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Cross-disease transcriptomic
meta-analysis and network
pharmacology reveal key
therapeutic targets in
rheumatoid arthritis, systemic
lupus erythematosus and
multiple sclerosis

K. Lakshmi and Sundararajan Vino @ *

Integrative Multiomics Lab, Department of Bio Sciences, School of Bio Sciences and Technology,
Vellore Institute of Technology, Vellore, Tamil Nadu, India

Autoimmune disease has a complex etiology that remains not fully understood.
We aimed to identify highly perturbed DEGs and hub genes associated with
autoimmune disease Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus
(SLE) and Multiple Sclerosis (MS). To find potentially lead to more effective
therapies that target the root causes of these diseases.

Materials and methods: Datasets for autoimmune diseases (RA, SLE, and MS)
were collected from the GEO database. Differentially expressed genes were
identified and subjected to meta-analysis to obtain common DEGs, which were
then used for functional enrichment analysis GO and pathway analysis. A PPI
network was constructed, and topology-based ranking identified hub genes.
These hub genes were further analyzed through regulatory network analysis
(TF and miRNA), gene-disease association studies, and drug-gene interaction
analysis. Finally, molecular docking and molecular dynamics (MD) simulations
were performed on the hub genes.

Results: A total of 341 differentially expressed genes were identified, with 172
upregulated and 169 downregulated genes. Among these, eight hub genes
STAT1, PTPRC, IRF8, JAKZ, ILIORA, OAS2, CCR1, and IFI44L were found to be
closely associated with the disease. Functional enrichment analysis revealed
significant involvement in 143 biological processes, 53 cellular components,
and 67 molecular functions, as well as 60 KEGG pathways. Further regulatory
network analysis highlighted the interactions of the suggested hub genes with
198 transcription factors (TFs) and 993 microRNAs (miRNAs). Additionally, these
genes were associated to 2,769 diseases, and 132 drugs were identified to
interact with them. Molecular docking studies, along with Molecular Dynamics
Simulation (MDS) stability analysis, demonstrated the potential of natural
compounds and known immunomodulatory drugs as promising therapeutic
targets for clinical application.

Conclusion: These findings explored identifying the DEGs among shade of
the autoimmune disease RA, SLE, MS, and this hub gene are associated with
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transcription factors are most crucial role play in the disease potentially clinical
therapeutic targets of the autoimmune disease.
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Introduction

Autoimmune diseases (AIDs) such as rheumatoid arthritis
(RA), systemic lupus erythematosus (SLE), and multiple sclerosis
(MS) are chronic, multifactorial conditions characterized by
immune system dysregulation and sustained inflammation.
Although these diseases exhibit distinct clinical manifestations.
RA primarily affects synovial joints, SLE involves multi-organ
damage, and MS targets the central nervous system, they share
overlapping pathogenic mechanisms including the activation of
innate and adaptive immune responses, cytokine overproduction,
and autoantibody formation (Song et al., 2025; Frazzei et al., 2022;
Marrie et al., 2015). Recent transcriptomic evidence highlights
the involvement of type I interferon (IFN-I) signaling as a
central immune modulator across these autoimmune conditions
(Rose et al., 2013; Lerkvaleekul et al., 2022; Guo M. et al., 2024).

Siglec-1 (sialic acid-binding Ig-like lectin-1, CD169), a
monocyte/macrophage-specific surface receptor, is a well-
characterized IFN-I-inducible gene (Macauley et al, 2014;
Brzezicka and Paulson, 2023; Biesen et al., 2008). Unlike most
other Siglecs, Siglec-1 lacks immunoreceptor tyrosine-based
inhibitory motifs (ITIMs), but mediates key immunomodulatory
functions via adhesion and endocytic roles (Macauley et al., 2014;
Zheng et al, 2015). Elevated Siglec-1 expression has been

TABLE 1 Summary of tools, parameters and software in this study.

reported in RA, SLE, and MS patients and correlates strongly
with clinical activity indices such as DAS28 and SLEDAI, as well
as with biomarkers including CRP and anti-dsDNA antibodies
(Xiong et al., 2014; Lim et al., 2018; Oliveira et al., 2018;
Biesen et al., 2008; Stuckrad et al., 2020). In MS, Siglec-1-positive
myeloid cells are enriched in active brain lesions, implicating their
role in acute neuroinflammation (Ostendorf et al., 2021).

