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Background: Biomedical knowledge graphs (KGs), such as the Data Distillery 
Knowledge Graph (DDKG), capture known relationships among entities (e.g., 
genes, diseases, proteins), providing valuable insights for research. However, 
these relationships are typically derived from prior studies, leaving potential 
unknown associations unexplored. Identifying such unknown associations, 
including previously unknown disease-associated genes, remains a critical 
challenge in bioinformatics and is crucial for advancing biomedical knowledge.
Methods: Traditional methods, such as linkage analysis and genome-wide 
association studies (GWAS), can be time-consuming and resource-intensive. 
This highlights the need for efficient computational approaches to identify or 
predict new genes using known disease-gene associations. Recently, network-
based methods and KGs, enhanced by advances in machine learning (ML) 
frameworks, have emerged as promising tools for inferring these unexplored 
associations. Given the technical limitations of the Neo4j Graph Data Science 
(GDS) machine learning pipeline, we developed a novel machine learning 
pipeline called KG2ML (Knowledge Graph to Machine Learning). This pipeline 
utilizes our Positive and Unlabeled (PU) learning algorithm, PULSCAR (Positive 
Unlabeled Learning Selected Completely At Random), and incorporates path-
based feature extraction from ProteinGraphML.
Results: KG2ML was applied to 12 diseases, including Bipolar Disorder, 
Coronary Artery Disease, and Parkinson’s Disease, to infer disease-associated 
genes not explicitly recorded in DDKG. For several of these diseases, 14 
out of the 15 top-ranked genes lacked prior explicit associations in the 
DDKG but were supported by literature and TINX (Target Importance and 
Novelty Explorer) evidence. Incorporating PULSCAR-imputed genes as positives 
enhanced XGBoost classification, demonstrating the potential of PU learning in 
identifying hidden gene-disease relationships.
Conclusion: The observed improvement in classification performance 
after the inclusion of PULSCAR-imputed genes as positive examples, 
along with the subject matter experts’ (SME) evaluations of the top 15 
imputed genes for 12 diseases, suggests that PU learning can effectively 
uncover disease-gene associations missing from existing knowledge
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graphs (KGs). By integrating KG data with ML-based inference, our KG2ML 
pipeline provides a scalable and interpretable framework to advance biomedical 
research while addressing the inherent limitations of current KGs.

KEYWORDS

biomedical knowledge graphs, data distillery knowledge graph, DDKG, disease-
associated genes, genome-wide association studies, GWAS, linkage analysis, network-
based methods 

Background

Genes are the fundamental units of inheritance and play a 
critical role in determining an individual’s susceptibility to various 
conditions and disorders (MedlinePlus, 2020). Mutations or genetic 
variations can disrupt normal biological processes, potentially 
leading to diseases. Identifying genes that are causally linked to 
specific genetic diseases is crucial for improving human health 
(Navlakha and Kingsford, 2010). Such knowledge provides insights 
into the molecular mechanisms underlying diseases, which are 
essential for the development of effective diagnostic and therapeutic 
strategies. Moreover, understanding gene-disease associations 
enables the identification of at-risk individuals, allowing for 
early interventions to reduce the likelihood of disease onset and 
progression (Luo et al., 2019; Gao et al., 2022; Li Y et al., 2023).

Identifying genes associated with specific diseases remains 
an open problem in bioinformatics (Opap and Mulder, 2017; 
Qumsiyeh et al., 2022). Traditional approaches for disease-
associated genes identification, such as linkage analysis and genome-
wide association studies (GWAS), are often time-consuming and 
resource-intensive (Li Y. et al. 2023). Consequently, the development 
of efficient computational methods to identify or predict novel 
genes using known disease-gene associations has become crucial. 
Network-based computational methods are widely employed to 
infer disease-gene associations (Gao et al., 2022). These networks 
are constructed using biological and molecular prior knowledge, 
capturing complex relationships between entities, such as genes, 
proteins, and diseases (Renaux et al., 2023). Knowledge graphs 
(KGs) further enhance this approach by integrating diverse 
biological networks and ontologies into a unified, comprehensive 
framework. KGs leverage complex semantic relationships 
among entities to generate valuable insights (Gao et al., 2022; 
Renaux et al., 2023). Recent advancements in machine learning 
(ML) frameworks have expanded the application of ML algorithms 
to KGs for the identification and prediction of novel disease-
associated genes (Mordelet and Vert, 2011; Gao et al., 2022; 
Qumsiyeh et al., 2022; Renaux et al., 2023; Li Y. et al. 2023; 
Gualdi et al., 2024; Xie et al., 2024) and the closely related 
task of drug-target interaction prediction (Li Y.-C. et al. 2023). 
Applying ML methods to KGs typically involves transforming 
the network of entities into a feature matrix through techniques 
such as knowledge graph embeddings (Nelson et al., 2019; 
Gualdi et al., 2024) or path-based feature extraction methods 
(Himmelstein and Baranzini, 2015; Binder et al., 2022; Domingo-
Fernández et al., 2022). These approaches allow the integration 
of heterogeneous data types and enhance the discovery of hidden 
patterns and associations.

