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Background: Biomedical knowledge graphs (KGs), such as the Data Distillery
Knowledge Graph (DDKG), capture known relationships among entities (e.g.,
genes, diseases, proteins), providing valuable insights for research. However,
these relationships are typically derived from prior studies, leaving potential
unknown associations unexplored. Identifying such unknown associations,
including previously unknown disease-associated genes, remains a critical
challenge in bioinformatics and is crucial for advancing biomedical knowledge.
Methods: Traditional methods, such as linkage analysis and genome-wide
association studies (GWAS), can be time-consuming and resource-intensive.
This highlights the need for efficient computational approaches to identify or
predict new genes using known disease-gene associations. Recently, network-
based methods and KGs, enhanced by advances in machine learning (ML)
frameworks, have emerged as promising tools for inferring these unexplored
associations. Given the technical limitations of the Neo4j Graph Data Science
(GDS) machine learning pipeline, we developed a novel machine learning
pipeline called KG2ML (Knowledge Graph to Machine Learning). This pipeline
utilizes our Positive and Unlabeled (PU) learning algorithm, PULSCAR (Positive
Unlabeled Learning Selected Completely At Random), and incorporates path-
based feature extraction from ProteinGraphML.

Results: KG2ML was applied to 12 diseases, including Bipolar Disorder,
Coronary Artery Disease, and Parkinson’s Disease, to infer disease-associated
genes not explicitly recorded in DDKG. For several of these diseases, 14
out of the 15 top-ranked genes lacked prior explicit associations in the
DDKG but were supported by literature and TINX (Target Importance and
Novelty Explorer) evidence. Incorporating PULSCAR-imputed genes as positives
enhanced XGBoost classification, demonstrating the potential of PU learning in
identifying hidden gene-disease relationships.

Conclusion: The observed improvement in classification performance
after the inclusion of PULSCAR-imputed genes as positive examples,
along with the subject matter experts’ (SME) evaluations of the top 15
imputed genes for 12 diseases, suggests that PU learning can effectively
uncover disease-gene associations missing from existing knowledge
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graphs (KGs). By integrating KG data with ML-based inference, our KG2ML
pipeline provides a scalable and interpretable framework to advance biomedical
research while addressing the inherent limitations of current KGs.

KEYWORDS

biomedical knowledge graphs, data distillery knowledge graph, DDKG, disease-
associated genes, genome-wide association studies, GWAS, linkage analysis, network-

based methods

Background

Genes are the fundamental units of inheritance and play a
critical role in determining an individual’s susceptibility to various
conditions and disorders (MedlinePlus, 2020). Mutations or genetic
variations can disrupt normal biological processes, potentially
leading to diseases. Identifying genes that are causally linked to
specific genetic diseases is crucial for improving human health
(Navlakha and Kingsford, 2010). Such knowledge provides insights
into the molecular mechanisms underlying diseases, which are
essential for the development of effective diagnostic and therapeutic
strategies. Moreover, understanding gene-disease associations
enables the identification of at-risk individuals, allowing for
early interventions to reduce the likelihood of disease onset and
progression (Luo et al., 2019; Gao et al.,, 2022; Li Y et al., 2023).

Identifying genes associated with specific diseases remains
an open problem in bioinformatics (Opap and Mulder, 2017;
Qumsiyeh et al, 2022). Traditional approaches for disease-
associated genes identification, such as linkage analysis and genome-
wide association studies (GWAS), are often time-consuming and
resource-intensive (Li Y. et al. 2023). Consequently, the development
of efficient computational methods to identify or predict novel
genes using known disease-gene associations has become crucial.
Network-based computational methods are widely employed to
infer disease-gene associations (Gao et al., 2022). These networks
are constructed using biological and molecular prior knowledge,
capturing complex relationships between entities, such as genes,
proteins, and diseases (Renaux et al., 2023). Knowledge graphs
(KGs) further enhance this approach by integrating diverse
biological networks and ontologies into a unified, comprehensive
framework. KGs leverage complex semantic relationships
among entities to generate valuable insights (Gao et al., 2022;
Renaux et al,, 2023). Recent advancements in machine learning
(ML) frameworks have expanded the application of ML algorithms
to KGs for the identification and prediction of novel disease-
associated genes (Mordelet and Vert, 2011; Gao et al, 2022;
Qumsiyeh et al., 2022; Renaux et al., 2023; Li Y. et al. 2023;
Gualdi et al, 2024; Xie et al, 2024) and the closely related
task of drug-target interaction prediction (Li Y.-C. et al. 2023).
Applying ML methods to KGs typically involves transforming
the network of entities into a feature matrix through techniques
such as knowledge graph embeddings (Nelson et al, 2019;
Gualdi et al., 2024) or path-based feature extraction methods
(Himmelstein and Baranzini, 2015; Binder et al., 2022; Domingo-
Ferndndez et al, 2022). These approaches allow the integration
of heterogeneous data types and enhance the discovery of hidden
patterns and associations.
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In this study, we propose a machine learning pipeline called
KG2ML (Knowledge Graph to Machine Learning) employing a
Positive and Unlabeled (PU) learning algorithm and a path-based
feature extraction method to derive features from the knowledge
graph. The primary objective of this study is to identify genes
potentially associated with diseases, even in the absence of explicit
links between them in the knowledge graph. Since all entities and
their relationships in a KG are derived from prior knowledge,
the absence of a direct link between a gene and a disease does
not necessarily indicate that the gene is unrelated to the disease.
This motivated the use of PU learning instead of traditional
binary classification based on positive and negative examples.
Specifically, we utilized PULSCAR (Positive Unlabeled Learning
Selected Completely At Random) (Kumar and Lambert, 2024)
as our PU learning algorithm, while the method for generating
feature vectors for each gene was adapted from our previous work,
ProteinGraphML (Binder et al, 2022). The novelty of KG2ML
lies in its integration of path-based feature extraction from a
biomedical knowledge graph with a PU learning framework. This
integration enables interpretable, end-to-end discovery of novel
associations between biomedical entities that are not explicitly
connected in the graph. Unlike traditional PU methods that rely
on user-provided features and graph-based prediction methods that
primarily depend on embeddings or topological proximity, KG2ML
derives biologically meaningful features algorithmically from graph
paths, thereby capturing complex and context-specific relationships
among biomedical entities.

