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Background: Rapid detection of bacterial infections through leukocyte 
activation analysis could significantly reduce diagnostic timeframes from days 
to hours. Traditional methods like flow cytometry and biomarker assays 
face limitations including technical complexity, equipment requirements, and 
delayed results.
Methods: We developed a dual artificial neural network system combining stain-
free light microscopy with microfluidic technology to detect morphological 
changes in activated leukocytes. YOLOv4 networks were trained using 
five-fold cross-validation on images of chemically stimulated leukocyte 
subpopulations (lymphocytes, monocytes, and neutrophils) and validated 
against flow cytometry. The system was tested on whole blood samples spiked 
with E. coli at clinically relevant concentrations (10–250 CFU/mL).
Results: The optimized four-class network achieved high performance metrics 
for lymphocytes (F1 score: 80.1% ± 2.5%) and neutrophils (F1 score: 91.7% 
± 1.7%), while a specialized binary classifier for monocytes achieved 97.0% 
± 2.8% F1 score. In bacteria-spiked whole blood experiments, the system 
successfully detected activated leukocytes within 30 min at concentrations 
approaching clinical blood culture detection limits (11.11 ± 4.79 CFU/mL). 
Neutrophils showed rapid activation peaking at 1–3 h, while lymphocyte 
activation increased gradually over 6–12 h, consistent with innate versus 
adaptive immune response kinetics.
Conclusion: This AI-assisted microscopy platform enables rapid, label-free 
detection of leukocyte activation in response to bacterial infection with 
minimal sample handling and no requirement for specialized staining or trained 
technicians. The technology demonstrates potential for accelerating infection 
diagnosis and could be extended to other pathologies with morphological 
manifestations.
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Introduction

The ability to accurately detect and characterise activated 
white blood cells is of paramount importance in both clinical 
and research settings. Activated leukocytes play a crucial role 
in the human immune system, constituting the fundamental 
basis of immunological responses, functioning as guards against 
pathogenic invasion, mediators of inflammation, and coordinators 
of the immunological cascade (Nedeva, 2021). Detecting white 
cell activity has become a promising technique among the 
many ways to provide information about the inflammatory 
response to infection. Conventional approaches often rely on 
biomarker tests, such as C-reactive protein (CRP) and Procalcitonin 
(PCT), which, while effective, can sometimes lack specificity 
and speed (Samsudin and Vasikaran, 2017). To improve patient 
care and support broader public health initiatives, this paper 
focuses on sophisticated approaches for identifying white cell 
activation, including flow cytometry-based immunophenotyping, 
quantitative cell surface marker analysis, and analysis of activation 
morphology (Kapellos et al., 2019; Robinson et al., 2023). 
These advanced analytical methods can significantly enhance 
both the accuracy and timeliness of infection diagnosis by 
detecting cellular activation patterns that often precede clinical 
manifestations, potentially reducing diagnostic timeframes from 
days to hours (Opota et al., 2015). A comprehensive understanding 
of leukocyte activation status and behaviour provides critical 
insights for diagnosing and monitoring various pathological 
conditions, including acute bacterial infections, autoimmune 
disorders, and haematological malignancies (Chen et al., 2017; 
Nedeva, 2021; Döhner et al., 2022). While several established 
techniques exist for characterising white cell activation, each with 
unique strengths and applications in specific clinical contexts, it 
is essential to acknowledge their inherent limitations, including 
technical complexity, equipment requirements, and interpretive 
challenges that may restrict their broader implementation in 
resource-limited settings.

Flow cytometry emerged as a powerful tool for multiparametric 
analysis, enabling the simultaneous detection of multiple activation 
markers with high sensitivity and specificity (O’Donnell et al., 2013). 
By employing fluorescently labelled antibodies and light 
scattering principles, flow cytometry provided quantitative 
insights into the activation status of white blood cell populations 
(Robinson et al., 2023). Clinicians use flow cytometry to diagnose 
a variety of conditions, including haematological cancers like 
leukaemia and lymphoma that can be precisely tracked through 
changes in lymphocyte marker expressions, assess immune 
deficiencies by detailed cellular characterisation, and monitor 
chronic diseases like HIV by tracking immune cell populations 
and their functional states (Thiel, 1985; McSharry et al., 1990; 
Kanegane et al., 2018). Researchers can identify specific leukocyte 
subtypes using surface markers such as CD45 (Leukocytes), 
CD3 (T lymphocytes), CD19 (B lymphocytes), and CD56 
(NK cells), while simultaneously measuring cell size, internal 
complexity, and protein expression patterns (Liu et al., 2020; 
Rustam et al., 2022; Rahman and Bordoni, 2024). However, 
flow cytometry has several drawbacks. It requires specialised 
equipment and trained personnel and can be costly. Sample 
preparation is extensive and time-consuming, and there is a risk 

of cell damage during the process, potentially affecting results 
(Sazonova et al., 2022; Robinson et al., 2023).

ELISAs complemented flow cytometry by enabling the 
quantification of soluble markers of cell activation, such as cytokines 
or secreted proteins. The high specificity of ELISAs stems from 
their unique ability to detect and quantify molecular targets 
with remarkable precision using highly specific antibody-antigen 
interactions (Waritani et al., 2017). Antibodies are carefully selected 
to recognise distinct epitopes, enabling researchers to differentiate 
between closely related molecules with minimal cross-reactivity. 
This specificity is further enhanced by multi-step validation 
processes, including the use of blocking agents and stringent 
washing protocols that eliminate non-specific binding, thereby 
reducing false-positive and false-negative results.

In infectious disease research, ELISA specificity becomes 
particularly critical for distinguishing pathogen-specific immune 
responses. For instance, in SARS-CoV-2 studies, researchers have 
developed targeted assays that detect specific viral proteins, 
such as nucleocapsid antigens, with up to 99.3% specificity 
(Luo et al., 2022). The technique’s molecular discrimination allows 
for precise identification of antibodies against pathogens, even in 
complex biological samples containing multiple potential interfering 
molecules, making ELISAs an invaluable tool for understanding 
host-pathogen interactions and immune recognition. However, 
ELISA may not fully capture the complexity of the activation process. 
Precise sample handling is crucial to avoid contamination and 
ensure accurate results (Waritani et al., 2017).

Immunohistochemistry (IHC) offers a unique perspective 
by preserving the spatial context of activated white blood 
cells within tissue architecture. This technique allowed for the 
visualisation of activation marker expression in situ, facilitating a 
better understanding of the localisation and interactions of these 
cells within their native microenvironments (Tan et al., 2020). 
The interpretation of staining can be subjective and vary 
between observers. Technical variability in tissue processing 
and staining protocols can impact results, and IHC generally 
provides qualitative or semi-quantitative data rather than precise 
quantification (O’Hurley et al., 2014).

Western blotting proved valuable for the specific detection 
and relative quantification of activation-associated proteins, 
providing complementary information to gene expression analyses 
(Mishra et al., 2017). By separating and probing proteins based 
on their molecular weight, Western blotting offered insights 
into the expression levels and isoforms of activation markers, 
contributing to a more comprehensive characterisation of the 
activation state. However, it is a labour-intensive technique that 
offers semi-quantitative data and requires relatively large amounts 
of protein, which may not be available in all samples (Mahmood 
and Yang, 2012).

Reverse transcription PCR (RT-PCR) and quantitative PCR 
(qPCR) techniques enabled the sensitive and specific detection of 
activation marker gene expression at the mRNA level (Ho-Pun-
Cheung et al., 2009; Kuang et al., 2018). These methods were 
particularly useful for identifying early transcriptional changes 
associated with cell activation and for studying the regulatory 
mechanisms underlying the activation process. That said, RNA is 
less stable than DNA, making sample handling critical to avoid 
degradation (Opitz et al., 2010; Marshall et al., 2021). These 
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techniques also require expertise in molecular biology and can be 
expensive due to the reagents and equipment needed.

Microscopy-based techniques, such as fluorescence microscopy, 
allowed for the high-resolution visualisation of activated white 
blood cells, providing insights into their morphology, marker 
expression patterns, and spatial relationships within the sample 
(Hickey et al., 2021). These methods were invaluable for studying 
cell-cell interactions, localisation, and the dynamics of activation 
processes. They may not be able to resolve very fine details 
depending on the microscopy technique used. This can be 
mitigated in super-resolution fluorescence microscopy, however, 
requiring more complex equipment (Valli and Sanderson, 2021). 
Additionally, these methods generally provide qualitative data 
and are less effective for quantitative analysis, often requiring 
manual counting and analysis, which can be labour-intensive and 
prone to human error, which can be mitigated using algorithms 
(Sailem et al., 2016; Shanmugam et al., 2018).

The combination of these techniques provides a comprehensive 
toolbox for investigating activated white blood cells from various 
angles, each contributing unique insights and complementing the 
others. Integrating the data obtained from these methods allows for 
a more holistic understanding of the activation processes, enabling 
the development of novel diagnostic and therapeutic approaches and 
advancing the fundamental knowledge of the immune system.

