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Viral adaptation across closely related hosts often proceeds through subtle 
molecular changes that escape detection by classical phylogenetic analyses. 
In waterfowl parvoviruses, we integrate AI-based protein language modeling, 
structural biophysics, and infection assays to reveal a continuous trajectory 
of host adaptation linking Goose parvovirus (GPV) and Muscovy duck 
parvovirus (MDPV). Protein embeddings of VP1 sequences reveal a smooth 
manifold bridging GPV and MDPV, which softens an apparent phylogenetic 
dichotomy into a graded molecular topology. Structural modeling identifies 
a flexible surface loop (residues 300–420) as a biophysical pivot. Along the 
embedding trajectory, this loop undergoes gradual conformational expansion 
and electrostatic neutralization, quantitatively linking embedding coordinates 
to capsid surface remodeling. Experimentally, a GPV-type isolate recovered 
from naturally diseased ducks replicated efficiently in duck embryos, duck 
embryo fibroblasts, and live ducklings, producing characteristic lesions. 
These results show that waterfowl parvoviruses evolve along a continuous 
molecular–electrostatic landscape in which cumulative structural adjustments 
enable cross-host infectivity. Our framework connects AI-derived molecular 
representations to biophysical mechanisms and biological function, supporting 
a model of viral host adaptation as a predominantly continuous process 
and providing a foundation for predicting cross-host potential in emerging 
viral systems.
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 1 Introduction

The stability and gradual drift of viral host spectra are central to understanding 
how pathogens cross species barriers and adapt to new hosts (Longdon et al., 2014; 
Parrish et al., 2008; Woolhouse et al., 2005; Geoghe et al., 2018). Host-range 
changes rarely occur as single, isolated events; rather, they arise from continuous 
molecular processes driven by receptor recognition, structural remodeling, and 
immune evasion. Capturing these subtle but cumulative shifts at the molecular 
level helps explain how viruses breach host boundaries and establish new adaptive 
lineages, forming a framework for understanding zoonotic potential. Yet, when
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host species are phylogenetically close, these molecular drifts 
become entangled within minimal sequence divergence, creating 
an evolutionary “gray zone” that escapes resolution by traditional 
phylogenetic trees and masks fine-scale adaptive transitions.

Classical phylogenetic reconstruction and multiple sequence 
alignment have long been the foundation for studying viral host 
adaptation. Yet when sequence variation is low or host associations 
overlap, these methods frequently yield shallow branches or 
unresolved nodes that mask potential intermediate states in an 
evolutionary continuum. This limitation underscores the need for 
computational frameworks capable of capturing smooth molecular 
transitions and connecting classical phylogenetic relationships with 
the underlying biophysical dynamics of adaptation.

Waterfowl parvoviruses provide a suitable system for examining 
such continuous host adaptation. Goose parvovirus (GPV), a small 
single-stranded DNA virus belonging to the Parvoviridae family, has 
long been considered host-restricted to geese (Zádori et al., 1995; 
Tatár-kis et al., 2004). It causes Derzsy’s disease, a severe 
enteric condition marked by intestinal hemorrhage and necrosis, 
leading to significant economic losses in waterfowl production 
worldwide (Palya et al., 2009). A closely related lineage, Muscovy 
duck parvovirus (MDPV), primarily infects Muscovy ducks, 
and both were traditionally regarded as evolutionarily distinct 
(Zádori et al., 1995; Li et al., 2021). However, since the 2010s, GPV-
like isolates have been detected in ducks in China and parts of 
Europe (Li et al., 2021; Ge et al., 2017; Chen et al., 2015). These 
isolates share over 95% nucleotide identity with classical GPV yet 
cause parvovirus-like disease in ducks, suggesting a molecular drift 
that bridges the GPV–MDPV host boundary.

Although our analyses focus on waterfowl parvoviruses, 
the underlying question is more general: how do structurally 
constrained, small, non-enveloped DNA viruses navigate host 
range evolution within the tight confines of compact capsids? 
Several families, including Parvoviridae, Circoviridae, and adeno-
associated viruses, share a common architectural logic in which a 
conserved capsid core is decorated by surface-exposed loops that 
mediate receptor binding and immune recognition, and in which 
relatively modest changes in these loops can alter host range or 
tissue tropism without wholesale remodeling of the capsid scaffold 
(Mietzsch et al., 2019). Structural and functional studies in these 
systems have implicated gradual remodeling of surface loops as 
a plausible route to modulating receptor usage or host specificity, 
particularly in compact DNA viruses with highly constrained capsid 
architectures (Govindasamy et al., 2003). These observations suggest 
that continuum-like trajectories of host adaptation may recur within 
structurally constrained DNA virus families, even if they are not 
expected to extend to RNA viruses or large DNA viruses that evolve 
through more episodic, recombination-driven dynamics. Against 
this backdrop, waterfowl parvoviruses provide a tractable model 
for quantifying a host-associated continuum in a representative 
compact DNA virus lineage.

Recent developments in artificial intelligence have opened new 
possibilities for exploring such fine-scale evolutionary processes. 
Protein language models (PLMs), including ESM2, learn implicit 
evolutionary rules from large protein sequence datasets in an 
unsupervised manner, capturing continuous relationships among 
structure, function, and host specificity (Elnaggar et al., 2022; 
LaTourrette and Garcia-Ruiz, 2022; Min et al., 2016; Hie et al., 2021; 

Hopf et al., 2017). Unlike conventional phylogenetic trees that 
impose discrete branching, PLM-derived embedding spaces encode 
molecular similarity as continuous coordinates within a high-
dimensional manifold, thereby reflecting gradual evolutionary 
transitions (LaTourrette and Garcia-Ruiz, 2022; Madani et al., 2023; 
Mao et al., 2019). This representation complements traditional 
approaches by characterizing host-associated sequence drift in 
geometric rather than temporal space. In parallel, advances in 
structural prediction—such as AlphaFold and RoseTTAFold—have 
demonstrated that these learned embeddings can be directly 
translated into accurate three-dimensional models, effectively 
linking statistical patterns to molecular structure (Baek et al., 2021; 
Townshend et al., 2021; Jumper et al., 2021).

