:' frontiers ‘ Frontiers in Bioinformatics

‘ @ Check for updates

OPEN ACCESS

Maciej Pietrzak,
The Ohio State University, United States

Jiashun Mao,

Yonsei University, Republic of Korea

Yuki Kawamura,

University of Cambridge, United Kingdom

Xiaojun Xu,
xxjmailbox@zju.edu.cn

Xiaobo Yu,
blzk2008@zju.edu.cn

"These authors have contributed equally
to this work

06 November 2025
08 December 2025

24 December 2025
12 January 2026

Zhang Y, Liu Y, Meng W, Yu X and Xu X (2026)
Integrative transcriptomic analysis reveals
microglial metabolic-inflammatory crosstalk
of HK2—-HSPA5-TNF axis after intracerebral
hemorrhage.

Front. Bioinform. 5:1740715.

doi: 10.3389/fbinf.2025.1740715

© 2026 Zhang, Liu, Meng, Yu and Xu. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is
permitted which does not comply with
these terms.

Frontiers in Bioinformatics

Original Research
12 January 2026
10.3389/fbinf.2025.1740715

Integrative transcriptomic
analysis reveals microglial
metabolic-inflammatory
crosstalk of HK2—-HSPA5-TNF
axis after intracerebral
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Background: Intracerebral hemorrhage (ICH) triggers secondary brain
injury through neuroinflammation, yet the interplay between metabolic
reprogramming and inflammatory responses remains poorly defined. This
study investigated how glucose metabolism dysregulation contributes to
neuroinflammatory pathogenesis following ICH.

Methods: We integrated transcriptomic datasets from bulk RNA sequencing
(human perihematomal tissue), single-cell RNA sequencing (mouse ICH model),
and spatial transcriptomics (mouse time-series). Bioinformatic analyses included
differential expression screening, single-cell weighted gene co-expression
network analysis, pseudotemporal trajectory reconstruction, and cell-cell
communication inference to identify key metabolic-inflammation regulators
and their spatiotemporal dynamics.

Results: Multi-omics convergence revealed hexokinase 2 (HK2), heat shock
protein A5 (HSPA5), and tumor necrosis factor (TNF) as core regulators
linking glucose metabolism to neuroinflammation. Single-cell analysis showed
significant time-dependent regulation of HK2 in microglia, while spatial
transcriptomics uncovered synchronized alterations of HK2, HSPA5, and TNF
in perihematomal regions at day 7. Cell communication analysis highlighted
enhanced microglia-to-neutrophil signaling via Tnf-Tnfrsflb pairs, with TNF
signaling identified as the most significantly upregulated pathway in ICH
conditions.

Conclusion: Our multi-omics approach reveals coordinated dysregulation
of glucose metabolism and inflammatory genes following ICH,
with time-dependent HK2 regulation in microglia and synchronized
transcriptional changes at day 7 representing critical events in
neuroinflammatory progression. The identified gene networks and cellular
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communication patterns provide new insights into the metabolic-immune
interface in ICH, offering potential targets for future therapeutic strategies.
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1 Introduction

Intracerebral hemorrhage (ICH) is a severe type of stroke with
high rates of death and disability. While the initial bleeding causes
direct damage, a major contributor to ongoing brain injury and poor
recovery is the body’s inflammatory response that follows, known
as neuroinflammation (Feigin et al, 2019; An et al,, 2017). This
involves complex interactions between brain cells like microglia and
astrocytes, as well as immune cells entering from the bloodstream
(Lan et al., 2017; Seiffge et al., 2024; Zhou et al., 2014).

Recent  research  across  various  neuropathological
conditions—including metabolic diseases such as diabetes, as well as
neurological disorders like Alzheimer’s and Parkinson’s disease—has
increasingly demonstrated that dysregulation of energy metabolism,
particularly glucose utilization, is closely linked to inflammatory
processes (Alsbrook et al., 2023; Bahadar and Shah, 2021; Ovali and
Pergin, 2024). Changes in glucose metabolism pathways don't just
happen alongside inflammation; they actively shape how severe and
prolonged the inflammation becomes. For instance, metabolic shifts
within immune and glial cells not only accompany inflammation
but actively influence its intensity and duration (Bahadar and
Shah, 2021; Gong et al., 2025; Han et al., 2021). Conversely, altered
glycolytic flux in microglia can amplify pro-inflammatory signaling,
while inflammation itself impairs key enzymes and glucose
transporters, creating a vicious cycle of deterioration (Ma et al., 2022;
LiY. et al,, 2024; Yao et al., 2025; D'Onofrio et al., 2021). However,
despite evidence from these related fields, the specific mechanisms
and regulatory genes governing the interaction between glucose
metabolism and neuroinflammation following ICH remain poorly
understood. Elucidating how these processes interact in ICH is
crucial for identifying novel therapeutic strategies to mitigate
secondary injury and improve neurological outcomes.

Technologies for studying gene activity (transcriptomics) have
become vital tools. Bulk RNA sequencing (bulk RNA-seq) measures
gene expression in whole tissue samples, giving an overall picture
(Thind etal., 2021). Single-cell RNA sequencing (scRNA-seq) allows

Abbreviations: BBB, Blood-brain barrier; CCA, Canonical correlation
analysis; DAM, Disease-associated microglia; DEGs, Differentially expressed
genes; DEX, Dexmedetomidine; ER, Endoplasmic reticulum; FDR, False
discovery rate; FDG, 2-deoxy-2-[*®FIfluoro-D-glucose; GSEA, Gene Set
Enrichment Analysis; GO, Gene Ontology; HK2, Hexokinase 2; HSPAS,
Heat shock protein family A member 5; ICH, Intracerebral hemorrhage;
IL, Interleukin; kME, intramodular connectivity; LAM, Lipid-associated
microglia; PCA, Principal component analysis; PET, Positron emission
tomography; PPI, Protein-protein interaction; RNA-seq, RNA sequencing;
SAH, Subarachnoid hemorrhage; scRNA-seq, Single-cell RNA sequencing;
SEM, Standard error of the mean; stRNA-seq, Spatial transcriptome
RNA sequencing; TNF, Tumor necrosis factor; UMAP, Uniform Manifold
Approximation and Projection; WGCNA, Weighted gene co-expression
network analysis.
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us to look at the gene activity of individual cells, revealing the
specific roles of different cell types in the injured brain (Li and
Wang, 2021). Spatial transcriptome RNA sequencing (stRNA-seq)
takes this a step further by showing exactly where in the brain tissue
(like near the bleed core or farther away) these gene expression
changes occur (Piwecka et al., 2023). However, analyzing this
complex data to specifically understand glucose metabolism’s role
has been difficult. A common limitation in previous transcriptomic
studies of ICH is their reliance on finding the most significantly
changed genes (differentially expressed genes or DEGs). Genes
related to glucose metabolism often show smaller, subtler changes
in activity compared to genes directly involved in inflammation
or immediate stress responses. Because these metabolic changes
might not be the most dramatic statistically in standard analyses,
they tend to receive less attention or can even be missed entirely,
despite their fundamental biological importance (Wu et al., 2025;
Tonyan et al., 2022; Yin et al., 2024).

