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Introduction: MRSA is a multi-drug-resistant bacteria responsible for severe 
infections that has become a major health concern. Due to constraints of 
traditional methods, there is a need for developing a new approach to prevent 
the MRSA-related infections by targeting key pathogens.
Methods: Initially, the subtractive genomics was applied to the MRSA proteome 
to identify non-homologous, essential, and virulence targets using comparative 
BLAST-based screening. Further, immunoinformatic tools were employed for 
B- and T-cell epitope prediction and vaccine construction with appropriate 
adjuvants and linkers, followed by immune simulation and molecular docking 
with immune receptors.
Results: Comparative metabolic pathway analysis identified 294 MRSA pathway 
proteins, with acetolactate synthase (ALS) as a non-homologous, essential, 
and virulent protein that is involved in the branched amino acid biosynthesis 
pathway. The constructed ALS vaccine consists of 3 B-cell and 19 T-cell 
epitopes exhibited stable immunological features with 97.55% global population 
coverage. Molecular docking revealed that ALS exhibited a superior binding 
affinity with the TLR4 receptor (−1,438.7 kcal/mol) than the TLR2 receptor 
(−1,103.5 kcal/mol), which was further confirmed by high structural stability 
and compactness analysis. Immune simulations also exhibited elevated IgM, 
IgG subtypes, and cytokine productions, suggesting a robust humoral and 
cellular immunity.
Discussion: Identified ALS highlights its biological relevance in MRSA survival. 
The stability predictions with TLR4 suggested effective activation of innate 
immunity that may enhance antigen presentation and downstream adaptive 
immunity. The validation of the ALS vaccine's safety and immunogenicity further 
requires comprehensive in vitro and in vivo examinations. 
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Conclusion: Thus, ALS is recognized as a promising MRSA vaccine candidate 
and has the potential to activate immune responses effectively.

KEYWORDS

immune simulation, molecular dynamicsimulation, MRSA, multi-epitope vaccine, 
subtractive genomic method 

1 Introduction

The consistent emergence and spread of antimicrobial resistance 
(AMR) have become major health concerns, as the resistant 
pathogen causes a wide range of community-associated and 
hospital-associated infections. When combating disease-associated 
pathogens, AMR remains a complex problem, which requires a lot 
of attention. One such important AMR pathogen is methicillin-
resistant Staphylococcus aureus (MRSA). It is a non-motile, non-
sporulating, catalase-positive, facultative anaerobic, gram-positive 
coccus derived from the Staphylococcaceae family (Clebak and 
Malone, 2018). It is a deadly pathogen that causes nosocomial, 
healthcare, and community-associated illnesses. Recently, a meta-
analysis study reported that MRSA global prevalence in 2023 
was found to be 14.69% with a 95% confidence interval of 
12.39%–17.15% (Hasanpour et al., 2023). Furthermore, the WHO 
reported that MRSA causes severe bloodstream infections in 
hospitalized individuals, with statistics reaching 32.2% in 2022.

In addition to that, MRSA is recognized for its broad 
range of pyogenic infections, especially impacting skin 
infections like staphylococcal scalded skin syndrome, folliculitis, 
cellulitis, impetigo, pneumonia, endocarditis, osteomyelitis, etc 
(Rønning et al., 2025; WHO, 2024). These infections are highly 
associated with higher morbidity and mortality rates than 
methicillin-susceptible strains. This contributes to prolonged 
hospitalization, complexity, and failure of therapeutic treatments. 
For instance, the recent studies projected the antimicrobial 
resistance caused by various microorganisms, including MRSA, 
will inflict economic deprivation up to $2 trillion per year by 
2050 worldwide. This highlights public health concerns and 
economic requirements to advance preventive measures like vaccine 
development (Ayau et al., 2017; B. B. Gupta et al., 2021).

Subsequently, the secretion of virulent factors in MRSA 
is predominately responsible for immune evasion, colonization, 
biofilm formation, and tissue destruction. The list of predominant 
virulent factors that are resistant to commercial antibiotics includes 
adherence (clumping factor, collagen-binding protein, elastin-
binding protein, and fibronectin-binding protein), exotoxins (α-
hemolysin, β-hemolysin, γ-hemolysin, staphylococcal enterotoxin, 
staphylococcal superantigen-like protein, and toxic shock syndrome 
toxin-1), and exoenzymes (exfoliative toxin, hyaluronate lyase, 
staphylokinase, and staphylocoagulase) (De Jong et al., 2019; 
Deurenberg and Stobberingh, 2008; Wang et al., 2022).

The identification of relevant drug targets and effective 
antibiotics in combating MRSA remains a major issue. Primarily, 
the continuous reliance on existing drugs for MRSA makes 
them ineffective, thus leading to the development of resistance 
mechanisms. For instance, the therapeutic arsenal, such as 
vancomycin, a primary agent for MRSA, and alternative 

existing medicines such as telavancin, cefazoline, oxazolidinones, 
teicoplanin, and daptomycin, mainly focuses on traditional 
drug targets that are involved in cell wall synthesis and protein 
synthesis (Keikha and Karbalaei, 2024). Further, the emergence 
of resistant mutants examined in the higher dosages also leaves 
adverse side effects such as nephrotoxicity, peripheral neuropathy, 
myelosuppression, renal toxicity, and creatine phosphokinase 
elevation. Thus, introducing new alternative approaches effectively 
prevents the infections caused by MRSA through identifying 
key targets.

Screening key virulent proteins from existing data becomes 
crucial to inhibit the activity of MRSA in the host. These proteins 
are utilized for developing effective vaccines that stimulate immune 
responses in the host tissue and reduce reliance on anti-MRSA 
drug interventions. Considering this, many bioinformatics methods 
are developed to predict MRSA virulent proteins and prevent 
MRSA-associated infections, which include comparative genomics, 
reverse vaccinology, network pharmacology, and genome-wide 
analysis such as core genomic and subtractive genomic methods 
(Karim et al., 2020; Khan et al., 2022b; Lyon et al., 2025; 
Naorem et al., 2022; Zhai et al., 2025). Among these, the subtractive 
genomics approach plays a vital role in identifying potential 
virulence targets. It is widely used for identifying bacterial proteins 
that are non-homologous and essential for bacterial survival. Mostly, 
proteins are retrieved from metabolic pathways, whole genomes, 
or whole proteomes. In contrast, the reverse vaccinology approach 
is able to identify immunogenic antigens and prioritize vaccine 
candidates that are less susceptible to immune evasion and reduce 
adverse cross-reactivity, thereby enabling effective targeting of 
multidrug-resistant pathogens.

To accomplish that, this study utilized the subtractive genomic 
method to identify unique metabolic pathway (KEGG pathway 
database) proteins from the whole proteome to prioritize targets that 
are non-homologous (NCBI BLASTp) to humans, essential (DEG 
database) for MRSA survival, and virulent (VFDB and VICMpred 
database) for MRSA pathogenicity (Khan et al., 2022a). Following 
the identification essential targets, reverse vaccinology principles 
were used for designing multi-epitope vaccines, which are known 
to reduce the duration for vaccine discovery, toxicity prediction, 
and allergic reaction prediction (Kumar et al., 2024; Subramani 
and Venugopal, 2025). Afterwards, the constructed vaccine was 
docked against immune receptors, and its structural stabilities were 
examined using molecular dynamic simulations. Then, the immune 
response profile between the human immune system and the 
MRSA protein vaccine was employed through C-ImmSim (immune 
response simulation) software (Garrido-Palazuelos et al., 2024). 
Overall, this study focused on identifying novel MRSA virulent 
targets through subtractive genome analysis and constructing a 
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FIGURE 1
A schematic representation of the workflow used in selection of novel protein and developing a multi-epitope vaccine against MRSA.

multi-epitope vaccine for suppressing the activity of MRSA through 
immunoinformatic approaches. 

2 Methods

This study contains two phases; phase I contains the subtractive 
genomic analysis for identification of novel proteins, and 
phase II contains multi-epitope vaccine constructions using an 
immunoinformatic approach. The Figure 1 illustrates the overall 
methodology for both Phase I and Phase II.

2.1 Subtractive genomic analysis

2.1.1 Retrieval of unique metabolic pathways
The complete metabolic pathways of human and MRSA bacteria 

were obtained from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database (Kanehisa et al., 2025). It's a large repository 
containing manually curated and mapped metabolic pathways, 
molecular networks, and interactions for many species (https://
www.kegg.jp/kegg/, last accessed July 2025). The pathway of MRSA 
(KEGG ID: T00182, Org code: sar) was manually compared with the 
metabolic pathways of Homo sapiens (KEGG ID: T01001, Org code: 
hsa) to identify unique and common pathways. Among them, only 
the unique metabolic pathways of MRSA were utilized for further 
analysis, which minimizes the potential cross interactions with host 
metabolism and identifies novel MRSA targets and suitable vaccine 
candidates. 

