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Introduction:  Oral squamous cell carcinoma (OSCC) is a prevalent malignancy 
characterized by aggressive behavior, poor prognosis, and limited therapeutic 
options. Mutations in the NIMA-related kinase (NEK) family are increasingly 
implicated in tumorigenesis across various cancers. However, their contributions 
to OSCC pathogenesis remain largely unexplored. 
Methods: Here, we employed whole-exome sequencing (WES) of formalin-
fixed paraffin-embedded (FFPE) tissue blocks from 31 OSCC tumors and 9 
adjacent paired normal samples derived from patients of Khyber Pakhtunkhwa 
(KP), Pakistan, to systematically profile NEK gene alterations. Subsequent
in-silico analyses were performed to evaluate the structural and functional 
consequences of the identified mutations.
Results: We identified 46 mutations overall (78.3% (36/46) somatic, 21.7% 
(10/46) germline), consisting of 82.6% (38/46) non-synonymous single-
nucleotide variants (SNVs), 10.9% (5/46) frameshift deletions, 2.2% (1/26) non-
frameshift deletions, and 4.3% (2/46) stop-gain mutations; notably, 10.9% 
(5/46) represented novel variants (not reported previously). NEK1 displayed 
the highest mutation frequency, followed by NEK10, NEK5, NEK11, NEK2, and
NEK3. ISPRED-SEQ classified 37.0% (17/46) of mutations as residing at protein-
protein interaction interfaces, indicating potential functional relevance, with 
several mutations including NEK1p.D409Y, NEK1p.N643K, NEK9 p.H174Y, NEK10 
p.R275C, and NEK10 p.E596K predicted to be deleterious and destabilizing 
by multiple tools, occurring at conserved residues and altering structural 
stability via molecular dynamics simulations. Clinically, NEK4 mutations were 
significantly associated with tumor site (P=0.02), NEK9 with tobacco exposure
 

Frontiers in Bioinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2025.1750649
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2025.1750649&domain=pdf&date_stamp=
2026-01-31
mailto:a.ail@qu.edu.sa
mailto:a.ail@qu.edu.sa
mailto:alitalha.khalil@lrh.edu.pk
mailto:alitalha.khalil@lrh.edu.pk
mailto:s.a.khurram@sheffield.ac.uk
mailto:s.a.khurram@sheffield.ac.uk
https://doi.org/10.3389/fbinf.2025.1750649
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1750649/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1750649/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1750649/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1750649/full
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Nawab et al. 10.3389/fbinf.2025.1750649

(P=0.01), and NEK10 with improved overall survival (P=0.01). Mutations 
including NEK11p.E347V (31/31), NEK9p.R429H (23/31), NEK10p.L513S (15/31),
NEK4p.P136A (7/31), NEK5p.K255Q (6/31) and NEK1 p.E650G (5/31) were found 
to be recurring mutations and can be validated further in large-scale studies for 
biomarker applicability.
Conclusion: Collectively, these findings suggest NEK mutations as candidate 
drivers of OSCC pathogenesis, underscoring their potential as prognostic 
biomarkers and therapeutic targets, particularly in tobacco-associated disease.

KEYWORDS

Oral squamous cell carcinoma (OSCC), whole exome sequencing (WES), NEK genes, 
biomarkers, in silico analysis 

Introduction

Oral squamous cell carcinoma (OSCC) is one of 
the most predominant malignant neoplasms of the oral 
cavity (Ferlay et al., 2021), constituting over 90% of oral

cancer cases and ranking as the sixth most prevalent cancers 
globally. Arising from the epithelial lining of regions such as 
the buccal mucosa, tongue, mouth floor, and palate, OSCC is 
associated with substantial morbidity, mortality, and impaired 
quality of life (Rezazadeh et al., 2023). Based on the GLOBOCAN 
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database (2022), oral cancer accounts for approximately ∼389,846 
to 600,000 new cases and ∼188,438 deaths annually, with a 
significantly higher disease burden observed in South and 
Southeast Asia (Bray et al., 2024). In Pakistan, OSCC is the most 
frequently diagnosed cancer in men (12.3%) and the second most 
common cancer in women (5.3%), contributing to 8.6% of all 
cancer cases in 2022 (Ikram et al., 2023). In Western regions, 
including Europe and the United States, OSCC remains a persistent 
challenge, with over 130,000 and 34,000 new cases annually, 
respectively (Ghanem et al., 2024).

The etiological factors for OSCC are heterogeneous, with 
established risk factors such as tobacco use in both smoked and 
smokeless forms, alcohol consumption, snuff dipping, and betel 
quid chewing practices that are particularly common in South Asia 
(Gupta et al., 2016). Alarmingly, in 2022, an estimated 120,000 
new oral cancer cases were linked to smokeless tobacco and areca 
nut use, particularly in South Central Asian regions and low- and 
middle-income countries (LMICs) (Warnakulasuriya et al., 2021). 
OSCC significantly influences the patients’ quality of life, leading 
to functional impairments, emotional distress, and social isolation. 
Despite developments in treatment techniques, the five-year survival 
rate for OSCC continues to fall below 50%, with women generally 
experiencing slightly better outcomes than men (Montero and 
Patel, 2015). This rising trend underscores the critical importance 
of developing effective methods for early diagnosis and improved 
therapeutic interventions. Surgery continues to be the leading 
treatment for oral cancer but often results in functional and 
esthetic impairments and requires long-term recovery and support 
(Dwivedi et al., 2020). Meanwhile, chemotherapy, radiotherapy, and 
emerging immunotherapeutic approaches are constrained by toxicity, 
intolerance, and limited efficacy (Raghavi and Anbarasu, 2024). 
Consequently, the identification of robust molecular biomarkers is 
critical for improving diagnostic accuracy and therapeutic efficacy. 

