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Introduction: MRSA is a multi-drug-resistant bacteria responsible for severe
infections that has become a major health concern. Due to constraints of
traditional methods, there is a need for developing a new approach to prevent
the MRSA-related infections by targeting key pathogens.

Methods: Initially, the subtractive genomics was applied to the MRSA proteome
to identify non-homologous, essential, and virulence targets using comparative
BLAST-based screening. Further, immunoinformatic tools were employed for
B- and T-cell epitope prediction and vaccine construction with appropriate
adjuvants and linkers, followed by immune simulation and molecular docking
with immune receptors.

Results: Comparative metabolic pathway analysis identified 294 MRSA pathway
proteins, with acetolactate synthase (ALS) as a non-homologous, essential,
and virulent protein that is involved in the branched amino acid biosynthesis
pathway. The constructed ALS vaccine consists of 3 B-cell and 19 T-cell
epitopes exhibited stable immunological features with 97.55% global population
coverage. Molecular docking revealed that ALS exhibited a superior binding
affinity with the TLR4 receptor (-1,438.7 kcal/mol) than the TLR2 receptor
(=1,103.5 kcal/mol), which was further confirmed by high structural stability
and compactness analysis. Immune simulations also exhibited elevated IgM,
IgG subtypes, and cytokine productions, suggesting a robust humoral and
cellular immunity.

Discussion: Identified ALS highlights its biological relevance in MRSA survival.
The stability predictions with TLR4 suggested effective activation of innate
immunity that may enhance antigen presentation and downstream adaptive
immunity. The validation of the ALS vaccine's safety and immunogenicity further
requires comprehensive in vitro and in vivo examinations.
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Conclusion: Thus, ALS is recognized as a promising MRSA vaccine candidate
and has the potential to activate immune responses effectively.

immune simulation, molecular dynamicsimulation, MRSA, multi-epitope vaccine,
subtractive genomic method

1 Introduction

The consistent emergence and spread of antimicrobial resistance
(AMR) have become major health concerns, as the resistant
pathogen causes a wide range of community-associated and
hospital-associated infections. When combating disease-associated
pathogens, AMR remains a complex problem, which requires a lot
of attention. One such important AMR pathogen is methicillin-
resistant Staphylococcus aureus (MRSA). It is a non-motile, non-
sporulating, catalase-positive, facultative anaerobic, gram-positive
coccus derived from the Staphylococcaceae family (Clebak and
Malone, 2018). It is a deadly pathogen that causes nosocomial,
healthcare, and community-associated illnesses. Recently, a meta-
analysis study reported that MRSA global prevalence in 2023
was found to be 14.69% with a 95% confidence interval of
12.39%-17.15% (Hasanpour et al., 2023). Furthermore, the WHO
reported that MRSA causes severe bloodstream infections in
hospitalized individuals, with statistics reaching 32.2% in 2022.

In addition to that, MRSA is recognized for its broad
range of pyogenic infections, especially impacting skin
infections like staphylococcal scalded skin syndrome, folliculitis,
cellulitis, impetigo, pneumonia, endocarditis, osteomyelitis, etc
(Ronning et al., 2025; WHO, 2024). These infections are highly
associated with higher morbidity and mortality rates than
methicillin-susceptible strains. This contributes to prolonged
hospitalization, complexity, and failure of therapeutic treatments.
For instance, the recent studies projected the antimicrobial
resistance caused by various microorganisms, including MRSA,
will inflict economic deprivation up to $2 trillion per year by
2050 worldwide. This highlights public health concerns and
economic requirements to advance preventive measures like vaccine
development (Ayau et al., 2017; B. B. Gupta et al., 2021).

Subsequently, the secretion of virulent factors in MRSA
is predominately responsible for immune evasion, colonization,
biofilm formation, and tissue destruction. The list of predominant
virulent factors that are resistant to commercial antibiotics includes
adherence (clumping factor, collagen-binding protein, elastin-
binding protein, and fibronectin-binding protein), exotoxins (a-
hemolysin, p-hemolysin, y-hemolysin, staphylococcal enterotoxin,
staphylococcal superantigen-like protein, and toxic shock syndrome
toxin-1), and exoenzymes (exfoliative toxin, hyaluronate lyase,
staphylokinase, and staphylocoagulase) (De Jong et al, 2019;
Deurenberg and Stobberingh, 2008; Wang et al., 2022).

The identification of relevant drug targets and effective
antibiotics in combating MRSA remains a major issue. Primarily,
the continuous reliance on existing drugs for MRSA makes
them ineffective, thus leading to the development of resistance
mechanisms. For instance, the therapeutic arsenal, such as
vancomycin, a primary agent for MRSA, and alternative
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existing medicines such as telavancin, cefazoline, oxazolidinones,
teicoplanin, and daptomycin, mainly focuses on traditional
drug targets that are involved in cell wall synthesis and protein
synthesis (Keikha and Karbalaei, 2024). Further, the emergence
of resistant mutants examined in the higher dosages also leaves
adverse side effects such as nephrotoxicity, peripheral neuropathy,
myelosuppression, renal toxicity, and creatine phosphokinase
elevation. Thus, introducing new alternative approaches effectively
prevents the infections caused by MRSA through identifying
key targets.

Screening key virulent proteins from existing data becomes
crucial to inhibit the activity of MRSA in the host. These proteins
are utilized for developing effective vaccines that stimulate immune
responses in the host tissue and reduce reliance on anti-MRSA
drug interventions. Considering this, many bioinformatics methods
are developed to predict MRSA virulent proteins and prevent
MRSA-associated infections, which include comparative genomics,
reverse vaccinology, network pharmacology, and genome-wide
analysis such as core genomic and subtractive genomic methods
(Karim et al, 2020; Khan et al, 2022b; Lyon et al, 2025;
Naorem et al., 2022; Zhai et al., 2025). Among these, the subtractive
genomics approach plays a vital role in identifying potential
virulence targets. It is widely used for identifying bacterial proteins
that are non-homologous and essential for bacterial survival. Mostly,
proteins are retrieved from metabolic pathways, whole genomes,
or whole proteomes. In contrast, the reverse vaccinology approach
is able to identify immunogenic antigens and prioritize vaccine
candidates that are less susceptible to immune evasion and reduce
adverse cross-reactivity, thereby enabling effective targeting of
multidrug-resistant pathogens.

To accomplish that, this study utilized the subtractive genomic
method to identify unique metabolic pathway (KEGG pathway
database) proteins from the whole proteome to prioritize targets that
are non-homologous (NCBI BLASTp) to humans, essential (DEG
database) for MRSA survival, and virulent (VFDB and VICMpred
database) for MRSA pathogenicity (Khan et al., 2022a). Following
the identification essential targets, reverse vaccinology principles
were used for designing multi-epitope vaccines, which are known
to reduce the duration for vaccine discovery, toxicity prediction,
and allergic reaction prediction (Kumar et al., 2024; Subramani
and Venugopal, 2025). Afterwards, the constructed vaccine was
docked against immune receptors, and its structural stabilities were
examined using molecular dynamic simulations. Then, the immune
response profile between the human immune system and the
MRSA protein vaccine was employed through C-ImmSim (immune
response simulation) software (Garrido-Palazuelos et al., 2024).
Overall, this study focused on identifying novel MRSA virulent
targets through subtractive genome analysis and constructing a
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FIGURE 1
A schematic representation of the workflow used in selection of novel protein and developing a multi-epitope vaccine against MRSA.

multi-epitope vaccine for suppressing the activity of MRSA through ~ 2.1.2 Retrieval of non-homologous and essential
immunoinformatic approaches. proteins

Proteins associated with both species metabolic pathways

were pooled together, and the proteins that were present in

2 Methods the common pathways were removed, as they interfere with

host metabolic pathways. Then the proteins were scrutinized,

'This study contains two phases; phase I contains the subtractive =~ and only non-homologous MRSA proteins were retained. To

genomic analysis for identification of novel proteins, and  achieve this, NCBI BLASTp (Basic Local Alignment Search

phase II contains multi-epitope vaccine constructions using an ~ Tool for protein sequences) tool was utilized against Homo

immunoinformatic approach. The Figure 1 illustrates the overall ~ sapiens to identify non-host similar proteins, while applying an

methodology for both Phase I and Phase II. expected value (E-value) of 0.001, a maximum target sequence

of 5,000, and the BLOSUMS62 scoring matrix function (https://

blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins, last accessed July

2.1 Subtractive genomic ahna lysis 2025). Afterwards, only the non-homologous proteins were selected
for further analysis (Altschul et al., 1997).
2.1.1 Retrieval of unique metabolic pathways Furthermore, non-homologous proteins were queried into the