2.1.2 Retrieval of non-homologous and essential 
proteins

Proteins associated with both species metabolic pathways 
were pooled together, and the proteins that were present in 
the common pathways were removed, as they interfere with 
host metabolic pathways. Then the proteins were scrutinized, 
and only non-homologous MRSA proteins were retained. To 
achieve this, NCBI BLASTp (Basic Local Alignment Search 
Tool for protein sequences) tool was utilized against Homo 
sapiens to identify non-host similar proteins, while applying an 
expected value (E-value) of 0.001, a maximum target sequence 
of 5,000, and the BLOSUM62 scoring matrix function (https://
blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins, last accessed July 
2025). Afterwards, only the non-homologous proteins were selected 
for further analysis (Altschul et al., 1997).

Furthermore, non-homologous proteins were queried into the 
Database of Essential Genes (DEG) to screen essential proteins 
(http://origin.tubic.org/deg/public/index.php/genome/bacteria, 
last accessed August 2025). It's a publicly available repository 
containing information on essential genes for various organisms. 
The identification of essentiality is crucial for determining the 
proteins that are responsible for either MRSA survival or the 
MRSA mechanism. The built-in analysis tools of DEG are utilized 
for screening essential proteins, which is useful for discovering 
effective vaccine candidates. The pathogenic proteins were screened 
through setting the E-value (10–5) and a minimum bit score cut-off 
of 100, along with the default parameters for sequence identity and 
coverage as provided by the DEG server. The selection of criteria 
utilized for the identification of proteins that essential for MRSA 

Frontiers in Bioinformatics 03 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1745495
https://www.kegg.jp/kegg/
https://www.kegg.jp/kegg/
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
http://origin.tubic.org/deg/public/index.php/genome/bacteria
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Subramani et al. 10.3389/fbinf.2025.1745495

survival and pathogenicity, thus prioritizing them as potential 
vaccine candidates (Zhang et al., 2004). 

2.1.3 Prediction of subcellular localization
To understand the functions of proteins for the cellular 

developmental process and to development of vaccines for particular 
diseases, it's essential to access their cellular locations. To address 
that, the protein's subcellular localizations were predicted through 
publicly available web interface tools such as the PSORTb (Protein 
Subcellular Localization Program for Bacteria) version 3.0 (https://
www.psort.org/psortb/, last accessed August 2025). It classified 
the proteins according to their cellular localizations, including 
the cell wall, cytoplasmic membrane, cytoplasm, inner membrane, 
periplasmic space, and outer membrane (Yu et al., 2010). This 
study focuses on cytoplasmic proteins rather than surface-exposed 
proteins, which have been primarily targeted in antibody-based 
vaccines. By prioritizing cytoplasmic proteins, the study aims 
to elicit T-cell-mediated immunity through endogenous antigen 
processing and major histocompatibility complex (MHC) class I/II 
presentation, thereby activating CD8+ cytotoxic and CD4+ helper 
T cells (Naorem et al., 2022; Valathoor et al., 2025). Thus, the 
proteins localized in the cytoplasm of MRSA were utilized for 
further analysis. 

2.1.4 Retrieval of virulence proteins
The proteins were further scrutinized for virulence factor 

analysis after identifying cytoplasm proteins. For the virulent 
protein analysis, the virulence factor database (VFDB) (https://
www.mgc.ac.cn/VFs/, last accessed August 2025) and virulence 
factors, information molecules, cellular process, and metabolism 
prediction (VICMpred) tool were utilized (https://webs.iiitd.edu.in/
raghava/vicmpred/, last accessed, August 2025). The VFDB is 
a free online resource that curates' bacterial virulence factors 
and provides experimentally determined information on virulence 
factor functions, structures, and pathogenic mechanisms, while 
VICMpred is a web interface that utilizes an support vector machine 
(SVM)-based algorithm to classify the bacterial proteins into various 
categories, including virulence factors and molecule information, 
such as cellular processes and metabolism (Chen et al., 2005; Saha 
and Raghava, 2006). These web resources potentially identified 
virulent MRSA protein targets, which could serve as potential 
candidates for vaccine development. 

2.1.5 Homology modelling and protein-protein 
interactions

Following the retrieval of novel MRSA proteins screened 
through the metabolic genomic pathway, it's essential to assess the 
three-dimensional structures to evaluates their biological relevance 
and functional roles in the context of host-pathogen interactions. If 
the selected proteins' 3D structures were not available in the RCSB-
PDB (Research Collaboratory for Structural Bioinformatics-Protein 
Data Bank) (https://www.rcsb.org/), the proteins were modeled 
using the homology modeling method. For that, SWISS-MODEL 
(https://swissmodel.expasy.org/, last accessed September 2025), a 
web server, was utilized for generating 3D structures of the proteins, 
which aligned the target's amino acid sequence of proteins with 
already known experimental structures and estimated the quality 
of the protein using coverage, E-value, sequence identity, and 

GMQE (Global Model Quality Estimate) (Waterhouse et al., 2018). 
After protein structure prediction, the structures' 3D qualities 
were validated using various web servers and tools. The tools 
include PROCHECK, ERRAT, ProSA, and ProQ (https://
saves.mbi.ucla.edu/, last accessed September 2025) (Colovos and 
Yeates, 1993; Wallner and Elofsson, 2003). They are comprehensive 
computational tools that evaluate the stereochemistry of proteins 
3D structures by plotting Ramachandran plots, identifying regions 
of errors, and providing accuracy rates.

To understand the disease mechanisms, antigen prioritization, 
and preventive strategies of particular disease-causing proteins, it's 
crucial to establish their interactions with other molecules, which 
in turn provide biological insights and molecular mechanisms 
with nearby proteins or molecules. STRING (Search Tool for 
the Retrieval of Interacting Genes/Proteins) v11.0 database was 
utilized for mapping the interactions between non-homologous 
target proteins to create a protein–protein interaction (PPI) 
network (https://string-db.org/, last accessed September 2025). 
It's a biological database that predicts PPI for known proteins 
by integrating data from literature resources, genomic data, 
experimental data, and co-expression data. This analysis provides 
information about their potential roles in metabolic, biological, and 
functional aspects (Szklarczyk et al., 2023).

From this phase of analysis, non-homologous, essential, 
virulent, and novel MRSA proteins were screened, which were 
further utilized for developing candidate vaccines in phase 
II analysis. 

2.2 Multi-epitope vaccine (MEV) 
construction

2.2.1 Analysis of immunological properties
Initially, immunological properties, focusing on antigenic, 

allergenic, and toxicity properties, were analyzed for proteins 
screened from the phase I study. The antigenicity property 
was assessed through the VaxiJen 2.0 web server (https://
www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html, last 
accessed September 2025). It predicts the immunogenic properties 
of vaccine candidates upon querying their protein sequence 
(Doytchinova and Flower, 2007). The allergenicity property was 
analyzed through the AllerTop v2.1 web server (https://www.ddg-
pharmfac.net/allertop_test/, last accessed September 2025), which 
utilized an alignment-free approach and predicts whether the 
proteins belong to an allergen group that causes any allergic 
reactions (Dimitrov et al., 2014). On the other hand, ToxinPred 
used experimental data and machine learning algorithms to classify 
the toxicity of the protein (http://crdd.osdd.net/raghava/toxinpred/,
last accessed September 2025) (S. Gupta et al., 2013). 

