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Background: Rapid detection of bacterial infections through leukocyte
activation analysis could significantly reduce diagnostic timeframes from days
to hours. Traditional methods like flow cytometry and biomarker assays
face limitations including technical complexity, equipment requirements, and
delayed results.

Methods: We developed a dual artificial neural network system combining stain-
free light microscopy with microfluidic technology to detect morphological
changes in activated leukocytes. YOLOv4 networks were trained using
five-fold cross-validation on images of chemically stimulated leukocyte
subpopulations (lymphocytes, monocytes, and neutrophils) and validated
against flow cytometry. The system was tested on whole blood samples spiked
with E. coli at clinically relevant concentrations (10-250 CFU/mL).

Results: The optimized four-class network achieved high performance metrics
for lymphocytes (F1 score: 80.1% + 2.5%) and neutrophils (F1 score: 91.7%
+ 1.7%), while a specialized binary classifier for monocytes achieved 97.0%
+ 2.8% F1 score. In bacteria-spiked whole blood experiments, the system
successfully detected activated leukocytes within 30 min at concentrations
approaching clinical blood culture detection limits (11.11 + 4.79 CFU/mL).
Neutrophils showed rapid activation peaking at 1-3 h, while lymphocyte
activation increased gradually over 6-12 h, consistent with innate versus
adaptive immune response kinetics.

Conclusion: This Al-assisted microscopy platform enables rapid, label-free
detection of leukocyte activation in response to bacterial infection with
minimal sample handling and no requirement for specialized staining or trained
technicians. The technology demonstrates potential for accelerating infection
diagnosis and could be extended to other pathologies with morphological
manifestations.

artificial neural network, morphological analysis, YOLOv4, blood analysis, leukocyte
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Introduction

The ability to accurately detect and characterise activated
white blood cells is of paramount importance in both clinical
and research settings. Activated leukocytes play a crucial role
in the human immune system, constituting the fundamental
basis of immunological responses, functioning as guards against
pathogenic invasion, mediators of inflammation, and coordinators
of the immunological cascade (Nedeva, 2021). Detecting white
cell activity has become a promising technique among the
many ways to provide information about the inflammatory
response to infection. Conventional approaches often rely on
biomarker tests, such as C-reactive protein (CRP) and Procalcitonin
(PCT), which, while effective, can sometimes lack specificity
and speed (Samsudin and Vasikaran, 2017). To improve patient
care and support broader public health initiatives, this paper
focuses on sophisticated approaches for identifying white cell
activation, including flow cytometry-based immunophenotyping,
quantitative cell surface marker analysis, and analysis of activation
morphology (Kapellos et al, 2019; Robinson et al, 2023).
These advanced analytical methods can significantly enhance
both the accuracy and timeliness of infection diagnosis by
detecting cellular activation patterns that often precede clinical
manifestations, potentially reducing diagnostic timeframes from
days to hours (Opota et al., 2015). A comprehensive understanding
of leukocyte activation status and behaviour provides critical
insights for diagnosing and monitoring various pathological
conditions, including acute bacterial infections, autoimmune
disorders, and haematological malignancies (Chen et al., 2017;
Nedeva, 2021; Dohner et al, 2022). While several established
techniques exist for characterising white cell activation, each with
unique strengths and applications in specific clinical contexts, it
is essential to acknowledge their inherent limitations, including
technical complexity, equipment requirements, and interpretive
challenges that may restrict their broader implementation in
resource-limited settings.

Flow cytometry emerged as a powerful tool for multiparametric
analysis, enabling the simultaneous detection of multiple activation
markers with high sensitivity and specificity (O’Donnell et al., 2013).
light
flow cytometry provided quantitative

By employing fluorescently labelled antibodies and
scattering principles,
insights into the activation status of white blood cell populations
(Robinson et al., 2023). Clinicians use flow cytometry to diagnose
a variety of conditions, including haematological cancers like
leukaemia and lymphoma that can be precisely tracked through
changes in lymphocyte marker expressions, assess immune
deficiencies by detailed cellular characterisation, and monitor
chronic diseases like HIV by tracking immune cell populations
and their functional states (Thiel, 1985; McSharry et al.,, 1990;
Kanegane et al., 2018). Researchers can identify specific leukocyte
subtypes using surface markers such as CD45 (Leukocytes),
CD3 (T lymphocytes), CD19 (B lymphocytes), and CD56
(NK cells), while simultaneously measuring cell size, internal
complexity, and protein expression patterns (Liu et al, 2020;
Rustam et al, 2022; Rahman and Bordoni, 2024). However,
flow cytometry has several drawbacks. It requires specialised
equipment and trained personnel and can be costly. Sample
preparation is extensive and time-consuming, and there is a risk
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of cell damage during the process, potentially affecting results
(Sazonova et al., 2022; Robinson et al., 2023).

ELISAs complemented flow cytometry by enabling the
quantification of soluble markers of cell activation, such as cytokines
or secreted proteins. The high specificity of ELISAs stems from
their unique ability to detect and quantify molecular targets
with remarkable precision using highly specific antibody-antigen
interactions (Waritani et al., 2017). Antibodies are carefully selected
to recognise distinct epitopes, enabling researchers to differentiate
between closely related molecules with minimal cross-reactivity.
This specificity is further enhanced by multi-step validation
processes, including the use of blocking agents and stringent
washing protocols that eliminate non-specific binding, thereby
reducing false-positive and false-negative results.

In infectious disease research, ELISA specificity becomes
particularly critical for distinguishing pathogen-specific immune
responses. For instance, in SARS-CoV-2 studies, researchers have
developed targeted assays that detect specific viral proteins,
such as nucleocapsid antigens, with up to 99.3% specificity
(Luo et al.,, 2022). The technique’s molecular discrimination allows
for precise identification of antibodies against pathogens, even in
complex biological samples containing multiple potential interfering
molecules, making ELISAs an invaluable tool for understanding
host-pathogen interactions and immune recognition. However,
ELISA may not fully capture the complexity of the activation process.
Precise sample handling is crucial to avoid contamination and
ensure accurate results (Waritani et al., 2017).

Immunohistochemistry (IHC) offers a unique perspective
by preserving the spatial context of activated white blood
cells within tissue architecture. This technique allowed for the
visualisation of activation marker expression in situ, facilitating a
better understanding of the localisation and interactions of these
cells within their native microenvironments (Tan et al., 2020).
The interpretation of staining can be subjective and vary
between observers. Technical variability in tissue processing
and staining protocols can impact results, and THC generally
provides qualitative or semi-quantitative data rather than precise
quantification (O'Hurley et al., 2014).

Western blotting proved valuable for the specific detection
and relative quantification of activation-associated proteins,
providing complementary information to gene expression analyses
(Mishra et al., 2017). By separating and probing proteins based
on their molecular weight, Western blotting offered insights
into the expression levels and isoforms of activation markers,
contributing to a more comprehensive characterisation of the
activation state. However, it is a labour-intensive technique that
offers semi-quantitative data and requires relatively large amounts
of protein, which may not be available in all samples (Mahmood
and Yang, 2012).

Reverse transcription PCR (RT-PCR) and quantitative PCR
(qPCR) techniques enabled the sensitive and specific detection of
activation marker gene expression at the mRNA level (Ho-Pun-
Cheung et al,, 2009; Kuang et al., 2018). These methods were
particularly useful for identifying early transcriptional changes
associated with cell activation and for studying the regulatory
mechanisms underlying the activation process. That said, RNA is
less stable than DNA, making sample handling critical to avoid
degradation (Opitz et al, 2010; Marshall et al, 2021). These
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techniques also require expertise in molecular biology and can be
expensive due to the reagents and equipment needed.