The complete metabolic pathways of human and MRSA bacteria ~ Database of Essential Genes (DEG) to screen essential proteins
were obtained from the Kyoto Encyclopedia of Genes and Genomes  (http://origin.tubic.org/deg/public/index.php/genome/bacteria,
(KEGG) database (Kanehisa et al., 2025). It's a large repository  last accessed August 2025). It's a publicly available repository
containing manually curated and mapped metabolic pathways,  containing information on essential genes for various organisms.
molecular networks, and interactions for many species (https:// The identification of essentiality is crucial for determining the
www.kegg.jp/kegg/, last accessed July 2025). The pathway of MRSA ~ proteins that are responsible for either MRSA survival or the
(KEGG ID: T00182, Org code: sar) was manually compared with the ~ MRSA mechanism. The built-in analysis tools of DEG are utilized
metabolic pathways of Homo sapiens (KEGG ID: T01001, Org code: ~ for screening essential proteins, which is useful for discovering
hsa) to identify unique and common pathways. Among them, only  effective vaccine candidates. The pathogenic proteins were screened
the unique metabolic pathways of MRSA were utilized for further ~ through setting the E-value (107°) and a minimum bit score cut-off
analysis, which minimizes the potential cross interactions with host ~ of 100, along with the default parameters for sequence identity and
metabolism and identifies novel MRSA targets and suitable vaccine ~ coverage as provided by the DEG server. The selection of criteria
candidates. utilized for the identification of proteins that essential for MRSA
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survival and pathogenicity, thus prioritizing them as potential
vaccine candidates (Zhang et al., 2004).

2.1.3 Prediction of subcellular localization

To understand the functions of proteins for the cellular
developmental process and to development of vaccines for particular
diseases, it's essential to access their cellular locations. To address
that, the protein's subcellular localizations were predicted through
publicly available web interface tools such as the PSORTb (Protein
Subcellular Localization Program for Bacteria) version 3.0 (https://
www.psort.org/psortb/, last accessed August 2025). It classified
the proteins according to their cellular localizations, including
the cell wall, cytoplasmic membrane, cytoplasm, inner membrane,
periplasmic space, and outer membrane (Yu et al, 2010). This
study focuses on cytoplasmic proteins rather than surface-exposed
proteins, which have been primarily targeted in antibody-based
vaccines. By prioritizing cytoplasmic proteins, the study aims
to elicit T-cell-mediated immunity through endogenous antigen
processing and major histocompatibility complex (MHC) class I/IT
presentation, thereby activating CD8" cytotoxic and CD4" helper
T cells (Naorem et al., 2022; Valathoor et al., 2025). Thus, the
proteins localized in the cytoplasm of MRSA were utilized for
further analysis.

2.1.4 Retrieval of virulence proteins

The proteins were further scrutinized for virulence factor
analysis after identifying cytoplasm proteins. For the virulent
protein analysis, the virulence factor database (VFDB) (https://
www.mgc.ac.cn/VFs/, last accessed August 2025) and virulence
factors, information molecules, cellular process, and metabolism
prediction (VICMpred) tool were utilized (https://webs.iiitd.edu.in/
raghava/vicmpred/, last accessed, August 2025). The VFDB is
a free online resource that curates' bacterial virulence factors
and provides experimentally determined information on virulence
factor functions, structures, and pathogenic mechanisms, while
VICMpred is a web interface that utilizes an support vector machine
(SVM)-based algorithm to classify the bacterial proteins into various
categories, including virulence factors and molecule information,
such as cellular processes and metabolism (Chen et al., 2005; Saha
and Raghava, 2006). These web resources potentially identified
virulent MRSA protein targets, which could serve as potential
candidates for vaccine development.

2.1.5 Homology modelling and protein-protein
interactions

Following the retrieval of novel MRSA proteins screened
through the metabolic genomic pathway, it's essential to assess the
three-dimensional structures to evaluates their biological relevance
and functional roles in the context of host-pathogen interactions. If
the selected proteins' 3D structures were not available in the RCSB-
PDB (Research Collaboratory for Structural Bioinformatics-Protein
Data Bank) (https://www.rcsb.org/), the proteins were modeled
using the homology modeling method. For that, SWISS-MODEL
(https://swissmodel.expasy.org/, last accessed September 2025), a
web server, was utilized for generating 3D structures of the proteins,
which aligned the target's amino acid sequence of proteins with
already known experimental structures and estimated the quality
of the protein using coverage, E-value, sequence identity, and
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GMQE (Global Model Quality Estimate) (Waterhouse et al., 2018).
After protein structure prediction, the structures' 3D qualities
were validated using various web servers and tools. The tools
include PROCHECK, ERRAT, ProSA, and ProQ (https://
saves.mbi.ucla.edu/, last accessed September 2025) (Colovos and
Yeates, 1993; Wallner and Elofsson, 2003). They are comprehensive
computational tools that evaluate the stereochemistry of proteins
3D structures by plotting Ramachandran plots, identifying regions
of errors, and providing accuracy rates.

To understand the disease mechanisms, antigen prioritization,
and preventive strategies of particular disease-causing proteins, it's
crucial to establish their interactions with other molecules, which
in turn provide biological insights and molecular mechanisms
with nearby proteins or molecules. STRING (Search Tool for
the Retrieval of Interacting Genes/Proteins) v11.0 database was
utilized for mapping the interactions between non-homologous
target proteins to create a protein-protein interaction (PPI)
network (https://string-db.org/, last accessed September 2025).
It's a biological database that predicts PPI for known proteins
by integrating data from literature resources, genomic data,
experimental data, and co-expression data. This analysis provides
information about their potential roles in metabolic, biological, and
functional aspects (Szklarczyk et al., 2023).

From this phase of analysis, non-homologous, essential,
virulent, and novel MRSA proteins were screened, which were
further utilized for developing candidate vaccines in phase
IT analysis.

2.2 Multi-epitope vaccine (MEV)
construction

2.2.1 Analysis of immunological properties

Initially, immunological properties, focusing on antigenic,
allergenic, and toxicity properties, were analyzed for proteins
screened from the phase I study. The antigenicity property
was assessed through the VaxiJen 2.0 web server (https://
www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html, last
accessed September 2025). It predicts the immunogenic properties
of vaccine candidates upon querying their protein sequence
(Doytchinova and Flower, 2007). The allergenicity property was
analyzed through the AllerTop v2.1 web server (https://www.ddg-
pharmfac.net/allertop_test/, last accessed September 2025), which
utilized an alignment-free approach and predicts whether the
proteins belong to an allergen group that causes any allergic
reactions (Dimitrov et al., 2014). On the other hand, ToxinPred
used experimental data and machine learning algorithms to classify
the toxicity of the protein (http://crdd.osdd.net/raghava/toxinpred/,
last accessed September 2025) (S. Gupta et al., 2013).