Building upon these advances, we implemented an integrated 
framework combining AI-based prediction, experimental 
validation, and mechanistic interpretation (McInnes et al., 2018). 
Using the ESM2 model, we computed high-dimensional 
embeddings of the GPV VP1 protein and reconstructed host-
associated topology through UMAP projection and k-nearest-
neighbor classification (Cover and Hart, 1967; scikit-learn, 2024). 
The resulting embedding map revealed a continuous topology 
connecting goose- and duck-derived isolates, with several sequences 
occupying intermediate positions consistent with molecular 
transition states. Guided by this computational observation, we 
investigated a natural outbreak of duckling enteritis. RT-PCR and 
sequencing confirmed that the VP1 gene of the isolate clustered 
within the goose-origin GPV lineage, distinct from typical MDPV. 
Subsequent viral isolation and infection assays in ducklings provided 
biological validation for the AI-derived predictions. Collectively, 
these findings indicate that the GPV–MDPV system forms a 
continuous molecular and biophysical gradient rather than two 
discrete host-restricted lineages. The ESM2 embedding captures 
gradual electrostatic changes across key VP1 capsid regions, 
supporting the concept of “embedding drift”—a continuous, 
high-dimensional trajectory that reflects the molecular logic of 
viral host adaptation. This integrated framework, bridging AI 
embeddings, structural biophysics, and biological validation, 
provides a quantitative and interpretable approach to studying 
cross-host viral evolution. 

2 Materials and methods

2.1 Research design and overall framework

This study used an integrated framework combining 
AI-driven molecular modeling, structural biophysics, and 
experimental validation to investigate continuous host adaptation 
in waterfowl parvoviruses. VP1 protein sequences from Goose 
parvovirus (GPV) and Muscovy duck parvovirus (MDPV) 
were obtained from public databases (Sayers et al., 2023). 
Phylogenetic reconstruction was first applied to establish lineage 
divergence, while AI-derived embeddings were used to capture 
continuous molecular transitions beyond tree-based classifications. 
Structural modeling and electrostatic analyses were performed 
to identify potential biophysical correlates of the embedding-
derived continuum (Varadi et al., 2022; Dolinsky et al., 2004). 
Finally, both in vitro and in vivo infection assays were carried 
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out to evaluate the replication capacity and pathogenicity of 
representative isolates (Xiao et al., 2017). All computational 
analyses were performed in controlled environments with 
fixed random seeds to ensure reproducibility, and experimental 
procedures followed institutional biosafety and animal ethics 
guidelines (National Academies Council, 2011). 

2.2 Sequence collection and preprocessing

VP1, the major capsid protein of Anseriform 
dependoparvoviruses, was chosen as a molecular marker for 
host adaptation because of its key roles in receptor binding and 
immune recognition (Zádori et al., 1995; Tatár-kis et al., 2004; 
Li et al., 2021). All available GPV and MDPV VP1 protein 
sequences were downloaded from NCBI GenBank (as of 
December 2024) (Sayers et al., 2023). Sequences containing 
incomplete regions, artificial mutations, premature stop codons, 
or missing host metadata were excluded. Only full-length entries 
(700 ± 5 amino acids) were retained to ensure comparability across 
alignments. Metadata were standardized into four host categories: 
goose, duck, Muscovy duck, and unassigned. To minimize sampling 
bias, redundant sequences were removed, resulting in a curated 
dataset of 190 high-quality VP1 sequences representing diverse 
hosts and geographic origins. 

2.3 Multiple sequence alignment and 
phylogenetic analysis

Sequences were aligned using MAFFT v7.505 with the L-
INS-i algorithm (Katoh and Standley, 2013). Low-information or 
gap-rich regions were trimmed with trimAl v1.4.rev22 using the 
“–automated1” option (Capella-Gutiérrez et al., 2009). The resulting 
703-site alignment was subjected to maximum-likelihood (ML) 
phylogenetic analysis in IQ-TREE v2.2.6, with ModelFinder used 
to determine the best-fit substitution model (Minh et al., 2020). 
Branch support was evaluated by SH-aLRT and ultrafast bootstrap 
tests (2,000 replicates each). Phylogenetic trees were visualized and 
color-coded by host category to provide a reference topology for the 
subsequent embedding analysis. 

2.4 Protein language model embedding 
and host mapping

To characterize fine-scale molecular continuity, we used the 
Evolutionary Scale Modeling model (ESM2-T33_650M_UR50D) 
(Mietzsch et al., 2019) and cross-referenced related protein 
language models and design frameworks (Govindasamy et al., 2003; 
Elnaggar et al., 2022). Each VP1 sequence was encoded 
as a 1,280-dimensional vector by averaging per-residue 
embeddings. Dimensionality reduction was performed with 
UMAP v0.5.5 (parameters: n_neighbors = 15, min_dist = 0.1, 
metric = cosine) (McInnes et al., 2018) to visualize latent 
molecular topology.

Unlike conventional phylogenetic trees that impose discrete 
branching, AI-based embeddings represent molecular similarity in 

a continuous space, allowing the detection of gradual evolutionary 
transitions that may be unresolved by tree-based methods.

A 5-nearest-neighbor (kNN) classifier (Cover and Hart, 1967) 
was trained using embedding coordinates with known host 
labels to estimate host-association probabilities. Classification 
confidence was determined by the proportion of kNN votes. 
Embedding stability was assessed using the silhouette coefficient 
and neighborhood purity metrics (Rousseeuw, 1987), both of which 
indicated consistent manifold structure across random seeds. The 
global topology of the embedding remained stable under different 
parameter configurations, supporting its robustness. 

2.5 Structural modeling and electrostatic 
potential analysis

Representative VP1 proteins from GPV, Transition, and 
MDPV lineages were modeled using the AlphaFold server 
(Varadi et al., 2022). For each lineage, we downloaded the 
top five ranked AlphaFold models. Per-residue pLDDT scores 
were extracted from the B-factor field of the PDB files, and 
mean as well as minimum pLDDT values were summarised 
separately for the 300–420 surface loop and for the remainder 
of the protein. The top-ranked model for each lineage was 
then used for all subsequent structural visualisation and 
electrostatic analyses. Inspection of rank 2–5 models confirmed 
that the 300–420 loop is predicted with high local confidence 
and a similar backbone. Superposition was performed in 
PyMOL v2.5 (Yuan et al., 2017) via least-squares fitting on 
conserved backbone residues, and RMSD values were calculated 
to quantify structural differences. Flexible termini were excluded 
from alignment to avoid noise. To characterise local structural drift 
within the loop, residue-wise Cα RMSD values were computed 
for positions 300–420 between the aligned GPV and MDPV 
VP1 models.

