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Cross-disease transcriptomic 
meta-analysis and network 
pharmacology reveal key 
therapeutic targets in 
rheumatoid arthritis, systemic 
lupus erythematosus and 
multiple sclerosis

K. Lakshmi and  Sundararajan Vino � *
Integrative Multiomics Lab, Department of Bio Sciences, School of Bio Sciences and Technology, 
Vellore Institute of Technology, Vellore, Tamil Nadu, India

Autoimmune disease has a complex etiology that remains not fully understood. 
We aimed to identify highly perturbed DEGs and hub genes associated with 
autoimmune disease Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus 
(SLE) and Multiple Sclerosis (MS). To find potentially lead to more effective 
therapies that target the root causes of these diseases.
Materials and methods: Datasets for autoimmune diseases (RA, SLE, and MS) 
were collected from the GEO database. Differentially expressed genes were 
identified and subjected to meta-analysis to obtain common DEGs, which were 
then used for functional enrichment analysis GO and pathway analysis. A PPI 
network was constructed, and topology-based ranking identified hub genes. 
These hub genes were further analyzed through regulatory network analysis 
(TF and miRNA), gene-disease association studies, and drug-gene interaction 
analysis. Finally, molecular docking and molecular dynamics (MD) simulations 
were performed on the hub genes.
Results: A total of 341 differentially expressed genes were identified, with 172 
upregulated and 169 downregulated genes. Among these, eight hub genes
STAT1, PTPRC, IRF8, JAK2, IL10RA, OAS2, CCR1, and IFI44L were found to be 
closely associated with the disease. Functional enrichment analysis revealed 
significant involvement in 143 biological processes, 53 cellular components, 
and 67 molecular functions, as well as 60 KEGG pathways. Further regulatory 
network analysis highlighted the interactions of the suggested hub genes with 
198 transcription factors (TFs) and 993 microRNAs (miRNAs). Additionally, these 
genes were associated to 2,769 diseases, and 132 drugs were identified to 
interact with them. Molecular docking studies, along with Molecular Dynamics 
Simulation (MDS) stability analysis, demonstrated the potential of natural 
compounds and known immunomodulatory drugs as promising therapeutic 
targets for clinical application.
Conclusion: These findings explored identifying the DEGs among shade of 
the autoimmune disease RA, SLE, MS, and this hub gene are associated with
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transcription factors are most crucial role play in the disease potentially clinical 
therapeutic targets of the autoimmune disease.
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autoimmune diseases, differentially expressed genes, functional enrichment analysis, 
molecular dynamics, transcriptome 

Introduction

Autoimmune diseases (AIDs) such as rheumatoid arthritis 
(RA), systemic lupus erythematosus (SLE), and multiple sclerosis 
(MS) are chronic, multifactorial conditions characterized by 
immune system dysregulation and sustained inflammation. 
Although these diseases exhibit distinct clinical manifestations. 
RA primarily affects synovial joints, SLE involves multi-organ 
damage, and MS targets the central nervous system, they share 
overlapping pathogenic mechanisms including the activation of 
innate and adaptive immune responses, cytokine overproduction, 
and autoantibody formation (Song et al., 2025; Frazzei et al., 2022; 
Marrie et al., 2015). Recent transcriptomic evidence highlights 
the involvement of type I interferon (IFN-I) signaling as a 
central immune modulator across these autoimmune conditions 
(Rose et al., 2013; Lerkvaleekul et al., 2022; Guo M. et al., 2024).

