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Introduction: Bacterial pneumonia remains a major global health challenge, and 
early pathogen identification is important for timely and targeted treatment. 
However, conventional microbiological diagnostics such as sputum or blood 
culture are labor-intensive and time-consuming.
Methods: We propose an interpretable ensemble learning framework (PreBP) 
for rapid pathogen identification using routinely available complete blood count 
(CBC) parameters. We analyzed 1,334 CBC samples from patients with culture-
confirmed bacterial pneumonia caused by four major pathogens: Pseudomonas 
aeruginosa, Escherichia coli, Staphylococcus aureus, and Streptococcus
pneumoniae. Pathogen labels were determined based on clinical culture 
results. Five machine learning models (extreme gradient boosting (XGBoost), 
multilayer perceptron neural network (MLPNN), adaptive boosting (AdaBoost), 
random forest (RF), and extremely randomized trees (ExtraTrees)) were trained 
as comparators, and PreBP was developed with metaheuristic-optimized 
hyperparameters. Key CBC biomarkers were refined using a dual-phase feature 
selection strategy combining Lasso and Boruta. To enhance transparency, 
SHapley additive explanations (SHAP) were applied to provide both global 
biomarker importance and local, case-level explanations.
Results: PreBP achieved the best overall performance, with an AUC of 0.920, 
precision of 87.1%, and accuracy and sensitivity of 86.7%.
Discussion: Because the framework relies on routine CBC measurements, it 
can generate interpretable predictions once CBC results are available, which 
may provide supplementary evidence for earlier pathogen-oriented clinical 
decision-making alongside culture-dependent workflows. Overall, PreBP offers 
an interpretable and computational approach for pathogen identification in 
bacterial pneumonia based on routine laboratory data.
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GRAPHICAL ABSTRACT

 

1 Introduction

Bacterial pneumonia remains a common cause of morbidity 
and mortality worldwide, highlighting the importance of timely 
and accurate pathogen identification. Notably, pneumonia-related 
morbidity and mortality disproportionately affect people 65 years 
of age and older (Castrodad-Rodriguez et al., 2021). According to 
a 2019 World Health Organization (WHO) report, 929,000 deaths 
were attributed to antimicrobial resistance (AMR) in six priority 
bacterial infections (Antimicrobial Resistance, 2022). Antimicrobial 
susceptibility testing (AST) and pathogen identification rely 
on blood culture, which takes 24–72 h to produce findings 
(Lamy et al., 2016). For life-threatening illnesses like septic 
shock, the treatment window is frequently less than 6 hours 
(Evans et al., 2021). Every year, some 4.1 million cases of 
empirical broad-spectrum antibiotic use are caused by this 
diagnostic delay (Cassini et al., 2019), which exacerbates the 
AMR epidemic.

Current diagnostic techniques for pneumonia, such 
as sputum culture, molecular diagnostics (Figure 1A), and 
imaging analysis (Nordmann and Poirel, 2014), face significant 
limitations. Prolonged culture times result in 37% of patients 
receiving inappropriate antibiotics before AST results are 
available (Van Heuverswyn et al., 2023); Pretreatment with 
antibiotics reduces blood culture sensitivity to 42%–58% 
(Ruiz-Gaviria et al., 2023); Molecular assays achieve less than 
63% specificity in distinguishing polymicrobial infections 
(Castrodad-Rodriguez et al., 2021). While biomarkers such 
as procalcitonin (PCT) assist differentiate bacterial from viral 
infections (Liang et al., 2023), their value in identifying 
specific pathogens is limited. Nanopore sequencing reduces 
pathogen identification time to 8 h but is prohibitively expensive 

(>US$200/test) (Guo et al., 2023), whereas AI models achieve 
high accuracy (AUC = 0.91) in pneumonia detection yet 
struggle with overlapping radiomic features among pathogens 
(Xu, 2023; Rognvaldsson et al., 2023).

To improve pneumonia diagnostics, machine learning (ML)-
driven multimodal data fusion strategies have emerged as 
transformative tools. Studies integrating clinical data with machine 
learning techniques, such as XGBoost models and host immune 
response signatures, have demonstrated superior predictive 
performance (Li et al., 2024; Alzoubi and Khanfar, 2021). For 
example, an elevated neutrophil-to-lymphocyte ratio (NLR) in 
Staphylococcus aureus infections and increased platelet distribution 
width (PDW) in Pseudomonas aeruginosa bacteraemia highlight 
the utility of host immune fingerprints (HIFs) in pathogen 
discrimination (Sathe et al., 2023; She et al., 2023).

Moreover, predictive models leveraging peripheral blood 
parameters have shown promise in related contexts. A COVID-
19 severity prediction model developed using peripheral 
blood parameters and ML algorithms achieves high accuracy 
(Aktar et al., 2021; She et al., 2023), and Oscar Garnica et al. 
developed models using Support Vector Machine, Random Forest, 
and K-Nearest Neighbors algorithms based on hospital electronic 
health records to predict bacteraemia, providing an efficient tool 
for personalized antimicrobial treatment decision-making and 
healthcare resource optimization (Garnica et al., 2021). Existing 
efforts have primarily focused on binary classification, highlighting 
the need for multiclass frameworks for clinical translation.