Therefore, our study takes a different approach. We deliberately
focus our bioinformatic analysis on genes known to be involved
in glucose metabolism pathways. Using publicly available datasets
generated from bulk RNA-seq, scRNA-seq, and stRNA-seq, we
aim to identify even subtle changes in these glucose-related genes
after ICH. By combining the strengths of these methods - the
overall view from bulk data, the cell-type detail from scRNA-
seq, and the location information from stRNA-seq - we set
out to: 1) Pinpoint which glucose metabolism genes change in
specific brain cells and their changes around the hematoma; 2)
Investigate how these changes connect with known pathways of
neuroinflammation and immune cells. We hypothesized that a
coordinated dysregulation of glucose metabolism within specific
neuroimmune cell populations drives the pathological progression
of neuroinflammation following ICH. We hope to reveal novel links
between energy metabolism failure and inflammation in the injured
brain after hemorrhage. Understanding these specific connections
may open up new therapeutic avenues for protecting the brain and
reducing inflammation following ICH.

2 Methods
2.1 Multiple datasets and preprocessing

Transcriptomic data integration encompassed bulk RNA-seq
(GSE24265: a microarray dataset from human beings with 4
perihematomal tissues and 7 contralateral ones (Rosell et al., 2011)),
single-cell RNA-seq (GSE167593: whole brain tissues from 4 ICH
and 4 control mice (Shietal., 2021) at 14 days post-ICH), and spatial
transcriptomics (STT0000047 in STOmics DB: whole brain tissues
obtained at 3, 6, and 12 h and days 1, 3, 7, 14, and 28 post-ICH(23)).
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Bulk data preprocessing involved the “sva” package in R language
(version 4.1.0) to remove the batch effects (Leek et al.,, 2012).
For scRNA-seq, gene counting was accomplished from the raw
FASTQ data by “Cell Ranger” (version 7.0.1) software in Linux,
while batch effects removal and clusters identification was achieved
by Seurat package (version 4.2.1) (Hao et al.,, 2021). The Seurat
pipeline implemented stringent quality control: cells with >200
detected genes and <99% maximum gene counts and <25%
mitochondrial reads were retained, followed by normalization to
mitigate technical variance. Batch correction employed canonical
correlation analysis (CCA) integration, which preserves biological
variation while removing dataset-specific artifacts in reduced
dimension space. Processed spatiotemporal transcriptomic data
at single-cell resolution was obtained from STMICH (https://
db.cngb.org/stomics/stmich/).

2.2 Differentially expressed genes and
functional annotation

Bulk differentially expressed genes (DEGs) analysis utilized
limma’s empirical Bayes framework (Ritchie et al., 2015), modeling
expression as a function of hemorrhagic or control tissues for
batch effects through design matrix incorporation. Significance
thresholds (|log,FC|>1, adj. p < 0.01) were determined via
moderated t-statistics with Benjamini-Hochberg correction. To
resolve the challenge of detecting subtle metabolic dysregulation,
we implemented a sequential enrichment strategy. Initial Gene
Ontology (GO) analysis of DEGs identified marginally enriched
metabolic terms through clusterProfiler package in R language
(Yu et al., 2012). We then utilized Gene Set Enrichment Analysis
(GSEA) database to collect significantly enriched pathways and
genes related to glucose metabolism (Supplementary Materials S2).
These pathway-derived genes were intersected with our DEGs,
yielding our final set of target metabolic genes. The biological
coherence of these prioritized genes was validated through
KEGG pathway enrichment analysis, confirming significant
overrepresentation.

2.3 Single-cell clustering and annotation

Cellular heterogeneity resolution combined graph-based
clustering with marker-driven annotation. The anchor-based
integration algorithm (resolution = 0.09) partitioned cells in a
shared nearest-neighbor graph constructed from 15 principal
components by “IntegrateData” function in Seurat. Cell type
annotation was initiated using the scCATCH package (version
3.2.2) (Shao et al, 2020), which implements tissue-specific
marker database matching with statistical validation of cluster
marker specificity. The “FindAllMarkers” function in Seurat was
utilized to explore of gene expression differences across clusters,
employing the Wilcoxon test to ascertain statistical significance
(p-adj < 0.05) with default settings. This automated annotation was
subsequently refined through manual curation using established
cell-specific markers (e.g., Tmem119 for microglia and S100a9 for
neutrophil (Zhang et al., 2019)).
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2.4 Single-cell weighted gene
co-expression network construction

Single-cell weighted gene co-expression dynamics were modeled
using hdWGCNA’s metacell approach (Morabito et al., 2023). Gene
selection was performed using a custom gene list with a minimum
expression fraction threshold of 0.05 across cells. Metacells were
generated via k-nearest neighbor aggregation (k = 30) within
condition groups defined by both cell type and experimental group,
with a maximum shared cell limit of 10 per metacell and cell type
as the identity group. Signed network construction employed soft-
thresholding power, determined by scale-free topology criterion
with network type set to ‘signed. Hierarchical clustering with
dynamic tree cutting (minModuleSize = 50) identified modules,
while module eigengene dissimilarity (mergeCutHeight = 0.2)
guided merging. This analysis defines groups of co-expressed

genes as “modules”. Module eigengenes were computed with group
variation accounted for by experimental group, and intramodular
connectivity (kME) was calculated to identify hub genes. Genes that
do not associate strongly with any coherent cluster are assigned to a
“gray” module, which serves as a benchmark against the “non-gray”
modules (well-defined clusters of primary biological interest).