Siglec-1 (sialic acid-binding Ig-like lectin-1, CD169), a 
monocyte/macrophage-specific surface receptor, is a well-
characterized IFN-I-inducible gene (Macauley et al., 2014; 
Brzezicka and Paulson, 2023; Biesen et al., 2008). Unlike most 
other Siglecs, Siglec-1 lacks immunoreceptor tyrosine-based 
inhibitory motifs (ITIMs), but mediates key immunomodulatory 
functions via adhesion and endocytic roles (Macauley et al., 2014; 
Zheng et al., 2015). Elevated Siglec-1 expression has been 

reported in RA, SLE, and MS patients and correlates strongly 
with clinical activity indices such as DAS28 and SLEDAI, as well 
as with biomarkers including CRP and anti-dsDNA antibodies 
(Xiong et al., 2014; Lim et al., 2018; Oliveira et al., 2018; 
Biesen et al., 2008; Stuckrad et al., 2020). In MS, Siglec-1-positive 
myeloid cells are enriched in active brain lesions, implicating their 
role in acute neuroinflammation (Ostendorf et al., 2021).

Given the central role of IFN-I and its downstream effectors 
in AID pathogenesis, there is an urgent need to identify 
convergent transcriptomic signatures and molecular drivers that 
transcend individual disease boundaries. While prior studies 
have investigated DEGs within isolated disease contexts, few 
have integrated gene expression profiles across RA, SLE, and MS 
in a unified systems biology framework (De Silva et al., 2022; 
Cheng et al., 2024; Sun et al., 2014).

In the present study, we performed a large-scale meta-analysis 
(Table 1) of publicly available transcriptomic datasets to identify 
differentially expressed genes shared across RA, SLE, and MS. The 
overall workflow is depicted in Figure 1. Functional enrichment 
analyses, protein-protein interaction (PPI) network construction, 
transcription factor and microRNA regulatory mapping, and 
drug-gene interaction analyses were performed to characterize 
core molecular networks. We also used molecular docking and 
dynamics simulation to validate the draggability of selected hub 

TABLE 1  Summary of tools, parameters and software in this study.

Process step Tools/database Parameters Software version

Differential expression gene GEO2R, Limma p-value <0.05 and logFC value >1 R.4.5.1

Meta analysis MetavolcanoR p-value <0.05 and logFC value >1 R 4.5.1

Functional enrichment analysis DAVID and g: Profiler. p-value <0.05 e113_eg59_p
19_f6a03c19

PPI network and MCODE clusters. STRING database, cytoscape Confidence score >0.40 11.5
3.10.2

Hub gene identification Cytoscape (CytoHubba) Degree, closeness, MCC
Top 10 in >3 metrics

3.10.2

Disease-specific subnetwork STRING database, cytoscape Confidence score >0.40 3.10.2

Regulatory network (TF) iRegulon (TF), cytoscape FDR ≤ 0.0010.
Confidence score >0.40

1.3
3.10.2

Regulatory network (miRNA) miRDB, cytoscape Score >80 3.10.2

Gene-disease association DisGeNET cytoscape Confidence score >0.40 3.10.2

Drug-gene interaction DGIdb
cytoscape

Confidence score >0.40 3.10.2
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FIGURE 1
Overall workflow of the study.

proteins, comparing natural compound interactions to known 
immunomodulatory drugs. Our findings highlight several key 
immune regulators, including STAT1, JAK2, and OAS2 as potential 
therapeutic targets, alongside Siglec-1, providing a comprehensive 
resource for the development of broad-spectrum therapeutics in 
autoimmune disease management.

Methodology

Data acquisition

We retrieved gene expression datasets for RA, SLE, and MS from 
the Gene Expression Omnibus (GEO), focusing on human studies 
that included both disease and control samples (Table 2). Inclusion 
criteria ensured consistent platform technologies (Affymetrix, 
Illumina), normalized data, and a minimum of 10 samples per group 
to ensure statistical robustness. GEO serves as a valuable resource 
for unbiased data mining and disease comparison across multiple 
conditions (Barrett et al., 2013). 

Meta-analysis of gene expression

Differentially expressed genes (DEGs) for each dataset were 
identified using GEO2R, followed by integration using the 

MetavolcanoR package in R. This approach incorporates both p-
values and fold-change data, generating consensus DEG lists across 
diseases. We applied a vote-counting method to accommodate inter-
study variability. Genes were filtered using an adjusted p-value <0.05 
and logFC value >1. This step enhances detection of consistent 
transcriptional changes across independent studies and increases 
the power to identify biologically relevant genes (Rau et al., 2014). 

