METRADE∗ seemed to favour the Max configuration for the 
majority of implementations, the dependency seems to switch at 
gamma = 10. METRADE∗’s apparent robustness to changes in 
configuration is surprising as the Baseline setup creates buffering, 
forcing the reshaped solution space to exert more influence deeper 
within the reaction network, rather than causing more localised 
changes in flux utilisation, for example, around photosynthesis - 
the point of entry for flux to the system. It is unsurprising that for 
low gamma values, the Max configuration was clearly favoured since 
buffering creates a larger gap between the new bounds and allowable 
flux, meaning a “stronger” mapping is required for contextualisation 
to take effect.

The initial configuration of the model has the potential to alter 
predictive accuracy as the treatment of the model’s Boolean gene-
reaction rules assume reaction fluxes are controlled by enzymes. 
Cyanobacterial photosystems, which are not themselves regulated 
like enzymes, are represented in iSynCJ816’s photosystem reactions, 
and are the first point at which transcriptional integration can 
influence light entering the wider system. It can therefore be argued 
that these “points of entry” for light should not be subject to strict 
bound changes based on expression profiles, due to an inappropriate 
assumption that they are regulated in the same manner as enzymatic 
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FIGURE 3
Distribution of p-values obtained for all integration method implementations. Condition discrimination p-values represent the ability of an integration 
method to form condition-specific clusters in low dimensionality space with all 7 condition datasets (A). Growth p-values indicate the ability of an 
integration method to match estimated relative growth rate traces for all conditions (B). In the case of iMAT, x-axis labels refer to upper and lower 
percentile input thresholds. For METRADE∗, one-size-fits-all scaling values are uniform gamma values while x labels for the reaction-specific 
METRADE∗ is maximum importance. [Boxes represent 25th and 75th percentiles with median values indicated in the centre. Whiskers show smallest 
and largest values within 1.5 IQR and circles are outliers. Figure made using Matplotlib (Hunter, 2007)].

reactions. To illustrate a violation of this assumption, a typical 
high light stress response can be considered. It would be expected 
that as a long-term strategy, photosystem proteins would be 
downregulated to prevent oxidative damage, as excitation input 
would exceed electron sink capacity of downstream of downstream 
photosynthetic pathways. Without specifying explicit estimates 
for photon input in the metabolic model, after integration with 
transcriptomic data, such a response at the genetic level would 
result in a reduction of potential flux entering the system due to the 
shrinking of flux bounds at the photosystems. Such an assumption 
is inappropriate given the numerous non-transcriptional regulatory 
mechanisms which act to maintain flux through photosystem 
reactions (Uzuner Odongo et al., 2025; Shen et al., 2019a; Beurton-
Aimar et al., 2011). Energy redistribution through phycobiliosome 
state transitions and dissipation of excess energy by non-
photochemical quenching are key examples of this, both of which 
act with near immediacy (Joshi et al., 2017; Shlomi et al., 2008). 
Therefore, in our analyses, the “Baseline” configuration (for 
METRADE∗ analyses) was set up so that the upper bounds of the 
photosystem reactions (and all other reactions in the system) were 
twice as large as the available light, creating a buffer between any 
transcription-induced bound modification and light entering the 
system. In the “Max” configuration, photosystem upper bounds 
were set to equal the available light, meaning any modification of 
the photosystem bounds could reduce light entering the system 
based on the gene-reaction rules.

It may be expected that Baseline versions of METRADE∗ would 
perform better when capitalising upon light input buffering as 
they would be less susceptible to severe bound changes near 
the photosystems. However, for simulations with adequately 
large scaling values, there appeared to be no clear difference in 
performance using each configuration. The Max configuration, 
more expectedly, was preferred when predicting growth rates 
across the majority of implementations (Figure 3B). This is 
likely due to flux inference at photosynthesis being closely tied 
to overall productivity and therefore biomass rates. Since the 
Max configuration encourages solution space reshaping around 
photosynthesis, it appears the most reliable configuration for 
predicting growth rates, despite the assumptions outlined above. It is 
important to acknowledge that while biomass predictions are useful 
for gauging proportionate transcriptional integration ‘strength’, 
some metabolite secretion rates may not benefit so dramatically 
from using the Max configuration if they are determined by solution 
reshaping deeper within the network. Both performance metrics 
suggest that use of uniform scaling with METRADE∗ can be suitable 
for successful contextualisation but agree that gamma values need 
to be sufficiently high to accurately model cellular metabolism 
(Figures 3A,B). Using dual-metric visualisation, it becomes evident 
that some input setups allow for successful condition discrimination 
but remain unable to predict growth rates with good accuracy 
(Figure 4). When using uniform scaling, METRADE∗ performed 
better when using higher scaling parameters, with the best 
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FIGURE 4
Distribution of p-values for condition discrimination offset against growth rate predictions. Different methods are indicated above graphs - E-flux2 is 
included as a benchmark. Colours reflect the two types of metric, consistent with coloured labelling in Figure 1. [Boxes represent 25th and 75th 
percentiles with median values indicated in the centre. Whiskers show smallest and largest values within 1.5 IQR and circles are outliers. Figure made 
using Matplotlib (Hunter, 2007)].

predictions at gamma = 10 (using the Max configuration). There 
was substantial variability in predictions when using importance-
based scaling. Predictions using maximum importance values of 
10,000 were, however, the best across all methods tested (only 
marginally in the case of Max) and broadly consistent across both 
configurations (Figure 4).