To elucidate functional interactions between co-expressed gene
modules and prioritized metabolic regulators, we constructed a
protein-protein interaction (PPI) network integrating two key
elements: (1) hub genes identified from each hdAWGCNA module
(top 5 highest KME genes per module), and (2) our previously
filtered glucose metabolism regulators. The PPI framework was built
using the STRING database (version 12.0; confidence score >0.7;
https://string-db.org/) with physical binding evidence requirements.
Network topology analysis employed Cytoscape (version 3.10.3)
using the CytoHubba plugin, which implemented maximal clique
centrality to identify topologically critical nodes.

2.5 Microglia sub-clusters analysis

Microglia sub-clusters were resolved through iterative graph-
based clustering at resolution 0.15. Transcriptionally distinct
states of microglia (“Homeostatic_Microglia”, “Disease-Associated
Microglia’, “M1_Cell’, “M2_Cell’, “Proliferating_Cell”, and “Lipid-
Associated Microglia”) were annotated according to previous
references (Zhang et al., 2024; Zhu et al., 2024). Pseudotemporal
trajectories were reconstructed using Monocle3’s manifold learning
framework (version 1.3.7) (Trapnell et al., 2014). The principal graph

was initialized through reversed graph embedding as Equation 1:

mingq Y % - f(g)|? + MV AP

where X; represents gene expression vectors and q; denotes

@

manifold coordinates (A = 0.01). Rooting was biologically anchored
to homeostatic cells (pseudotime 7 = 0). Gene expression kinetics
along trajectories were modeled via generalized additive models
with thin-plate splines as Equation 2:

g(E,) =By + fy@ +e )

where f, represents the spline function (k = 10 basis functions)
for target genes, incorporating group (ICH vs. control) as covariates

frontiersin.org
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to identify condition-specific changes. Temporal trends were
0.75)

visualized through custom LOESS-smoothed (span =
expression plots with 95% ClIs.

For visualization and analysis of gene expression dynamics
along pseudotime (Figures 4C-E), the average expression level was
calculated solely based on cells with detectable expression (non-
zero counts) for the respective gene. This approach focuses on the
expressing cell population and provides a clearer representation of
transcriptional dynamics without dilution by non-expressing cells
(Wu et al., 2025; Vallejos et al., 2017). This analytical strategy was
particularly important for capturing the subtle expression patterns
of glucose metabolism-related genes, which typically exhibit low-
abundance signals that would otherwise be obscured in bulk cell
analyses.

2.6 Spatial transcriptomics analysis

Spatial transcriptomics analysis leveraged preprocessed Visium
data from lesional (hemorrhage-affected) and contralateral
hemispheres across nine timepoints (Naive to D28). Microglia-
specific spatial spots were identified through reference annotation.
For each target gene, temporal expression proportion were
normalized to naive-state baselines as Equation 3:

E,

= (€)

naive

where E, is the expression proportion at timepoint t and E,;,,
is the average expression percentage in naive animals. Temporal
dynamics were quantified through two complementary metrics:
expression abundance (normalized proportion of expressing
microglia spots) and expression magnitude (mean expression level

across expressing spots).

2.7 Cell-cell communication analysis

Cell-cell communication analysis were accomplished using
CellChat (version 2.1.2) (Jin et al., 2025). The analysis was
conducted separately for control and ICH groups using the
mouse database (CellChatDB.mouse). Given the absence of
established interactions for key metabolic genes in standard
databases, we augmented CellChatDB with experimentally
validated ligand-receptor pair of our target genes. We custom-
the
references, incorporating known interactions involving Hspa5

designed Hspa5-related pathway based on literature
(a key endoplasmic reticulum chaperone implicated in stress
response and neuroinflammation) to ensure comprehensive
coverage

contexts.

of metabolic-immune crosstalk in neurological
These selected from STRING
(confidence>0.7) and literature evidence of physical binding in

interactions were

neurological contexts. Key computational parameters included:

communication probability calculation using a truncated

mean model with trim 0.25 to reduce outlier effects;

minimum cell group size threshold of 10 cells (min.cells

10) for interaction filtering; and non-protein interaction

allowance (non_protein TRUE) to capture comprehensive
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interaction types. Communication probabilities mean model as

Equation 4:
1m
Py= Yt 5y 2 T LR @
=
where T, trims 25% extremes of ligand/receptor
expressions, w; weights interactions by frequency, and
m denotes metacells. Differential pathway engagement
(ICH vs. control) was assessed through 10,000-label
permutations, with FDR correction for ligand-receptor
family  dependencies. Network centrality —metrics were

computed using netAnalysis_computeCentrality () to identify
topologically critical nodes in the neuroinflammatory-metabolic
crosstalk network.

2.8 Animal models of subarachnoid
hemorrhage and scRNA

All animal experiments were conducted in accordance with
the National Institutes of Health Guide for the Care and Use of
Laboratory Animals. The protocols were reviewed and approved
by the Institutional Animal Care and Use Committee of Zhejiang
University. Adult male C57BL/6 mice (aged 8-10 weeks, weighing
22-25¢) were purchased from SLAC Laboratory Animal Co.,
Ltd. (Shanghai, China). Subarachnoid hemorrhage (SAH) was
induced via endovascular perforation following established
protocols (Fujimoto et al., 2016).

For scRNA-seq preparation, fresh brain tissues (1 day after
SAH) were rapidly dissected and transferred into cold Hibernate
A solution (BrainBits, LLC) to maintain cellular viability. Tissue
dissociation was performed. The digested tissue was mechanically
triturated 20 times using a 5 mL serological pipette and filtered.
After centrifugation, the pellet was resuspended and centrifuged
to remove myelin debris and enrich viable cells. Erythrocytes were
lysed using ACK lysing buffer. Single-cell suspensions were loaded
onto a Chromium Single Cell B Chip (10x Genomics) targeting a
recovery of 8,000-10,000 cells per sample, and scRNA-seq libraries
were constructed using the Chromium Single Cell 3’ Reagent
Kit v3.1 according to the manufacturer’s protocol. All subsequent
bioinformatic analyses, including quality control, normalization,
clustering, and differential expression, were performed as described
in the Methods section above.

Note: The SAH model data described in this section
were generated exclusively to provide supplementary context
(Supplementary Figure S3) for the discussion of Hk2 dynamics
across hemorrhagic stroke models.