As these research avenues converge, a more comprehensive 
and nuanced understanding of immune cell activation is expected 
to emerge, paving the way for improved diagnostic capabilities, 
more targeted therapeutic interventions, and a deeper appreciation 
of the immune system’s intricate workings in both health and 
disease. Combining light microscopy, artificial intelligence and 
microfluidics, the sample handling is minimal, thus reducing 
some of the issues that can arise from sample preparation. Using 
microscopy, while it can lose information on the finer features, 
having a neural network analyse the data removes the possibility 
of human observer bias standardising the feature detection. 
Additionally, post-analysis can also be applied to the images, 
thereby inferring further results without having to prepare the 
sample for another technique. Additionally, integrating AI with 
microscopy removes the need for expensive equipment and software 
where the analysis is already provided at the output. Furthermore, 
the integration of single-cell analysis techniques into population 
analysis promises to unveil unprecedented insights into the 
heterogeneity of activated cell populations, facilitating the detection 
and analysis of activated white cells within a heterogeneous 
population. To achieve this, the ability to train artificial neural 
networks to discriminate between activated and unstimulated 
leukocytes was investigated using isolated subpopulations and 
verified in whole blood by comparison with standard haematological 
techniques such as fluorescence flow cytometry.

Materials and methods

Blood sample preparation

24 10 mL blood samples from healthy donors at the CIR Blood 
Bank (CIR—21-EMREC-041) were collected and prepared in one 

of two ways, depending on the experiment: either for direct sample 
analysis or for separation of cell types for training. 

Direct observation
A 100 µL sample of human whole blood collected from donors 

was diluted into 1900 µL of diluent (PBS pH 7.2 + 5% EDTA). The 
sample was then loaded into a BD Plastipak 10 mL syringe with 
a Luer Lok connector, connected to the system described in our 
previous publication (Hunt et al., 2025), and observed under flow 
conditions (20 min at 25 μL.min−1). This equates to about 12,000 
frames recorded for analysis (at a frame rate of 10 frames recorded 
per second). 

Sample preparation for training
Different treatments were applied to the cells depending on 

the desired training material needing to be imaged. Whole blood 
cells were separated into different sub-populations of cells using 
density gradient separation technique (Hunt et al., 2025). Whole 
blood were diluted 1:1 with PBS and layered over Ficoll-Paque 
Plus (GE17-1440-02, Sigma Aldrich) before centrifugation at 450 
× g for 35 min (medium acceleration and brake). The mononuclear 
cell layer (monocytes and lymphocytes) was collected, washed 
twice in PBS (350 × g, 5 min), and resuspended in RPMI-1640 
supplemented with 10% FBS. After 2 h incubation at 37 °C, non-
adherent lymphocytes were harvested, while adherent monocytes 
were detached using TrypLE Express (10 min, 37 °C), collected, 
and washed.

The remaining pellet, containing erythrocytes and neutrophils, 
was washed in PBS and treated with red blood cell lysis buffer 
(BioLegend) for 7 min at room temperature. Neutrophilic cells were 
recovered by centrifugation (350 × g, 7 min) and washed in PBS. If 
erythrocyte contamination persisted, lysis was repeated for 3 min. 
All fractions were resuspended in PBS (pH 7.4) or RPMI + 10% FBS 
for downstream applications.

To obtain stimulated populations of different white cell types 
(lymphocytes, monocytes and neutrophils), each subpopulation 
was isolated from one another and seeded to 5 × 105 cells per 
flask (as described in Hunt et al., 2025). Cells were cultured in 
RPMI + 10% FBS alone or with the addition of specific stimulatory 
molecules. For lymphocyte: 1 5 μg.mL−1 phytohaemagglutinin 
+ 10 ng.mL−1 IL-2 (PHA; ThermoFisher, Waltham, USA: IL-2 
PeproTech, Cranbury, NJ, USA) and 4 μg.mL−1, concanavalin 
A (Con A; ThermoFisher, Waltham, USA). IL-2 is required 
as it helps activate lymphocytes (Ross and Cantrell, 2018; 
O’Donovan et al., 1995; Ando et al., 2014). For monocytes: 
0.1 μg.mL−1 lipopolysaccharide (LPS; ThermoFisher, Waltham, 
USA). For neutrophils 43.8 μg.mL−1 N-formylmethionyl-leucyl-
phenylalanine (fMLP; Sigma Aldrich, St. Louis, MI, USA). 
Stimulated cells were incubated for 16 h to ensure maximum 
stimulation. Stimulation was verified using flow cytometry, where 
activation-induced changes in cell morphology were confirmed 
through forward and side scatter profiles shift. Following verification 
of successful stimulation, leukocytes were introduced into the 
microfluidic system, one population at a time. This approach enabled 
the consistent acquisition of images of activated and non-activated 
leukocytes in each sub-population for neural network training.

All input images were resized to 416 × 416 pixels, consistent 
with YOLOv4’s native input dimension requirements. Images were 
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normalised by scaling pixel intensity values between 0 and 1 
and stored in RGB JPEG format without compression artifacts. 
No colour correction or histogram equalisation was applied to 
preserve the original microscopy intensity distribution. These 
augmentations were implemented using custom Python 3 scripts 
in conjunction with the OpenCV and augmentations libraries to 
automate augmentation pipelines. Each transformation was applied 
randomly with a 0.3 probability per image to avoid overfitting 
to synthetic transformations. The inclusion of augmented images 
increased the dataset size by approximately sixfold, resulting in 
improved model generalization as evidenced by reduced validation 
loss variance across folds (<5%) and higher recall for minority 
classes such as neutrophils and platelets. 

Plasma thawing and freezing
Plasma samples (from human whole blood) containing various 

EDTA anticoagulants were stored to preserve haemostatic function 
and prevent inadvertent coagulation at −80C until thawing. Plasma 
and RPMI + 10% plasma were used as a media for white cell 
incubation with bacteria and tests for bacterial growth kinetics.

A water bath was preheated to 37 °C. Frozen plasma aliquots 
were removed from −80 °C storage and immediately immersed in 
the 37 °C water bath. Samples were gently agitated at 300 revolutions 
per minute to promote uniform thawing. The total thawing time was 
45 min. Once completely thawed, samples were used immediately 
or stored at 4 °C for up to 24 h until use or used immediately. 
Storage below 0 °C was avoided to prevent cold-induced
coagulation. 

Bacterial preparation

Liquid culture
A sterile lysogeny broth (LB, ThermoFisher, Waltham, USA) 

medium was utilised to create a bacterial culture of E. coli isolated 
from a clinical isolate from a urine sample collected at the Royal 
Infirmary of Edinburgh. Using aseptic techniques, 5 mL of medium 
was inoculated with a colony obtained from a plate culture. The 
liquid culture was incubated in a shaking incubator overnight 
(18 h) at 37 °C, shaking at a rate of 150 revolutions per minute. 
Following incubation, the broth was turbid, indicating bacterial 
growth. A subculture was performed overnight to remove debris 
and stimulate the bacteria. After incubation, the optical density 
of the culture at 600 nm was measured using a Cary 60 UV-Vis 
spectrophotometer (Agilent Technologies, Santa Clara, CA, USA), 
and an approximate colony-forming unit per mL was calculated 
using the equation below (Couto et al., 2018):

OD600 ∗ 8× 108 = CFU.mL−1

The equation was used as a starting point to prepare bacterial 
dilutions for plate counts. The liquid culture was then diluted into 
PBS pH 7.4 to achieve the desired concentration of bacteria. 

Plate culture
A plate culture was prepared by plating liquid Oxoid nutrient 

agar (ThermoFisher, Waltham, USA) into sterile Petri dishes. Once 
the agar had solidified, a swab was used to streak bacteria from liquid 

culture, glycerol stock, or sample onto the dish. After overnight 
incubation at 37 °C, colonies appear on the agar plates. Individual 
colonies can be swabbed and placed into liquid cultures for further 
experimentation. 

Bacterial growth curve
The optical density at 600 nm is measured using liquid cultures 

as a starting point. The culture was diluted into Oxoid media, giving 
an OD600 = 0.01, then loaded into a flat-bottomed 96-well plate 
kept at 37 °C and OD600 read every 20 min using a Biotek Synergy 
HT plate reader (Agilent Technologies, Santa Clara, CA, USA). The 
plate was shaken between measurements. Data was analysed by 
deducting the density of the control well (media alone) from the 
wells with bacteria to calculate the density attributed to the growth of 
the bacteria and no other components of the media. Bacterial plate 
counts were used to verify the CFU seeding concentration of bacteria 
in concentration-dependent experiments. 

Bacterial plate counting
Bacterial enumeration was performed using a standard plate 

counting technique. Oxoid nutrient agar plates were prepared by 
suspending nutrient agar powder in distilled water. The mixture was 
then autoclaved, and once cooled to approximately 50 °C, the molten 
agar was poured into sterile Petri dishes (Fisherbrand, Waltham, 
MA, USA). The plates were allowed to solidify at room temperature 
before use. Bacterial samples were serially diluted 1:10 in PBS (pH 
7.2) to obtain countable CFU densities. From each dilution, 100 μL 
volumes were pipetted onto the surfaces of the triplicate pre-poured 
nutrient agar plates and allowed to dry. Inoculated plates were 
incubated in an inverted position at 37 °C for 18–24 h to allow 
colony formation.

Following incubation, colonies were counted manually. 
CFU/mL values for the original samples were calculated based on 
the dilution factors. All plating work was conducted using aseptic 
techniques. Positive (E. coli) and negative (uninoculated media) 
control plates were included in each experiment. 

