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Introduction: Bacterial pneumonia remains a major global health challenge, and
early pathogen identification is important for timely and targeted treatment.
However, conventional microbiological diagnostics such as sputum or blood
culture are labor-intensive and time-consuming.

Methods: We propose an interpretable ensemble learning framework (PreBP)
for rapid pathogen identification using routinely available complete blood count
(CBC) parameters. We analyzed 1,334 CBC samples from patients with culture-
confirmed bacterial pneumonia caused by four major pathogens: Pseudomonas
aeruginosa, Escherichia coli, Staphylococcus aureus, and Streptococcus
pneumoniae. Pathogen labels were determined based on clinical culture
results. Five machine learning models (extreme gradient boosting (XGBoost),
multilayer perceptron neural network (MLPNN), adaptive boosting (AdaBoost),
random forest (RF), and extremely randomized trees (Extralrees)) were trained
as comparators, and PreBP was developed with metaheuristic-optimized
hyperparameters. Key CBC biomarkers were refined using a dual-phase feature
selection strategy combining Lasso and Boruta. To enhance transparency,
SHapley additive explanations (SHAP) were applied to provide both global
biomarker importance and local, case-level explanations.

Results: PreBP achieved the best overall performance, with an AUC of 0.920,
precision of 87.1%, and accuracy and sensitivity of 86.7%.

Discussion: Because the framework relies on routine CBC measurements, it
can generate interpretable predictions once CBC results are available, which
may provide supplementary evidence for earlier pathogen-oriented clinical
decision-making alongside culture-dependent workflows. Overall, PreBP offers
an interpretable and computational approach for pathogen identification in
bacterial pneumonia based on routine laboratory data.

bacterial pneumonia, complete blood count, ensemble learning, interpretable machine
learning, pathogen identification, SHapley additive explanations
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1 Introduction

Bacterial pneumonia remains a common cause of morbidity
and mortality worldwide, highlighting the importance of timely
and accurate pathogen identification. Notably, pneumonia-related
morbidity and mortality disproportionately affect people 65 years
of age and older (Castrodad-Rodriguez et al., 2021). According to
a 2019 World Health Organization (WHO) report, 929,000 deaths
were attributed to antimicrobial resistance (AMR) in six priority
bacterial infections (Antimicrobial Resistance, 2022). Antimicrobial
susceptibility testing (AST) and pathogen identification rely
on blood culture, which takes 24-72h to produce findings
(Lamy et al., 2016).
shock, the treatment window is frequently less than 6 hours
(Evans et al, 2021).
empirical broad-spectrum antibiotic use are caused by this

For life-threatening illnesses like septic

Every year, some 4.1 million cases of

diagnostic delay (Cassini et al., 2019), which exacerbates the
AMR epidemic.

Current  diagnostic techniques for pneumonia, such
as sputum culture, molecular diagnostics (Figure 1A), and

imaging analysis (Nordmann and Poirel, 2014), face significant
limitations. Prolonged culture times result in 37% of patients
before AST
available (Van Heuverswyn et al, 2023); Pretreatment with
blood sensitivity to  42%-58%
2023); Molecular assays achieve less than

receiving inappropriate antibiotics results are

antibiotics reduces culture
(Ruiz-Gaviria et al,,
63% specificity in distinguishing polymicrobial
(Castrodad-Rodriguez et al., 2021).
as procalcitonin (PCT) assist differentiate bacterial from viral
2023), their value in identifying

specific pathogens is limited. Nanopore sequencing reduces

infections
While biomarkers such

infections (Liang et al,

pathogen identification time to 8 h but is prohibitively expensive
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(>US$200/test) (Guo et al.,
high accuracy (AUC
struggle with overlapping radiomic features among pathogens
(Xu, 2023; Rognvaldsson et al., 2023).

To improve pneumonia diagnostics, machine learning (ML)-
driven multimodal data fusion strategies have emerged as
transformative tools. Studies integrating clinical data with machine

2023), whereas AI models achieve

0.91) in pneumonia detection yet

learning techniques, such as XGBoost models and host immune
response signatures, have demonstrated superior predictive
2024; Alzoubi and Khanfar, 2021). For
example, an elevated neutrophil-to-lymphocyte ratio (NLR) in
Staphylococcus aureus infections and increased platelet distribution
width (PDW) in Pseudomonas aeruginosa bacteraemia highlight

performance (Li et al,

the utility of host immune fingerprints (HIFs) in pathogen
discrimination (Sathe et al., 2023; She et al., 2023).

Moreover, predictive models leveraging peripheral blood
parameters have shown promise in related contexts. A COVID-
19
blood parameters and ML algorithms achieves high accuracy
(Aktar et al., 2021; She et al., 2023), and Oscar Garnica et al.
developed models using Support Vector Machine, Random Forest,

severity prediction model developed using peripheral

and K-Nearest Neighbors algorithms based on hospital electronic
health records to predict bacteraemia, providing an efficient tool
for personalized antimicrobial treatment decision-making and
healthcare resource optimization (Garnica et al., 2021). Existing
efforts have primarily focused on binary classification, highlighting
the need for multiclass frameworks for clinical translation.