2.9 Statistical validation and reproducibility

All inferences incorporated rigorous multiplicity control.
False discovery rates were estimated via Benjamini-Hochberg for
independent hypotheses and Benjamini-Yekutieli for dependent
tests. Effect sizes for differential interactions were reported as
Cohen’s d with 95% confidence intervals from 10,000 bootstrap
samples. Reproducibility was guaranteed through Docker
containerization by tidyverse (version 2.0.0) (Kandel et al., 2011),
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with computational environments frozen at analysis runtime.
Parameter configurations were version-controlled via Git, and
all random processes were seeded (seed = 349) for deterministic
execution.

3 Results

3.1 Bulk RNA-seq analysis focused on
dysregulated glucose metabolism genes

To establish whether
transcriptionally altered following ICH, we first analyzed bulk

glucose metabolic pathways are
RNA-seq dataset (GSE24265) comprising human perihematomal
tissues and contralateral controls. Using a targeted enrichment
strategy focused on glucose metabolism, we performed standard
differential expression analysis and enrichment analysis, followed
by intersection with gene sets and pathway lists from public GSEA
resources (Supplementary Figures SIA-D).

As anticipated, differential expression analysis revealed a limited
number of genes with modest changes: 11 were upregulated (Cxcr4,
Tgtbi, Isg20, Tktll, Slc2a3, Hspa5, Hk2, P4hal, Slc2al, Stc2,
B4galtl) and two were downregulated (Sox9, Foxkl), as shown
in the volcano plot with relatively low log,FC and -log,, (p-value)
values (Supplementary Figure S1B). These genes were selected for
subsequent analyses. Gene Ontology (GO) analysis highlighted
processes primarily associated with immediate stress responses
and inflammatory pathways, consistent with previously reported
outcomes. Only two biological processes were directly related to
glucose metabolism: “response to nutrient levels” and “cellular
response to glucose starvation” (Supplementary Figure S1D).
Furthermore, KEGG pathway enrichment analysis affirmed
the biological coherence of this gene set and supported its
central role in metabolic processes (Supplementary Figure S1C),
suggesting a potential rewiring of central carbon metabolism in
the human brain following ICH. These results confirmed subtle
but coherent dysregulation of glucose metabolic genes in human
ICH tissues, justifying a higher-resolution investigation into their
cell-type-specific expression.

3.2 ICH induces inflammation activation
and alters glucose metabolism

Single-cell RNA sequencing analysis revealed substantial
alterations in the cellular composition following ICH. The
UMAP (uniform manifold approximation and projection)
visualization demonstrated distinct clustering patterns between
control and ICH conditions, with microglia/macrophages showing
expanded distribution in ICH samples alongside the emergence
of neutrophil populations (Figure 1A). Quantitative analysis
revealed significant changes in cell type proportions, with
microglia/macrophages increasing from 24.7% in controls to
38.7% in ICH conditions, while neutrophils increased dramatically
from 0.4% to 3.0% (Figure 1B). These shifts indicate substantial
immune cell infiltration and microglial population changes
following hemorrhagic injury. Cell type annotation was confirmed
through violin plots displaying established marker genes, including
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Tmeml119 for microglia, Gfap for astrocytes, and S100a9 for
neutrophils, which showed distinct expression patterns validating
the classification accuracy (Figure 1C).

Having established the overall inflammatory cellular landscape,
we next asked whether our prioritized glucose metabolism genes
exhibited cell-type-specific expression patterns that could explain
their potential role. Analysis of selected genes of interest across cell
types revealed cell-specific expression patterns particularly relevant
to glucose metabolism and inflammatory responses (Figure 1D).
The glucose metabolism genes Hk2 and Hspa5 showed preferential
expression in microglia/macrophages, while the genes Cxcr4 and
Tgfbi exhibited elevated expression in neutrophils. These findings
demonstrate that ICH induces not only population-level changes in
microglial and neutrophil abundance but also specific upregulation
of key genes involved in metabolic and inflammatory responses
within these critical immune cell types.

3.3 Single-cell WGCNA reveals key
modules associated with
neuroinflammation and metabolic
reprogramming after ICH

To move beyond individual gene expression and uncover
coordinated transcriptional programs that might link metabolic
and inflammatory processes, we performed WGCNA. This
approach identifies modules of co-expressed genes, revealing
potential functional relationships that are not apparent in
differential expression analysis alone. Hierarchical clustering
identified 10 distinct co-expression modules (designated ICH-
to ICH-modulel0),
colors and comprising genes with highly correlated expression

modulel each represented by unique
patterns across cell types (Figure2A). Module assignment
revealed specific functional specialization, with selected genes
of interest showing particularly high module
(kME) values (Figure2B). The KkME metric,

intramodular connectivity, quantifies how well

membership
representing
each gene’s
expression correlates with the module eigengene, with values
approaching +1 indicating strong positive or negative association.
Comparative analysis between ICH and control conditions
revealed significant differential module eigengene expression
(Supplementary Figure S2A,B), with modules 1 and 4 showing
marked upregulation in ICH groups. Functional enrichment
analysis of module genes (Supplementary Figures S2C-E)
demonstrated significant associations with key biological processes,
providing mechanistic insights into the coordinated transcriptional
reprogramming following ICH.

Notably, several modules exhibited characteristics associated
with neuroinflammatory processes and, in part, metabolic
functions. Module 3, for instance, contained both the endoplasmic
reticulum stress regulator Hspa5 (kME = 0.61) and the glucose
metabolism gene Hk2 (kME 0.52), suggesting a possible

interplay between metabolic reprogramming and cellular stress

response within inflammatory cells. Module 1 was enriched
for inflammatory response genes (e.g., Cebpb and Cd44),
indicating its potential role in acute neuroinflammation. Radar
plot analysis demonstrated cell type-specific contributions to
module composition, revealing that microglia/macrophages showed
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FIGURE 1
Cellular composition changes and gene expression alterations following ICH. (A) UMAP visualization shows the distribution of 13 major cell types
between control and ICH conditions. (B) Bar plot compares proportional changes in cell populations, with microglia/macrophages and neutrophils
significantly increased in ICH group. (C) Violin plots displays gene markers of cell clusters. (D) Dot plot shows expression patterns of genes of interest
across cell types, with point size indicating the percentage of cells expressing the gene (pct.exp) and color representing average expression level.