2.2.2 Predictions of linear B cell and T cell
epitopes

To construct targeted vaccines, it's essential to identify
epitopes, which enables the effective, specific, and faster vaccine
developments. It determines the precise molecule targets, which
stimulates immune responses and minimizes the need for
conventional methods. Non-allergen, non-toxic, and antigen-
specific linear B-cell and T-cell epitopes were screened through

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1745495
https://www.psort.org/psortb/
https://www.psort.org/psortb/
https://www.mgc.ac.cn/VFs/
https://www.mgc.ac.cn/VFs/
https://webs.iiitd.edu.in/raghava/vicmpred/
https://webs.iiitd.edu.in/raghava/vicmpred/
https://www.rcsb.org/
https://swissmodel.expasy.org/
https://saves.mbi.ucla.edu/
https://saves.mbi.ucla.edu/
https://string-db.org/
https://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
https://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
https://www.ddg-pharmfac.net/allertop_test/
https://www.ddg-pharmfac.net/allertop_test/
http://crdd.osdd.net/raghava/toxinpred/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Subramani et al.

various web interfaces. Identifying B cell epitopes stimulates
antibody production, which is important for antibody-based
immunity responses, while identifying T cell epitopes recognizes
MHC molecules and leads to cell-mediated immunity responses
(Shahab et al, 2023). The Immune Epitope Database (IEDB)
(https://www.iedb.org/, last accessed September 2025), a user-
friendly and freely accessible resource, was utilized for predicting
B-cell epitopes; specifically, the tool Bepipred Linear Epitope
Prediction 2.0 was employed in the IEDB, which used a random
forest algorithm that was trained on identifying linear B-cell
epitopes  (http://tools.iedb.org/beell/, last accessed September
2025). On the other hand, the prediction of T-cell epitopes aimed
to identify CD4" helper T lymphocytes and CD8" cytotoxic T
lymphocytes. Predictions for CD8+/MHC class I/cytotoxic T
lymphocytes were conducted using the NetCTLpan 1.1 server
(https://nextgen-tools.iedb.org/pipeline?tool=tcl, last accessed
September 2025), while the NetMHCIIpan 4.0 server was used for
identifying epitopes associated with HLA-II (Human leukocyte
antigen) alleles for CD4+/MHC class II/helper T lymphocytes
last

(https://nextgen-tools.iedb.org/pipeline?tool=tc2, accessed

September 2025) (Vita et al., 2025).

2.2.3 Criteria for epitope selection

For the construction of MEV, B cell and T cell epitopes were
selected based on the following criteria. Linear B cell epitopes were
selected based on their minimum length of greater than or equal
to 5 amino acids, as selection of shorter sequences leads to an
unstable humoral immune response. In contrast, MHC class I and
class II epitopes were ranked according to their predicted binding
affinity (ICs) values, where the lowest IC;, values indicate stronger
binding capacity for MHC class I and class II molecules. Specifically,
the peptides that bind to MHC class I molecules were predicted
using the NetMHCpan 4.1 EL method. The peptide containing ICs
< 500 nM and a percentile rank <0.5 was considered a strong
binder, while the percentile rank above the threshold value was
considered a weak binder. In contrast, the peptides that bind to
MHC class IT molecules were predicted using the recommended
NetMHClIIpan 4.1 EL predictor. In this screening, the peptides
with IC;;, < 500 nM and percentile rank <2.0 were considered
as strong binders, which were subsequently utilized for further
vaccine constructions (Sethi et al., 2024). Following the retrieval of
B and T cell epitopes, they were further scrutinized for analyzing
antigenicity, allergenicity, and toxicity properties through VaxiJen,
AllerTop, and ToxinPred tools. The epitopes predicted as antigen,
non-allergen, and non-toxic were utilized for further interferon
analysis. The interferon gamma (INFy) producing potential of the
selected T cell epitopes was predicted using the IFNepitope web
server (https://webs.iiitd.edu.in/raghava/ifnepitope/index.php, last
accessed December 2025). This analysis was used to evaluate the
ability of the selected T helper cell epitopes to elicit T helper
cell-mediated cellular immune responses, which are essential for
effective protection against intracellular pathogens. For screening
INFy-producing peptides, default parameters and a support vector
machine (SVM)-based approach were employed. Through this
algorithm, the web server classifies peptides as INFy-inducers
(positive score > 0) and INFy-non-inducers (negative score <0).
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2.2.4 Prediction of population coverage

To construct an effective multi-epitope vaccine, it is crucial to
assess the potential ability of alleles worldwide. Since HLA alleles
(Class I and Class II) are classified as highly polymorphic, they
are differently distributed among various ethnic groups. In this
study, the population coverage was evaluated worldwide and in
India using selected B cell and T cell epitopes. The IEDB population
coverage web interface was used for determining the fraction of the
worldwide and Indian population coverage upon querying selected
epitopes (http://tools.iedb.org/population/, last accessed September
2025). These analyses ensure the applicability and validation of
the selected epitopes in multiple groups of populations (Garrido-
Palazuelos et al., 2024).

2.2.5 MEV construction and physicochemical
characterization

The selected B cell and T cell epitopes, which have amino acid
sequences with high population coverage, were used for designing
a multi-epitope vaccine along with adjuvants and linkers. A serial
arrangement of the vaccine was designed with 50S ribosomal
subunit protein as an adjuvant, which enhances immune response
by activating the innate immune system. Following that, every B
and T cell epitope was linked with the help of flexible linkers such
as EAAAK, GPGPG, and AYY (Sethi et al., 2024). These linkers
will improve the protein stability and immunogenicity. To validate
the physicochemical properties of the designed vaccine, the Expasy
ProtParam server was used (https://web.expasy.org/protparam/, last
accessed September 2025). It uses known physical and chemical
properties of individual amino acids, which are stored in the
UniProt database, and provides the output of molecular weight,
estimated half-life, isoelectric point, atomic composition, instability
index, and so on (Walker, 2005). Further, the constructed vaccine's
antigenicity, allergenicity, and toxicity were evaluated with VaxiJen,
AllerTop, and ToxinPred web servers.

2.2.6 Prediction of secondary and tertiary
structure

The designed vaccine's secondary structure was predicted
using the PSIPRED web server, which predicts alpha helices, beta
sheets, and coils of the queried amino acid sequences by using
feed-forward neural networks and the position-specific iterated
BLAST algorithm (https://bioinf.cs.ucl.ac.uk/psipred/, last accessed
September 2025) (McGuffin et al., 2000). The tertiary structure of
the constructed vaccine was predicted through the trROSETTA web
server, which generates the 3D structure based on deep learning
methods (https://yanglab.qd.sdu.edu.cn/trRosetta/, last accessed
September 2025) (Du et al,, 2021). Then, the modeled structure's
quality was validated using comprehensive computational tools such
as PROCHECK, ERRAT, ProSA, and ProQ, which evaluate the
3D structure by visualizing the Ramachandran plot and generating
accuracy and error rates.

2.2.7 Molecular docking of MEV vaccine against
TLR receptors

To
receptors, the constructed vaccine was docked against toll-
like receptors, including TLR2 (PDB ID: 6NIG) and TLR 4
(PDB ID: 27Z63). These immune receptors are selected based

determine the molecular interactions with immune
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on their vital role in recognizing pathogen-associated molecular
patterns and to activate immune responses, especially in bacterial
components such as lipoproteins (TLR2) and lipopolysaccharides
(TLR4). Nevertheless, they also initiate downstream signaling
cascades, which could activate innate immune systems and
lead to the production of proinflammatory cytokines and
interleukins, thereby interconnecting innate and adaptive immunity
responses (Kumar et al., 2024). For this docking analysis, the
ClusPro server 2.0 was used with default parameters, which
provides the binding affinity between the vaccine and immune
receptors (https://cluspro.bu.edu/login.php?redir=/home.php,
last accessed September 2025). Subsequently, protein-protein
interaction was examined through the PDBsum server (https://
www.ebi.ac.uk/thornton-srv/databases/pdbsum/, last accessed
September 2025). This comprehensive analysis provides information
on hydrogen bonds, non-bonded interactions, and salt bridge
interactions (Kozakov et al., 2017; Laskowski et al., 1997).
From the docking results, the toll-like receptor that had a
highest binding affinity, high number of hydrogens, and salt
bridge interactions with the constructed vaccine was utilized for
further analysis.

2.2.8 Molecular dynamic simulation of the
vaccine-receptor complex

Molecular dynamic simulation (MDS) was carried out using
GROMACS v2023.5 with the CHARMM27 atom force field to
further confirm the structural stability of the designed vaccine with
immune receptors (https://www.gromacs.org/). The complex and
apo-form of the vaccine were solvated in the cubic simulation box,
maintaining a minimum distance of 1.0 nm between the protein
surface and the box edges, and solvated with the simple point
charge (TIP3P) water model. The system was neutralized using
chloride or sodium ions and energy minimization was carried out
using the steepest descent algorithm, where the minimization step
was paused at 10.0 kJ/mol. Subsequently, the system underwent
equilibration under the conditions of a fixed number of particles,
volume, and temperature (NVT) as well as a fixed number of
particles, pressure, and temperature (NPT) for a duration of
around 100 picoseconds, where the pressure of the system was
maintained using the Parrinello-Rahman technique, while the
temperature was kept at 300 K using the Berendsen thermostat
method for every 2 femtoseconds. After neutralizing the system,
the vaccine-TLR complex was subjected to a 100 ns simulation
(Lemkul, 2019; Munieswaran et al., 2025). Following that, MDS
parameters such as root mean square deviation (RMSD), radius of
gyration (ROG), and solvent accessible surface area (SASA) were
calculated and visualized using Xmgrace software for both the apo-
form vaccine and the complex.