Functional enrichment analysis

Common Differentially expressed gene were subjected to Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses using DAVID and g: Profiler (version 
e113_eg59_p19_f6a03c19; https://biit.cs.ut.ee/gprofiler/gost). These 
tools identify overrepresented biological processes, molecular 
functions, and pathways such as interferon signaling and cytokine-
mediated immune responses. Enrichment analysis contextualizes 
gene lists within established immunological frameworks (Huang da 
et al., 2009; Raudvere et al., 2019). 

Protein-protein interaction network and 
hub gene identification

Using the STRING database, we constructed high-confidence 
protein-protein interaction (PPI) networks of the DEGs. Cytoscape 
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TABLE 2  GEO dataset collection for autoimmune disease (RA, SLE, MS).

S. No  Accession ID  Disease  Platform Sample type control/Disease  Reference

1. GSE55457 RA Affymetrix human genome U133A array Tissue; 10/13 PMID: 24690414

2. GSE55235 RA Affymetrix human genome U133A array Tissue; 10/10 PMID: 24690414

3. GSE15573 RA Illumina human-6 v2.0 expression beadchip Blood; 18/15 PMID: 19710928

4. GSE1919 RA Affymetrix human genome U95A array Tissue; 5/10 PMID: 20858714

5. GSE36700 RA Affymetrix human genome U133 array Tissue; 4/7 PMID: 25927832

6. GSE247226 RA Illumina NovaSeq 6000 Tissue; 6/6 PMID: 38137409

7. GSE89408 RA Illumina HiSeq 2000 Tissue; 28/151 PMID: 28455435

8. GSE17755 RA Hitachisoft AceGene human oligo chip 30K 1 
chip version

Blood; 112/45 PMID: 28863153

9. GSE12021 RA Affymetrix human genome U133A/B array Tissue; 12/9 PMID: 18721452

10. GSE77298 RA Affymetrix human genome U133 plus 2.0 array Tissue; 16/7 PMID: 26711533

11. GSE100191 RA Agilent-026652 whole human genome 
microarray 4 × 44K v2

Blood; 7/5 PMID: 29584756

12. GSE93272 RA Affymetrix human genome U133 plus 2.0 array Blood; 78/43 PMID: 30013029

13. GSE64612 RA SABiosciences innate and adaptive immune 
responses PCR array

Blood; 40/20 PMID: 22238028

14. GSE51997 SLE Affymetrix human genome U133 plus 2.0 array Blood; 6/4 PMID: 24391825

15. GSE52471 SLE Affymetrix human genome U133A 2.0 array Skin; 13/25 PMID: 23771123

16. GSE30153 SLE Affymetrix human genome U133 plus 2.0 array Blood; 9/17 PMID: 21886837

17. GSE13887 SLE Affymetrix human genome U133 plus 2.0 array Blood; 9/10 PMID: 19201859

18. GSE10325 SLE Affymetrix human genome U133A array Blood; 28/39 PMID: 18275831

19. GSE21942 MS Affymetrix human genome U133 plus 2.0 array Blood; 15/12 PMID: 22021740

20. GSE26484 MS Affymetrix human genome U133 plus 2.0 array Blood; 14/6 PMID: 22491253

21. GSE23832 MS Affymetrix human gene 1.0 ST array Blood; 4/8 PMID: 21346816

22. GSE16461 MS Affymetrix human genome U133 plus 2.0 array Blood; 8/8 PMID: 21216829

was employed to visualize these interactions. Hub genes were 
identified using CytoHubba (degree, MCC, and closeness 
centrality algorithms), while MCODE was used to detect densely 
connected clusters. Hub genes often represent master regulators or 
potential drug targets within disease-relevant networks (Szklarczyk 
et al., 2019; Chin et al., 2014). 