Flow cytometry

Sample preparation and data acquisition followed the same 
process as in Hunt et al., (2025). Population counts were extracted 
from FlowJo and plotted in GraphPad Prism. For plots, the 
populations were juxtaposed on one scatter plot in FlowJo and 
exported to GraphPad Prism to arrange the results (gating 
strategy in Supplementary Appendix).

Data pipeline

A dual deep learning pipeline was developed to classify 
and quantify leukocytes in stain-free brightfield microfluidic 
images. The system builds upon a pretrained YOLOv4 
model previously optimized for whole-blood leukocyte 
differentials (Hunt et al., 2025). The rationale for transfer learning 
was to leverage established feature representations of unstained 
blood cell morphology, reducing the amount of task-specific data 
and computational time required compared to training a model 

Frontiers in Bioinformatics 04 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1725145
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Hunt et al. 10.3389/fbinf.2025.1725145

FIGURE 1
Artificial neural network pipeline for inferring leukocyte status from a full blood sample (cell images not to scale).

from scratch. Preliminary experiments confirmed that retraining 
from scratch using the present dataset led to overfitting and lower 
performance, supporting the use of a pretrained backbone for 
efficient and generalizable feature extraction.

Model training and inference were performed in Python using 
the Darknet framework with CUDA acceleration. The computer 
used is an HP ELITEDESK equipped with an Intel CoreTM i5-
6500 CPU (Intel, Santa Clara, CA, USA), 16 Gb of RAM and an 

Frontiers in Bioinformatics 05 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1725145
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Hunt et al. 10.3389/fbinf.2025.1725145

FIGURE 2
Plotted fluorescence change of activated leukocytes compared to their control counterparts. Each subtype was treated with a chemical or cocktail of 
chemicals known to trigger their activation. After a 16-hour incubation, each cell type was fixed and stained with fluorescent antibodies corresponding 
to the markers present on the surface of each subtype. Isolated subpopulations from three donors, n = 3 replicates per cell type. While both 
monocytes and neutrophils do not express much difference between their control and treated CD45 expression, their specific CD marker do change 
significantly (CD14 increases for monocytes, and CD16 decreases for neutrophils). CD45 expression for lymphocytes decreases, however, after 
activation. Two-way ANOVAs were performed (n = 3, p-CD45-lymphocytes <0.0001, p-CD14-monocytes <0.0001, p-CD16-neutrophils <0.0001).

NVIDIA RTX A2000 12GB GPU (Nvidia, Santa Clara, CA, USA). 
On the server, the server-side program can either be run locally on 
UNIX (here, ubuntu 20.04 LTS, Canonical, London, UK) or on a 
Docker container (Docker, Inc., Palo Alto, CA, USA). Initially, the 
UNIX version was used during testing; once a stable version was 
coded, the program was moved to the Docker version. The Docker 
implementation is built on NVIDIA CUDA 11.7.1 with Ubuntu 
20.04 as the base system, configured with CUDNN 8 acceleration 
and OpenCV 4.6.0 integration. Input images were exported directly 
from the microfluidic imaging system as uncompressed JPEGs, with 
a mean field of view of approximately 57 × 57 µm. Each image was 
resized to 416 × 416 pixels to match the YOLOv4 input requirements, 
while preserving aspect ratio through zero-padding. No additional 
colour normalization was required, as all images were captured 
under uniform illumination and exposure conditions. To mitigate 
class imbalance, minority classes were augmented more extensively 
(rotation, flip, brightness/contrast variation). Class weights inversely 
proportional to frequency were applied in the loss function. 
Together inference time took between 10–15 min depending on the 
dataset size.

Data augmentation consisted of deterministic geometric 
and intensity-based transformations implemented within the 
Darknet training pipeline. Augmentations included random 
rotations (±90°), flips, and brightness or contrast scaling to 
improve model robustness to cell orientation and imaging 
variation. These were applied uniformly across all training epochs, 
ensuring consistent augmentation coverage without altering
class balance.

Using the pre-trained whole blood differential network trained 
on unstimulated freshly isolated blood samples, the artificial neural 
network pipeline for distinguishing the presence of activated white 

cells, the new models were trained on YOLOv4 using five-fold cross-
validation (donor images were pooled, the pool was subsequently 
split into five datasets randomly shuffled). Those five subsets were 
then redistributed randomly five times into three sets: three sets 
pooled for training, one for validation and one for testing. This 
allowed statistical analysis with standard deviation of the acquired 
data. For each training regimen, the original image data was split into 
independent cropped images, each with an independently detected 
single cell ensuring parts of the original uncropped image are within 
the training, testing and validation sets. The network was trained 
using the following hyperparameters: a batch size of 64 with 64 
subdivisions, and input images were 416 × 416 pixels with three-
channels. We used a momentum of 0.949 and an L2 weight decay 
of 0.0005. The initial learning rate was to 1 × 10−4, with a burn-in 
period of 1,000 iterations. Training proceeded for 10,000 iterations, 
with scheduled learning-rate reductions applied at 8,000 and 9,000 
iterations.

Model performance was evaluated using standard object 
detection metrics: precision, recall, and F1-score at an intersection-
over-union (IoU) threshold of 0.5. These metrics were chosen to 
capture both detection accuracy (localization and classification) 
and class-specific balance, which are critical in biomedical imaging 
contexts where both false positives and false negatives carry 
diagnostic implications. The evaluation was performed on a held-
out test set comprising 20% of the total dataset, stratified by donor 
to avoid subject-specific bias.

Following detection, a secondary neural network was used 
for post-classification morphological analysis to detect activation-
associated changes within leukocyte subsets (Figure 1). Together, the 
two-stage AI system enables high-throughput, stain-free assessment 
of leukocyte morphology directly from microfluidic images. The 
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FIGURE 3
Combination of labelled images of leukocytes and their activated forms. Red box shows a lymphocyte with the green containing an activated 
lymphocyte. The blue box shows a monocyte with the magenta box containing an activated monocyte. The yellow box shows a neutrophil with the 
cyan boxes displaying activated neutrophils. The activation of white cells was achieved by incubating each population in Con A + PHA, LPS and fMLP 
respectively. The dimensions of the images are 416 × 416 pixels, or 57.37 × 57.37 µm. The cells were imaged at 40x zoom.
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TABLE 1  Five-fold training outcome of stimulated leukocytes 
(lymphocytes, monocytes, and neutrophils) and their non-stimulated 
counterparts of a YOLOv4 network model. Detailed breakdown of the 
Precision, Recall and F1 score per blood cell subtype of the 5-fold cross 
validation of the binary network. Values are in percentage.

Cell type Precision Recall F1 score

Lymphocytes 61.1 ± 3.0 56.2 ± 3.2 58.5 ± 1.9

Lymphocytes - activated 54.7 ± 2.5 58.5 ± 4.4 56.5 ± 2.7

Monocytes 5.2 ± 2.2 14.1 ± 9.4 7.4 ± 3.3

Monocytes - activated 6.67 ± 14.9 2.5 ± 5.6 3.6 ± 8.1

Neutrophils 61.1 ± 2.4 52.7 ± 3.6 56.5 ± 3.0

Neutrophils – activated 62.3 ± 2.4 52.7 ± 3.6 56.5 ± 3.0

Network 41.9 ± 2.8 41.2 ± 2.0 40.9 ± 1.8

full code repository is available at the following repository: https://
github.com/alex1075/machine-code.git. 

Bacteria spiked whole blood tests

For whole blood bacterial seeding experiments, 5 mL of freshly 
collected peripheral blood was obtained from three healthy donors. 
Each sample was seeded with E. coli (clinical isolate from the Royal 
Infirmary of Edinburgh) at a concentration of around 10 CFU per ml 
(obtained through serial dilutions and verified with plate culture). 
The seeded blood samples were incubated at 37 °C with gentle 
agitation (50 rpm) for 2 h to allow leukocyte activation to occur. 
Following incubation, samples were imaged using the following 
the setup from Hunt et al., (2025). Eosinophils and basophils were 
not included in training owing to their low frequency (<2% of 
leukocytes). During inference, such cells were typically assigned 
low confidence scores (<0.3) and classified as ‘non-detected’. Their 
exclusion may marginally reduce specificity but is unlikely to 
affect the classification of dominant leukocyte types. Future dataset 
expansion will include these populations to improve robustness.

These images were processed using the dual neural network 
approach. Using previously published whole blood differential 
network first identified and isolated all leukocyte images, which 
were subsequently analysed by the specialised white cell differential 
networks described below (see Tables 3–6; Hunt et al., 2025).

Results

Inducing leukocyte activation

From the literature, it has been established that different 
compounds can trigger the activation of leukocytes. Lymphocytes 
can be activated using phytohaemagglutinin (PHA) and 
concanavalin A (Con A); monocytes using lipopolysaccharides 
(LPS); neutrophils using N-formylmethionyl-leucyl-phenylalanine 
(fMLP) (O’Donovan et al., 1995; Ando et al., 2014). The effect of 

activation of treated and untreated leukocyte sub-populations with 
known concentrations of the relevant activator for 16 h (overnight) 
was verified by flow cytometry (Figure 2). The figure makes evident 
the effect the chemical treatment has had on the different leukocyte 
populations. The CD45 expression alone does not differ significantly 
between activated and non-activated monocytes and neutrophils. 
CD14 expression in monocytes increased after 16-h incubation with 
LPS, confirming that monocytes were activated. Whereas CD16 
expression decreased after 16-h incubation with fMLP, suggesting 
neutrophils were exhausted after prolonged activation. Lymphocyte 
expression of CD45 expression appears not to increase on mitogen 
stimulation; this was expected due to the time constraint of the 
experiment. 