2.2.9 Codon adaptation and in silico cloning

To optimize vaccine gene expression in the chosen host and
to validate the vector insertion for the feasibility of laboratory
cloning, codon optimization and in silico cloning were performed.
Reverse translation and codon optimization were determined
through the Java Codon Adaptation Tool (JCAT), which adapts
the codon usage for a gene to a specific host organism by
optimizing synonymous codon usage (https://www.jcat.de/, last
accessed September 2025). Through this server, CAI (codon
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adaptive index) and vaccine GC content percentage were
calculated, which in turn improves the heterologous protein
production (Grote et al., 2005). After optimization, the sequence
was cloned into the E. coli vector (pET28a(+)) using the
SnapGene software (https://www.snapgene.com/, last accessed
September 2025). It's used in molecular biology to designs and
simulates numerous in silico cloning techniques, such as TOPO
(topoisomerase), Gateway, Gibson assembly, and TA/GC cloning,
and visualizes them (Samad et al., 2020).

2.2.10 Immune profiling of MEV vaccine

The immune response of the constructed vaccine was evaluated
through the C-Immsim web server, which simulates the natural
immune response in the human body by employing PSSM (position-
specific scoring matrices) and machine learning techniques (https://
kraken.iac.rm.cnr.it/C-IMMSIM/index.php?page=1, last accessed
September 2025). Immune simulation for the constructed vaccine
was performed with three injections at time intervals of 0, 28, and 56
days, where each injection contains 1,000 vaccine proteins without
lipopolysaccharide (LPS), which mimic multiple vaccine doses. The
simulation steps parameter was set to be 1,050, which corresponds
to approximately 365 days, while the remaining parameters, such as
random seed, simulation volume, and host HLA selection, were kept
at default parameters (Rapin et al., 2010).

3 Results
3.1 Phase |

The primary objective of phase I is to identify novel
immunogenic targets of MRSA through subtractive metabolic
pathway analysis. The protein was selected based on the
following criteria: being non-homologous to host proteins,
representing a novel target, being an essential protein for bacterial
mechanisms, exhibiting virulence properties, and playing a
significant role in the overall metabolic pathway of MRSA
infection.

3.1.1 Identification of unique and
non-homologous proteins

Initially, the metabolic pathways of Homo sapiens and MRSA
were retrieved from the KEGG database. A total of 357 metabolic
pathways for H. sapiens and 109 MRSA metabolic pathways were
retrieved. The whole proteome of H. sapiens and MRSA are given in
Supplementary Material Table 1. Among them, 27 unique metabolic
pathways of MRSA were manually identified by comparing both
metabolic pathways. Table 1 presents the unique metabolic pathways
of MRSA. Through analyzing the unique metabolic pathways, a total
of 294 proteins were identified, and they were subsequently screened
for identifying non-homologous proteins. The unique metabolic
pathway proteins are given in Supplementary Material Table 2.
Each protein from unique metabolic pathways was compared with
H. sapiens. By analyzing the results, a total of 180 proteins were
categorized as homologous to the host, while 114 proteins were
categorized as non-homologous. These non-homologous proteins
were utilized for further screening processes.
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TABLE 1 Unique metabolic pathways of MRSA.

S.No KEGGID ’ Unique metabolic pathways

1 5au00261 Monobactam biosynthesis

2 sau00300 Lysine biosynthesis

3 sau00362 Benzoate degradation

4 sau00401 Novobiocin biosynthesis

5 sau00460 Cyanoamino acid metabolism

6 sau00521 Streptomycin biosynthesis

7 sau00541 O-Antigen nucleotide sugar biosynthesis
8 sau00542 O-Antigen repeat unit biosynthesis

9 sau00543 Exopolysaccharide biosynthesis

10 sau00550 Peptidoglycan biosynthesis

11 sau00552 Teichoic acid biosynthesis

12 sau00622 Xylene degradation

13 sau00625 Chloroalkane and chloroalkene degradation
14 sau00626 Naphthalene degradation

15 sau00643 Styrene degradation

16 sau00660 C5-Branched dibasic acid metabolism

17 5au00680 Methane metabolism

18 sau00906 Carotenoid biosynthesis

19 sau00907 Pinene, camphor and geraniol degradation
20 sau00997 Biosynthesis of various other secondary metabolites
21 sau00998 Biosynthesis of various antibiotics

22 sau00999 Biosynthesis of various plant secondary metabolites
23 sau02020 Two-component system

24 sau02024 Quorum sensing

25 sau02040 Flagellar assembly

26 sau02060 Phosphotransferase system (PTS)

27 sau03070 Bacterial secretion system

3.1.2 Identification of essential proteins and
subcellular loculations

To evaluate the screened proteins essentiality in MRSA, the DEG
database was utilized with default parameters. From this analysis,
81 proteins were identified as essential proteins that were necessary
for MRSA survival and pathogenesis. Following that, the subcellular
localization of the screened proteins revealed that 27 proteins were
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located in the cytoplasmic membrane, 2 proteins were present in the
cell wall, 4 proteins were predicted in the unknown location, and
the remaining 47 proteins were found in the cytoplasm. Figure 2A
illustrates the localization of the screened proteins. This prediction
showcased that the majority of the proteins were located in the
cytoplasm. Among them, the proteins that scored above 90% were
categorized as highly reliable. By analyzing the prediction scores,
32 proteins passed the criteria, which qualified them for further
screening. In contrast, 15 proteins had scores below 90%, which were
excluded from the following analysis.

3.1.3 Identification of virulence proteins

After determining subcellular localizations, 32 proteins were
subjected to virulent factor analysis. The results revealed that only
one protein passed all the criteria, namely, acetolactate synthase
(ALS), a protein that plays a vital role in the MRSA metabolism
and survival. Upon analyzing all the parameters, this ALS protein
was declared as a novel, non-homologous, essential, and virulent
target in the MRSA organism. Table 2 shows a list of screened
non-homologous, essential, and virulent proteins.

3.1.4 Acetolactate synthase

Through subtractive genomics, acetolactate synthase (ALS) was
identified as a novel, potentially virulent, and therapeutic target
in MRSA. ALS plays a major role in catalyzing the first metabolic
step of the branched-chain amino acid biosynthesis pathway by
condensing approximately 2 pyruvate molecules into 2-acetolactate
along with CO, release (Q.Zhou et al, 2007). This reaction
is predominately dependent on the cofactor, namely, thiamine
pyrophosphate (TPP), and generates reactive intermediates upon
deprotonation. These intermediates further targets carbonyl carbon
of pyruvate, facilitating decarboxylation, and adequately forms a
covalent complex. Following that, complex interacts with second
pyruvate molecule to yield acetolactate while regenerating TPP.
Thus, targeting ALS protein in MRSA may perturb branched-chain
amino acid biosynthesis by affecting the growth, virulence, and
resistance mechanisms of MRSA. Additionally, targeting the TPP-
dependent catalytic mechanism in ALS represents a promising
strategy for the development of novel antimicrobials (Naidu, 2023).

3.1.5 Homology modelling and protein-protein
networks

The homology model was constructed for ALS proteins, as
selected protein's 3D structure was not available in the RCSB-
PDB database. Primarily, ALS protein's FASTA sequence was
retrieved from the UniProt database with ID of AOA7U7EW44,
containing 589 amino acids. It has 3 domains, including thiamine
pyrophosphate enzyme N-terminal TPP-binding (36-151 aa),
thiamine pyrophosphate enzyme central (224-359 aa), and thiamine
pyrophosphate enzyme TPP-binding (417-565 aa). The sequence
was queried through SWISS-MODEL, and the top-scored protein's
3D structure was utilized for structure validation and quality
assessment. The modeled protein was validated through plotting a
Ramachandran plot, where most of the residues were present in the
favoured regions with a value of 91.3%, suggesting good and well-
stereochemical quality. On the other hand, ERRAT showed a 92.47%
overall quality factor, indicating satisfactory non-bonded atomic
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Subcellular localization and protein-protein interaction, (A) a pie chart represents the distribution of subcellular localization of shortlisted essential,
non-homologous, pathogen-specific proteins predicted through PSORTb. (B) Protein-protein interaction analysis for selected ALS protein. The
STRING results showed different interactions of proteins with each other represented by nodes and edges.