Microscopy-based techniques, such as fluorescence microscopy,
allowed for the high-resolution visualisation of activated white
blood cells, providing insights into their morphology, marker
expression patterns, and spatial relationships within the sample
(Hickey et al., 2021). These methods were invaluable for studying
cell-cell interactions, localisation, and the dynamics of activation
processes. They may not be able to resolve very fine details
depending on the microscopy technique used. This can be
mitigated in super-resolution fluorescence microscopy, however,
requiring more complex equipment (Valli and Sanderson, 2021).
Additionally, these methods generally provide qualitative data
and are less effective for quantitative analysis, often requiring
manual counting and analysis, which can be labour-intensive and
prone to human error, which can be mitigated using algorithms
(Sailem et al., 2016; Shanmugam et al., 2018).

The combination of these techniques provides a comprehensive
toolbox for investigating activated white blood cells from various
angles, each contributing unique insights and complementing the
others. Integrating the data obtained from these methods allows for
a more holistic understanding of the activation processes, enabling
the development of novel diagnostic and therapeutic approaches and
advancing the fundamental knowledge of the immune system.

As these research avenues converge, a more comprehensive
and nuanced understanding of immune cell activation is expected
to emerge, paving the way for improved diagnostic capabilities,
more targeted therapeutic interventions, and a deeper appreciation
of the immune system’s intricate workings in both health and
disease. Combining light microscopy, artificial intelligence and
microfluidics, the sample handling is minimal, thus reducing
some of the issues that can arise from sample preparation. Using
microscopy, while it can lose information on the finer features,
having a neural network analyse the data removes the possibility
of human observer bias standardising the feature detection.
Additionally, post-analysis can also be applied to the images,
thereby inferring further results without having to prepare the
sample for another technique. Additionally, integrating AI with
microscopy removes the need for expensive equipment and software
where the analysis is already provided at the output. Furthermore,
the integration of single-cell analysis techniques into population
analysis promises to unveil unprecedented insights into the
heterogeneity of activated cell populations, facilitating the detection
and analysis of activated white cells within a heterogeneous
population. To achieve this, the ability to train artificial neural
networks to discriminate between activated and unstimulated
leukocytes was investigated using isolated subpopulations and
verified in whole blood by comparison with standard haematological
techniques such as fluorescence flow cytometry.

Materials and methods
Blood sample preparation

24 10 mL blood samples from healthy donors at the CIR Blood
Bank (CIR—21-EMREC-041) were collected and prepared in one
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of two ways, depending on the experiment: either for direct sample
analysis or for separation of cell types for training.

Direct observation

A 100 pL sample of human whole blood collected from donors
was diluted into 1900 pL of diluent (PBS pH 7.2 + 5% EDTA). The
sample was then loaded into a BD Plastipak 10 mL syringe with
a Luer Lok connector, connected to the system described in our
previous publication (Hunt et al., 2025), and observed under flow
conditions (20 min at 25 pL.min’l). This equates to about 12,000
frames recorded for analysis (at a frame rate of 10 frames recorded
per second).

Sample preparation for training

Different treatments were applied to the cells depending on
the desired training material needing to be imaged. Whole blood
cells were separated into different sub-populations of cells using
density gradient separation technique (Hunt et al., 2025). Whole
blood were diluted 1:1 with PBS and layered over Ficoll-Paque
Plus (GE17-1440-02, Sigma Aldrich) before centrifugation at 450
x g for 35 min (medium acceleration and brake). The mononuclear
cell layer (monocytes and lymphocytes) was collected, washed
twice in PBS (350 x g, 5min), and resuspended in RPMI-1640
supplemented with 10% FBS. After 2 h incubation at 37 °C, non-
adherent lymphocytes were harvested, while adherent monocytes
were detached using TrypLE Express (10 min, 37 °C), collected,
and washed.

The remaining pellet, containing erythrocytes and neutrophils,
was washed in PBS and treated with red blood cell lysis buffer
(BioLegend) for 7 min at room temperature. Neutrophilic cells were
recovered by centrifugation (350 x g, 7 min) and washed in PBS. If
erythrocyte contamination persisted, lysis was repeated for 3 min.
All fractions were resuspended in PBS (pH 7.4) or RPMI + 10% FBS
for downstream applications.

To obtain stimulated populations of different white cell types
(lymphocytes, monocytes and neutrophils), each subpopulation
was isolated from one another and seeded to 5 x 10° cells per
flask (as described in Hunt et al., 2025). Cells were cultured in
RPMI + 10% FBS alone or with the addition of specific stimulatory
molecules. For lymphocyte: 1 5pg.mL™! phytohaemagglutinin
+ 10 ng.mL’1 IL-2 (PHA; ThermoFisher, Waltham, USA: IL-2
PeproTech, Cranbury, NJ, USA) and 4 pgmL™', concanavalin
A (Con A; ThermoFisher, Waltham, USA). IL-2 is required
as it helps activate lymphocytes (Ross and Cantrell, 2018;
O’Donovan et al, 19955 Ando et al, 2014). For monocytes:
0.1 yg.mL™" lipopolysaccharide (LPS; ThermoFisher, Waltham,
USA). For neutrophils 43.8 pg.mL™" N-formylmethionyl-leucyl-
phenylalanine (fMLP; Sigma Aldrich, St. Louis, MI, USA).
Stimulated cells were incubated for 16 h to ensure maximum
stimulation. Stimulation was verified using flow cytometry, where
activation-induced changes in cell morphology were confirmed
through forward and side scatter profiles shift. Following verification
of successful stimulation, leukocytes were introduced into the
microfluidic system, one population at a time. This approach enabled
the consistent acquisition of images of activated and non-activated
leukocytes in each sub-population for neural network training.

All input images were resized to 416 x 416 pixels, consistent
with YOLOv4’s native input dimension requirements. Images were

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1725145
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Hunt et al.

normalised by scaling pixel intensity values between 0 and 1
and stored in RGB JPEG format without compression artifacts.
No colour correction or histogram equalisation was applied to
preserve the original microscopy intensity distribution. These
augmentations were implemented using custom Python 3 scripts
in conjunction with the OpenCV and augmentations libraries to
automate augmentation pipelines. Each transformation was applied
randomly with a 0.3 probability per image to avoid overfitting
to synthetic transformations. The inclusion of augmented images
increased the dataset size by approximately sixfold, resulting in
improved model generalization as evidenced by reduced validation
loss variance across folds (<5%) and higher recall for minority
classes such as neutrophils and platelets.

Plasma thawing and freezing

Plasma samples (from human whole blood) containing various
EDTA anticoagulants were stored to preserve haemostatic function
and prevent inadvertent coagulation at —80C until thawing. Plasma
and RPMI + 10% plasma were used as a media for white cell
incubation with bacteria and tests for bacterial growth kinetics.

A water bath was preheated to 37 °C. Frozen plasma aliquots
were removed from —80 °C storage and immediately immersed in
the 37 °C water bath. Samples were gently agitated at 300 revolutions
per minute to promote uniform thawing. The total thawing time was
45 min. Once completely thawed, samples were used immediately
or stored at 4 °C for up to 24 h until use or used immediately.
Storage below 0°C was avoided to prevent cold-induced
coagulation.