In this study, we propose a machine learning pipeline called 
KG2ML (Knowledge Graph to Machine Learning) employing a 
Positive and Unlabeled (PU) learning algorithm and a path-based 
feature extraction method to derive features from the knowledge 
graph. The primary objective of this study is to identify genes 
potentially associated with diseases, even in the absence of explicit 
links between them in the knowledge graph. Since all entities and 
their relationships in a KG are derived from prior knowledge, 
the absence of a direct link between a gene and a disease does 
not necessarily indicate that the gene is unrelated to the disease. 
This motivated the use of PU learning instead of traditional 
binary classification based on positive and negative examples. 
Specifically, we utilized PULSCAR (Positive Unlabeled Learning 
Selected Completely At Random) (Kumar and Lambert, 2024) 
as our PU learning algorithm, while the method for generating 
feature vectors for each gene was adapted from our previous work, 
ProteinGraphML (Binder et al., 2022). The novelty of KG2ML 
lies in its integration of path-based feature extraction from a 
biomedical knowledge graph with a PU learning framework. This 
integration enables interpretable, end-to-end discovery of novel 
associations between biomedical entities that are not explicitly 
connected in the graph. Unlike traditional PU methods that rely 
on user-provided features and graph-based prediction methods that 
primarily depend on embeddings or topological proximity, KG2ML 
derives biologically meaningful features algorithmically from graph 
paths, thereby capturing complex and context-specific relationships 
among biomedical entities. 

Data Distillery Knowledge Graph (DDKG)

The Data Distillery Knowledge Graph (DDKG) has been 
developed as part of the Common Fund Data Ecosystem (CFDE) 
Data Distillery Partnership Project. This collaborative effort is led 
by the CFDE HuBMAP (Börner et al., 2025), SenNet, and Kids First 
teams from the University of Pittsburgh and the Children’s Hospital 
of Philadelphia (CHOP). Built on the Neo4j platform, the DDKG 
aims to integrate and distill data from multiple Common Fund data 
coordinating centers (DCCs), ensuring semantic interoperability to 
support a wide range of integrative biomedical research questions 
and scientific use cases, such as identifying novel relationships 
between biomedical entities. The DDKG schema is based on, 
and defined as a context of, the Unified Biomedical Knowledge 
Graph (UBKG) (Unified Biomedical Knowledge Graph, 2024), 
with schema based upon the Unified Medical Language 
System (UMLS) (Bodenreider, 2004) to provide a robust framework, 
with rigorous semantics and interoperability supported by the 
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UMLS comprehensive metathesaurus, incorporating over 180 
ontologies and standards. 

ProteinGraphML

ProteinGraphML (Binder et al., 2022; Ranjbar et al., 2023) is 
a Python-based package designed to predict associations between 
diseases and protein-coding genes using a biomedical knowledge 
graph. The package employs XGBoost (Chen and Guestrin, 2016), 
a gradient-boosting machine learning algorithm, to estimate the 
likelihood of these associations. It utilizes the metapath approach 
to transform the complex, heterogeneous knowledge graph into 
a feature matrix, where rows represent proteins and columns 
correspond to feature vectors (either categorical or continuous 
variables). In the context of ProteinGraphML, a metapath is 
defined as a sequence of nodes and edges that form a path 
connecting a target protein to a disease. These metapaths capture 
the semantic information embedded in various path types between 
nodes, effectively translating the graph structure into features 
for machine learning models. This metapath approach allows 
ProteinGraphML to utilize the complex relationships within the 
biomedical knowledge graph, enhancing its ability to predict 
disease-protein associations (Binder et al., 2022). 

Positive unlabeled learning selected not at 
random (PULSNAR)

Traditional binary classification techniques, which distinguish 
between positive and negative instances, are well-suited for fully 
labeled datasets. However, in a heterogeneous knowledge graph, the 
existence of a link between a disease and a gene indicates a known 
association, but the absence of a link does not necessarily imply a 
negative relationship. The gene with missing link might be positive 
whose association has not yet been established in studies. This leads 
to the issue of the lack of reliable negative examples for classification 
problems. This lack of reliable negative examples poses a significant 
challenge for traditional binary classification methods, potentially 
leading to biased results (Ghassemi et al., 2020; Kumar et al., 2025). 
To address this limitation in KG2ML, we employed PULSCAR, a 
Positive and Unlabeled learning technique we developed specifically 
for PU datasets, where reliable negative examples are missing.