Recent advances in molecular oncology have underscored the role 
of kinase gene mutations in the progression of OSCC (Su et al., 2017; 
Capra et al., 2006). Among these, the NIMA-related kinase (NEK) 
family has emerged as a key player in regulating a wide array of 
cellular processes, including apoptosis, DNA damage response, and 
cell-cycle regulation, particularly active in the S and G2/M phases, 
contributing to centrosome separation and mitosis13. Dysregulation 
and overexpression of NEK genes have been linked to poor prognosis, 
increased tumor aggressiveness, and therapeutic resistance in several 
cancers, suggesting that NEK genes may function as potential 
biomarkers and targets for cancer therapy (Cao et al., 2018). 

Despite the growing recognition of NEKs in cancer biology, 
there remains a significant gap in understanding their mutational 
landscape in OSCC, especially within the Pakistani population. 
Building on our previous studies on the genetic landscape in 
oral cancer (Naeem et al., 2025; Nawab et al., 2025), this study 
aims to fill that gap by profiling mutations in selected NEK
family genes using next-generation whole-exome sequencing (NG-
WES) of OSCC samples of Khyber Pakhtunkhwa. Furthermore, by 
applying in silico analyses such as protein modeling and functional 
annotation, we seek to evaluate the biological impact of these 
mutations. This research could contribute to the identification 
of novel prognostic markers and therapeutic targets, ultimately 
supporting the advancement of precision oncology in OSCC.

Materials and methods

Patient selection

A total of 31 tumor tissue samples from OSCC patients and their 
9 corresponding adjacent non-tumorous tissues (paired normal) 
were collected for the study. 

Inclusion criteria

Patients of both sexes and all age groups with a confirmed 
clinical and histopathological diagnosis of OSCC were
included. 

Exclusion criteria

Patients presenting with recurrent tumors, a prior history of 
alternative treatments (such as radiotherapy/chemotherapy), or 
those diagnosed with malignancies other than OSCC were not 
enrolled in the study. 

Data collection and sample processing

Based on the inclusion criteria, tissue biopsies were derived from 
OSCC patients (following clinical and histological confirmation) 
recruited at two different hospitals of Peshawar, Pakistan (Hayatabad 
Medical Complex and Khyber College of Dentistry, Peshawar). 
Signed informed consent, along with patients’ history, demographic, 
and clinical details, was obtained prior to sample collection. The 
study was approved by the Ethical Committee of Khyber Medical 
University, Peshawar (Reference No. Dir/Ethics/KMU/2020/17; 
dated 29 January 2020), and all the procedures were conducted in 
accordance with the ethical standards of the Declaration of Helsinki. 
A certified pathologist identified the tumor and paired adjacent 
normal tissues. Tissue samples were fixed in formalin solution (10%) 
and processed into formalin-fixed, paraffin-embedded (FFPE) tissue 
blocks for subsequent analysis. Moreover, for histopathological 
evaluation, hematoxylin and eosin (H&E) staining was carried out 
on the FFPE block sections. 

Genomic DNA isolation and quality 
evaluation

Genomic DNA was isolated from FFPE tissue blocks with over 
50% tumor cellularity using the Qiagen QIAamp DNA FFPE Tissue 
Kit (Cat. No. 56404) in accordance with the manufacturer’s protocol. 
To obtain sufficient DNA yield, a core measuring at least 2.5 mm 
diameter was taken from each tissue block. The quality of extracted 
DNA was examined through 2% agarose gel electrophoresis, while 
its concentration was determined using a high-sensitivity (HS) 
dsDNA Qubit kit on a Qubit fluorometer 2.0 (Thermo Fisher 
Scientific). DNA samples of suitable quality were stored at −20 °C 
till further analysis. 
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Library preparation and whole-exome 
sequencing

For library preparation, high-quality genomic DNA (200 
ng–300 ng) with an average fragment size > 200 base pairs was 
selected, using Illumina’s DNA Prep with Exome 2.5 Kit, as per 
the manufacturer’s instructions. Genomic DNA was enzymatically 
fragmented, after which paired-end adapters were attached to the 
resulting fragments. Libraries were further amplified via limited-
cycle PCR, followed by hybridization-based enrichment of exonic 
regions with coding exome (CEX) oligonucleotides. Post-capture 
libraries were amplified and purified with Agencourt AMPure 
magnetic beads. Library size distribution was measured using 
2% agarose gel electrophoresis, and quantification was performed 
through the Qubit HS dsDNA assay (Thermo Fisher Scientific).

Enriched libraries were normalized to 20 (pmol) with HT1 
buffer and subsequently diluted to 1.8 pmol for high-throughput 
paired-end sequencing (2 × 150 base pairs) on the Illumina 
NextSeq 500 platform using a 150-cycle flow cell. Final library 
dilution to 2 nM in 10 µL was used for cluster generation and 
sequencing, yielding a mean sequencing depth of ×100 across 
targeted exonic regions. The raw sequencing output was obtained 
in FASTQ format for downstream processing. Bedtools ‘coverage’ in 
combination with the GENCODE v47 gene annotation was used to 
compute per-exon coverage, resulting in an average depth of ×67.25 
across exons. 

Analysis and annotation of sequence data

For sequencing data analysis, quality assessment of the raw 
reads was carried out using FASTQC to ensure data reliability 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) 
(Simon Andrews et al., 2010). FASTQC uses per-base/sequence 
quality estimates that are calculated using Phred scales, GC content 
calculations that are based on distribution differences from an 
expected distribution, and estimates of sequence duplication 
using k-mer profiling. Good quality sequencing data in the 
FASTQ format were aligned to the hg38 UCSC reference genome 
using the BWA (Burrows–Wheeler Aligner) tool. BWA-MEM 
proceeds with a seed-and-extend algorithm with seeds that 
are maximal exact matches, referred to as MEMs. Alignment 
scoring for BWA-MEM uses affine gap penalties with dynamic 
programming, while the probability-based model of uncertain 
alignments estimates mapping quality (Li and Durbin, 2009; 
Li, 2013). After alignment, the resulting BAM files were sorted, and 
PCR duplicates were deleted with the help of the Picard tool 1.109. 
Base quality score recalibration and variant calling were performed 
following the standard Genome Analysis Toolkit (GATK) pipeline 
(McKenna et al., 2010; DePristo et al., 2011; der Auwera et al., 2013). 
GATK HaplotypeCaller ascertains candidate haplotypes by de novo
assembly of the graph of reads and infers a pair HMM-based 
probability of a given haplotype being true, given a set of reads. 
Genotype calling then follows a Bayesian scheme that ascertains 
genotype posteriors from a set of allele probabilities, assuming 
Hardy–Weinberg equilibrium.