Despite progress, three major challenges remain: extracting 
discriminative immune biomarkers from high-dimensional 
heterogeneous data, developing precise multiclass pathogen 
classifiers, and improving the interpretability of AI-driven clinical 
decision systems to ensure clinician acceptance (Su et al., 2021). 

Frontiers in Bioinformatics 02 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1769816
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Hao et al. 10.3389/fbinf.2025.1769816

FIGURE 1
Integration of sputum culture diagnostics and the AI-driven pathogen prediction workflow (A) Qualified sputum samples are collected, processed 
through digestion, inoculated onto culture media, and incubated. Pathogen identification (via colony characterization) and antimicrobial susceptibility 
testing are performed to determine resistance profiles, guiding precision antimicrobial therapy in clinical practice. (B) Complete blood count (CBC) 
data (e.g., hematologic parameters) from patients infected with four bacterial types are used to train a model. By integrating metaheuristic optimization 
and interpretable AI techniques, a pathogen identification system is constructed, enabling rapid prediction of infection sources.

To address these challenges, this study developed and validated a 
multi-class classification framework based on complete blood count 
(CBC) for identifying four important pneumonia-causing bacteria 
(Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli), 
Staphylococcus aureus (S. aureus), and Streptococcus pneumoniae 
(S. pneumoniae)) (Figure 1B). The main contributions include: 
demonstrating that routine CBC indicators possess discriminatory 
power to differentiate between the four pathogens, supporting rapid 
pathogen identification. Designing a two-stage feature selection 
process to obtain a combination of key biomarkers with low 
redundancy and high information content, improving model 
compactness and usability (Mohtasham et al., 2024). Providing 
global and individual-level interpretability analysis based on SHAP, 
clarifying the contribution of key features to the prediction of 
different pathogens, enhancing model transparency and clinical 
interpretability (Li et al., 2023; Papazoglou and Biskas, 2023).

This study specifically focuses on classifying four WHO-priority 
Gram-positive and Gram-negative bacteria (P. aeruginosa, E. coli, 
S. aureus, and S. pneumoniae), which are commonly implicated in 
hospital-acquired pneumonia. While we recognize that pneumonia 
can be caused by a broad spectrum of pathogens,the scope of 

this model is intentionally constrained to a subset of clinically 
significant bacteria to assess feasibility and performance using 
readily available CBC data. Furthermore, we acknowledge that not 
all strains within a species are multidrug-resistant (MDR), and that 
MDR status can only be definitively confirmed through AST. Thus, 
although our model does not predict resistance phenotypes directly, 
it targets organisms frequently associated with MDR in healthcare 
settings, aiming to support earlier empirical decision-making while 
reducing unnecessary broad-spectrum antibiotic use. The resulting 
AI diagnostic model obtained 86.7% overall accuracy in classifying 
four high-risk bacterial species, surpassing benchmarks set by deep 
migration learning (Schmidt et al., 2021).

2 Materials and methods

2.1 Data description and analysis

This study included 1,334 CBC samples from confirmed 
bacterial pneumonia patients, which included four clinically 
significant pathogens: P. aeruginosa, E. coli, S. aureus, and S. 
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TABLE 1  Demographic and clinical characteristics.

Variable
Sex group

P-value2

Male,
N = 697

Female,
N = 625

Age — — 0.781

    Mean (SD) 68.62 (13.99) 68.40 (14.70) —

    Median (IQR) 70.00 (61.00, 78.00) 72.00 (62.00, 77.00) —

Leukocyte profile

    WBC 8.27 (6.13, 11.37) 7.39 (5.58, 10.58) 0.229

    NEUT# 6.37 (4.19, 9.50) 4.96 (3.13, 8.61) 0.833

    LYMPH 1.18 (0.72, 1.66) 1.53 (0.96, 2.08) 0.021

    MONO# 0.50 (0.31, 0.71) 0.44 (0.32, 0.61) 0.037

    EO# 0.03 (0.00, 0.11) 0.05 (0.01, 0.11) 0.662

    BASO# 0.01 (0.00, 0.02) 0.01 (0.00, 0.02) 0.265

    NEUT% 77.91 (67.30, 87.11) 68.60 (56.70, 83.10) <0.001

    LYMPH% 14.30 (7.22, 22.10) 21.80 (10.50, 32.64) <0.001

    MONO% 6.40 (4.30, 8.20) 6.10 (4.60, 7.70) 0.557

    EO% 0.30 (0.00, 1.40) 0.70 (0.10, 1.70) 0.159

    BASO% 0.10 (0.00, 0.20) 0.10 (0.00, 0.20) 0.358

Erythrocyte indices

    RBC 4.47 (3.86, 4.83) 4.27 (3.85, 4.63) <0.001

    HGB 133.00 (114.00, 
145.00)

126.00 (112.00, 
134.00)

<0.001

    HCT 38.80 (33.60, 42.50) 37.20 (33.60, 40.20) <0.001

    MCV 87.10 (84.30, 90.60) 87.20 (83.90, 90.50) 0.724

    MCH 29.70 (28.50, 30.70) 29.50 (28.20, 30.50) 0.392

    MCHC 339.00 (331.00, 
348.00)

336.00 (328.00, 
345.00)

0.002

    RDW-SD 43.00 (40.00, 47.00) 42.00 (40.00, 45.00) 0.005

    RDW-CV 13.00 (13.00, 15.00) 13.00 (13.00, 14.00) 0.003

Platelet parameters

    PLT 205.00 (158.00, 
256.00)

239.00 (186.00, 
285.00)

<0.001

    MPV 9.70 (9.10, 10.30) 9.80 (9.20, 10.50) <0.001

    P-LCR 22.60 (17.40, 27.30) 23.00 (18.60, 28.80) 0.017

    PCT 0.20 (0.16, 0.24) 0.23 (0.18, 0.28) <0.001

(Continued on the following page)

TABLE 1  (Continued) Demographic and clinical characteristics.