Our PULSNAR package offers flexible implementation, 
supporting both SCAR (Selected Completely At Random) and non-
SCAR scenarios, depending on the nature of the data. The package 
includes two main algorithms: PULSCAR (Positive Unlabeled 
Learning Selected Completely At Random) and PULSNAR (Positive 
Unlabeled Learning Selected Not At Random). The PULSCAR 
algorithm is based on the SCAR assumption, which posits 
that labeled positive examples are independent and identically 
distributed (i.i.d.) samples from the positive class, meaning that the 
probability of an example being labeled as positive is independent 
of its attributes (Elkan and Noto, 2008). In contrast, PULSNAR 
operates under the SNAR (Selected Not At Random) assumption, 
where the selection of labeled positives is dependent on their 
attributes (Kumar and Lambert, 2024). For example, in healthcare 
data, whether a patient is diagnosed or coded for a specific condition 

often depends on the severity of their symptoms. Patients with mild 
symptoms may go undiagnosed, while those with severe symptoms 
are more likely to be diagnosed. In such cases, the labeled patient 
data are influenced by selection bias, representing a SNAR scenario.

PULSCAR helps identify genes that lack explicit links to a 
disease in the KG but may still be associated with it. For a given 
disease, PULSCAR estimates the proportion (ɑ) of positive genes 
among those without explicit links to the disease in the KG and 
assigns a likelihood score to each unassociated gene, indicating 
its probability of being a positive gene for the disease. Thus, by 
integrating the PULSNAR package, KG2ML enhances the discovery 
of potential disease-gene associations, particularly in cases where 
explicit negative examples are unavailable or unreliable.

Materials and methods

To apply the KG2ML pipeline to gene and disease data, we 
constructed a subset of the DDKG, termed CondensedKG, which 
includes all relevant node types and corresponding relationship 
types required for this study. A feature matrix was generated by 
applying a path-based approach to the nodes and edges within the 
CondensedKG. The subsequent subsections detail the following: (1) 
the methodology for creating the CondensedKG, (2) the KG2ML 
workflow for generating the feature matrix, (3) the limitations 
and challenges associated with the Neo4j Graph Data Science 
(GDS) library (Neo4j, 2012), (4) the identification of positive genes 
among those without direct links to diseases in the CondensedKG, 
(5) the diseases selected to evaluate the KG2ML pipeline, and (6) 
the validation process for imputed genes. The CondensedKG dump 
file and all codes necessary for constructing the CondensedKG and 
KG2ML pipeline are available via our GitHub repository: https://
github.com/unmtransinfo/cfde-distillery. 

DDKG to CondensedKG

The DDKG integrates diverse biomedical data from multiple 
ontologies and DCCs, resulting in a highly complex and large-
scale knowledge graph. Executing Cypher queries on such a 
large-scale knowledge graph to extract data for specific use cases 
can be resource-intensive and time-consuming. Additionally, the 
interpretability of the extracted data can be challenging due to 
its complexity. Given that our primary objective in this study 
is to identify gene-disease associations, we generated a subset 
of the DDKG, termed CondensedKG, to improve both data 
interpretability and query performance. CondensedKG comprises 
nodes representing genes, proteins, compounds, and diseases, along 
with edges that denote the relationships among these entities. 
Specifically, it includes 8 distinct node labels and 1,042 unique 
relationship types. Figure 1 illustrates the step-by-step process 
of generating CondensedKG from DDKG. This CondensedKG 
offers two key advantages: (1) it enhances data interpretability 
by providing a more focused and concise representation of gene-
disease relationships, and (2) it significantly improves Cypher query 
execution times by reducing the number of nodes and edges 
compared to the full DDKG. Figure 2 presents the query outputs 
generated using DDKG and CondensedKG for the similar Neo4j 
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FIGURE 1
Overview of ETL workflow to generate CondensedKG from DDKG.

FIGURE 2
Comparison of the Chronic heart failure cypher query between (A) DDKG and (B) CondensedKG.

Cypher query. The output produced using CondensedKG is notably 
more concise and interpretable compared to that using DDKG.

KG2ML workflow

The comprehensive workflow of the KG2ML pipeline is 
illustrated in Figure 3. Before applying the PULSCAR method 
to gene-disease data for discovering genes lacking direct links 
to diseases within the CondensedKG, we first identify genes 
with direct links to diseases (positive instances) and genes 
without direct links (unlabeled instances). Subsequently, we 
generate feature vectors for both the positive and unlabeled
gene sets.

Label generation
The following Cypher query was used to select all genes for 

inclusion in the KG2ML pipeline for Parkinson’s disease. The same 

query was applied to all other diseases in our study by substituting 
their corresponding Concept Unique Identifiers (CUIs) (d.CUI
value in this query). In this query, the first MATCH statement 
selects all gene nodes (positive) that are directly connected to the 
target disease node through a compound node. The second MATCH 
statement selects all other gene nodes (unlabeled) that are connected 
to positive genes (g1:Gene) via Experimental Factor Ontology (EFO) 
nodes (e:EFO). For the PULSCAR method, genes identified by the 
first MATCH statement (g1:Gene) were labeled as class 1, while 
those identified by the second MATCH statement (g2:Gene) were 
labeled as class 0. 