Data Distillery Knowledge Graph (DDKG)

The Data Distillery Knowledge Graph (DDKG) has been
developed as part of the Common Fund Data Ecosystem (CFDE)
Data Distillery Partnership Project. This collaborative effort is led
by the CFDE HuBMAP (Borner et al., 2025), SenNet, and Kids First
teams from the University of Pittsburgh and the Children’s Hospital
of Philadelphia (CHOP). Built on the Neo4j platform, the DDKG
aims to integrate and distill data from multiple Common Fund data
coordinating centers (DCCs), ensuring semantic interoperability to
support a wide range of integrative biomedical research questions
and scientific use cases, such as identifying novel relationships
between biomedical entities. The DDKG schema is based on,
and defined as a context of, the Unified Biomedical Knowledge
Graph (UBKG) (Unified Biomedical Knowledge Graph, 2024),
with schema based upon the Unified Medical Language
System (UMLS) (Bodenreider, 2004) to provide a robust framework,
with rigorous semantics and interoperability supported by the
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UMLS comprehensive metathesaurus, incorporating over 180
ontologies and standards.

ProteinGraphML

ProteinGraphML (Binder et al., 2022; Ranjbar et al., 2023) is
a Python-based package designed to predict associations between
diseases and protein-coding genes using a biomedical knowledge
graph. The package employs XGBoost (Chen and Guestrin, 2016),
a gradient-boosting machine learning algorithm, to estimate the
likelihood of these associations. It utilizes the metapath approach
to transform the complex, heterogeneous knowledge graph into
a feature matrix, where rows represent proteins and columns
correspond to feature vectors (either categorical or continuous
variables). In the context of ProteinGraphML, a metapath is
defined as a sequence of nodes and edges that form a path
connecting a target protein to a disease. These metapaths capture
the semantic information embedded in various path types between
nodes, effectively translating the graph structure into features
for machine learning models. This metapath approach allows
ProteinGraphML to utilize the complex relationships within the
biomedical knowledge graph, enhancing its ability to predict
disease-protein associations (Binder et al., 2022).

Positive unlabeled learning selected not at
random (PULSNAR)

Traditional binary classification techniques, which distinguish
between positive and negative instances, are well-suited for fully
labeled datasets. However, in a heterogeneous knowledge graph, the
existence of a link between a disease and a gene indicates a known
association, but the absence of a link does not necessarily imply a
negative relationship. The gene with missing link might be positive
whose association has not yet been established in studies. This leads
to the issue of the lack of reliable negative examples for classification
problems. This lack of reliable negative examples poses a significant
challenge for traditional binary classification methods, potentially
leading to biased results (Ghassemi et al., 2020; Kumar et al., 2025).
To address this limitation in KG2ML, we employed PULSCAR, a
Positive and Unlabeled learning technique we developed specifically
for PU datasets, where reliable negative examples are missing.