Given the central role of IFN-I and its downstream effectors
in AID pathogenesis, there is an urgent need to identify
convergent transcriptomic signatures and molecular drivers that
transcend individual disease boundaries. While prior studies
have investigated DEGs within isolated disease contexts, few
have integrated gene expression profiles across RA, SLE, and MS
in a unified systems biology framework (De Silva et al., 2022;
Cheng et al., 2024; Sun et al., 2014).

In the present study, we performed a large-scale meta-analysis
(Table 1) of publicly available transcriptomic datasets to identify
differentially expressed genes shared across RA, SLE, and MS. The
overall workflow is depicted in Figure 1. Functional enrichment
analyses, protein-protein interaction (PPI) network construction,
transcription factor and microRNA regulatory mapping, and
drug-gene interaction analyses were performed to characterize
core molecular networks. We also used molecular docking and
dynamics simulation to validate the draggability of selected hub

Process step Tools/database Parameters ’ Software version
Differential expression gene GEO2R, Limma p-value <0.05 and logFC value >1 R4.5.1
Meta analysis MetavolcanoR p-value <0.05 and logFC value >1 R4.5.1
Functional enrichment analysis DAVID and g: Profiler. p-value <0.05 ell3_eg59_p
19_f6a03c19
PPI network and MCODE clusters. STRING database, cytoscape Confidence score >0.40 11.5
3.10.2
Hub gene identification Cytoscape (CytoHubba) Degree, closeness, MCC 3.10.2
Top 10 in >3 metrics
Disease-specific subnetwork STRING database, cytoscape Confidence score >0.40 3.10.2
Regulatory network (TF) iRegulon (TF), cytoscape FDR < 0.0010. 1.3
Confidence score >0.40 3.10.2
Regulatory network (miRNA) miRDB, cytoscape Score >80 3.10.2
Gene-disease association DisGeNET cytoscape Confidence score >0.40 3.10.2
Drug-gene interaction DGIdb Confidence score >0.40 3.10.2
cytoscape

Frontiers in Bioinformatics

02

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1744094
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Lakshmi and Vino

10.3389/fbinf.2025.1744094

Gene
Expression ' 13 Datasetsof RA '~ — Differentially Expressed Gene Disease-Specific Subnetwork
Omnibus Analysis Construction (Cytoscape)
(GEO) ‘
.- 5 Datasets of SLE
P T Meta Analysis MetavolcanoR '
Diseases Regulatory l\?twork _
‘ Construction g 1
. (I Regulon , miRNA) i
4 Datasets of MS E 6
atasets of ) b
Common DEGs Hub | I :g H
Genes g h
— 1
GeneDisease Association : 2
(DisGeNET), £ 3
Drug-Gene Interaction i
Functional Enrichment PPI Network (STRING) (DGIdb) i S
Analysis (David and g:profiler) g [
Molecular Docking (Auto Dock
st is (MCO Topology Analysis Vina) and Molecular Dynamics
. Asssi e (CytoHubba) Simulation (GROMACS)
FIGURE 1
Overall workflow of the study.

proteins, comparing natural compound interactions to known
immunomodulatory drugs. Our findings highlight several key
immune regulators, including STAT1, JAK2, and OAS2 as potential
therapeutic targets, alongside Siglec-1, providing a comprehensive
resource for the development of broad-spectrum therapeutics in
autoimmune disease management.

Methodology
Data acquisition

We retrieved gene expression datasets for RA, SLE, and MS from
the Gene Expression Omnibus (GEO), focusing on human studies
that included both disease and control samples (Table 2). Inclusion
criteria ensured consistent platform technologies (Affymetrix,
Ilumina), normalized data, and a minimum of 10 samples per group
to ensure statistical robustness. GEO serves as a valuable resource
for unbiased data mining and disease comparison across multiple
conditions (Barrett et al., 2013).

