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Background: Intracerebral hemorrhage (ICH) triggers secondary brain 
injury through neuroinflammation, yet the interplay between metabolic 
reprogramming and inflammatory responses remains poorly defined. This 
study investigated how glucose metabolism dysregulation contributes to 
neuroinflammatory pathogenesis following ICH.
Methods: We integrated transcriptomic datasets from bulk RNA sequencing 
(human perihematomal tissue), single-cell RNA sequencing (mouse ICH model), 
and spatial transcriptomics (mouse time-series). Bioinformatic analyses included 
differential expression screening, single-cell weighted gene co-expression 
network analysis, pseudotemporal trajectory reconstruction, and cell-cell 
communication inference to identify key metabolic-inflammation regulators 
and their spatiotemporal dynamics.
Results: Multi-omics convergence revealed hexokinase 2 (HK2), heat shock 
protein A5 (HSPA5), and tumor necrosis factor (TNF) as core regulators 
linking glucose metabolism to neuroinflammation. Single-cell analysis showed 
significant time-dependent regulation of HK2 in microglia, while spatial 
transcriptomics uncovered synchronized alterations of HK2, HSPA5, and TNF 
in perihematomal regions at day 7. Cell communication analysis highlighted 
enhanced microglia-to-neutrophil signaling via Tnf-Tnfrsf1b pairs, with TNF 
signaling identified as the most significantly upregulated pathway in ICH 
conditions.
Conclusion: Our multi-omics approach reveals coordinated dysregulation 
of glucose metabolism and inflammatory genes following ICH, 
with time-dependent HK2 regulation in microglia and synchronized 
transcriptional changes at day 7 representing critical events in 
neuroinflammatory progression. The identified gene networks and cellular
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communication patterns provide new insights into the metabolic-immune 
interface in ICH, offering potential targets for future therapeutic strategies.

KEYWORDS

bioinformatics, intracerebral hemorrhage, metabolic reprogramming, microglia, 
neuroinflammation 

1 Introduction

Intracerebral hemorrhage (ICH) is a severe type of stroke with 
high rates of death and disability. While the initial bleeding causes 
direct damage, a major contributor to ongoing brain injury and poor 
recovery is the body’s inflammatory response that follows, known 
as neuroinflammation (Feigin et al., 2019; An et al., 2017). This 
involves complex interactions between brain cells like microglia and 
astrocytes, as well as immune cells entering from the bloodstream 
(Lan et al., 2017; Seiffge et al., 2024; Zhou et al., 2014).

Recent research across various neuropathological 
conditions—including metabolic diseases such as diabetes, as well as 
neurological disorders like Alzheimer’s and Parkinson’s disease—has 
increasingly demonstrated that dysregulation of energy metabolism, 
particularly glucose utilization, is closely linked to inflammatory 
processes (Alsbrook et al., 2023; Bahadar and Shah, 2021; Ovalı and 
Perçin, 2024). Changes in glucose metabolism pathways don't just 
happen alongside inflammation; they actively shape how severe and 
prolonged the inflammation becomes. For instance, metabolic shifts 
within immune and glial cells not only accompany inflammation 
but actively influence its intensity and duration (Bahadar and 
Shah, 2021; Gong et al., 2025; Han et al., 2021). Conversely, altered 
glycolytic flux in microglia can amplify pro-inflammatory signaling, 
while inflammation itself impairs key enzymes and glucose 
transporters, creating a vicious cycle of deterioration (Ma et al., 2022; 
Li Y. et al., 2024; Yao et al., 2025; D'Onofrio et al., 2021). However, 
despite evidence from these related fields, the specific mechanisms 
and regulatory genes governing the interaction between glucose 
metabolism and neuroinflammation following ICH remain poorly 
understood. Elucidating how these processes interact in ICH is 
crucial for identifying novel therapeutic strategies to mitigate 
secondary injury and improve neurological outcomes.

Technologies for studying gene activity (transcriptomics) have 
become vital tools. Bulk RNA sequencing (bulk RNA-seq) measures 
gene expression in whole tissue samples, giving an overall picture 
(Thind et al., 2021). Single-cell RNA sequencing (scRNA-seq) allows 

Abbreviations: BBB, Blood-brain barrier; CCA, Canonical correlation 
analysis; DAM, Disease-associated microglia; DEGs, Differentially expressed 
genes; DEX, Dexmedetomidine; ER, Endoplasmic reticulum; FDR, False 
discovery rate; FDG, 2-deoxy-2-[¹⁸F]fluoro-D-glucose; GSEA, Gene Set 
Enrichment Analysis; GO, Gene Ontology; HK2, Hexokinase 2; HSPA5, 
Heat shock protein family A member 5; ICH, Intracerebral hemorrhage; 
IL, Interleukin; kME, intramodular connectivity; LAM, Lipid-associated 
microglia; PCA, Principal component analysis; PET, Positron emission 
tomography; PPI, Protein-protein interaction; RNA-seq, RNA sequencing; 
SAH, Subarachnoid hemorrhage; scRNA-seq, Single-cell RNA sequencing; 
SEM, Standard error of the mean; stRNA-seq, Spatial transcriptome 
RNA sequencing; TNF, Tumor necrosis factor; UMAP, Uniform Manifold 
Approximation and Projection; WGCNA, Weighted gene co-expression 
network analysis.

us to look at the gene activity of individual cells, revealing the 
specific roles of different cell types in the injured brain (Li and 
Wang, 2021). Spatial transcriptome RNA sequencing (stRNA-seq) 
takes this a step further by showing exactly where in the brain tissue 
(like near the bleed core or farther away) these gene expression 
changes occur (Piwecka et al., 2023). However, analyzing this 
complex data to specifically understand glucose metabolism’s role 
has been difficult. A common limitation in previous transcriptomic 
studies of ICH is their reliance on finding the most significantly 
changed genes (differentially expressed genes or DEGs). Genes 
related to glucose metabolism often show smaller, subtler changes 
in activity compared to genes directly involved in inflammation 
or immediate stress responses. Because these metabolic changes 
might not be the most dramatic statistically in standard analyses, 
they tend to receive less attention or can even be missed entirely, 
despite their fundamental biological importance (Wu et al., 2025; 
Tonyan et al., 2022; Yin et al., 2024).

Therefore, our study takes a different approach. We deliberately 
focus our bioinformatic analysis on genes known to be involved 
in glucose metabolism pathways. Using publicly available datasets 
generated from bulk RNA-seq, scRNA-seq, and stRNA-seq, we 
aim to identify even subtle changes in these glucose-related genes 
after ICH. By combining the strengths of these methods – the 
overall view from bulk data, the cell-type detail from scRNA-
seq, and the location information from stRNA-seq – we set 
out to: 1) Pinpoint which glucose metabolism genes change in 
specific brain cells and their changes around the hematoma; 2) 
Investigate how these changes connect with known pathways of 
neuroinflammation and immune cells. We hypothesized that a 
coordinated dysregulation of glucose metabolism within specific 
neuroimmune cell populations drives the pathological progression 
of neuroinflammation following ICH. We hope to reveal novel links 
between energy metabolism failure and inflammation in the injured 
brain after hemorrhage. Understanding these specific connections 
may open up new therapeutic avenues for protecting the brain and 
reducing inflammation following ICH. 