Our PULSNAR package offers flexible implementation,
supporting both SCAR (Selected Completely At Random) and non-
SCAR scenarios, depending on the nature of the data. The package
includes two main algorithms: PULSCAR (Positive Unlabeled
Learning Selected Completely At Random) and PULSNAR (Positive
Unlabeled Learning Selected Not At Random). The PULSCAR
algorithm is based on the SCAR assumption, which posits
that labeled positive examples are independent and identically
distributed (i.i.d.) samples from the positive class, meaning that the
probability of an example being labeled as positive is independent
of its attributes (Elkan and Noto, 2008). In contrast, PULSNAR
operates under the SNAR (Selected Not At Random) assumption,
where the selection of labeled positives is dependent on their
attributes (Kumar and Lambert, 2024). For example, in healthcare
data, whether a patient is diagnosed or coded for a specific condition
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often depends on the severity of their symptoms. Patients with mild
symptoms may go undiagnosed, while those with severe symptoms
are more likely to be diagnosed. In such cases, the labeled patient
data are influenced by selection bias, representing a SNAR scenario.

PULSCAR helps identify genes that lack explicit links to a
disease in the KG but may still be associated with it. For a given
disease, PULSCAR estimates the proportion (a) of positive genes
among those without explicit links to the disease in the KG and
assigns a likelihood score to each unassociated gene, indicating
its probability of being a positive gene for the disease. Thus, by
integrating the PULSNAR package, KG2ML enhances the discovery
of potential disease-gene associations, particularly in cases where
explicit negative examples are unavailable or unreliable.

Materials and methods

To apply the KG2ML pipeline to gene and disease data, we
constructed a subset of the DDKG, termed CondensedKG, which
includes all relevant node types and corresponding relationship
types required for this study. A feature matrix was generated by
applying a path-based approach to the nodes and edges within the
CondensedKG. The subsequent subsections detail the following: (1)
the methodology for creating the CondensedKG, (2) the KG2ML
workflow for generating the feature matrix, (3) the limitations
and challenges associated with the Neo4j Graph Data Science
(GDS) library (Neo4j, 2012), (4) the identification of positive genes
among those without direct links to diseases in the CondensedKG,
(5) the diseases selected to evaluate the KG2ML pipeline, and (6)
the validation process for imputed genes. The CondensedKG dump
file and all codes necessary for constructing the CondensedKG and
KG2ML pipeline are available via our GitHub repository: https://
github.com/unmtransinfo/cfde-distillery.

DDKG to CondensedKG

The DDKG integrates diverse biomedical data from multiple
ontologies and DCCs, resulting in a highly complex and large-
scale knowledge graph. Executing Cypher queries on such a
large-scale knowledge graph to extract data for specific use cases
can be resource-intensive and time-consuming. Additionally, the
interpretability of the extracted data can be challenging due to
its complexity. Given that our primary objective in this study
is to identify gene-disease associations, we generated a subset
of the DDKG, termed CondensedKG, to improve both data
interpretability and query performance. CondensedKG comprises
nodes representing genes, proteins, compounds, and diseases, along
with edges that denote the relationships among these entities.
Specifically, it includes 8 distinct node labels and 1,042 unique
relationship types. Figure 1 illustrates the step-by-step process
of generating CondensedKG from DDKG. This CondensedKG
offers two key advantages: (1) it enhances data interpretability
by providing a more focused and concise representation of gene-
disease relationships, and (2) it significantly improves Cypher query
execution times by reducing the number of nodes and edges
compared to the full DDKG. Figure 2 presents the query outputs
generated using DDKG and CondensedKG for the similar Neo4j
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Overview of ETL workflow to generate CondensedKG from DDKG.

A: DDKG - Chronic Heart Failure Query Results
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FIGURE 2

B: CondensedKG — Chronic Heart Failure Query Results

Comparison of the Chronic heart failure cypher query between (A) DDKG and (B) CondensedKG.
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Cypher query. The output produced using CondensedKG is notably
more concise and interpretable compared to that using DDKG.

KG2ML workflow

The comprehensive workflow of the KG2ML pipeline is
illustrated in Figure 3. Before applying the PULSCAR method
to gene-disease data for discovering genes lacking direct links
to diseases within the CondensedKG, we first identify genes
with direct links to diseases (positive instances) and genes
without direct links (unlabeled instances). Subsequently, we
generate feature vectors for both the positive and unlabeled
gene sets.

Label generation

The following Cypher query was used to select all genes for
inclusion in the KG2ML pipeline for Parkinson’s disease. The same
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query was applied to all other diseases in our study by substituting
their corresponding Concept Unique Identifiers (CUIs) (d.CUI
value in this query). In this query, the first MATCH statement
selects all gene nodes (positive) that are directly connected to the
target disease node through a compound node. The second MATCH
statement selects all other gene nodes (unlabeled) that are connected
to positive genes (g1:Gene) via Experimental Factor Ontology (EFO)
nodes (e:EFO). For the PULSCAR method, genes identified by the
first MATCH statement (gl:Gene) were labeled as class 1, while
those identified by the second MATCH statement (g2:Gene) were
labeled as class 0.