Despite progress, three major challenges remain: extracting
discriminative immune biomarkers from high-dimensional
heterogeneous data, developing precise multiclass pathogen
classifiers, and improving the interpretability of AI-driven clinical

decision systems to ensure clinician acceptance (Su et al., 2021).
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FIGURE 1
Integration of sputum culture diagnostics and the Al-driven pathogen prediction workflow (A) Qualified sputum samples are collected, processed
through digestion, inoculated onto culture media, and incubated. Pathogen identification (via colony characterization) and antimicrobial susceptibility
testing are performed to determine resistance profiles, guiding precision antimicrobial therapy in clinical practice. (B) Complete blood count (CBC)
data (e.g., hematologic parameters) from patients infected with four bacterial types are used to train a model. By integrating metaheuristic optimization
and interpretable Al techniques, a pathogen identification system is constructed, enabling rapid prediction of infection sources.

To address these challenges, this study developed and validated a
multi-class classification framework based on complete blood count
(CBCQ) for identifying four important pneumonia-causing bacteria
(Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli),
Staphylococcus aureus (S. aureus), and Streptococcus pneumoniae
(S. pneumoniae)) (Figure 1B). The main contributions include:
demonstrating that routine CBC indicators possess discriminatory
power to differentiate between the four pathogens, supporting rapid
pathogen identification. Designing a two-stage feature selection
process to obtain a combination of key biomarkers with low
redundancy and high information content, improving model
compactness and usability (Mohtasham et al., 2024). Providing
global and individual-level interpretability analysis based on SHAP,
clarifying the contribution of key features to the prediction of
different pathogens, enhancing model transparency and clinical
interpretability (Li et al., 2023; Papazoglou and Biskas, 2023).

This study specifically focuses on classifying four WHO-priority
Gram-positive and Gram-negative bacteria (P. aeruginosa, E. coli,
S. aureus, and S. pneumoniae), which are commonly implicated in
hospital-acquired pneumonia. While we recognize that pneumonia
can be caused by a broad spectrum of pathogens,the scope of
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this model is intentionally constrained to a subset of clinically
significant bacteria to assess feasibility and performance using
readily available CBC data. Furthermore, we acknowledge that not
all strains within a species are multidrug-resistant (MDR), and that
MDR status can only be definitively confirmed through AST. Thus,
although our model does not predict resistance phenotypes directly,
it targets organisms frequently associated with MDR in healthcare
settings, aiming to support earlier empirical decision-making while
reducing unnecessary broad-spectrum antibiotic use. The resulting
Al diagnostic model obtained 86.7% overall accuracy in classifying
four high-risk bacterial species, surpassing benchmarks set by deep
migration learning (Schmidt et al., 2021).

2 Materials and methods
2.1 Data description and analysis
This study included 1,334 CBC samples from confirmed

bacterial pneumonia patients, which included four clinically
significant pathogens: P aeruginosa, E. coli, S. aureus, and S.
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TABLE 1 (Continued) Demographic and clinical characteristics.