To ensure the robustness and high-quality variants detection, 
only variants with a quality score (QUAL) > 30, read depth (DP) < 

20, genotyping quality (GQ) above 20, and minor allele frequency 
(MAF) < 0.01 in the gnomAD v4.1 were retained. Furthermore, 
variant annotation was performed with ANNOVAR to generate 
a detailed CSV file containing all the functional and genomic 
information. The read counts were normalized using factors such 
as TPM, RPKM, or depth-scaled approaches, which rely on linear 
scaling equations that incorporate reads per gene size and total 
library size to facilitate comparable results among different samples. 
Subsequent data filtration and analysis were carried out using 
the R program. 

Bioinformatics analysis

All the variants’ pathogenicity was assessed using different 
in silico prediction tools: SIFT (Sorting Intolerant From 
Tolerant), PolyPhen-2 (polymorphism phenotyping version 
2), MutationTaster, MutationAssessor, PROVEAN (Protein 
Variation Effect Analyzer), and FATHMM (Functional Analysis 
Through Hidden Markov Models). ISPRED-SEQ (https://
ispredws.biocomp.unibo.it/sequence/) was used for predicting 
interaction sites (ISs) in protein sequences. SAAFEC-SEQ (http://
compbio.clemson.edu/lab/) was used to predict the impact of 
mutations on the stability of proteins. The ConSurf web server 
(https://consurf.tau.ac il/) was used to examine the evolutionary 
conservation of the altered residues and predict their functional and 
structural characteristics (including whether they were buried or 
exposed within the protein). Furthermore, a gene-wise comparison 
of NEK family mutation frequencies was performed between the 
study cohort and TCGA-HNSCC dataset (n = 515) using mutation 
data retrieved from cBioPortal. Frequencies were calculated as the 
proportion of samples with at least one mutation per NEK gene and 
summarized graphically. 

Mutation mapping and structural modeling

Lollipop plots were generated using the “Maftools” package 
in RStudio to visualize the distribution and location of different 
mutations across NEK genes (Mayakonda et al., 2018). To predict 
the potential impact of the mutated residue on protein structure and 
functions, another online web-based tool, namely, “HOPE” (https://
www3.cmbi.umcn.nl/hope), was used. For structural modeling, 
mutant proteins (with altered residues at the interaction site) were 
modeled using “SWISS-MODEL” (https://swissmodel.expasy.org/
). The wild and mutant proteins were then superimposed and 
visualized using PyMOL. Moreover, STRING and GeneMANIA 
platforms were utilized to assess protein–protein interaction 
networks and functional associations. 

Association with clinicopathological 
parameters and overall survival

The mutational spectrum of NEK genes was analyzed in relation 
to clinicopathological (age, gender, tumor grade, and tumor site) 
and sociodemographic factors (naswar use, smoking status, family 
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history, and dental history) using OriginPro 2025 software. Chi-
squared/Fisher’s exact test was used to determine the significant 
association of genes with determinants. Survival analysis was carried 
out using SPSS software, and comparisons between groups were 
conducted using the log-rank test to evaluate the impact of specific 
gene mutations on patient prognosis. 

Molecular dynamics simulation (MDS)
GROMACS 5.1 was used for the simulations of selected 

interacting site proteins to evaluate their structural integrity and 
dynamic properties. Initial 3D protein models were generated 
using SWISS-MODEL, and the topology files were prepared with 
the OPLS-AA/L all-atom force field. Proteins were solvated in a 
cubic box using the SPC216 water model and neutralized with 
counter-ions to eliminate net charges. The system underwent energy 
minimization to remove steric clashes, followed by equilibration in 
two phases: NVT, to stabilize temperature, and NPT, to stabilize 
pressure and density under physiological conditions. A 100-ns 
production run was then conducted for both wild and mutant 
type (WT:MT) proteins. Post-simulation analyses included root 
mean square deviation (RMSD), root mean square fluctuation 
(RMSF), and radius of gyration (Rg), and thermodynamic 
parameters (density, temperature, pressure, and potential energy) 
were monitored throughout the simulation (Mehmood et al., 2023). 
Results were generated using OriginPro version 2025, and structural 
validation was performed via Ramachandran plots generated 
through the PROCHECK server. A schematic diagram of the study 
is shown in Figure 1.

Results

Demographic characteristics

Figures 2A–G reveal the general demographic characteristics 
of the study. A total of 31 patients fulfilling the inclusion criteria 
participated in the study, comprising 22 men and 9 women, with 
men representing a high prevalence of OSCC cases (70.96%; 22/31). 
The majority of the participants were aged above 56 years (58.06%; 
18/31). Histopathological grading revealed that 48.38% (15/31) 
were classified as well-differentiated and 51.61% (16/31) were 
classified as moderately differentiated. Anatomically, the tumors 
were distributed across several sites, including the tongue (35.48% 
cases; 11/31), lip (16.12% cases; 5/31), buccal mucosa (19.35% cases; 
6/31), and other areas, including the oral cavity, mandible, palate, 
and mouth floor (29.03% cases; 9/31). Regarding sociodemographic 
factors, concerning tobacco use, 58.06% (18/31) used naswar, 6.45% 
(2/31) were smokers, and 35.48% (11/31) were non-tobacco users. A 
family history of cancer was reported in 41.93% (13/31) of patients. 
Additionally, 32.25% (10/31) had a history of dental issues such as 
infection or swelling.