MATCH (d:Disease)-[]-(c:Compound)-[]-(gl:Gene) WHERE
d. CUI = 'C0030567'

MATCH (gl:Gene)-[]-(e:EFO)-[]-(g2:Gene)

RETURN DISTINCT gl. CUI as positive_genes_cui, gl.
node_label as positive_genes_label, e. CUI as features, c. CUI
as features_to_remove, g2. CUI as unknown_genes_cui, g2.
node_label as unknown_genes_label
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FIGURE 3

Comprehensive workflow of the KG2ML pipeline. The workflow consists of constructing the CondensedKG from UBKG/DDKG, identifying positive
genes (genes directly connected to the disease through compound nodes) and unlabeled genes (genes connected to positive genes via EFO nodes),
generating feature vectors for all genes based on EFO nodes, and applying PU learning to estimate a and compute calibrated probabilities of being
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positive for all unlabeled genes. [Icons by Pixel perfect from www.flaticon.com.].

Disease

FIGURE 4

Positive Gene

EFO (Features)
Unlabeled Gene

Selection of positive and unlabeled genes and extraction of associated features for the PU learning model. [Icons by Pixel perfect from

www.flaticon.com.].

Feature generation

All EFO nodes (e:EFO) connecting positive genes (gl:Gene)
to unlabeled genes (g2:Gene) were used as features. Figure 4
visualizes the Cypher query for extracting labeled positive and
unlabeled genes and the features for PU learning models. The
EFO integrates components from various biological ontologies,
including UBERON (anatomical terms), ChEBI (Chemical Entities
of Biological Interest) chemical compounds, and the Cell Ontology.
Assertions (a.k.a. semantic triples) associating genes with EFO terms
are derived from several high confidence sources, with provenance
available via DDKG relationship properties, encoded as source
abbreviations (SABs).

For each gene, if it was connected to a specific EFO node, the
corresponding feature value was set to 1; otherwise, it was set to 0.
This encoding resulted in a feature matrix of size n x m for running
the PULSCAR models, where n represents the number of unique
positive and unlabeled genes, and m denotes the number of unique
features (EFO nodes). Since most genes had relatively few nonzero
values (1s) in their feature vectors, the feature matrix was converted
into a Compressed Sparse Row (CSR) format, significantly reducing
memory usage and enhancing computational efficiency for matrix
operations and storage.

HashGNN - Neo4j Graph Data Science
(GDS)

The Neo4j Graph Data Science (GDS) (Neo4j, Inc, 2018)
library offers machine learning pipelines for feature extraction
from nodes and relationships, as well as for training supervised
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models to predict node properties and infer missing relationships.
The library’s integration with Neo4j’s native graph storage and
processing capabilities, combined with HashGNN’s theoretical
ability to handle large-scale graphs efficiently, made it an attractive
candidate for our biomedical knowledge graph analysis. Given the
heterogeneous nature of our knowledge graph, CondensedKG, and
the non-deterministic results produced by the Node2Vec node
embedding algorithm — even when the randomSeed configuration
parameter is specified—we exclusively utilized the HashGNN node
embedding algorithm for analyzing DDKG in this study. HishGNN
is particularly well-suited for embedding heterogeneous graphs
and provides more deterministic results compared to algorithms
like Node2Vec, especially when the randomSeed parameter
is specified.

However, our experimental implementation revealed several
limitations that made the HashGNN algorithm unsuitable for
our KG2ML framework’s specific requirements explained in the
KG2ML workflow section. While HashGNN offered efficient graph
neural network operations through locality-sensitive hashing, its
implementation in Neo4j GDS showed significant constraints when
dealing with heterogeneous biomedical knowledge graphs. The
algorithm’s performance degraded considerably when processing
complex relationship types and multi-hop connections, which
are characteristic of gene-disease associations. Additionally,
HashGNN’s feature hashing mechanism, while efficient for
homogeneous graphs, failed to adequately capture the semantic
richness of different relationship types in our CondensedKG,
leading to the loss of critical information about gene-disease
interaction patterns.
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TABLE 1 List of selected diseases/conditions with the number of positive and unlabeled genes and features.