Meta-analysis of gene expression

Differentially expressed genes (DEGs) for each dataset were
identified using GEO2R, followed by integration using the
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MetavolcanoR package in R. This approach incorporates both p-
values and fold-change data, generating consensus DEG lists across
diseases. We applied a vote-counting method to accommodate inter-
study variability. Genes were filtered using an adjusted p-value <0.05
and logFC value >1. This step enhances detection of consistent
transcriptional changes across independent studies and increases
the power to identify biologically relevant genes (Rau et al., 2014).

Functional enrichment analysis

Common Differentially expressed gene were subjected to Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses using DAVID and g: Profiler (version
el13_eg59_pl9_f6a03c19; https://biit.cs.ut.ee/gprofiler/gost). These
tools identify overrepresented biological processes, molecular
functions, and pathways such as interferon signaling and cytokine-
mediated immune responses. Enrichment analysis contextualizes
gene lists within established immunological frameworks (Huang da
et al., 2009; Raudvere et al., 2019).

Protein-protein interaction network and
hub gene identification

Using the STRING database, we constructed high-confidence
protein-protein interaction (PPI) networks of the DEGs. Cytoscape
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S.No  AccessionID | Disease Platform Sample type control/Disease Reference
1. GSE55457 RA Affymetrix human genome U133A array Tissue; 10/13 PMID: 24690414
2. GSE55235 RA Affymetrix human genome U133A array Tissue; 10/10 PMID: 24690414
3. GSE15573 RA Tllumina human-6 v2.0 expression beadchip Blood; 18/15 PMID: 19710928
4. GSE1919 RA Affymetrix human genome U95A array Tissue; 5/10 PMID: 20858714
5. GSE36700 RA Affymetrix human genome U133 array Tissue; 4/7 PMID: 25927832
6. GSE247226 RA Tllumina NovaSeq 6000 Tissue; 6/6 PMID: 38137409
7. GSE89408 RA Illumina HiSeq 2000 Tissue; 28/151 PMID: 28455435
8. GSE17755 RA Hitachisoft AceGene human oligo chip 30K 1 Blood; 112/45 PMID: 28863153
chip version
9. GSE12021 RA Affymetrix human genome U133A/B array Tissue; 12/9 PMID: 18721452
10. GSE77298 RA Affymetrix human genome U133 plus 2.0 array Tissue; 16/7 PMID: 26711533
11. GSE100191 RA Agilent-026652 whole human genome Blood; 7/5 PMID: 29584756
microarray 4 x 44K v2
12. GSE93272 RA Affymetrix human genome U133 plus 2.0 array Blood; 78/43 PMID: 30013029
13. GSE64612 RA SABiosciences innate and adaptive immune Blood; 40/20 PMID: 22238028
responses PCR array
14. GSE51997 SLE Affymetrix human genome U133 plus 2.0 array Blood; 6/4 PMID: 24391825
15. GSE52471 SLE Affymetrix human genome U133A 2.0 array Skin; 13/25 PMID: 23771123
16. GSE30153 SLE Affymetrix human genome U133 plus 2.0 array Blood; 9/17 PMID: 21886837
17. GSE13887 SLE Affymetrix human genome U133 plus 2.0 array Blood; 9/10 PMID: 19201859
18. GSE10325 SLE Affymetrix human genome U133A array Blood; 28/39 PMID: 18275831
19. GSE21942 MS Affymetrix human genome U133 plus 2.0 array Blood; 15/12 PMID: 22021740
20. GSE26484 MS Affymetrix human genome U133 plus 2.0 array Blood; 14/6 PMID: 22491253
21. GSE23832 MS Affymetrix human gene 1.0 ST array Blood; 4/8 PMID: 21346816
22. GSE16461 MS Affymetrix human genome U133 plus 2.0 array Blood; 8/8 PMID: 21216829

was employed to visualize these interactions. Hub genes were
identified using CytoHubba (degree, MCC, and closeness
centrality algorithms), while MCODE was used to detect densely
connected clusters. Hub genes often represent master regulators or
potential drug targets within disease-relevant networks (Szklarczyk
etal, 2019; Chin et al., 2014).