Intrinsic disorder along the VP1 sequence was predicted using 
the IUPred3 web server (https://iupred3.elte.hu/) for representative 
GPV, transition, and MDPV VP1 sequences. Disorder scores were 
obtained for each residue and used to compare disorder propensity 
across lineages and to evaluate whether the 300–420 loop exhibits 
systematically elevated predicted flexibility relative to the remainder 
of the capsid shell. Normal mode analysis (NMA) was performed on 
the AlphaFold VP1 models using the bio3d package in R, focusing 
on the lowest-frequency modes of an elastic network model. For 
each lineage, mean-square fluctuations were averaged across the 
lowest modes to obtain residue-wise fluctuation profiles along VP1 
and within the 300–420 loop.

Electrostatic surface potentials were computed using 
pdb2pqr v3.6.0 (AMBER force field, pH = 7.4) and 
APBS v3.4.1 (Dolinsky et al., 2004), visualized on a color scale of −5 
to +5 kT/e (red = negative, blue = positive). The flexible surface loop 
(residues 300–420) was analyzed using identical orientation and 
visualization parameters across models. Loop-averaged potentials 
and residue-level electrostatic differences were then computed to 
quantify charge redistribution trends. Residue-level electrostatic 
difference maps for residues 300–420 were obtained by subtracting 
per-vertex surface potentials between lineages after mapping all VP1 
models to a common orientation.
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FIGURE 1
Maximum-likelihood tree of VP1 sequences.

2.6 Virus isolation and infection assays

Tissue samples (liver, spleen, kidney, and intestine) were 
collected from six two-week-old diseased ducks (n = 6) during 
an acute enteritis outbreak at a commercial duck farm in Jiangsu, 
China (Ning et al., 2017). Samples were homogenized under sterile 
conditions, subjected to three freeze–thaw cycles, and clarified 
by centrifugation. All operations were performed under BSL-2 
containment (World Health Organization, 2020).

A 0.2 mL aliquot of the clarified supernatant was inoculated 
into the allantoic cavity of three 10-day-old SPF duck 
embryos per sample and serially passaged five times at 
37 °C. The harvested allantoic fluid was filtered (0.22 µm) 
clarified and filtered (0.22 µm) to generate a virus stock, 
which was titrated in duck embryos and had a titre of 1.8
× 106 ELD50/mL. This stock was then used to infect duck 
embryo fibroblast (DEF) cultures (∼1.2 × 106 cells/well).Once 
monolayers formed, CPE development was monitored 
microscopically.

To rule out mixed infections with hemagglutinating viruses 
(e.g., avian influenza), hemagglutination assays were performed 
using 1% SPF chicken red blood cells, with AIV H3 and PBS 
as positive and negative controls, respectively. Viral DNA was 
extracted, and VP1 was amplified using primers targeting conserved 
regions. PCR amplicons were verified by gel electrophoresis, 

purified, sequenced, and identified using NCBI BLAST to 
confirm lineage (Camacho et al., 2009).

For animal challenge, ten 2-day-old SPF ducklings were 
randomly assigned to infection and control groups (n = 5 each). The 
infected group received 0.2 mL of the GPV-type viral suspension 
(1.8 × 106 ELD50/mL) subcutaneously, while controls were injected 
with PBS. Clinical signs were monitored daily. At the endpoint, 
tissues were collected for histopathological examination and viral 
DNA detection. All animal procedures complied with institutional 
animal care and biosafety regulations and were approved by the local 
ethics committee (National Academies Council, 2011). The animal 
challenge experiment was designed as a qualitative pathogenicity 
assessment. Given the group size (n = 5 per group), outcomes were 
interpreted descriptively rather than subjected to formal statistical 
hypothesis testing. 

3 Results

3.1 Phylogenetic inference reveals blurred 
host boundaries between GPV and MDPV

Within the analyzed dataset, the maximum-likelihood 
phylogeny of VP1 amino acid sequences broadly separated Goose 
parvovirus (GPV) and Muscovy duck parvovirus (MDPV) lineages, 
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FIGURE 2
AI-based embedding reveals a continuous host-spectrum topology among VP1 sequences. (A) UMAP projection of 1280-dimensional ESM2 
embeddings coloured by recorded host origin. Goose, Duck, and Muscovy duck sequences occupy adjacent and partially overlapping regions, forming 
a continuous molecular trajectory rather than discrete host-restricted clusters. Swan and Unknown sequences localize toward peripheral or 
intermediate regions of the manifold. (B) Isolates with host labels incongruent with their embedding neighborhoods are highlighted (red text and 
circles), representing candidate interface sequences that may correspond to molecular intermediates of host adaptation or potential annotation errors. 
Axes correspond to the two-dimensional UMAP projection (UMAP-1 and UMAP-2) of the ESM2 embedding space. The spatial orientation of (A,B) varies 
due to the stochastic optimization process inherent to UMAP; nevertheless, the underlying manifold topology and inter-cluster relationships remain 
consistent across projections.

consistent with established taxonomy (Figure 1). However, the 
division between these host-associated groups was indistinct. 
Several duck-derived isolates were interspersed within the GPV-
associated cluster rather than forming an independent lineage, and 
a few swan or unclassified isolates were distributed across both 
major clades.

The phylogenetic topology featured short internal branches 
and shallow bifurcations, reflecting limited sequence divergence 
and possible genetic intermixing among host sources. These 
findings suggest that VP1 evolution in waterfowl parvoviruses 
proceeds through gradual accumulation of host-related mutations, 
potentially forming a molecular bridge between goose and 
duck lineages. 

3.2 AI-based embedding uncovers a 
continuous molecular drift across host 
species

To probe molecular relationships that exceed the resolution 
of traditional phylogenetic analysis, we applied an AI-based 
protein language model (ESM2) to generate VP1 sequence 
embeddings. Figure 2A shows the global UMAP projection of all 
VP1 embeddings, colored by recorded host category to visualize 
the overall host-spectrum topology, whereas Figure 2B displays the 
same embedding with interface isolates highlighted to emphasize 
sequences that lie between the goose- and duck-associated regions 
or whose recorded host labels are incongruent with their local 
embedding neighborhoods.