ABD31320.1

interactions, whereas ProSA and ProQ analysis exhibited a high-
quality constructed ALS protein. The Figures 3A,B illustrates the 3D
structure and Ramachandran plots of ALS protein, and the Table 3
presents the validation results for the modeled protein structure.

Analysis of PPI network revealed that the ALS protein
(represented by ABD31320.1) interacts with several key enzymes,
which predominately play a role in the branched-chain amino
acid (BCAA) biosynthesis pathway. The proteins, including ilvC,
ilvD, leuA, leuB, leuC, leuD, and tdcB, were provided the average
node degree of ~9.45 and demonstrated more edges (52) than the
expected node degree and edges (12), suggesting a strong functional
correlation with the selected ALS protein. Further, gene ontology
enrichment analysis highlighted those interconnected proteins
consistently contributed to the synthesis of BCAA (isoleucine,
valine, and leucine) and exhibited enzymatic functions such as
acetolactate synthase activity, dehydratase activity, lyase activity,
magnesium ion binding, and vitamin binding, which were located
in the cytosol of MRSA. The literature resources revealed that
these PPIs link to MRSA bacterial growth, virulence, and various
metabolism pathways, such as 2-oxocarboxylic acid metabolism and
C5-branched dibasic acid metabolism. This evidence suggested that
this PPI integration plays a major role in central carbon metabolism.
Thus, analyzing the PPI networks revealed that ALS acted as a
metabolic hub protein that was essential for MRSA survival, which
could be exploitable for the development of preventive measures
using reverse vaccinology. Figure 2B show the protein -protein
interaction network of ALS using STRING database.

3.2 Phase Il

3.2.1 Selection and screening of B cell and T cell
epitopes

Initially, the selected ALS protein from the phase I study
was scrutinized for antigenicity, allergenicity, and toxicity using
VaxiJen, AllerTop, and ToxinPred web servers. From this analysis,
the selected ALS protein was considered as a portable antigen (0.61),
a non-allergen, and a non-toxin, suggesting that ALS is suitable for
constructing a multi-epitope vaccine.

For the construction of MEV, B cell and T cell epitopes
should be selected, which are responsible for activating innate
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and adaptive

Linear Epitope Prediction 2.0 server, around 9 linear B-cell

immunity responses. Through the Bepipred
epitopes with scores ranging from 0.5 to 1.0 were predicted
(Supplementary Material Table 3). Out of 9, only 3 of the epitopes
were categorized as non-toxic, antigenic, and non-allergenic. These
epitopes were considered for further analysis. Following that, a
total of 183 CTL (cytotoxic T lymphocytes) epitopes and 473
HTL (helper T lymphocytes) epitopes were predicted through
NetCTL 1.2 and NetMHC II 2.3 servers. The overall epitopes of
MHC class I and IT are given in Supplementary Material Table 4, 5.
Among these epitopes, only 11 from CTL and 36 from HTL were
considered non-toxic, antigenic, and non-allergenic. From these, 8
high-affinity HTL epitopes restricted to MHC class II were selected
for final construction of MEV, as they exhibited low ICs, values (best
binding affinity) and favourable immunogenic properties. Further,
the analysis of the INFy-producing T-cell epitopes revealed that
among the 19 selected T-cell epitopes, 17 were predicted as INFy
inducers, which scored above the threshold value of 0, while the
remaining two epitopes were predicted as non-INFy inducers based
on the negative SVM scores (Supplementary Material Table 6).
Precisely, the epitopes that bind to MHC class II molecules were
scored, ranging from 0.0017 to 0.6531, demonstrating their capacity
to elicit the T-helper (Th1) cell-mediated cellular immunity. These
results suggested that the selected T-cell epitopes were suitable for
constructing MEV.

3.2.2 Population coverage

To estimate the population coverage of the designed MEV,
IEDB tools were utilized, which assessed both MHC class I and
IT restricted alleles at the global level and within the Indian
population. It was found that 97.55% of the global population
and 92.93% of the Indian population were covered by selected
T cell epitopes. The Figures4A,B represents the global and
Indian population coverage. Further, the selected T-cell epitopes
provide a broad class I and II coverage. The predicted population
coverage revealed that CTL epitopes bind to prevalent HLA-A
such as HLA-A*02:01, HLA-A*02:03, HLA-A"02:06, HLA-A*11:01,
HLA-A"24:02, and HLA-A*68:01 and additionally contributes with
HLA-B such as HLA-B*44:02/03, HLA-B*15:01, HLA-B*35:01, and
HLA-B*53:01 alleles. In contrast, HTL epitopes provided strong
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TABLE 2 Non-homologous, essential, and virulent targets of MRSA.
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UniProt id Protein name ’ Score  AA length Gene VFDB VICMpred
1 Q7A5H6 Transcriptional regulatory protein Cytoplasmic 10 241 sITA No Metabolism
SrrA
2 P60610 Transcriptional regulatory protein Cytoplasmic 10 246 IytR No Cellular process
LytR
3 P99143 Phosphocarrier protein HPr Cytoplasmic 10 88 ptsH No Metabolism
4 AOAOH3JND9 KDP operon transcriptional Cytoplasmic 9.97 231 kdpE Yes Cellular process
regulatory protein KdpE
5 Q7A7X9 Transcriptional regulatory protein Cytoplasmic 9.97 252 hptR Yes Cellular process
HptR
6 Q99V14 Phosphoenolpyruvate-protein Cytoplasmic 9.97 572 ptsI No Metabolism
phosphotransferase
7 Q7A5P7 2,3,4,5-tetrahydropyridine-2,6- Cytoplasmic 9.97 239 dapH (dabD) Yes Cellular process
dicarboxylate N-acetyltransferase
8 AOAOH3JMW3 UDP-N-acetylmuramoyl- Cytoplasmic 9.97 452 murF No Virulence factors
tripeptide--D-alanyl-D-alanine
ligase
9 Q7A7B4 Bifunctional protein GImU Cytoplasmic 9.97 450 glmU Yes Cellular process
10 AOAOH3JKC9 Capsular polysaccharide synthesis Cytoplasmic 9.97 374 capG No Metabolism
enzyme Cap5G
11 P67765 Serine acetyltransferase Cytoplasmic 9.97 213 cysE No Metabolism
12 POA090 UDP-N-acetylmuramoylalanine-- Cytoplasmic 9.97 449 murD Yes Cellular process
D-glutamate ligase
13 P63892 D-alanine--D-alanine ligase Cytoplasmic 9.97 356 ddl Yes Cellular process
14 P65480 UDP-N-acetylmuramoyl-L- Cytoplasmic 9.97 494 murE Yes Metabolism
alanyl-D-glutamate--L-lysine
ligase
15 AOAOH3]V81 Acetolactate synthase Cytoplasmic 9.97 589 ilvB Yes Virulence factors
16 Q99TF2 Acetate kinase Cytoplasmic 9.97 400 ackA Yes Metabolism
17 P64270 2,3-Bisphosphoglycerate- Cytoplasmic 9.97 505 gpml Yes Cellular process
independent phosphoglycerate
mutase
18 AOAOH3JUI4 Alkaline phosphatase synthesis Cytoplasmic 9.97 234 phoP No Cellular process
transcriptional regulatory protein
19 AOAOH3JKS9 KdpE(SCCmec) protein Cytoplasmic 9.97 231 kdpE(SCCmec) No Cellular process
20 Q7A8E1L Transcriptional regulatory protein Cytoplasmic 9.97 233 walR No Cellular process
WalR
21 Q99VW2 Response regulator protein GraR Cytoplasmic 9.97 224 graR No Cellular process
22 Q99U73 Response regulator ArlR Cytoplasmic 9.97 214 arlR No Cellular process
23 AOAOH3JLT1 SA1159 protein Cytoplasmic 9.97 200 - Yes Cellular process
24 Q7A4R9 Response regulator protein VraR Cytoplasmic 9.97 209 vraR No Cellular process
(Continued on the following page)
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TABLE 2 (Continued) Non-homologous, essential, and virulent targets of MRSA.