Disease-specific subnetwork construction
We constructed separate subnetworks for RA, SLE, and MS
using disease-specific DEG lists. These were analyzed using STRING

and visualized with Cytoscape to compare topological properties
and key nodes. This step allowed us to detect both disease-specific

Frontiers in Bioinformatics

regulators and shared molecular patterns across AIDs. Network
metrics such as degree distribution, centrality, and clustering
coeflicient were compared to distinguish condition-specific versus
overlapping hubs (Caldera et al., 2017).

Regulatory network construction

We mapped transcription factors (TFs) and microRNAs
(miRNAs) targeting the identified hub genes using Network
Analyst, integrating data from iRegulon (TF) and miRDB (miRNA).
Constructing these networks helped infer upstream regulatory
mechanisms modulating autoimmune-related gene expression.
These interactions reveal regulatory hierarchies and offer further
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FIGURE 3
GO enrichment analysis of the common DEGs. Molecular function, biological processes, cellular component.

therapeutic targeting options (Janky etal, 2014; Chen and
Wang, 2020).

Gene-disease association and drug-gene
interaction

Gene-disease associations were retrieved from DisGeNET to
validate the pathological relevance of identified hub genes. Drug-
gene interaction predictions were sourced from DGIdb. Genes with

Frontiers in Bioinformatics

known interactions with approved or investigational drugs were
flagged as druggable targets. This integration aids in repurposing
existing compounds and informs future therapeutic strategies
(Pifiero et al., 2020; Freshour et al., 2021).

Molecular docking

We selected representative hub genes for in silico docking
studies. Protein structures were downloaded from the Protein
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Apoptosts

Data Bank (PDB), and ligands (including baricitinib, tofacitinib,
luteolin, and quercetin) were sourced from PubChem. Auto
Dock Vina (version 1.5.7) was used to compute binding
affinities and pose predictions. Docking results were analyzed
for binding energy and interaction residues. This approach
provides an initial screen for potential therapeutic efficacy
(Trott and Olson, 2010).

Molecular dynamics simulation

The top-scoring protein-ligand complexes were subjected to
100 ns molecular dynamics (MD) simulations using GROMACS
version software (2024). Simulations were conducted under
standard physiological conditions. Root mean square deviation
(RMSD), root mean square fluctuation (RMSF), and hydrogen bond
stability were calculated to assess structural stability and binding
retention. MD simulations validate docking predictions by modeling
dynamic behaviour of biomolecular interactions (Abraham
et al., 2015).

Visualization and statistical analysis

Gene expression volcano plots, PPI, TF-miRNA regulatory,
and drug interaction networks were visualized using R (ggplot2)
and Cytoscape. All statistical analyses were performed in R,
with a significance threshold set at p < 0.05. Data visualization
facilitates intuitive understanding of complex results and highlights
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biologically significant patterns (Shannon etal., 2003; R Core
Team, 2023).

Results

Identification of differentially expressed
genes

A
datasets for

GEO
commonly

comprehensive meta-analysis across multiple
RA, SLE, and MS revealed 341
dysregulated genes (Supplementary File). Of these, 172 genes
were significantly upregulated and 169 were downregulated
all  three (Supplementary File).
This high overlap underscores shared immune-inflammatory

across disease  conditions
molecular signatures and validates the meta-analysis approach.
The volcano plots (Figure 2a) illustrate consistent up- and
downregulation across studies, while bar plots (Figures 2b,c)
summarize gene counts per category. Notably, several DEGs
such as STATI, OAS2, and IFI44L appeared repeatedly across
datasets, pointing to their conserved roles in autoimmune

activation.

Functional enrichment highlights
interferon and cytokine signaling

GO and KEGG enrichment analyses were performed

to determine the biological relevance of the 341
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and (c) Closeness.

(a) PPI network of the common DEGs. (b) Cluster highly densely connected node. (c) The topological analyses of the PPI Network (a) Degree (b) MCC

DEGs.
processes related to immune system activation. Specifically,
GO terms like “type I
“response to virus, and

These genes were highly enriched in biological
interferon signaling pathway,
“cytokine-mediated  signaling”
dominated  the

highlighted  three

(Figure 3 and  Supplementary File)
enrichment  profiles. KEGG  analysis
pathways:  Toll-like receptor signaling, Jak-STAT
signaling, and cytokine-cytokine receptor interaction, all
of which are known to contribute to AID progression
and Supplementary File). These
in RA, SLE,

major

(Figure 4 findings align

with known IFN-I dysregulation and MS

pathogenesis.