MATCH (d:Disease)-[]-(c:Compound)-[]-(g1:Gene) WHERE 
d. CUI = 'C0030567′

MATCH (g1:Gene)-[]-(e:EFO)-[]-(g2:Gene)
RETURN DISTINCT g1. CUI as positive_genes_cui, g1. 
node_label as positive_genes_label, e. CUI as features, c. CUI 
as features_to_remove, g2. CUI as unknown_genes_cui, g2. 
node_label as unknown_genes_label
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FIGURE 3
Comprehensive workflow of the KG2ML pipeline. The workflow consists of constructing the CondensedKG from UBKG/DDKG, identifying positive 
genes (genes directly connected to the disease through compound nodes) and unlabeled genes (genes connected to positive genes via EFO nodes), 
generating feature vectors for all genes based on EFO nodes, and applying PU learning to estimate α and compute calibrated probabilities of being 
positive for all unlabeled genes. [Icons by Pixel perfect from www.flaticon.com.].

FIGURE 4
Selection of positive and unlabeled genes and extraction of associated features for the PU learning model. [Icons by Pixel perfect from 
www.flaticon.com.].

Feature generation
All EFO nodes (e:EFO) connecting positive genes (g1:Gene) 

to unlabeled genes (g2:Gene) were used as features. Figure 4 
visualizes the Cypher query for extracting labeled positive and 
unlabeled genes and the features for PU learning models. The 
EFO integrates components from various biological ontologies, 
including UBERON (anatomical terms), ChEBI (Chemical Entities 
of Biological Interest) chemical compounds, and the Cell Ontology. 
Assertions (a.k.a. semantic triples) associating genes with EFO terms 
are derived from several high confidence sources, with provenance 
available via DDKG relationship properties, encoded as source 
abbreviations (SABs).

For each gene, if it was connected to a specific EFO node, the 
corresponding feature value was set to 1; otherwise, it was set to 0. 
This encoding resulted in a feature matrix of size n × m for running 
the PULSCAR models, where n represents the number of unique 
positive and unlabeled genes, and m denotes the number of unique 
features (EFO nodes). Since most genes had relatively few nonzero 
values (1s) in their feature vectors, the feature matrix was converted 
into a Compressed Sparse Row (CSR) format, significantly reducing 
memory usage and enhancing computational efficiency for matrix 
operations and storage. 

HashGNN - Neo4j Graph Data Science 
(GDS)

The Neo4j Graph Data Science (GDS) (Neo4j, Inc, 2018) 
library offers machine learning pipelines for feature extraction 
from nodes and relationships, as well as for training supervised 

models to predict node properties and infer missing relationships. 
The library’s integration with Neo4j’s native graph storage and 
processing capabilities, combined with HashGNN’s theoretical 
ability to handle large-scale graphs efficiently, made it an attractive 
candidate for our biomedical knowledge graph analysis. Given the 
heterogeneous nature of our knowledge graph, CondensedKG, and 
the non-deterministic results produced by the Node2Vec node 
embedding algorithm — even when the randomSeed configuration 
parameter is specified—we exclusively utilized the HashGNN node 
embedding algorithm for analyzing DDKG in this study. HashGNN 
is particularly well-suited for embedding heterogeneous graphs 
and provides more deterministic results compared to algorithms 
like Node2Vec, especially when the randomSeed parameter
is specified.

However, our experimental implementation revealed several 
limitations that made the HashGNN algorithm unsuitable for 
our KG2ML framework’s specific requirements explained in the 
KG2ML workflow section. While HashGNN offered efficient graph 
neural network operations through locality-sensitive hashing, its 
implementation in Neo4j GDS showed significant constraints when 
dealing with heterogeneous biomedical knowledge graphs. The 
algorithm’s performance degraded considerably when processing 
complex relationship types and multi-hop connections, which 
are characteristic of gene-disease associations. Additionally, 
HashGNN’s feature hashing mechanism, while efficient for 
homogeneous graphs, failed to adequately capture the semantic 
richness of different relationship types in our CondensedKG, 
leading to the loss of critical information about gene-disease 
interaction patterns.
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TABLE 1  List of selected diseases/conditions with the number of positive and unlabeled genes and features.