predominant involvement in modules 3, 4, 5, and 7, while
neutrophils contributed significantly to module 1 (Figure 2C).
Module correlation analysis further revealed both positive and

negative relationships among modules (Figure 2D). The strong
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positive correlation observed between module 1 (enriched in
inflammatory genes) and modules 3-5 (which contain several
metabolism-associated genes) may indicate coordinated regulation
between neuroinflammatory responses and certain metabolic
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FIGURE 2
Single-cell WGCNA reveals functional modules and their cellular associations. (A) Hierarchical clustering dendrogram of co-expression modules. (B)
Bar plot displaying module membership (kME values) of hub genes and selected genes across all modules. (C) Radar plots illustrating cell type
enrichment proportion for each co-expression module. Cell type abbreviations: Oligodendrocyte (OL), Microglia/Macrophage (MM), Endothelial cell
(EC), Neuroblast (NB), Oligodendrocyte precursor cell (OPC), Pericyte (PC), Neutrophil (Neu), Lymphocyte (Lymph), Astrocyte (Astro), Dendritic cell
(DC), Ependymal cell (Epend). Radial axis represents normalized enrichment proportion (0%-100%). (D) Module correlation heatmap showing Pearson
correlation coefficients between module eigengenes. Purple indicates positive correlation, green indicates negative correlation. (E) UMAP visualization
of genes across co-expression modules, with hub genes and selected target genes highlighted. (F) Protein-protein interaction network of hub genes
and selected genes. Key genes Tnf, Hspa5, and Hk2 are prominently showed, illustrating their potential interconnected relationships within the network.

pathways, though further functional validation is warranted to
establish direct mechanistic links.

UMAP visualization of module genes highlighted the spatial
organization of co-expression relationships, with hub genes
and selected target genes forming distinct clusters within the
topological space (Figure 2E). Notably, Hspa5 and Hk2 occupied
adjacent positions within the module 3 cluster, indicating their
strong relationship. The spatial proximity between these key
genes suggests potential functional interactions in the cellular
response to hemorrhagic injury. Protein-protein interaction
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analysis further confirmed biologically relevant networks among
hub genes (Figure 2F), with glucose metabolism genes forming
interconnected subnetworks with
Crucially, Tnf, Hspa5, and Hk2 appeared as central nodes
within their respective modules and showed direct protein-

inflammatory mediators.

protein interactions, forming a triangular network that bridges
inflammatory signaling (Tnf), endoplasmic reticulum stress
response (Hspa5), and glucose metabolic processes (Hk2). This
interconnected relationship suggests a molecular framework
through which neuroinflammatory signals may regulate metabolic
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adaptation in glial cells following ICH. To validate this predicted
interplay and investigate its cellular context, we next focused on
microglial subpopulations.

3.4 Analysis of co-enrichment relationships
and microglial subpopulation dynamics
after ICH

Given the central role of microglia and the prominent placement
of our target genes in microglia-enriched WGCNA modules, we
sought to investigate their dynamics at a higher resolution within
microglial subpopulations. We specifically investigated the co-
enrichment relationships among Hspa5, Tnf, and Hk2 within
microglial subpopulations. The UMAP plot revealed spatially
significant correlations between Hspa5-Tnf and Hk2-Tnf expression
pairs across microglial cells (Figures 3A,B). The bubble plot directly
illustrated the co-enrichment patterns of Hspa5, Tnf, and Hk2 across
all major cell types, particularly in microglia (Figure 3C). To further
characterize the cellular contexts underlying these coordinated
expression patterns, we performed high-resolution clustering of
microglia/macrophage populations, identifying six transcriptionally
distinct subpopulations (Figure 3D). UMAP visualization revealed
clear separation among homeostatic microglia, disease-associated
microglia (DAM), Ml-like polarized cells (M1 cell), M2-like
polarized cells (M2 cell), proliferating microglia, and lipid-
associated microglia (LAM). Key markers of these microglial
subpopulations were showed in Figure 3E according to reference
publications. Figure 3F illustrates the shifts in cellular composition
following ICH. A marked reduction can be observed in homeostatic
microglia, accompanied by substantial expansions of DAM, M1-
like, and LAM subpopulations, indicating widespread microglial
activation and phenotypic transformation post-ICH. These
alterations suggest a dynamic reprogramming of microglial states in
response to hemorrhagic injury.

Transcriptional profiling of microglial subpopulations revealed
distinct expression patterns through volcano plot analysis
(Figure 4A). Not surprisingly, metabolic genes like Hk2 were not
seen in the top5 genes. Then, pseudotemporal trajectory analysis
reconstructed two major differentiation pathways originating
from homeostatic microglia. The analysis suggested two major
trajectories: a primary inflammatory pathway progressed through
homeostatic to Ml-like polarization and DAM/LAM, while a
secondary reparative pathway followed homeostatic to proliferating
and M2-like differentiation (Figure 4B). These cellular transitions
appear consistent with the state conversions observed in Figure 3,
indicating possible reprogramming routes after ICH, with Pathway
1 showing substantial expansion under hemorrhagic conditions.
However, as pseudotime analysis is computational and inferential,
these pathways should be interpreted as hypothetical models rather
than definitive biological processes.

Time-resolved analysis of gene expression and associated
cellular distributions along pseudotime revealed distinct patterns
between ICH and control groups (Figures4C-E). In the Tnf-
associated trajectory (Figure 4C), ICH samples exhibited markedly
elevated expression levels that peaked at pseudotime point 14
(mainly Ml-like cells), constituting 27.4% of total microglia,
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compared to only 3.97% in controls at the same timepoint. The Hk2-
associated pathway (Figure 4D) demonstrated a characteristic rise-
and-fall pattern in ICH conditions, with expression levels reaching
maximum at pseudotime 14 (24.9% of responsive cells) before
declining, contrasting with the stable low expression in controls
(3.85% of responsive cells). Hspa5-associated dynamics (Figure 4E)
showed a consistent decline in expression levels throughout the
pseudotemporal trajectory in ICH conditions, with responsive
cell proportions progressively increasing from 6.35% to 21.6%
between pseudotime 6-18, while control samples maintained
relatively stable expression (2.75-3.05). It is important to note that
these pseudotime-based patterns may not directly reflect real-time
biological dynamics which serves to generate hypotheses for further
validation.