Protein-protein interaction (PPI) network
analysis and hub gene selection

The STRING database was used to create a high-confidence
(Figure 5a) PPI network of the common DEGs. This network
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was visualized and further analyzed in Cytoscape to identify
(Figure 5b) densely connected nodes using MCODE, and
topologically important genes using CytoHubba. Eight genes
were identified as hubs: STATI, PTPRC, IRF8, JAK2, ILIORA,
OAS2, CCRI, and IFI44L (Table 3; Figure5c). These genes
showed the highest degree and MCC scores, suggesting
central regulatory roles. Several of these, such as STATI
and IRF8, are known interferon-responsive
factors, while ILIORA and CCRI
receptors.

transcription
represent key signaling

Disease-specific subnetwork insights

To understand disease-specific molecular patterns, DEG
lists for RA, SLE, and MS were analyzed independently to
construct condition-specific subnetworks (Figure 6). The RA
subnetwork (Figure 6a) emphasized synovial inflammation genes
such as JAK2, ILIORA, and TNFSFI10. The SLE subnetwork
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TABLE 3 Topological analysis for Hub gene extracted three rank methods.

10.3389/fbinf.2025.1744094

S. No Degree Closeness MCC
L. STATI ILIORA 0AS2
2. MMP9 IRF8 EIF2AK2
3. ILIORA MMP9 JAK2
4. 0AS2 IFI44L PTPRC
5, CDK1 0AS2 STATI
6. PTPRC STATI IFI44L
7. JAK2 PTPRC 1SG20
8. IFI44L JAK2 HERC6
9. CYCS CDK1 ILIORA
10. CCRI CCRI BST2
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FIGURE 6
Disease-specific subnetworks construct of common DEGs Hub genes are yellow colour (a) RA, (b) SLE and (c) MS.

(Figure 6b) revealed strong enrichment of IFN-stimulated
genes including IFI44L and OAS2, reflecting the known
IFN-I signature in lupus. The MS subnetwork (Figure 6¢c)
was dominated by STATI and CCRI, consistent with their
involvement in neuroinflammation. Comparative analysis
confirmed that STATI, JAK2, and IRF8 were central across all
subnetworks, underscoring their potential as pan-autoimmune
therapeutic targets.
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Transcription factor and miRNA regulatory
networks

Network Analyst was used to construct TF and miRNA
interaction maps for the hub genes. Transcriptional regulation
by IRFI, STAT2, and NF-«kB was prominent, as seen in Figure 7,
Supplementary File. These TFs are known to regulate immune and
interferon genes. Additionally, microRNAs such as miR-155 and
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FIGURE 7
Transcription factors network analysis Hub genes are represent in pink colour and transcription factors are represented in orange colour.

FIGURE 8
Hub gene and miRNA network the purple color represent hub genes and blue color represent in miRNA.

Frontiers in Bioinformatics 10 frontiersin.org
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FIGURE 9

Hub-miRNA Network through topological analysis (a) Degree, (b) Closeness, (c) MCC used CytoHubba plugin to Cytoscape.

IRF8

TABLE 4 Top 10 miRNA topology analysis from three different ranking method methods.

S. No Degree Closeness Betweenness
1 0AS2 0AS2 0AS2

2 PTPRC STAT1 PTPRC

3 STAT1 PTPRC IFI44L

4 IFI44L IFI44L PTPRC

5 JAK2 hsa-miR-155 JAK2

6 ILIORA PTPRC STAT1

7 IRF8 JAK2 ILI0RA

8 CCRI hsa-miR-12131 IRF8

9 hsa-miR-155 hsa-miR-4533 hsa-miR-155RF
10 hsa-miR-12131 IRF8 hsa-miR-146a

miR-146a were identified as key post-transcriptional regulators
(Figures 8, 9 Table 4 and Supplementary File). These miRNAs
are highly conserved across species and frequently implicated
in autoimmune regulation, offering additional therapeutic

entry points.