S.No UniProtid ‘ Protein name PSORTp  Score ‘ AA length Gene VFDB VICMpred
25 Q7A3U5 Oxygen regulatory protein Cytoplasmic 9.97 217 nreC No Metabolism
NreC
26 AOAOH3JKX9 Anthranilate synthase Cytoplasmic 9.97 468 - No Cellular process
component 1
27 AOAOH3JKS9 KdpE(SCCmec) protein Cytoplasmic 9.97 231 kdpE(SCCmec) Yes Cellular process
28 Q99TT5 RNA polymerase sigma Cytoplasmic 9.97 368 sigA Yes Information and storage
factor SigA
29 AOAOH3JMK4 Aspartate-semialdehyde Cytoplasmic 9.67 329 asd Yes Metabolism
dehydrogenase
30 P63894 4-Hydroxy- Cytoplasmic 9.67 240 dapB Yes Cellular process
tetrahydrodipicolinate
reductase
31 AOAOH3JN19 Riboflavin biosynthesis Cytoplasmic 9.67 347 ribD Yes Cellular process
protein RibD
32 AO0AOH3JS31 SA2418 protein Cytoplasmic 9.67 221 - No Cellular process
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FIGURE 3
Modeled 3D structure of ALS protein and structure evaluation. (A) modeled 3D structure of ALS protein. (B) 3D structure validation through
Ramachandran plot using ProCheck webserver.

binding with multiple alleles, including DRB1*03:01, DRB1704:01/04,
DRB1%07:01, DRB1*09:01, DRB1710:01, and DRB1*15:01. These
results suggested that the high population coverage of predicted
CTL and HTL epitopes had strong potential ability to be widely
recognized by diverse HLA alleles, suggesting their effectiveness in
the development of a vaccine against the targeted pathogen.

3.2.3 MEV construction

The final ALS vaccine was constructed with a suitable adjuvant
and appropriate linkers. Initially, 50S ribosomal subunit protein with
a UniProt ID of POA7N9 was added as an adjuvant, which has
been employed by researchers to induce dendritic cell maturation
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and increase the production of pro-inflammatory cytokines (TNEF-
a and IL 6), thereby increasing immunomodulatory activity when
linked to toll-like receptors. Concurrently, B cell epitopes and CTL
and HTL epitope linkers such as EAAAK, GPGPG, and AAY were
included to reduce unfavorable interactions, improve stability, and
facilitate proteasomal cleavage, thereby maintaining conformational
dynamics between epitopes (P. Zhou etal., 2025). Among the linkers,
EAAAK was a rigid linker, capable of forming an alpha helix at
the amine terminal, which linked B cell epitopes and the adjuvant.
Subsequently, the GPGPG linker was employed to connect the CTL
epitopes and B cell epitopes. On the other hand, the AAY linker was
used for interconnecting CTL and HTL epitopes. At the end, six
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TABLE 3 Structure validation of modelled ALS protein.
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Structure validation

Residues in most favoured regions [A,B,L] 538 91.3%
Residues in additional allowed regions [a,b,],p] 50 8.7%
ProCheck (Ramachandran plot)
Residues in generously allowed regions [~a,~b,~1,~p] 0 0.0%
Residues in disallowed regions 0 0.0%
ERRAT Overall model quality (non-bonded atomic interaction) 92.4731
ProSA (Z score) Over all model quality (energy overall energy profile) -11.2
LG-score 9.259
ProQ (protein quality predictor)
MaxSub 0.5
Population: World Population: India
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FIGURE 4
Population coverage analysis of the designed ALS vaccine, (A) worldwide and (B) India population coverage.

histidine tags (6His) were added to facilitate efficient purification
and detection of recombinant vaccine protein without disrupting
antigenicity properties. The Figure 5 illustrates overall ALS MEV
construction using adjuvants and linkers.

Initially, the physicochemical properties of the constructed
ALS vaccine were examined using the ProtParam server. From
the analysis, the total number of amino acids in the ALS vaccine
was determined to be 433, and the observed molecular weight
was 46,571.02kDa. In contrast, the total number of negatively
charged residues containing ASP and GLU and positively charged
residues (ARG and LYS) were observed to be 52 and 39,
respectively. The instability index was predicted to be 31.32,
which classified the constructed ALS vaccine as stable. Grand
Average of Hydropathicity (GRAVY) was computed to be —0.320,
indicating ALS had a strong hydrophilic nature. Further, the analysis
of immunological properties revealed that the ALS vaccine was
predicted as probable antigen (0.7239), non-allergen, and non-
toxin. Table 4 represents the immunological and physicochemical
properties of the constructed ALS vaccine.
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3.2.4 Prediction of secondary and tertiary
structure

The secondary structure of the ALS vaccine was predicted
through the PSIPRED server, which determined its folding nature.
Upon reviewing the results (Figure 6A), the majority of the ALS
vaccine contains coils (63.4%), and the remaining 2D structures,
such as alpha helix and beta strand, had predicted scores of
20% and 15.6%, respectively. Following that, the tertiary structure
of the ALS vaccine (Figure 6B) was constructed through the
trROSETTA server. Furthermore, the 3D structure was validated
using a Ramachandran plot (Figure 6C). The analysis revealed that
most of the residues (325) were found in favored regions, which
account for 95.3%. The remaining residues were found in allowed
regions, accounting for 0.4%. This confirms the good stereochemical
quality of the ALS vaccine. Additionally, the overall quality factor
was determined to be 96.988, which was calculated using the ERRAT
server, suggesting reliable non-bonded interactions. Subsequently,
ProSA validation produced a Z-score of —2.56, which falls within the
range of experimentally determined protein structures, while ProQ
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FIGURE 5
Primary structure of constructed ALS vaccine.
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TABLE 4 Immunological and physicochemical properties of constructed ALS vaccine.

Physicochemical and immunological properties

1 Antigenicity 0.7239 (probable antigen)
2 Allergenicity Non-allergen

3 Toxicity Non-toxic

4 Number of amino acids 433

5 Theoretical pI 5.50

6 Molecular weight (KDa) 46,571.02

7 Total number of negatively charged residues (Asp + Glu) 52

8 Total number of positively charged residues (Arg + Lys) 39

9 Formula Ca101H3226N55, 0615516
10 Total number of atoms 6,510

11 Instability index 31.32 (stable)

12 Aliphatic index 75.84

13 Grand average of hydropathicity (GRAVY) —-0.320

predicted high model reliability with an LG-score of 9.248 and a
MaxSub score of 0.502. These results confirmed that the constructed
ALS vaccine had adequate quality and was structurally valid, which
could be utilized for further studies.

3.2.5 Binding affinity analysis

The immune responses of the ALS vaccine against toll-
like receptors were performed using molecular docking analysis.
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The docking results revealed that the ALS had higher binding
affinity towards TLR4 (—1,438.7 kcal/mol) (Figure 7A) than TLR2
(-1,103.5 kcal/mol) (Figure 7B), suggesting the potential ability of
the ALS vaccine to effectively activates the TLR4 mediated innate
immune signaling. Then, the interactions between the docked
complexes were visualized using the PDBsum web server. The
TLR2 had 2 salt bridges, 9 disulfide bonds, and 303 non-bonded
interactions with the ALS vaccine, while, TLR4-ALS exhibited 3
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Secondary structure of ALS vaccine

10 20
1 MAKGI REKI KLVSSAGTGHFYTTTKNKRTKPEKLELKKFDPVVRAaHVIINVK s
1 0 s e e O 5 A 100
s k[PD EAAAKAVTPMVPSGKSNHEMGPGPGMWAAQFYPFGPGPGKI VH 150
EAFHVGPGPGWAAQFYPFKGPGPGAEAYGVKGFGPGPGLLPEYGLDVGEPG 20
PGGMGGMHGSYGPGPGQVATPGI GKGPGPGAQMWAAQFYPFGPGPGEE@LD 250
2t [WAAFAYGPGPGVPYEDTLFLGPGPGAQLLTAQFVNKARvYEbBLLINLESRFEDBDIR 30
Mo rkKMAESLELEQUNARN e c o LN L 6 s = [FblB|/R AR VIToFLKMAes L %0
st QAR ElEvrRI spTeEavTRMARNoaN: DPLkMAEBEELEAAYTE[CEDEE <0

0t | NLGsRFDDAAY¥GLDVKI VLI NNGTLHHHHHH 433

30 40 50

A.