Mutational spectrum

The WES results of the selected genes were analyzed using 
mutation databases, including COSMIC and dbSNP. The overall 
mutational spectrum of the NEK genes is summarized in 

Supplementary Table S1. Gene variants identified exclusively in 
tumor samples were considered somatic mutations, whereas variants 
detected in both tumor and paired normal tissues were categorized 
as germline mutations. In total, 46 mutations were identified 
in all 11 NEK genes. Among the identified mutations, 38 were 
reported as non-synonymous single-nucleotide variants (SNVs) 
(38/46; 82.6%), five were frameshift deletions (5/46; 10.86%), 1 
was identified as non-frameshift deletion (1/46; 2.17%), and two 
were identified as stop-gain mutations (2/46; 4.34%) (Figure 3C). 
Moreover, of the total mutations in all the 11 NEK genes, 36 
(36/46; 78.26%) were classified as somatic mutations and 10 
(10/46; 21.74%) were identified as germline mutations based on the 
comparison between 31 tumor and 9 adjacent paired normal tissues 
(Figure 3B). Meanwhile, 5/46 (10.9%) of the mutations were not 
reported previously (Figure 3A) and are considered novel mutations. 
These novel mutations included NEK1p.L270Vfs∗2, NEK1p.K347Efs∗13, 
NEK1p.E624Rfs∗19, NEK1p.N953Kfs∗48, and NEK5p.D742del.

Gene-wise distribution of somatic mutations on all the 11 NEK
genes were NEK1, 33.33% (12/36); NEK2, 5.55% (2/36); NEK3, 
2.77% (1/36); NEK4, 2.77% (1/36); NEK5, 13.80% (5/36); NEK6, 
2.77% (1/36); NEK7, 2.77% (1/36); NEK8, 5.55% (2/36); NEK9, 
2.77% (1/36); NEK10 16.66% (6/36); and NEK11, 11.11% (4/36). 
However, mutations in NEK11, i.e., NEK11p.E347V , were found in 
100% of oral cancer patients (31/31), whereas NEK9p.R429H  (74.19%; 
23/31) and NEK10p.L513S (48.38%; 15/31) were detected in the 
majority of the cases, highlighting their potential as biomarkers 
within the local population. Similarly, NEK4p.P136A (22.58%; 7/31), 
NEK5p.K255Q (19.35%; 6/31), and NEK1p.E650G (16.12%; 5/31) were 
found to be recurring mutations and could be further investigated in 
larger cohorts to explore their potential as biomarkers (Figure 3D).

Figures 4A–K present lollipop plots depicting the identified 
mutations and their respective locations on each gene.

Figure 5 shows the exon-wise distribution of mutations in all 
the 11 NEK genes, with the highest mutation frequencies revealed 
in exons 2, 10, 12, 14, 15, 18, 22, 23, 25, and 27, respectively.

Comparison of NEK gene mutation 
frequencies with TCGA-HNSCC

In the study cohort, among the mutated genes, NEK11 mutations 
were most recurrent, being present in all samples (31/31; 100%), 
followed by NEK9 in 23/31 (74.2%), NEK10 in 17/31 (54.8%), NEK1
in 13/31 (41.9%), and NEK4 in 11/31 patients (35.5%). By contrast, 
mutation frequencies in TCGA-HNSCC were consistently low, with 
NEK5 exhibiting the highest rate (13/515; 2.5%) and most NEK
genes showing rates below 1%. These comparative gene-specific 
frequencies are summarized in Supplementary Table S6 and are 
depicted in Figure 6.

Pathogenicity predictions of SNVs

The NEK gene mutations were evaluated for pathogenicity in 
six different in silico prediction tools, namely, SIFT, PolyPhen-
2, MutationTaster, MutationAssessor, PROVEAN, and FATHMM, 
based on criteria such as evolutionary conservation, protein 
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FIGURE 1
Study scheme.

structure, and biochemical properties (Liu et al., 2016). The 
predicted pathogenicity results are summarized in Figures 7A–F.

According to SIFT, of the 46 total mutations, 12/46 (26.08%) 
predictions were considered deleterious in nature. However, 9/46 
(19.56%) mutations yielded no results. Gene-wise SIFT analysis 
showed the highest deleterious prediction rate in the NEK10 gene, 
i.e., 4/7 (57.14%), followed by NEK4, 1/2 (50%); NEK9, 1/2 (50%); 
NEK2, 1/3 (33.3%); NEK1, 4/14 (28.57%); and NEK5, 1/6 (16.66). 
However, for NEK3, NEK6, NEK7, NEK8, and NEK11, none of 
the mutations were predicted as deleterious (Figure 7A). Similarly, 
PolyPhen-2 classified 3/14 (21.42%; NEK1), 1/3 (33.33%; NEK2), 
1/3 (33.33%; NEK3), 1/6 (16.66%; NEK5), 1/2 (50%; NEK9), 1/7 
(14.28%; NEK10), and 1/5 (20%; NEK11) mutations as probably 
damaging (Figure 7B). The MutationTaster database revealed 12/46 
(26.08%) mutations as disease-causing across six genes (NEK1, 
NEK2, NEK3, NEK9, NEK10, and NEK11) (Figure 7C). Similarly, 
based on the MutationAssessor results, a subset of variants were 
classified under the medium- and low-impact categories; for genes 
including NEK1, NEK2, NEK3, NEK8, NEK9, and NEK11, 7/14 
(50%), 1/3 (33.33%), 1/3 (33.33%), 1/2 (50%), 1/2 (50%), and 1/5 
(20%) of the mutations, respectively, were categorized as having 
medium impact (Figure 7D). PROVEAN predicted 9/46 mutations 
(19.56%) as deleterious. In comparison, FATHMM predicted 2/46 
mutations (4.37%) as deleterious in NEK1 (NEK1p.N643K ) and NEK9
(NEK9p.R429H) genes, respectively (Figures 7E,F).