Disease UMLS_CUI Positive genes Unlabeled genes Number of features
Bipolar disorder C0005586, C0236780 1,479 8,660 430
Coronary artery disease C0010068 1,869 8,286 505
Diabetes mellitus C0011849, C0011860, C0011854 2,428 7,734 548
Diabetic neuropathies C0011882 645 9,425 297
Hodgkin disease C0019829 1,102 9,033 391
Hyperaldosteronism C€0020428 999 9,140 365
Kidney failure C0035078 2,276 7,886 524
Malaria C0024530 1,280 8,860 436
Parkinson disease C0030567 1,964 8,189 503
Pulmonary edema C0034063 1,718 8,425 467
Raynaud disease C0034734 686 9,427 318
Schizophrenia C0036341 2,807 7,364 580

Furthermore, beyond the HashGNN-specific limitations,
Neo4j GDS presented additional challenges that affected our
frameworK’s effectiveness. Its inability to efficiently perform batch
operations for querying and processing large-scale heterogeneous
knowledge graphs significantly hindered performance. Moreover,
the library’s node embedding features, including HashGNN and
other algorithms like FastRP and Node2Vec, lacked the flexibility
required for our specific use case of disease-gene association
prediction. In particular, the meta path-based approach we required
for generating meaningful feature vectors that capture the complex
biological relationships between genes, proteins, and diseases was
not directly supported by Neo4j GDS’s embedding capabilities.
These technical constraints, especially HashGNN’s limitations in
handling heterogeneous graphs, led us to develop a custom path-
based feature generation method that better met our specific needs
for disease-gene association prediction. Therefore, this manuscript
does not compare the performance of the KG2ML pipeline with the
Neo4j GDS machine learning pipeline.

Diseases used for testing the KG2ML
pipeline

Table 1 lists the diseases/conditions that were selected to evaluate
the KG2ML pipeline. These well-defined diseases and conditions
were specifically selected based on the following considerations:
(1) availability of sufficient data, (2) biomedical importance and
interest to researchers, and (3) because they are responsible for
significant disease burden. Focusing on diseases with a large number
of connections ensures a sufficient number of both positive and
unlabeled examples, facilitating a robust evaluation of the KG2MTs
performance. Furthermore, the purposeful inclusion of a diverse
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range of medical conditions enabled a comprehensive evaluation of
the module’s effectiveness across various diseases.

Alpha estimation, identification of probable
positive genes and classification
performance

For all 12 diseases used in our experiment, we applied the SCAR-
based algorithm PULSCAR, available in the PULSNAR package.
The rationale for using PULSCAR is that the labeled positive genes
for these diseases satisfy the SCAR assumption because we selected
genes that are directly connected to the disease through compound
nodes only, ensuring that the labeled positives are randomly
sampled independently of their feature values. This strategy avoids
introducing selection bias and provides a valid justification for
applying PU learning under the SCAR assumption. Additionally, a
known limitation of the PULSNAR package is that the user must
know whether the labeled positives satisfy the SCAR or SNAR
assumption; applying the PULSNAR algorithm to SCAR data would
lead to an overestimation of the proportion (a) of positives in the
unlabeled set.

The PULSCAR method estimated the proportion (a) of genes
potentially associated with a given disease among those that lacked
explicit links (unlabeled) in the CondensedKG. Using the estimated
a value, PULSCAR generated calibrated probabilities for each
unlabeled gene, enabling the identification of genes that were more
likely to be associated with the target disease despite missing links
in the CondensedKG.

In the absence of a definitive ground truth for negative genes,
we employed two different modeling approaches to evaluate the
performance of the XGBoost model. In the first approach, XGBoost
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was trained and tested using 5-fold cross-validation (CV), where all
labeled positive genes were treated as class 1 and all unlabeled genes
as class 0. In the second approach, XGBoost was trained and tested
using 5-fold CV, but in this case, both labeled positive genes and
probable positive genes identified using the PULSCAR method were
treated as class 1, while the remaining unlabeled genes were treated
as class 0. In both approaches, models were trained and tested using
5-fold CV for 40 iterations to estimate the 95% confidence interval
(CI). This comparative analysis allowed us to assess the effectiveness
of PULSCAR in distinguishing probable positive genes from truly
unassociated genes. In all experiments, we used the default values
for most of the XGBoost parameters. Hyperparameter tuning was
performed only for the max_depth parameter, as it was the most
influential parameter affecting the alpha estimates. We set max_
depth to 4 and the eval_metric to ‘logloss, while leaving all other
XGBoost parameters at their default values.

Additionally, since all 12 datasets contained only labeled
positive examples (with no explicitly labeled negative examples),
we calculated recall for both models using only the labeled positive
examples. Specifically, this evaluation aimed to determine whether
incorporating probable positives identified by PULSCAR improved
the model’s ability to recall known positive genes.

We also utilized the DEDPUL (Ivanov, 2020), TiCE (Bekker
and Davis, 2018), and KM methods (Tewari, 2016) to estimate
the proportion (a) of positive genes among unlabeled genes, in
order to compare PULSCAR’s a estimates with those from other
PU methods.