Disease UMLS_CUI Positive genes Unlabeled genes Number of features

Bipolar disorder C0005586, C0236780 1,479 8,660 430

Coronary artery disease C0010068 1,869 8,286 505

Diabetes mellitus C0011849, C0011860, C0011854 2,428 7,734 548

Diabetic neuropathies C0011882 645 9,425 297

Hodgkin disease C0019829 1,102 9,033 391

Hyperaldosteronism C0020428 999 9,140 365

Kidney failure C0035078 2,276 7,886 524

Malaria C0024530 1,280 8,860 436

Parkinson disease C0030567 1,964 8,189 503

Pulmonary edema C0034063 1,718 8,425 467

Raynaud disease C0034734 686 9,427 318

Schizophrenia C0036341 2,807 7,364 580

Furthermore, beyond the HashGNN-specific limitations, 
Neo4j GDS presented additional challenges that affected our 
framework’s effectiveness. Its inability to efficiently perform batch 
operations for querying and processing large-scale heterogeneous 
knowledge graphs significantly hindered performance. Moreover, 
the library’s node embedding features, including HashGNN and 
other algorithms like FastRP and Node2Vec, lacked the flexibility 
required for our specific use case of disease-gene association 
prediction. In particular, the meta path-based approach we required 
for generating meaningful feature vectors that capture the complex 
biological relationships between genes, proteins, and diseases was 
not directly supported by Neo4j GDS’s embedding capabilities. 
These technical constraints, especially HashGNN’s limitations in 
handling heterogeneous graphs, led us to develop a custom path-
based feature generation method that better met our specific needs 
for disease-gene association prediction. Therefore, this manuscript 
does not compare the performance of the KG2ML pipeline with the 
Neo4j GDS machine learning pipeline. 

Diseases used for testing the KG2ML 
pipeline

Table 1 lists the diseases/conditions that were selected to evaluate 
the KG2ML pipeline. These well-defined diseases and conditions 
were specifically selected based on the following considerations: 
(1) availability of sufficient data, (2) biomedical importance and 
interest to researchers, and (3) because they are responsible for 
significant disease burden. Focusing on diseases with a large number 
of connections ensures a sufficient number of both positive and 
unlabeled examples, facilitating a robust evaluation of the KG2ML’s 
performance. Furthermore, the purposeful inclusion of a diverse 

range of medical conditions enabled a comprehensive evaluation of 
the module’s effectiveness across various diseases.

Alpha estimation, identification of probable 
positive genes and classification 
performance

For all 12 diseases used in our experiment, we applied the SCAR-
based algorithm PULSCAR, available in the PULSNAR package. 
The rationale for using PULSCAR is that the labeled positive genes 
for these diseases satisfy the SCAR assumption because we selected 
genes that are directly connected to the disease through compound 
nodes only, ensuring that the labeled positives are randomly 
sampled independently of their feature values. This strategy avoids 
introducing selection bias and provides a valid justification for 
applying PU learning under the SCAR assumption. Additionally, a 
known limitation of the PULSNAR package is that the user must 
know whether the labeled positives satisfy the SCAR or SNAR 
assumption; applying the PULSNAR algorithm to SCAR data would 
lead to an overestimation of the proportion (α) of positives in the 
unlabeled set.

The PULSCAR method estimated the proportion (α) of genes 
potentially associated with a given disease among those that lacked 
explicit links (unlabeled) in the CondensedKG. Using the estimated 
α value, PULSCAR generated calibrated probabilities for each 
unlabeled gene, enabling the identification of genes that were more 
likely to be associated with the target disease despite missing links 
in the CondensedKG.

In the absence of a definitive ground truth for negative genes, 
we employed two different modeling approaches to evaluate the 
performance of the XGBoost model. In the first approach, XGBoost 
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was trained and tested using 5-fold cross-validation (CV), where all 
labeled positive genes were treated as class 1 and all unlabeled genes 
as class 0. In the second approach, XGBoost was trained and tested 
using 5-fold CV, but in this case, both labeled positive genes and 
probable positive genes identified using the PULSCAR method were 
treated as class 1, while the remaining unlabeled genes were treated 
as class 0. In both approaches, models were trained and tested using 
5-fold CV for 40 iterations to estimate the 95% confidence interval 
(CI). This comparative analysis allowed us to assess the effectiveness 
of PULSCAR in distinguishing probable positive genes from truly 
unassociated genes. In all experiments, we used the default values 
for most of the XGBoost parameters. Hyperparameter tuning was 
performed only for the max_depth parameter, as it was the most 
influential parameter affecting the alpha estimates. We set max_
depth to 4 and the eval_metric to ‘logloss’, while leaving all other 
XGBoost parameters at their default values.

Additionally, since all 12 datasets contained only labeled 
positive examples (with no explicitly labeled negative examples), 
we calculated recall for both models using only the labeled positive 
examples. Specifically, this evaluation aimed to determine whether 
incorporating probable positives identified by PULSCAR improved 
the model’s ability to recall known positive genes.

We also utilized the DEDPUL (Ivanov, 2020), TiCE (Bekker 
and Davis, 2018), and KM methods (Tewari, 2016) to estimate 
the proportion (α) of positive genes among unlabeled genes, in 
order to compare PULSCAR’s α estimates with those from other 
PU methods. 