2 Methods

2.1 Multiple datasets and preprocessing

Transcriptomic data integration encompassed bulk RNA-seq 
(GSE24265: a microarray dataset from human beings with 4 
perihematomal tissues and 7 contralateral ones (Rosell et al., 2011)), 
single-cell RNA-seq (GSE167593: whole brain tissues from 4 ICH 
and 4 control mice (Shi et al., 2021) at 14 days post-ICH), and spatial 
transcriptomics (STT0000047 in STOmics DB: whole brain tissues 
obtained at 3, 6, and 12 h and days 1, 3, 7, 14, and 28 post-ICH(23)).

Frontiers in Bioinformatics 02 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1740715
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Zhang et al. 10.3389/fbinf.2025.1740715

Bulk data preprocessing involved the “sva” package in R language 
(version 4.1.0) to remove the batch effects (Leek et al., 2012). 
For scRNA-seq, gene counting was accomplished from the raw 
FASTQ data by “Cell Ranger” (version 7.0.1) software in Linux, 
while batch effects removal and clusters identification was achieved 
by Seurat package (version 4.2.1) (Hao et al., 2021). The Seurat 
pipeline implemented stringent quality control: cells with >200 
detected genes and <99% maximum gene counts and <25% 
mitochondrial reads were retained, followed by normalization to 
mitigate technical variance. Batch correction employed canonical 
correlation analysis (CCA) integration, which preserves biological 
variation while removing dataset-specific artifacts in reduced 
dimension space. Processed spatiotemporal transcriptomic data 
at single-cell resolution was obtained from STMICH (https://
db.cngb.org/stomics/stmich/). 

2.2 Differentially expressed genes and 
functional annotation

Bulk differentially expressed genes (DEGs) analysis utilized 
limma’s empirical Bayes framework (Ritchie et al., 2015), modeling 
expression as a function of hemorrhagic or control tissues for 
batch effects through design matrix incorporation. Significance 
thresholds (|log2FC|>1, adj. p < 0.01) were determined via 
moderated t-statistics with Benjamini-Hochberg correction. To 
resolve the challenge of detecting subtle metabolic dysregulation, 
we implemented a sequential enrichment strategy. Initial Gene 
Ontology (GO) analysis of DEGs identified marginally enriched 
metabolic terms through clusterProfiler package in R language 
(Yu et al., 2012). We then utilized Gene Set Enrichment Analysis 
(GSEA) database to collect significantly enriched pathways and 
genes related to glucose metabolism (Supplementary Materials S2). 
These pathway-derived genes were intersected with our DEGs, 
yielding our final set of target metabolic genes. The biological 
coherence of these prioritized genes was validated through 
KEGG pathway enrichment analysis, confirming significant 
overrepresentation. 

2.3 Single-cell clustering and annotation

Cellular heterogeneity resolution combined graph-based 
clustering with marker-driven annotation. The anchor-based 
integration algorithm (resolution = 0.09) partitioned cells in a 
shared nearest-neighbor graph constructed from 15 principal 
components by “IntegrateData” function in Seurat. Cell type 
annotation was initiated using the scCATCH package (version 
3.2.2) (Shao et al., 2020), which implements tissue-specific 
marker database matching with statistical validation of cluster 
marker specificity. The “FindAllMarkers” function in Seurat was 
utilized to explore of gene expression differences across clusters, 
employing the Wilcoxon test to ascertain statistical significance 
(p.adj < 0.05) with default settings. This automated annotation was 
subsequently refined through manual curation using established 
cell-specific markers (e.g., Tmem119 for microglia and S100a9 for 
neutrophil (Zhang et al., 2019)). 

2.4 Single-cell weighted gene 
co-expression network construction

Single-cell weighted gene co-expression dynamics were modeled 
using hdWGCNA’s metacell approach (Morabito et al., 2023). Gene 
selection was performed using a custom gene list with a minimum 
expression fraction threshold of 0.05 across cells. Metacells were 
generated via k-nearest neighbor aggregation (k = 30) within 
condition groups defined by both cell type and experimental group, 
with a maximum shared cell limit of 10 per metacell and cell type 
as the identity group. Signed network construction employed soft-
thresholding power, determined by scale-free topology criterion 
with network type set to ‘signed’. Hierarchical clustering with 
dynamic tree cutting (minModuleSize = 50) identified modules, 
while module eigengene dissimilarity (mergeCutHeight = 0.2) 
guided merging. This analysis defines groups of co-expressed 
genes as “modules”. Module eigengenes were computed with group 
variation accounted for by experimental group, and intramodular 
connectivity (kME) was calculated to identify hub genes. Genes that 
do not associate strongly with any coherent cluster are assigned to a 
“gray” module, which serves as a benchmark against the “non-gray” 
modules (well-defined clusters of primary biological interest).

To elucidate functional interactions between co-expressed gene 
modules and prioritized metabolic regulators, we constructed a 
protein-protein interaction (PPI) network integrating two key 
elements: (1) hub genes identified from each hdWGCNA module 
(top 5 highest kME genes per module), and (2) our previously 
filtered glucose metabolism regulators. The PPI framework was built 
using the STRING database (version 12.0; confidence score >0.7; 
https://string-db.org/) with physical binding evidence requirements. 
Network topology analysis employed Cytoscape (version 3.10.3) 
using the CytoHubba plugin, which implemented maximal clique 
centrality to identify topologically critical nodes. 

2.5 Microglia sub-clusters analysis

Microglia sub-clusters were resolved through iterative graph-
based clustering at resolution 0.15. Transcriptionally distinct 
states of microglia (“Homeostatic_Microglia”, “Disease-Associated 
Microglia”, “M1_Cell”, “M2_Cell”, “Proliferating_Cell”, and “Lipid-
Associated Microglia”) were annotated according to previous 
references (Zhang et al., 2024; Zhu et al., 2024). Pseudotemporal 
trajectories were reconstructed using Monocle3’s manifold learning 
framework (version 1.3.7) (Trapnell et al., 2014). The principal graph 
was initialized through reversed graph embedding as Equation 1:

min f ,Q∑i
‖xi − f(qi)‖

2 + λ‖∇ f‖2 (1)

where xi represents gene expression vectors and qi denotes 
manifold coordinates (λ = 0.01). Rooting was biologically anchored 
to homeostatic cells (pseudotime τ = 0). Gene expression kinetics 
along trajectories were modeled via generalized additive models 
with thin-plate splines as Equation 2:

g(Eg) = β0 + fg(τ) + ϵ (2)

where fg represents the spline function (k = 10 basis functions) 
for target genes, incorporating group (ICH vs. control) as covariates 
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to identify condition-specific changes. Temporal trends were 
visualized through custom LOESS-smoothed (span = 0.75) 
expression plots with 95% CIs.