Bacterial preparation

Liquid culture

A sterile lysogeny broth (LB, ThermoFisher, Waltham, USA)
medium was utilised to create a bacterial culture of E. coli isolated
from a clinical isolate from a urine sample collected at the Royal
Infirmary of Edinburgh. Using aseptic techniques, 5 mL of medium
was inoculated with a colony obtained from a plate culture. The
liquid culture was incubated in a shaking incubator overnight
(18 h) at 37 °C, shaking at a rate of 150 revolutions per minute.
Following incubation, the broth was turbid, indicating bacterial
growth. A subculture was performed overnight to remove debris
and stimulate the bacteria. After incubation, the optical density
of the culture at 600 nm was measured using a Cary 60 UV-Vis
spectrophotometer (Agilent Technologies, Santa Clara, CA, USA),
and an approximate colony-forming unit per mL was calculated
using the equation below (Couto et al., 2018):

ODyyp * 8% 108 = CFU.mL™

The equation was used as a starting point to prepare bacterial
dilutions for plate counts. The liquid culture was then diluted into
PBS pH 7.4 to achieve the desired concentration of bacteria.

Plate culture

A plate culture was prepared by plating liquid Oxoid nutrient
agar (ThermoFisher, Waltham, USA) into sterile Petri dishes. Once
the agar had solidified, a swab was used to streak bacteria from liquid
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culture, glycerol stock, or sample onto the dish. After overnight
incubation at 37 °C, colonies appear on the agar plates. Individual
colonies can be swabbed and placed into liquid cultures for further
experimentation.

Bacterial growth curve

The optical density at 600 nm is measured using liquid cultures
as a starting point. The culture was diluted into Oxoid media, giving
an ODg, = 0.01, then loaded into a flat-bottomed 96-well plate
kept at 37 °C and ODy, read every 20 min using a Biotek Synergy
HT plate reader (Agilent Technologies, Santa Clara, CA, USA). The
plate was shaken between measurements. Data was analysed by
deducting the density of the control well (media alone) from the
wells with bacteria to calculate the density attributed to the growth of
the bacteria and no other components of the media. Bacterial plate
counts were used to verify the CFU seeding concentration of bacteria
in concentration-dependent experiments.

Bacterial plate counting

Bacterial enumeration was performed using a standard plate
counting technique. Oxoid nutrient agar plates were prepared by
suspending nutrient agar powder in distilled water. The mixture was
then autoclaved, and once cooled to approximately 50 °C, the molten
agar was poured into sterile Petri dishes (Fisherbrand, Waltham,
MA, USA). The plates were allowed to solidify at room temperature
before use. Bacterial samples were serially diluted 1:10 in PBS (pH
7.2) to obtain countable CFU densities. From each dilution, 100 uL
volumes were pipetted onto the surfaces of the triplicate pre-poured
nutrient agar plates and allowed to dry. Inoculated plates were
incubated in an inverted position at 37 °C for 18-24h to allow
colony formation.

Following incubation, colonies were counted manually.
CFU/mL values for the original samples were calculated based on
the dilution factors. All plating work was conducted using aseptic
techniques. Positive (E. coli) and negative (uninoculated media)
control plates were included in each experiment.

Flow cytometry

Sample preparation and data acquisition followed the same
process as in Hunt et al., (2025). Population counts were extracted
from FlowJo and plotted in GraphPad Prism. For plots, the
populations were juxtaposed on one scatter plot in FlowJo and
exported to GraphPad Prism to arrange the results (gating
strategy in Supplementary Appendix).

Data pipeline

A dual deep learning pipeline was developed to classify
and quantify leukocytes in stain-free brightfield microfluidic
images. The system builds upon a pretrained YOLOv4
whole-blood  leukocyte

differentials (Hunt et al., 2025). The rationale for transfer learning

model previously optimized for
was to leverage established feature representations of unstained
blood cell morphology, reducing the amount of task-specific data

and computational time required compared to training a model
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Whole blood

Neutrophils

Lymphocytes

FIGURE 1
Artificial neural network pipeline for inferring leukocyte status from a full blood sample (cell images not to scale).

from scratch. Preliminary experiments confirmed that retraining Model training and inference were performed in Python using
from scratch using the present dataset led to overfitting and lower ~ the Darknet framework with CUDA acceleration. The computer
performance, supporting the use of a pretrained backbone for  used is an HP ELITEDESK equipped with an Intel CoreTM i5-
efficient and generalizable feature extraction. 6500 CPU (Intel, Santa Clara, CA, USA), 16 Gb of RAM and an
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Plotted fluorescence change of activated leukocytes compared to their control counterparts. Each subtype was treated with a chemical or cocktail of
chemicals known to trigger their activation. After a 16-hour incubation, each cell type was fixed and stained with fluorescent antibodies corresponding
to the markers present on the surface of each subtype. Isolated subpopulations from three donors, n = 3 replicates per cell type. While both
monocytes and neutrophils do not express much difference between their control and treated CD45 expression, their specific CD marker do change
significantly (CD14 increases for monocytes, and CD16 decreases for neutrophils). CD45 expression for lymphocytes decreases, however, after
activation. Two-way ANOVAs were performed (n = 3, p-CD45-lymphocytes <0.0001, p-CD14-monocytes <0.0001, p-CD16-neutrophils <0.0001).

NVIDIA RTX A2000 12GB GPU (Nvidia, Santa Clara, CA, USA).
On the server, the server-side program can either be run locally on
UNIX (here, ubuntu 20.04 LTS, Canonical, London, UK) or on a
Docker container (Docker, Inc., Palo Alto, CA, USA). Initially, the
UNIX version was used during testing; once a stable version was
coded, the program was moved to the Docker version. The Docker
implementation is built on NVIDIA CUDA 11.7.1 with Ubuntu
20.04 as the base system, configured with CUDNN 8 acceleration
and OpenCV 4.6.0 integration. Input images were exported directly
from the microfluidic imaging system as uncompressed JPEGs, with
a mean field of view of approximately 57 x 57 um. Each image was
resized to 416 x 416 pixels to match the YOLOv4 input requirements,
while preserving aspect ratio through zero-padding. No additional
colour normalization was required, as all images were captured
under uniform illumination and exposure conditions. To mitigate
class imbalance, minority classes were augmented more extensively
(rotation, flip, brightness/contrast variation). Class weights inversely
proportional to frequency were applied in the loss function.
Together inference time took between 10-15 min depending on the
dataset size.

Data augmentation consisted of deterministic geometric
and intensity-based transformations implemented within the
Darknet training pipeline. Augmentations included random
rotations (+90°), flips, and brightness or contrast scaling to
improve model robustness to cell orientation and imaging
variation. These were applied uniformly across all training epochs,
ensuring consistent augmentation coverage without altering
class balance.

Using the pre-trained whole blood differential network trained
on unstimulated freshly isolated blood samples, the artificial neural
network pipeline for distinguishing the presence of activated white
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cells, the new models were trained on YOLOvV4 using five-fold cross-
validation (donor images were pooled, the pool was subsequently
split into five datasets randomly shuffled). Those five subsets were
then redistributed randomly five times into three sets: three sets
pooled for training, one for validation and one for testing. This
allowed statistical analysis with standard deviation of the acquired
data. For each training regimen, the original image data was split into
independent cropped images, each with an independently detected
single cell ensuring parts of the original uncropped image are within
the training, testing and validation sets. The network was trained
using the following hyperparameters: a batch size of 64 with 64
subdivisions, and input images were 416 x 416 pixels with three-
channels. We used a momentum of 0.949 and an L2 weight decay
of 0.0005. The initial learning rate was to 1 x 1074, with a burn-in
period of 1,000 iterations. Training proceeded for 10,000 iterations,
with scheduled learning-rate reductions applied at 8,000 and 9,000
iterations.