Validation of imputed genes

To validate the genes imputed by the PULSCAR method, we 
selected the top 15 genes with the highest calibrated probabilities for 
each of the 12 diseases. The calibrated probabilities were computed 
as the mean values obtained from 40 independent iterations 
of the PULSCAR model, ensuring robustness and reliability in 
the probability estimates. Validation was performed by a subject 
matter expert (SME) through a comprehensive review of published 
literature and the TINX database (Metzger et al., 2024), a well-
established resource for gene-disease associations. For each gene, the 
SME assessed its association with the corresponding disease based 
on available evidence. If a documented association was found in 
either the literature or the TINX database, the gene was classified as 
‘Yes’ (associated). If no prior evidence of association was identified, it 
was classified as ‘No’ (not associated). This expert-driven validation 
process provided an external assessment of the PULSCAR model’s 
ability to identify disease-gene associations, further supporting 
its potential for uncovering previously unrecognized links in 
biomedical knowledge graphs.

Results

Table 2 presents the α values estimated by the PULSCAR method 
for each of the conditions/diseases used to evaluate the KG2ML 
pipeline. These α values represent the estimated proportion of 
genes that, despite lacking explicit links with a given disease in the 
knowledge graph, may potentially be associated with the condition. 

This suggests that a substantial fraction of unlabeled genes could 
have undiscovered associations with the diseases under study.

In Table 2, the column labeled ‘XGBoost only’ corresponds 
to Model 1, which was trained and tested using 5-fold CV. In 
this model, all labeled positive genes were treated as class 1, and 
all unlabeled genes were treated as class 0. The column labeled 
‘XGBoost + PULSCAR’ corresponds to Model 2, which was also 
trained and tested using 5-fold CV. However, in Model 2, both 
labeled positive genes and probable positive genes identified by the 
PULSCAR method were treated as class 1, while the remaining 
unlabeled genes were treated as class 0. The recall of Model 2 
showed significant improvement over Model 1, demonstrating that 
incorporating probable positives identified by PULSCAR enhances 
the model’s ability to predict known positive genes.

Table 3 presents a comparison of α estimates obtained using 
SCAR-based methods: PULSCAR, DEDPUL, KM1, KM2, and TiCE. 
Since KM methods select all positive and unlabeled instances to 
estimate the proportion, they yielded the same α values across 
iterations. Notably, in the absence of a known true α for each disease, 
the estimated values cannot be directly validated. However, the α 
estimates from different methods suggest that some genes without 
direct links to the disease in existing knowledge graphs may still 
be associated with the disease, warranting further investigation to 
confirm these potential associations.

Figure 5 presents the classification performance of two 
XGBoost-based models, highlighting the impact of incorporating 
PULSCAR-identified probable positive and negative genes into the 
classification models. Model 1 (labeled as “XGBoost only” and 
represented by the blue bars) was trained and tested using 5-fold 
cross-validation (CV). In this model, labeled positive genes were 
assigned to class 1, while all unlabeled genes were treated as class 
0. This serves as a baseline model, operating under the assumption 
that all unlabeled genes are negative.

Model 2 (labeled as “XGBoost + PULSCAR” and represented 
by the red bars) followed the same 5-fold CV procedure. However, 
in this model, both labeled positive genes and probable positive 
genes identified by PULSCAR were assigned to class 1, while the 
remaining unlabeled genes were considered class 0. By incorporating 
the probable positive and negative genes inferred by PULSCAR, 
we observed a substantial improvement across all classification 
performance metrics across all datasets. This demonstrates the 
effectiveness of PULSCAR in distinguishing between positive and 
negative genes within the unlabeled set, thereby enhancing overall 
predictive accuracy.

Supplementary Table 1 presents the top 15 genes with the highest 
calibrated probabilities of association for each of the 12 diseases 
analyzed in this study. Validation through a comprehensive review 
of existing scientific literature and the TINX database confirmed that 
many of these top-ranked genes are indeed associated with their 
respective diseases. This result highlights the effectiveness of PU 
learning in identifying potential disease-gene associations that are 
not explicitly represented in the knowledge graph.

Discussion

Biomedical knowledge graphs integrate information from 
existing literature and databases, representing entities such as genes, 
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TABLE 2  α values estimated by the PULSCAR method for each disease/condition used to test the KG2ML pipeline. Recall was computed using only 
labeled positive genes for both models. “XGBoost only”: models were trained and tested with 5-fold cross-validation using labeled positives as class 1 
and unlabeled as class 0. “XGBoost + PULSCAR”: models were trained and tested with 5-fold cross-validation using labeled and PULSCAR-imputed 
probable positives as class 1 and probable negatives as class 0.