For visualization and analysis of gene expression dynamics 
along pseudotime (Figures 4C–E), the average expression level was 
calculated solely based on cells with detectable expression (non-
zero counts) for the respective gene. This approach focuses on the 
expressing cell population and provides a clearer representation of 
transcriptional dynamics without dilution by non-expressing cells 
(Wu et al., 2025; Vallejos et al., 2017). This analytical strategy was 
particularly important for capturing the subtle expression patterns 
of glucose metabolism-related genes, which typically exhibit low-
abundance signals that would otherwise be obscured in bulk cell
analyses. 

2.6 Spatial transcriptomics analysis

Spatial transcriptomics analysis leveraged preprocessed Visium 
data from lesional (hemorrhage-affected) and contralateral 
hemispheres across nine timepoints (Naive to D28). Microglia-
specific spatial spots were identified through reference annotation. 
For each target gene, temporal expression proportion were 
normalized to naive-state baselines as Equation 3:

Enorm =
Et

Enaive
(3)

where Et is the expression proportion at timepoint t and Enaive
is the average expression percentage in naive animals. Temporal 
dynamics were quantified through two complementary metrics: 
expression abundance (normalized proportion of expressing 
microglia spots) and expression magnitude (mean expression level 
across expressing spots). 

2.7 Cell-cell communication analysis

Cell-cell communication analysis were accomplished using 
CellChat (version 2.1.2) (Jin et al., 2025). The analysis was 
conducted separately for control and ICH groups using the 
mouse database (CellChatDB.mouse). Given the absence of 
established interactions for key metabolic genes in standard 
databases, we augmented CellChatDB with experimentally 
validated ligand-receptor pair of our target genes. We custom-
designed the Hspa5-related pathway based on literature 
references, incorporating known interactions involving Hspa5 
(a key endoplasmic reticulum chaperone implicated in stress 
response and neuroinflammation) to ensure comprehensive 
coverage of metabolic-immune crosstalk in neurological 
contexts. These interactions were selected from STRING 
(confidence>0.7) and literature evidence of physical binding in 
neurological contexts. Key computational parameters included: 
communication probability calculation using a truncated 
mean model with trim = 0.25 to reduce outlier effects; 
minimum cell group size threshold of 10 cells (min.cells 
= 10) for interaction filtering; and non-protein interaction 
allowance (non_protein = TRUE) to capture comprehensive 

interaction types. Communication probabilities mean model as
Equation 4:

Pij =∑k
wk ·

1
m

m

∑
r=1

Tr(Lk,Rk) (4)

where Tr trims 25% extremes of ligand/receptor 
expressions, wk weights interactions by frequency, and 
m denotes metacells. Differential pathway engagement 
(ICH vs. control) was assessed through 10,000-label 
permutations, with FDR correction for ligand-receptor 
family dependencies. Network centrality metrics were 
computed using netAnalysis_computeCentrality () to identify 
topologically critical nodes in the neuroinflammatory-metabolic 
crosstalk network. 

2.8 Animal models of subarachnoid 
hemorrhage and scRNA

All animal experiments were conducted in accordance with 
the National Institutes of Health Guide for the Care and Use of 
Laboratory Animals. The protocols were reviewed and approved 
by the Institutional Animal Care and Use Committee of Zhejiang 
University. Adult male C57BL/6 mice (aged 8–10 weeks, weighing 
22–25 g) were purchased from SLAC Laboratory Animal Co., 
Ltd. (Shanghai, China). Subarachnoid hemorrhage (SAH) was 
induced via endovascular perforation following established 
protocols (Fujimoto et al., 2016).

For scRNA-seq preparation, fresh brain tissues (1 day after 
SAH) were rapidly dissected and transferred into cold Hibernate 
A solution (BrainBits, LLC) to maintain cellular viability. Tissue 
dissociation was performed. The digested tissue was mechanically 
triturated 20 times using a 5 mL serological pipette and filtered. 
After centrifugation, the pellet was resuspended and centrifuged 
to remove myelin debris and enrich viable cells. Erythrocytes were 
lysed using ACK lysing buffer. Single-cell suspensions were loaded 
onto a Chromium Single Cell B Chip (10x Genomics) targeting a 
recovery of 8,000–10,000 cells per sample, and scRNA-seq libraries 
were constructed using the Chromium Single Cell 3′ Reagent 
Kit v3.1 according to the manufacturer’s protocol. All subsequent 
bioinformatic analyses, including quality control, normalization, 
clustering, and differential expression, were performed as described 
in the Methods section above.

Note: The SAH model data described in this section 
were generated exclusively to provide supplementary context
(Supplementary Figure S3) for the discussion of Hk2 dynamics 
across hemorrhagic stroke models. 

2.9 Statistical validation and reproducibility

All inferences incorporated rigorous multiplicity control. 
False discovery rates were estimated via Benjamini-Hochberg for 
independent hypotheses and Benjamini-Yekutieli for dependent 
tests. Effect sizes for differential interactions were reported as 
Cohen’s d with 95% confidence intervals from 10,000 bootstrap 
samples. Reproducibility was guaranteed through Docker 
containerization by tidyverse (version 2.0.0) (Kandel et al., 2011), 
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with computational environments frozen at analysis runtime. 
Parameter configurations were version-controlled via Git, and 
all random processes were seeded (seed = 349) for deterministic 
execution. 

3 Results

3.1 Bulk RNA-seq analysis focused on 
dysregulated glucose metabolism genes

To establish whether glucose metabolic pathways are 
transcriptionally altered following ICH, we first analyzed bulk 
RNA-seq dataset (GSE24265) comprising human perihematomal 
tissues and contralateral controls. Using a targeted enrichment 
strategy focused on glucose metabolism, we performed standard 
differential expression analysis and enrichment analysis, followed 
by intersection with gene sets and pathway lists from public GSEA 
resources (Supplementary Figures S1A–D).

As anticipated, differential expression analysis revealed a limited 
number of genes with modest changes: 11 were upregulated (Cxcr4, 
Tgfbi, Isg20, Tktl1, Slc2a3, Hspa5, Hk2, P4ha1, Slc2a1, Stc2, 
B4galt1) and two were downregulated (Sox9, Foxk1), as shown 
in the volcano plot with relatively low log2FC and -log10 (p-value) 
values (Supplementary Figure S1B). These genes were selected for 
subsequent analyses. Gene Ontology (GO) analysis highlighted 
processes primarily associated with immediate stress responses 
and inflammatory pathways, consistent with previously reported 
outcomes. Only two biological processes were directly related to 
glucose metabolism: “response to nutrient levels” and “cellular 
response to glucose starvation” (Supplementary Figure S1D). 
Furthermore, KEGG pathway enrichment analysis affirmed 
the biological coherence of this gene set and supported its 
central role in metabolic processes (Supplementary Figure S1C), 
suggesting a potential rewiring of central carbon metabolism in 
the human brain following ICH. These results confirmed subtle 
but coherent dysregulation of glucose metabolic genes in human 
ICH tissues, justifying a higher-resolution investigation into their 
cell-type-specific expression. 