In contrast to the bifurcated topology of the phylogenetic tree, 
the ESM2 embedding displayed a smooth, continuous distribution 
of VP1 sequences across host species (Figure 2A). When visualized 
in UMAP space, sequences from goose, duck, and Muscovy 
duck occupied partially overlapping regions rather than forming 
distinct clusters, indicating that the embedding captures gradual 
molecular similarity among host-associated isolates. Swan and 
unclassified (“Unknown”) sequences appeared near the periphery 
of the embedding manifold, consistent with limited sampling or 
intermediate molecular affinity to the main host groups.

A subset of isolates lay at the interface between the goose- and 
duck-associated regions (Figure 2B). Among these, MT450871.1 
and PQ110062–PQ110068 occupied positions inconsistent with 
their recorded host labels, suggesting cross-host molecular 
resemblance or potential annotation errors. These interface isolates 
delineate a transition zone between host-associated regions, 
highlighting gradual molecular shifts that remain unresolved in 
classical tree-based analyses. These isolates were therefore selected 
for subsequent structural and functional investigation.

Taken together, the embedding results indicate that VP1 
diversity across goose, duck, and Muscovy duck isolates forms a 
continuous molecular trajectory rather than discrete host-restricted 
lineages. Waterfowl parvoviruses thus exhibit graded molecular 
transitions across hosts, implying that host specificity evolves along 
a continuum rather than through abrupt host shifts.

To confirm that the embedding-derived continuum represents 
a genuine molecular signal and not a visualization artifact, we next 
conducted quantitative analyses of its topology and host-association 
stability. 
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FIGURE 3
Quantitative validation of host-spectrum topology and embedding-based classification stability. (A) Heatmap of mean pairwise Euclidean distances 
between host groups in the VP1 embedding space derived from ESM2. The colour scale reports the mean Euclidean distance in embedding space, 
expressed in arbitrary units. (B) UMAP projection of VP1 embeddings for sequences with high-confidence predictions, coloured by model-predicted 
host (kNN classifier). Axes correspond to the two-dimensional UMAP projection of 1280-dimensional ESM2 embeddings. Differences in global 
orientation between panels arise from the stochastic optimization process of UMAP but do not affect the underlying manifold topology or relative 
inter-cluster relationships.

3.3 Quantitative embedding analysis 
confirms continuous host-spectrum 
topology

To quantify relationships within the embedding space, we 
computed pairwise inter-group distances among host-labeled 
sequences using L2-normalized vectors from the original ESM2 
representation (Figure 3A). Across all host pairs, normalized inter-
group distances ranged from 0.12 to 0.30. Among the three 
main domestic waterfowl hosts (goose, duck, Muscovy duck), 
distances between goose and duck isolates were the smallest (mean 
normalized Euclidean distance = 0.22), indicating close molecular 
proximity. Thus, the larger distances involving Muscovy duck 
isolates (0.26–0.30) represent roughly a 20%–35% increase relative 
to the goose–duck pair (0.22), consistent with their more peripheral 
position in the embedding map and supporting that goose and 
duck isolates occupy the closest molecular neighborhood among 
the main host groups. In contrast, Muscovy duck sequences were 
more distinct from both goose and duck (0.28 for goose–Muscovy 
duck and 0.30 for duck–Muscovy duck), while swan and unclassified 
(“Unknown”) isolates occupied intermediate or peripheral positions, 
likely reflecting limited sampling and mixed host metadata. 
These normalized Euclidean distances are intended as comparative 
descriptors of global molecular proximity in the embedding space 
rather than as formal statistical tests; the modest difference 
between 0.22 and 0.28–0.30 nevertheless indicates that goose and 
duck isolates occupy the closest molecular neighborhood among 
domestic waterfowl hosts. These spatial patterns support a graded 
molecular topology rather than sharply divided clusters among 
host groups.

To evaluate structural stability, a k-nearest-neighbor classifier (k
= 5) was trained on the high-dimensional embeddings. Predictions 
with high confidence (probability ≥0.85) formed compact, well-
defined regions on the UMAP map (Figure 3B), demonstrating that 
host-associated molecular features are consistently encoded within the 
manifold. The close spatial proximity between goose and duck clusters 
mirrored the small inter-group distances observed in Figure 3A, 
underscoring that host differentiation follows a smooth gradient rather 
than discrete divisions. 

The convergence of quantitative distance metrics and 
classification stability provides strong evidence that the ESM2 
embedding preserves a coherent host-associated continuum. Within 
this framework, the goose–duck relationship emerges as the closest 
molecular neighborhood among waterfowl parvoviruses, defining a 
quantitative bridge across the host-adaptation landscape. 

3.4 Structural and dynamical remodeling of 
the VP1 surface loop along the GPV–MDPV 
continuum

We next examined whether the embedding-derived molecular 
continuum corresponds to structural and physicochemical 
remodeling in the VP1 capsid protein. Representative VP1 
structures from classical GPV and MDPV—selected as the two 
extremes of the continuum—were modeled using AlphaFold for 
comparative analysis (Figure 4A). The overall capsid architecture 
remained highly conserved, which underscores the strong 
structural constraints characteristic of the Parvoviridae family and 
suggests that adaptive changes are likely confined to localized, 
surface-exposed regions. Against this conserved background, a 
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FIGURE 4
Structural and dynamical remodeling of the VP1 capsid loop along the GPV–MDPV continuum. (A) Superposition of VP1 structures from GPV (blue) and 
MDPV (orange). The surface-exposed VP1 loop (residues 300–420) is highlighted in red for GPV and green for MDPV, as indicated in the in-panel 
colour legend, whereas the remainder of the capsid is shown in pale blue/orange. (B) Close-up view of the VP1 loop region (residues 300–420) after 
structural superposition. The 300–420 loop is shown as a thicker ribbon in red (GPV) and green (MDPV), while the surrounding capsid backbone is 
rendered in pale blue/orange. This region concentrates most lineage-specific substitutions and exhibits the largest conformational differences 
between GPV and MDPV. (C) Heatmap of residue-wise Cα RMSD (Å) between the aligned GPV and MDPV VP1 models, restricted to residues 300–420. 
Most positions within the loop show low RMSD values, whereas two localized segments around residues ∼350 and ∼380 exhibit elevated deviations, 
indicating that structural differences are focused on specific subregions rather than reflecting a wholesale rearrangement of the capsid fold. (D)
Intrinsic disorder profiles of VP1 predicted with IUPred3 for representative GPV (teal), MDPV (orange) and transition (purple) sequences. The y-axis 
shows the disorder score (0–1); the dashed horizontal line marks the classical 0.5 threshold. VP1 is overall well ordered, but the 300–420 loop displays
 (Continued)
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FIGURE 4 (Continued)
consistently higher disorder propensity than the surrounding capsid shell, with slightly increased scores for the transition and MDPV sequences 
relative to GPV. (E) Normal-mode fluctuations of VP1 obtained from elastic-network normal mode analysis (bio3d) of the AlphaFold models. Plotted 
are residue-wise mean-square fluctuations (Å2) averaged over the lowest-frequency modes for GPV (teal), MDPV (orange) and the transition isolate 
(purple). Several mobile surface regions are apparent; the 300–420 loop (grey shading) emerges as one of the comparatively flexible segments on 
the capsid surface. (F) Zoom-in of the normal-mode fluctuation profiles for the 300–420 loop region. In this loop, GPV shows the lowest predicted 
mobility, the transition isolate exhibits intermediate fluctuations, and MDPV shows the highest amplitudes, particularly in the same subregions that 
display elevated Cα RMSD in (C). This pattern is consistent with a gradual increase in local flexibility along the GPV–transition–MDPV continuum.