10 20

[T Helix

Putative Domain Boundary

Strand
l:‘ Disordered, protein binding
Extracellular

[l Vetal Binding

. Re-entrant Helix

Py - o

FIGURE 6

through Ramachandran plot.

[l Membrane Interaction

2D and 3D structure constructed vaccine. (A) 2D structure of ALS vaccine. (B) 3D structures of ALS vaccine and (C) the modeled structure validated

30 40 50

Coil D Disordered

[Tl Transmembrane Helix

Cytoplasmic Signal Peptide

Psi (degrees)

ds 0 45
Phi (degrees;

90

salt bridges, 19 hydrogen bonds, and 250 non-bonded interactions.
Based on the more favorable binding affinity score, the TLR4-ALS
complex was selected for further analysis.

3.2.6 Molecular dynamic simulations

The structural stability of the TLR4-ALS complex was
performed through molecular dynamics simulation studies.
Calculating MDS parameters such as RMSD, ROG, and SASA
offers a greater understanding of structural stability and motions
at the atomic and molecular level. The Figure 8A showcases the
RMSD of the vaccine complexes. By examining the results, the
ALS vaccine (apo form) alone exhibited higher fluctuations in the
range of 0.2-0.85 nm. In contrast, the ALS-TLR4 complex exhibited
stable regions followed by minimum fluctuations observed within
the range of 0.2-0.4 nm. These results suggested that the ALS
vaccine-TLR4 complex had a more stable conformation during
the 100 ns simulation. Following that, the compactness of the
ALS complexes was determined through plotting an ROG graph.
The Figure 8B illustrates the ROG of the complex and the ALS
vaccine. From the graph, the TLR4-ALS complex consistently
displayed lower ROG values (3.3-3.5nm) when compared to
the ALS vaccine (3.0-3.2 nm). This analysis suggested that the
TLR4-ALS complex had more compactness and cohesive structure
assembly. Concurrently, the solvent accessibility of the complexes
was determined through plotting an SASA graph (Figure 8C).
The graph revealed that the ALS vaccine-TLR4 complex had less
exposure to the solvent (450-475 nm) compared to the apo-form
vaccine complex, which was found in the range of 250-265 nm.
The decreased SASA value analyzed for the complex indicates
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that the residues become buried at the interaction interface and
further confirms its stability over 100 ns simulations. Overall, the
calculated MDS parameters exhibited that the TLR4-ALS vaccine
had enhanced stability, compactness, and less solvent exposure over
time, which make it suitable for an appropriate vaccine candidate.

3.2.7 Codon adaptation and in silico cloning

To improve the translation efficiency of a target gene, codon
optimization was performed to minimize host-specific codon bias.
The Java Codon Adaptation tool was utilized to optimize the codon
usage of the ALS vaccine construct in E. coli (K12 strain) and
generates 1,298 bp of DNA sequence. The optimized CAI was found
to be 0.98, indicating strong potential for expression, and a GC
content was found to be 55.67%, which lies within the ideal range
(30%-70%). Further, the optimized DNA sequence was cloned into
the pET-28 (+) vector between the BstEIIl and AclI restriction sites,
which were absent in the construct and thus added at the N-
terminal and C-terminal ends of the ALS vaccine. Finally, the in silico
cloning was successfully performed using the SnapGene software,
and the total length of the final vaccine clone was observed to be
9,541 bp. The Figures 9A,B illustrates restriction sites of the designed
vaccine and cloned ALS vaccine in pET-28 (+) vector.

3.2.8 Immune simulation

The immune responses simulated through the C-ImmSim server
demonstrated quantitative stability and immune activation for the
administered ALS vaccine. Precisely, the total B cell population
elevated rapidly and stabilized between 420 and 500 cells/mm?,
while the memory B cells gradually increased and reached a peak of
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130-140 cells/mm? (Figure 10A). This suggested that the proposed
ALS vaccine may have the ability to activate sustained humoral
immunity. Further, the plasma B cell population (Figure 10B)
revealed the transient peak in the range of 1.5-1.7 cells within
15 days and a decline observed afterwards, indicating efficient
antibody clearance and controlled antibody secretion. Analysis
of immunoglobulin production demonstrated that the secondary
and tertiary immune responses exhibited elevated levels of IgM +
IgG, IgM, IgGl + IgG2, and IgGl antibody productions for
200 days, confirming its long-term antibody-mediated immunity
(Figure 10C). T-helper cell population (Figure 10D) peaked in
the range of 1,300-3,800 cells/mm® and became stabilized at
around 1,300 to 1,500 cellsymm?>. Dendritic cells (Figure 10E)
exhibited minimal fluctuations across simulations in the range
of 20-80 cells/mm?, while macrophages (Figure 10F) exhibited
sustained antigen internalization and MHC class II presentation
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by maintaining presenting cell populations in the range of
150-200 cells/mm?. Furthermore, the concentration of the antigen
was significantly decreased after 40 days, while an antibody
concentration was progressively increased during each phase of the
immune response. In addition to enhanced antibody production,
elevated levels of IFN-y were also observed during immunological
reactions (Figure 10G). Overall, these immune response results
confirmed that the designed ALS vaccine had the potential to
trigger both a robust cellular and humoral immune response in the
host organism.

4 Discussion

Despite the limited availability of antimicrobial agents, the
treatments of methicillin-resistant S. aureus-related infections
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the of
vancomycin led to minimum inhibitory concentration creep,

become challenging. For instance, extensive use
which predominately reduced its clinical efficacy. Due to this
action, the emergence of heteroresistant vancomycin-resistant
S. aureus strains evolved and became resistant to most of the
commercial antibiotics. Researchers found that the last-line of
linezolid and daptomycin drugs causes adverse side effects and
leads to myelosuppression and neurotoxicity (Aljohani et al., 2020;
Keikha and Karbalaei, 2024). This underscores the development
of new strategies to prevent the methicillin-resistant S. aureus
(MRSA) infections such as development of vaccine using reverse
vaccinology. The recent effort demonstrates the complexity of
eliciting protective immunity against disease-causing pathogens
using reverse vaccinology. For example, SA4Ag, a vaccine candidate
based on capsular polysaccharides, failed to show protective
efficacy in clinical trials. This failure was primarily due to the
high antigenic variability of capsular polysaccharides among
different Staphylococcus aureus strains, the immune evasion
strategies employed by the bacteria, and the limited capacity of
antibody-mediated responses alone to prevent invasive infections
(Hassanzadeh et al., 2023; Miller et al., 2020). While they potentially
exhibited antibody responses in early trials, they failed in translating
immunogenicity into clinical protection. Nevertheless, some
studies provided promising preclinical studies; for example, the
development of an mRNA-based vaccine for S. aureus, such as
the staphylococcal enterotoxin B vaccine, provided promising
preclinical immunogenicity through experimentation in animal
models, thus highlighting the possibility of next-generation vaccines
targeting MRSA (Luo et al., 2024).

To target the vaccine candidates, the researchers employed
immunoinformatic approaches to select antigenic peptides and
subsequent vaccine construction. For instance, multivalent
vaccine approaches targeting surface virulence factors, including
clumping factor A (clfA), Staphylococcal Enterotoxin B (SEB),

alpha-hemolysin, fibronectin binding protein A (FnBPA), and
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manganese transporter proteins, were evaluated for their potential
as vaccine targets (Gao et al., 2025). These findings highlighted the
complexity of the protective immunity against S. aureus. To address
the limitations identified in previous literature, the current study
employed a subtractive genomic approach to identify potential
vaccine candidates against MRSA. During this target selection.
Potential risk of immune cross-reactivity was considered for safety
concerns. In spite of that, proteomic analysis against the human
proteome using BLASTp (E-value < 107>, identity < 30%, and
coverage greater than 70%) confirmed that the selected protein
should be absent in humans, suggesting it reduces the risk of
comparative antigenic determinants and minimizes the likelihood
of off-target immune recognition.