Validation of imputed genes

To validate the genes imputed by the PULSCAR method, we
selected the top 15 genes with the highest calibrated probabilities for
each of the 12 diseases. The calibrated probabilities were computed
as the mean values obtained from 40 independent iterations
of the PULSCAR model, ensuring robustness and reliability in
the probability estimates. Validation was performed by a subject
matter expert (SME) through a comprehensive review of published
literature and the TINX database (Metzger et al., 2024), a well-
established resource for gene-disease associations. For each gene, the
SME assessed its association with the corresponding disease based
on available evidence. If a documented association was found in
either the literature or the TINX database, the gene was classified as
“Yes’ (associated). If no prior evidence of association was identified, it
was classified as ‘No’ (not associated). This expert-driven validation
process provided an external assessment of the PULSCAR model’s
ability to identify disease-gene associations, further supporting
its potential for uncovering previously unrecognized links in
biomedical knowledge graphs.

Results

Table 2 presents the a values estimated by the PULSCAR method
for each of the conditions/diseases used to evaluate the KG2ML
pipeline. These a values represent the estimated proportion of
genes that, despite lacking explicit links with a given disease in the
knowledge graph, may potentially be associated with the condition.

Frontiers in Bioinformatics

07

10.3389/fbinf.2025.1727953

This suggests that a substantial fraction of unlabeled genes could
have undiscovered associations with the diseases under study.

In Table 2, the column labeled XGBoost only’ corresponds
to Model 1, which was trained and tested using 5-fold CV. In
this model, all labeled positive genes were treated as class 1, and
all unlabeled genes were treated as class 0. The column labeled
XGBoost + PULSCAR’ corresponds to Model 2, which was also
trained and tested using 5-fold CV. However, in Model 2, both
labeled positive genes and probable positive genes identified by the
PULSCAR method were treated as class 1, while the remaining
unlabeled genes were treated as class 0. The recall of Model 2
showed significant improvement over Model 1, demonstrating that
incorporating probable positives identified by PULSCAR enhances
the model’s ability to predict known positive genes.

Table 3 presents a comparison of a estimates obtained using
SCAR-based methods: PULSCAR, DEDPUL, KM1, KM2, and TiCE.
Since KM methods select all positive and unlabeled instances to
estimate the proportion, they yielded the same a values across
iterations. Notably, in the absence of a known true a for each disease,
the estimated values cannot be directly validated. However, the a
estimates from different methods suggest that some genes without
direct links to the disease in existing knowledge graphs may still
be associated with the disease, warranting further investigation to
confirm these potential associations.

Figure 5 presents the classification performance of two
XGBoost-based models, highlighting the impact of incorporating
PULSCAR-identified probable positive and negative genes into the
classification models. Model 1 (labeled as “XGBoost only” and
represented by the blue bars) was trained and tested using 5-fold
cross-validation (CV). In this model, labeled positive genes were
assigned to class 1, while all unlabeled genes were treated as class
0. This serves as a baseline model, operating under the assumption
that all unlabeled genes are negative.

Model 2 (labeled as “XGBoost + PULSCAR” and represented
by the red bars) followed the same 5-fold CV procedure. However,
in this model, both labeled positive genes and probable positive
genes identified by PULSCAR were assigned to class 1, while the
remaining unlabeled genes were considered class 0. By incorporating
the probable positive and negative genes inferred by PULSCAR,
we observed a substantial improvement across all classification
performance metrics across all datasets. This demonstrates the
effectiveness of PULSCAR in distinguishing between positive and
negative genes within the unlabeled set, thereby enhancing overall
predictive accuracy.

Supplementary Table 1 presents the top 15 genes with the highest
calibrated probabilities of association for each of the 12 diseases
analyzed in this study. Validation through a comprehensive review
of existing scientific literature and the TINX database confirmed that
many of these top-ranked genes are indeed associated with their
respective diseases. This result highlights the effectiveness of PU
learning in identifying potential disease-gene associations that are
not explicitly represented in the knowledge graph.

Discussion

Biomedical knowledge graphs integrate information from
existing literature and databases, representing entities such as genes,
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TABLE 2 a values estimated by the PULSCAR method for each disease/condition used to test the KG2ML pipeline. Recall was computed using only
labeled positive genes for both models. “XGBoost only”: models were trained and tested with 5-fold cross-validation using labeled positives as class 1
and unlabeled as class 0. “XGBoost + PULSCAR": models were trained and tested with 5-fold cross-validation using labeled and PULSCAR-imputed
probable positives as class 1 and probable negatives as class 0.