AI training on chemically induced 
leukocyte activation

A dataset of images was collected for leukocytes after activation 
and those kept in control conditions (Figure 3). AI training was done 
using five-fold validation. After augmenting the dataset using 90, 
180, and 270-degree rotation, 11,297 individual 416 × 416 images 
were generated. The model was trained on a dataset comprising 
1,768 total original, unaugmented images across six cell classes: 
390 lymphocytes, 491 activated lymphocytes, 317 neutrophils, 436 
activated neutrophils, 69 monocytes, and 65 activated monocytes. 
Five-fold cross-validation was employed, with approximately 20% of 
the data held out for testing in each fold.

Tables 1, 2 shows that the YOLOv4 white cell differential 
model can discriminate between con A stimulated and unstimulated 
lymphocytes and fMLP stimulated and unstimulated neutrophils. 
Lymphocytes and their activated counterparts exhibit moderate 
classification performance, with precision values of 61.1% ± 3.0% 
and 54.7% ± 2.5% respectively. The recall metrics (56.2% ± 3.2% for 
lymphocytes and 58.5% ± 4.4% for activated lymphocytes) indicate 
that the model successfully identifies slightly more than half of these 
cells when present. This results in balanced F1 scores of 58.5% ± 1.9% 
and 56.5% ± 2.7% for the respective lymphocyte populations.

For neutrophils and activated neutrophils similar performance 
to lymphocytes, with precision values of 61.1% ± 2.4% and 62.3% 
± 2.4% respectively was seen. Both populations share identical recall 
rates of 52.7% ± 3.6%, yielding F1 scores of 56.5% ± 3.0% for both cell 
types. This suggests the model has similar capabilities in identifying 
neutrophils regardless of their activation status.

However, the model struggles significantly with monocyte 
classification. Non-activated monocytes exhibit extremely low 
precision (5.2% ± 2.2%) and recall (14.1% ± 9.4%), resulting in 
a poor F1 score of just 7.4% ± 3.3%. Activated monocytes fare 
even worse, with marginally higher precision (6.67% ± 14.9%) but 
substantially lower recall (2.5% ± 5.6%), culminating in an F1 
score of only 3.6% ± 8.1%. These metrics highlight a limitation 
with the trained model’s ability to reliably detect and discriminate 
monocytes.

Overall, the network obtained a modest performance across 
every cell type, with combined metrics of 41.9 ± 2.8% precision, 41.2 
± 2. 0% recall, and 40. 9 ± 1. 8% F1 score. This moderate level of 
performance is mainly influenced by the acceptable classification of 
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TABLE 3  Filve-fold training outcome of stimulated lymphocytes and 
neutrophils only and their non-stimulated counterparts of a YOLOv4 
network model. Detailed breakdown of the Precision, Recall and F1 
score per blood cell subtype of the 5-fold cross validation of the binary 
network. Values are in percentage.

Cell type Precision Recall F1 score

Lymphocytes 82.1 ± 2.1 78.3 ± 4.6 80.1 ± 2.5

Lymphocytes - activated 79.8 ± 4.1 83.2 ± 1.5 81.4 ± 2.3

Neutrophils 85.6 ± 1.5 79.4 ± 4.1 87.0 ± 2.5

Neutrophils – activated 92.4 ± 1.1 91.0 ± 2.9 91.7 ± 1.7

Network 87.5 ± 2.1 83.0 ± 2.0 82.0 ± 1.6

lymphocytes and neutrophils, while being significantly set back by 
inadequate monocyte detection.

To further inspect specific classification trends, the confusion 
matrix shown in Table 2 shows lymphocytes, where 212 were 
accurately classified, with 107 misclassified as activated lymphocytes 
and fewer misattributed to other cell types. Likewise, 320 activated 
lymphocytes were accurately identified, with 75 misclassified as non-
activated. Neutrophils displayed a more intricate pattern, with 152 
correctly classified but considerable misclassifications spread across 
activated neutrophils (77) and activated lymphocytes (65).

The model’s primary difficulty with monocytes is exemplified 
by the confusion matrix, which shows that only 5 of the 13 non-
activated monocytes were correctly identified and only 3 of the 6 
activated monocytes were properly classified. This is in line with 
the poor statistical metrics and highlights a major limitation in the 
model’s performance for these cell types.

Removing the monocytes and activated monocytes from the 
training data, a new version of the network was trained (Tables 3, 4).
The new model demonstrates improved performance across all 
metrics compared to the previous six-class model (model detailed 
in Tables 1, 2). For lymphocytes, the precision reached 82.1% 
± 2.1% (compared to 61.1% ± 3.0% previously), while recall 
improved to 78.3% ± 4.6% (previously 56.2% ± 3.2%). This 
resulted in an improved F1 score of 80.1% ± 2.5% (compared to 
58.5% ± 1.9% previously). Similarly, activated lymphocytes also 
showed improvements, with precision of 79.8% ± 4.1% (up from 
54.7% ± 2.5%), recall of 83.2% ± 1.5% (improved from 58.5% 
± 4.4%), and an F1 score of 81.4% ± 2.3% (previously 56.5% ± 
2.7%). Neutrophils and their activated counterparts showed more 
improvement. Non-activated neutrophils achieved a precision of 
85.6% ± 1.5% (compared to 61.1% ± 2.4% previously) and recall 
of 79.4% ± 4.1% (up from 52.7% ± 3.6%), yielding an F1 score of 
87.0% ± 2.5% (an improvement from 56.5% ± 3.0%). The best gain in 
performance was observed for activated neutrophils, with precision 
of 92.4% ± 1.1% (previously 62.3% ± 2.4%), recall of 91.0% ± 2.9% 
(up from 52.7% ± 3.6%), and an F1 score of 91.7% ± 1.7% (compared 
to 56.5% ± 3.0% previously).

The network’s overall performance metrics also showed 
improvement, with precision reaching 87.5% ± 2.1% (up from 41.9% 
± 2.8%), recall of 83.0% ± 2.0% (previously 41.2% ± 2.0%), and an 
F1 score of 82.0% ± 1.6% (compared to 40.9% ± 1.8%). Therefore, 
removing monocytes and activated monocytes reduced issues 
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TABLE 4  Five-fold training outcome of stimulated lymphocytes and neutrophils only and their non-stimulated counterparts of a YOLOv4 network 
model. Confusion matrix of one fold of the five-fold cross-validated model of the YOLOv4 model trained to discriminate between lymphocytes, 
activated lymphocytes, neutrophils, and activated neutrophils.

Prediction

Lymphocyte Lymphocyte – 
activated

Neutrophil Neutrophil - 
activate

Non detected

Ground truth

Lymphocyte 338 108 0 3 5

Lymphocyte – activated 57 440 2 2 28

Neutrophil 2 14 338 30 19

Neutrophil - activated 1 9 20 542 26

within the training data by focussing on cells with distinguishable 
morphological features during activation.

The confusion matrix in Table 4 shows 338 lymphocytes were 
correctly classified, with 108 misclassified as activated lymphocytes, 
and minimal confusion with neutrophil classes. Similarly, 440 
activated lymphocytes were correctly identified, with only 57 
misclassified as non-activated lymphocytes. Neutrophils showed 
positive classification with 338 correctly identified, and relatively 
minor misclassifications distributed mainly to activated neutrophils 
(30). The highest accuracy was observed for activated neutrophils, 
with 542 correctly classified and only 20 misclassified as non-
activated neutrophils. The non-detection rates (Table 4) were 
notably low across all cell types, with 5 lymphocytes, 28 activated 
lymphocytes, 19 neutrophils, and 26 activated neutrophils not 
detected. As a useful network for discriminating between activated 
and non-activated lymphocytes and neutrophils was trained, a 
network was trained for monocyte activation.

Training a monocyte-specific model demonstrated improved 
performance compared to the previous models where monocytes 
were included alongside other cell types (Tables 5, 6). For non-
activated monocytes, the model achieved a precision of 95.8% ± 
4.1% (compared to just 5.2% ± 2.2% in the six-class model) and 
recall of 98.3% ± 3.5% (previously 14.1% ± 9.4%). This resulted in 
an F1 score of 97.0% ± 2.8%, representing an improvement from the 
previous 7.4% ± 3.3% (Table 5). Activated monocytes also showed 
enhancement in classification performance, with precision of 96.7% 
± 7.5% (up from 6.67% ± 14.9% in the six-class model) and recall of 
75.3% ± 22.2% (previously just 2.5% ± 5.6%). This produced an F1 
score of 93.0% ± 16.6%, higher than the 3.6% ± 8.1% from Table 1. 
However, the relatively larger standard deviation in these metrics 
for activated monocytes suggests some variability across the five-
fold cross-validation, potentially due to the smaller sample size 
of activated monocytes in the dataset or variations in activated 
morphology.

The confusion matrix in Table 6 reveals positive classification 
patterns. All 18 non-activated monocytes in the test set were 
correctly classified, with no false negatives or misclassifications. For 
activated monocytes, 9 out of 11 were correctly identified (81.8%), 
with 1 being misclassified as a non-activated monocyte (9.1%) and 
1 not detected (9.1%). These results demonstrate the model’s strong 
capability to discriminate between the activation states of monocytes 
when trained specifically on this cell type.