Sex group Sex group
Variable P-value? Variable
Male, Female, Female,
N = 697 N = 625 N = 625
Age — — 0.781 PDW 10.60 (9.40,11.80) | 10.80 (9.80, 12.20) 0.135
Mean (SD) 68.62 (13.99) 68.40 (14.70) - 1G% 0.30 (0.20, 0.50) 0.30 (0.20, 0.50) 0.186
Median (IQR) | 70.00 (61.00,78.00) | 72.00 (62.00,77.00) | — 1G# 0.03 (0.02, 0.05) 0.02 (0.01, 0.05) 0.384
Leukocyte profile NLR 5.42 (3.03, 12.05) 3.15 (1.76, 7.86) <0.001
WBC 827 (6.13,11.37) 7.39 (5.58, 10.58) 0.229
NEUT# 637 (4.19,9.50) 4.96 (3.13, 8.61) 0.833
pneumoniae (Figure 3A). Each record corresponds to a unique
LYMPH 1.18 (072, 1.66) 153 (0.96, 2.08) 0.021 patient, and only one CBC measurement per patient was included
MONO# 0.50 (031, 0.71) 0.44 (032, 0.61) 0037 in the final dataset. Therefore, the independence assumption holds
at the patient level, and no patient contributed observations to both
EO# 0.03 (0.00, 0.11) 0.05 (0.01,0.11) 0.662 the training and test sets. Importantly, all biological specimens for
microbiological testing—including sputum or blood cultures—were
BASO# 0.01 (0.00,0.02) 0.01 (0.00, 0.02) 0-265 collected prior to the initiation of any antibiotic treatment. The
NEUT% 77.91(67.30,87.11) | 68.60(5670,83.10) | <0.001 dataset contains sex and 26 hematological quantitative parameters
divided into four functional groups (Table 1): leukocyte parameters
LYMPH% 14.30 (7.22, 22.10) 21.80 (10.50,32.64) | <0.001 (white blood cell count (WBC), absolute neutrophil count (NEUT#),
lymphocyte percentage (LYMPH%), absolute monocyte count
MONO% 6.40 (4.30, 8.20) 6.10 (4.60,7.70) 0.557 (MONO#), absolute eosinophil count (EO#), absolute basophil
£O% 0,30 (0.00, 1.40) 070 (0.10, 1.70) 0.159 count (BASO#), and their corresponding percentages), erythrocyte
indices (red blood cell count (RBC), hemoglobin (HGB), hematocrit
BASO% 0.10 (0.00, 0.20) 0.10 (0.00, 0.20) 0.358 (HCT), mean corpuscular volume (MCV), mean corpuscular
hemoglobin (MCH), mean corpuscular hemoglobin concentration
Erythrocyte indices (MCHCQ), red cell distribution width-standard deviation (RDW-
RBC 447 (3.86, 4.83) 427 (3.85, 4.63) <0001 SD), red cell distribution width—coefficient of variation (RDW-CV)),
platelet parameters (platelet count (PLT), mean platelet volume
HGB 133.00 (114.00, 126.00 (112.00, <0.001 (MPV), platelet-large cell ratio (P-LCR), plateletcrit (PCT), platelet
145.00) 134.00) distribution width (PDW)), and immature granulocyte markers
(immature granulocyte percentage (IG%), absolute immature
HCT 38.80 (33.60,42.50) | 37.20 (33.60,40.20) | <0.001
granulocyte count (IG#), neutrophil-to-lymphocyte ratio (NLR)).
MCV 87.10 (84.30,90.60) | 87.20(83.90,90.50) | 0.724 Data quality control was strictly enforced; samples with
missing values (5-23 missing entries per feature) were
MCH 29.70(28.50,3070) | 29.50(28.20,30.50) | 0.392 excluded. To address class imbalance in the target variables,
MCHC 339.00 (33100, 33600 (328.00, 0.002 stratified sampling was used during modeling to reduce bias
348.00) 345.00) (Aguiar et al., 2023). A hybrid feature selection technique improved
model performance: LASSO regression removed collinear variables
RDW-SD 43.00 (40.00,47.00) | 42.00 (40.00, 45.00) | 0.005 (Bainter et al, 2023), and the Boruta algorithm discovered
nonlinear correlations (Fahimifar et al., 2022), yielding a consensus
RDW-CV 13.00 (13.00,15.00) | 13.00 (13.00,14.00) | 0.003
feature subset.
Platelet parameters Histograms show right-skewed distributions for many
parameters (e.g., HGB and MCV), showing a concentration of
PLT 205.00 (158.00, 239.00 (186.00, <0.001 values in lower ranges and outliers at higher extremes, signifying
256.00) 285.00) data skewness or potential anomalies. These findings necessitate
MPV 970 (9.10, 10.30) 9.80 (9.20, 10.50) <0.001 further standardization or transformation to improve classifier
performance (Azad et al., 2021). Collectively, these preliminary
P-LCR 22.60 (17.40,27.30) | 23.00 (18.60,28.80) | 0.017 analyses provide important recommendations for improving
pathogen categorization systems.
PCT 0.20 (0.16, 0.24) 023 (0.18,0.28) <0.001
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This dataset provides a robust informative basis for predicting
four different bacterial infections via regular blood measurements.
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The scientific rationale for selecting this dataset is based on the
strong clinical utility of hematological data for rapid diagnostic
frameworks (Khalid et al., 2021), which can aid in clinical decision-
making, improve therapeutic efficiency through timely pathogen-
specific interventions, and significantly reduce misdiagnosis risks in
resource-constrained healthcare settings.

In all experiments, we followed a leakage-free workflow. We
first split the data, then applied preprocessing (e.g., scaling) and
feature selection using the training set only. Hyperparameters were
optimized via cross-validation (CV) on the training set. Finally,
the selected model was refit on the full training set and evaluated
on the held-out test set. At no stage were the test data used for
preprocessing, feature selection, or model tuning.

2.2 Feature selection

This work used a dual-strategy method for high-robustness
feature screening, combining the Boruta all-relevant feature
selection algorithm with LASSO regression.

The Boruta algorithm (Zhou et al., 2023), which uses 100
iterations of shadow feature permutation tests, identifies key
variables from the entire dataset, including core inflammatory
indicators (white blood cell count, neutrophil absolute count
and percentage) and immune cell parameters (lymphocyte and
monocyte absolute counts and percentages) (Figure 3B).

Prior to LASSO-based feature selection,
standardized

all continuous

hematological variables were using  z-score
normalization. Importantly, the mean and standard deviation were
estimated using the training data only, and the same transformation
was then applied to the test data to avoid information leakage.
LASSO regression with cross-validation (LASSOCV) was
used to penalize collinear and low-contribution variables via
L1 regularization (Wang et al, 2024). The optimization path
automatically retains only high-impact predictors. This phase
further highlighted erythrocyte system parameters (HGB and HCT)
and inflammatory dynamics indicators (NEUT# and MONO#).
These two techniques use complementary dimensions to
select features: Boruta values biological relevance, whereas LASSO
emphasizes prediction efficiency. A Venn analysis extracted the
intersection of features identified by both methods, yielding
consensus variables, as shown in Table 2 (Barbieri et al., 2024). This
dual-validation mechanism overcomes single-algorithm selection
bias, establishing a high-reliability feature benchmark for infectious

pathogen classification.