Variable
Sex group

P-value2

Male,
N = 697

Female,
N = 625

    PDW 10.60 (9.40, 11.80) 10.80 (9.80, 12.20) 0.135

    IG% 0.30 (0.20, 0.50) 0.30 (0.20, 0.50) 0.186

    IG# 0.03 (0.02, 0.05) 0.02 (0.01, 0.05) 0.384

    NLR 5.42 (3.03, 12.05) 3.15 (1.76, 7.86) <0.001

pneumoniae (Figure 3A). Each record corresponds to a unique 
patient, and only one CBC measurement per patient was included 
in the final dataset. Therefore, the independence assumption holds 
at the patient level, and no patient contributed observations to both 
the training and test sets. Importantly, all biological specimens for 
microbiological testing—including sputum or blood cultures—were 
collected prior to the initiation of any antibiotic treatment. The 
dataset contains sex and 26 hematological quantitative parameters 
divided into four functional groups (Table 1): leukocyte parameters 
(white blood cell count (WBC), absolute neutrophil count (NEUT#), 
lymphocyte percentage (LYMPH%), absolute monocyte count 
(MONO#), absolute eosinophil count (EO#), absolute basophil 
count (BASO#), and their corresponding percentages), erythrocyte 
indices (red blood cell count (RBC), hemoglobin (HGB), hematocrit 
(HCT), mean corpuscular volume (MCV), mean corpuscular 
hemoglobin (MCH), mean corpuscular hemoglobin concentration 
(MCHC), red cell distribution width–standard deviation (RDW-
SD), red cell distribution width–coefficient of variation (RDW-CV)), 
platelet parameters (platelet count (PLT), mean platelet volume 
(MPV), platelet–large cell ratio (P-LCR), plateletcrit (PCT), platelet 
distribution width (PDW)), and immature granulocyte markers 
(immature granulocyte percentage (IG%), absolute immature 
granulocyte count (IG#), neutrophil-to-lymphocyte ratio (NLR)).

Data quality control was strictly enforced; samples with 
missing values (5–23 missing entries per feature) were 
excluded. To address class imbalance in the target variables, 
stratified sampling was used during modeling to reduce bias 
(Aguiar et al., 2023). A hybrid feature selection technique improved 
model performance: LASSO regression removed collinear variables 
(Bainter et al., 2023), and the Boruta algorithm discovered 
nonlinear correlations (Fahimifar et al., 2022), yielding a consensus 
feature subset.

Histograms show right-skewed distributions for many 
parameters (e.g., HGB and MCV), showing a concentration of 
values in lower ranges and outliers at higher extremes, signifying 
data skewness or potential anomalies. These findings necessitate 
further standardization or transformation to improve classifier 
performance (Azad et al., 2021). Collectively, these preliminary 
analyses provide important recommendations for improving 
pathogen categorization systems.

This dataset provides a robust informative basis for predicting 
four different bacterial infections via regular blood measurements. 
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The scientific rationale for selecting this dataset is based on the 
strong clinical utility of hematological data for rapid diagnostic 
frameworks (Khalid et al., 2021), which can aid in clinical decision-
making, improve therapeutic efficiency through timely pathogen-
specific interventions, and significantly reduce misdiagnosis risks in 
resource-constrained healthcare settings.

In all experiments, we followed a leakage-free workflow. We 
first split the data, then applied preprocessing (e.g., scaling) and 
feature selection using the training set only. Hyperparameters were 
optimized via cross-validation (CV) on the training set. Finally, 
the selected model was refit on the full training set and evaluated 
on the held-out test set. At no stage were the test data used for 
preprocessing, feature selection, or model tuning. 

2.2 Feature selection

This work used a dual-strategy method for high-robustness 
feature screening, combining the Boruta all-relevant feature 
selection algorithm with LASSO regression.

The Boruta algorithm (Zhou et al., 2023), which uses 100 
iterations of shadow feature permutation tests, identifies key 
variables from the entire dataset, including core inflammatory 
indicators (white blood cell count, neutrophil absolute count 
and percentage) and immune cell parameters (lymphocyte and 
monocyte absolute counts and percentages) (Figure 3B).

Prior to LASSO-based feature selection, all continuous 
hematological variables were standardized using z-score 
normalization. Importantly, the mean and standard deviation were 
estimated using the training data only, and the same transformation 
was then applied to the test data to avoid information leakage.

LASSO regression with cross-validation (LASSOCV) was 
used to penalize collinear and low-contribution variables via 
L1 regularization (Wang et al., 2024). The optimization path 
automatically retains only high-impact predictors. This phase 
further highlighted erythrocyte system parameters (HGB and HCT) 
and inflammatory dynamics indicators (NEUT# and MONO#).