Disease Estimated alpha (95% CI) Recall (95% CI) XGBoost only Recall (95% CI) XGBoost + PULSCAR

Bipolar disorder 0.3368 (0.3130, 0.3606) 0.4524 (0.4502, 0.4546) 0.6122 (0.5884, 0.6360)

Coronary artery disease 0.3471 (0.3208, 0.3734) 0.4824 (0.4803, 0.4844) 0.6292 (0.6103, 0.6482)

Diabetes mellitus 0.2700 (0.2552, 0.2849) 0.5005 (0.4992, 0.5019) 0.5975 (0.5839, 0.6111)

Diabetic neuropathies 0.3462 (0.3021, 0.3903) 0.3466 (0.3430, 0.3501) 0.6371 (0.6088, 0.6653)

Hodgkin disease 0.4356 (0.4002, 0.4711) 0.4202 (0.4174, 0.4230) 0.6840 (0.6636, 0.7044)

Hyperaldosteronism 0.4161 (0.3715, 0.4608) 0.4566 (0.4538, 0.4595) 0.6945 (0.6648, 0.7242)

Kidney failure 0.3054 (0.2892, 0.3217) 0.4856 (0.4845, 0.4868) 0.6124 (0.5901, 0.6348)

Malaria 0.4273 (0.4148, 0.4397) 0.4635 (0.4610, 0.4661) 0.7177 (0.7076, 0.7277)

Parkinson disease 0.4309 (0.3912, 0.4708) 0.4847 (0.4834, 0.4861) 0.7061 (0.6793, 0.7329)

Pulmonary edema 0.3487 (0.3014, 0.3959) 0.4753 (0.4735, 0.4771) 0.6201 (0.5894, 0.6509)

Raynaud disease 0.3263 (0.2947, 0.3578) 0.4269 (0.4241, 0.4297) 0.6613 (0.6408, 0.6817)

Schizophrenia 0.1514 (0.1235, 0.1792) 0.5171 (0.5161, 0.5181) 0.5483 (0.5325, 0.5641)

TABLE 3  Comparison of α estimated by SCAR-based methods: PULSCAR, DEDPUL, KM1, KM2, and TiCE. Estimates from PULSCAR, DEDPUL, and TiCE 
show the mean α and the 95% confidence interval (CI) of α values based on 40 iterations. KM estimates represent the mean α. Since the KM methods 
returned the same α for each iteration, 95% CI values are not shown.

Disease PULSCAR DEDPUL KM1 KM2 TiCE

Bipolar disorder 0.3368 (0.3130, 0.3606) 0.5142 (0.5022, 0.5261) 0.4547 0.5255 0.3984 (0.3918, 0.4050)

Coronary artery disease 0.3471 (0.3208, 0.3734) 0.4760 (0.4616, 0.4904) 0.3702 0.4854 0.3989 (0.3917, 0.4060)

Diabetes mellitus 0.2700 (0.2552, 0.2849) 0.4633 (0.4513, 0.4753) 0.3478 0.4547 0.3771 (0.3690, 0.3852)

Diabetic neuropathies 0.3462 (0.3021, 0.3903) 0.5391 (0.5220, 0.5562) 0.5193 0.5489 0.4432 (0.4319, 0.4544)

Hodgkin disease 0.4356 (0.4002, 0.4711) 0.5239 (0.5145, 0.5332) 0.4627 0.5375 0.4652 (0.4574, 0.4730)

Hyperaldosteronism 0.4161 (0.3715, 0.4608) 0.4844 (0.4772, 0.4916) 0.4380 0.4995 0.4532 (0.4450, 0.4615)

Kidney failure 0.3054 (0.2892, 0.3217) 0.4391 (0.4289, 0.4493) 0.3702 0.4781 0.4050 (0.3966, 0.4134)

Malaria 0.4273 (0.4148, 0.4397) 0.4854 (0.4765, 0.4942) 0.4201 0.4995 0.4537 (0.4482, 0.4592)

Parkinson disease 0.4309 (0.3912, 0.4708) 0.4389 (0.4250, 0.4529) 0.3809 0.4781 0.4153 (0.4071, 0.4235)

Pulmonary edema 0.3487 (0.3014, 0.3959) 0.4923 (0.4823, 0.5023) 0.4202 0.4995 0.3728 (0.3652, 0.3804)

Raynaud disease 0.3263 (0.2947, 0.3578) 0.4810 (0.4732, 0.4888) 0.4627 0.5128 0.3937 (0.3852, 0.4023)

Schizophrenia 0.1514 (0.1235, 0.1792) 0.3877 (0.3810, 0.3945) 0.2547 0.4202 0.3185 (0.3135, 0.3235)

diseases, and compounds as nodes and their associations as edges. 
However, a common limitation of these knowledge graphs is data 
incompleteness, as they often lack certain entities or relationships 
due to gaps in current knowledge (Chen et al., 2020). In this 
study, we utilized CondensedKG, a subset of the DDKG, which 
aggregates nodes and edges contributed by various DCCs. Despite 

its comprehensive nature, CondensedKG—like other knowledge 
graphs—remains subject to data gaps and missing associations. 
However, as demonstrated in our study, machine learning methods, 
particularly PU learning, can effectively uncover such missing 
associations. The α values estimated by the KG2ML pipeline for 
all 12 diseases in our study highlight the efficacy of PU learning 
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in detecting genes that are not explicitly linked to diseases in the 
knowledge graph. However, not all imputed genes could be validated 
due to the novelty of these associations, as no prior studies have yet 
established these gene-disease relationships. The lack of validation 
for certain gene-disease pairs does not necessarily indicate that the 
associations identified by the PU learning method are incorrect; 

rather, it suggests the potential for novel discoveries that warrant 
further investigation.