2.3 Model development: ensemble
framework with metaheuristic optimization
and interpretable Al

This
framework (PreBP) that integrates metaheuristic optimization
(Rezk et al., 2024) and stacked ensemble learning (Goliatt et al.,
2023) for multiclass pathogen classification. The goal was to

study proposes a hybrid machine learning

differentiate among P. aeruginosa, E. coli, S. aureus, and S.
pneumoniae infections using CBC-derived immune signatures.
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2.3.1 Base learner selection and optimization

Four candidate machine learning algorithms were chosen
as base learners based on their ability to handle structured
clinical data and capture complex non-linear correlations: extremely
randomized trees (ET), extreme gradient boosting (XGBoost)
(Hakkal and Lahcen, 2024), random forest (RF), and adaptive
boosting (AdaBoost) (Han et al., 2022).

To improve prediction stability, we used a two-stage
optimization approach that included five-fold stratified cross-
validation and the Dung Beetle Optimizer (DBO). We used five-fold
stratified cross-validation on the training set for hyperparameter
tuning and model selection. After tuning, the selected models
were refit on the full training set, and the final performance was
evaluated once on the predefined held-out test set. The DBO
algorithm (Figure 2) optimizes hyperparameters by dynamically
balancing global search capabilities with localized refinement (Xue
and Shen, 2022). In the initialization phase, the algorithm randomly
generates the position and velocity vectors of the dung beetle
population. By introducing random perturbation factors, elite
retention strategies, and mechanisms based on iterative fitness
evaluation (such as cross-validation F1 scores), the algorithm
continuously updates the search trajectory until convergence.
Following DBO optimization, the top three base learners—ET,
XGBoost, and AdaBoost—were selected for inclusion in the
ensemble based on cross-validation performance. For a fair
comparison, all baseline models were trained and evaluated under
the same data split and the same five-fold stratified cross-validation
scheme. All cross-validation procedures were conducted within the
training set only for hyperparameter tuning and model selection.
The held-out test set was used once for final performance reporting.
Hyperparameters for both PreBP and baselines were optimized
using the same DBO procedure, with an identical optimization
budget and objective metric.

2.3.2 Stacked ensemble construction

To improve diagnostic robustness, we designed a two-phase
stacked ensemble architecture (Figure 3C). In the first step, the
outputs (probabilistic class predictions) of the selected base learners
were used as inputs for the meta-learner. To prevent information
leakage in stacking, we trained the meta-learner on out-of-fold
(OOF) class probabilities generated by five-fold stratified cross-
validation on the training set. In each fold, base learners were
fit on the remaining K-1 folds and used to predict the held-
out fold; aggregated OOF probabilities for all training samples
were then used as meta-features. At inference, base learners were
refit on the full training set with optimized hyperparameters
to generate test-set probabilities, which were passed to the
meta-learner for final predictions. The second step involved
a systematic comparative evaluation of five prospective meta-
learners (DBO-XGBoost, DBO-ET, DBO-RF, DBO-AdaBoost,
and DBO-MLPNN), which culminated in the integration of
the best-performing meta-learner. Experimental results show
that the DBO-optimized random forest (DBO-RF) meta-learner
has better generalization ability. DBO-RF is the most effective
meta-learner with a macro F1 score of 0.86, surpassing all
individual base models. This hierarchical integration technique
provides persistence and generalization capabilities across multiple
pathogen types.
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Variable P. aeruginosa E. coli S. aureus S. pneumoniae ’ P-value?
WBC 8.64 (612, 11.48) 7.59 (5.84, 10.40) 8.69 (7.04, 12.88) 8.24 (5.54,11.37) 0.009
NEUT# 6.56 (4.29,9.72) 5.21 (3.34, 8.57) 6.86 (4.58,10.28) 6.29 (3.52,9.46) 0.895
MONO# 0.49 (0.30, 0.66) 0.45 (0.33,0.62) 0.56 (0.33,0.77) 0.45 (0.30, 0.66) <0.001
LYMPH% 13.84 (8.82,22.44) 19.32 (931, 31.48) 14.90 (8.60, 23.80) 15.00 (7.22, 24.84) <0.001
MONO% 6.60 (4.10, 8.30) 6.20 (4.70, 7.80) 6.00 (4.90, 8.80) 6.40 (3.90, 8.10) 0.869
BASO% 0.07 (0.00, 0.20) 0.10 (0.00, 0.20) 0.14 (0.10, 0.30) 0.10 (0.00,0.20) 0.179
RBC 4.08 (3.46, 4.69) 4.32(3.90,4.72) 443 (3.91,4.85) 434(3.92,4.79) 0.015
HGB 120 (95.50, 137.00) 128 (115.00, 139.00) 131 (114.00, 146.00) 130 (116.00, 143.00) <0.001
HCT 35.60 (29.38, 40.80) 37.90 (34.10, 41.00) 39.50 (34.10, 42.10) 37.60 (34.30, 42.00) 0.008
MCV 87.00 (83.30, 90.58) 87.15 (84.03, 90.30) 87.40 (84.00, 91.90) 87.10 (84.60, 90.60) 0.360
MCH 29.20 (27.80, 30.10) 29.60 (28.43, 30.60) 29.80 (28.30, 30.80) 29.80 (28.70, 30.70) 0.385
MCHC 333 (323.00, 342.00) 338 (330.00, 346.00) 338 (329.00, 348.00) 339 (331.00, 348.00) <0.001
RDW-SD 45.00 (41.25, 49.00) 43.00 (40.00, 45.00) 41.00 (39.00, 46.00) 42.00 (40.00, 46.00) <0.001
P-LCR 22.00 (17.63, 26.85) 22.40 (18.00, 27.30) 23.40 (18.70, 27.20) 23.70 (18.40, 28.90) 0.113
PCT 0.22(0.17,0.29) 0.22(0.18,0.27) 0.23 (0.17,0.26) 0.21 (0.15,0.25) 0.003
PDW 10.70 (9.13, 11.70) 10.60 (9.60, 11.90) 10.90 (9.90, 12.00) 10.70 (9.60, 12.30) 0.516
NLR 5.71 (3.00, 9.44) 3.62 (1.89, 8.85) 5.10 (2.82,9.39) 5.10 (2.55, 12.20) 0.428
3 Results test sets, ensuring a consistent distribution of multiple pathogens.