TABLE 5  Fold training outcome of stimulated monocytes and 
non-stimulated monocytes of a YOLOv4 network model. Detailed 
breakdown of the Precision, Recall and F1 score per blood cell subtype 
of the 5-fold cross validation of the binary network. Values are in 
percentage.

Cell type Precision Recall F1 score

Monocytes 95.8 ± 4.1 98.3 ± 3.5 97.0 ± 2.8

Monocytes - activated 96.7 ± 7.5 75.3 ± 22.2 93.0 ± 16.6

Network 96.2 ± 4.5 86.8 ± 11.5 90.0 ± 9.7

The model trained to discriminate activated and non-activated 
leukocytes was used to test whether the white cell differential 
network could detect activated white cells in a simulated infection. 
For this, leukocytes were incubated with E. coli from a clinical 
isolate available in the lab. Based on the optical density at 600 nm, 
different dilutions of E. coli were prepared in media and left to
incubate for 6 h. 

Growth dynamics of E. coli in samples

Figure 4 displays the growth curves of E. coli from a clinical 
isolate under different growth conditions over a 24-h period. The 
black line represents the growth of E. coli in LB broth liquid media 
shows rapid growth. The blue curve depicting the growth of E. coli in 
human plasma shows a much slower growth rate compared to the LB 
curve, with lower maximum absorbance values. This suggests that 
the human plasma environment is less favourable for E. coli growth 
than the LB broth medium. The RPMI with 10% Plasma curves have 
no growth observed over 24 h. The RPMI with a 10% FBS curve 
displays better growth than LB Broth.

Bacterial infection detection

Flow cytometry was used to verify the activating effect of the 
bacterial seeding into the media (Figure 5). The figure illustrates 
the varying activation responses of lymphocytes and neutrophils to 
different bacteria concentrations, showing responses to the bacterial 
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TABLE 6  Fold training outcome of stimulated monocytes and non-stimulated monocytes of a YOLOv4 network model. Confusion matrix of one fold of 
the five-fold cross-validated model of the YOLOv4 model trained to discriminate between lymphocytes, activated lymphocytes, neutrophils, and 
activated neutrophils.

Prediction

Monocyte Monocyte - activated Non detected

Ground truth
Monocyte 18 0 0

Monocyte - activated 1 9 1

FIGURE 4
Growth curves of E. coli isolated from a clinical isolate from a urinary tract infection in different media. The media used were LB broth liquid media, 
fresh human plasma, fresh human plasma with 10% foetal bovine serum, RPMI with 10% foetal bovine serum, and RPMI with 10% fresh human plasma 
over 24 h. Absorbance measurements were taken every 20 min. The x-axis represents time in minutes, and the y-axis represents absorbance, which 
measures bacterial growth. n = 3 standard deviation as shaded areas.

stimuli in the media in all samples tested. Looking at the scatter 
plots, the cell size increases across subtypes with an increase of 
fluorescence intensity for monocytes and neutrophils, suggesting 
an upregulation of CD14 and CD16 expression on the cell surface. 
Lymphocytes appear to decrease in fluorescence intensity for CD45 
followed by a peak at 50 CFU/mL with a plateau after 100 CFU/mL.

Figure 6 consists of four subplots, each representing different 
individual volunteers (1, 2, 3, and 4), each depicting the 
percentage of sub-population activated for three cell types, 
lymphocytes, neutrophils, and monocytes, against varying bacterial 
concentrations (CFU/ml; and a non-spiked control). The activation 
was defined as cells detected and classified as activated by trained 
YOLOv4 networks; alternative cell states such as apoptosis and 
necrosis could not be detected using this method. In subplot 
1, the activation percentage for both the lymphocytes and the 

neutrophils shows a pattern, with the lymphocytes generally having 
a bigger activation percentage than the neutrophils. Both cell types 
reach peak activation around 100 CFU/mL bacterial concentration. 
Within the second subplot, there is a smoother activation curve 
for both cell types, with the lymphocytes peaking at around 
100 CFU/mL and the neutrophils reaching maximum activation at 
a higher bacteria concentration of around 150 CFU/mL. In subplot 
3, the activation patterns are similar to subplot 1, forming a pattern, 
with the lymphocytes having higher activation than the neutrophils 
across most bacteria concentrations. Both cell types reach their peak 
activation around 100 CFU/mL. For subplot 4, the graph displays a 
distinct pattern, where the neutrophil activation remains relatively 
low until around 150 CFU/mL, after which it sharply increases to 
a high level. Lymphocytic activation increased gradually, reaching 
a moderate level at higher bacteria concentrations. Overall, the 
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FIGURE 5
Flow cytometry verification of the effect of the incubation of the seeding concentration of E. coli within media with leukocytes (represented is one 
iteration of 3 donors × 3 replicates). (a) Flow cytometry scatterplot for lymphocytes after different seeding concentrations plotting CD45 probe 
fluorescence against forward scatter (FSC-A) in arbitrary units. (b) Flow cytometry scatterplot for monocytes (CD45/FCS-A). (c) Flow cytometry 
scatterplot for monocytes (CD14/FSC-A) in arbitrary units. (d) Flow cytometry scatterplot for neutrophils (CD45/FSC-A) (e) Flow cytometry scatterplot 
for neutrophils (CD16/FSC-A). (f) Bar chart comparing fluorescence intensity change against seeding concentration for lymphocytes, monocytes and 
neutrophils. The intensity was measured against the CD45 marker for lymphocytes, CD14 for monocytes and CD16 for neutrophils (n = 3, full statistical 
breakdown in Supplementary Figure SA1).
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FIGURE 6
Total activated percentage of total cell populations for lymphocytes, neutrophils, and monocytes after detection and classification using trained 
YOLOv4 networks when incubating leukocytes with different concentrations of E. coli within the media. White cells were incubated for 6 h with 
different concentrations of colony-forming units of E. coli. The network trained on chemically stimulated white blood cells. Each graph represents 
different individual donors; each donor made three donations. Error bars represent differences between donor samples (4 donors × 3 replicates).

peak of monocyte activation occurred using around 100 CFU/mL 
of bacteria. At higher CFUs, this decreases to around 30%–40% of 
total monocytes.

Figure 7 displays four donors showing the percentage of 
activated lymphocytes and neutrophils over time with non-spiked 
controls. In subplot 1, neutrophil activation starts near 35%, rising 
to ∼85% at 180 min, while lymphocytes rise from 20% to 70% 
over 6 h. Subplot 2 shows lymphocytes beginning higher (∼40%) 
than neutrophils (∼25%) with both peaking around 100 CFU/mL. 
Subplot 3 peaks at 60 min rather than 180 min, and subplot 
4 shows delayed neutrophil activation (∼150 min) relative to 
gradual lymphocyte increase. Subplot 2 exhibits a similar pattern, 
where neutrophil activation again begins higher than lymphocyte 
activation, then peaks at above 80% after one hour, followed by a 
gradual decline. Lymphocyte activation, on the other hand, starts 
low but increases gradually over time, surpassing the neutrophil 
activation after six hours of incubation with E. coli. In subplot 3, 
both lymphocytes and neutrophils show a similar activation pattern 
as the previous plots, with a peak around the middle time point 
(180 min for neutrophils) and lower activation at the beginning and 
end of the time course. Subplot 4 demonstrates a distinct activation 
profile, where the neutrophil activation starts high, drops to a 

minimum around 180 min, and then rises again towards the end. 
In contrast, lymphocytic activation remains relatively low initially, 
increases gradually, and surpasses neutrophil activation at the later 
time points. Activation of monocytes, inferred by the networks, 
showed an overall increasing trend of around 10%–20% beginning 
at 30 min of incubation, then steadily increasing to 70%–80% 
after 12 h. Overall, the four figures display similar activation 
kinetics for leukocytes over time, with different patterns observed 
across the four subplots, as detected by the white cell differential 
model after incubating white cells with live bacteria. However, the 
statistical analysis does not indicate significant differences in these 
temporal patterns.

Flow cytometry shows different patterns of fluorescence between 
the control and treated samples (Figure 8). Suggesting that the 
presence of bacteria has altered the leukocyte characteristics to the 
extent the neural networks can detect the changes. Even after a 
half-hour incubation with bacteria, the leukocytes generally appear 
to have increased in cell size and fluorescence intensity (using 
specific CD markers–see Figure 8 for details). Fluorescence intensity 
gradually increases until before or at 3 h of incubation, after which 
the cell intensity continues to decrease gradually. Lymphocytes 
and monocyte fluorescence intensity peak at 12 h of incubation, 
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FIGURE 7
Inferred total activated percentage of total cell populations for lymphocytes, neutrophils, and monocytes after detection and classification using 
trained YOLOv4 networks when incubating leukocytes with 250 CFU of E. coli over 12 h of incubation using trained YOLOv4 networks. The detection 
was achieved using a trained neural network on chemically stimulated white cells but inferred on bacterial stimulated cells. Each graph represents 
three independent repeats from one donor. Each graph is from g a different donor. Error bars represent differences between donor samples (4 donors 
× 3 replicates).

suggesting the remaining cells have upregulated the expression of 
the specific CD markers.