Gene-disease and drug interaction
network findings

DisGeNET confirmed the direct association of hub genes with
RA, SLE, and MS, validating their disease relevance (Figure 10
and Supplementary File). DGIdb revealed that multiple hub
genes were targeted by existing immunomodulatory drugs. For
example, JAK2 was associated with JAK inhibitors (baricitinib,
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tofacitinib), while natural compounds like luteolin and quercetin
showed strong binding predictions for OAS2 and STATI
(Figure 11 and Supplementary File). These interactions suggest
potential for repurposing approved drugs or combining them with
nutraceuticals for improved autoimmune therapy.

Molecular docking indicates high affinity
interactions

Molecular docking simulations were conducted using Auto
Dock Vina. Among the compounds tested, luteolin exhibited the
highest binding affinity to STATI (=9.1 kcal/mol), while quercetin
bound strongly to OAS2 (—8.7 kcal/mol) (Table 5). Drug likeness
properties of the ligands are presented in Table 6. These interactions
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FIGURE 10

Gene-disease association hub genes are represented in pink colour and diseases are represented in blue colour.

involved key residues in the DNA-binding and SH2 domains,
critical for protein activation. Figure 12 illustrates both the 3D and
2D interaction maps, highlighting multiple hydrogen bonds and
hydrophobic interactions that contribute to stability. These findings
suggest luteolin and quercetin as promising lead compounds.

Molecular dynamics simulation validates
complex stability

The STATI-luteolin complex was subjected to a 100 ns molecular
dynamics simulation in GROMACS. RMSD and RMSF analysis
(Figure 13) confirmed structural stability of the complex, with
minimal fluctuations. The radius of gyration (Figure 14) and solvent-
accessible surface area profiles remained consistent throughout the
simulation. Hydrogen bond analysis (Figure 15) showed sustained
interactions. Principal component analysis (Figure 16) baricitinib,
tofacitinib complex occupies a large space and luteolin, quercetin
complex occupies lesser space and MM-PBSA calculations (Table 7)
yielded a total binding energy of —45.4 kcal/mol. Together, these
metrics validate the stability and potential efficacy of luteolin as an
inhibitor of STAT1I.

Visualization of multi-layered network
results

Integrated visualization was performed to synthesize results
from differential expression, PPI, regulatory, and drug interaction

Frontiers in Bioinformatics

analyses, displayed consistent expression patterns of hub genes
across diseases. A unified network (Figure 17) was constructed
to show interactions among TFs, miRNAs, hub genes, and drugs.
This systems-level perspective highlights convergence on a few
central regulators, supporting their prioritization as universal
autoimmune targets.

Discussion

In the present investigation, we undertook a combined
systems biology approach to decipher the common molecular
characteristics of Rheumatoid Arthritis (RA), Systemic Lupus
Erythematosus (SLE), and Multiple Sclerosis (MS). Although
these diseases manifest in distinct physiological systems joints,
systemic organs, and the central nervous system we hypothesized
that they share a fundamental biological origin. By integrating
transcriptomic data across these conditions, we successfully
identified shared pathogenic drivers and prioritized novel
therapeutic targets.

We observed that despite the heterogeneity in clinical
presentation, these diseases converge on a highly conserved
immune-inflammatory signature. Our pathway analysis clearly
indicates that the Type I Interferon (IFN-I) and JAK-STAT
signalling pathways are the primary engines driving this shared
pathogenesis. This observation is in strong agreement with recent
studies; for instance, Shen and You (2025) recently demonstrated
that RA and SLE share significant immune regulatory genes
like IFIT3 and TNFSF13B, which are directly linked to Type I
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FIGURE 11
Drug-gene interaction network analysis hub gene are yellow colour and drugs are red colour.

TABLE 5 Protein STAT1 and ligand four compounds with interaction residues.

STAT1 and ligand

Binding affinity (kcal/mol)

H-bond interaction Other interactions

1. Baricitinib -7.2 Asp 42, Gln 41, Arg 113 Tyr 106, Leu 109
2. Tofacitinib -5.6 Met 1, Ser 2, Gln 8, Gln 67 Tyr5
3. Luteolin -9.1 Ser25, Asn 93, Asn89 Pro 27
4. Quercetin -7.8 Ser 2, Tyr 5, Gln 36 Ala 35

TABLE 6 Drug-likeness properties of the selected ligands.