Autotrophic constraint-based systems present unique challenges 
for contextualisation. The dominance of light input as an essential 
energy source for autotrophs means the single photon exchange 
reaction has a disproportionately high uptake rate compared to other 
essential model reactions such as bicarbonate and water exchange 
(Joshi et al., 2017). Transcriptomic integration with heterotrophic 
systems is less susceptible to the biases introduced by such a ‘top-
heavy’ setup as they rely on multiple essential exchange reactions 
like carbohydrate, oxygen and nitrogen import - all carrying flux 
at rates typically within an order of magnitude of each other 
(Van ‘t Hof et al., 2022; Blázquez et al., 2023). For methods like 
METRADE, where all default “unconstrained” reaction bounds 
(prior to integration) are set to the same magnitude, exchange 
reactions and their associated downstream pathways which support 
high flux rates, will be more susceptible to influence from bound 
modification. The subsequent disproportionate influence of these 
reactions (photon input in the case of autotrophically-growing 
organisms) on flux distributions may be viewed as problematic, 
because one portion of the solution space is more susceptible 
to reshaping while the rest of the network remains relatively 
unconstrained. In our results, however, METRADE∗ generally 
outperformed other methods when discriminating between 
conditions in PCoA and configuration choice seemed only to result 
in minimal differences in condition clustering, largely dispelling 
these concerns.

While not directly addressing the “top heaviness” of autotrophic 
systems, specifying bound constraints for key exchange reactions 
can lead to more robust solutions, with methods to quantify 
exchange reaction bounds having been proposed (Lin et al., 2025; 

Vijayakumar et al., 2020). Most previous validation studies, 
and case studies using continuous integration methods, focus 
on modelling cases where some experimental uptake rates are 
defined (even if there may be some methodological ambiguity in 
their determination), helping to shape final flux solutions (Lea-
Smith et al., 2021; Joshi et al., 2020; Angione and Lió, 2015; 
Vijayakumar et al., 2018). A given integration method’s inferred 
predictive performance can vary greatly, however, depending on 
whether these uptake rates are manually set or left unconstrained 
(Lea-Smith et al., 2021; Blázquez et al., 2023). While E-flux2 
and METRADE∗  have typically been implemented using specified 
uptake rates, it should also be noted that poorly substantiated 
input assumptions have the potential to bias output distributions -
an important consideration since there is no uniform standard 
for defining such rates in autotrophic systems (Lin et al., 2025; 
Vijayakumar et al., 2018). In our analysis, we only specified the 
light input rate to facilitate a comparison between buffered and non-
buffered configurations, leaving all other uptake rates undefined. 
In each case, light input flux was capped at an arbitrary baseline 
and subsequent growth rate predictions assessed in terms of 
their relative changes - a configuration similar to the “AC” (all 
possible carbon source) setup defined in previous validation studies 
(Joshi et al., 2020; Blázquez et al., 2023; Nielsen, 2003).

This approach was taken in the interest of maximising the 
number of viable conditions for analysis while also acknowledging 
that specific flux input rates are often not possible to obtain from 
previously published papers. For example, previous cyanobacterial 
metabolic modelling studies have calculated light available to cells 
using the culture surface area and dry cell weight per culture volume 
(Vijayakumar et al., 2020). The light availability value can be used 
to set specific photon exchange reaction bounds to reflect different 
lighting conditions. There is, however, no strict convention for 
reporting the values necessary for this light availability calculation 
among published work. For instance, flask type, height of the culture 
and dry cell weight measurements [which may require inference 
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from a calibration curve at a suitable OD (Vijayakumar et al., 2018)] 
are often not included in transcriptomic publications. Even in cases 
where absolute or relative differences in light consumption by cells 
can be accurately estimated, the configuration of the starting bounds 
should remain an important consideration, because transcript-
based photosystem regulation inference may still erroneously alter 
the entry of flux to the wider system, even if the extent of its influence 
is decreased. 

3.1 METRADE∗ and E-flux2

Continuous methods, like E-flux2 and METRADE∗, are 
sometimes preferred to discrete methods because they better reflect 
fine-grained expression changes while also avoiding categorisation 
of reaction expressions by somewhat arbitrary thresholds. This is 
partly supported by our findings, however, E-flux2 does not achieve 
the same level of success in condition separation as METRADE∗. 
The ability of almost all METRADE∗ methods to outperform E-
flux2 suggests there is a significant advantage in the use of the 
lazy-step mapping function with togglable scaling relative to E-
flux2’s relative unit approach. The benefit of altering the “strength of 
mapping” appears largely reponsible for this difference, given that 
many of E-flux2’s model predictions achieve similar metrics to those 
of METRADE∗ with uniform scaling around 1 (“low strength”).