2.2.2 Predictions of linear B cell and T cell 
epitopes

To construct targeted vaccines, it's essential to identify 
epitopes, which enables the effective, specific, and faster vaccine 
developments. It determines the precise molecule targets, which 
stimulates immune responses and minimizes the need for 
conventional methods. Non-allergen, non-toxic, and antigen-
specific linear B-cell and T-cell epitopes were screened through 
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various web interfaces. Identifying B cell epitopes stimulates 
antibody production, which is important for antibody-based 
immunity responses, while identifying T cell epitopes recognizes 
MHC molecules and leads to cell-mediated immunity responses 
(Shahab et al., 2023). The Immune Epitope Database (IEDB) 
(https://www.iedb.org/, last accessed September 2025), a user-
friendly and freely accessible resource, was utilized for predicting 
B-cell epitopes; specifically, the tool Bepipred Linear Epitope 
Prediction 2.0 was employed in the IEDB, which used a random 
forest algorithm that was trained on identifying linear B-cell 
epitopes (http://tools.iedb.org/bcell/, last accessed September 
2025). On the other hand, the prediction of T-cell epitopes aimed 
to identify CD4+ helper T lymphocytes and CD8+ cytotoxic T 
lymphocytes. Predictions for CD8+/MHC class I/cytotoxic T 
lymphocytes were conducted using the NetCTLpan 1.1 server 
(https://nextgen-tools.iedb.org/pipeline?tool=tc1, last accessed 
September 2025), while the NetMHCIIpan 4.0 server was used for 
identifying epitopes associated with HLA-II (Human leukocyte 
antigen) alleles for CD4+/MHC class II/helper T lymphocytes 
(https://nextgen-tools.iedb.org/pipeline?tool=tc2, last accessed 
September 2025) (Vita et al., 2025). 

2.2.3 Criteria for epitope selection
For the construction of MEV, B cell and T cell epitopes were 

selected based on the following criteria. Linear B cell epitopes were 
selected based on their minimum length of greater than or equal 
to 5 amino acids, as selection of shorter sequences leads to an 
unstable humoral immune response. In contrast, MHC class I and 
class II epitopes were ranked according to their predicted binding 
affinity (IC50) values, where the lowest IC50 values indicate stronger 
binding capacity for MHC class I and class II molecules. Specifically, 
the peptides that bind to MHC class I molecules were predicted 
using the NetMHCpan 4.1 EL method. The peptide containing IC50
≤ 500 nM and a percentile rank ≤0.5 was considered a strong 
binder, while the percentile rank above the threshold value was 
considered a weak binder. In contrast, the peptides that bind to 
MHC class II molecules were predicted using the recommended 
NetMHCIIpan 4.1 EL predictor. In this screening, the peptides 
with IC50 ≤ 500 nM and percentile rank ≤2.0 were considered 
as strong binders, which were subsequently utilized for further 
vaccine constructions (Sethi et al., 2024). Following the retrieval of 
B and T cell epitopes, they were further scrutinized for analyzing 
antigenicity, allergenicity, and toxicity properties through VaxiJen, 
AllerTop, and ToxinPred tools. The epitopes predicted as antigen, 
non-allergen, and non-toxic were utilized for further interferon 
analysis. The interferon gamma (INFγ) producing potential of the 
selected T cell epitopes was predicted using the IFNepitope web 
server (https://webs.iiitd.edu.in/raghava/ifnepitope/index.php, last 
accessed December 2025). This analysis was used to evaluate the 
ability of the selected T helper cell epitopes to elicit T helper 
cell-mediated cellular immune responses, which are essential for 
effective protection against intracellular pathogens. For screening 
INFγ-producing peptides, default parameters and a support vector 
machine (SVM)-based approach were employed. Through this 
algorithm, the web server classifies peptides as INFγ-inducers 
(positive score > 0) and INFγ-non-inducers (negative score <0). 

2.2.4 Prediction of population coverage
To construct an effective multi-epitope vaccine, it is crucial to 

assess the potential ability of alleles worldwide. Since HLA alleles 
(Class I and Class II) are classified as highly polymorphic, they 
are differently distributed among various ethnic groups. In this 
study, the population coverage was evaluated worldwide and in 
India using selected B cell and T cell epitopes. The IEDB population 
coverage web interface was used for determining the fraction of the 
worldwide and Indian population coverage upon querying selected 
epitopes (http://tools.iedb.org/population/, last accessed September 
2025). These analyses ensure the applicability and validation of 
the selected epitopes in multiple groups of populations (Garrido-
Palazuelos et al., 2024). 

2.2.5 MEV construction and physicochemical 
characterization

The selected B cell and T cell epitopes, which have amino acid 
sequences with high population coverage, were used for designing 
a multi-epitope vaccine along with adjuvants and linkers. A serial 
arrangement of the vaccine was designed with 50S ribosomal 
subunit protein as an adjuvant, which enhances immune response 
by activating the innate immune system. Following that, every B 
and T cell epitope was linked with the help of flexible linkers such 
as EAAAK, GPGPG, and AYY (Sethi et al., 2024). These linkers 
will improve the protein stability and immunogenicity. To validate 
the physicochemical properties of the designed vaccine, the Expasy 
ProtParam server was used (https://web.expasy.org/protparam/, last 
accessed September 2025). It uses known physical and chemical 
properties of individual amino acids, which are stored in the 
UniProt database, and provides the output of molecular weight, 
estimated half-life, isoelectric point, atomic composition, instability 
index, and so on (Walker, 2005). Further, the constructed vaccine's 
antigenicity, allergenicity, and toxicity were evaluated with VaxiJen, 
AllerTop, and ToxinPred web servers. 

2.2.6 Prediction of secondary and tertiary 
structure

The designed vaccine's secondary structure was predicted 
using the PSIPRED web server, which predicts alpha helices, beta 
sheets, and coils of the queried amino acid sequences by using 
feed-forward neural networks and the position-specific iterated 
BLAST algorithm (https://bioinf.cs.ucl.ac.uk/psipred/, last accessed 
September 2025) (McGuffin et al., 2000). The tertiary structure of 
the constructed vaccine was predicted through the trROSETTA web 
server, which generates the 3D structure based on deep learning 
methods (https://yanglab.qd.sdu.edu.cn/trRosetta/, last accessed 
September 2025) (Du et al., 2021). Then, the modeled structure's 
quality was validated using comprehensive computational tools such 
as PROCHECK, ERRAT, ProSA, and ProQ, which evaluate the 
3D structure by visualizing the Ramachandran plot and generating 
accuracy and error rates. 

2.2.7 Molecular docking of MEV vaccine against 
TLR receptors

To determine the molecular interactions with immune 
receptors, the constructed vaccine was docked against toll-
like receptors, including TLR2 (PDB ID: 6NIG) and TLR 4 
(PDB ID: 2Z63). These immune receptors are selected based 
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on their vital role in recognizing pathogen-associated molecular 
patterns and to activate immune responses, especially in bacterial 
components such as lipoproteins (TLR2) and lipopolysaccharides 
(TLR4). Nevertheless, they also initiate downstream signaling 
cascades, which could activate innate immune systems and 
lead to the production of proinflammatory cytokines and 
interleukins, thereby interconnecting innate and adaptive immunity 
responses (Kumar et al., 2024). For this docking analysis, the 
ClusPro server 2.0 was used with default parameters, which 
provides the binding affinity between the vaccine and immune 
receptors (https://cluspro.bu.edu/login.php?redir=/home.php, 
last accessed September 2025). Subsequently, protein-protein 
interaction was examined through the PDBsum server (https://
www.ebi.ac.uk/thornton-srv/databases/pdbsum/, last accessed 
September 2025). This comprehensive analysis provides information 
on hydrogen bonds, non-bonded interactions, and salt bridge 
interactions (Kozakov et al., 2017; Laskowski et al., 1997). 
From the docking results, the toll-like receptor that had a 
highest binding affinity, high number of hydrogens, and salt 
bridge interactions with the constructed vaccine was utilized for 
further analysis. 

2.2.8 Molecular dynamic simulation of the 
vaccine-receptor complex

Molecular dynamic simulation (MDS) was carried out using 
GROMACS v2023.5 with the CHARMM27 atom force field to 
further confirm the structural stability of the designed vaccine with 
immune receptors (https://www.gromacs.org/). The complex and 
apo-form of the vaccine were solvated in the cubic simulation box, 
maintaining a minimum distance of 1.0 nm between the protein 
surface and the box edges, and solvated with the simple point 
charge (TIP3P) water model. The system was neutralized using 
chloride or sodium ions and energy minimization was carried out 
using the steepest descent algorithm, where the minimization step 
was paused at 10.0 kJ/mol. Subsequently, the system underwent 
equilibration under the conditions of a fixed number of particles, 
volume, and temperature (NVT) as well as a fixed number of 
particles, pressure, and temperature (NPT) for a duration of 
around 100 picoseconds, where the pressure of the system was 
maintained using the Parrinello-Rahman technique, while the 
temperature was kept at 300 K using the Berendsen thermostat 
method for every 2 femtoseconds. After neutralizing the system, 
the vaccine-TLR complex was subjected to a 100 ns simulation 
(Lemkul, 2019; Munieswaran et al., 2025). Following that, MDS 
parameters such as root mean square deviation (RMSD), radius of 
gyration (ROG), and solvent accessible surface area (SASA) were 
calculated and visualized using Xmgrace software for both the apo-
form vaccine and the complex. 