Disease Estimated alpha (95% CI)  Recall (95% CI) XGBoost only  Recall (95% CI) XGBoost + PULSCAR

Bipolar disorder

0.3368 (0.3130, 0.3606)

0.4524 (0.4502, 0.4546)

0.6122 (0.5884, 0.6360)

Coronary artery disease

0.3471 (0.3208, 0.3734)

0.4824 (0.4803, 0.4844)

0.6292 (0.6103, 0.6482)

Diabetes mellitus

0.2700 (0.2552, 0.2849)

0.5005 (0.4992, 0.5019)

0.5975 (0.5839, 0.6111)

Diabetic neuropathies

0.3462 (0.3021, 0.3903)

0.3466 (0.3430, 0.3501)

0.6371 (0.6088, 0.6653)

Hodgkin disease 0.4356 (0.4002, 0.4711) 0.4202 (0.4174, 0.4230) 0.6840 (0.6636, 0.7044)
Hyperaldosteronism 0.4161 (0.3715, 0.4608) 0.4566 (0.4538, 0.4595) 0.6945 (0.6648, 0.7242)
Kidney failure 0.3054 (0.2892, 0.3217) 0.4856 (0.4845, 0.4868) 0.6124 (0.5901, 0.6348)
Malaria 0.4273 (0.4148, 0.4397) 0.4635 (0.4610, 0.4661) 0.7177 (0.7076, 0.7277)
Parkinson disease 0.4309 (0.3912, 0.4708) 0.4847 (0.4834, 0.4861) 0.7061 (0.6793, 0.7329)

Pulmonary edema

0.3487 (0.3014, 0.3959)

0.4753 (0.4735, 0.4771)

0.6201 (0.5894, 0.6509)

Raynaud disease

0.3263 (0.2947, 0.3578)

0.4269 (0.4241, 0.4297)

0.6613 (0.6408, 0.6817)

Schizophrenia

0.1514 (0.1235, 0.1792)

0.5171 (0.5161, 0.5181)

0.5483 (0.5325, 0.5641)

TABLE 3 Comparison of a estimated by SCAR-based methods: PULSCAR, DEDPUL, KM1, KM2, and TiCE. Estimates from PULSCAR, DEDPUL, and TiCE
show the mean a and the 95% confidence interval (CI) of a values based on 40 iterations. KM estimates represent the mean a. Since the KM methods

returned the same a for each iteration, 95% ClI values are not shown.
Disease PULSCAR DEDPUL KM2 TiCE

Bipolar disorder 0.3368 (0.3130, 0.3606) 0.5142 (0.5022, 0.5261) 0.4547 0.5255 0.3984 (0.3918, 0.4050)
Coronary artery disease 0.3471 (0.3208, 0.3734) 0.4760 (0.4616, 0.4904) 0.3702 0.4854 0.3989 (0.3917, 0.4060)
Diabetes mellitus 0.2700 (0.2552, 0.2849) 0.4633 (0.4513, 0.4753) 0.3478 0.4547 0.3771 (0.3690, 0.3852)
Diabetic neuropathies 0.3462 (0.3021, 0.3903) 0.5391 (0.5220, 0.5562) 0.5193 0.5489 0.4432 (0.4319, 0.4544)
Hodgkin disease 0.4356 (0.4002, 0.4711) 0.5239 (0.5145, 0.5332) 0.4627 0.5375 0.4652 (0.4574, 0.4730)
Hyperaldosteronism 0.4161 (0.3715, 0.4608) 0.4844 (0.4772, 0.4916) 0.4380 0.4995 0.4532 (0.4450, 0.4615)
Kidney failure 0.3054 (0.2892, 0.3217) 0.4391 (0.4289, 0.4493) 0.3702 0.4781 0.4050 (0.3966, 0.4134)
Malaria 0.4273 (0.4148, 0.4397) 0.4854 (0.4765, 0.4942) 0.4201 0.4995 0.4537 (0.4482, 0.4592)
Parkinson disease 0.4309 (0.3912, 0.4708) 0.4389 (0.4250, 0.4529) 0.3809 0.4781 0.4153 (0.4071, 0.4235)
Pulmonary edema 0.3487 (0.3014, 0.3959) 0.4923 (0.4823, 0.5023) 0.4202 0.4995 0.3728 (0.3652, 0.3804)
Raynaud disease 0.3263 (0.2947, 0.3578) 0.4810 (0.4732, 0.4888) 0.4627 0.5128 0.3937 (0.3852, 0.4023)
Schizophrenia 0.1514 (0.1235, 0.1792) 0.3877 (0.3810, 0.3945) 0.2547 0.4202 0.3185 (0.3135, 0.3235)

diseases, and compounds as nodes and their associations as edges.  its comprehensive nature, CondensedKG—like other knowledge

However, a common limitation of these knowledge graphs is data ~ graphs—remains subject to data gaps and missing associations.
incompleteness, as they often lack certain entities or relationships
due to gaps in current knowledge (Chen et al, 2020). In this
study, we utilized CondensedKG, a subset of the DDKG, which

aggregates nodes and edges contributed by various DCCs. Despite

However, as demonstrated in our study, machine learning methods,
particularly PU learning, can effectively uncover such missing
associations. The o values estimated by the KG2ML pipeline for
all 12 diseases in our study highlight the efficacy of PU learning
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in detecting genes that are not explicitly linked to diseases in the
knowledge graph. However, not all imputed genes could be validated
due to the novelty of these associations, as no prior studies have yet
established these gene-disease relationships. The lack of validation
for certain gene-disease pairs does not necessarily indicate that the
associations identified by the PU learning method are incorrect;

10.3389/fbinf.2025.1727953

rather, it suggests the potential for novel discoveries that warrant
further investigation.