3.1 Predictive model evaluation

Using the predefined data split, PreBP achieved an accuracy
of 86.7%, precision of 87.1%, recall of 86.7%, F1 of 86.0%, and a
macro-OVR AUC of 0.920 for four-class pathogen classification.
Across the same evaluation protocol, PreBP outperformed ET,
XGBoost, RE, AdaBoost, and MLPNN. Leveraging routinely
measured CBC variables, PreBP can deliver timely and interpretable
predictions once CBC results become available. SHAP-based
explanations (Ponce-Bobadilla et al., 2024) reveal both cohort-level
discriminative patterns and patient-specific drivers (Figure 3D),
offering complementary evidence alongside culture-based testing.
This study proposes and validates a modeling framework based on
routine blood test indicators, aiming to address the limitations of
traditional pathogen identification methods in terms of timeliness
and accessibility (Shojaei et al., 2023).

3.2 Superior diagnostic performance of
DBO-Stacking model

Using a clinical dataset (n = 1,334), we implemented a stratified
sampling strategy to partition the data into training and independent

Frontiers in Bioinformatics

We systematically evaluated multiclass diagnostic performance by
comparing five DBO-optimized baseline models (DBO-XGBoost,
DBO-RFE, DBO-ExtraTrees, DBO-MLPNN, DBO-AdaBoost) and
a DBO-optimized stacked ensemble model (DBO-Stacking)
(Table 3; Figure 4).

As shown in Table 3, the DBO-Stacking model demonstrated
significant diagnostic advantages in the independent test set.
The model achieved an AUC of 0.920, outperforming the best-
performing baseline model in our comparative experiments (DBO-
XGBoost: AUC = 0.894; A = 0.026). The model also obtained an
accuracy of 86.7% and a precision of 87.1%, with a macro-F1
score of 0.860, indicating strong overall multiclass discrimination in
this dataset. These results suggest that the proposed DBO-Stacking
framework can provide reliable probabilistic predictions once CBC
results are available and may provide supplementary information to
support pathogen-oriented decision-making within the scope of the
current evaluation setting.

3.3 Enhanced sensitivity and ROC analysis
of ensemble learning

As shown in Figure 4A, DBO-Stacking showed outstanding
sensitivity (0.867) and false-negative rates (FNR = 13.3%),
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FIGURE 2

DBO Algorithm Workflow. The Dung Beetle Optimizer (DBO) algorithm mimics the behavioral patterns of dung beetles, employing rolling dynamics
(directional movement with stochastic perturbations), a dance-inspired operator to balance exploration and exploitation, breeding-phase local
optimization, and resetting low-fitness agents to enhance global search capabilities. This dynamic optimization framework enables robust
problem-solving and is particularly effective for high-dimensional machine learning tasks.

;

with improvements of 9.4% and 8.4% above DBO-ExtraTrees
(sensitivity = 0.773) and DBO-RF (sensitivity = 0.783),
respectively. Figure 4B reveals that its ROC curve is closest to
the upper-left quadrant, maintaining true-positive rates (TPRs) >
0.85 even at high false-positive rates (FPRs>0.8), whereas baseline
models (e.g., DBO-ExtraTrees) show TPR deterioration in this
region. These findings show that the ensemble framework, which
uses dynamic host immune parameters (e.g., the NLR and PDW),
effectively mitigates the synergistic risks of missing and misdiagnosis
while offering high-robustness decision support for early precision
intervention in resistant infections.