Testing activation inference in whole blood

Figure 9 presents the results of detecting activated white blood 
cells from spiked whole blood samples (11.11 ± 4.79 CFU per ml, 
verified by plate count) using a two-stage neural network approach. 
The network first identified blood cells within whole blood and 
isolated white blood cells. The second network then analysed the 
white cells, the white cell differential network, trained to distinguish 
between activated and non-activated leukocytes, which inferred the 
cell’s status. For lymphocytes, the percentage of activated cells ranged 
from approximately 15%–25% across the three donors. Sample 1 
(black) exhibited the highest lymphocyte activation at around 25%, 
while Sample 2 (blue) showed the lowest activation at approximately 
15%. In the case of neutrophils, a higher proportion of cells were 
detected as activated, ranging from around 90%. Sample 3 (yellow) 
showed the highest neutrophil activation, followed closely by Sample 
1 (black). Sample 2 (blue) had the lowest neutrophil activation 

at around 90%. For monocytes, the results are a bit more varied. 
Monocyte activation was found to be between 25% and 50%, most 
likely due to the differences between individual differences in their 
respective immune systems.

Discussion

The main goal of this paper was to develop a neural network 
model capable of detecting activated white blood cells in response 
to bacterial stimuli and to characterise its performance relative to 
Flow Cytometry. The activation of white cells was initially tested 
using known reagents. This was verified with flow cytometry. Levels 
of CD16 expression in neutrophils appeared low (Figure 2). For 
lymphocyte activation, PHA (15 μg/mL) and Con A (4 μg/mL) 
were chosen based on their well-documented ability to induce 
lymphocyte proliferation and activation (Ando et al., 2014; 
Simon-Molas et al., 2018). LPS at 0.1 μg/mL was selected as it 
represents a physiologically relevant concentration that effectively 
triggers inflammatory responses within monocytes without causing 
excessive cellular toxicity (Gomes et al., 2010). Similarly, the 
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FIGURE 8
Flow cytometry verification of the effect of incubation time after seeding 250 CFU of E. coli within media with leukocytes (represented is one iteration 
of 3 donors × 3 replicates). (a) Flow cytometry scatterplot for lymphocytes after different incubation time plotting CD45 probe fluorescence against 
forward scatter (FSC-A) in arbitrary units. (b) Flow cytometry scatterplot for monocytes (CD45/FSC-A). (c) Flow cytometry scatterplot for monocytes 
(CD14/FSC-A) in arbitrary units. (d) Flow cytometry scatterplot for neutrophils (CD45/FSC-A). (e) Flow cytometry scatterplot for neutrophils 
(CD16/FSC-A) in arbitrary units. (f) Bar chart comparing fluorescence intensity change against incubation time for lymphocytes, monocytes and 
neutrophils. The intensity was measured against the CD45 marker for lymphocytes, CD14 for monocytes and CD16 for neutrophils (n = 3, error bars as 
standard deviation, full statistical breakdown available in Supplementary Figure SA2).
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FIGURE 9
Detection of activated white blood cells from bacteria-spiked whole blood using a trained neural network. A trained YOLOv4 model was used to 
distinguish between activated and non-activated leukocytes. Each colour represents a different donor who has donated on three separate occasions (3 
donors × 3 replicates). Bars represent the percentage of activated cells per cell type over total cell population count (activation percentage). Statistical 
significance between control and bacteria-seeded samples was determined using multiple t-tests with Holm-Šídák correction for multiple 
comparisons. Significance thresholds were set at p < 0.05 (), p < 0.01 (∗∗), and p < 0.0001 (∗∗∗).

concentration of fMLP (43.8 μg/mL) used for neutrophil activation 
was based on dose-response studies demonstrating optimal 
neutrophil stimulation without inducing premature cell death or 
exhaustion (Vulcano et al., 1998). A standardised 16-h incubation 
period was applied across all leukocyte populations to maintain 
experimental consistency, as this timeframe has been widely used in 
published studies for lymphocyte and monocyte activation with 
PHA, Con A, and LPS (Gomes et al., 2010; Ando et al., 2014; 
Simon-Molas et al., 2018). However, this extended duration likely 
had differential effects on the various cell types, particularly 
neutrophils. The low CD16 expression observed in neutrophils could 
be attributed to the length of the experiment, whereby the cells could 
have activated and then died from exhaustion. fMLP activation 
of neutrophils is relatively fast in comparison to other leukocyte 
subtypes, taking only a few minutes (Rochon and Frojmovic, 1993). 
Thus, it is entirely plausible the cells have either downregulated 
the CD16 marker after prolonged activation or succumbed to cell 
death from exhaustion (Pérez-Figueroa et al., 2021). While a shorter 
incubation period might have been optimal for neutrophils, the 
standardised protocol was necessary to generate a consistent training 
dataset for the neural network across all cell types. While the CD45 
marker was primarily used here to distinguish lymphocytes from 
monocytes and neutrophils with their respective co-expression of 
CD45 and CD14/16; looking at the CD45RA/RO, isoforms of the 
CD45 protein distinguishing between naïve (RA) and memory 
(RO) T lymphocytes, co-expression would be a better measure of 
lymphocyte activation than using fluorescence intensity change and 
cell size change alone (Clement, 1992). Discriminating between 
isoforms, along with a shorter incubation time for neutrophils, 

could be something to investigate for future studies on the subject 
and/or testing the feasibility of a network being able to distinguish 
one expression form from another.

The YOLOv4 white cell differential model demonstrated varying 
capabilities in discriminating between stimulated and unstimulated 
leukocytes. As shown in Table 1, the model achieved moderate 
performance for lymphocytes and neutrophils with F1 scores around 
56%–58% but struggled significantly with monocyte classification, 
yielding remarkably poor F1 scores of just 7.4% and 3.6% for non-
activated and activated monocytes, respectively. This performance 
disparity likely comes from subtle morphological changes in 
activated monocytes that were challenging for the multi-class model 
to detect, compounded by the evident class imbalance in the 
training data, with notably fewer examples of monocytes overall, as 
confirmed by the confusion matrix (Table 2).

When all monocytes were removed from the training data, the 
network’s performance improved noticeably across all remaining 
cell types (Tables 3, 4), with F1 scores for lymphocytes and 
neutrophils increasing to 80%–91%. This improvement suggests 
that the inclusion of poorly differentiated cell types adversely 
affected the overall network performance. Most significantly, when 
a dedicated model was trained exclusively for monocyte activation 
status (Tables 5, 6), the performance metrics improved remarkably 
to F1 scores of 97.0% and 93.0% for non-activated and activated 
monocytes, respectively.

This aligns with the biological understanding of leukocyte 
activation morphology. The activation of circulating lymphocytes 
and neutrophils does affect their overall morphology 
(Lin et al., 2015; Sergunova et al., 2023). For example, T-lymphocytes 
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change their morphology when activated, whereby flattening 
and either elongating or keeping a wider but round shape. More 
generally, when presented with antigens, lymphocytes undergo 
activation and proliferation as a sign of the cellular adjustments, 
which are required to build a successful immune response. 
The decision to employ transfer learning, using a pretrained 
YOLOv4 backbone rather than training the network entirely 
from scratch, was driven by both data efficiency and performance 
considerations. Transfer learning enables the reuse of low-level 
visual features such as edges, gradients, and textural cues that are 
broadly transferable across imaging contexts, including brightfield 
microscopy. This initialisation accelerates convergence and stabilizes 
training, as the model begins from a well-structured feature 
space rather than random weights. Importantly, it also mitigates 
overfitting when working with limited cell images per class, a 
common constraint in biomedical datasets. In our preliminary 
experiments, models trained from random initialization exhibited 
faster overfitting and reduced validation F1-scores compared with 
the pretrained initialization, supporting the rationale for adopting a 
transfer-learning approach in this study.

When not activated, lymphocytes are typically small in size 
(8–10 µm in diameter) with a high nucleus-to-cytoplasm ratio 
and densely packed chromatin (Cano and Lopera, 2013). This 
changes when these quiescent cells respond to an antigenic 
stimulation. Lymphocytes dramatically change into larger, actively 
proliferating cells known as lymphoblasts. The cytoplasmic 
expansion observed in lymphoblasts explains the increase 
in cell size, which is a consequence of the elevated RNA 
content necessary to meet the heightened demands for protein 
synthesis in these actively proliferating cells. Additionally, the 
previously condensed chromatin is now loosened to facilitate 
gene expression and replication (Bediaga et al., 2021). Parallel 
with the decondensation of chromatin, the nucleoli within the 
nucleus exhibit an increase in size and shape. This morphological 
feature reflects the upregulated production of ribosomal RNA to 
meet the increased translational requirements of the activated 
lymphocyte (Sadeghi Shoreh Deli et al., 2022).