Model performance was evaluated using standard object
detection metrics: precision, recall, and F1-score at an intersection-
over-union (IoU) threshold of 0.5. These metrics were chosen to
capture both detection accuracy (localization and classification)
and class-specific balance, which are critical in biomedical imaging
contexts where both false positives and false negatives carry
diagnostic implications. The evaluation was performed on a held-
out test set comprising 20% of the total dataset, stratified by donor
to avoid subject-specific bias.

Following detection, a secondary neural network was used
for post-classification morphological analysis to detect activation-
associated changes within leukocyte subsets (Figure 1). Together, the
two-stage Al system enables high-throughput, stain-free assessment
of leukocyte morphology directly from microfluidic images. The

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1725145
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Hunt et al. 10.3389/fbinf.2025.1725145

FIGURE 3

Combination of labelled images of leukocytes and their activated forms. Red box shows a lymphocyte with the green containing an activated
lymphocyte. The blue box shows a monocyte with the magenta box containing an activated monocyte. The yellow box shows a neutrophil with the
cyan boxes displaying activated neutrophils. The activation of white cells was achieved by incubating each population in Con A + PHA, LPS and fMLP
respectively. The dimensions of the images are 416 x 416 pixels, or 57.37 x 57.37 ym. The cells were imaged at 40x zoom.
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TABLE 1 Five-fold training outcome of stimulated leukocytes
(lymphocytes, monocytes, and neutrophils) and their non-stimulated
counterparts of a YOLOv4 network model. Detailed breakdown of the
Precision, Recall and F1 score per blood cell subtype of the 5-fold cross
validation of the binary network. Values are in percentage.

Cell type Precision Recall F1 score

Lymphocytes 61.1+3.0 56.2+3.2 585+ 1.9
Lymphocytes - activated 54.7+2.5 58.5+4.4 56.5+2.7
Monocytes 52+22 141+94 74+33
Monocytes - activated 6.67 £14.9 25+56 36+8.1
Neutrophils 61.1+£2.4 52.7+3.6 56.5+ 3.0
Neutrophils - activated 62.3+24 52.7 3.6 56.5 + 3.0
Network 419+28 41.2+2.0 409+ 1.8

full code repository is available at the following repository: https://
github.com/alex1075/machine-code.git.

Bacteria spiked whole blood tests

For whole blood bacterial seeding experiments, 5 mL of freshly
collected peripheral blood was obtained from three healthy donors.
Each sample was seeded with E. coli (clinical isolate from the Royal
Infirmary of Edinburgh) at a concentration of around 10 CFU per ml
(obtained through serial dilutions and verified with plate culture).
The seeded blood samples were incubated at 37 °C with gentle
agitation (50 rpm) for 2 h to allow leukocyte activation to occur.
Following incubation, samples were imaged using the following
the setup from Hunt et al., (2025). Eosinophils and basophils were
not included in training owing to their low frequency (<2% of
leukocytes). During inference, such cells were typically assigned
low confidence scores (<0.3) and classified as ‘non-detected’ Their
exclusion may marginally reduce specificity but is unlikely to
affect the classification of dominant leukocyte types. Future dataset
expansion will include these populations to improve robustness.

These images were processed using the dual neural network
approach. Using previously published whole blood differential
network first identified and isolated all leukocyte images, which
were subsequently analysed by the specialised white cell differential
networks described below (see Tables 3—-6; Hunt et al., 2025).

Results
Inducing leukocyte activation

From the literature, it has been established that different
compounds can trigger the activation of leukocytes. Lymphocytes

(PHA) and
concanavalin A (Con A); monocytes using lipopolysaccharides

can be activated using phytohaemagglutinin

(LPS); neutrophils using N-formylmethionyl-leucyl-phenylalanine
(fMLP) (O’'Donovan et al., 1995; Ando et al., 2014). The effect of
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activation of treated and untreated leukocyte sub-populations with
known concentrations of the relevant activator for 16 h (overnight)
was verified by flow cytometry (Figure 2). The figure makes evident
the effect the chemical treatment has had on the different leukocyte
populations. The CD45 expression alone does not differ significantly
between activated and non-activated monocytes and neutrophils.
CD14 expression in monocytes increased after 16-h incubation with
LPS, confirming that monocytes were activated. Whereas CD16
expression decreased after 16-h incubation with fMLP, suggesting
neutrophils were exhausted after prolonged activation. Lymphocyte
expression of CD45 expression appears not to increase on mitogen
stimulation; this was expected due to the time constraint of the
experiment.

Al training on chemically induced
leukocyte activation

A dataset of images was collected for leukocytes after activation
and those kept in control conditions (Figure 3). Al training was done
using five-fold validation. After augmenting the dataset using 90,
180, and 270-degree rotation, 11,297 individual 416 x 416 images
were generated. The model was trained on a dataset comprising
1,768 total original, unaugmented images across six cell classes:
390 lymphocytes, 491 activated lymphocytes, 317 neutrophils, 436
activated neutrophils, 69 monocytes, and 65 activated monocytes.
Five-fold cross-validation was employed, with approximately 20% of
the data held out for testing in each fold.

Tables 1, 2 shows that the YOLOv4 white cell differential
model can discriminate between con A stimulated and unstimulated
lymphocytes and fMLP stimulated and unstimulated neutrophils.
Lymphocytes and their activated counterparts exhibit moderate
classification performance, with precision values of 61.1% + 3.0%
and 54.7% + 2.5% respectively. The recall metrics (56.2% + 3.2% for
lymphocytes and 58.5% * 4.4% for activated lymphocytes) indicate
that the model successfully identifies slightly more than half of these
cells when present. This results in balanced F1 scores of 58.5% + 1.9%
and 56.5% + 2.7% for the respective lymphocyte populations.

For neutrophils and activated neutrophils similar performance
to lymphocytes, with precision values of 61.1% + 2.4% and 62.3%
+2.4% respectively was seen. Both populations share identical recall
rates of 52.7% + 3.6%, yielding F1 scores of 56.5% + 3.0% for both cell
types. This suggests the model has similar capabilities in identifying
neutrophils regardless of their activation status.

However, the model struggles significantly with monocyte
classification. Non-activated monocytes exhibit extremely low
precision (5.2% + 2.2%) and recall (14.1% + 9.4%), resulting in
a poor FI score of just 7.4% =+ 3.3%. Activated monocytes fare
even worse, with marginally higher precision (6.67% * 14.9%) but
substantially lower recall (2.5% * 5.6%), culminating in an F1
score of only 3.6% = 8.1%. These metrics highlight a limitation
with the trained model’s ability to reliably detect and discriminate
monocytes.

Overall, the network obtained a modest performance across
every cell type, with combined metrics of 41.9 + 2.8% precision, 41.2
+ 2. 0% recall, and 40. 9 = 1. 8% F1 score. This moderate level of
performance is mainly influenced by the acceptable classification of
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5-fold trained network of the YOLOv4 model trained to discriminate between lymphocytes, activated lymphocytes, monocytes, activated monocytes, neutrophils, and activated neutrophils.
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TABLE 3 Filve-fold training outcome of stimulated lymphocytes and
neutrophils only and their non-stimulated counterparts of a YOLOv4
network model. Detailed breakdown of the Precision, Recall and F1
score per blood cell subtype of the 5-fold cross validation of the binary
network. Values are in percentage.