Another prediction tool, SAAFEC-SEQ, was utilized to evaluate 
the influence of SNVs on protein stability. All the identified SNVs 
were predicted to exert a destabilizing effect on the protein structure, 
as indicated in Supplementary Table S2. Additionally, ISPRED-SEQ 
identified 17 of 46 mutations (36.95%) as interaction-site mutations 
across all NEK genes, suggesting potential functional relevance 
due to their location at protein–protein interaction interfaces. 
The remaining 29 mutations (63.04%) were classified as non-
interacting site mutations, exhibiting probability scores below the 0.5 
threshold (Supplementary Table S3). 

Evolutionary conservation predictions

The ConSurf tool was used to determine the 
evolutionary conservation of the altered residues. 
Figure 8 and Supplementary Table S4 show the conservation scores, 
which represent each residue’s structural and functional relevance. 
Results revealed that the interaction-site mutations in NEK1
(NEK1p.D409Y  and NEK1p.N643K ), NEK9 (NEK9p.H174Y ), and NEK10
(NEK10p.R275C) are located in highly conserved areas, with scores of 8 
and 9. NEK1p.D409Y  and NEK10p.R275C were exposed and functional 
residues, respectively, whereas NEK9p.H174Y  was projected to be 
a structural residue with a buried nature. Furthermore, overall, 
24% of mutations (score 6–7) were moderately conserved with 
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FIGURE 2
Overview of demographic and clinicopathological characteristics of the oral cancer patient cohort: (A) gender-wise distribution, (B) age-wise 
distribution, (C) histopathological grading, (D) tumor site distribution, (E) history of dental problems, (F) family history of cancer, and (G) distribution of 
tobacco-associated risk factors.

exposed/buried residue positions, suggesting a potential structural 
and functional impact. In contrast, 30% of mutations (scores 1, 2, 
and 4) were located at variable sites. However, 18% of the residues 
exhibited an average conservation score of 5, with either an exposed 
or a buried nature.

MD simulations

For molecular dynamic simulations, five mutations 
(NEK1p.D409Y , NEK1p.N643K , NEK9p.H174Y , NEK10p.R275C, and 
NEK10p.E596K ) were prioritized based on their predicted 
pathogenicity, as identified as deleterious by 5–4 different 
bioinformatics tools. All these mutations were located at 
critical interaction sites within the protein structure, suggesting 
a likely impact on protein stability and function. All the 
mutant types of the proteins maintained consistently higher 
Rg values than their WT counterparts throughout the 100-
ns simulation, indicating potential structural destabilization 
(Supplementary Figure S1C–S5C). The average radius of gyration 
for all the mutations is shown in Supplementary Figure S6. 
Among the analyzed mutations, NEK1p.D409Y  exhibited an 
average radius of gyration (Rg) of 5.62 nm for the mutant 
protein and 4.45 nm for the WT. Similarly, for NEK9
(NEK9p.H174Y ) and NEK10 (NEK10p.R275C and NEK10p.E596K ) 
IS mutations, the average Rg values for the mutant protein 
were higher than those of the WT (Supplementary Figure S6). 

RMSD analyses revealed substantial structural deviations in 
mutant proteins compared to those in WT. All the NEK
gene mutants exhibit consistently higher backbone deviations 
compared to the WT throughout the 100-ns simulation. 
NEK1 mutations, i.e., NEK1p.D409Y  and NEK1p.N643K , showed 
a substantial deviation, particularly after 20 and 40 ns, as 
indicated in Supplementary Figures S4A, S5A. NEK9p.H174Y

exhibited major deviations after 10 ns and minor deviations 
after 50 ns (Supplementary Figure S3A). Similarly, NEK10
mutants (NEK10p.R275C and NEK10p.E596K ) exhibited greater 
structural deviations than WT, indicating reduced conformational 
stability (Supplementary Figures S1A, S2A).

RMSF profiles further supported these findings. All 
the mutants exhibited increased flexibility around the 
mutated residues compared to WT proteins, suggesting 
increased local flexibility and potential functional disruption 
(Supplementary Figures S1B–S5B). In addition, other energy 
parameters (i.e., density, temperature, and pressure) also 
showed noticeable fluctuations in mutant proteins, supporting 
the hypothesis of compromised structural stability due to 
IS mutations. Ramachandran plots were also generated, 
indicating minor changes in residue conformational distributions 
(Supplementary Figures S1–S5H,I). All these interacting-site 
mutations were superimposed and visualized using PyMOL. HOPE 
analysis further predicted that these substitutions may induce 
structural destabilization and functional alterations in the proteins, 
as illustrated in Figure 9.
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FIGURE 3
Mutational profile of NEK genes. (A) Percentage distribution of novel and previously reported mutations. (B) Distribution of somatic and germline 
mutations. (C) Mutation types across selected genes based on the mutation rate. (D) Recurrent mutations with biomarker potential significance.

Gene-wise association with 
histopathological grading and 
sociodemographic parameters

To assess the clinical relevance of NEK mutations in oral 
cancer, we examined their association with sociodemographic 
and histopathological parameters (Figures 10A–K). Statistically 
significant associations were identified for NEK4 and NEK9. 
NEK4 mutations were significantly linked to the tumor site (p = 
0.02), suggesting a potential role in site-specific tumorigenesis. 
NEK9 mutations showed a strong association with tobacco 
intake (p = 0.01), indicating its possible involvement in 
tobacco-related oral carcinogenesis. In contrast, no significant 
associations were observed for NEK1, NEK2, NEK5, or NEK10
(Figure 11; Supplementary Table S5A,B).