These two techniques use complementary dimensions to 
select features: Boruta values biological relevance, whereas LASSO 
emphasizes prediction efficiency. A Venn analysis extracted the 
intersection of features identified by both methods, yielding 
consensus variables, as shown in Table 2 (Barbieri et al., 2024). This 
dual-validation mechanism overcomes single-algorithm selection 
bias, establishing a high-reliability feature benchmark for infectious 
pathogen classification.

2.3 Model development: ensemble 
framework with metaheuristic optimization 
and interpretable AI

This study proposes a hybrid machine learning 
framework (PreBP) that integrates metaheuristic optimization 
(Rezk et al., 2024) and stacked ensemble learning (Goliatt et al.,
2023) for multiclass pathogen classification. The goal was to 
differentiate among P. aeruginosa, E. coli, S. aureus, and S. 
pneumoniae infections using CBC-derived immune signatures. 

2.3.1 Base learner selection and optimization
Four candidate machine learning algorithms were chosen 

as base learners based on their ability to handle structured 
clinical data and capture complex non-linear correlations: extremely 
randomized trees (ET), extreme gradient boosting (XGBoost) 
(Hakkal and Lahcen, 2024), random forest (RF), and adaptive 
boosting (AdaBoost) (Han et al., 2022).

To improve prediction stability, we used a two-stage 
optimization approach that included five-fold stratified cross-
validation and the Dung Beetle Optimizer (DBO). We used five-fold 
stratified cross-validation on the training set for hyperparameter 
tuning and model selection. After tuning, the selected models 
were refit on the full training set, and the final performance was 
evaluated once on the predefined held-out test set. The DBO 
algorithm (Figure 2) optimizes hyperparameters by dynamically 
balancing global search capabilities with localized refinement (Xue 
and Shen, 2022). In the initialization phase, the algorithm randomly 
generates the position and velocity vectors of the dung beetle 
population. By introducing random perturbation factors, elite 
retention strategies, and mechanisms based on iterative fitness 
evaluation (such as cross-validation F1 scores), the algorithm 
continuously updates the search trajectory until convergence. 
Following DBO optimization, the top three base learners—ET, 
XGBoost, and AdaBoost—were selected for inclusion in the 
ensemble based on cross-validation performance. For a fair 
comparison, all baseline models were trained and evaluated under 
the same data split and the same five-fold stratified cross-validation 
scheme. All cross-validation procedures were conducted within the 
training set only for hyperparameter tuning and model selection. 
The held-out test set was used once for final performance reporting. 
Hyperparameters for both PreBP and baselines were optimized 
using the same DBO procedure, with an identical optimization 
budget and objective metric.

2.3.2 Stacked ensemble construction
To improve diagnostic robustness, we designed a two-phase 

stacked ensemble architecture (Figure 3C). In the first step, the 
outputs (probabilistic class predictions) of the selected base learners 
were used as inputs for the meta-learner. To prevent information 
leakage in stacking, we trained the meta-learner on out-of-fold 
(OOF) class probabilities generated by five-fold stratified cross-
validation on the training set. In each fold, base learners were 
fit on the remaining K−1 folds and used to predict the held-
out fold; aggregated OOF probabilities for all training samples 
were then used as meta-features. At inference, base learners were 
refit on the full training set with optimized hyperparameters 
to generate test-set probabilities, which were passed to the 
meta-learner for final predictions. The second step involved 
a systematic comparative evaluation of five prospective meta-
learners (DBO-XGBoost, DBO-ET, DBO-RF, DBO-AdaBoost, 
and DBO-MLPNN), which culminated in the integration of 
the best-performing meta-learner. Experimental results show 
that the DBO-optimized random forest (DBO-RF) meta-learner 
has better generalization ability. DBO-RF is the most effective 
meta-learner with a macro F1 score of 0.86, surpassing all 
individual base models. This hierarchical integration technique 
provides persistence and generalization capabilities across multiple
pathogen types.
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TABLE 2  Feature selection.