Disease-specific subnetwork construction

We constructed separate subnetworks for RA, SLE, and MS 
using disease-specific DEG lists. These were analyzed using STRING 
and visualized with Cytoscape to compare topological properties 
and key nodes. This step allowed us to detect both disease-specific 

regulators and shared molecular patterns across AIDs. Network 
metrics such as degree distribution, centrality, and clustering 
coefficient were compared to distinguish condition-specific versus 
overlapping hubs (Caldera et al., 2017). 

Regulatory network construction

We mapped transcription factors (TFs) and microRNAs 
(miRNAs) targeting the identified hub genes using Network 
Analyst, integrating data from iRegulon (TF) and miRDB (miRNA). 
Constructing these networks helped infer upstream regulatory 
mechanisms modulating autoimmune-related gene expression. 
These interactions reveal regulatory hierarchies and offer further 
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FIGURE 2
(a–c) A meta-analysis using the MetaVolcanoR package (vote-counting method) used to identify highly perturbed differentially expressed genes 
(DEGs), with upregulated genes shown in red and downregulate genes in blue.
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FIGURE 3
GO enrichment analysis of the common DEGs. Molecular function, biological processes, cellular component.

therapeutic targeting options (Janky et al., 2014; Chen and 
Wang, 2020). 

Gene-disease association and drug-gene 
interaction

Gene-disease associations were retrieved from DisGeNET to 
validate the pathological relevance of identified hub genes. Drug-
gene interaction predictions were sourced from DGIdb. Genes with 

known interactions with approved or investigational drugs were 
flagged as druggable targets. This integration aids in repurposing 
existing compounds and informs future therapeutic strategies 
(Piñero et al., 2020; Freshour et al., 2021). 

Molecular docking

We selected representative hub genes for in silico docking 
studies. Protein structures were downloaded from the Protein 
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FIGURE 4
Pathway analysis KEGG pathways common DEGs.

Data Bank (PDB), and ligands (including baricitinib, tofacitinib, 
luteolin, and quercetin) were sourced from PubChem. Auto 
Dock Vina (version 1.5.7) was used to compute binding 
affinities and pose predictions. Docking results were analyzed 
for binding energy and interaction residues. This approach 
provides an initial screen for potential therapeutic efficacy
(Trott and Olson, 2010). 

Molecular dynamics simulation

The top-scoring protein-ligand complexes were subjected to 
100 ns molecular dynamics (MD) simulations using GROMACS 
version software (2024). Simulations were conducted under 
standard physiological conditions. Root mean square deviation 
(RMSD), root mean square fluctuation (RMSF), and hydrogen bond 
stability were calculated to assess structural stability and binding 
retention. MD simulations validate docking predictions by modeling 
dynamic behaviour of biomolecular interactions (Abraham 
et al., 2015). 

Visualization and statistical analysis

Gene expression volcano plots, PPI, TF-miRNA regulatory, 
and drug interaction networks were visualized using R (ggplot2) 
and Cytoscape. All statistical analyses were performed in R, 
with a significance threshold set at p < 0.05. Data visualization 
facilitates intuitive understanding of complex results and highlights 

biologically significant patterns (Shannon et al., 2003; R Core 
Team, 2023).

Results

Identification of differentially expressed 
genes

A comprehensive meta-analysis across multiple GEO 
datasets for RA, SLE, and MS revealed 341 commonly 
dysregulated genes (Supplementary File). Of these, 172 genes 
were significantly upregulated and 169 were downregulated 
across all three disease conditions (Supplementary File). 
This high overlap underscores shared immune-inflammatory 
molecular signatures and validates the meta-analysis approach. 
The volcano plots (Figure 2a) illustrate consistent up- and 
downregulation across studies, while bar plots (Figures 2b,c) 
summarize gene counts per category. Notably, several DEGs 
such as STAT1, OAS2, and IFI44L appeared repeatedly across 
datasets, pointing to their conserved roles in autoimmune 
activation. 

Functional enrichment highlights 
interferon and cytokine signaling

GO and KEGG enrichment analyses were performed 
to determine the biological relevance of the 341 
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FIGURE 5
(a) PPI network of the common DEGs. (b) Cluster highly densely connected node. (c) The topological analyses of the PPI Network (a) Degree (b) MCC 
and (c) Closeness.