2.2.9 Codon adaptation and in silico cloning
To optimize vaccine gene expression in the chosen host and 

to validate the vector insertion for the feasibility of laboratory 
cloning, codon optimization and in silico cloning were performed. 
Reverse translation and codon optimization were determined 
through the Java Codon Adaptation Tool (JCAT), which adapts 
the codon usage for a gene to a specific host organism by 
optimizing synonymous codon usage (https://www.jcat.de/, last 
accessed September 2025). Through this server, CAI (codon 

adaptive index) and vaccine GC content percentage were 
calculated, which in turn improves the heterologous protein 
production (Grote et al., 2005). After optimization, the sequence 
was cloned into the E. coli vector (pET28a(+)) using the 
SnapGene software (https://www.snapgene.com/, last accessed 
September 2025). It's used in molecular biology to designs and 
simulates numerous in silico cloning techniques, such as TOPO 
(topoisomerase), Gateway, Gibson assembly, and TA/GC cloning, 
and visualizes them (Samad et al., 2020). 

2.2.10 Immune profiling of MEV vaccine
The immune response of the constructed vaccine was evaluated 

through the C-Immsim web server, which simulates the natural 
immune response in the human body by employing PSSM (position-
specific scoring matrices) and machine learning techniques (https://
kraken.iac.rm.cnr.it/C-IMMSIM/index.php?page=1, last accessed 
September 2025). Immune simulation for the constructed vaccine 
was performed with three injections at time intervals of 0, 28, and 56 
days, where each injection contains 1,000 vaccine proteins without 
lipopolysaccharide (LPS), which mimic multiple vaccine doses. The 
simulation steps parameter was set to be 1,050, which corresponds 
to approximately 365 days, while the remaining parameters, such as 
random seed, simulation volume, and host HLA selection, were kept 
at default parameters (Rapin et al., 2010). 

3 Results

3.1 Phase I

The primary objective of phase I is to identify novel 
immunogenic targets of MRSA through subtractive metabolic 
pathway analysis. The protein was selected based on the 
following criteria: being non-homologous to host proteins, 
representing a novel target, being an essential protein for bacterial 
mechanisms, exhibiting virulence properties, and playing a 
significant role in the overall metabolic pathway of MRSA 
infection. 

3.1.1 Identification of unique and 
non-homologous proteins

Initially, the metabolic pathways of Homo sapiens and MRSA 
were retrieved from the KEGG database. A total of 357 metabolic 
pathways for H. sapiens and 109 MRSA metabolic pathways were 
retrieved. The whole proteome of H. sapiens and MRSA are given in 
Supplementary Material Table 1. Among them, 27 unique metabolic 
pathways of MRSA were manually identified by comparing both 
metabolic pathways. Table 1 presents the unique metabolic pathways 
of MRSA. Through analyzing the unique metabolic pathways, a total 
of 294 proteins were identified, and they were subsequently screened 
for identifying non-homologous proteins. The unique metabolic 
pathway proteins are given in Supplementary Material Table 2. 
Each protein from unique metabolic pathways was compared with 
H. sapiens. By analyzing the results, a total of 180 proteins were 
categorized as homologous to the host, while 114 proteins were 
categorized as non-homologous. These non-homologous proteins 
were utilized for further screening processes.
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TABLE 1  Unique metabolic pathways of MRSA.

S. No KEGG ID Unique metabolic pathways

1 sau00261 Monobactam biosynthesis

2 sau00300 Lysine biosynthesis

3 sau00362 Benzoate degradation

4 sau00401 Novobiocin biosynthesis

5 sau00460 Cyanoamino acid metabolism

6 sau00521 Streptomycin biosynthesis

7 sau00541 O-Antigen nucleotide sugar biosynthesis

8 sau00542 O-Antigen repeat unit biosynthesis

9 sau00543 Exopolysaccharide biosynthesis

10 sau00550 Peptidoglycan biosynthesis

11 sau00552 Teichoic acid biosynthesis

12 sau00622 Xylene degradation

13 sau00625 Chloroalkane and chloroalkene degradation

14 sau00626 Naphthalene degradation

15 sau00643 Styrene degradation

16 sau00660 C5-Branched dibasic acid metabolism

17 sau00680 Methane metabolism

18 sau00906 Carotenoid biosynthesis

19 sau00907 Pinene, camphor and geraniol degradation

20 sau00997 Biosynthesis of various other secondary metabolites

21 sau00998 Biosynthesis of various antibiotics

22 sau00999 Biosynthesis of various plant secondary metabolites

23 sau02020 Two-component system

24 sau02024 Quorum sensing

25 sau02040 Flagellar assembly

26 sau02060 Phosphotransferase system (PTS)

27 sau03070 Bacterial secretion system

3.1.2 Identification of essential proteins and 
subcellular loculations

To evaluate the screened proteins essentiality in MRSA, the DEG 
database was utilized with default parameters. From this analysis, 
81 proteins were identified as essential proteins that were necessary 
for MRSA survival and pathogenesis. Following that, the subcellular 
localization of the screened proteins revealed that 27 proteins were 

located in the cytoplasmic membrane, 2 proteins were present in the 
cell wall, 4 proteins were predicted in the unknown location, and 
the remaining 47 proteins were found in the cytoplasm. Figure 2A 
illustrates the localization of the screened proteins. This prediction 
showcased that the majority of the proteins were located in the 
cytoplasm. Among them, the proteins that scored above 90% were 
categorized as highly reliable. By analyzing the prediction scores, 
32 proteins passed the criteria, which qualified them for further 
screening. In contrast, 15 proteins had scores below 90%, which were 
excluded from the following analysis.

3.1.3 Identification of virulence proteins
After determining subcellular localizations, 32 proteins were 

subjected to virulent factor analysis. The results revealed that only 
one protein passed all the criteria, namely, acetolactate synthase 
(ALS), a protein that plays a vital role in the MRSA metabolism 
and survival. Upon analyzing all the parameters, this ALS protein 
was declared as a novel, non-homologous, essential, and virulent 
target in the MRSA organism. Table 2 shows a list of screened 
non-homologous, essential, and virulent proteins.

3.1.4 Acetolactate synthase
Through subtractive genomics, acetolactate synthase (ALS) was 

identified as a novel, potentially virulent, and therapeutic target 
in MRSA. ALS plays a major role in catalyzing the first metabolic 
step of the branched-chain amino acid biosynthesis pathway by 
condensing approximately 2 pyruvate molecules into 2-acetolactate 
along with CO2 release (Q. Zhou et al., 2007). This reaction 
is predominately dependent on the cofactor, namely, thiamine 
pyrophosphate (TPP), and generates reactive intermediates upon 
deprotonation. These intermediates further targets carbonyl carbon 
of pyruvate, facilitating decarboxylation, and adequately forms a 
covalent complex. Following that, complex interacts with second 
pyruvate molecule to yield acetolactate while regenerating TPP. 
Thus, targeting ALS protein in MRSA may perturb branched-chain 
amino acid biosynthesis by affecting the growth, virulence, and 
resistance mechanisms of MRSA. Additionally, targeting the TPP-
dependent catalytic mechanism in ALS represents a promising 
strategy for the development of novel antimicrobials (Naidu, 2023). 

3.1.5 Homology modelling and protein-protein 
networks

The homology model was constructed for ALS proteins, as 
selected protein's 3D structure was not available in the RCSB-
PDB database. Primarily, ALS protein's FASTA sequence was 
retrieved from the UniProt database with ID of A0A7U7EW44, 
containing 589 amino acids. It has 3 domains, including thiamine 
pyrophosphate enzyme N-terminal TPP-binding (36–151 aa), 
thiamine pyrophosphate enzyme central (224–359 aa), and thiamine 
pyrophosphate enzyme TPP-binding (417–565 aa). The sequence 
was queried through SWISS-MODEL, and the top-scored protein's 
3D structure was utilized for structure validation and quality 
assessment. The modeled protein was validated through plotting a 
Ramachandran plot, where most of the residues were present in the 
favoured regions with a value of 91.3%, suggesting good and well-
stereochemical quality. On the other hand, ERRAT showed a 92.47% 
overall quality factor, indicating satisfactory non-bonded atomic 
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FIGURE 2
Subcellular localization and protein-protein interaction, (A) a pie chart represents the distribution of subcellular localization of shortlisted essential, 
non-homologous, pathogen-specific proteins predicted through PSORTb. (B) Protein-protein interaction analysis for selected ALS protein. The 
STRING results showed different interactions of proteins with each other represented by nodes and edges.

interactions, whereas ProSA and ProQ analysis exhibited a high-
quality constructed ALS protein. The Figures 3A,B illustrates the 3D 
structure and Ramachandran plots of ALS protein, and the Table 3 
presents the validation results for the modeled protein structure.