Association with overall survival

Kaplan–Meier analysis was performed using SPSS to 
analyze the prognostic relevance of mutations in NEK genes in 
OSCC patients (Figure 12). A statistically significant difference in 

improved overall survival was observed between patients harboring 
NEK10 mutations and those with WT NEK10 (p < 0.05), indicating 
a potential role of NEK10 mutations in patient prognosis. Similarly, 
mutations in NEK1, NEK2, NEK5, and NEK9 genes did not exhibit 
statistical significance (with p-values of 0.9, 0.5, 0.7, and 0.5, 
respectively). However, patients carrying mutations in these genes 
tended to show better overall survival compared to their WT 
counterparts. In contrast, a non-significant decrease in overall 
survival was seen in patients having mutations in the NEK4 and 
NEK8 genes compared to their WT counterparts.

Discussion

Identifying reliable genetic biomarkers in oral squamous cell 
carcinoma remains a central challenge. Despite advances in cancer 
genomics, the molecular architecture of OSCC has not been fully 
elucidated, particularly regarding the contribution of underexplored 
kinases such as the NIMA-related kinase (NEK) family. NEKs are 
a family of 11 serine/threonine kinases (NEK1–NEK11) emerging 
as critical regulators of various mitotic processes (cell-cycle 
regulation, apoptosis, centrosome function, spindle assembly, and 
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FIGURE 4
Distribution patterns of different mutations in NEK genes illustrated by lollipop plots. (A) NEK1, (B) NEK2, (C) NEK3, (D) NEK4, (E) NEK5, (F) NEK6, (G)
NEK7, (H) NEK8, (I) NEK9, (J) NEK10, and (K) NEK11. The plots were created using “Maftools” package in RStudio.

the G2/M transition processes) that are frequently dysregulated 
in cancer (Nguyen et al., 2023). By maintaining genomic stability 
and cellular homeostasis, these kinases play an essential role in 
regulating normal cellular functions. In this study, we present 
the first comprehensive mutational profiling of all 11 NEKs in 
OSCC patients from Khyber Pakhtunkhwa (KPK), revealing novel 
insights into their demographic associations, mutation spectra, 
and prognostic relevance/significance. Furthermore, we carried out 
in silico analysis to determine the pathogenic significance and 
potential effects of the variants on protein function using multiple 
bioinformatics tools.

Using WES of 31 tumor tissues, we identified multiple somatic 
and germline variants (36/46; 78.26% and 10/46; 21.74%) in NEK
genes, several of which are predicted to be pathogenic (NEK1, 
NEK2, NEK5, NEK9, NEK10, and NEK11 mutations are deleterious) 
based on consensus outputs from SIFT, PolyPhen-2, and other 
pathogenicity tools, as reported above. Among these genes, NEK1
(14/46; 30.43%), NEK5 (6/46; 13.04%), NEK10 (7/46; 15.21%), 
and NEK11 (5/11; 10.86%) showed the highest mutation burden. 
These findings highlight the potential oncogenic relevance of NEKs 

in OSCC. Our results are in line with their previously reported 
oncogenic roles in other cancer types, including ovarian, lung, brain, 
breast, and colorectal cancers (Fry et al., 2012; Chen et al., 2025; 
Tsunoda et al., 2009). Previous literature reports that NEK10 has 
been identified as one of the important kinases likely harboring 
driver mutations, based on cancer whole-genome sequencing 
datasets, with 13 cataloged missense variants across multiple tumor 
types (Greenman et al., 2007). Our study also supports this finding, 
revealing a high frequency of NEK10 mutations in oral squamous 
cell carcinoma patients from Pakistan. The non-synonymous SNVs 
(NEK10p.R275C and NEK10p.E596K ) were reported as the most 
deleterious mutations in NEK10, which occur at the interacting 
site and have a destabilizing impact on protein structure. Similarly, 
NEK1 mutations have been documented in diverse cancers such as 
ovarian, colorectal, lung, and skin tumors, where NEK1 dysfunction 
is linked to chromosomal instability and defective DNA damage 
checkpoint phenotypes that promote malignant transformation in 
both cellular and animal models (Chen et al., 2011). NEK11 has 
also been frequently implicated in somatic alterations across various 
cancers. NEK11 exhibits both oncogenic and tumor-suppressive 
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FIGURE 5
Exon-wise distribution of different mutations in NEK genes.

functions across different cancer types (Li H. et al., 2025). Exome 
sequencing studies in melanoma and colorectal cancers have 
identified several mutations in NEK11. Functional analyses further 
reveal that loss of NEK11 disrupts the G2/M cell-cycle checkpoint 
in response to DNA damage, leading to heightened genomic 
instability and reduced apoptosis, thereby potentially promoting 
tumor progression (Sabir et al., 2015). However, NEK11p.E347V  was 
one of the most common mutations in our population, which was 
frequently reported in all 31 OSCC patients.

NEKs play key roles in regulating mitotic progression, 
centrosome dynamics, spindle formation, and genomic stability. 
Dysregulation of these processes is a hallmark of cancer, and 

alterations in NEK genes have been linked to abnormal proliferation, 
chromosomal instability, and enhanced metastatic behavior 
in multiple malignancies. Mutations identified in this study, 
particularly those predicted as damaging, may impair catalytic 
activity or substrate binding, disrupting cell-cycle checkpoints and 
mitotic control. These changes can also interact with key OSCC 
pathways such as PI3K/AKT, MAPK, and DNA damage response, 
underscoring the role of NEKs in tumorigenesis and as potential 
biomarkers (Fry et al., 2012; Moniz et al., 2011; Xie et al., 2020). 
The inclusion of TCGA-HNSCC data places our findings within 
a broader genomic context and supports the relevance of the 
identified genes in head and neck cancers. Although mutation 
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FIGURE 6
Comparative analysis of NEK gene mutation frequencies. (A) Mutation frequencies in TCGA-HNSCC dataset (n = 515), with NEK5 showing the highest 
rate (2.5%). (B) Mutation frequencies in the Pakistani OSCC cohort (n = 31), with NEK11 exhibiting the highest rate (100%).

frequencies were comparatively higher in our cohort, TCGA 
analysis confirms that these genes are not unique to our dataset 
but are recurrently altered in larger populations. Given the 
exploratory nature of this study and the modest sample size, 
these observations should be interpreted cautiously and warrant 
validation in larger, independent cohorts.