FIGURE 5
Electrostatic fine-tuning of the VP1 300–420 loop along the embedding-derived host continuum. (A) Electrostatic surface potential maps (−5 to +5 
kT/e) for representative GPV, transition and MDPV VP1 models computed with pdb2pqr/APBS. The colour scale reports surface potential in units of 
kT/e. The maps reveal a gradual redistribution of charge across VP1, with the 300–420 loop becoming progressively more neutral along the GPV → 
transition → MDPV trajectory. (B) Permutation tests (n = 200) of loop-averaged surface potentials for the 300–420 region. Histograms show the 
permutation-derived null distributions, and vertical lines indicate the observed mean potentials. All three lineages fall within their empirical uncertainty 
intervals, but their ordering is consistently monotonic (GPV < transition < MDPV), indicating a stable trend toward surface neutralisation. (C)
Residue-level amino acid frequency differences (Δf = frequency(MDPV) − frequency(GPV)) across the VP1 300–420 loop, highlighting 
charge-changing substitutions concentrated in this region. Most large differences correspond to distributed Lys→Asp/Glu replacements at multiple 
positions, consistent with a diffuse, cumulative change rather than a single focal substitution. (D) Relationship between the embedding-derived 
continuum coordinate and the mean surface potential of the VP1 300–420 loop. Points represent GPV, transition and MDPV; error bars indicate the 
standard deviation of the permutation-derived null distributions. The near-linear association shows that AI-derived embedding drift corresponds 
quantitatively to measurable electrostatic remodeling of VP1, while remaining descriptive rather than implying a specific causal mechanism.
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distinct deviation emerged in the flexible surface loop spanning 
residues 300–420 (Figure 4B). In MDPV, this loop adopted an open, 
outward-oriented conformation, whereas in GPV it appeared more 
compact and recessed.

Consistent with our AlphaFold confidence analysis (see 
Methods), the 300–420 surface loop is predicted with high local 
confidence across rank 1–5 models for GPV, the transition isolate, 
and MDPV (mean pLDDT ≈96.5–96.7, minimum per-residue 
pLDDT ≥75.9), supporting the reliability of the inferred loop 
conformations in this region. To quantify the local structural 
differences between GPV and MDPV, we computed residue-
wise Cα RMSD values for residues 300–420 between the aligned 
VP1 models (Figure 4C). This analysis revealed that most positions 
exhibit low RMSD, whereas two subregions centered around ∼350 
and ∼380 display elevated RMSD, indicating that the structural 
drift is concentrated in specific segments rather than reflecting a 
wholesale rearrangement of the capsid fold.

To assess whether this loop also differs in predicted 
conformational flexibility, we analyzed intrinsic disorder 
along VP1 using IUPred3 for GPV, the transition 
isolate, and MDPV (Figure 4D). Disorder scores remained mostly 
below the classical 0.5 threshold across the protein, indicating that 
VP1 is globally well ordered, but the 300–420 loop consistently 
showed modestly elevated scores relative to the surrounding shell, 
consistent with a flexible surface-exposed element. Notably, the 
transition and MDPV sequences exhibited slightly higher disorder 
propensity than GPV at the center of the loop, suggesting that host-
associated sequence drift is accompanied by a subtle increase in 
local conformational plasticity.

We next probed large-scale motions of VP1 using normal mode 
analysis (NMA) based on the AlphaFold models (Figures 4E,F). 
Overall mean-square fluctuations along the lowest-frequency modes 
highlighted several mobile surface regions, with the 300–420 loop 
emerging as a comparatively flexible segment on the capsid surface 
(Figure 4E). When we zoomed in on residues 300–420 (Figure 4F), 
GPV displayed the lowest fluctuation amplitude, the transition 
isolate showed an intermediate profile, and MDPV exhibited the 
highest predicted mobility, particularly in the segments that also 
showed elevated Cα RMSD. Taken together, these observations 
indicate that the GPV–transition–MDPV trajectory is accompanied 
by coordinated changes in loop conformation, local flexibility, and 
intrinsic disorder, consistent with a structurally and dynamically 
tunable module mediating host adaptation. 

3.5 Electrostatic fine-tuning of the VP1 
loop aligns with the embedding-derived 
host continuum

Having established that the embedding-derived continuum 
is anchored in a specific, structurally coherent VP1 loop, we 
next asked whether these conformational differences are coupled 
to electrostatic remodeling. Surface potentials were computed 
for representative GPV, transition, and MDPV models using 
pdb2pqr and APBS (Figure 5A). The resulting maps revealed 
a progressive redistribution of charge across the 300–420 loop: 
GPV displayed predominantly positive electrostatic patches, 
the transition isolate exhibited mixed potentials, and MDPV 

TABLE 1  Loop-averaged surface electrostatic potentials (residues 
300–420) of representative VP1 structures.

Group Mean potential (kT/e) 95% CI

GPV −1.807 [–2.790, −0.913]

Transition −1.337 [–1.943, −0.825]

MDPV −1.164 [–2.172, −0.109]

Electrostatic potentials were computed using APBS (v3.4.1) at pH 7.0 and 150 mM ionic 
strength. Values represent the mean potential across the surface-exposed loop region for each 
structure.

presented a nearly neutral or slightly negative surface. Such a 
steady shift toward neutrality parallels the molecular continuum 
inferred from embeddings, and suggests that electrostatic fine-
tuning of this loop may contribute to host-associated divergence, 
although these analyses do not provide direct evidence on receptor 
binding or usage.