Cell type Precision Recall F1 score

Lymphocytes 82.1+2.1 78.3+4.6 80.1+2.5
Lymphocytes - activated 79.8 4.1 832+ 15 81.4+23
Neutrophils 85.6 + 1.5 794+4.1 87.0+2.5
Neutrophils - activated 92.4+1.1 91.0+2.9 91.7+1.7
Network 87.5+2.1 83.0£2.0 82.0+ 1.6

lymphocytes and neutrophils, while being significantly set back by
inadequate monocyte detection.

To further inspect specific classification trends, the confusion
matrix shown in Table 2 shows lymphocytes, where 212 were
accurately classified, with 107 misclassified as activated lymphocytes
and fewer misattributed to other cell types. Likewise, 320 activated
lymphocytes were accurately identified, with 75 misclassified as non-
activated. Neutrophils displayed a more intricate pattern, with 152
correctly classified but considerable misclassifications spread across
activated neutrophils (77) and activated lymphocytes (65).

The model’s primary difficulty with monocytes is exemplified
by the confusion matrix, which shows that only 5 of the 13 non-
activated monocytes were correctly identified and only 3 of the 6
activated monocytes were properly classified. This is in line with
the poor statistical metrics and highlights a major limitation in the
model’s performance for these cell types.

Removing the monocytes and activated monocytes from the
training data, a new version of the network was trained (Tables 3, 4).
The new model demonstrates improved performance across all
metrics compared to the previous six-class model (model detailed
in Tables 1, 2). For lymphocytes, the precision reached 82.1%
+ 2.1% (compared to 61.1% =+ 3.0% previously), while recall
improved to 78.3% * 4.6% (previously 56.2% =+ 3.2%). This
resulted in an improved F1 score of 80.1% + 2.5% (compared to
58.5% * 1.9% previously). Similarly, activated lymphocytes also
showed improvements, with precision of 79.8% + 4.1% (up from
54.7% + 2.5%), recall of 83.2% + 1.5% (improved from 58.5%
+ 4.4%), and an FI score of 81.4% * 2.3% (previously 56.5% =+
2.7%). Neutrophils and their activated counterparts showed more
improvement. Non-activated neutrophils achieved a precision of
85.6% + 1.5% (compared to 61.1% + 2.4% previously) and recall
of 79.4% * 4.1% (up from 52.7% + 3.6%), yielding an F1 score of
87.0% + 2.5% (an improvement from 56.5% + 3.0%). The best gain in
performance was observed for activated neutrophils, with precision
of 92.4% + 1.1% (previously 62.3% * 2.4%), recall of 91.0% + 2.9%
(up from 52.7% + 3.6%), and an F1 score 0of 91.7% + 1.7% (compared
to 56.5% * 3.0% previously).

The networKs overall performance metrics also showed
improvement, with precision reaching 87.5% + 2.1% (up from 41.9%
+ 2.8%), recall of 83.0% + 2.0% (previously 41.2% + 2.0%), and an
F1 score of 82.0% + 1.6% (compared to 40.9% + 1.8%). Therefore,
removing monocytes and activated monocytes reduced issues

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1725145
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Hunt et al.

10.3389/fbinf.2025.1725145

TABLE 4 Five-fold training outcome of stimulated lymphocytes and neutrophils only and their non-stimulated counterparts of a YOLOv4 network
model. Confusion matrix of one fold of the five-fold cross-validated model of the YOLOv4 model trained to discriminate between lymphocytes,
activated lymphocytes, neutrophils, and activated neutrophils.

Prediction
Lymphocyte Lymphocyte — Neutrophil Neutrophil - Non detected
activated activate
Lymphocyte 338 108 0 3 5
Lymphocyte - activated 57 440 2 2 28
Ground truth
Neutrophil 2 14 338 30 19
Neutrophil - activated 1 9 20 542 26

within the training data by focussing on cells with distinguishable
morphological features during activation.

The confusion matrix in Table 4 shows 338 lymphocytes were
correctly classified, with 108 misclassified as activated lymphocytes,
and minimal confusion with neutrophil classes. Similarly, 440
activated lymphocytes were correctly identified, with only 57
misclassified as non-activated lymphocytes. Neutrophils showed
positive classification with 338 correctly identified, and relatively
minor misclassifications distributed mainly to activated neutrophils
(30). The highest accuracy was observed for activated neutrophils,
with 542 correctly classified and only 20 misclassified as non-
activated neutrophils. The non-detection rates (Table 4) were
notably low across all cell types, with 5 lymphocytes, 28 activated
lymphocytes, 19 neutrophils, and 26 activated neutrophils not
detected. As a useful network for discriminating between activated
and non-activated lymphocytes and neutrophils was trained, a
network was trained for monocyte activation.

Training a monocyte-specific model demonstrated improved
performance compared to the previous models where monocytes
were included alongside other cell types (Tables 5, 6). For non-
activated monocytes, the model achieved a precision of 95.8% +
4.1% (compared to just 5.2% * 2.2% in the six-class model) and
recall of 98.3% + 3.5% (previously 14.1% * 9.4%). This resulted in
an F1 score of 97.0% + 2.8%, representing an improvement from the
previous 7.4% + 3.3% (Table 5). Activated monocytes also showed
enhancement in classification performance, with precision of 96.7%
+7.5% (up from 6.67% + 14.9% in the six-class model) and recall of
75.3% + 22.2% (previously just 2.5% + 5.6%). This produced an F1
score of 93.0% * 16.6%, higher than the 3.6% + 8.1% from Table 1.
However, the relatively larger standard deviation in these metrics
for activated monocytes suggests some variability across the five-
fold cross-validation, potentially due to the smaller sample size
of activated monocytes in the dataset or variations in activated
morphology.

The confusion matrix in Table 6 reveals positive classification
patterns. All 18 non-activated monocytes in the test set were
correctly classified, with no false negatives or misclassifications. For
activated monocytes, 9 out of 11 were correctly identified (81.8%),
with 1 being misclassified as a non-activated monocyte (9.1%) and
1 not detected (9.1%). These results demonstrate the model’s strong
capability to discriminate between the activation states of monocytes
when trained specifically on this cell type.
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TABLE 5 Fold training outcome of stimulated monocytes and
non-stimulated monocytes of a YOLOv4 network model. Detailed
breakdown of the Precision, Recall and F1 score per blood cell subtype
of the 5-fold cross validation of the binary network. Values are in
percentage.

Cell type Precision Recall F1 score
Monocytes 958 +4.1 98.3+3.5 97.0+2.8
Monocytes - activated 96.7+7.5 753+22.2 93.0 +16.6
Network 96.2 4.5 86.8 £ 11.5 90.0 £9.7

The model trained to discriminate activated and non-activated
leukocytes was used to test whether the white cell differential
network could detect activated white cells in a simulated infection.
For this, leukocytes were incubated with E. coli from a clinical
isolate available in the lab. Based on the optical density at 600 nm,
different dilutions of E. coli were prepared in media and left to
incubate for 6 h.