Knowledge graph embedding algorithms map entities and
relationships from a knowledge graph into a continuous vector
space while preserving the graph’s semantic and structural
properties (Dai et al.,, 2020). These embeddings enable efficient
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(Continued). Classification performance of XGBoost models trained and tested on labeled positives as class 1 and unlabeled instances as class 0

('XGBoost only’) vs. labeled and PULSCAR-imputed probable positives as class 1 and probable negatives as class 0 (XGBoost + PULSCAR)).

computation and facilitate machine learning tasks such as link  Neo4;j's graph embedding algorithms can exhibit non-deterministic
prediction and entity classification. However, as outlined in the  behavior despite setting a random seed, which poses challenges
subsection “HashGNN - Neo4j Graph Data Science (GDS),  for reproducibility. To address this limitation, we adopted a
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path-based embedding technique from our previous work,
ProteinGraphML, ensuring more consistent and interpretable
feature vector representations. This approach not only enhanced
reproducibility but also provided embeddings better suited for the
downstream PU learning method, PULSCAR.

Across all datasets, Model 2 consistently outperformed
Model one across all evaluation metrics (Figure 5; Table 2). This
improvement suggests that the application of PU learning effectively
differentiated probable positive and negative examples within
the unlabeled set, thereby refining the dataset. The improved
data quality enabled the model to learn more precise decision
boundaries, resulting in superior classification performance
compared to the baseline model (Model 1), which treated
all unlabeled examples as negative instances (class 0). This
finding is consistent with prior studies demonstrating that
reducing noise in the labels improves model performance
(Ding et al,, 2022). A review of PU learning in bioinformatics
and computational biology (Li et al, 2021) also found that
studies reported performance improvements when using PU
The
as shown in Table 2, further supports the accuracy of our PU
method, PULSCAR, in identifying probable positives within
the unlabeled set. Since the recall was calculated using only

learning methods. significant improvement in recall,

labeled positive examples, the results suggest that the probable
positives identified by PULSCAR were predominantly true positives
rather than false positives. Our findings highlight the potential
of PU learning to improve gene-disease association predictions,
making it a valuable computational approach for advancing
biomedical research.

Limitations

To validate the genes identified by the KG2ML pipeline, we
referenced published scientific literature along with the TINX
database. If a gene-disease association was neither documented
in prior studies nor available in TINX, we could not confirm
its validity based on the existing knowledge. Further validation
could be derived from agreement with additional trusted public
knowledge resources; however, given that novel hypothesis
generation is an explicit goal, there are limits to any validation
approach. Consequently, our findings should be interpreted
as methodological advancements in identifying previously
unrecognized disease-associated genes, rather than as definitive
associations.

Future work

In this study, we were unable to utilize the Neo4j Graph Data
Science module due to its technical constraints, as outlined in the
subsection “HashGNN - Neo4j Graph Data Science (GDS)” In
future research, we aim to integrate a deterministic node embedding
algorithm of Neo4j with our KG2ML pipeline. This investigation
will evaluate the effectiveness of GDS-derived embeddings in
enhancing PU learning performance for identifying disease-gene
associations.
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Conclusion

Like other biomedical knowledge graphs, CondensedKG,
despite being a subset of the comprehensive DDKG, lacks certain
associations among existing entities such as genes, diseases,
compounds, and proteins. Since all gene-disease associations in
CondensedKG are derived from prior studies and established
databases, genes explicitly linked to a disease can be considered
positive genes for that disease. However, genes lacking such
associations in the knowledge graph cannot be assumed to
be negative genes, as their true relationships may simply be
undiscovered. This characteristic makes PU learning particularly
suitable for analyzing such data, as it is specifically designed
to identify unknown associations in the absence of confirmed
negative examples. The a values estimated by PULSCAR suggest that
numerous missing gene-disease associations exist in CondensedKG,
highlighting the potential for novel discoveries. However, these
predicted associations require experimental validation to confirm
their biological relevance. Manual validation of imputed genes by
domain experts further demonstrates the potential of PU learning
as a computational framework for advancing biomedical research.
By integrating knowledge graph analysis with PU learning, the
KG2ML pipeline presents a methodological advancement, providing
a robust and scalable framework for uncovering novel gene-disease
associations.
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