For quantitative comparison, loop-averaged surface potentials 
were compared among the three models (Table 1). Although mean 
values overlapped with permutation-derived null distributions 
(n = 200; Figure 5B), their relative ordering—GPV (−1.81 kT/e), 
Transition (−1.34 kT/e), and MDPV (−1.16 kT/e)—displayed a 
consistent monotonic trend toward electrostatic neutralization. 
Rather than treating these comparisons as formal hypothesis tests, 
we interpret them as effect sizes relative to the empirical null, 
which emphasises direction and magnitude over strict statistical 
significance. While absolute differences were subtle, their directional 
coherence was striking, reinforcing the notion of a stable, cumulative 
drift rather than stochastic variation. Pairwise comparisons yielded 
small yet reproducible effect sizes (small effect sizes Cohen’s d < 0.1), 
with detailed statistics provided in Table 2.

Residue-level differential potential maps localized the main 
charge transitions to the 300–420 loop (Figure 5C). The shifts were 
primarily driven by distributed Lys→Asp/Glu substitutions across 
multiple positions, which together produce a diffuse, cumulative 
electrostatic change rather than a single focal event. In doing 
so, these substitutions modulate the electrostatic properties of a 
surface-exposed loop that, by analogy to other parvoviruses, is 
likely involved in host interactions, raising the possibility that they 
influence receptor engagement or host range. At present, however, 
this remains a mechanistic hypothesis, as we do not yet have 
direct receptor-binding, docking, or infection assays with defined 
receptors.

When loop-averaged potentials were projected onto 
the embedding axis, an approximately linear correlation 
emerged between the embedding coordinate and surface 
potential (Figure 5D). This near-linearity indicates that the 
embedding-derived continuum reflects systematic variation in VP1 
surface electrostatics and provides a quantitative link between 
the abstract geometry of AI-derived embeddings and tangible 
biophysical properties; nonetheless, this relationship should be 
interpreted as correlative rather than as direct evidence for a specific 
causal mechanism, such as altered receptor affinity.

Together, these analyses—spanning sequence embeddings, 
three-dimensional conformation, and electrostatic potential 
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TABLE 2  Pairwise comparisons of electrostatic potentials.

Pairwise comparison (A–B) Δ mean (A–B, kT/e) 95% CI Cohen’s d 95% CI

Transition – MDPV −0.172 [–1.414, 0.975] −0.017 [–0.123, 0.108]

Transition – GPV +0.470 [–0.615, 1.591] +0.051 [–0.069, 0.164]

MDPV – GPV +0.642 [–0.713, 2.046] +0.054 [–0.066, 0.159]

Values represent Mean ± SD, of electrostatic potential differences (kT/e) computed from 200 permutation replicates. Positive values indicate relative surface neutralization compared with the 
reference GPV, model.

profiles are consistent with a coherent biophysical continuum 
associated with host adaptation. The progressive shift toward 
surface neutralization (GPV → Transition → MDPV) suggests a 
plausible mechanistic link between molecular representation and 
host-range evolution in waterfowl parvoviruses. In practice, the 
loop’s gradual neutralization defines a compact and computationally 
traceable candidate marker of cross-host potential, suggesting that 
isolates trending toward the MDPV-like electrostatic signature may 
represent early molecular correlates of host adaptation, a testable 
prediction that will require future functional and receptor-based 
experiments to evaluate. 

3.6 Infection validation in embryos, cells, 
and animals

To determine whether the molecular–electrostatic continuum 
manifests in biological function, infection assays were performed in 
embryos, cultured cells, and live animals. A GPV-type strain was 
isolated and molecularly identified from diseased ducks during a 
natural outbreak. The isolate shared > 99.8% nucleotide identity 
with classical GPV reference strains (Table 3), and hemagglutination 
testing excluded contamination by other hemagglutinating viruses.

Inoculation of 10-day-old SPF duck embryos with 0.2 mL 
of a GPV-type virus suspension (1.8 × 106 ELD50/mL) led 
to vascular congestion and growth retardation compared 
with controls (Figure 6). No hemagglutination activity was detected 
in the allantoic fluid, consistent with the non-hemagglutinating 
nature of GPV. These observations show that, at this defined 
infectious dose, the duck-derived isolate can productively infect 
and cause disease in duck embryos.

At the cellular level, duck embryo fibroblast (DEF) cultures 
infected with fifth-passage virus were monitored at 36, 48, and 60 h 
post-infection (hpi). Compared with uninfected controls, infected 
cells showed progressive cytopathic effects (CPE)—cell rounding, 
shrinkage, detachment, and disruption of the monolayer (Figure 7). 
Morphological changes appeared at 36 hpi, intensified by 48 hpi, 
and culminated in extensive granulation and detachment at 60 hpi, 
consistent with active replication and lytic activity in duck-derived 
cells. These assays therefore provide qualitative confirmation that, 
when applied at a titrated infectious dose, the isolate can infect DEF 
monolayers and reproducibly induce progressive CPE.

For in vivo validation, ducklings were experimentally infected 
after confirming replication in embryos and DEF cells. During 
the first 24 h post-inoculation, no clinical symptoms were noted. 
Between 24 and 36 hpi, infected ducklings developed mild 

diarrhea and reduced appetite. By 60 hpi, diarrhea became severe, 
accompanied by lethargy, ruffled feathers, and decreased activity. 
Around 72 hpi, partial mortality occurred, and several birds 
exhibited intermittent tremors and neck twisting, suggesting 
possible central nervous system involvement. Control ducklings 
remained normal and active throughout.

Gross pathology revealed that infected ducklings were smaller 
and paler than controls (Figure 8). Brains were slightly reduced 
in size and showed branching hemorrhages and mild congestion 
(Figure 9). The most prominent lesions were observed in the 
intestines, characterized by wall thinning, mucosal sloughing, 
and focal collapse, whereas control intestines appeared smooth 
and intact (Figure 9).

Overall, these embryonic, cellular, and animal results collectively 
show that the duck-derived GPV isolate can infect, replicate, 
and induce characteristic lesions in ducks, providing qualitative 
biological support for partial host adaptation along the molecular 
continuum. 