Analysis of PPI network revealed that the ALS protein 
(represented by ABD31320.1) interacts with several key enzymes, 
which predominately play a role in the branched-chain amino 
acid (BCAA) biosynthesis pathway. The proteins, including ilvC, 
ilvD, leuA, leuB, leuC, leuD, and tdcB, were provided the average 
node degree of ∼9.45 and demonstrated more edges (52) than the 
expected node degree and edges (12), suggesting a strong functional 
correlation with the selected ALS protein. Further, gene ontology 
enrichment analysis highlighted those interconnected proteins 
consistently contributed to the synthesis of BCAA (isoleucine, 
valine, and leucine) and exhibited enzymatic functions such as 
acetolactate synthase activity, dehydratase activity, lyase activity, 
magnesium ion binding, and vitamin binding, which were located 
in the cytosol of MRSA. The literature resources revealed that 
these PPIs link to MRSA bacterial growth, virulence, and various 
metabolism pathways, such as 2-oxocarboxylic acid metabolism and 
C5-branched dibasic acid metabolism. This evidence suggested that 
this PPI integration plays a major role in central carbon metabolism. 
Thus, analyzing the PPI networks revealed that ALS acted as a 
metabolic hub protein that was essential for MRSA survival, which 
could be exploitable for the development of preventive measures 
using reverse vaccinology. Figure 2B show the protein -protein 
interaction network of ALS using STRING database. 

3.2 Phase II

3.2.1 Selection and screening of B cell and T cell 
epitopes

Initially, the selected ALS protein from the phase I study 
was scrutinized for antigenicity, allergenicity, and toxicity using 
VaxiJen, AllerTop, and ToxinPred web servers. From this analysis, 
the selected ALS protein was considered as a portable antigen (0.61), 
a non-allergen, and a non-toxin, suggesting that ALS is suitable for 
constructing a multi-epitope vaccine.

For the construction of MEV, B cell and T cell epitopes 
should be selected, which are responsible for activating innate 

and adaptive immunity responses. Through the Bepipred 
Linear Epitope Prediction 2.0 server, around 9 linear B-cell 
epitopes with scores ranging from 0.5 to 1.0 were predicted 
(Supplementary Material Table 3). Out of 9, only 3 of the epitopes 
were categorized as non-toxic, antigenic, and non-allergenic. These 
epitopes were considered for further analysis. Following that, a 
total of 183 CTL (cytotoxic T lymphocytes) epitopes and 473 
HTL (helper T lymphocytes) epitopes were predicted through 
NetCTL 1.2 and NetMHC II 2.3 servers. The overall epitopes of 
MHC class I and II are given in Supplementary Material Table 4, 5. 
Among these epitopes, only 11 from CTL and 36 from HTL were 
considered non-toxic, antigenic, and non-allergenic. From these, 8 
high-affinity HTL epitopes restricted to MHC class II were selected 
for final construction of MEV, as they exhibited low IC50 values (best 
binding affinity) and favourable immunogenic properties. Further, 
the analysis of the INFγ-producing T-cell epitopes revealed that 
among the 19 selected T-cell epitopes, 17 were predicted as INFγ 
inducers, which scored above the threshold value of 0, while the 
remaining two epitopes were predicted as non-INFγ inducers based 
on the negative SVM scores (Supplementary Material Table 6). 
Precisely, the epitopes that bind to MHC class II molecules were 
scored, ranging from 0.0017 to 0.6531, demonstrating their capacity 
to elicit the T-helper (Th1) cell-mediated cellular immunity. These 
results suggested that the selected T-cell epitopes were suitable for 
constructing MEV. 

3.2.2 Population coverage
To estimate the population coverage of the designed MEV, 

IEDB tools were utilized, which assessed both MHC class I and 
II restricted alleles at the global level and within the Indian 
population. It was found that 97.55% of the global population 
and 92.93% of the Indian population were covered by selected 
T cell epitopes. The Figures 4A,B represents the global and 
Indian population coverage. Further, the selected T-cell epitopes 
provide a broad class I and II coverage. The predicted population 
coverage revealed that CTL epitopes bind to prevalent HLA-A 
such as HLA-A∗02:01, HLA-A∗02:03, HLA-A∗02:06, HLA-A∗11:01,
HLA-A∗24:02, and HLA-A∗68:01 and additionally contributes with
HLA-B such as HLA-B∗44:02/03, HLA-B∗15:01, HLA-B∗35:01, and
HLA-B∗53:01 alleles. In contrast, HTL epitopes provided strong 
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TABLE 2  Non-homologous, essential, and virulent targets of MRSA.

S. No UniProt id Protein name PSORTp Score AA length Gene VFDB VICMpred

1 Q7A5H6 Transcriptional regulatory protein 
SrrA

Cytoplasmic 10 241 srrA No Metabolism

2 P60610 Transcriptional regulatory protein 
LytR

Cytoplasmic 10 246 lytR No Cellular process

3 P99143 Phosphocarrier protein HPr Cytoplasmic 10 88 ptsH No Metabolism

4 A0A0H3JND9 KDP operon transcriptional 
regulatory protein KdpE

Cytoplasmic 9.97 231 kdpE Yes Cellular process

5 Q7A7X9 Transcriptional regulatory protein 
HptR

Cytoplasmic 9.97 252 hptR Yes Cellular process

6 Q99V14 Phosphoenolpyruvate-protein 
phosphotransferase

Cytoplasmic 9.97 572 ptsI No Metabolism

7 Q7A5P7 2,3,4,5-tetrahydropyridine-2,6-
dicarboxylate N-acetyltransferase

Cytoplasmic 9.97 239 dapH (dabD) Yes Cellular process

8 A0A0H3JMW3 UDP-N-acetylmuramoyl-
tripeptide--D-alanyl-D-alanine 

ligase

Cytoplasmic 9.97 452 murF No Virulence factors

9 Q7A7B4 Bifunctional protein GlmU Cytoplasmic 9.97 450 glmU Yes Cellular process

10 A0A0H3JKC9 Capsular polysaccharide synthesis 
enzyme Cap5G

Cytoplasmic 9.97 374 capG No Metabolism

11 P67765 Serine acetyltransferase Cytoplasmic 9.97 213 cysE No Metabolism

12 P0A090 UDP-N-acetylmuramoylalanine--
D-glutamate ligase

Cytoplasmic 9.97 449 murD Yes Cellular process

13 P63892 D-alanine--D-alanine ligase Cytoplasmic 9.97 356 ddl Yes Cellular process

14 P65480 UDP-N-acetylmuramoyl-L-
alanyl-D-glutamate--L-lysine 

ligase

Cytoplasmic 9.97 494 murE Yes Metabolism

15 A0A0H3JV81 Acetolactate synthase Cytoplasmic 9.97 589 ilvB Yes Virulence factors

16 Q99TF2 Acetate kinase Cytoplasmic 9.97 400 ackA Yes Metabolism

17 P64270 2,3-Bisphosphoglycerate-
independent phosphoglycerate 

mutase

Cytoplasmic 9.97 505 gpmI Yes Cellular process

18 A0A0H3JUI4 Alkaline phosphatase synthesis 
transcriptional regulatory protein

Cytoplasmic 9.97 234 phoP No Cellular process

19 A0A0H3JKS9 KdpE(SCCmec) protein Cytoplasmic 9.97 231 kdpE(SCCmec) No Cellular process

20 Q7A8E1 Transcriptional regulatory protein 
WalR

Cytoplasmic 9.97 233 walR No Cellular process

21 Q99VW2 Response regulator protein GraR Cytoplasmic 9.97 224 graR No Cellular process

22 Q99U73 Response regulator ArlR Cytoplasmic 9.97 214 arlR No Cellular process

23 A0A0H3JLT1 SA1159 protein Cytoplasmic 9.97 200 - Yes Cellular process

24 Q7A4R9 Response regulator protein VraR Cytoplasmic 9.97 209 vraR No Cellular process

(Continued on the following page)
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TABLE 2  (Continued) Non-homologous, essential, and virulent targets of MRSA.