Knowledge graph embedding algorithms map entities and 
relationships from a knowledge graph into a continuous vector 
space while preserving the graph’s semantic and structural 
properties (Dai et al., 2020). These embeddings enable efficient 

FIGURE 5
(Continued).
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FIGURE 5
(Continued). Classification performance of XGBoost models trained and tested on labeled positives as class 1 and unlabeled instances as class 0 
('XGBoost only’) vs. labeled and PULSCAR-imputed probable positives as class 1 and probable negatives as class 0 ('XGBoost + PULSCAR').

computation and facilitate machine learning tasks such as link 
prediction and entity classification. However, as outlined in the 
subsection “HashGNN - Neo4j Graph Data Science (GDS),” 

Neo4j′s graph embedding algorithms can exhibit non-deterministic 
behavior despite setting a random seed, which poses challenges 
for reproducibility. To address this limitation, we adopted a 
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path-based embedding technique from our previous work, 
ProteinGraphML, ensuring more consistent and interpretable 
feature vector representations. This approach not only enhanced 
reproducibility but also provided embeddings better suited for the 
downstream PU learning method, PULSCAR.

Across all datasets, Model 2 consistently outperformed 
Model one across all evaluation metrics (Figure 5; Table 2). This 
improvement suggests that the application of PU learning effectively 
differentiated probable positive and negative examples within 
the unlabeled set, thereby refining the dataset. The improved 
data quality enabled the model to learn more precise decision 
boundaries, resulting in superior classification performance 
compared to the baseline model (Model 1), which treated 
all unlabeled examples as negative instances (class 0). This 
finding is consistent with prior studies demonstrating that 
reducing noise in the labels improves model performance 
(Ding et al., 2022). A review of PU learning in bioinformatics 
and computational biology (Li et al., 2021) also found that 
studies reported performance improvements when using PU 
learning methods. The significant improvement in recall, 
as shown in Table 2, further supports the accuracy of our PU 
method, PULSCAR, in identifying probable positives within 
the unlabeled set. Since the recall was calculated using only 
labeled positive examples, the results suggest that the probable 
positives identified by PULSCAR were predominantly true positives 
rather than false positives. Our findings highlight the potential 
of PU learning to improve gene-disease association predictions, 
making it a valuable computational approach for advancing 
biomedical research. 

Limitations

To validate the genes identified by the KG2ML pipeline, we 
referenced published scientific literature along with the TINX 
database. If a gene-disease association was neither documented 
in prior studies nor available in TINX, we could not confirm 
its validity based on the existing knowledge. Further validation 
could be derived from agreement with additional trusted public 
knowledge resources; however, given that novel hypothesis 
generation is an explicit goal, there are limits to any validation 
approach. Consequently, our findings should be interpreted 
as methodological advancements in identifying previously 
unrecognized disease-associated genes, rather than as definitive
associations. 

Future work

In this study, we were unable to utilize the Neo4j Graph Data 
Science module due to its technical constraints, as outlined in the 
subsection “HashGNN - Neo4j Graph Data Science (GDS).” In 
future research, we aim to integrate a deterministic node embedding 
algorithm of Neo4j with our KG2ML pipeline. This investigation 
will evaluate the effectiveness of GDS-derived embeddings in 
enhancing PU learning performance for identifying disease-gene
associations.

Conclusion

Like other biomedical knowledge graphs, CondensedKG, 
despite being a subset of the comprehensive DDKG, lacks certain 
associations among existing entities such as genes, diseases, 
compounds, and proteins. Since all gene-disease associations in 
CondensedKG are derived from prior studies and established 
databases, genes explicitly linked to a disease can be considered 
positive genes for that disease. However, genes lacking such 
associations in the knowledge graph cannot be assumed to 
be negative genes, as their true relationships may simply be 
undiscovered. This characteristic makes PU learning particularly 
suitable for analyzing such data, as it is specifically designed 
to identify unknown associations in the absence of confirmed 
negative examples. The α values estimated by PULSCAR suggest that 
numerous missing gene-disease associations exist in CondensedKG, 
highlighting the potential for novel discoveries. However, these 
predicted associations require experimental validation to confirm 
their biological relevance. Manual validation of imputed genes by 
domain experts further demonstrates the potential of PU learning 
as a computational framework for advancing biomedical research. 
By integrating knowledge graph analysis with PU learning, the 
KG2ML pipeline presents a methodological advancement, providing 
a robust and scalable framework for uncovering novel gene-disease 
associations.
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