DEGs. These genes were highly enriched in biological 
processes related to immune system activation. Specifically, 
GO terms like “type I interferon signaling pathway,” 
“response to virus,” and “cytokine-mediated signaling” 
(Figure 3 and Supplementary File) dominated the 
enrichment profiles. KEGG analysis highlighted three 
major pathways: Toll-like receptor signaling, Jak-STAT
signaling, and cytokine-cytokine receptor interaction, all 
of which are known to contribute to AID progression 
(Figure 4 and Supplementary File). These findings align 
with known IFN-I dysregulation in RA, SLE, and MS
pathogenesis. 

Protein-protein interaction (PPI) network 
analysis and hub gene selection

The STRING database was used to create a high-confidence 
(Figure 5a) PPI network of the common DEGs. This network 

was visualized and further analyzed in Cytoscape to identify 
(Figure 5b) densely connected nodes using MCODE, and 
topologically important genes using CytoHubba. Eight genes 
were identified as hubs: STAT1, PTPRC, IRF8, JAK2, IL10RA, 
OAS2, CCR1, and IFI44L (Table 3; Figure 5c). These genes 
showed the highest degree and MCC scores, suggesting 
central regulatory roles. Several of these, such as STAT1
and IRF8, are known interferon-responsive transcription 
factors, while IL10RA and CCR1 represent key signaling
receptors. 

Disease-specific subnetwork insights

To understand disease-specific molecular patterns, DEG 
lists for RA, SLE, and MS were analyzed independently to 
construct condition-specific subnetworks (Figure 6). The RA 
subnetwork (Figure 6a) emphasized synovial inflammation genes 
such as JAK2, IL10RA, and TNFSF10. The SLE subnetwork 
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TABLE 3  Topological analysis for Hub gene extracted three rank methods.

S. No Degree Closeness MCC

1. STAT1 IL10RA OAS2

2. MMP9 IRF8 EIF2AK2

3. IL10RA MMP9 JAK2

4. OAS2 IFI44L PTPRC

5. CDK1 OAS2 STAT1

6. PTPRC STAT1 IFI44L

7. JAK2 PTPRC ISG20

8. IFI44L JAK2 HERC6

9. CYCS CDK1 IL10RA

10. CCR1 CCR1 BST2

FIGURE 6
Disease-specific subnetworks construct of common DEGs Hub genes are yellow colour (a) RA, (b) SLE and (c) MS.

(Figure 6b) revealed strong enrichment of IFN-stimulated 
genes including IFI44L and OAS2, reflecting the known 
IFN-I signature in lupus. The MS subnetwork (Figure 6c) 
was dominated by STAT1 and CCR1, consistent with their 
involvement in neuroinflammation. Comparative analysis 
confirmed that STAT1, JAK2, and IRF8 were central across all 
subnetworks, underscoring their potential as pan-autoimmune 
therapeutic targets.

Transcription factor and miRNA regulatory 
networks

Network Analyst was used to construct TF and miRNA 
interaction maps for the hub genes. Transcriptional regulation 
by IRF1, STAT2, and NF-κB was prominent, as seen in Figure 7, 
Supplementary File. These TFs are known to regulate immune and 
interferon genes. Additionally, microRNAs such as miR-155 and 
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FIGURE 7
Transcription factors network analysis Hub genes are represent in pink colour and transcription factors are represented in orange colour.

FIGURE 8
Hub gene and miRNA network the purple color represent hub genes and blue color represent in miRNA.
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FIGURE 9
Hub-miRNA Network through topological analysis (a) Degree, (b) Closeness, (c) MCC used CytoHubba plugin to Cytoscape.

TABLE 4  Top 10 miRNA topology analysis from three different ranking method methods.