Frontiers in Bioinformatics

3.4 Global SHAP interpretation reveals
pathogen-specific feature attribution
patterns and sex-stratified differences

SHAP analysis was performed for the final output of PreBP
(i.e., the stacked ensemble's meta-learner output). When computing
SHAP values, we treated the fitted base learners and the trained
meta-learner as a single composite prediction function that maps
CBC features to class probabilities; therefore, SHAP values are
reported with respect to the original CBC input features, reflecting
their contributions to the final ensemble predictions.
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An interpretable Al pipeline for bacterial infection diagnosis that integrates optimized feature selection and stacked ensemble learning (A) Data
collection. A total of 1,332 patients (123 with Pseudomonas aeruginosa, 234 with Escherichia coli, 122 with Staphylococcus aureus, and 89 with
Streptococcus pneumoniae) were included and split into training/test sets. (B) Feature selection. LASSO regression and the Boruta algorithm were used
to identify consensus variables via a Venn diagram. (C) Model instruction. DBO-optimized base learners fused with 5-fold cross-validation;
meta-learner selected via radar plot evaluation. (D) Model prediction & interpretation: PreBP predicts bacterial infections with global SHAP and local
instance-level explanations.

TABLE 3 Evaluation metrics for the six models.

ML algorithms Accuracy Sensitivity Precision F1 score
DBO-AdaBoost 0.666 0.637 0.666 0.640 0.636
DBO-extratrees 0.773 0.828 0.773 0.769 0.743
DBO-XGBoost 0.850 0.894 0.850 0.850 0.849
DBO-MLP 0.710 0.748 0.748 0.701 0.701
DBO-RF 0.783 0.851 0.783 0.775 0.771
PreBP 0.867 0.920 0.867 0.871 0.860

Bold values indicate the best performance (highest value) among the compared models for each evaluation metric.
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metrics (ROC AUC, accuracy, precision, sensitivity, and F1 score) of five DBO-optimized multipathogen prediction models (AdaBoost, Extratrees, MLP,
RF, and XGBoost) and a novel ensemble model (PreBP), demonstrating the superior diagnostic performance of PreBP, which validates its efficacy in

pathogen prediction. (B) ROC curves of five baseline models and the newly developed PreBP ensemble model, with PreBP achieving the highest AUC,
confirming its optimal discriminative capacity.
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SHAP analysis (Figure 5) identified class-specific patterns of
influential CBC variables for discriminating the four bacterial
pneumonia pathogen categories in this study. BASO% and RDW-
SD ranked among the most influential features (by mean absolute
SHAP value) for the P. aeruginosa class, whereas LYMPH% and
WBC were among the leading contributors for the E. coli class. For
S. aureus, LYMPH% and PDW showed prominent contributions,
and for S. pneumoniae, LYMPH% and P-LCR were among the more
influential features. These SHAP values provide post hoc, model-
based interpretations of how CBC variables contribute to the model's
predicted class probabilities.

We further examined sex-stratified patterns in this study.
The distribution of pathogen labels differed between males and
females, with P. aeruginosa cases relatively more frequent among
males and E. coli and S. aureus cases relatively more frequent
among females in this dataset. This observation is descriptive
and may reflect confounding factors (e.g., age, comorbidities,
exposure history, or sampling practices) rather than sex-specific
biological susceptibility. In the SHAP analysis, PDW showed notable
contributions to S. aureus class probabilities, and WBC-related
variables also contributed to the discrimination of pathogen classes;
however, these associations reflect model attributions rather than
mechanistic pathways.

3.5 Individualized SHAP profiling illustrates
patient-level feature attributions

We used SHAP waterfall plots to illustrate feature attributions
for individual predictions. For an E. coli case (Figure 6A), MCV
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had the largest positive SHAP contribution (+0.07) to the predicted
probability of the E. coli class, whereas PDW (-0.03) and LYMPH%
(—0.02) showed negative contributions. Platelet-related parameters
(PCT, +0.06; MCHC, +0.06) also contributed positively to the same
class probability. For an S. pneumoniae case (Figure 6C), PDW
(+0.03) contributed positively, whereas PCT (-0.04) contributed
negatively. These examples illustrate how routine CBC variables
combine to influence the model's class probability outputs at the
individual-sample level (Figures 6A-D).

Force plots (Figures 6E-H) further visualize patient-level
attributions for representative cases. In a P aeruginosa case
(Figure 6E), P-LCR showed a positive SHAP contribution to
the predicted probability of the P aeruginosa class, whereas
PCT, BASO%, and LYMPH% contributed negatively. For an S.
aureus case (Figure 6G), RDW-SD showed a positive contribution,
whereas LYMPH% contributed negatively. Overall, the global
and case-level SHAP results improve the transparency of
PreBP by linking predictions to CBC inputs. These attributions
are model-based associations and should be interpreted as
additional

validation is required before drawing mechanistic or causal

hypothesis-generating; clinical or experimental

conclusions.
3.6 Optimized ensemble learning
framework for enhanced diagnostic
generalization