Growth dynamics of E. coli in samples

Figure 4 displays the growth curves of E. coli from a clinical
isolate under different growth conditions over a 24-h period. The
black line represents the growth of E. coli in LB broth liquid media
shows rapid growth. The blue curve depicting the growth of E. coli in
human plasma shows a much slower growth rate compared to the LB
curve, with lower maximum absorbance values. This suggests that
the human plasma environment is less favourable for E. coli growth
than the LB broth medium. The RPMI with 10% Plasma curves have
no growth observed over 24 h. The RPMI with a 10% FBS curve
displays better growth than LB Broth.

Bacterial infection detection

Flow cytometry was used to verify the activating effect of the
bacterial seeding into the media (Figure 5). The figure illustrates
the varying activation responses of lymphocytes and neutrophils to
different bacteria concentrations, showing responses to the bacterial
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TABLE 6 Fold training outcome of stimulated monocytes and non-stimulated monocytes of a YOLOv4 network model. Confusion matrix of one fold of
the five-fold cross-validated model of the YOLOv4 model trained to discriminate between lymphocytes, activated lymphocytes, neutrophils, and
activated neutrophils.

Prediction
Monocyte Monocyte - activated Non detected
‘ Monocyte 18 0 0
Ground truth
‘ Monocyte - activated 1 9 1
1.0+
£
c
~— LBBroth — Plasma RPMI + 10% FBS — RPMI + 10% Plasma
FIGURE 4
Growth curves of E. coli isolated from a clinical isolate from a urinary tract infection in different media. The media used were LB broth liquid media,
fresh human plasma, fresh human plasma with 10% foetal bovine serum, RPMI with 10% foetal bovine serum, and RPMI with 10% fresh human plasma
over 24 h. Absorbance measurements were taken every 20 min. The x-axis represents time in minutes, and the y-axis represents absorbance, which
measures bacterial growth. n = 3 standard deviation as shaded areas.

stimuli in the media in all samples tested. Looking at the scatter
plots, the cell size increases across subtypes with an increase of
fluorescence intensity for monocytes and neutrophils, suggesting
an upregulation of CD14 and CD16 expression on the cell surface.
Lymphocytes appear to decrease in fluorescence intensity for CD45
followed by a peak at 50 CFU/mL with a plateau after 100 CFU/mL.

Figure 6 consists of four subplots, each representing different
individual volunteers (1, 2, 3, and 4), each depicting the
percentage of sub-population activated for three cell types,
lymphocytes, neutrophils, and monocytes, against varying bacterial
concentrations (CFU/ml; and a non-spiked control). The activation
was defined as cells detected and classified as activated by trained
YOLOvV4 networks; alternative cell states such as apoptosis and
necrosis could not be detected using this method. In subplot
1, the activation percentage for both the lymphocytes and the
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neutrophils shows a pattern, with the lymphocytes generally having
a bigger activation percentage than the neutrophils. Both cell types
reach peak activation around 100 CFU/mL bacterial concentration.
Within the second subplot, there is a smoother activation curve
for both cell types, with the lymphocytes peaking at around
100 CFU/mL and the neutrophils reaching maximum activation at
a higher bacteria concentration of around 150 CFU/mL. In subplot
3, the activation patterns are similar to subplot 1, forming a pattern,
with the lymphocytes having higher activation than the neutrophils
across most bacteria concentrations. Both cell types reach their peak
activation around 100 CFU/mL. For subplot 4, the graph displays a
distinct pattern, where the neutrophil activation remains relatively
low until around 150 CFU/mL, after which it sharply increases to
a high level. Lymphocytic activation increased gradually, reaching
a moderate level at higher bacteria concentrations. Overall, the
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FIGURE 5
Flow cytometry verification of the effect of the incubation of the seeding concentration of E. coli within media with leukocytes (represented is one
iteration of 3 donors X 3 replicates). (a) Flow cytometry scatterplot for lymphocytes after different seeding concentrations plotting CD45 probe
fluorescence against forward scatter (FSC-A) in arbitrary units. (b) Flow cytometry scatterplot for monocytes (CD45/FCS-A). (c) Flow cytometry
scatterplot for monocytes (CD14/FSC-A) in arbitrary units. (d) Flow cytometry scatterplot for neutrophils (CD45/FSC-A) (e) Flow cytometry scatterplot
for neutrophils (CD16/FSC-A). (f) Bar chart comparing fluorescence intensity change against seeding concentration for lymphocytes, monocytes and
neutrophils. The intensity was measured against the CD45 marker for lymphocytes, CD14 for monocytes and CD16 for neutrophils (n = 3, full statistical
breakdown in Supplementary Figure SA1).
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FIGURE 6

Total activated percentage of total cell populations for lymphocytes, neutrophils, and monocytes after detection and classification using trained
YOLOv4 networks when incubating leukocytes with different concentrations of E. coli within the media. White cells were incubated for 6 h with
different concentrations of colony-forming units of E. coli. The network trained on chemically stimulated white blood cells. Each graph represents
different individual donors; each donor made three donations. Error bars represent differences between donor samples (4 donors x 3 replicates).

peak of monocyte activation occurred using around 100 CFU/mL
of bacteria. At higher CFUs, this decreases to around 30%-40% of
total monocytes.

Figure 7 displays four donors showing the percentage of
activated lymphocytes and neutrophils over time with non-spiked
controls. In subplot 1, neutrophil activation starts near 35%, rising
to ~85% at 180 min, while lymphocytes rise from 20% to 70%
over 6 h. Subplot 2 shows lymphocytes beginning higher (~40%)
than neutrophils (~25%) with both peaking around 100 CFU/mL.
Subplot 3 peaks at 60 min rather than 180 min, and subplot
4 shows delayed neutrophil activation (~150 min) relative to
gradual lymphocyte increase. Subplot 2 exhibits a similar pattern,
where neutrophil activation again begins higher than lymphocyte
activation, then peaks at above 80% after one hour, followed by a
gradual decline. Lymphocyte activation, on the other hand, starts
low but increases gradually over time, surpassing the neutrophil
activation after six hours of incubation with E. coli. In subplot 3,
both lymphocytes and neutrophils show a similar activation pattern
as the previous plots, with a peak around the middle time point
(180 min for neutrophils) and lower activation at the beginning and
end of the time course. Subplot 4 demonstrates a distinct activation
profile, where the neutrophil activation starts high, drops to a
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minimum around 180 min, and then rises again towards the end.
In contrast, lymphocytic activation remains relatively low initially,
increases gradually, and surpasses neutrophil activation at the later
time points. Activation of monocytes, inferred by the networks,
showed an overall increasing trend of around 10%-20% beginning
at 30 min of incubation, then steadily increasing to 70%-80%
after 12h. Overall, the four figures display similar activation
kinetics for leukocytes over time, with different patterns observed
across the four subplots, as detected by the white cell differential
model after incubating white cells with live bacteria. However, the
statistical analysis does not indicate significant differences in these
temporal patterns.

Flow cytometry shows different patterns of fluorescence between
the control and treated samples (Figure 8). Suggesting that the
presence of bacteria has altered the leukocyte characteristics to the
extent the neural networks can detect the changes. Even after a
half-hour incubation with bacteria, the leukocytes generally appear
to have increased in cell size and fluorescence intensity (using
specific CD markers-see Figure 8 for details). Fluorescence intensity
gradually increases until before or at 3 h of incubation, after which
the cell intensity continues to decrease gradually. Lymphocytes
and monocyte fluorescence intensity peak at 12 h of incubation,
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suggesting the remaining cells have upregulated the expression of
the specific CD markers.