S. No Degree Closeness Betweenness

1 OAS2 OAS2 OAS2

2 PTPRC STAT1 PTPRC

3 STAT1 PTPRC IFI44L

4 IFI44L IFI44L PTPRC

5 JAK2 hsa-miR-155 JAK2

6 IL10RA PTPRC STAT1

7 IRF8 JAK2 IL10RA

8 CCR1 hsa-miR-12131 IRF8

9 hsa-miR-155 hsa-miR-4533 hsa-miR-155RF

10 hsa-miR-12131 IRF8 hsa-miR-146a

miR-146a were identified as key post-transcriptional regulators 
(Figures 8, 9 Table 4 and Supplementary File). These miRNAs 
are highly conserved across species and frequently implicated 
in autoimmune regulation, offering additional therapeutic 
entry points. 

Gene-disease and drug interaction 
network findings

DisGeNET confirmed the direct association of hub genes with 
RA, SLE, and MS, validating their disease relevance (Figure 10 
and Supplementary File). DGIdb revealed that multiple hub 
genes were targeted by existing immunomodulatory drugs. For 
example, JAK2 was associated with JAK inhibitors (baricitinib, 

tofacitinib), while natural compounds like luteolin and quercetin 
showed strong binding predictions for OAS2 and STAT1
(Figure 11 and Supplementary File). These interactions suggest 
potential for repurposing approved drugs or combining them with 
nutraceuticals for improved autoimmune therapy. 

Molecular docking indicates high affinity 
interactions

Molecular docking simulations were conducted using Auto 
Dock Vina. Among the compounds tested, luteolin exhibited the 
highest binding affinity to STAT1 (−9.1 kcal/mol), while quercetin 
bound strongly to OAS2 (−8.7 kcal/mol) (Table 5). Drug likeness 
properties of the ligands are presented in Table 6. These interactions 
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FIGURE 10
Gene–disease association hub genes are represented in pink colour and diseases are represented in blue colour.

involved key residues in the DNA-binding and SH2 domains, 
critical for protein activation. Figure 12 illustrates both the 3D and 
2D interaction maps, highlighting multiple hydrogen bonds and 
hydrophobic interactions that contribute to stability. These findings 
suggest luteolin and quercetin as promising lead compounds. 

Molecular dynamics simulation validates 
complex stability

The STAT1-luteolin complex was subjected to a 100 ns molecular 
dynamics simulation in GROMACS. RMSD and RMSF analysis 
(Figure 13) confirmed structural stability of the complex, with 
minimal fluctuations. The radius of gyration (Figure 14) and solvent-
accessible surface area profiles remained consistent throughout the 
simulation. Hydrogen bond analysis (Figure 15) showed sustained 
interactions. Principal component analysis (Figure 16) baricitinib, 
tofacitinib complex occupies a large space and luteolin, quercetin 
complex occupies lesser space and MM-PBSA calculations (Table 7) 
yielded a total binding energy of −45.4 kcal/mol. Together, these 
metrics validate the stability and potential efficacy of luteolin as an 
inhibitor of STAT1. 

Visualization of multi-layered network 
results

Integrated visualization was performed to synthesize results 
from differential expression, PPI, regulatory, and drug interaction 

analyses, displayed consistent expression patterns of hub genes 
across diseases. A unified network (Figure 17) was constructed 
to show interactions among TFs, miRNAs, hub genes, and drugs. 
This systems-level perspective highlights convergence on a few 
central regulators, supporting their prioritization as universal 
autoimmune targets.

Discussion

In the present investigation, we undertook a combined 
systems biology approach to decipher the common molecular 
characteristics of Rheumatoid Arthritis (RA), Systemic Lupus 
Erythematosus (SLE), and Multiple Sclerosis (MS). Although 
these diseases manifest in distinct physiological systems joints, 
systemic organs, and the central nervous system we hypothesized 
that they share a fundamental biological origin. By integrating 
transcriptomic data across these conditions, we successfully 
identified shared pathogenic drivers and prioritized novel 
therapeutic targets.