3.2 ICH induces inflammation activation 
and alters glucose metabolism

Single-cell RNA sequencing analysis revealed substantial 
alterations in the cellular composition following ICH. The 
UMAP (uniform manifold approximation and projection) 
visualization demonstrated distinct clustering patterns between 
control and ICH conditions, with microglia/macrophages showing 
expanded distribution in ICH samples alongside the emergence 
of neutrophil populations (Figure 1A). Quantitative analysis 
revealed significant changes in cell type proportions, with 
microglia/macrophages increasing from 24.7% in controls to 
38.7% in ICH conditions, while neutrophils increased dramatically 
from 0.4% to 3.0% (Figure 1B). These shifts indicate substantial 
immune cell infiltration and microglial population changes 
following hemorrhagic injury. Cell type annotation was confirmed 
through violin plots displaying established marker genes, including 

Tmem119 for microglia, Gfap for astrocytes, and S100a9 for 
neutrophils, which showed distinct expression patterns validating 
the classification accuracy (Figure 1C).

Having established the overall inflammatory cellular landscape, 
we next asked whether our prioritized glucose metabolism genes 
exhibited cell-type-specific expression patterns that could explain 
their potential role. Analysis of selected genes of interest across cell 
types revealed cell-specific expression patterns particularly relevant 
to glucose metabolism and inflammatory responses (Figure 1D). 
The glucose metabolism genes Hk2 and Hspa5 showed preferential 
expression in microglia/macrophages, while the genes Cxcr4 and 
Tgfbi exhibited elevated expression in neutrophils. These findings 
demonstrate that ICH induces not only population-level changes in 
microglial and neutrophil abundance but also specific upregulation 
of key genes involved in metabolic and inflammatory responses 
within these critical immune cell types. 

3.3 Single-cell WGCNA reveals key 
modules associated with 
neuroinflammation and metabolic 
reprogramming after ICH

To move beyond individual gene expression and uncover 
coordinated transcriptional programs that might link metabolic 
and inflammatory processes, we performed WGCNA. This 
approach identifies modules of co-expressed genes, revealing 
potential functional relationships that are not apparent in 
differential expression analysis alone. Hierarchical clustering 
identified 10 distinct co-expression modules (designated ICH-
module1 to ICH-module10), each represented by unique 
colors and comprising genes with highly correlated expression 
patterns across cell types (Figure 2A). Module assignment 
revealed specific functional specialization, with selected genes 
of interest showing particularly high module membership 
(kME) values (Figure 2B). The kME metric, representing 
intramodular connectivity, quantifies how well each gene’s 
expression correlates with the module eigengene, with values 
approaching ±1 indicating strong positive or negative association. 
Comparative analysis between ICH and control conditions 
revealed significant differential module eigengene expression 
(Supplementary Figure S2A,B), with modules 1 and 4 showing 
marked upregulation in ICH groups. Functional enrichment 
analysis of module genes (Supplementary Figures S2C–E) 
demonstrated significant associations with key biological processes, 
providing mechanistic insights into the coordinated transcriptional 
reprogramming following ICH.

Notably, several modules exhibited characteristics associated 
with neuroinflammatory processes and, in part, metabolic 
functions. Module 3, for instance, contained both the endoplasmic 
reticulum stress regulator Hspa5 (kME = 0.61) and the glucose 
metabolism gene Hk2 (kME = 0.52), suggesting a possible 
interplay between metabolic reprogramming and cellular stress 
response within inflammatory cells. Module 1 was enriched 
for inflammatory response genes (e.g., Cebpb and Cd44), 
indicating its potential role in acute neuroinflammation. Radar 
plot analysis demonstrated cell type-specific contributions to 
module composition, revealing that microglia/macrophages showed 
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FIGURE 1
Cellular composition changes and gene expression alterations following ICH. (A) UMAP visualization shows the distribution of 13 major cell types 
between control and ICH conditions. (B) Bar plot compares proportional changes in cell populations, with microglia/macrophages and neutrophils 
significantly increased in ICH group. (C) Violin plots displays gene markers of cell clusters. (D) Dot plot shows expression patterns of genes of interest 
across cell types, with point size indicating the percentage of cells expressing the gene (pct.exp) and color representing average expression level.

predominant involvement in modules 3, 4, 5, and 7, while 
neutrophils contributed significantly to module 1 (Figure 2C). 
Module correlation analysis further revealed both positive and 
negative relationships among modules (Figure 2D). The strong 

positive correlation observed between module 1 (enriched in 
inflammatory genes) and modules 3–5 (which contain several 
metabolism-associated genes) may indicate coordinated regulation 
between neuroinflammatory responses and certain metabolic 
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FIGURE 2
Single-cell WGCNA reveals functional modules and their cellular associations. (A) Hierarchical clustering dendrogram of co-expression modules. (B)
Bar plot displaying module membership (kME values) of hub genes and selected genes across all modules. (C) Radar plots illustrating cell type 
enrichment proportion for each co-expression module. Cell type abbreviations: Oligodendrocyte (OL), Microglia/Macrophage (MM), Endothelial cell 
(EC), Neuroblast (NB), Oligodendrocyte precursor cell (OPC), Pericyte (PC), Neutrophil (Neu), Lymphocyte (Lymph), Astrocyte (Astro), Dendritic cell 
(DC), Ependymal cell (Epend). Radial axis represents normalized enrichment proportion (0%–100%). (D) Module correlation heatmap showing Pearson 
correlation coefficients between module eigengenes. Purple indicates positive correlation, green indicates negative correlation. (E) UMAP visualization 
of genes across co-expression modules, with hub genes and selected target genes highlighted. (F) Protein-protein interaction network of hub genes 
and selected genes. Key genes Tnf, Hspa5, and Hk2 are prominently showed, illustrating their potential interconnected relationships within the network.

pathways, though further functional validation is warranted to 
establish direct mechanistic links.