Notably, both Tnf and Hk2 exhibited similar expression
patterns characterized by initial increase followed by subsequent
decrease, which could suggest potential coordinated regulation
during microglial activation. In contrast, Hspa5 demonstrated an
opposing trend with persistent downregulation, possibly indicating
a negative relationship with the inflammatory-metabolic activation
represented by Tnf and Hk2. These contrasting dynamics may
imply that Tnf and Hk2 participate in a coordinated manner in
the microglial response to hemorrhagic injury, while Hspa5 appears
to be inversely regulated, potentially representing counteracting
pathways in the metabolic-inflammatory network activated
following ICH.

3.5 Spatial transcriptomic analysis of
selected genes through temporal lines

To validate the pseudotemporal dynamics we observed and
map them to true biological time and anatomical space, we
performed spatial transcriptomic analysis in mouse models of
ICH. Figure 5A illustrates the anatomical regions analyzed, with
colored areas indicating distinct brain areas affected by the
autologous blood injection (more detailed tissue section images are
available in the original publications (Xiang et al., 2025)). Spatial
expression analysis (Figure 5B) revealed temporally regulated
patterns showing significantly elevated expression of Hspa5, Hk2,
and Tnf surrounding the hematoma region (left hemisphere)
compared to the contralateral side (right hemisphere) across several
timepoints. Particularly, Hk2 and Tnf demonstrated the most
pronounced spatial enrichment around the hemorrhage site, with
consistent high expression patterns observed across consecutive
timepoints, indicating coordinated spatial regulation of these genes
in response to hemorrhagic injury.

Temporal dynamics analysis in microglia showed distinct
expression patterns for each gene (Figures 5C-E). Hspa5 expression
(Figure 5C) demonstrated sustained upregulation in the lesion
hemisphere (blue line) throughout the time course, maintaining
1.2-1.5-fold higher expression compared to the control hemisphere
(orange line) from D1 to D28. Hk2 expression (Figure 5D) exhibited
a biphasic response, with initial activation at early timepoints
(H3-H12) followed by progressive suppression from D1 onward,
showing particularly strong expression in the lesion hemisphere. Tnf
expression (Figure 5E) displayed an acute inflammatory response,
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peaking at H6-D1 in the lesion hemisphere with approximately 3-

fold higher expression compared to controls, followed by gradual

resolution by D7.

At D7 post-ICH, all three genes exhibited a remarkable
simultaneous reduction in expression. Both the hematoma-

surrounding
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region and contralateral

hemisphere

showed
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substantially diminished signals for Hspa5, Hk2, and Tnf compared
to earlier timepoints, with expression levels dropping to or below
naive baseline values. This transient global suppression may suggest
a potential synchronized regulatory mechanism or cellular state
transition occurring specifically at this timepoint in the ICH
pathological progression.
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Pseudotime

3.6 Cell-cell communication analysis
reveals altered inflammatory signaling
networks after ICH

To investigate how the observed gene expression translate into
altered cellular crosstalk, we performed a comprehensive cell-
cell communication analysis focusing on microglia/macrophages
and neutrophils. This analysis aimed to determine whether the
metabolic and inflammatory genes identified in our previous
results (particularly Hspa5, Hk2, and Tnf) participate in specific
intercellular signaling pathways that are modified following ICH.

Global communication analysis revealed significantly enhanced
signaling strength in the ICH group compared to controls
(Figure 6A), with red edges indicating interactions that were
predominantly elevated in ICH conditions. This was particularly
evident in the communication involving microglia/macrophages
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and neutrophils, which showed the most substantial increases
in signaling activity. Directional signaling analysis (Figure 6B)
demonstrated distinct reorganization of signaling networks after
hemorrhagic injury, with microglia/macrophages exhibiting
increased outgoing (from 2.0 to 3.0) and incoming (from 5.0 to 5.5)
weighted communication strength. Neutrophils showed even more
pronounced changes, with incoming communication increasing
from 1.8 to 2.8 and outgoing communication rising from 0.7 to 1.2,
indicating their enhanced role in both receiving and sending signals
in the ICH environment.

Pathway-specific comparison between groups (Figure 6C)
identified TNF signaling as one significant upregulated pathway
in ICH conditions, while Hspa5-and Hk2-associated pathways
showed no significant intergroup differences. Detailed mapping
of TNF signaling networks (Figure 6D) revealed two dominant

communication modes in ICH: paracrine signaling from
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FIGURE 5
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corresponds to the proportion of expressing cells (normalized to naive baseline).

microglia/macrophages to neutrophils accompanied by autocrine  identified the most significantly altered specific interactions between
signaling within neutrophils. These patterns demonstrate how TNF-  microglia/macrophages and their major communication partners
mediated communication is amplified through both intercellular (neutrophils and pericytes) in ICH versus control conditions.
crosstalk and intracellular reinforcement in the inflammatory  These pairs included two TNF-related interactions that were
microenvironment post-ICH. substantially strengthened in ICH group, in which Tnf-Tnfrsf1b was

Cellular component analysis (Figure 6E) revealed cell-type-  the most significantly altered interaction in microglia/macrophage-
specific communication patterns for the highlighted genes. While  to-neutrophil communication. While HSPA5-related pairs (e.g.,
Hspa5-associated signaling showed no significant differences =~ HSPA5-LRP1) were detectable, from previous analysis they may
between cell types, TNF signaling exhibited particularly strong  show minimal condition-specific changes, suggesting baseline
outgoing communication from microglia/macrophages and  biological functions rather than ICH-specific roles. These findings
incoming communication to neutrophils in ICH conditions, = mechanistically explain how TNF-mediated signaling drives
indicating a  specific = microglia/macrophages-to-neutrophil  inflammatory amplification through specific molecular cascades
signaling axis. Finally, ligand-receptor pair analysis (Figure 6F)  post-hemorrhage.
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FIGURE 6
Cell-cell communication network remodeling after ICH. (A) Global communication network showing significantly enhanced signaling strength in ICH

(red edges) versus control (blue). (B) Scatter plot shows alterations of outgoing and incoming communication strength between two conditions. (C)
Stacked bar plot illustrates pathway-specific comparison in two groups. (D) Network visualization illustrating TNF signaling with paracrine
(microglia—neutrophils) and autocrine (neutrophil self-communication) interactions. (E) Cellular communication patterns showing outgoing (left) and
incoming (right) signaling for specified genes across cell types. Color intensity indicates communication probability. (F) Altered ligand-receptor pairs
between microglia/macrophages and their communication partners. Color indicates interaction probability.