As part of the innate immune system, neutrophils, part of the 
first line of defence against infection, are able to rapidly adapt 
morphological features to an antigenic stimulus. When in their 
quiescent state, neutrophils have a multi-lobed, segmented nucleus 
and a cytoplasm accompanied by multiple structures containing 
various antibacterial compounds such as oxidants, proteinases and 
cationic peptides (Moraes et al., 2006; Sergunova et al., 2023). When 
activated, the granules within the neutrophils are released into the 
extracellular environment to cause damage to the pathogen. Because 
of this, the intracellular morphology of neutrophils becomes less 
discernible. Neutrophil activation is accompanied by increased 
motility and chemotactic responsiveness, facilitated by dynamic 
cytoskeletal rearrangements that enable efficient migration towards 
the site of infection (Morikis and Simon, 2018). Notably, neutrophils, 
when attacking a foreign body such as a bacterium, will produce 
an extracellular net or trap. However, none were observed here. To 
prepare the trap, the cells undergo a few changes from rearranging 
their nucleus, spreading, membrane disruption and even cell 
disintegration (Sergunova et al., 2023). Most of these are within 
the order of magnitude to be observed under the microscope. 
Altogether, these morphological changes are detected by the 

white cell differential network and used to discriminate between 
the normally circulating cells and their activated counterparts, 
as evidenced by the confusion matrix. While eosinophils and 
basophils were not explicitly included, their rarity in peripheral 
blood and morphological resemblance to neutrophils means that 
any misclassification would have minimal impact on network 
performance. Incorporating these subtypes in future training could 
further improve generalisability.

The significantly different performance between the multi-class 
(Tables 1, 2) and monocyte-specific (Tables 5, 6) models suggests 
that while monocytes undergo activation-related morphological 
changes, these alterations may be more subtle or qualitatively 
different from those observed in lymphocytes and neutrophils. 
While the multi-class model struggled with monocyte classification 
(F1 scores of only 7.4% and 3.6%), the specialised model achieved 
remarkable accuracy (F1 scores of 97.0% and 93.0%).

Typically, monocytes exhibit a characteristic large (12–20 µm 
in diameter) reniform nucleus and a moderate amount of finely 
granulated cytoplasm (Espinoza and Emmady, 2024). Upon 
activation, their morphological changes appear more constrained 
when compared to the dramatic transformations observed in other 
leukocytes. In suspension, activated monocytes largely maintain 
their spherical shape but exhibit subtle alterations in nuclear 
presentation, transitioning from a single-lobed to a multi-lobed 
nucleus - changes that correlate directly with shifts in phenotypical 
expression as activation progresses toward differentiation into 
macrophages or dendritic cells, influenced by cytokines like CSF-1, 
CSF-2, and IL-34 (Menzyanova et al., 2019; Chaintreuil et al., 2023). 
During this differentiation process, more pronounced changes 
emerge, including significant cytoplasmic expansion with 
vacuolisation to accommodate phagocytic activity (Sieweke and 
Allen, 2013). These relatively subtle initial morphological alterations 
may explain why the multi-class model failed while the dedicated 
classifier succeeded. Additionally, monocyte isolation yielded fewer 
images, and despite oversampling, morphological subtlety and 
isolation-induced variability likely contributed to limited model 
performance.

The initial trained white cell differential model’s inability to 
discriminate between unstimulated and activated monocytes could 
be due to the material choice of the microfluidic chip, (Tables 1, 
2). Topaz is a low-binding, low-absorbent material. And so, while 
other cells may easily express their morphological change in 
circulation, monocytes may require a surface to fully express 
their morphological change, which can then, in theory, be seen 
by the microscope, while the changes the monocytes express in 
circulation cannot be detected (changing their nuclei formation). 
However, as the cells were in flow when captured, it is unlikely 
that monocytes would have had the opportunity to attach to the 
channel surface. Another potential issue could be depletion during 
culture. Additionally, the need for more examples of the white 
cell differential network to train on. Due to the low number 
of circulating monocytes, isolating them from whole blood and 
imaging has proven challenging without drawing large volumes 
of blood (Boyette et al., 2017), which, itself, can pose issues. The 
trick here may be utilising the number of circulating monocytes 
to distinguish the presence of infection itself (Patel et al., 2017). 
However, this could still cause an issue where the monocyte training 
data is poisoned by the other cells (Shorten and Khoshgoftaar, 2019).
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The relatively low frequency of monocytes within a blood 
sample compared to other leukocytes may contribute to the 
inability of the leukocyte activation network from Tables 1, 2 
to discriminate between activated and non-activated monocytes. 
Monocytes typically constitute only 5%–8% of circulating leukocytes 
in peripheral blood (Hoffbrand et al., 2006). This low abundance 
poses a significant challenge for obtaining sufficient training 
examples for the neural network. To collect an adequate dataset 
of monocyte images for robust neural network training would 
require processing substantially larger blood volumes than the 
standard 5 mL typically collected for research purposes as noted in 
your methodology. While concentration techniques such as density 
gradient centrifugation followed by adhesion-based isolation were 
employed in this study, these methods yield relatively lower counts 
of monocytes compared to other cell types, with the isolation 
procedure itself potentially altering cell morphology and activation 
states (Fluks, 1981; Menck et al., 2014; Nielsen et al., 2020). 
Therefore, the monocyte-specific model was not reintegrated into 
the primary four-class pipeline to avoid error propagation from 
the initial cell-type classifier. Another potential issue could come 
from imperceptible background features within the images of other 
cell subtypes within the training dataset, rendering it incapable 
of discriminating the monocytes (Oakden-Rayner et al., 2020; 
Shan et al., 2024). The reference to ‘background features’ refers to 
subtle contextual cues (e.g., debris or nearby platelets) that may 
correlate spuriously with certain classes if not evenly represented. 
These artefacts likely affected the multi-class model but were 
minimized in the monocyte-only dataset. Taking these into 
account and considering the ability of the monocyte-only network 
to accurately distinguish between activated and non-activated 
monocytes (Tables 5, 6), the microenvironment in which the cells 
are observed does not seem to affect the training of the monocyte 
network therefore, it could be ruled out as the likely cause for the 
problem. The frequency of monocytes within the dataset could also 
be one likely factor. Increasing the number of monocyte examples 
within the dataset would not only increase neural network accuracy 
but also narrow down the cause of the issue.

Despite this limitation, the trained white cell differential model 
proved effective in detecting activated lymphocytes and neutrophils 
when incubated with live E. coli bacteria (Figures 6, 7). The 
heterogeneity in activation profiles observed across the different 
subplots in Figures 6, 7 reflects biological variability that may 
stem from multiple factors. The data suggests temporal patterns in 
leukocyte activation, with neutrophils exhibiting an apparent rapid 
response curve that peaks between 60 and 180 min post-stimulation 
before declining. Meanwhile, lymphocyte activation demonstrates a 
more gradual increase with elevation at later time points. However, 
it is worth noting that while these apparent patterns emerge visually 
in the data, statistical analysis revealed no significant differences 
between these activation profiles.

Leukocyte responses were verified by flow cytometry (Figures 5, 
8). In some cases, two populations were observed in the neutrophil 
subset, or the total number of events decreased below that 
anticipated compared to the control. This would suggest either a 
heterogenous population from exposure to the pathogen or the 
cells dying from the extended stimulatory response, effectively 
dying of exhaustion (Nedeva, 2021). These findings align with the 
known roles of neutrophils as rapid responders in innate immunity 

and lymphocytes in adaptive immunity, which involves a more 
prolonged response.

Indeed, during the immune response, neutrophils would arrive 
first at the site of infection, where they fight pathogens by releasing 
other cytotoxic chemicals and reactive oxygen species, which would 
cause the recruitment of monocytes to the site (Chaplin, 2010). 
A curve for monocyte activation could not be calculated due 
to low numbers and the white cell differential network’s ability 
to discriminate activated from non-activated monocytes. The 
monocyte activation curve would be seen following neutrophil 
increase, albeit with a slight delay. Then, the macrophages, which 
arise from monocyte differentiation, begin phagocytosing infective 
agents, presenting antigens, and coordinating a longer-lasting 
immune response by stimulating lymphocytes (Chaplin, 2010). 
Typically, it would take many days for antigen-specific 
cells to clonally expand to mount an effective adaptive
immune response.

While donor-level experiments were qualitatively consistent 
with flow cytometry trends, a direct quantitative correlation was not 
calculated. The present validation was limited to parallel visual and 
temporal comparison between methods. The observed lymphocyte 
activation pattern, while interesting, must be interpreted carefully. 
The timeframe of the experiments (12 h) is generally insufficient for 
a full primary adaptive immune response, which typically requires 
several days for significant clonal expansion and effector function 
development (Hoffbrand and Lewis, 1989; Hoffbrand et al., 2006). 
The detected lymphocyte activation may represent early activation 
events or innate-like responses from specific lymphocyte subsets 
rather than evidence of immunological memory. This accelerated 
activation likely reflects artefacts of the in vitro environment 
rather than physiological responses. Isolated lymphocytes in culture 
can demonstrate non-specific activation due to multiple factors, 
including mechanical stress during isolation, exposure to foreign 
serum components in the culture media, or altered cellular densities 
and spatial arrangements that differ significantly from in vivo
conditions (Yassouf et al., 2022). Additionally, the absence of 
regulatory mechanisms in the complete immune microenvironment 
may permit activation processes that would otherwise be controlled 
in the body (Goldmann et al., 2024). Therefore, while the current 
system successfully detects cellular activation states, the temporal 
dynamics observed, particularly for lymphocytes, should not be 
directly extrapolated to in vivo immune responses without further 
validation in more physiologically relevant models. Future studies 
incorporating specific memory markers and longer observation 
periods would be needed to distinguish between primary and 
memory responses. Regardless, these observations highlight the 
complementary roles of the innate response (represented by 
neutrophils) and the developing adaptive response (represented by 
lymphocytes) in antimicrobial defence (Chaplin, 2010).