UMAP visualization of module genes highlighted the spatial 
organization of co-expression relationships, with hub genes 
and selected target genes forming distinct clusters within the 
topological space (Figure 2E). Notably, Hspa5 and Hk2 occupied 
adjacent positions within the module 3 cluster, indicating their 
strong relationship. The spatial proximity between these key 
genes suggests potential functional interactions in the cellular 
response to hemorrhagic injury. Protein-protein interaction 

analysis further confirmed biologically relevant networks among 
hub genes (Figure 2F), with glucose metabolism genes forming 
interconnected subnetworks with inflammatory mediators. 
Crucially, Tnf, Hspa5, and Hk2 appeared as central nodes 
within their respective modules and showed direct protein-
protein interactions, forming a triangular network that bridges 
inflammatory signaling (Tnf), endoplasmic reticulum stress 
response (Hspa5), and glucose metabolic processes (Hk2). This 
interconnected relationship suggests a molecular framework 
through which neuroinflammatory signals may regulate metabolic 
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adaptation in glial cells following ICH. To validate this predicted 
interplay and investigate its cellular context, we next focused on 
microglial subpopulations. 

3.4 Analysis of co-enrichment relationships 
and microglial subpopulation dynamics 
after ICH

Given the central role of microglia and the prominent placement 
of our target genes in microglia-enriched WGCNA modules, we 
sought to investigate their dynamics at a higher resolution within 
microglial subpopulations. We specifically investigated the co-
enrichment relationships among Hspa5, Tnf, and Hk2 within 
microglial subpopulations. The UMAP plot revealed spatially 
significant correlations between Hspa5-Tnf and Hk2-Tnf expression 
pairs across microglial cells (Figures 3A,B). The bubble plot directly 
illustrated the co-enrichment patterns of Hspa5, Tnf, and Hk2 across 
all major cell types, particularly in microglia (Figure 3C). To further 
characterize the cellular contexts underlying these coordinated 
expression patterns, we performed high-resolution clustering of 
microglia/macrophage populations, identifying six transcriptionally 
distinct subpopulations (Figure 3D). UMAP visualization revealed 
clear separation among homeostatic microglia, disease-associated 
microglia (DAM), M1-like polarized cells (M1 cell), M2-like 
polarized cells (M2 cell), proliferating microglia, and lipid-
associated microglia (LAM). Key markers of these microglial 
subpopulations were showed in Figure 3E according to reference 
publications. Figure 3F illustrates the shifts in cellular composition 
following ICH. A marked reduction can be observed in homeostatic 
microglia, accompanied by substantial expansions of DAM, M1-
like, and LAM subpopulations, indicating widespread microglial 
activation and phenotypic transformation post-ICH. These 
alterations suggest a dynamic reprogramming of microglial states in 
response to hemorrhagic injury.

Transcriptional profiling of microglial subpopulations revealed 
distinct expression patterns through volcano plot analysis 
(Figure 4A). Not surprisingly, metabolic genes like Hk2 were not 
seen in the top5 genes. Then, pseudotemporal trajectory analysis 
reconstructed two major differentiation pathways originating 
from homeostatic microglia. The analysis suggested two major 
trajectories: a primary inflammatory pathway progressed through 
homeostatic to M1-like polarization and DAM/LAM, while a 
secondary reparative pathway followed homeostatic to proliferating 
and M2-like differentiation (Figure 4B). These cellular transitions 
appear consistent with the state conversions observed in Figure 3, 
indicating possible reprogramming routes after ICH, with Pathway 
1 showing substantial expansion under hemorrhagic conditions. 
However, as pseudotime analysis is computational and inferential, 
these pathways should be interpreted as hypothetical models rather 
than definitive biological processes.

Time-resolved analysis of gene expression and associated 
cellular distributions along pseudotime revealed distinct patterns 
between ICH and control groups (Figures 4C–E). In the Tnf-
associated trajectory (Figure 4C), ICH samples exhibited markedly 
elevated expression levels that peaked at pseudotime point 14 
(mainly M1-like cells), constituting 27.4% of total microglia, 

compared to only 3.97% in controls at the same timepoint. The Hk2-
associated pathway (Figure 4D) demonstrated a characteristic rise-
and-fall pattern in ICH conditions, with expression levels reaching 
maximum at pseudotime 14 (24.9% of responsive cells) before 
declining, contrasting with the stable low expression in controls 
(3.85% of responsive cells). Hspa5-associated dynamics (Figure 4E) 
showed a consistent decline in expression levels throughout the 
pseudotemporal trajectory in ICH conditions, with responsive 
cell proportions progressively increasing from 6.35% to 21.6% 
between pseudotime 6–18, while control samples maintained 
relatively stable expression (2.75–3.05). It is important to note that 
these pseudotime-based patterns may not directly reflect real-time 
biological dynamics which serves to generate hypotheses for further 
validation.

Notably, both Tnf and Hk2 exhibited similar expression 
patterns characterized by initial increase followed by subsequent 
decrease, which could suggest potential coordinated regulation 
during microglial activation. In contrast, Hspa5 demonstrated an 
opposing trend with persistent downregulation, possibly indicating 
a negative relationship with the inflammatory-metabolic activation 
represented by Tnf and Hk2. These contrasting dynamics may 
imply that Tnf and Hk2 participate in a coordinated manner in 
the microglial response to hemorrhagic injury, while Hspa5 appears 
to be inversely regulated, potentially representing counteracting 
pathways in the metabolic-inflammatory network activated 
following ICH. 

3.5 Spatial transcriptomic analysis of 
selected genes through temporal lines

To validate the pseudotemporal dynamics we observed and 
map them to true biological time and anatomical space, we 
performed spatial transcriptomic analysis in mouse models of 
ICH. Figure 5A illustrates the anatomical regions analyzed, with 
colored areas indicating distinct brain areas affected by the 
autologous blood injection (more detailed tissue section images are 
available in the original publications (Xiang et al., 2025)). Spatial 
expression analysis (Figure 5B) revealed temporally regulated 
patterns showing significantly elevated expression of Hspa5, Hk2, 
and Tnf surrounding the hematoma region (left hemisphere) 
compared to the contralateral side (right hemisphere) across several 
timepoints. Particularly, Hk2 and Tnf demonstrated the most 
pronounced spatial enrichment around the hemorrhage site, with 
consistent high expression patterns observed across consecutive 
timepoints, indicating coordinated spatial regulation of these genes 
in response to hemorrhagic injury.