S. No UniProt id Protein name PSORTp Score AA length Gene VFDB VICMpred

25 Q7A3U5 Oxygen regulatory protein 
NreC

Cytoplasmic 9.97 217 nreC No Metabolism

26 A0A0H3JKX9 Anthranilate synthase 
component 1

Cytoplasmic 9.97 468 - No Cellular process

27 A0A0H3JKS9 KdpE(SCCmec) protein Cytoplasmic 9.97 231 kdpE(SCCmec) Yes Cellular process

28 Q99TT5 RNA polymerase sigma 
factor SigA

Cytoplasmic 9.97 368 sigA Yes Information and storage

29 A0A0H3JMK4 Aspartate-semialdehyde 
dehydrogenase

Cytoplasmic 9.67 329 asd Yes Metabolism

30 P63894 4-Hydroxy-
tetrahydrodipicolinate 

reductase

Cytoplasmic 9.67 240 dapB Yes Cellular process

31 A0A0H3JN19 Riboflavin biosynthesis 
protein RibD

Cytoplasmic 9.67 347 ribD Yes Cellular process

32 A0A0H3JS31 SA2418 protein Cytoplasmic 9.67 221 - No Cellular process

FIGURE 3
Modeled 3D structure of ALS protein and structure evaluation. (A) modeled 3D structure of ALS protein. (B) 3D structure validation through 
Ramachandran plot using ProCheck webserver.

binding with multiple alleles, including DRB1∗03:01, DRB1∗04:01/04, 
DRB1∗07:01, DRB1∗09:01, DRB1∗10:01, and DRB1∗15:01. These 
results suggested that the high population coverage of predicted 
CTL and HTL epitopes had strong potential ability to be widely 
recognized by diverse HLA alleles, suggesting their effectiveness in 
the development of a vaccine against the targeted pathogen. 

3.2.3 MEV construction
The final ALS vaccine was constructed with a suitable adjuvant 

and appropriate linkers. Initially, 50S ribosomal subunit protein with 
a UniProt ID of P0A7N9 was added as an adjuvant, which has 
been employed by researchers to induce dendritic cell maturation 

and increase the production of pro-inflammatory cytokines (TNF-
α and IL 6), thereby increasing immunomodulatory activity when 
linked to toll-like receptors. Concurrently, B cell epitopes and CTL 
and HTL epitope linkers such as EAAAK, GPGPG, and AAY were 
included to reduce unfavorable interactions, improve stability, and 
facilitate proteasomal cleavage, thereby maintaining conformational 
dynamics between epitopes (P. Zhou et al., 2025). Among the linkers, 
EAAAK was a rigid linker, capable of forming an alpha helix at 
the amine terminal, which linked B cell epitopes and the adjuvant. 
Subsequently, the GPGPG linker was employed to connect the CTL 
epitopes and B cell epitopes. On the other hand, the AAY linker was 
used for interconnecting CTL and HTL epitopes. At the end, six 
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TABLE 3  Structure validation of modelled ALS protein.

Structure validation

ProCheck (Ramachandran plot)

Residues in most favoured regions [A,B,L] 538 91.3%

Residues in additional allowed regions [a,b,l,p] 50 8.7%

Residues in generously allowed regions [∼a,∼b,∼l,∼p] 0 0.0%

Residues in disallowed regions 0 0.0%

ERRAT Overall model quality (non-bonded atomic interaction) 92.4731

ProSA (Z score) Over all model quality (energy overall energy profile) −11.2

ProQ (protein quality predictor)
LG-score 9.259

MaxSub 0.5

FIGURE 4
Population coverage analysis of the designed ALS vaccine, (A) worldwide and (B) India population coverage.

histidine tags (6His) were added to facilitate efficient purification 
and detection of recombinant vaccine protein without disrupting 
antigenicity properties. The Figure 5 illustrates overall ALS MEV 
construction using adjuvants and linkers.

Initially, the physicochemical properties of the constructed 
ALS vaccine were examined using the ProtParam server. From 
the analysis, the total number of amino acids in the ALS vaccine 
was determined to be 433, and the observed molecular weight 
was 46,571.02 kDa. In contrast, the total number of negatively 
charged residues containing ASP and GLU and positively charged 
residues (ARG and LYS) were observed to be 52 and 39, 
respectively. The instability index was predicted to be 31.32, 
which classified the constructed ALS vaccine as stable. Grand 
Average of Hydropathicity (GRAVY) was computed to be −0.320, 
indicating ALS had a strong hydrophilic nature. Further, the analysis 
of immunological properties revealed that the ALS vaccine was 
predicted as probable antigen (0.7239), non-allergen, and non-
toxin. Table 4 represents the immunological and physicochemical 
properties of the constructed ALS vaccine.

3.2.4 Prediction of secondary and tertiary 
structure

The secondary structure of the ALS vaccine was predicted 
through the PSIPRED server, which determined its folding nature. 
Upon reviewing the results (Figure 6A), the majority of the ALS 
vaccine contains coils (63.4%), and the remaining 2D structures, 
such as alpha helix and beta strand, had predicted scores of 
20% and 15.6%, respectively. Following that, the tertiary structure 
of the ALS vaccine (Figure 6B) was constructed through the 
trROSETTA server. Furthermore, the 3D structure was validated 
using a Ramachandran plot (Figure 6C). The analysis revealed that 
most of the residues (325) were found in favored regions, which 
account for 95.3%. The remaining residues were found in allowed 
regions, accounting for 0.4%. This confirms the good stereochemical 
quality of the ALS vaccine. Additionally, the overall quality factor 
was determined to be 96.988, which was calculated using the ERRAT 
server, suggesting reliable non-bonded interactions. Subsequently, 
ProSA validation produced a Z-score of −2.56, which falls within the 
range of experimentally determined protein structures, while ProQ 
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FIGURE 5
Primary structure of constructed ALS vaccine.

TABLE 4  Immunological and physicochemical properties of constructed ALS vaccine.

S. No Physicochemical and immunological properties Value

1 Antigenicity 0.7239 (probable antigen)

2 Allergenicity Non-allergen

3 Toxicity Non-toxic

4 Number of amino acids 433

5 Theoretical pI 5.50

6 Molecular weight (KDa) 46,571.02

7 Total number of negatively charged residues (Asp + Glu) 52

8 Total number of positively charged residues (Arg + Lys) 39

9 Formula C2101H3226N552O615S16

10 Total number of atoms 6,510

11 Instability index 31.32 (stable)

12 Aliphatic index 75.84

13 Grand average of hydropathicity (GRAVY) −0.320

predicted high model reliability with an LG-score of 9.248 and a 
MaxSub score of 0.502. These results confirmed that the constructed 
ALS vaccine had adequate quality and was structurally valid, which 
could be utilized for further studies.

3.2.5 Binding affinity analysis
The immune responses of the ALS vaccine against toll-

like receptors were performed using molecular docking analysis. 

The docking results revealed that the ALS had higher binding 
affinity towards TLR4 (−1,438.7 kcal/mol) (Figure 7A) than TLR2 
(−1,103.5 kcal/mol) (Figure 7B), suggesting the potential ability of 
the ALS vaccine to effectively activates the TLR4 mediated innate 
immune signaling. Then, the interactions between the docked 
complexes were visualized using the PDBsum web server. The 
TLR2 had 2 salt bridges, 9 disulfide bonds, and 303 non-bonded 
interactions with the ALS vaccine, while, TLR4-ALS exhibited 3 
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FIGURE 6
2D and 3D structure constructed vaccine. (A) 2D structure of ALS vaccine. (B) 3D structures of ALS vaccine and (C) the modeled structure validated 
through Ramachandran plot.

salt bridges, 19 hydrogen bonds, and 250 non-bonded interactions. 
Based on the more favorable binding affinity score, the TLR4-ALS 
complex was selected for further analysis.