S. No Ligand MW g/mol ‘ HBD ‘ HBA ‘ Log p (<5) TPSA A2 nrotb nViol
1. Baricitinib 286.24 4 6 1.86 111.13 1 0
2. Tofacitinib 3714 1 7 1.38 128.94 5 0
3. Luteolin 31237 1 4 1.70 88.91 4 0
4, Quercetin 30224 5 7 1.63 13136 1 0

interferon signalling. Furthermore, Naveed et al. (2025) reported
that shared genetic linkages in autoimmune diseases frequently
cluster around these specific inflammatory cascades, validating our

top hub gene in our network. This does not imply that Siglec-
1 is insignificant; rather, it suggests that our computational
method successfully prioritized the “master regulators” upstream

findings. drivers like STATI over the “downstream products” biomarkers.
An interesting observation in our study concerns Siglec-  Consequently, we identified eight key hub genes: STATI,
1. While we initially noted Siglec-1 as a biomarker for PTPRC, IRF8, JAK2, ILIORA, OAS2, CCRI, and IFI44L.

interferon activity (York et al., 2007), it did not appear as a
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Among these, we selected STATI as the most critical drug
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FIGURE 12

A representation of 3D interaction analysis of quercetin the top first docked complexes. Interaction of (a) Tofacitinib (b) Baricitinib, (c) Luteolin, (d)
Quercetin with STAT1 protein and 2D interaction of (e) Tofacitinib (f) Baricitinib, (g) Luteolin, (h) Quercetin with STAT! protein.

target due to its centrality in the protein-protein interaction
network.

A major finding of our study is the identification of Luteolin,
a natural phytocompound, as a potent inhibitor of STATI. We
performed molecular docking studies to compare Luteolin with

Frontiers in Bioinformatics
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standard FDA-approved drugs. The results were highly encouraging.
We found that Luteolin showed a binding affinity of —9.1 kcal/mol,
which is significantly superior to the commercially available drugs
baricitinib (—7.2 kcal/mol) and tofacitinib (-5.6 kcal/mol). This
finding is supported by recent literature; Nadalin et al. (2024), Xia
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100
Residue

Molecular dynamics simulation results of complex native protein STAT1 with ligand complex with Tofacitinib (black), complex baricitinib (red), complex
luteolin (green), and complex Quercetin (blue). (a) Time-dependent RMSD of c-a backbone (b) The RMSF of c-a atoms.

et al. (2016) experimentally proved that Luteolin alleviates apoptosis
and inflammation by directly inhibiting the JAK/STAT signalling
pathway (Ren etal, 2024; Guo E et al, 2024). Additionally,
Frontiers in Immunology (2025) published a review highlighting
that flavonoids like Luteolin effectively modulate macrophage
polarization and block NF-kB and JAK-STAT signals in metabolic
and autoimmune disorders (Wang et al., 2025).

To further validate this, we ran a 100 ns molecular dynamics
stable throughout the
simulation period, confirming that Luteolin can effectively
bind and block the STATI pathway. This aligns with
the work of Peng etal. (2024), who reported that Luteolin
significantly reduces the secretion of pro-inflammatory factors

simulation. The complex remained

such as TNF-a and IL-6, further proving its efficacy as an
immunomodulator.

It is also noteworthy that while the diseases share a
common core, they retain unique characteristics. We observed
that the RA network was enriched with genes for joint
inflammation, SLE showed a strong interferon signature, and
MS emphasized neuroinflammation. This supports the common
core, unique periphery model, suggesting that while broad-
spectrum agents (like Luteolin) can target the shared STATI
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core, disease-specific therapies are still necessary for unique
symptoms.

We acknowledge that the present study has certain limitations.
Since this is an in silico work, the findings need to be validated
through in vitro and in vivo experiments. However, the alignment
of our results with the recent wet-lab findings of Ren etal
(2024) and Shen and You (2025) gives us high confidence in our
predictions.