Testing activation inference in whole blood

Figure 9 presents the results of detecting activated white blood
cells from spiked whole blood samples (11.11 + 4.79 CFU per ml,
verified by plate count) using a two-stage neural network approach.
The network first identified blood cells within whole blood and
isolated white blood cells. The second network then analysed the
white cells, the white cell differential network, trained to distinguish
between activated and non-activated leukocytes, which inferred the
cell’s status. For lymphocytes, the percentage of activated cells ranged
from approximately 15%-25% across the three donors. Sample 1
(black) exhibited the highest lymphocyte activation at around 25%,
while Sample 2 (blue) showed the lowest activation at approximately
15%. In the case of neutrophils, a higher proportion of cells were
detected as activated, ranging from around 90%. Sample 3 (yellow)
showed the highest neutrophil activation, followed closely by Sample
1 (black). Sample 2 (blue) had the lowest neutrophil activation
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at around 90%. For monocytes, the results are a bit more varied.
Monocyte activation was found to be between 25% and 50%, most
likely due to the differences between individual differences in their
respective immune systems.

Discussion

The main goal of this paper was to develop a neural network
model capable of detecting activated white blood cells in response
to bacterial stimuli and to characterise its performance relative to
Flow Cytometry. The activation of white cells was initially tested
using known reagents. This was verified with flow cytometry. Levels
of CD16 expression in neutrophils appeared low (Figure 2). For
lymphocyte activation, PHA (15 pg/mL) and Con A (4 pg/mL)
were chosen based on their well-documented ability to induce
lymphocyte proliferation and activation (Ando et al, 2014;
Simon-Molas et al., 2018). LPS at 0.1 ug/mL was selected as it
represents a physiologically relevant concentration that effectively
triggers inflammatory responses within monocytes without causing
excessive cellular toxicity (Gomes et al, 2010). Similarly, the
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Flow cytometry verification of the effect of incubation time after seeding 250 CFU of E. coli within media with leukocytes (represented is one iteration
of 3 donors x 3 replicates). (a) Flow cytometry scatterplot for lymphocytes after different incubation time plotting CD45 probe fluorescence against
forward scatter (FSC-A) in arbitrary units. (b) Flow cytometry scatterplot for monocytes (CD45/FSC-A). (c) Flow cytometry scatterplot for monocytes
(CD14/FSC-A) in arbitrary units. (d) Flow cytometry scatterplot for neutrophils (CD45/FSC-A). (e) Flow cytometry scatterplot for neutrophils
(CD16/FSC-A) in arbitrary units. (f) Bar chart comparing fluorescence intensity change against incubation time for lymphocytes, monocytes and
neutrophils. The intensity was measured against the CD45 marker for lymphocytes, CD14 for monocytes and CD16 for neutrophils (n = 3, error bars as
standard deviation, full statistical breakdown available in Supplementary Figure SA2).
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concentration of fMLP (43.8 pug/mL) used for neutrophil activation
was based on dose-response studies demonstrating optimal
neutrophil stimulation without inducing premature cell death or
exhaustion (Vulcano et al., 1998). A standardised 16-h incubation
period was applied across all leukocyte populations to maintain
experimental consistency, as this timeframe has been widely used in
published studies for lymphocyte and monocyte activation with
PHA, Con A, and LPS (Gomes et al., 2010; Ando et al., 2014;
Simon-Molas et al., 2018). However, this extended duration likely
had differential effects on the various cell types, particularly
neutrophils. The low CD16 expression observed in neutrophils could
be attributed to the length of the experiment, whereby the cells could
have activated and then died from exhaustion. fMLP activation
of neutrophils is relatively fast in comparison to other leukocyte
subtypes, taking only a few minutes (Rochon and Frojmovic, 1993).
Thus, it is entirely plausible the cells have either downregulated
the CD16 marker after prolonged activation or succumbed to cell
death from exhaustion (Pérez-Figueroa et al., 2021). While a shorter
incubation period might have been optimal for neutrophils, the
standardised protocol was necessary to generate a consistent training
dataset for the neural network across all cell types. While the CD45
marker was primarily used here to distinguish lymphocytes from
monocytes and neutrophils with their respective co-expression of
CD45 and CD14/16; looking at the CD45RA/RO, isoforms of the
CD45 protein distinguishing between naive (RA) and memory
(RO) T lymphocytes, co-expression would be a better measure of
lymphocyte activation than using fluorescence intensity change and
cell size change alone (Clement, 1992). Discriminating between
isoforms, along with a shorter incubation time for neutrophils,
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could be something to investigate for future studies on the subject
and/or testing the feasibility of a network being able to distinguish
one expression form from another.

The YOLOvV4 white cell differential model demonstrated varying
capabilities in discriminating between stimulated and unstimulated
leukocytes. As shown in Table 1, the model achieved moderate
performance for lymphocytes and neutrophils with F1 scores around
56%-58% but struggled significantly with monocyte classification,
yielding remarkably poor F1 scores of just 7.4% and 3.6% for non-
activated and activated monocytes, respectively. This performance
disparity likely comes from subtle morphological changes in
activated monocytes that were challenging for the multi-class model
to detect, compounded by the evident class imbalance in the
training data, with notably fewer examples of monocytes overall, as
confirmed by the confusion matrix (Table 2).

When all monocytes were removed from the training data, the
network’s performance improved noticeably across all remaining
cell types (Tables 3, 4), with FI scores for lymphocytes and
neutrophils increasing to 80%-91%. This improvement suggests
that the inclusion of poorly differentiated cell types adversely
affected the overall network performance. Most significantly, when
a dedicated model was trained exclusively for monocyte activation
status (Tables 5, 6), the performance metrics improved remarkably
to F1 scores of 97.0% and 93.0% for non-activated and activated
monocytes, respectively.

This aligns with the biological understanding of leukocyte
activation morphology. The activation of circulating lymphocytes
affect their overall morphology
(Linetal., 2015; Sergunova et al., 2023). For example, T-lymphocytes

and neutrophils does

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1725145
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Hunt et al.

change their morphology when activated, whereby flattening
and either elongating or keeping a wider but round shape. More
generally, when presented with antigens, lymphocytes undergo
activation and proliferation as a sign of the cellular adjustments,
which are required to build a successful immune response.
The decision to employ transfer learning, using a pretrained
YOLOv4 backbone rather than training the network entirely
from scratch, was driven by both data efficiency and performance
considerations. Transfer learning enables the reuse of low-level
visual features such as edges, gradients, and textural cues that are
broadly transferable across imaging contexts, including brightfield
microscopy. This initialisation accelerates convergence and stabilizes
training, as the model begins from a well-structured feature
space rather than random weights. Importantly, it also mitigates
overfitting when working with limited cell images per class, a
common constraint in biomedical datasets. In our preliminary
experiments, models trained from random initialization exhibited
faster overfitting and reduced validation F1-scores compared with
the pretrained initialization, supporting the rationale for adopting a
transfer-learning approach in this study.