3.2.6 Molecular dynamic simulations
The structural stability of the TLR4-ALS complex was 

performed through molecular dynamics simulation studies. 
Calculating MDS parameters such as RMSD, ROG, and SASA 
offers a greater understanding of structural stability and motions 
at the atomic and molecular level. The Figure 8A showcases the 
RMSD of the vaccine complexes. By examining the results, the 
ALS vaccine (apo form) alone exhibited higher fluctuations in the 
range of 0.2–0.85 nm. In contrast, the ALS-TLR4 complex exhibited 
stable regions followed by minimum fluctuations observed within 
the range of 0.2–0.4 nm. These results suggested that the ALS 
vaccine-TLR4 complex had a more stable conformation during 
the 100 ns simulation. Following that, the compactness of the 
ALS complexes was determined through plotting an ROG graph. 
The Figure 8B illustrates the ROG of the complex and the ALS 
vaccine. From the graph, the TLR4-ALS complex consistently 
displayed lower ROG values (3.3–3.5 nm) when compared to 
the ALS vaccine (3.0–3.2 nm). This analysis suggested that the 
TLR4-ALS complex had more compactness and cohesive structure 
assembly. Concurrently, the solvent accessibility of the complexes 
was determined through plotting an SASA graph (Figure 8C). 
The graph revealed that the ALS vaccine-TLR4 complex had less 
exposure to the solvent (450–475 nm) compared to the apo-form 
vaccine complex, which was found in the range of 250–265 nm. 
The decreased SASA value analyzed for the complex indicates 

that the residues become buried at the interaction interface and 
further confirms its stability over 100 ns simulations. Overall, the 
calculated MDS parameters exhibited that the TLR4-ALS vaccine 
had enhanced stability, compactness, and less solvent exposure over 
time, which make it suitable for an appropriate vaccine candidate.

3.2.7 Codon adaptation and in silico cloning
To improve the translation efficiency of a target gene, codon 

optimization was performed to minimize host-specific codon bias. 
The Java Codon Adaptation tool was utilized to optimize the codon 
usage of the ALS vaccine construct in E. coli (K12 strain) and 
generates 1,298 bp of DNA sequence. The optimized CAI was found 
to be 0.98, indicating strong potential for expression, and a GC 
content was found to be 55.67%, which lies within the ideal range 
(30%–70%). Further, the optimized DNA sequence was cloned into 
the pET-28 (+) vector between the BstEII and AclI restriction sites, 
which were absent in the construct and thus added at the N-
terminal and C-terminal ends of the ALS vaccine. Finally, the in silico
cloning was successfully performed using the SnapGene software, 
and the total length of the final vaccine clone was observed to be 
9,541 bp. The Figures 9A,B illustrates restriction sites of the designed 
vaccine and cloned ALS vaccine in pET-28 (+) vector.

3.2.8 Immune simulation
The immune responses simulated through the C-ImmSim server 

demonstrated quantitative stability and immune activation for the 
administered ALS vaccine. Precisely, the total B cell population 
elevated rapidly and stabilized between 420 and 500 cells/mm3, 
while the memory B cells gradually increased and reached a peak of 
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FIGURE 7
Protein-protein interaction between the constructed vaccine and immune receptors. (A), (a) the complex of the ALS vaccine and TLR2, (b) the total 
interaction between the vaccine and TLR2 (with colors red, blue, and orange indicating salt bridges, disulphide bonds, and non-bonded contacts, 
respectively), and (c) residue interactions across the interface. (B), (a) the complex of the ALS vaccine and TLR4, (b) the total interaction between the 
vaccine and TLR4 (with colors red, blue, and orange indicating salt bridges, disulphide bonds, and non-bonded contacts, respectively) and (c) residue 
interactions across the interface.

130–140 cells/mm3 (Figure 10A). This suggested that the proposed 
ALS vaccine may have the ability to activate sustained humoral 
immunity. Further, the plasma B cell population (Figure 10B) 
revealed the transient peak in the range of 1.5–1.7 cells within 
15 days and a decline observed afterwards, indicating efficient 
antibody clearance and controlled antibody secretion. Analysis 
of immunoglobulin production demonstrated that the secondary 
and tertiary immune responses exhibited elevated levels of IgM + 
IgG, IgM, IgG1 + IgG2, and IgG1 antibody productions for 
200 days, confirming its long-term antibody-mediated immunity 
(Figure 10C). T-helper cell population (Figure 10D) peaked in 
the range of 1,300–3,800 cells/mm3 and became stabilized at 
around 1,300 to 1,500 cells/mm3. Dendritic cells (Figure 10E) 
exhibited minimal fluctuations across simulations in the range 
of 20–80 cells/mm3, while macrophages (Figure 10F) exhibited 
sustained antigen internalization and MHC class II presentation 

by maintaining presenting cell populations in the range of 
150–200 cells/mm3. Furthermore, the concentration of the antigen 
was significantly decreased after 40 days, while an antibody 
concentration was progressively increased during each phase of the 
immune response. In addition to enhanced antibody production, 
elevated levels of IFN-γ were also observed during immunological 
reactions (Figure 10G). Overall, these immune response results 
confirmed that the designed ALS vaccine had the potential to 
trigger both a robust cellular and humoral immune response in the 
host organism.

4 Discussion

Despite the limited availability of antimicrobial agents, the 
treatments of methicillin-resistant S. aureus-related infections 
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FIGURE 8
Molecular dynamic simulation analysis of (A), RMSD (B), ROG, and (C), SASA graphs. The graphs represent of ALS vaccine and ALS vaccine + immune 
receptor (TLR4) complex. Black indicates the apo form of ALS vaccine and red color indicates ALS vaccine and TLR4 complex.

become challenging. For instance, the extensive use of 
vancomycin led to minimum inhibitory concentration creep, 
which predominately reduced its clinical efficacy. Due to this 
action, the emergence of heteroresistant vancomycin-resistant 
S. aureus strains evolved and became resistant to most of the 
commercial antibiotics. Researchers found that the last-line of 
linezolid and daptomycin drugs causes adverse side effects and 
leads to myelosuppression and neurotoxicity (Aljohani et al., 2020; 
Keikha and Karbalaei, 2024). This underscores the development 
of new strategies to prevent the methicillin-resistant S. aureus
(MRSA) infections such as development of vaccine using reverse 
vaccinology. The recent effort demonstrates the complexity of 
eliciting protective immunity against disease-causing pathogens 
using reverse vaccinology. For example, SA4Ag, a vaccine candidate 
based on capsular polysaccharides, failed to show protective 
efficacy in clinical trials. This failure was primarily due to the 
high antigenic variability of capsular polysaccharides among 
different Staphylococcus aureus strains, the immune evasion 
strategies employed by the bacteria, and the limited capacity of 
antibody-mediated responses alone to prevent invasive infections 
(Hassanzadeh et al., 2023; Miller et al., 2020). While they potentially 
exhibited antibody responses in early trials, they failed in translating 
immunogenicity into clinical protection. Nevertheless, some 
studies provided promising preclinical studies; for example, the 
development of an mRNA-based vaccine for S. aureus, such as 
the staphylococcal enterotoxin B vaccine, provided promising 
preclinical immunogenicity through experimentation in animal 
models, thus highlighting the possibility of next-generation vaccines 
targeting MRSA (Luo et al., 2024).

To target the vaccine candidates, the researchers employed 
immunoinformatic approaches to select antigenic peptides and 
subsequent vaccine construction. For instance, multivalent 
vaccine approaches targeting surface virulence factors, including 
clumping factor A (clfA), Staphylococcal Enterotoxin B (SEB), 
alpha-hemolysin, fibronectin binding protein A (FnBPA), and 

manganese transporter proteins, were evaluated for their potential 
as vaccine targets (Gao et al., 2025). These findings highlighted the 
complexity of the protective immunity against S. aureus. To address 
the limitations identified in previous literature, the current study 
employed a subtractive genomic approach to identify potential 
vaccine candidates against MRSA. During this target selection. 
Potential risk of immune cross-reactivity was considered for safety 
concerns. In spite of that, proteomic analysis against the human 
proteome using BLASTp (E-value < 10–5, identity < 30%, and 
coverage greater than 70%) confirmed that the selected protein 
should be absent in humans, suggesting it reduces the risk of 
comparative antigenic determinants and minimizes the likelihood 
of off-target immune recognition.