Together, theseanalyses demonstrate that TNF-mediated signaling ~ positions TNF as the primary intercellular messenger in the metabolic-
undergoes the most substantial reorganization after ICH, particularly  inflammatory network, while Hspa5 and Hk2 appear to function more
through enhanced microglia-to-neutrophil communication. This  as intracellular regulators of cell state.
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4 Discussion

Cerebrovascular accident triggers a complex neuroinflammatory
response intertwined with profound metabolic alterations,
yet the interplay between these processes remains poorly
understood. Glucose metabolic pathways, being fundamental
cellular functions, often exhibit subtler changes compared to
dramatic inflammatory shifts, causing them to be frequently
overlooked in conventional differential expression analyses focused
on the most statistically significant changes (Lei et al., 2025).
This study was specifically designed to overcome this limitation
by employing a targeted approach to investigate how glucose
metabolism and neuroinflammatory signaling interact at cellular
and molecular levels following ICH.

Bulk tissue analysis confirmed that while glucose metabolism
pathways showed only modest changes in overall expression,
they demonstrated consistent and biologically relevant alterations
across analytical platforms. These findings align with emerging
concepts that metabolic reprogramming represents a fundamental
component of neuroinflammation rather than a peripheral
phenomenon (LiY. et al, 2024; Thieren et al, 2025), while
previous studies have established that glycolytic enzymes support
immune cell activation and cytokine production (Namgaladze
and Briine, 2023). The concurrent expansion of DAM, MI-
like cells, and LAM subsets suggests parallel activation of
inflammatory, phagocytic, and lipid metabolic pathways in response
to hemorrhagic injury. Notably, through single-cell WGCNA and
subsequent PPI analysis, we identified three key regulators that
appear to form a coordinated network: Tnf, Hk2, and Hspa5. These
genes exhibited interconnected expression patterns and protein
interactions suggesting functional relationships.

Previous research has demonstrated that TNF is a master
regulator of neuroinflammation following ICH, primarily released
by activated M1 microglia and macrophages. TNF amplifies the
inflammatory cascade by promoting further microglial activation
and recruiting peripheral leukocytes, while also contributing to
excitotoxic neuronal death. Preclinical studies demonstrate that
TNF inhibition attenuates edema and improves neurological
outcomes (Tschoe et al., 2020; Jia et al., 2024). In the context
of metabolic regulation, HK2 plays a divergent role under
different neuropathological conditions. In ischemic stroke, HK2
influences microglial metabolic reprogramming and inflammatory
modulation: dexmedetomidine (DEX) pretreatment upregulates
HK2, enhancing glycolytic flux and oxidative phosphorylation,
which sustains microglial phagocytic capacity and promotes an
anti-inflammatory phenotype (Zhang et al., 2025). Conversely,
in the acute phase of intracerebral ICH, HK2 is significantly
downregulated at day 1 and day 3 post-ICH, resulting in
impaired glycolysis and reduced glucose-6-phosphate production.
This metabolic deficit triggers mitochondrial dysfunction, ROS
accumulation, and amplified release of pro-inflammatory cytokines
(e.g., IL-1B, IL-6, TNF-a), thereby exacerbating neural injury
(LiY. et al., 2024). Notably, a partial recovery of HK2 expression
was observed specifically in microglia by day 7, suggesting a
time-dependent shift in metabolic reprogramming. To investigate
whether this expression pattern of HK2 regulation could be
generalized to other hemorrhagic conditions, we employed a
SAH model as a complementary approach. Consistent with this
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temporal dynamic, our early SAH model (day 1) revealed an
increase in microglial proportion accompanied by decreased HK2
expression (Supplementary Figures S3A-D), while the ICH model
(day 14) showed elevated HK2 levels (Supplementary Figure S3E) in
microglia. These contrasting responses across hemorrhagic models
highlight a common pattern of HK2 regulation characterized by an
initial decline followed by a later rise, with day 7 representing a
critical transition point in the metabolic and inflammatory evolution
of hemorrhagic stroke. Meanwhile, HSPA5 (also known as GRP78)
serves a protective role by mitigating endoplasmic reticulum
(ER) stress and inhibiting neuronal ferroptosis. Following ICH,
HSPAS is upregulated as part of the unfolded protein response to
counteract ER stress-induced apoptosis, which directly binds to and
stabilizes GPX4, a key regulator of ferroptosis, thereby reducing lipid
peroxidation and iron-dependent neuronal death (Li J. et al., 2024).
Its expression is modulated by various miRNAs, such as miR-181b
and miR-378a-5p, forming critical regulatory axes that influence
neuronal survival (Wang et al., 2019; Wang et al., 2022).

To further elucidate the dynamic and spatial coordination
of these key players, we employed pseudotemporal trajectory
analysis as a hypothesis-generating tool. The analysis indicated
that Tnf and Hk2 exhibit coordinated expression dynamics
along the inflammatory differentiation pathway, while Hspa5
shows an opposing trend. This inverse relationship could suggest
potential antagonistic regulation between ER stress response
and glycolytic metabolism during microglial activation, possibly
representing a metabolic checkpoint that influences inflammatory
outcomes. To explain this, we propose a potential mechanism:
HSPA5, as a central ER chaperone, likely regulates HK2 and
TNF through two main pathways. Firstly, HSPA5 may trigger
chaperone-mediated autophagy (CMA) to degrade glucose
metabolic enzymes, suppressing glycolysis—this is supported by
findings that HSPA5 activation enhances AMPK-driven autophagy,
leading to metabolic reprogramming (Cook and Clarke, 2012;
Binder and Pedley, 2023). Secondly, HSPA5 could modulate UPR
signaling (e.g., via ERN1/JNK) to sustain TNF-a production, as
knockdown experiments reduce inflammation in ICH models
(Wang et al., 2022). This reinforces HSPA5’s role as a metabolic-
inflammatory integrator. However, as pseudotime analysis is
inferential and sensitive to parameters, it requires validation with
temporal data, motivating our further spatial transcriptomics
approach. However, it should be mentioned that pseudotime
analysis is inherently inferential and sensitive to parameters such
as starting cell selection; it does not equate to biological time and
should be interpreted with caution, as evidenced by methodological
limitations discussed in Barile et al. (2021) and Zheng et al. (2023).
Therefore, these observations are speculative and require validation
through complementary temporal data, which prompted our
subsequent spatial transcriptomics investigation across multiple
timepoints.