Temporal dynamics analysis in microglia showed distinct 
expression patterns for each gene (Figures 5C–E). Hspa5 expression 
(Figure 5C) demonstrated sustained upregulation in the lesion 
hemisphere (blue line) throughout the time course, maintaining 
1.2–1.5-fold higher expression compared to the control hemisphere 
(orange line) from D1 to D28. Hk2 expression (Figure 5D) exhibited 
a biphasic response, with initial activation at early timepoints 
(H3-H12) followed by progressive suppression from D1 onward, 
showing particularly strong expression in the lesion hemisphere. Tnf 
expression (Figure 5E) displayed an acute inflammatory response, 
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FIGURE 3
Co-enrichment relationships and microglial subpopulation after ICH. (A,B) The UMAP plots show co-enrichment relationships between (A) Hspa5 and 
Tnf, and (B) Hk2 and Tnf across microglial subpopulations. (C) The bubble plot illustrated the co-enrichment patterns of Hspa5, Tnf, and Hk2 in 
microglia. (D) UMAP visualization of microglia/macrophage clusters, showing six transcriptionally distinct subpopulations: homeostatic microglia, 
disease-associated microglia (DAM), M1-like polarized cells (M1_cell), M2-like polarized cells (M1_cell), proliferating microglia, and lipid-associated 
microglia (LAM). (E) Dot plot displaying marker gene expression for each microglial subpopulation. Dot size represents the percentage of cells 
expressing the gene (pct.exp), and color intensity indicates average expression level. (F) Stacked bar chart comparing proportional changes of 
microglial subpopulations between Control and ICH conditions.

peaking at H6-D1 in the lesion hemisphere with approximately 3-
fold higher expression compared to controls, followed by gradual 
resolution by D7.

At D7 post-ICH, all three genes exhibited a remarkable 
simultaneous reduction in expression. Both the hematoma-
surrounding region and contralateral hemisphere showed 

substantially diminished signals for Hspa5, Hk2, and Tnf compared 
to earlier timepoints, with expression levels dropping to or below 
naive baseline values. This transient global suppression may suggest 
a potential synchronized regulatory mechanism or cellular state 
transition occurring specifically at this timepoint in the ICH 
pathological progression. 
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FIGURE 4
Pseudotemporal dynamics of gene expression and cellular distribution in microglial subpopulations. (A) Volcano plot displaying differentially expressed 
genes across microglial clusters. Red dots denote significantly upregulated genes, while blue dots indicate downregulated genes. (B) Reconstructed 
pseudotemporal trajectory suggesting two major differentiation pathways originating from homeostatic microglia. (C–E) Dynamics of Tnf, Hk2, and 
Hspa5 expression along pseudotime in Control (blue) and ICH (orange) groups. Expression levels were calculated based on cells with detectable 
counts (non-zero expression) to minimize dilution effects from non-expressing cells. Curves represent mean expression values, and shaded areas 
indicate 95% confidence intervals. Corresponding figures reflect the number of responsive cells for each gene at key pseudotime points.

3.6 Cell-cell communication analysis 
reveals altered inflammatory signaling 
networks after ICH

To investigate how the observed gene expression translate into 
altered cellular crosstalk, we performed a comprehensive cell-
cell communication analysis focusing on microglia/macrophages 
and neutrophils. This analysis aimed to determine whether the 
metabolic and inflammatory genes identified in our previous 
results (particularly Hspa5, Hk2, and Tnf) participate in specific 
intercellular signaling pathways that are modified following ICH.

Global communication analysis revealed significantly enhanced 
signaling strength in the ICH group compared to controls 
(Figure 6A), with red edges indicating interactions that were 
predominantly elevated in ICH conditions. This was particularly 
evident in the communication involving microglia/macrophages 

and neutrophils, which showed the most substantial increases 
in signaling activity. Directional signaling analysis (Figure 6B) 
demonstrated distinct reorganization of signaling networks after 
hemorrhagic injury, with microglia/macrophages exhibiting 
increased outgoing (from 2.0 to 3.0) and incoming (from 5.0 to 5.5) 
weighted communication strength. Neutrophils showed even more 
pronounced changes, with incoming communication increasing 
from 1.8 to 2.8 and outgoing communication rising from 0.7 to 1.2, 
indicating their enhanced role in both receiving and sending signals 
in the ICH environment.

Pathway-specific comparison between groups (Figure 6C) 
identified TNF signaling as one significant upregulated pathway 
in ICH conditions, while Hspa5-and Hk2-associated pathways 
showed no significant intergroup differences. Detailed mapping 
of TNF signaling networks (Figure 6D) revealed two dominant 
communication modes in ICH: paracrine signaling from 
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FIGURE 5
Spatiotemporal transcriptomic dynamics of selected genes across true timepoints. (A) Anatomical illustration of the autologous blood 
injection-induced ICH model in mice. Abbreviations denote: CA, Ammon’s horn; CAsp, field Ammon’s horn, pyramidal layer; CTXsp, cortical subplate; 
DG, dentate gyrus; FT, fiber tracts; HY, hypothalamus; injured_cortex, injured cortex region; injured_PAL, injured pallidum region; injured_STR, injured 
striatum region; isl, islands of Calleja; islm, major island of Calleja; L2/3, cortical layer 2 and cortical layer 3; L4, cortical layer 4; L5, cortical layer 5; L6, 
cortical layer 6; Lesion, Lesion region; LSX, lateral septal complex; MH, medial habenula; OLF, olfactory areas; PAL, pallidum; RT, reticular nucleus of the 
thalamus; sAMY, striatum-like amygdala nuclei; STRd, striatum dorsal region; STRv, striatum ventral region; TH, thalamus; VS, ventricular systems. (B)
Spatial expression dot plot displaying spatial expression patterns of Hspa5, Hk2, and Tnf across multiple timepoints (H: hours; (D) days post-ICH) 
compared to the naive state. (C–E) Line plots showing temporal expression dynamics in microglia for Hspa5, Hk2, and Tnf in both lesion (left, orange) 
and control (right, blue) hemispheres. Y-axis represents mean expression level calculated from cells with detectable expression. Line thickness 
corresponds to the proportion of expressing cells (normalized to naive baseline).

microglia/macrophages to neutrophils accompanied by autocrine 
signaling within neutrophils. These patterns demonstrate how TNF-
mediated communication is amplified through both intercellular 
crosstalk and intracellular reinforcement in the inflammatory 
microenvironment post-ICH.

Cellular component analysis (Figure 6E) revealed cell-type-
specific communication patterns for the highlighted genes. While 
Hspa5-associated signaling showed no significant differences 
between cell types, TNF signaling exhibited particularly strong 
outgoing communication from microglia/macrophages and 
incoming communication to neutrophils in ICH conditions, 
indicating a specific microglia/macrophages-to-neutrophil 
signaling axis. Finally, ligand-receptor pair analysis (Figure 6F) 

identified the most significantly altered specific interactions between 
microglia/macrophages and their major communication partners 
(neutrophils and pericytes) in ICH versus control conditions. 
These pairs included two TNF-related interactions that were 
substantially strengthened in ICH group, in which Tnf-Tnfrsf1b was 
the most significantly altered interaction in microglia/macrophage-
to-neutrophil communication. While HSPA5-related pairs (e.g., 
HSPA5-LRP1) were detectable, from previous analysis they may 
show minimal condition-specific changes, suggesting baseline 
biological functions rather than ICH-specific roles. These findings 
mechanistically explain how TNF-mediated signaling drives 
inflammatory amplification through specific molecular cascades 
post-hemorrhage.
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FIGURE 6
Cell-cell communication network remodeling after ICH. (A) Global communication network showing significantly enhanced signaling strength in ICH 
(red edges) versus control (blue). (B) Scatter plot shows alterations of outgoing and incoming communication strength between two conditions. (C)
Stacked bar plot illustrates pathway-specific comparison in two groups. (D) Network visualization illustrating TNF signaling with paracrine 
(microglia→neutrophils) and autocrine (neutrophil self-communication) interactions. (E) Cellular communication patterns showing outgoing (left) and 
incoming (right) signaling for specified genes across cell types. Color intensity indicates communication probability. (F) Altered ligand-receptor pairs 
between microglia/macrophages and their communication partners. Color indicates interaction probability.