The experimental framework combines the Dung beetle

optimizer algorithm for hyperparameter optimization in four
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FIGURE 5
Global feature importance and impact direction analysis in bacterial infection prediction. Panel Merged bar chart and honeycomb plot with a shared
y-axis for straightforward interpretability (A) Global feature interpretation for P. aeruginosa infection prediction. The left bar plot displays feature
importance rankings, whereas the right hive plot visualizes the impact direction (positive/negative) and value-dependent prediction trends. (B) Global
feature interpretation for E. coli infection prediction. The left bar plot highlights feature importance rankings, with the right hive plot mapping impact
direction and value-influence trends. (C) For S. aureus infection prediction, the left bar plot ranks feature importance, whereas the right hive plot shows
impact direction (positive/negative) and value-dependent prediction trends. (D) For S. pneumoniae, the left bar plot similarly ranks key features, with
the right hive plot mapping directional impacts and feature-value influences.

machine learning architectures: ExtraTrees, XGBoost, random
forest, and AdaBoost. The parameter search boundaries are
referenced in Table 2, and the optimization performance is evaluated
by repeating fivefold cross-validation. The iteration termination
criterion is set to 50 cycles. As shown in the convergence curve
of Figure 7A, all classifiers converge to a stable accuracy after
the 27th iteration cycle. Among them, AdaBoost shows fast early
optimization, whereas ExtraTrees shows gradual but continuous
improvement and finally achieves excellent generalization ability
on the reserved dataset. The key parameter adjustments that
occurred in this process include the number of weak classifiers
of AdaBoost, the maximum depth of ET, and the learning rate of
XGBoost (the specific configurations can be found in Table 4).
Optimized benchmark testing shows that all classifiers achieve
an accuracy improvement of 3.2%-3.8% compared with their
default configurations, validating the effectiveness of DBO in
efficient parameter searching. The subsequent ensemble architecture
integrates these optimized models via stacked generalization, which
results in strong predictive synergy—achieving an area under the
curve (AUC) of 0.917-0.923 while maintaining F1 score stability in
the range of 0.853-0.867.
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4 Discussion

4.1 DBO-driven hyperparameter
optimization enhances PreBP model
performance

This paper offers an advanced hybrid stacking ensemble
model that combines numerous base learners and meta-learners
and optimizes them using the DBO algorithm to considerably
increase model performance. To assess the actual impact of DBO
optimization, we systematically analyze the models' performance
before and after optimization (Figure 7B). The results show that the
accuracy of the model after DBO optimization is improved by 4.1%,
the sensitivity and accuracy are improved by 3.5%, and the AUC and
F1 scores are improved by 3%, which shows that DBO has a strong
advantage in hyperparameter optimization and can effectively find
the best configuration to enhance model performance. To ensure
a fair comparison, all baseline models were tuned using the same
five-fold stratified cross-validation scheme and the same DBO-
based hyperparameter optimization procedure (with a matched
optimization budget and objective metric) as PreBP.
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FIGURE 6
Local feature contribution analysis across bacterial infections (A) Panel A shows the local instance-level interpretation for an E. coli-infected patient's
blood sample. (B) Panel B illustrates the local interpretation for a P. aeruginosa-infected sample, mapping feature-specific impacts on prediction
outcomes. (C) Panel C presents single-sample analysis for S. pneumoniae infection. (D) Panel D shows an instance-level explanation for an S.
aureus-infected patient. (E) The figure analyzes a single blood sample from a P. aeruginosa-infected patient. (F) The figure highlights feature-specific
impacts (direction and magnitude) for an E. coli-infected patient's blood sample. (G) For an S. aureus-infected patient, the visualization maps critical
features and their contribution polarity (positive/negative) to the diagnostic outcome. (H) Analysis of an S. pneumoniae-infected sample reveals
dominant features and their predictive influence directions.

The core contribution of this study is the proposal of an
innovative ensemble optimization strategy to address complex
machine learning tasks. Traditional hyperparameter optimization
methods usually have difficulty efficiently searching a large
parameter space, which affects the final model performance.
By introducing DBO, this study not only significantly improves
the predictive ability of the stacking ensemble model but also
provides a solid theoretical foundation for future hyperparameter
optimization. Through refined parameter adjustment, DBO fully
releases the potential of machine learning models and provides
new technical support for intelligent decision-making in various
industries.
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4.2 SMOTE amplifies noise in bacterial
infection classification

In clinical machine learning applications, class imbalance poses
a significant threat to the effectiveness of predictive models. To

address the imbalance problem in a bacterial infection dataset, we

applied the synthetic minority oversampling technique (SMOTE),

which generates synthetic minority samples through feature space
interpolation.