4 Discussion

Viral adaptation is not governed by a single universal mode 
but can follow distinct evolutionary patterns depending on the 
virus and its ecological context. In rapidly evolving RNA viruses 
such as SARS-CoV-2, several studies have shown that structural 
proteins can accumulate mutations piecemeal over time, with these 
changes later coalescing into larger constellations in variants of 
concern (Ali and Caetano-Anollés, 2024a; Ali and Caetano-Anollés, 
2024b). In the specific case of the small, non-enveloped DNA 
viruses studied here, our analyses suggest that host adaptation in 
waterfowl parvoviruses can proceed along a smoother, continuous 
trajectory—supported not only by statistical inference but also 
by structural and biological validation. By integrating AI-derived 
molecular embeddings, structural biophysics, and infection assays, 
we find that the Goose parvovirus (GPV) and Muscovy duck 
parvovirus (MDPV) lineages occupy a continuous molecular 
spectrum of host adaptation within this system. Within this 
constrained biophysical and evolutionary context, this perspective 
reframes viral evolution as a gradual optimization process occurring 
within a continuous biophysical landscape rather than as a sequence 
of sharp host shifts (Tomaszewski et al., 2023).

Traditional phylogenetic trees describe evolutionary space as a 
branching hierarchy. While effective for identifying major lineage 
divergences, this framework often masks subtle adaptive transitions, 
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TABLE 3  Sequence identity of the isolated GPV-type strain.

Description Scientific 
name

Max score Query cover E-value Percent 
identity

Accession 
length

Accession

Goose parvovirus 
strain DY16, 
complete genome

Goose parvovirus 3,977 100% 0.0 100% 5,046 MH209633.1

Goose parvovirus 
strain RC16, 
complete genome

Goose parvovirus 3,977 100% 0.0 100% 5,046 KY475562.1

Goose parvovirus 
strain DX, complete 
genome

Goose parvovirus 3,911 100% 0.0 99.95% 5,046 OR532764.1

Goose parvovirus 
isolate BD, 
complete genome

Goose parvovirus 3,911 100% 0.0 99.95% 5,046 ON416871.1

Goose parvovirus 
strain XT, complete 
genome

Goose parvovirus 3,980 100% 0.0 99.86% 5,102 OR532763.1

Goose parvovirus 
isolate HB-DX, 
complete genome

Goose parvovirus 3,980 100% 0.0 99.86% 5,046 OR544341.1

Goose parvovirus 
strain RC16, 
complete genome

Goose parvovirus 3,975 100% 0.0 99.82% 5,106 ON637108.1

BLAST, analysis of the VP1 gene confirmed that the duck-origin isolate shares > 98% nucleotide identity with classical GPV, strains, verifying its assignment to the GPV, lineage (GenBank, 
accessed May 2025).

FIGURE 6
Duck embryos infected with the GPV-type isolate showed vascular congestion and growth retardation relative to controls.
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FIGURE 7
DEF cells displayed progressive cytopathic effects (CPE) at 36–60 hpi, including rounding and detachment.

particularly when sequence divergence is minimal (Rothenburg and 
Brennan, 2020). Protein language model (PLM) embeddings, by 
contrast, preserve molecular continuity in high-dimensional feature 
space, allowing gradual transitions to emerge as smooth trajectories. 
Within this manifold, GPV and MDPV sequences occupy adjacent 
and partially overlapping domains, together forming a molecular 
gradient that connects sequence variation with host range (Yang and 
Rao, 2021). The persistence of this topology across different random 
initializations and dimensionality-reduction parameters supports 
the view that it reflects an underlying molecular signal rather than a 
visualization artifact.

Structural and electrostatic analyses provide a mechanistic basis 
for this continuum. Comparative modeling revealed that a flexible 
surface-exposed loop (residues 300–420) in the VP1 capsid protein 

undergoes progressive remodeling along the GPV–MDPV axis. 
This loop displays marked conformational flexibility and a gradual 
reduction in positive surface charge, driven by distributed Lys 
→ Asp/Glu substitutions at multiple positions. These adjustments 
are consistent with a fine-tuning mechanism in which small 
structural and electrostatic shifts modulate the properties of 
receptor- or immune-exposed surfaces, although direct evidence 
for altered receptor affinity is currently lacking (Hall et al., 2013). 
From an applied standpoint, the loop’s gradual neutralization 
defines a compact and computationally traceable marker of 
cross-host potential, suggesting that isolates trending toward 
MDPV-like electrostatic signatures may represent early molecular 
correlates of increased cross-host compatibility. The approximately 
monotonic relationship between embedding coordinates and loop 
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FIGURE 8
Gross appearance of control and infected ducklings. Whole ducklings from the control (left) and infected (right) groups photographed on a 1 cm × 
1 cm grid board. Infected ducklings appear smaller, paler, and less well-feathered than controls. On-panel labels indicate the experimental groups 
(“Control,” “Infected”). Scale bar: 5 cm.

electrostatic potential quantitatively connects the latent space of AI-
derived molecular embeddings to explicit biophysical observables, 
providing a link between embeddings and structural observables in 
this system (Amorim, 2019).

Beyond these electrostatic trends, our structural and dynamical 
analyses converge on the same VP1 surface loop (residues 
∼300–420) as a tunable module along the GPV–MDPV continuum. 
AlphaFold models indicate that the global capsid fold is highly 
conserved, whereas residue-wise Cα RMSD profiles show that 
structural divergence is locally concentrated within this loop 
rather than distributed across the capsid. IUPred3 disorder 
scores and normal mode analysis further reveal that the 
300–420 region is both more flexible and more dynamically 
mobile than the surrounding shell, with GPV exhibiting the 
lowest predicted mobility, the transition isolate an intermediate 
profile, and MDPV the highest fluctuations. Taken together, 
these observations support a model in which host-associated 
evolution in this system acts not by globally rewiring the 
capsid, but by subtly tuning the conformation, intrinsic disorder, 
and large-scale motions of a single exposed loop that appears 
to play a central role in shaping cross-host compatibility in 
this system.

The location and biophysical profile of this loop—surface 
exposed, relatively flexible, and undergoing progressive electrostatic 
neutralization—also make it an attractive candidate for modulating 
receptor engagement or co-factor binding. However, our current 
data do not allow us to assign a specific binding role based on in silico
evidence alone. We therefore deliberately refrain from interpreting 
the loop as a defined receptor-binding site at this stage and instead 
highlight it as a high-priority target for future work that combines 
dedicated binding-site prediction tools with experimental receptor-
binding and neutralization assays.