Variable P. aeruginosa E. coli S. aureus S. pneumoniae P-value2

WBC 8.64 (6.12, 11.48) 7.59 (5.84, 10.40) 8.69 (7.04, 12.88) 8.24 (5.54, 11.37) 0.009

NEUT# 6.56 (4.29, 9.72) 5.21 (3.34, 8.57) 6.86 (4.58, 10.28) 6.29 (3.52, 9.46) 0.895

MONO# 0.49 (0.30, 0.66) 0.45 (0.33, 0.62) 0.56 (0.33, 0.77) 0.45 (0.30, 0.66) <0.001

LYMPH% 13.84 (8.82, 22.44) 19.32 (9.31, 31.48) 14.90 (8.60, 23.80) 15.00 (7.22, 24.84) <0.001

MONO% 6.60 (4.10, 8.30) 6.20 (4.70, 7.80) 6.00 (4.90, 8.80) 6.40 (3.90, 8.10) 0.869

BASO% 0.07 (0.00, 0.20) 0.10 (0.00, 0.20) 0.14 (0.10, 0.30) 0.10 (0.00, 0.20) 0.179

RBC 4.08 (3.46, 4.69) 4.32 (3.90, 4.72) 4.43 (3.91, 4.85) 4.34 (3.92, 4.79) 0.015

HGB 120 (95.50, 137.00) 128 (115.00, 139.00) 131 (114.00, 146.00) 130 (116.00, 143.00) <0.001

HCT 35.60 (29.38, 40.80) 37.90 (34.10, 41.00) 39.50 (34.10, 42.10) 37.60 (34.30, 42.00) 0.008

MCV 87.00 (83.30, 90.58) 87.15 (84.03, 90.30) 87.40 (84.00, 91.90) 87.10 (84.60, 90.60) 0.360

MCH 29.20 (27.80, 30.10) 29.60 (28.43, 30.60) 29.80 (28.30, 30.80) 29.80 (28.70, 30.70) 0.385

MCHC 333 (323.00, 342.00) 338 (330.00, 346.00) 338 (329.00, 348.00) 339 (331.00, 348.00) <0.001

RDW-SD 45.00 (41.25, 49.00) 43.00 (40.00, 45.00) 41.00 (39.00, 46.00) 42.00 (40.00, 46.00) <0.001

P-LCR 22.00 (17.63, 26.85) 22.40 (18.00, 27.30) 23.40 (18.70, 27.20) 23.70 (18.40, 28.90) 0.113

PCT 0.22 (0.17, 0.29) 0.22 (0.18, 0.27) 0.23 (0.17, 0.26) 0.21 (0.15, 0.25) 0.003

PDW 10.70 (9.13, 11.70) 10.60 (9.60, 11.90) 10.90 (9.90, 12.00) 10.70 (9.60, 12.30) 0.516

NLR 5.71 (3.00, 9.44) 3.62 (1.89, 8.85) 5.10 (2.82, 9.39) 5.10 (2.55, 12.20) 0.428

3 Results

3.1 Predictive model evaluation

Using the predefined data split, PreBP achieved an accuracy 
of 86.7%, precision of 87.1%, recall of 86.7%, F1 of 86.0%, and a 
macro-OVR AUC of 0.920 for four-class pathogen classification. 
Across the same evaluation protocol, PreBP outperformed ET, 
XGBoost, RF, AdaBoost, and MLPNN. Leveraging routinely 
measured CBC variables, PreBP can deliver timely and interpretable 
predictions once CBC results become available. SHAP-based 
explanations (Ponce-Bobadilla et al., 2024) reveal both cohort-level 
discriminative patterns and patient-specific drivers (Figure 3D), 
offering complementary evidence alongside culture-based testing. 
This study proposes and validates a modeling framework based on 
routine blood test indicators, aiming to address the limitations of 
traditional pathogen identification methods in terms of timeliness 
and accessibility (Shojaei et al., 2023). 

3.2 Superior diagnostic performance of 
DBO-Stacking model

Using a clinical dataset (n = 1,334), we implemented a stratified 
sampling strategy to partition the data into training and independent 

test sets, ensuring a consistent distribution of multiple pathogens. 
We systematically evaluated multiclass diagnostic performance by 
comparing five DBO-optimized baseline models (DBO-XGBoost, 
DBO-RF, DBO-ExtraTrees, DBO-MLPNN, DBO-AdaBoost) and 
a DBO-optimized stacked ensemble model (DBO-Stacking) 
(Table 3; Figure 4).

As shown in Table 3, the DBO-Stacking model demonstrated 
significant diagnostic advantages in the independent test set. 
The model achieved an AUC of 0.920, outperforming the best-
performing baseline model in our comparative experiments (DBO-
XGBoost: AUC = 0.894; Δ = 0.026). The model also obtained an 
accuracy of 86.7% and a precision of 87.1%, with a macro-F1 
score of 0.860, indicating strong overall multiclass discrimination in 
this dataset. These results suggest that the proposed DBO-Stacking 
framework can provide reliable probabilistic predictions once CBC 
results are available and may provide supplementary information to 
support pathogen-oriented decision-making within the scope of the 
current evaluation setting. 

3.3 Enhanced sensitivity and ROC analysis 
of ensemble learning

As shown in Figure 4A, DBO-Stacking showed outstanding 
sensitivity (0.867) and false-negative rates (FNR = 13.3%), 
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FIGURE 2
DBO Algorithm Workflow. The Dung Beetle Optimizer (DBO) algorithm mimics the behavioral patterns of dung beetles, employing rolling dynamics 
(directional movement with stochastic perturbations), a dance-inspired operator to balance exploration and exploitation, breeding-phase local 
optimization, and resetting low-fitness agents to enhance global search capabilities. This dynamic optimization framework enables robust 
problem-solving and is particularly effective for high-dimensional machine learning tasks.

with improvements of 9.4% and 8.4% above DBO-ExtraTrees 
(sensitivity = 0.773) and DBO-RF (sensitivity = 0.783), 
respectively. Figure 4B reveals that its ROC curve is closest to 
the upper-left quadrant, maintaining true-positive rates (TPRs) > 
0.85 even at high false-positive rates (FPRs>0.8), whereas baseline 
models (e.g., DBO-ExtraTrees) show TPR deterioration in this 
region. These findings show that the ensemble framework, which 
uses dynamic host immune parameters (e.g., the NLR and PDW), 
effectively mitigates the synergistic risks of missing and misdiagnosis 
while offering high-robustness decision support for early precision 
intervention in resistant infections.