Furthermore, the convergence of computational predictions 
strengthens the conclusion that these mutations are likely impactful 
in OSCC pathogenesis. All these genes have destabilized proteins. 
Nearly 41% (19/46) coincide with protein–protein interaction 
sites, and key mutations in NEK1 (NEK1p.D409Y  and NEK1p.N643K ), 
NEK9 (NEK9p.H174Y ), and NEK10 (NEK10p.R275C) occur in highly 
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FIGURE 7
Pathogenicity predictions of NEK gene mutations based on SIFT (A), PolyPhen-2 (B), MutationTaster (C), MutationAssessor (D), PROVEAN (E), and 
FATHMM (F) tools.

conserved, functionally critical regions, with scores of 8 and 9. Using 
the STRING server and GeneMANIA, we analyzed the interaction 
networks for these genes (Figure 13; Supplementary Figure S7). 
The resulting interactome pathways reveal that these proteins 
participate in multiple biological processes associated with 
genome integrity, and any mutation in them may disrupt these 
interactions, ultimately contributing to tumor progression. These 
in silico findings extend observations of NEKs influencing 
mitotic regulation, DNA repair, and signal transduction pathways
(Zhu et al., 2024).

Recent advances in computational and deep learning 
methods have enhanced mutation detection, functional impact 
prediction, and biomarker prioritization in cancer genomics. 
For instance, heterogeneous information network learning 
models with neighborhood-level structural representation predict 
biologically relevant interactions, such as lncRNA–miRNA 
networks (Zhao et al., 2024), whereas geometric deep learning 
frameworks enable drug repositioning over heterogeneous networks 
(Zhao et al., 2022). Similarly, sequence-based deep learning models 
accurately predict functional sites, including HIV-1 protease 
cleavage sites (Li D. et al., 2025), and structure-based and molecular 
modeling advances, such as fine-tuned MM/PBSA (GBSA)-based 
methods and multi-perspective 3D molecular representations, 
improve variant interpretation and clinically relevant biomarker 
identification (Zhang et al., 2025; Zhao et al., 2025).

Although the present study employed traditional in silico
tools to assess mutation impact and protein–protein interactions, 

recent advancements in machine learning and deep learning 
are revolutionizing the interpretation of cancer-associated 
mutations and network-level analysis. Ensemble approaches, such 
as rotation forest models, enhance accuracy in disease–gene 
association predictions by integrating multi-feature similarity 
profiles. Applying analogous ensemble or deep learning strategies 
to NEK gene mutations could provide enhanced insights into 
mutation pathogenicity, protein–protein interaction disruptions, 
and network-level effects that are not fully captured by 
conventional methods (Guo et al., 2019).

Furthermore, current trends in computational PPI prediction, 
propelled by modern machine learning and deep learning 
frameworks, reflect a transition from traditional sequence-
based tools such as ISPRED-SEQ. Modern approaches integrate 
structural and evolutionary protein features to more accurately 
assess mutation-induced interaction changes. Methods including 
AlphaFold Multimer, graph neural network (GNN)-based PPI 
predictors, and transformer-based protein language models 
have shown improved performance in identifying interaction 
interfaces and evaluating the functional consequences of variants 
(Wang Y. et al., 2020; Wang et al., 2019). These transformer-based 
models learn contextual relationships across protein sequences, 
enabling detection of long-range dependencies and subtle 
sequence–structure effects that are often missed by conventional 
tools. Incorporating such approaches into future analyses of NEK
gene mutations in oral cancer may enhance the identification 
of critical PPI disruptions, support prioritization of variants for 
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FIGURE 8
Conservation profile of mutated amino acid residues in NEKs, as predicted by ConSurf analysis.

experimental validation, and strengthen the interpretability of in 
silico findings.

Additionally, recent deep learning approaches have significantly 
enhanced drug–target interaction (DTI) prediction and hold 
relevance for future NEK druggability assessment. LSTM-based 
neural networks and transformer models capture complex 
protein–ligand interactions, predicting potential small-molecule 
binders more accurately than traditional docking or similarity-
based tools. These methods could prioritize selective NEK inhibitors 
and guide therapeutic development, as supported by recent 
studies on LSTM-based DTI frameworks that underscore the 
benefits of integrating such models into NEK-focused drug 
discovery (Wang Y.-B. et al., 2020).

The somatic mutational profile of cancers is strongly influenced 
by inherited genetic predispositions and the distribution of allele 
frequencies within specific populations. In regions characterized 
by rich ethnic diversity, such as South Asia, these factors become 
particularly significant. Our cohort from KPK reflects a genetically 
distinct ethnic community with unique hereditary backgrounds and 
characteristic lifestyle exposures, including the widespread use of 
naswar, i.e., smokeless tobacco, smoking, and betel nut consumption 
(IARC Working Group on the Evaluation of Carcinogenic Risks to 

Humans, World Health Organization and International Agency 
for Research on Cancer, 2004; Ferlay et al., 2020; India Project 
Team of the International Cancer Genome Consortium, 2013). 
These carcinogenic factors are known to cause DNA damage and 
may potentially alter the pattern and frequency of mutations in 
NEK genes (Sharan et al., 2012). We observed a higher incidence 
of OSCC in men (71%) and individuals older than 56 years 
(58%), which is consistent with global trends of OSCC prevalence 
in men and older age groups. Notably, naswar use emerged 
as the primary risk factor (58%), while a significant subset of 
patients also presented with dental issues (32%). These findings 
align with prior studies linking smokeless tobacco and poor oral 
hygiene to OSCC risk, reinforcing the role of these exposures 
in regional populations (Chen et al., 2025). Furthermore, NEK4
and NEK9 mutations demonstrated a statistically significant 
association with tumor site (p = 0.02) and tobacco intake (p = 
0.01), suggesting a potential site-specific oncogenic role of 
NEK4 and a strong link between NEK9 mutation and tobacco 
exposure in OSCC. These associations may aid in understanding 
the molecular mechanisms of NEK gene dysregulation and 
their relationship with clinicopathological features in oral
cancer.
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FIGURE 9
Visualization and superimposition of interacting-site mutations in PyMOL with HOPE-predicted structural effects.