It is interesting that some methods which resulted in some 
of the tightest forming condition clusters in PCoA space, did 
not predict growth rates with the highest degree of accuracy. It 
appears, therefore, that clustering may be insufficient alone to 
determine the success of model contextualisation. This is probably 
because applying new constraints to a model has the capacity 
to separate conditions well in low-dimensionality space but risks 
overemphasising these differences beyond what would reasonably 
be expected in the true biological system. Growth rate accuracy 
can therefore serve to oppose clustering metrics by ensuring 
consistent relative differences between different time points in a 
manner which reflects those observed experimentally. We propose 
that successful model predictions should perform well across both 
metrics to ensure biologically feasible predictions. With this in 
mind, the best performing implementations tested (which are 
largely unaffected by configuration) are METRADE∗ with uniform 
scaling at gamma = 10, and variance-based scaling with maximum 
importance at 10,000 (Figure 4). 

3.2 iMAT

Since iMAT is solved as a MILP, it does not rely on maximising 
a biomass equation (or any pre-computed objective function) 
to yield flux distributions. This, in theory, allows for increased 
flexibility within the solution space, potentially permitting more 
extreme changes between conditions. E-flux2- and METRADE∗-
based methods have objectives more rigidly defined, relying more 
heavily on solution space reshaping to guide flux distributions. 
Interestingly, in our PCoA simulations, biomass objective-reliant 
integration methods performed particularly strongly for condition 
clustering, in contrast to the highly variable performance seen 
among iMAT predictions (Figure 3A). Shifts in iMAT performance 

could be explained by the flexibility of MILPs, however, this 
flexibility seems to come at the cost of input parameter robustness.

While 13C-MFA is undoubtedly the preferred method for 
capturing the behaviour of cellular systems, it has rarely been 
used to select thresholds for switch-based methods. This analysis 
should be informative as iMAT thresholding decisions dictate which 
reactions are considered up- and downregulated, which in turn 
shapes the objective for optimisation. If the resulting objective 
demands flux in a manner which matches the fluxes across central 
carbon metabolism, we assume it is appropriate for modelling in the 
cyanobacterial model. Although this process acts as the opposing 
analysis to iMAT PCoA clustering (Supplementary Figure S1), it 
heavily relies on the assumption that the results are applicable 
to transcriptomic data from stress conditions and mutants (all 
infered from a WT transcript profile). Such an assumption is not 
easily testable given the lack of MFA data for Synechocystis, and 
therefore any iMAT PCoA clustering results should be interpreted 
with caution. While some more unusual percentile combinations 
showed great promise when assessed in low dimensionality space 
(particularly 0.35, 0.15), iMAT’s inability to predict biomass rates 
limits the confidence with which we can assess the biological 
plausibility of solutions with an opposing metric (as implemented 
for METRADE∗ and E-flux2) in this analysis. 

3.3 Considerations

As Machado and Herrgård (2014) point out, transcriptomic 
integration methods are often tailored to address specific research 
questions; not necessarily for the precise prediction of intracellular 
fluxes (Machado and Herrgård, 2014). For example, across 
systems biology, integrative metabolic modelling is frequently 
used for the qualitative assessment of system behaviour or for 
comparative analyses between conditions (Vijayakumar et al., 2020; 
Uzuner Odongo et al., 2025; Tang et al., 2025).

In our analyses with METRADE∗, we noted implementations 
that produced the tightest condition-specific clusters in PCoA 
tended to underperform in predicting growth rates. These types 
of outcomes suggest that when analysis pipelines are developed to 
detect fluxomic patterns associated with metabolic reprogramming, 
implementations which result in more distinct condition-specific 
clusters may be more effective at identifying relevant signals.

Inferred growth rates from OD measurements served as 
useful continuous trait targets for context-specific models. OD 
data, however, only allows for the estimation of relative growth 
rates, since it is not possible to determine absolute cell numbers 
from existing data. We accounted for the non-linear relationship 
between absorbance and cell number using the derivations 
described in Section 2.7. Curve fitting was relied upon to interpolate 
growth rates at time points where RNA was harvested but OD not 
explicitly measured. Fitted curves were checked visually and using 
standard goodness-of-fit metrics (R2 and RMSE). 

4 Conclusion

Overall, this study evaluated the impact of different 
transcriptomic integration methods, making use of existing data
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from CyanoExpress. The report serves as a starting point for 
benchmarking integration methods in cyanobacteria and proposes 
strategies for reliable intracellular flux predictions. We quantifed 
the success with which iMAT, E-flux2 and METRADE∗ are able to 
produce context-specific model predictions which cluster in low-
dimensional space. We also derived and used time-series growth rate 
traces, alongside clustering, to determine optimal scaling parameters 
and strategies when applying METRADE∗- the best performing 
method given appropriate parameter choices. We observe how there 
is a trade-off between predicting growth rates and condition-specific 
clustering in low-dimensional space and discuss how different 
implementations may be considered optimal depending on the 
use case. Based on our results, METRADE∗ is the best choice 
for transcriptomic integration in Synechocystis metabolic models 
for the prediction of flux distributions retaining condition-specific 
properties, and for predicting growth rates.
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