3.4 Global SHAP interpretation reveals 
pathogen-specific feature attribution 
patterns and sex-stratified differences

SHAP analysis was performed for the final output of PreBP 
(i.e., the stacked ensemble's meta-learner output). When computing 
SHAP values, we treated the fitted base learners and the trained 
meta-learner as a single composite prediction function that maps 
CBC features to class probabilities; therefore, SHAP values are 
reported with respect to the original CBC input features, reflecting 
their contributions to the final ensemble predictions.
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FIGURE 3
An interpretable AI pipeline for bacterial infection diagnosis that integrates optimized feature selection and stacked ensemble learning (A) Data 
collection. A total of 1,332 patients (123 with Pseudomonas aeruginosa, 234 with Escherichia coli, 122 with Staphylococcus aureus, and 89 with
Streptococcus pneumoniae) were included and split into training/test sets. (B) Feature selection. LASSO regression and the Boruta algorithm were used 
to identify consensus variables via a Venn diagram. (C) Model instruction. DBO-optimized base learners fused with 5-fold cross-validation; 
meta-learner selected via radar plot evaluation. (D) Model prediction & interpretation: PreBP predicts bacterial infections with global SHAP and local 
instance-level explanations.

TABLE 3  Evaluation metrics for the six models.

ML algorithms Accuracy ROC-AUC Sensitivity Precision F1 score

DBO-AdaBoost 0.666 0.637 0.666 0.640 0.636

DBO-extratrees 0.773 0.828 0.773 0.769 0.743

DBO-XGBoost 0.850 0.894 0.850 0.850 0.849

DBO-MLP 0.710 0.748 0.748 0.701 0.701

DBO-RF 0.783 0.851 0.783 0.775 0.771

PreBP 0.867 0.920 0.867 0.871 0.860

Bold values indicate the best performance (highest value) among the compared models for each evaluation metric.
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FIGURE 4
Comparative analysis of DBO-optimized models and the PreBP ensemble: ROC evaluation and diagnostic metrics (A) The figure compares evaluation 
metrics (ROC AUC, accuracy, precision, sensitivity, and F1 score) of five DBO-optimized multipathogen prediction models (AdaBoost, Extratrees, MLP, 
RF, and XGBoost) and a novel ensemble model (PreBP), demonstrating the superior diagnostic performance of PreBP, which validates its efficacy in 
pathogen prediction. (B) ROC curves of five baseline models and the newly developed PreBP ensemble model, with PreBP achieving the highest AUC, 
confirming its optimal discriminative capacity.

SHAP analysis (Figure 5) identified class-specific patterns of 
influential CBC variables for discriminating the four bacterial 
pneumonia pathogen categories in this study. BASO% and RDW-
SD ranked among the most influential features (by mean absolute 
SHAP value) for the P. aeruginosa class, whereas LYMPH% and 
WBC were among the leading contributors for the E. coli class. For 
S. aureus, LYMPH% and PDW showed prominent contributions, 
and for S. pneumoniae, LYMPH% and P-LCR were among the more 
influential features. These SHAP values provide post hoc, model-
based interpretations of how CBC variables contribute to the model's 
predicted class probabilities.

We further examined sex-stratified patterns in this study. 
The distribution of pathogen labels differed between males and 
females, with P. aeruginosa cases relatively more frequent among 
males and E. coli and S. aureus cases relatively more frequent 
among females in this dataset. This observation is descriptive 
and may reflect confounding factors (e.g., age, comorbidities, 
exposure history, or sampling practices) rather than sex-specific 
biological susceptibility. In the SHAP analysis, PDW showed notable 
contributions to S. aureus class probabilities, and WBC-related 
variables also contributed to the discrimination of pathogen classes; 
however, these associations reflect model attributions rather than 
mechanistic pathways. 

3.5 Individualized SHAP profiling illustrates 
patient-level feature attributions

We used SHAP waterfall plots to illustrate feature attributions 
for individual predictions. For an E. coli case (Figure 6A), MCV 

had the largest positive SHAP contribution (+0.07) to the predicted 
probability of the E. coli class, whereas PDW (−0.03) and LYMPH% 
(−0.02) showed negative contributions. Platelet-related parameters 
(PCT, +0.06; MCHC, +0.06) also contributed positively to the same 
class probability. For an S. pneumoniae case (Figure 6C), PDW 
(+0.03) contributed positively, whereas PCT (−0.04) contributed 
negatively. These examples illustrate how routine CBC variables 
combine to influence the model's class probability outputs at the 
individual-sample level (Figures 6A–D).

Force plots (Figures 6E–H) further visualize patient-level 
attributions for representative cases. In a P. aeruginosa case 
(Figure 6E), P-LCR showed a positive SHAP contribution to 
the predicted probability of the P. aeruginosa class, whereas 
PCT, BASO%, and LYMPH% contributed negatively. For an S. 
aureus case (Figure 6G), RDW-SD showed a positive contribution, 
whereas LYMPH% contributed negatively. Overall, the global 
and case-level SHAP results improve the transparency of 
PreBP by linking predictions to CBC inputs. These attributions 
are model-based associations and should be interpreted as 
hypothesis-generating; additional clinical or experimental 
validation is required before drawing mechanistic or causal
conclusions. 