We observed that despite the heterogeneity in clinical 
presentation, these diseases converge on a highly conserved 
immune-inflammatory signature. Our pathway analysis clearly 
indicates that the Type I Interferon (IFN-I) and JAK-STAT
signalling pathways are the primary engines driving this shared 
pathogenesis. This observation is in strong agreement with recent 
studies; for instance, Shen and You (2025) recently demonstrated 
that RA and SLE share significant immune regulatory genes 
like IFIT3 and TNFSF13B, which are directly linked to Type I 
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FIGURE 11
Drug-gene interaction network analysis hub gene are yellow colour and drugs are red colour.

TABLE 5  Protein STAT1 and ligand four compounds with interaction residues.

S. No STAT1 and ligand Binding affinity (kcal/mol) H-bond interaction Other interactions

1. Baricitinib −7.2 Asp 42, Gln 41, Arg 113 Tyr 106, Leu 109

2. Tofacitinib −5.6 Met 1, Ser 2, Gln 8, Gln 67 Tyr 5

3. Luteolin −9.1 Ser25, Asn 93, Asn89 Pro 27

4. Quercetin −7.8 Ser 2, Tyr 5, Gln 36 Ala 35

TABLE 6  Drug-likeness properties of the selected ligands.

S. No Ligand MW g/mol HBD HBA Log p (<5) TPSA Å2 nrotb nViol

1. Baricitinib 286.24 4 6 1.86 111.13 1 0

2. Tofacitinib 371.4 1 7 1.38 128.94 5 0

3. Luteolin 312.37 1 4 1.70 88.91 4 0

4. Quercetin 302.24 5 7 1.63 131.36 1 0

interferon signalling. Furthermore, Naveed et al. (2025) reported 
that shared genetic linkages in autoimmune diseases frequently 
cluster around these specific inflammatory cascades, validating our
findings.

An interesting observation in our study concerns Siglec-
1. While we initially noted Siglec-1 as a biomarker for 
interferon activity (York et al., 2007), it did not appear as a 

top hub gene in our network. This does not imply that Siglec-
1 is insignificant; rather, it suggests that our computational 
method successfully prioritized the “master regulators” upstream 
drivers like STAT1 over the “downstream products” biomarkers. 
Consequently, we identified eight key hub genes: STAT1, 
PTPRC, IRF8, JAK2, IL10RA, OAS2, CCR1, and IFI44L. 
Among these, we selected STAT1 as the most critical drug 

Frontiers in Bioinformatics 13 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1744094
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Lakshmi and Vino 10.3389/fbinf.2025.1744094

FIGURE 12
A representation of 3D interaction analysis of quercetin the top first docked complexes. Interaction of (a) Tofacitinib (b) Baricitinib, (c) Luteolin, (d)
Quercetin with STAT1 protein and 2D interaction of (e) Tofacitinib (f) Baricitinib, (g) Luteolin, (h) Quercetin with STAT1 protein.

target due to its centrality in the protein-protein interaction
network.

A major finding of our study is the identification of Luteolin, 
a natural phytocompound, as a potent inhibitor of STAT1. We 
performed molecular docking studies to compare Luteolin with 

standard FDA-approved drugs. The results were highly encouraging. 
We found that Luteolin showed a binding affinity of −9.1 kcal/mol, 
which is significantly superior to the commercially available drugs 
baricitinib (−7.2 kcal/mol) and tofacitinib (−5.6 kcal/mol). This 
finding is supported by recent literature; Nadalin et al. (2024), Xia 
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FIGURE 13
Molecular dynamics simulation results of complex native protein STAT1 with ligand complex with Tofacitinib (black), complex baricitinib (red), complex 
luteolin (green), and complex Quercetin (blue). (a) Time-dependent RMSD of c-a backbone (b) The RMSF of c-a atoms.

et al. (2016) experimentally proved that Luteolin alleviates apoptosis 
and inflammation by directly inhibiting the JAK/STAT signalling 
pathway (Ren et al., 2024; Guo F. et al., 2024). Additionally, 
Frontiers in Immunology (2025) published a review highlighting 
that flavonoids like Luteolin effectively modulate macrophage 
polarization and block NF-κB and JAK-STAT signals in metabolic 
and autoimmune disorders (Wang et al., 2025).