In conclusion, our study provides strong evidence that RA, SLE,
and MS share a common molecular mechanism driven by STATI
and Interferon signalling. We have demonstrated that Luteolin has
excellent potential as a lead molecule to target STATI, showing
better theoretical efficacy than some existing synthetic drugs. These
findings pave the way for developing cost-effective, broad-spectrum
therapeutics for autoimmune diseases.

Conclusion

Our meta-analysis of transcriptome data from patients with
RA, MS, and SLE identified a core set of common differentially
expressed genes. Through functional enrichment analysis, we
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Principal component analysis plots of all four complexes and STATI protein with (a) complex Baricitinib (black), (b) complex Tofacitinib (red),
(c) complex luteolin (green) and (d) complex quercetin (blue).
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narrowed this list to eight key hub genes: STATI, CCRI, JAK2,
IRF8, OAS2, IFI44L, ILIORA, and PTPRC. These genes are
central to the shared pathology of these diseases, and our study

also explored their complex regulatory networks. To investigate

Frontiers in Bioinformatics

their therapeutic potential, we performed molecular docking and
dynamics simulations. Interestingly, this analysis showed that the
natural compounds Luteolin and Quercetin are strong candidates
for new treatments, performing comparably to established drugs

17 frontiersin.org
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TABLE 7 Molecular mechanics poisson—boltzmann surface area binding energies of (kJ/mol) of complexes.

Protein-ligand AVDWaals AEEL (kd/mol) | AGGAS (kdJ/mol) AGSOLV (kd/mol) AG Total (kd/mol)
complex (kd/mol)
STAT1-baricitinib -6.16 £ 0.22 —-6.07 £ 1.50 -12.23 £ 1.52 8.43 £0.94 -3.8+1.79
STAT1-tofacitinib -16.32 £ 0.36 -11.55+ 1.73 -27.87 £1.77 20.49 £0.57 -7.38 £ 1.86
STAT1-luteolin —-26.18 £ 0.80 —18.54 £ 0.40 —45.43 £ 0.90 27.43 +1.50 -18+1.75
STAT1-quercetin -15.4+0.80 —6.17 £ 0.40 -21.57 £ 0.90 12.82 + 1.50 -8.72+1.75
— e
Dy Conmmran ) raa T s 2 ,_: o et o TS G TS
B e i e
RIS LT S g comiuts vy | oo n o s vionered
e e TS S o i o I mmamon LAORA ool sy
e e .- Fr e —————— e
oo - p——— B TRV - ey o~
il - - -
e oo, T A e \man T | et
e S e I e -] e
"™ P - et [y et
‘“’_‘”"'.“.".‘a:n_-:x_ o——— RN S T i RS Iy e
e e gy ot e e R %L'Z,L
M g Wi i R e s i e
sP oz s b - Ly, o o e R ——
’:m‘:‘:w T ,...':’3::2 """"":'“.,, g s o et i e
N i e e ot Tt T e g
R T I - W et o
e C s I ——
e ree e T T
.W -2 ® rommma-ma . v Vo e
ros e el BT e mapysatarte "l.-.--.;’ TR
MRS | el Ty, I R
e Wiy e e T o r P
o g i P P e W W’m‘;"“ e S et
e N WA TR N Y e T Y,
R = i =
g, 2 e ——
Y T U~ g \! : o
- a2 ~ th b et RS n-ﬂ!hw B i M engi-e
s o e I T e e 323 ——— o 3y MR Rz
oo a2 oo S R a5 L eiecioing
resmeao 2n B vy Bt A S o
s en S i s et B i e e et - et
T e ey~ R 1 T e e
L ety N it M i marsss .m“ e ey o
a0 7 .- s it el GRS o
W e s T o matDte it g e AN N ety > g
e R S o S 7 o e
— e T B, Sy I LS — P reonipTpT———— :“ﬁ“':”:
- corggen "..'.':“...."""'-3"‘-""‘1......‘3--«- ot ) cmair "
[ e Y
FIGURE 17
Multi layered network hub genes green colour, miRNA orange colour, TF pink colour, drugs blue colour.

such as baricitinib and tofacitinib. The clear takeaway is that
these eight genes are valuable clinical targets, offering a new
direction for developing targeted therapies for these autoimmune
conditions.
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