3.6 Optimized ensemble learning 
framework for enhanced diagnostic 
generalization

The experimental framework combines the Dung beetle 
optimizer algorithm for hyperparameter optimization in four 
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FIGURE 5
Global feature importance and impact direction analysis in bacterial infection prediction. Panel Merged bar chart and honeycomb plot with a shared 
y-axis for straightforward interpretability (A) Global feature interpretation for P. aeruginosa infection prediction. The left bar plot displays feature 
importance rankings, whereas the right hive plot visualizes the impact direction (positive/negative) and value-dependent prediction trends. (B) Global 
feature interpretation for E. coli infection prediction. The left bar plot highlights feature importance rankings, with the right hive plot mapping impact 
direction and value-influence trends. (C) For S. aureus infection prediction, the left bar plot ranks feature importance, whereas the right hive plot shows 
impact direction (positive/negative) and value-dependent prediction trends. (D) For S. pneumoniae, the left bar plot similarly ranks key features, with 
the right hive plot mapping directional impacts and feature-value influences.

machine learning architectures: ExtraTrees, XGBoost, random 
forest, and AdaBoost. The parameter search boundaries are 
referenced in Table 2, and the optimization performance is evaluated 
by repeating fivefold cross-validation. The iteration termination 
criterion is set to 50 cycles. As shown in the convergence curve 
of Figure 7A, all classifiers converge to a stable accuracy after 
the 27th iteration cycle. Among them, AdaBoost shows fast early 
optimization, whereas ExtraTrees shows gradual but continuous 
improvement and finally achieves excellent generalization ability 
on the reserved dataset. The key parameter adjustments that 
occurred in this process include the number of weak classifiers 
of AdaBoost, the maximum depth of ET, and the learning rate of 
XGBoost (the specific configurations can be found in Table 4). 
Optimized benchmark testing shows that all classifiers achieve 
an accuracy improvement of 3.2%–3.8% compared with their 
default configurations, validating the effectiveness of DBO in 
efficient parameter searching. The subsequent ensemble architecture 
integrates these optimized models via stacked generalization, which 
results in strong predictive synergy—achieving an area under the 
curve (AUC) of 0.917–0.923 while maintaining F1 score stability in 
the range of 0.853–0.867.

4 Discussion

4.1 DBO-driven hyperparameter 
optimization enhances PreBP model 
performance

This paper offers an advanced hybrid stacking ensemble 
model that combines numerous base learners and meta-learners 
and optimizes them using the DBO algorithm to considerably 
increase model performance. To assess the actual impact of DBO 
optimization, we systematically analyze the models' performance 
before and after optimization (Figure 7B). The results show that the 
accuracy of the model after DBO optimization is improved by 4.1%, 
the sensitivity and accuracy are improved by 3.5%, and the AUC and 
F1 scores are improved by 3%, which shows that DBO has a strong 
advantage in hyperparameter optimization and can effectively find 
the best configuration to enhance model performance. To ensure 
a fair comparison, all baseline models were tuned using the same 
five-fold stratified cross-validation scheme and the same DBO-
based hyperparameter optimization procedure (with a matched 
optimization budget and objective metric) as PreBP.
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FIGURE 6
Local feature contribution analysis across bacterial infections (A) Panel A shows the local instance-level interpretation for an E. coli-infected patient's 
blood sample. (B) Panel B illustrates the local interpretation for a P. aeruginosa-infected sample, mapping feature-specific impacts on prediction 
outcomes. (C) Panel C presents single-sample analysis for S. pneumoniae infection. (D) Panel D shows an instance-level explanation for an S. 
aureus-infected patient. (E) The figure analyzes a single blood sample from a P. aeruginosa-infected patient. (F) The figure highlights feature-specific 
impacts (direction and magnitude) for an E. coli-infected patient's blood sample. (G) For an S. aureus-infected patient, the visualization maps critical 
features and their contribution polarity (positive/negative) to the diagnostic outcome. (H) Analysis of an S. pneumoniae-infected sample reveals 
dominant features and their predictive influence directions.

The core contribution of this study is the proposal of an 
innovative ensemble optimization strategy to address complex 
machine learning tasks. Traditional hyperparameter optimization 
methods usually have difficulty efficiently searching a large 
parameter space, which affects the final model performance. 
By introducing DBO, this study not only significantly improves 
the predictive ability of the stacking ensemble model but also 
provides a solid theoretical foundation for future hyperparameter 
optimization. Through refined parameter adjustment, DBO fully 
releases the potential of machine learning models and provides 
new technical support for intelligent decision-making in various 
industries.

4.2 SMOTE amplifies noise in bacterial 
infection classification

In clinical machine learning applications, class imbalance poses 
a significant threat to the effectiveness of predictive models. To 
address the imbalance problem in a bacterial infection dataset, we 
applied the synthetic minority oversampling technique (SMOTE), 
which generates synthetic minority samples through feature space 
interpolation.