To further validate this, we ran a 100 ns molecular dynamics 
simulation. The complex remained stable throughout the 
simulation period, confirming that Luteolin can effectively 
bind and block the STAT1 pathway. This aligns with 
the work of Peng et al. (2024), who reported that Luteolin 
significantly reduces the secretion of pro-inflammatory factors 
such as TNF-α and IL-6, further proving its efficacy as an
immunomodulator.

It is also noteworthy that while the diseases share a 
common core, they retain unique characteristics. We observed 
that the RA network was enriched with genes for joint 
inflammation, SLE showed a strong interferon signature, and 
MS emphasized neuroinflammation. This supports the common 
core, unique periphery model, suggesting that while broad-
spectrum agents (like Luteolin) can target the shared STAT1

core, disease-specific therapies are still necessary for unique
symptoms.

We acknowledge that the present study has certain limitations. 
Since this is an in silico work, the findings need to be validated 
through in vitro and in vivo experiments. However, the alignment 
of our results with the recent wet-lab findings of Ren et al. 
(2024) and Shen and You (2025) gives us high confidence in our 
predictions.

In conclusion, our study provides strong evidence that RA, SLE, 
and MS share a common molecular mechanism driven by STAT1
and Interferon signalling. We have demonstrated that Luteolin has 
excellent potential as a lead molecule to target STAT1, showing 
better theoretical efficacy than some existing synthetic drugs. These 
findings pave the way for developing cost-effective, broad-spectrum 
therapeutics for autoimmune diseases.

Conclusion

Our meta-analysis of transcriptome data from patients with 
RA, MS, and SLE identified a core set of common differentially 
expressed genes. Through functional enrichment analysis, we 
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FIGURE 14
(a) Radius of gyration vs. time. (b) SASA vs. time.

FIGURE 15
Hydrogen bonds formation vs. time.
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FIGURE 16
Principal component analysis plots of all four complexes and STAT1 protein with (a) complex Baricitinib (black), (b) complex Tofacitinib (red),
(c) complex luteolin (green) and (d) complex quercetin (blue).

narrowed this list to eight key hub genes: STAT1, CCR1, JAK2, 
IRF8, OAS2, IFI44L, IL10RA, and PTPRC. These genes are 
central to the shared pathology of these diseases, and our study 
also explored their complex regulatory networks. To investigate 

their therapeutic potential, we performed molecular docking and 
dynamics simulations. Interestingly, this analysis showed that the 
natural compounds Luteolin and Quercetin are strong candidates 
for new treatments, performing comparably to established drugs 
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TABLE 7  Molecular mechanics poisson–boltzmann surface area binding energies of (kJ/mol) of complexes.

Protein-ligand 
complex

 ΔVDWaals 
(kJ/mol)

 ΔEEL (kJ/mol)  ΔGGAS (kJ/mol)  ΔGSOLV (kJ/mol)  ΔG Total (kJ/mol)

STAT1-baricitinib −6.16 ± 0.22 −6.07 ± 1.50 −12.23 ± 1.52 8.43 ± 0.94 −3.8 ± 1.79

STAT1-tofacitinib −16.32 ± 0.36 −11.55 ± 1.73 −27.87 ± 1.77 20.49 ± 0.57 −7.38 ± 1.86

STAT1-luteolin −26.18 ± 0.80 −18.54 ± 0.40 −45.43 ± 0.90 27.43 ± 1.50 −18 ± 1.75

STAT1-quercetin −15.4 ± 0.80 −6.17 ± 0.40 −21.57 ± 0.90 12.82 ± 1.50 −8.72 ± 1.75

FIGURE 17
Multi layered network hub genes green colour, miRNA orange colour, TF pink colour, drugs blue colour.

such as baricitinib and tofacitinib. The clear takeaway is that 
these eight genes are valuable clinical targets, offering a new 
direction for developing targeted therapies for these autoimmune
conditions.
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