Together, these analyses demonstrate that TNF-mediated signaling 
undergoes the most substantial reorganization after ICH, particularly 
through enhanced microglia-to-neutrophil communication. This 

positions TNF as the primary intercellular messenger in the metabolic-
inflammatory network, while Hspa5 and Hk2 appear to function more 
as intracellular regulators of cell state. 
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4 Discussion

Cerebrovascular accident triggers a complex neuroinflammatory 
response intertwined with profound metabolic alterations, 
yet the interplay between these processes remains poorly 
understood. Glucose metabolic pathways, being fundamental 
cellular functions, often exhibit subtler changes compared to 
dramatic inflammatory shifts, causing them to be frequently 
overlooked in conventional differential expression analyses focused 
on the most statistically significant changes (Lei et al., 2025). 
This study was specifically designed to overcome this limitation 
by employing a targeted approach to investigate how glucose 
metabolism and neuroinflammatory signaling interact at cellular 
and molecular levels following ICH.

Bulk tissue analysis confirmed that while glucose metabolism 
pathways showed only modest changes in overall expression, 
they demonstrated consistent and biologically relevant alterations 
across analytical platforms. These findings align with emerging 
concepts that metabolic reprogramming represents a fundamental 
component of neuroinflammation rather than a peripheral 
phenomenon (Li Y. et al., 2024; Thieren et al., 2025), while 
previous studies have established that glycolytic enzymes support 
immune cell activation and cytokine production (Namgaladze 
and Brüne, 2023). The concurrent expansion of DAM, M1-
like cells, and LAM subsets suggests parallel activation of 
inflammatory, phagocytic, and lipid metabolic pathways in response 
to hemorrhagic injury. Notably, through single-cell WGCNA and 
subsequent PPI analysis, we identified three key regulators that 
appear to form a coordinated network: Tnf, Hk2, and Hspa5. These 
genes exhibited interconnected expression patterns and protein 
interactions suggesting functional relationships.

Previous research has demonstrated that TNF is a master 
regulator of neuroinflammation following ICH, primarily released 
by activated M1 microglia and macrophages. TNF amplifies the 
inflammatory cascade by promoting further microglial activation 
and recruiting peripheral leukocytes, while also contributing to 
excitotoxic neuronal death. Preclinical studies demonstrate that 
TNF inhibition attenuates edema and improves neurological 
outcomes (Tschoe et al., 2020; Jia et al., 2024). In the context 
of metabolic regulation, HK2 plays a divergent role under 
different neuropathological conditions. In ischemic stroke, HK2 
influences microglial metabolic reprogramming and inflammatory 
modulation: dexmedetomidine (DEX) pretreatment upregulates 
HK2, enhancing glycolytic flux and oxidative phosphorylation, 
which sustains microglial phagocytic capacity and promotes an 
anti-inflammatory phenotype (Zhang et al., 2025). Conversely, 
in the acute phase of intracerebral ICH, HK2 is significantly 
downregulated at day 1 and day 3 post-ICH, resulting in 
impaired glycolysis and reduced glucose-6-phosphate production. 
This metabolic deficit triggers mitochondrial dysfunction, ROS 
accumulation, and amplified release of pro-inflammatory cytokines 
(e.g., IL-1β, IL-6, TNF-α), thereby exacerbating neural injury 
(Li Y. et al., 2024). Notably, a partial recovery of HK2 expression 
was observed specifically in microglia by day 7, suggesting a 
time-dependent shift in metabolic reprogramming. To investigate 
whether this expression pattern of HK2 regulation could be 
generalized to other hemorrhagic conditions, we employed a 
SAH model as a complementary approach. Consistent with this 

temporal dynamic, our early SAH model (day 1) revealed an 
increase in microglial proportion accompanied by decreased HK2 
expression (Supplementary Figures S3A–D), while the ICH model 
(day 14) showed elevated HK2 levels (Supplementary Figure S3E) in 
microglia. These contrasting responses across hemorrhagic models 
highlight a common pattern of HK2 regulation characterized by an 
initial decline followed by a later rise, with day 7 representing a 
critical transition point in the metabolic and inflammatory evolution 
of hemorrhagic stroke. Meanwhile, HSPA5 (also known as GRP78) 
serves a protective role by mitigating endoplasmic reticulum 
(ER) stress and inhibiting neuronal ferroptosis. Following ICH, 
HSPA5 is upregulated as part of the unfolded protein response to 
counteract ER stress-induced apoptosis, which directly binds to and 
stabilizes GPX4, a key regulator of ferroptosis, thereby reducing lipid 
peroxidation and iron-dependent neuronal death (Li J. et al., 2024). 
Its expression is modulated by various miRNAs, such as miR-181b 
and miR-378a-5p, forming critical regulatory axes that influence 
neuronal survival (Wang et al., 2019; Wang et al., 2022).

To further elucidate the dynamic and spatial coordination 
of these key players, we employed pseudotemporal trajectory 
analysis as a hypothesis-generating tool. The analysis indicated 
that Tnf and Hk2 exhibit coordinated expression dynamics 
along the inflammatory differentiation pathway, while Hspa5 
shows an opposing trend. This inverse relationship could suggest 
potential antagonistic regulation between ER stress response 
and glycolytic metabolism during microglial activation, possibly 
representing a metabolic checkpoint that influences inflammatory 
outcomes. To explain this, we propose a potential mechanism: 
HSPA5, as a central ER chaperone, likely regulates HK2 and 
TNF through two main pathways. Firstly, HSPA5 may trigger 
chaperone-mediated autophagy (CMA) to degrade glucose 
metabolic enzymes, suppressing glycolysis—this is supported by 
findings that HSPA5 activation enhances AMPK-driven autophagy, 
leading to metabolic reprogramming (Cook and Clarke, 2012; 
Binder and Pedley, 2023). Secondly, HSPA5 could modulate UPR 
signaling (e.g., via ERN1/JNK) to sustain TNF-α production, as 
knockdown experiments reduce inflammation in ICH models 
(Wang et al., 2022). This reinforces HSPA5’s role as a metabolic-
inflammatory integrator. However, as pseudotime analysis is 
inferential and sensitive to parameters, it requires validation with 
temporal data, motivating our further spatial transcriptomics 
approach. However, it should be mentioned that pseudotime 
analysis is inherently inferential and sensitive to parameters such 
as starting cell selection; it does not equate to biological time and 
should be interpreted with caution, as evidenced by methodological 
limitations discussed in Barile et al. (2021) and Zheng et al. (2023). 
Therefore, these observations are speculative and require validation 
through complementary temporal data, which prompted our 
subsequent spatial transcriptomics investigation across multiple 
timepoints.