However, the experimental results (Figure 7C) show that the 
performance of the stacked ensemble model trained on the SMOTE 
balanced dataset decreases in terms of all the metrics: the average 
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FIGURE 7
Model optimization and validation workflow (A) Convergence trends of classifier performance. The figure illustrates the dynamic changes in the 
average classification accuracy of four DBO-optimized base classifiers (AdaBoost, ExtraTrees, Random Forest, XGBoost) across iterations. (B)
Performance enhancement of the stacking model post-DBO optimization. Bar charts compare key metrics of the stacking ensemble model before and 
after DBO optimization: accuracy (+3.5%), F1 score (+3%), ROC AUC (+3%), precision (+4.1%), and sensitivity (+3.5%). (C) Impact of oversampling on 
classification performance. (D) Cross-validation stability and generalization capability.

accuracy and precision decrease by 4%, whereas the macro F1 score 
decreases by 3%. This demonstrates that, while SMOTE reduces class 
imbalance by increasing minority sample sizes, it may also introduce 
noise or distort the original data distribution, increasing the risk of 
overfitting and decreasing generalizability. Furthermore, SMOTE's 
local interpolation method ignores the global data structure, thereby 
exacerbating minority learning bias. 

4.3 Fivefold cross-validation confirms 
ensemble robustness for pathogen 
prediction

To further examine the robustness of the proposed ensemble, we 
performed five-fold stratified cross-validation within the training set 
during model development. The experimental findings (Figure 7D) 
revealed that the ensemble was highly consistent, with an interfold 
accuracy variance of only 2.1% (0.832–0.883) and an average 
accuracy of 0.867. These measures illustrate the model's resilience 
in multiclass pathogen prediction as well as its adaptability 
to changing data. Compared with single-model techniques, 
the hybrid stacking ensemble strategy successfully synergizes 

the benefits of base learners, increasing classification accuracy 
and flexibility to data changes. These results indicate that the 
ensemble performance is stable across cross-validation folds. 
Final performance metrics were reported based on the predefined
held-out test set. 

5 Conclusion

This study proposes PreBP, a pneumonia pathogen classification 
model based on feature selection and metaheuristic optimization, 
which enhances multiclass bacterial infection prediction through 
a hybrid stacked ensemble (ExtraTrees/RF/MLPNN/XGBoost) 
integrated with the Dung Beetle Optimizer (DBO) and five-
fold cross-validation. Experimental results reveal that PreBP 
outperforms single learners on the independent test set, proving 
it as a trustworthy tool for quick pathogen detection. SHAP-
based interpretability analyses were used to summarize model-
level feature attributions associated with key CBC parameters 
to the predicted probabilities of each pathogen class, thereby 
improving the transparency of model outputs and facilitating clinical 
interpretation.
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TABLE 4  Optimizing the hyperparameters of the four base learners via the DBO algorithm.

ML algorithms Hyperparameters Scope of values Hyperparameters

AdaBoost
n_estimators (50, 500) 173.557

learning_rate (0.01, 1.0) 0.214

Extratrees

n_estimators (100, 500) 196.959

max_depth (3, 15) 13.025

min_samples_split (2, 20) 15.815

min_samples_leaf (1, 15) 12.841

Xgboost

n_estimators (100, 500) 195.352

max_depth (3, 15) 7.479

learning_rate (0.01, 1.0) 0.216

Subsample (0.6, 1.0) 0.641

colsample_bytree (0.6, 1.0) 0.837

RF

n_estimators (100, 500) 352.799

max_depth (3, 15) 13.876

min_samples_split (2, 20) 3.980

min_samples_leaf (1, 15) 1.965

The main contributions of this work are threefold. We develop 
and evaluate a DBO-tuned training pipeline for hyperparameter 
selection in the proposed multiclass prediction setting. We present 
an interpretable stacked ensemble framework for CBC-based four-
class pathogen identification under the evaluation protocol used in 
this study. We also report both class-wise global feature importance 
rankings and case-level explanations using SHAP to illustrate how 
CBC variables contribute to model predictions. This study focuses 
on four target pathogens in the current dataset; future work 
should expand pathogen coverage, include external and prospective 
validation, and explore performance on resistant strains when 
appropriate reference labels are available.
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Glossary

WHO World Health Organization

CBC complete blood count

AMR antimicrobial resistance

P. Aeruginosa Pseudomonas aeruginosa

E. Coli Escherichia coli

S. Aureus Staphylococcus aureus

S. Pneumoniae Streptococcus pneumoniae

PDW platelet distribution width

NLR neutrophil-to-lymphocyte ratio

DBO Dung Beetle Optimizer

HAIs hospital-acquired infections

AST antimicrobial susceptibility testing

PCT procalcitonin

ML Machine learning

MDROs multidrug-resistant organisms

PDW platelet distribution width

HIF Host Immune Fingerprint

SHAP SHapley Additive exPlanations

LIME Local Interpretable Model-agnostic Explanations

HGB hemoglobin

HCT hematocrit

ET Extremely Randomized Trees

XGBoost Extreme Gradient Boosting

RF Random Forest

AdaBoost Adaptive Boosting

BASO% basophil percentage

LYMPH% lymphocyte percentage

WBC white blood cell count

PDW platelet distribution width

P-LCR platelet-large cell ratio

RDW red cell distribution width

MCV mean corpuscular volume

RDW-SD red cell distribution width standard deviation

NEUT% Neutrophil percentage

MCHC mean corpuscular hemoglobin concentration

MONO# monocyte counts

SMOTE Synthetic Minority Oversampling Technique

CV cross-validation
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