Through subtractive-genomic analysis, this study identified
acetolactate synthase (ALS) or acetohydroxyacid synthase (AHAS)
as a novel, essential, non-homologous, and virulent protein. Unlike
the classical S. aureus candidates such as CIfA and enterotoxins,
ALS plays a central role in catalyzing the first step of branched-
chain amino acids (BCAA) such as valine, leucine, and isoleucine
in the MRSA biosynthesis pathway, which is essential for MRSA's
metabolic functions and virulence (Q. Zhou et al., 2007). Precisely,
the research identified that the BCAA biosynthesis pathway is
closely linked to MRSA's metabolic robustness, stress adaptation,
and virulence regulation. Nevertheless, this pathway significantly
contributes to intercellular pH regulation and redox balance,
thereby balancing bacterial persistence under any circumstances
(Liang et al., 2025). Thus, targeting BCAA pathway proteins
disrupts the intracellular survival, attenuates virulence, and
decreases the resistance to oxidative and nitrosative stress conferred
within macrophages. This highlights that ALS could potentially
serve as an MRSA vaccine candidate and compromise MRSA
survival and pathogenicity. Conversely, some of the researchers
used subtractive proteomic methodology to identify novel
S. aureus proteins. Through this analysis, elastin binding protein,
glycosyltransferase, and secretory antigen were selected as
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promising vaccine targets, owing to their essentiality, conservation,
and surface accessibility (Tahir ul Tahir ul Qamar et al., 2021).
Compared to earlier findings, the present work identified a novel
MRSA vaccine target (ALS) using a subtractive genomic approach
to elicit robust T-cell-mediated immune responses through MHC
class T and II presentation. Thus, it offers a complementary strategy
through controlling intracellular S. aureus and also addresses the
key limitations that have been observed in prior vaccine failures,
thereby enhancing the protective immunity.

Constructing multi-target vaccines often provides a broader
spectrum of early prevention, minimizes the chances of immune
escape, and increases the complexity in epitope selection,
antigen processing, structural stability, and manufacturability
(Roux et al., 2024). In contrast, this study utilized a single-target
vaccine candidate to reduce the variability across strains, thereby
enhances the probability of generating a focused and strong immune
response that modulates MRSA metabolism. Nevertheless, the
reliance on a single antigen also carries potential limitations,
including an inadequate immunological breadth and the theoretical
risk of strain-specific escape mechanisms (Roux et al., 2024). Thus,
combining the ALS vaccine with additional conserved antigens
is necessary for developing a multi-target formulation, which
further balances immune coverage, safety, and practical feasibility.
Most of the researchers employ an integrated immunoinformatic
approach along with reverse vaccinology methods to construct
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a multi-epitope vaccine (MEV). For instance, a study identifies
multiple novel antigens, including PPE41 and phospholipase C A
from M. tuberculosis, and constructs an MEV using convergent
methodologies (Sethi et al.,, 2024). In line with this framework,
the present study initially screened B cell and T cell epitopes
for ALS targets. These epitope predictions are important for
simulating the innate and adaptive immune responses and
acquiring long-term immunity. Based on this, the MEV vaccine
was constructed with suitable adjuvants and linkers to enhance
the immunogenicity (Shahab et al., 2023). To access the vaccine's
potential, the immunological characteristics were analyzed, and the
designed ALS vaccine passed the criteria and could potentially be
utilized for stimulating immune responses in host organisms.
Further, the population coverage indicated that the designed
ALS vaccine covered approximately 98% of the world population,
underscoring the translational potential of the selected epitopes.
Simultaneously, the docking and simulation studies demonstrated
that the ALS vaccine exhibited stable and favourable binding
interactions with toll-like receptors 2 and 4. In line with this,
MEV constructed for pneumococcal surface protein A (PspA),
an important virulence factor in Streptococcus pneumoniae, and
displayed that the lowest binding energy was observed to be
—809.3 kcal/mol with the TLR4 receptor (Shafaghi et al., 2023). In
parallel, the recent study that developed a vaccine for tuberculosis
revealed that the constructed vaccine (CP91110P), exhibited better
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binding interactions with TLR4 (—1,672.5 kcal/mol) compared to
TLR2 (-1,535.9 kcal/mol) (An et al, 2025). Further, the study
identified staphylococcal enterotoxins, alpha hemolysin, and FnBPA
using the reverse vaccinology method and declared that the
predicted peptide provides promising antigenicity and stability and
simultaneously activates Th1 mediated immune responses through
effectively binding with TLR receptors (Study, 2024). Moreover,
the Staphylococcal Protein-A vaccine developed for combating
multi drug-resistant MRSA demonstrated that the predicted vaccine
exhibited high affinity and broad theoretical HLA coverage while
offering a novel antigenic profile (P.Zhou et al, 2025). These
findings suggested that the favourable interaction contributes
to stable thermodynamic behaviour between the vaccine and
TLR receptors, thereby induces immunogenicity. In contrast, the
current study showed that ALS had a high binding affinity
towards TLR4, indicating that adjuvant-like motifs incorporated
into the ALS vaccine are broadly associated with Thl-mediated
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immune responses. Thus, activation of TLR4 on antigen-presenting
cells enhances the production of IL-12 and INFy-mediated Thl
differentiation, which are known key factors for cellular immunity
against various pathogens (Hu et al, 2024). Nevertheless, the
high affinity for TLR4 may contribute to inflammation, as
its overactivation causes pathological responses like cytokine
storms.

Following that, the codon optimization and in silico cloning
further confirmed the feasibility of the ALS vaccine expression
through generating a final construct of 9,541 base pairs. This
evidence suggested that the engineered ALS vaccine is suitable
for downstream experimental validation. Simultaneously, the
immune simulation studies demonstrated elevated levels of most
secondary and tertiary immune responses (IgM and IgG) observed.
Some research showcased that the production of IgM and IgG
subtypes was consistently observed at elevated levels after repeated
immunizations, indicating effective B-cell memory formation (48).
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For instance, the investigations on SARS-CoV-2 and SARS-CoV-
2 Omicron variant vaccines demonstrated elevated IgG, IgM,
and INF y productions over months, suggesting humoral and
potential Thl cell-mediated immune responses (Lan and Ao, 2022;
Unninayar et al.,, 2025). Further, the peptide-based tuberculosis
vaccine, such as MP3RT, also exhibited elevated IgG/IgM and
cytokine productions in in vivo mice models, indicating a robust
and balanced immune responses involving both B and T cell-
mediated immunity (Cheng et al., 2022). This finding provides
empirical support for in silico examinations. These outcomes
demonstrated that the predicted immune response profile of the
ALS vaccine has the capacity to stimulate both humoral and
cellular immunity.

Nevertheless, this study establishes ALS as a novel MRSA
vaccine target and demonstrates the feasibility of MEV design
through computational predictions. However, it is essential
to recognize that the current study findings entirely depend
on computational predictions, which diminish the biological
complexity of immune pathways, antigen processing, or host-
specific variability. To address these limitations and to validate
the in silico findings of the constructed ALS vaccine, cytotoxic T-
lymphocyte assay, intracellular cytokine staining, TLR activation
reporter assay, dendritic cell maturation assay, lymphocyte
proliferation assay, and cytokine profiling are examined, followed
by in vivo immunization, which further confirms the vaccine's
suitability, safety, and protective efficacy.

5 Conclusion

This study utilized integrated subtractive genomic and
immunoinformatic approaches to identify and exploit acetolactate
synthase (ALS) as a novel MRSA therapeutic target, which was
categorized as a non-homologous to human, essential, and virulent
MRSA protein. Due to its critical role in the biosynthesis of
branched amino acids, it has become an attractive vaccine candidate.
The rationally designed ALS vaccine covered a high population
worldwide and demonstrated strong binding interactions and stable
structural stability with immune receptors. Further, in silico profiling
also revealed that the ALS-based vaccine is capable of activating
humoral and cellular immune responses as indicated by elevated
antibody and cytokine productions. Despite that the current ALS
vaccine provides strong antigenic properties; it is necessary to
evaluate its potential effectiveness both in vitro and in vivo to
further develop the vaccine candidate. Overall, with these findings,
a robust multi-epitope vaccine will be constructed with significant
translational potential in combating MRSA infections by targeting
key metabolic proteins.
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