Through subtractive-genomic analysis, this study identified 
acetolactate synthase (ALS) or acetohydroxyacid synthase (AHAS) 
as a novel, essential, non-homologous, and virulent protein. Unlike 
the classical S. aureus candidates such as ClfA and enterotoxins, 
ALS plays a central role in catalyzing the first step of branched-
chain amino acids (BCAA) such as valine, leucine, and isoleucine 
in the MRSA biosynthesis pathway, which is essential for MRSA's 
metabolic functions and virulence (Q. Zhou et al., 2007). Precisely, 
the research identified that the BCAA biosynthesis pathway is 
closely linked to MRSA's metabolic robustness, stress adaptation, 
and virulence regulation. Nevertheless, this pathway significantly 
contributes to intercellular pH regulation and redox balance, 
thereby balancing bacterial persistence under any circumstances 
(Liang et al., 2025). Thus, targeting BCAA pathway proteins 
disrupts the intracellular survival, attenuates virulence, and 
decreases the resistance to oxidative and nitrosative stress conferred 
within macrophages. This highlights that ALS could potentially 
serve as an MRSA vaccine candidate and compromise MRSA 
survival and pathogenicity. Conversely, some of the researchers 
used subtractive proteomic methodology to identify novel
S. aureus proteins. Through this analysis, elastin binding protein, 
glycosyltransferase, and secretory antigen were selected as 

Frontiers in Bioinformatics 15 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1745495
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Subramani et al. 10.3389/fbinf.2025.1745495

FIGURE 9
In silico cloning of was employed to insert the vaccine design pET28a (+) expression vector. (A) Restriction sites of designed vaccine (B) cloned vaccine 
(blue color) in pET28a (+) vector.

promising vaccine targets, owing to their essentiality, conservation, 
and surface accessibility (Tahir ul Tahir ul Qamar et al., 2021). 
Compared to earlier findings, the present work identified a novel 
MRSA vaccine target (ALS) using a subtractive genomic approach 
to elicit robust T-cell-mediated immune responses through MHC 
class I and II presentation. Thus, it offers a complementary strategy 
through controlling intracellular S. aureus and also addresses the 
key limitations that have been observed in prior vaccine failures, 
thereby enhancing the protective immunity.

Constructing multi-target vaccines often provides a broader 
spectrum of early prevention, minimizes the chances of immune 
escape, and increases the complexity in epitope selection, 
antigen processing, structural stability, and manufacturability 
(Roux et al., 2024). In contrast, this study utilized a single-target 
vaccine candidate to reduce the variability across strains, thereby 
enhances the probability of generating a focused and strong immune 
response that modulates MRSA metabolism. Nevertheless, the 
reliance on a single antigen also carries potential limitations, 
including an inadequate immunological breadth and the theoretical 
risk of strain-specific escape mechanisms (Roux et al., 2024). Thus, 
combining the ALS vaccine with additional conserved antigens 
is necessary for developing a multi-target formulation, which 
further balances immune coverage, safety, and practical feasibility. 
Most of the researchers employ an integrated immunoinformatic 
approach along with reverse vaccinology methods to construct 

a multi-epitope vaccine (MEV). For instance, a study identifies 
multiple novel antigens, including PPE41 and phospholipase C A 
from M. tuberculosis, and constructs an MEV using convergent 
methodologies (Sethi et al., 2024). In line with this framework, 
the present study initially screened B cell and T cell epitopes 
for ALS targets. These epitope predictions are important for 
simulating the innate and adaptive immune responses and 
acquiring long-term immunity. Based on this, the MEV vaccine 
was constructed with suitable adjuvants and linkers to enhance 
the immunogenicity (Shahab et al., 2023). To access the vaccine's 
potential, the immunological characteristics were analyzed, and the 
designed ALS vaccine passed the criteria and could potentially be 
utilized for stimulating immune responses in host organisms.

Further, the population coverage indicated that the designed 
ALS vaccine covered approximately 98% of the world population, 
underscoring the translational potential of the selected epitopes. 
Simultaneously, the docking and simulation studies demonstrated 
that the ALS vaccine exhibited stable and favourable binding 
interactions with toll-like receptors 2 and 4. In line with this, 
MEV constructed for pneumococcal surface protein A (PspA), 
an important virulence factor in Streptococcus pneumoniae, and 
displayed that the lowest binding energy was observed to be 
−809.3 kcal/mol with the TLR4 receptor (Shafaghi et al., 2023). In 
parallel, the recent study that developed a vaccine for tuberculosis 
revealed that the constructed vaccine (CP91110P), exhibited better 
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FIGURE 10
Immune response profile of the designed vaccine. (A) B cell population (cells per mm3), (B) PLB cell population (cells per mm3), (C) concentration of 
Immunoglobulins and immunocomplexes, (D) T helper cells population per state (cells per mm3), (E) Dendritic cells population per state (cells per 
mm3), (F) Macrophages population per state (cells per mm3), (G) concentration of cytokines and interleukin.

binding interactions with TLR4 (−1,672.5 kcal/mol) compared to 
TLR2 (−1,535.9 kcal/mol) (An et al., 2025). Further, the study 
identified staphylococcal enterotoxins, alpha hemolysin, and FnBPA 
using the reverse vaccinology method and declared that the 
predicted peptide provides promising antigenicity and stability and 
simultaneously activates Th1 mediated immune responses through 
effectively binding with TLR receptors (Study, 2024). Moreover, 
the Staphylococcal Protein-A vaccine developed for combating 
multi drug-resistant MRSA demonstrated that the predicted vaccine 
exhibited high affinity and broad theoretical HLA coverage while 
offering a novel antigenic profile (P. Zhou et al., 2025). These 
findings suggested that the favourable interaction contributes 
to stable thermodynamic behaviour between the vaccine and 
TLR receptors, thereby induces immunogenicity. In contrast, the 
current study showed that ALS had a high binding affinity 
towards TLR4, indicating that adjuvant-like motifs incorporated 
into the ALS vaccine are broadly associated with Th1-mediated 

immune responses. Thus, activation of TLR4 on antigen-presenting 
cells enhances the production of IL-12 and INFγ-mediated Th1 
differentiation, which are known key factors for cellular immunity 
against various pathogens (Hu et al., 2024). Nevertheless, the 
high affinity for TLR4 may contribute to inflammation, as 
its overactivation causes pathological responses like cytokine
storms.

Following that, the codon optimization and in silico cloning 
further confirmed the feasibility of the ALS vaccine expression 
through generating a final construct of 9,541 base pairs. This 
evidence suggested that the engineered ALS vaccine is suitable 
for downstream experimental validation. Simultaneously, the 
immune simulation studies demonstrated elevated levels of most 
secondary and tertiary immune responses (IgM and IgG) observed. 
Some research showcased that the production of IgM and IgG 
subtypes was consistently observed at elevated levels after repeated 
immunizations, indicating effective B-cell memory formation (48). 
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For instance, the investigations on SARS-CoV-2 and SARS-CoV-
2 Omicron variant vaccines demonstrated elevated IgG, IgM, 
and INF γ productions over months, suggesting humoral and 
potential Th1 cell-mediated immune responses (Lan and Ao, 2022; 
Unninayar et al., 2025). Further, the peptide-based tuberculosis 
vaccine, such as MP3RT, also exhibited elevated IgG/IgM and 
cytokine productions in in vivo mice models, indicating a robust 
and balanced immune responses involving both B and T cell-
mediated immunity (Cheng et al., 2022). This finding provides 
empirical support for in silico examinations. These outcomes 
demonstrated that the predicted immune response profile of the 
ALS vaccine has the capacity to stimulate both humoral and 
cellular immunity.

Nevertheless, this study establishes ALS as a novel MRSA 
vaccine target and demonstrates the feasibility of MEV design 
through computational predictions. However, it is essential 
to recognize that the current study findings entirely depend 
on computational predictions, which diminish the biological 
complexity of immune pathways, antigen processing, or host-
specific variability. To address these limitations and to validate 
the in silico findings of the constructed ALS vaccine, cytotoxic T-
lymphocyte assay, intracellular cytokine staining, TLR activation 
reporter assay, dendritic cell maturation assay, lymphocyte 
proliferation assay, and cytokine profiling are examined, followed 
by in vivo immunization, which further confirms the vaccine's 
suitability, safety, and protective efficacy. 

5 Conclusion

This study utilized integrated subtractive genomic and 
immunoinformatic approaches to identify and exploit acetolactate 
synthase (ALS) as a novel MRSA therapeutic target, which was 
categorized as a non-homologous to human, essential, and virulent 
MRSA protein. Due to its critical role in the biosynthesis of 
branched amino acids, it has become an attractive vaccine candidate. 
The rationally designed ALS vaccine covered a high population 
worldwide and demonstrated strong binding interactions and stable 
structural stability with immune receptors. Further, in silico profiling 
also revealed that the ALS-based vaccine is capable of activating 
humoral and cellular immune responses as indicated by elevated 
antibody and cytokine productions. Despite that the current ALS 
vaccine provides strong antigenic properties; it is necessary to 
evaluate its potential effectiveness both in vitro and in vivo to 
further develop the vaccine candidate. Overall, with these findings, 
a robust multi-epitope vaccine will be constructed with significant 
translational potential in combating MRSA infections by targeting 
key metabolic proteins.
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