Furthermore, survival analysis revealed distinct trends across 
the NEK gene family. The observed differences in overall survival 
between NEK-mutant and WT OSCC patients likely reflect the 
context-dependent dual roles of NEKs in cancer. Previous studies 
indicate that NEKs can function as either oncogenes or tumor 
suppressors depending on cellular context and mutation type 
(Nguyen et al., 2023; Chen et al., 2023; Anuraga et al., 2021). 
Our findings that NEK10-mutant patients exhibited a significantly 
better overall survival (p < 0.05), whereas mutations in NEK1, 
NEK2, NEK5, and NEK9 showed non-significant trends toward 
improved survival, and mutations in NEK4 and NEK8 showed a 
trend toward worse survival are consistent with a context‐dependent 
dual role of NEKs in tumorigenesis. NEK4 generally acts as a 
tumor suppressor involved in DNA damage response and cell-
cycle checkpoint control; thus, its mutation may impair genomic 
stability and contribute to poorer survival (Park et al., 2016). 
Similarly, NEK8 is reported to be overexpressed in gastric, 

colorectal, and breast cancers, where it promotes proliferation and 
is linked with poor prognosis (Cao et al., 2023; Gao et al., 2022). 
In contrast, NEK1, NEK2, NEK5, NEK9, and NEK10 often 
exhibit oncogenic functions, promoting centrosome amplification, 
mitotic progression, and proliferation; loss-of-function mutations 
in these genes may weaken their pro-tumorigenic potential, which 
could explain the better survival of patients with mutant forms 
(Zhu et al., 2024; Yang et al., 2022). In particular, NEK10 regulates 
G2/M checkpoint and MAPK signaling, and its impaired function 
may reduce tumor growth potential, aligning with the improved 
survival seen in our cohort (Moniz et al., 2011). Collectively, 
these findings suggest that NEK mutations may contribute to 
heterogeneous clinical outcomes in oral cancer and warrant further 
validation in larger patient cohorts to clarify their prognostic 
relevance.

Based on our in silico findings, the druggability of NEK family 
mutations remains largely unexplored due to the limited availability 
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FIGURE 10
Association of NEK gene mutations with histopathological and sociodemographic characteristics: (A) NEK1, (B) NEK2, (C) NEK3, (D) NEK4, (E) NEK5, (F)
NEK6, (G) NEK7, (H) NEK8, (I) NEK9, (J) NEK10, and (K) NEK11.

of selective NEK inhibitors in clinical practice. These mutations 
are located within or near conserved kinase domains, suggesting 
a potential impact on catalytic activity or PPIs. However, their 
presence may modulate cellular signaling pathways, influencing 
tumor cell sensitivity or resistance to broader classes of kinase 
inhibitors. Therefore, understanding the functional consequences 
of these mutations is critical, as they may either serve as future 
drug targets or act as biomarkers for treatment stratification 
and therapeutic response. NEK2 is consistently overexpressed 
across all types of gastrointestinal cancers, including gastric 
and pancreatic tumors, and contributes to tumor progression 
and drug resistance. Currently, T-1101 tosylate, emerging as the 
most advanced NEK2 inhibitor, has shown promising preclinical 
results (Xia et al., 2025). Similarly, NEK10, as a potential tumor-
promoting factor in lung adenocarcinoma, could serve as a new 
therapeutic target and warrant further investigation in OSCC
(Dutt et al., 2024).

Conclusion

In conclusion, this study provides the first comprehensive 
mutational profiling of all 11 NEKs in OSCC patients from 
KPK, revealing novel insights into their mutation spectrum, 

demographic associations, and potential prognostic implications. 
Recurrent alterations were most frequent in NEK1, NEK9, NEK10, 
and NEK11, with some localizing to functionally relevant regions. 
Computational analyses suggest possible effects on protein stability 
and interactions, though these require experimental confirmation. 
Observed associations with clinicodemographic factors (naswar use 
and tumor site) and survival (NEK10 with improved outcomes) 
are preliminary and limited by cohort size. Overall, our findings 
expand the knowledge of NEK alterations in OSCC and underscore 
population-specific patterns, but validation in larger cohorts and 
functional studies is essential to elucidate mechanistic roles and 
clinical utility.

Furthermore, this study has certain limitations. The relatively 
limited sample size posed challenges in establishing robust 
correlations between molecular findings and clinicopathological 
parameters. In addition, the study primarily relies on WES and 
in silico analyses without experimental validation. Although in 
vitro or in vivo functional assays would provide mechanistic 
confirmation of the biological impact of NEK gene mutations, 
such analyses were beyond the scope of the present work. Future 
studies involving larger cohorts from the same population, along 
with functional validation experiments, are needed to elucidate 
the mechanistic contributions, prevalence, and clinical relevance of 
NEK mutations in OSCC.
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FIGURE 11
Association of NEK gene mutations with histopathological and sociodemographic characteristics; ∗, significant (p-value < 0.05).

FIGURE 12
Gene-wise association of NEK genes with overall survival (p-value < 0.05 is considered significant).
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FIGURE 13
Physical interaction network of NEK genes as predicted by the GeneMANIA server.
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