Spatial transcriptomic analysis delineated the anatomical
distribution of molecular alterations following ICH. Based on
the predominant focus of ICH pathophysiology on inflammation
and lipid pathways, no significant changes were observed in
glucose metabolism-related genes, such as HK2, underscoring
those metabolic adaptations. Thus, when we specifically focus on
glucose metabolism, our spatial and temporal analysis (from 3 h to
28 days) reveals that HK2 upregulation in perihematomal regions
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is an early and dynamic response, with expression differences
between ipsilateral and contralateral sides beginning to narrow
by day 3 and declining rapidly by day 7. This observation can
be partially explained by the findings of Askenase et al. (2021),
which demonstrated that HK2 expression is elevated in the acute
phase (within 4 days post-ICH) in CD14" monocytes/macrophages
and neutrophils within the hematoma, but decreases over time
as the response transitions to a sub-acute stage. The apparent HK2
elevation in our spatial data may reflect the inherent resolution limits
of spatial transcriptomics, where each ‘spot’ captures a mixture of
cell types, including infiltrating inflammatory cells that express
HK2 under stress, thereby contributing to the perihematomal
signal. In this context, our findings may not be contradictory
with previous findings, thus, underscoring the conserved nature
of metabolic reprogramming towards glycolysis post-ICH. Given
this alignment, the perceived discrepancies with other reports likely
stem from methodological differences in cellular resolution. While
spatial transcriptomics offers valuable spatiotemporal insights, its
limitation in distinguishing pure cell populations, which may lead
to apparent contradictions due to the inclusion of multiple cell
types (e.g., neutrophils or monocytes) that overexpress HK2 under
stress. This technical aspect highlights the need for complementary
approaches to fully resolve cell-specific responses.

Furthermore, to decipher how these molecular changes
influence other cell types, cell-cell communication analysis revealed
that among our target genes, TNF signaling undergoes the most
substantial reorganization post-ICH. The enhanced microglia-
to-neutrophil communication via Tnf-Tnfrsflb pairs suggests a
specific mechanism through which activated microglia recruit
and prime peripheral immune cells, amplifying the inflammatory
cascade. This is supported by the findings of Zhang etal
(Zhang et al., 2024), which identified elevated TNF signaling in
neutrophils, with microglia-derived osteopontin interacting with
CD44 on monocytes, but also emphasized TNF-TNFRSF1B as a key
pathway driven by microglia-monocyte crosstalk in ICH. However,
it is important to note that our CellChat analysis is based on
transcriptomic data, which provides valuable insights into potential
communication pathways but does not directly demonstrate
protein-level interactions or causal relationships. While existing
evidence supports the functional importance of TNF signaling in
ICH pathophysiology - including studies showing Tnf-Tnfrsflb
signaling exacerbates neuroinflammation through exosomal
pathways (Zhu et al., 2024; Puy et al., 2022; Kawamura et al., 2024)
and our own data showing elevated inflammatory cytokines -
we acknowledge that these findings remain inferential regarding
actual protein-level interactions. Future studies employing targeted
approaches such as co-culture experiments, protein interaction
assays, or conditional knockout models will be essential to
validate the functional significance of the TNF-TNFRSF1B axis in
microglia-neutrophil communication. Such investigations could
specifically test whether disruption of this pathway attenuates
neuroinflammation and improves outcomes in ICH models. On
the other hand, the absence of significant changes in Hspa5
and Hk2-associated pathways indicates that while these genes
participate in cellular adaptation, they may not drive direct
intercellular signaling to the same extent as TNE This distinction
highlights the importance of differentiating intracellular metabolic
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adaptation from intercellular communication in understanding
neuroinflammation.

Our study has several limitations that should be considered
when interpreting the findings. First, the integrative multi-omics
approach utilizes data from different species (human bulk RNA-
seq, mouse single-cell and spatial transcriptomics), technologies,
and time points. We mention that our primary goal was conceptual
integration and hypothesis generation, not directly quantitative
cross-species comparison. Although we applied state-of-the-art
batch correction and normalization methods, inherent biological
differences between species (e.g., neuroinflammatory responses)
and the mismatch in resolution (bulk tissue vs. single-cell vs. spatial
transcriptomics) limit the robustness of direct comparisons. We
mitigated this by focusing on evolutionarily conserved pathways
and core regulatory genes (e.g., the TNF signaling axis) reported
across both human and murine studies of neuroinflammation.
Second, the temporal dynamics were reconstructed from datasets
with non-identical timepoints. While this provided a useful view for
analysis, subtle phase differences between human and mouse disease
progression may remain. Third, our conclusions are primarily based
on transcriptional evidence. Protein-level validation and functional
experiments using genetic or pharmacological perturbations are
required to confirm the mechanistic roles of the identified genes
in our further study. Finally, the use of public datasets, despite
rigorous quality control and batch effect correction, may carry
unresolved technical variation. Future studies employing uniform
platforms, matched time-series, and cross-species validation at
the protein and functional levels will be essential to translate
these findings.

Future studies should investigate the causal relationships
between these metabolic and inflammatory pathways using cell-
specific knockout models. The Day 7 transition point identified
in our temporal analysis represents a particularly promising target
for therapeutic intervention. This time point may correspond to
a critical transition from acute inflammation to the initiation of
repair and resolution phases post-ICH, a demarcation supported
by prior literature on temporal immune dynamics after brain
injury. Exploring whether metabolic modulation (e.g., with HK2
inhibitors or ER stress mitigators) can alter microglial polarization
states and improve functional outcomes, especially during this
potential transition window, could have significant translational
potential.

5 Conclusion

Our integrated multi-omics analysis demonstrates that glucose
metabolism and neuroinflammation are intimately connected in
the ICH brain through coordinated changes in key regulators Hk2,
Hspa5, and Tnf. These genes exhibit cell-type-specific, spatially
organized, and temporally dynamic expression patterns that shape
microglial activation states and cellular crosstalk. The identification
of a synchronized transition point at Day 7 and the specific
microglia-neutrophil signaling axis via TNF provides novel insights
into the pathophysiology of ICH and suggests potential targets for
future therapeutic strategies aimed at modulating the metabolic-
inflammatory interface.
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