However, the experimental results (Figure 7C) show that the
performance of the stacked ensemble model trained on the SMOTE
balanced dataset decreases in terms of all the metrics: the average
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FIGURE 7

Model optimization and validation workflow (A) Convergence trends of classifier performance. The figure illustrates the dynamic changes in the
average classification accuracy of four DBO-optimized base classifiers (AdaBoost, ExtraTrees, Random Forest, XGBoost) across iterations. (B)
Performance enhancement of the stacking model post-DBO optimization. Bar charts compare key metrics of the stacking ensemble model before and
after DBO optimization: accuracy (+3.5%), F1 score (+3%), ROC AUC (+3%), precision (+4.1%), and sensitivity (+3.5%). (C) Impact of oversampling on
classification performance. (D) Cross-validation stability and generalization capability.

accuracy and precision decrease by 4%, whereas the macro F1 score
decreases by 3%. This demonstrates that, while SMOTE reduces class
imbalance by increasing minority sample sizes, it may also introduce
noise or distort the original data distribution, increasing the risk of
overfitting and decreasing generalizability. Furthermore, SMOTE's
local interpolation method ignores the global data structure, thereby
exacerbating minority learning bias.

4.3 Fivefold cross-validation confirms
ensemble robustness for pathogen
prediction

To further examine the robustness of the proposed ensemble, we
performed five-fold stratified cross-validation within the training set
during model development. The experimental findings (Figure 7D)
revealed that the ensemble was highly consistent, with an interfold
accuracy variance of only 2.1% (0.832-0.883) and an average
accuracy of 0.867. These measures illustrate the model's resilience
in multiclass pathogen prediction as well as its adaptability
to changing data. Compared with single-model techniques,
the hybrid stacking ensemble strategy successfully synergizes
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the benefits of base learners, increasing classification accuracy
and flexibility to data changes. These results indicate that the
ensemble performance is stable across cross-validation folds.
Final performance metrics were reported based on the predefined
held-out test set.

5 Conclusion

This study proposes PreBP, a pneumonia pathogen classification
model based on feature selection and metaheuristic optimization,
which enhances multiclass bacterial infection prediction through
a hybrid stacked ensemble (ExtraTrees/RF/MLPNN/XGBoost)
integrated with the Dung Beetle Optimizer (DBO) and five-
fold cross-validation. Experimental results reveal that PreBP
outperforms single learners on the independent test set, proving
it as a trustworthy tool for quick pathogen detection. SHAP-
based interpretability analyses were used to summarize model-
level feature attributions associated with key CBC parameters
to the predicted probabilities of each pathogen class, thereby
improving the transparency of model outputs and facilitating clinical
interpretation.
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TABLE 4 Optimizing the hyperparameters of the four base learners via the DBO algorithm.

10.3389/fbinf.2025.1769816

ML algorithms Hyperparameters Scope of values ‘ Hyperparameters
n_estimators (50, 500) 173.557
AdaBoost
learning_rate (0.01, 1.0) 0.214
n_estimators (100, 500) 196.959
max_depth (3,15) 13.025
Extratrees
min_samples_split (2,20) 15.815
min_samples_leaf (1, 15) 12.841
n_estimators (100, 500) 195.352
max_depth (3,15) 7.479
Xgboost learning_rate (0.01, 1.0) 0.216
Subsample (0.6, 1.0) 0.641
colsample_bytree (0.6, 1.0) 0.837
n_estimators (100, 500) 352.799
max_depth (3,15) 13.876
RF
min_samples_split (2,20) 3.980
min_samples_leaf (1, 15) 1.965

The main contributions of this work are threefold. We develop
and evaluate a DBO-tuned training pipeline for hyperparameter
selection in the proposed multiclass prediction setting. We present
an interpretable stacked ensemble framework for CBC-based four-
class pathogen identification under the evaluation protocol used in
this study. We also report both class-wise global feature importance
rankings and case-level explanations using SHAP to illustrate how
CBC variables contribute to model predictions. This study focuses
on four target pathogens in the current dataset; future work
should expand pathogen coverage, include external and prospective
validation, and explore performance on resistant strains when
appropriate reference labels are available.
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Glossary

WHO

CBC

AMR

P. Aeruginosa
E. Coli

S. Aureus

S. Pneumoniae

World Health Organization
complete blood count
antimicrobial resistance
Pseudomonas aeruginosa
Escherichia coli
Staphylococcus aureus

Streptococcus pneumoniae

PDW platelet distribution width

NLR neutrophil-to-lymphocyte ratio

DBO Dung Beetle Optimizer

HAIs hospital-acquired infections

AST antimicrobial susceptibility testing

PCT procalcitonin

ML Machine learning

MDROs multidrug-resistant organisms

PDW platelet distribution width

HIF Host Immune Fingerprint

SHAP SHapley Additive exPlanations

LIME Local Interpretable Model-agnostic Explanations
HGB hemoglobin

HCT hematocrit

ET Extremely Randomized Trees

XGBoost Extreme Gradient Boosting

RF Random Forest

AdaBoost Adaptive Boosting

BASO% basophil percentage

LYMPH% lymphocyte percentage

WBC white blood cell count

PDW platelet distribution width

P-LCR platelet-large cell ratio

RDW red cell distribution width

MCV mean corpuscular volume

RDW-SD red cell distribution width standard deviation
NEUT% Neutrophil percentage

MCHC mean corpuscular hemoglobin concentration
MONO# monocyte counts

SMOTE Synthetic Minority Oversampling Technique
Cv cross-validation
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