Experimental infection assays further close the loop 
between molecular inference and biological function. A GPV-
type isolate obtained from diseased ducks replicated in duck 
embryos and duck embryo fibroblast (DEF) cells and produced 
characteristic pathological lesions in ducklings. The overall 
pattern of disease and tissue involvement resembled that 
of classical GPV infections in geese, suggesting functional 
similarity despite host differences. These findings demonstrate 
that a virus genetically aligned with classical GPV can 
infect and replicate in ducks, providing qualitative biological 
support for the predicted molecular continuum (Agudelo-
Romero et al., 2008).
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FIGURE 9
Gross pathological lesions in brains and intestines of infected ducklings. Brains (top row) and intestines (bottom row) from control (left) and infected 
(right) ducklings photographed on a 1 cm × 1 cm grid board. Infected brains show distinct branch-like haemorrhages and mild surface congestion 
compared with smooth control brains. Infected intestines exhibit wall thinning, mucosal sloughing and focal collapse, whereas control intestines 
maintain a smooth, intact mucosal surface. On-panel labels indicate the experimental groups. Scale bar: 1 cm. These gross pathological changes are 
consistent with partial host adaptation and active viral replication observed in embryonic and cellular assays.

Conceptually, this continuum highlights the dual character 
of viral evolution: rigid conservation of structural frameworks 
coupled with flexible electrostatic adaptation. GPV-lineage genomes 
maintain their overall capsid architecture while navigating 
local energetic landscapes that permit incremental adjustments 

in host compatibility. Such fine-tuning of surface charge and 
conformation is therefore best viewed as a candidate mechanism 
for host-range modulation in compact, non-enveloped DNA 
viruses with highly constrained capsid architectures—such as 
parvoviruses and, potentially, related adeno-associated and 
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circoviruses—rather than as a general rule across all viral families 
(Wei et al., 2019; Tan et al., 2024).

Beyond waterfowl parvoviruses, the molecular–electrostatic 
continuum proposed here is conceptually most relevant to 
other small, non-enveloped DNA viruses with compact capsids 
and surface-loop–mediated receptor interactions. Members of 
Parvoviridae, Circoviridae and adeno-associated viruses share a 
similar architectural logic: a highly conserved capsid core decorated 
by exposed loops that concentrate sequence variation, mediate 
receptor binding and immune evasion, and can alter host range 
or tissue tropism through relatively modest local changes rather 
than wholesale remodeling of the capsid scaffold. Structural and 
functional work in these systems has repeatedly implicated gradual 
remodeling of surface loops as a plausible route to modulating 
receptor usage or host specificity (Wei et al., 2019). In this sense, 
continuum-like trajectories of host adaptation may recur within 
structurally constrained DNA virus families, even though they are 
not expected to generalize to RNA viruses or large DNA viruses that 
evolve through more episodic, recombination-driven dynamics. 
Our study therefore provides a concrete case in which such a 
continuum can be quantified and mechanistically dissected in a 
representative compact DNA virus lineage, while also highlighting 
a broader class of viruses for which similar embedding-guided 
analyses may be informative.

Even with this broader conceptual relevance, the scope of our 
framework remains inherently limited. Our data directly concern 
only small, non-enveloped DNA viruses with compact capsids. 
Other viral groups, particularly RNA viruses and large DNA viruses 
that evolve through rapid mutation, recombination, and complex 
immune modulation, may follow more episodic and discontinuous 
evolutionary dynamics. In RNA viruses such as SARS-CoV-2, for 
example, previous work has shown that mutations in structural 
proteins can accumulate piecemeal over time and are progressively 
recruited into larger constellations in variants of concern (Ali and 
Caetano-Anollés, 2024a; Ali and Caetano-Anollés, 2024b). This 
behaviour, while also reflecting a form of continuity in mutational 
and structural space, differs from the comparatively smooth, low-
dimensional VP1 continuum described here at the level of a 
single capsid loop. For such systems, embedding-based molecular 
manifolds may still be informative, but they are not expected a 
priori to represent host transitions as low-dimensional, quasi-linear 
trajectories and would require dedicated, system-specific evaluation. 
Accordingly, we regard the continuum model proposed here as a 
working hypothesis that is presently best justified for compact DNA 
viruses with conserved capsid cores, and we view any extension 
to other viral families as speculative until supported by direct 
empirical evidence.

This study represents an initial step toward quantifying viral 
adaptation as a continuous, measurable process. Our embedding 
analysis was limited to the VP1 capsid protein, whereas non-
structural genes such as NS1 and Rep likely contribute to host 
specificity through replication and immune-evasion functions. 
Moreover, current PLM embeddings (e.g., ESM2) were trained on 
general protein corpora rather than on parvovirus-specific data, 
potentially limiting resolution at the host level. The structural 
and electrostatic analyses are based on static models; future 
integration of cryo-electron microscopy, receptor-binding assays, 
and molecular dynamics simulations will be important to more fully 

capture conformational dynamics. Finally, our biological validation 
was limited to a single GPV-type isolate, and broader temporal 
and geographic sampling will be essential to assess whether this 
molecular continuum represents a recurrent adaptive trajectory for 
waterfowl parvoviruses.

Viewed jointly, our results support the view that AI-derived 
molecular embeddings effectively bridge the gap between 
sequence statistics and mechanistic biology in this system. By 
tracing a continuous path from sequence space to structure, 
and from structure to infectivity, we provide a quantitative and 
interpretable framework for understanding viral host adaptation. 
This embedding-guided approach may help shift the focus from 
purely descriptive genomics toward more predictive modeling, and 
in our data it is consistent with the idea that continuous molecular 
drift—rather than abrupt host jumps—may play a major role in host-
spectrum expansion in the compact DNA viruses analysed here. 
Thus, what appears as a phylogenetic dichotomy may, at least in this 
parvovirus system, be better described as a continuum of adaptive 
drift, rendering host shifts less abrupt and more predictable than 
they seem from tree-based representations alone. Future integration 
of embedding-guided mutational scanning, receptor-binding 
measurements, and longitudinal surveillance could yield predictive 
indicators of cross-host potential, linking data-driven molecular 
semantics with the physical principles governing viral emergence. 
In parallel, virus-specific or fine-tuned protein language models 
could further enhance host-resolution accuracy, enabling more 
precise prediction of cross-species emergence from sequence data.
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