Cell morphology changes as cells age, with leukocytes 
demonstrating altered nuclear shapes, reduced membrane integrity, 
and decreased cytoplasmic granularity (Belhadj et al., 2023). 
These age-related changes could potentially influence sample 
classification accuracy, introducing an additional variable that 
warrants consideration in future validation studies. Fixation of 
leukocytes presents an alternative approach that could address 
some of the challenges encountered with live cell analysis. 
Chemical fixatives such as paraformaldehyde or glutaraldehyde 
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preserve cellular morphology by cross-linking proteins, potentially 
capturing activation-specific structural features while preventing 
further morphological changes during processing and analysis 
(Qin et al., 2021). This approach offers several advantages, 
including extended sample stability, reduced biohazard risks, 
and standardisation of morphological features at specific time 
points post-activation. However, fixed cells often exhibit shrinkage, 
increased membrane rigidity, nuclear condensation and altered 
granule appearance compared to their living counterparts, which 
could impact the features used by neural networks for classification 
(Crawford and Barer, 1951; Chen et al., 2012). Future studies could 
explore whether a fixed-cell approach might improve detection 
consistency, particularly for monocytes, by comparing classification 
accuracy between fixed and unfixed samples across various time 
points post-activation.

The leukocytes were able to activate at all concentrations 
of bacteria down to around 25 CFU per ml in the medium 
(verified by plate count, 26.3 ± 2.34), which is about 2.5–25 
times above the detection limit of other technologies, such as 
blood cultures for bloodstream infections (infections typically 
detect down to 1–10 CFU per mL; Opota et al., 2015). However, 
the accuracy of the count varied, with counts varying from 19
to 26 CFU per ml.

However, a follow-up experiment, seeding bacteria into a whole 
blood sample, showed the white cell differential network was able 
to identify activated white cells from a 30-min incubation Figure 9. 
Checking the seeding concentration of whole blood revealed a 
CFU per mL of 12, a concentration close to the detection limit of 
1–10 CFU in clinical blood cultures. Therefore, it is not a stretch 
to envisage the possibility of the white cell differential network 
detecting the immune response to bacterial infection within this 
range, if not below. Researchers have demonstrated the effect of low 
concentrations of LPS (100 ng/mL) extracted from E. coli bacteria 
and its efficiency in causing the production of immune-related 
cytokines (Chen et al., 2017).

We tested the whole system on whole blood seeded with 
around 10 CFU/mL of E. coli (11.11 ± 4.79 CFU per ml), using two 
networks–the whole blood differential network trained on whole 
blood and the white cell differential network. The system isolated 
the white cell images from the whole blood in a preliminary step 
that excluded red cells and platelets. During operational inference, 
this process is fully automated: the whole blood differential network 
identifies leukocytes, which are automatically passed to the white 
cell differential network for activation classification without manual 
review. Manual curation of leukocyte images was performed only 
during initial training dataset preparation to ensure high-quality 
labels for training the white cell differential network. Then, the 
white cell differential neural network was loaded and performed the 
differential inference, discriminating between activated and non-
activated white cells. Here, any false positive detections from the 
whole blood differential neural network were ignored as the white 
cell differential network was trained only on white cell data, thus 
reducing false detections. The whole inference took less than five 
minutes once the data was captured. Interestingly, in Figure 9, 
there was a strong activation of neutrophils due to the presence 
of bacteria within the spiked blood sample, in comparison to the 
lower percentage of activation of monocytes and lymphocytes. The 
low presence of activated lymphocytes can be explained by the 

short incubation time with bacteria. Neutrophils and monocytes, 
part of the innate immune system, respond to an in vivo bacterial 
presence to initial infection. Additionally, neutrophils are known to 
activate in response to stimulation with LPS (Gomes et al., 2010). 
Thus, it is possible to theorise that within such an infection, the 
neural network would be able to infer the presence of activated
white cells.

The growth curves of E. coli in LB broth and human plasma 
(Figure 5) provide valuable context for interpreting the white 
blood cell activation patterns. The rapid growth observed in 
LB broth suggests a highly favourable environment for bacterial 
proliferation. In contrast, the slower growth in human plasma 
highlights the intrinsic antimicrobial properties of this environment, 
which likely contributed to the observed white blood cell activation 
profiles (Pont et al., 2020). Additionally, the limited or absent 
growth in human plasma indicates potential nutritional constraints 
that may restrict bacterial survival. Plasma may be deficient in 
vital metabolic substrates needed for bacterial replication because 
it lacks the complete nutritional profile of specialised bacterial 
growth media (Bochkov et al., 2016). This nutritional deficiency in 
plasma could significantly impede bacterial growth, explaining the 
lower growth curves for plasma.

Overall, this study demonstrates the potential of AI-based 
approaches for analysing cellular morphological responses 
to stimuli. The ability to accurately detect and quantify 
activated white blood cell populations could have significant 
implications for disease diagnosis, monitoring, and treatment. 
This could be applied to any pathology with a morphological 
manifestation, such as anaemias, where the morphological 
change is specific to the anaemia type and cause (Chaparro 
and Suchdev, 2019; American Society of Hematology, 2024). 
However, leukocyte changes are not uniquely diagnostic of 
bacterial infections, as morphological alterations can result from 
diverse conditions, including viral infections, inflammatory 
processes, autoimmune disorders, and systemic stress responses 
(Thieblemont et al., 2016; Chmielewski and Strzelec, 2018; 
Pozdnyakova et al., 2020; Sharma et al., 2023). The current 
diagnostic system should not be used in isolation; accompanying 
clinical assessment and patient history should be used in 
combination to ensure accurate and nuanced medical interpretation.

A critical consideration for this technology is the potential 
impact of false negatives in clinical settings. Failure to detect 
activated leukocytes could delay crucial treatment interventions, 
particularly in severe infections where timely diagnosis is 
essential (Joo et al., 2014). The prototype’s differential performance 
across cell types, robust for neutrophils but limited for monocytes, 
could create diagnostic blind spots for infections where monocyte 
activation predominates. The temporal dynamics observed, while 
non-significant, also suggest detection sensitivity may vary 
depending on the infection stage, potentially missing late-presenting 
cases where neutrophil activation has already declined.

These limitations necessitate careful clinical validation 
before implementation. Future work should quantify false 
negative rates at clinically relevant bacterial concentrations 
and establish concordance with gold standard methods. While 
offering advantages in speed and minimal sample handling, the 
consequences of missed activation signals require a measured 
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approach to clinical integration. While technologies like deep-
UV microscopy have demonstrated label-free haematological 
diagnostics, our system differs by using entirely off-the-shelf, low-
cost optical and microfluidic components (Gorti and Robles, 2023; 
Gorti et al., 2023). The setup requires no specialised alignment 
or custom hardware and can be assembled with off the shelf 
components. Moreover, both techniques require minimal sample 
preparation, however deep-UV provides more granular data such 
as haemoglobin mass compared to total cell counts (Robles and 
Ojaghi, 2020).

Furthermore, as the technology can detect the activation of 
leukocytes, detecting infections from viruses and fungi by proxy 
could be possible. Additionally, this approach could be used to 
expedite leukaemia diagnosis by concurrently doing cell counts 
and morphological analysis. By analysing different cell types and 
spotting any anomalies, the dedicated neural network can offer 
a thorough blood count by analysing microscopy images. Then, 
using a follow-up network, assessing the morphology of leukocytes 
and detecting any alterations, including the presence of blast 
cells or other abnormal cells, would be able to indicate the 
presence of leukaemia (Döhner et al., 2022). This dual capability 
would enable healthcare diagnostic laboratories to detect and treat 
leukaemia more effectively by accelerating the diagnostic process, 
reducing human error, and delivering holistic results. Currently, to 
confirm a leukaemia diagnosis, both a differential cell count and 
blood smear are required; this technology could also be applied 
within veterinary medicine where only small amounts of blood 
are available for a diagnosis, especially for pathologies such as 
haemolytic anaemias in canines and felines (Swann et al., 2016; 
Maldonado-Moreno et al., 2023; Baldwin et al., 2024). It is worth 
considering the possibility of adding a red cell differential network 
to investigate red cell morphology anomalies, which are telltale of 
pathologies. One such example is sickle cell disease with crescent 
moon shape disease (Elendu et al., 2023). Future work could focus 
on improving the white cell differential model’s performance in 
distinguishing activated monocytes and exploring its applicability 
to other bacterial or viral pathogens. Another potential future work 
could be the initial discrimination of the leukocytes followed by 
a binary classification network responsible for the inference of the 
status of the white cells and or detection of the potential leukaemic 
status of cells.

Conclusion

We demonstrated the successful development of white 
cell differential networks to detect and quantify activated 
leukocytes in response to bacterial stimuli within the whole 
blood environment. The system effectively detected activated 
white cells at low bacterial concentrations, showcasing the 
potential for expediting disease diagnosis and monitoring immune 
responses. Rivalling flow cytometry by its ease of use and potential 
integration of additional follow-up tests without the need for 
further sample handling or trained technicians. Future work 
should address the monocyte classification challenge; one main 
avenue should be to increase the imaging monocyte dataset. 
The integration of artificial neural networks, microfluidics, 
and microscopy promises to revolutionise haematological 

diagnostics, enabling more precise and accessible multi-pathology 
diagnostics.
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