Spatial transcriptomic analysis delineated the anatomical 
distribution of molecular alterations following ICH. Based on 
the predominant focus of ICH pathophysiology on inflammation 
and lipid pathways, no significant changes were observed in 
glucose metabolism-related genes, such as HK2, underscoring 
those metabolic adaptations. Thus, when we specifically focus on 
glucose metabolism, our spatial and temporal analysis (from 3 h to 
28 days) reveals that HK2 upregulation in perihematomal regions 
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is an early and dynamic response, with expression differences 
between ipsilateral and contralateral sides beginning to narrow 
by day 3 and declining rapidly by day 7. This observation can 
be partially explained by the findings of Askenase et al. (2021), 
which demonstrated that HK2 expression is elevated in the acute 
phase (within 4 days post-ICH) in CD14+ monocytes/macrophages 
and neutrophils within the hematoma, but decreases over time 
as the response transitions to a sub-acute stage. The apparent HK2 
elevation in our spatial data may reflect the inherent resolution limits 
of spatial transcriptomics, where each ‘spot’ captures a mixture of 
cell types, including infiltrating inflammatory cells that express 
HK2 under stress, thereby contributing to the perihematomal 
signal. In this context, our findings may not be contradictory 
with previous findings, thus, underscoring the conserved nature 
of metabolic reprogramming towards glycolysis post-ICH. Given 
this alignment, the perceived discrepancies with other reports likely 
stem from methodological differences in cellular resolution. While 
spatial transcriptomics offers valuable spatiotemporal insights, its 
limitation in distinguishing pure cell populations, which may lead 
to apparent contradictions due to the inclusion of multiple cell 
types (e.g., neutrophils or monocytes) that overexpress HK2 under 
stress. This technical aspect highlights the need for complementary 
approaches to fully resolve cell-specific responses.

Furthermore, to decipher how these molecular changes 
influence other cell types, cell-cell communication analysis revealed 
that among our target genes, TNF signaling undergoes the most 
substantial reorganization post-ICH. The enhanced microglia-
to-neutrophil communication via Tnf-Tnfrsf1b pairs suggests a 
specific mechanism through which activated microglia recruit 
and prime peripheral immune cells, amplifying the inflammatory 
cascade. This is supported by the findings of Zhang et al. 
(Zhang et al., 2024), which identified elevated TNF signaling in 
neutrophils, with microglia-derived osteopontin interacting with 
CD44 on monocytes, but also emphasized TNF-TNFRSF1B as a key 
pathway driven by microglia-monocyte crosstalk in ICH. However, 
it is important to note that our CellChat analysis is based on 
transcriptomic data, which provides valuable insights into potential 
communication pathways but does not directly demonstrate 
protein-level interactions or causal relationships. While existing 
evidence supports the functional importance of TNF signaling in 
ICH pathophysiology - including studies showing Tnf-Tnfrsf1b
signaling exacerbates neuroinflammation through exosomal 
pathways (Zhu et al., 2024; Puy et al., 2022; Kawamura et al., 2024) 
and our own data showing elevated inflammatory cytokines - 
we acknowledge that these findings remain inferential regarding 
actual protein-level interactions. Future studies employing targeted 
approaches such as co-culture experiments, protein interaction 
assays, or conditional knockout models will be essential to 
validate the functional significance of the TNF-TNFRSF1B axis in 
microglia-neutrophil communication. Such investigations could 
specifically test whether disruption of this pathway attenuates 
neuroinflammation and improves outcomes in ICH models. On 
the other hand, the absence of significant changes in Hspa5
and Hk2-associated pathways indicates that while these genes 
participate in cellular adaptation, they may not drive direct 
intercellular signaling to the same extent as TNF. This distinction 
highlights the importance of differentiating intracellular metabolic 

adaptation from intercellular communication in understanding 
neuroinflammation.

Our study has several limitations that should be considered 
when interpreting the findings. First, the integrative multi-omics 
approach utilizes data from different species (human bulk RNA-
seq, mouse single-cell and spatial transcriptomics), technologies, 
and time points. We mention that our primary goal was conceptual 
integration and hypothesis generation, not directly quantitative 
cross-species comparison. Although we applied state-of-the-art 
batch correction and normalization methods, inherent biological 
differences between species (e.g., neuroinflammatory responses) 
and the mismatch in resolution (bulk tissue vs. single-cell vs. spatial 
transcriptomics) limit the robustness of direct comparisons. We 
mitigated this by focusing on evolutionarily conserved pathways 
and core regulatory genes (e.g., the TNF signaling axis) reported 
across both human and murine studies of neuroinflammation. 
Second, the temporal dynamics were reconstructed from datasets 
with non-identical timepoints. While this provided a useful view for 
analysis, subtle phase differences between human and mouse disease 
progression may remain. Third, our conclusions are primarily based 
on transcriptional evidence. Protein-level validation and functional 
experiments using genetic or pharmacological perturbations are 
required to confirm the mechanistic roles of the identified genes 
in our further study. Finally, the use of public datasets, despite 
rigorous quality control and batch effect correction, may carry 
unresolved technical variation. Future studies employing uniform 
platforms, matched time-series, and cross-species validation at 
the protein and functional levels will be essential to translate 
these findings.

Future studies should investigate the causal relationships 
between these metabolic and inflammatory pathways using cell-
specific knockout models. The Day 7 transition point identified 
in our temporal analysis represents a particularly promising target 
for therapeutic intervention. This time point may correspond to 
a critical transition from acute inflammation to the initiation of 
repair and resolution phases post-ICH, a demarcation supported 
by prior literature on temporal immune dynamics after brain 
injury. Exploring whether metabolic modulation (e.g., with HK2 
inhibitors or ER stress mitigators) can alter microglial polarization 
states and improve functional outcomes, especially during this 
potential transition window, could have significant translational 
potential. 

5 Conclusion

Our integrated multi-omics analysis demonstrates that glucose 
metabolism and neuroinflammation are intimately connected in 
the ICH brain through coordinated changes in key regulators Hk2, 
Hspa5, and Tnf. These genes exhibit cell-type-specific, spatially 
organized, and temporally dynamic expression patterns that shape 
microglial activation states and cellular crosstalk. The identification 
of a synchronized transition point at Day 7 and the specific 
microglia-neutrophil signaling axis via TNF provides novel insights 
into the pathophysiology of ICH and suggests potential targets for 
future therapeutic strategies aimed at modulating the metabolic-
inflammatory interface.
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