When not activated, lymphocytes are typically small in size
(8-10 um in diameter) with a high nucleus-to-cytoplasm ratio
and densely packed chromatin (Cano and Lopera, 2013). This
changes when these quiescent cells respond to an antigenic
stimulation. Lymphocytes dramatically change into larger, actively
proliferating cells known as lymphoblasts. The cytoplasmic
expansion observed in lymphoblasts explains the increase
in cell size, which is a consequence of the elevated RNA
content necessary to meet the heightened demands for protein
synthesis in these actively proliferating cells. Additionally, the
previously condensed chromatin is now loosened to facilitate
gene expression and replication (Bediaga et al., 2021). Parallel
with the decondensation of chromatin, the nucleoli within the
nucleus exhibit an increase in size and shape. This morphological
feature reflects the upregulated production of ribosomal RNA to
meet the increased translational requirements of the activated
lymphocyte (Sadeghi Shoreh Deli et al., 2022).

As part of the innate immune system, neutrophils, part of the
first line of defence against infection, are able to rapidly adapt
morphological features to an antigenic stimulus. When in their
quiescent state, neutrophils have a multi-lobed, segmented nucleus
and a cytoplasm accompanied by multiple structures containing
various antibacterial compounds such as oxidants, proteinases and
cationic peptides (Moraes et al., 2006; Sergunova et al., 2023). When
activated, the granules within the neutrophils are released into the
extracellular environment to cause damage to the pathogen. Because
of this, the intracellular morphology of neutrophils becomes less
discernible. Neutrophil activation is accompanied by increased
motility and chemotactic responsiveness, facilitated by dynamic
cytoskeletal rearrangements that enable efficient migration towards
the site of infection (Morikis and Simon, 2018). Notably, neutrophils,
when attacking a foreign body such as a bacterium, will produce
an extracellular net or trap. However, none were observed here. To
prepare the trap, the cells undergo a few changes from rearranging
their nucleus, spreading, membrane disruption and even cell
disintegration (Sergunova et al., 2023). Most of these are within
the order of magnitude to be observed under the microscope.
Altogether, these morphological changes are detected by the
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white cell differential network and used to discriminate between
the normally circulating cells and their activated counterparts,
as evidenced by the confusion matrix. While eosinophils and
basophils were not explicitly included, their rarity in peripheral
blood and morphological resemblance to neutrophils means that
any misclassification would have minimal impact on network
performance. Incorporating these subtypes in future training could
further improve generalisability.

The significantly different performance between the multi-class
(Tables 1, 2) and monocyte-specific (Tables 5, 6) models suggests
that while monocytes undergo activation-related morphological
changes, these alterations may be more subtle or qualitatively
different from those observed in lymphocytes and neutrophils.
While the multi-class model struggled with monocyte classification
(F1 scores of only 7.4% and 3.6%), the specialised model achieved
remarkable accuracy (F1 scores of 97.0% and 93.0%).

Typically, monocytes exhibit a characteristic large (12-20 pm
in diameter) reniform nucleus and a moderate amount of finely
granulated cytoplasm (Espinoza and Emmady, 2024). Upon
activation, their morphological changes appear more constrained
when compared to the dramatic transformations observed in other
leukocytes. In suspension, activated monocytes largely maintain
their spherical shape but exhibit subtle alterations in nuclear
presentation, transitioning from a single-lobed to a multi-lobed
nucleus - changes that correlate directly with shifts in phenotypical
expression as activation progresses toward differentiation into
macrophages or dendritic cells, influenced by cytokines like CSF-1,
CSF-2, and IL-34 (Menzyanova et al., 2019; Chaintreuil et al., 2023).
During this differentiation process, more pronounced changes
emerge, including

significant  cytoplasmic

vacuolisation to accommodate phagocytic activity (Sieweke and

expansion with

Allen, 2013). These relatively subtle initial morphological alterations
may explain why the multi-class model failed while the dedicated
classifier succeeded. Additionally, monocyte isolation yielded fewer
images, and despite oversampling, morphological subtlety and
isolation-induced variability likely contributed to limited model
performance.

The initial trained white cell differential model’s inability to
discriminate between unstimulated and activated monocytes could
be due to the material choice of the microfluidic chip, (Tables 1,
2). Topaz is a low-binding, low-absorbent material. And so, while
other cells may easily express their morphological change in
circulation, monocytes may require a surface to fully express
their morphological change, which can then, in theory, be seen
by the microscope, while the changes the monocytes express in
circulation cannot be detected (changing their nuclei formation).
However, as the cells were in flow when captured, it is unlikely
that monocytes would have had the opportunity to attach to the
channel surface. Another potential issue could be depletion during
culture. Additionally, the need for more examples of the white
cell differential network to train on. Due to the low number
of circulating monocytes, isolating them from whole blood and
imaging has proven challenging without drawing large volumes
of blood (Boyette et al., 2017), which, itself, can pose issues. The
trick here may be utilising the number of circulating monocytes
to distinguish the presence of infection itself (Patel et al., 2017).
However, this could still cause an issue where the monocyte training
data is poisoned by the other cells (Shorten and Khoshgoftaar, 2019).

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1725145
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Hunt et al.

The relatively low frequency of monocytes within a blood
sample compared to other leukocytes may contribute to the
inability of the leukocyte activation network from Tables 1, 2
to discriminate between activated and non-activated monocytes.
Monocytes typically constitute only 5%-8% of circulating leukocytes
in peripheral blood (Hoftbrand et al., 2006). This low abundance
poses a significant challenge for obtaining sufficient training
examples for the neural network. To collect an adequate dataset
of monocyte images for robust neural network training would
require processing substantially larger blood volumes than the
standard 5 mL typically collected for research purposes as noted in
your methodology. While concentration techniques such as density
gradient centrifugation followed by adhesion-based isolation were
employed in this study, these methods yield relatively lower counts
of monocytes compared to other cell types, with the isolation
procedure itself potentially altering cell morphology and activation
states (Fluks, 1981; Menck et al., 2014; Nielsen et al., 2020).
Therefore, the monocyte-specific model was not reintegrated into
the primary four-class pipeline to avoid error propagation from
the initial cell-type classifier. Another potential issue could come
from imperceptible background features within the images of other
cell subtypes within the training dataset, rendering it incapable
of discriminating the monocytes (Oakden-Rayner et al., 2020;
Shan et al.,, 2024). The reference to ‘background features’ refers to
subtle contextual cues (e.g., debris or nearby platelets) that may
correlate spuriously with certain classes if not evenly represented.
These artefacts likely affected the multi-class model but were
minimized in the monocyte-only dataset. Taking these into
account and considering the ability of the monocyte-only network
to accurately distinguish between activated and non-activated
monocytes (Tables 5, 6), the microenvironment in which the cells
are observed does not seem to affect the training of the monocyte
network therefore, it could be ruled out as the likely cause for the
problem. The frequency of monocytes within the dataset could also
be one likely factor. Increasing the number of monocyte examples
within the dataset would not only increase neural network accuracy
but also narrow down the cause of the issue.

Despite this limitation, the trained white cell differential model
proved effective in detecting activated lymphocytes and neutrophils
when incubated with live E. coli bacteria (Figures 6, 7). The
heterogeneity in activation profiles observed across the different
subplots in Figures 6, 7 reflects biological variability that may
stem from multiple factors. The data suggests temporal patterns in
leukocyte activation, with neutrophils exhibiting an apparent rapid
response curve that peaks between 60 and 180 min post-stimulation
before declining. Meanwhile, lymphocyte activation demonstrates a
more gradual increase with elevation at later time points. However,
it is worth noting that while these apparent patterns emerge visually
in the data, statistical analysis revealed no significant differences
between these activation profiles.

Leukocyte responses were verified by flow cytometry (Figures 5,
8). In some cases, two populations were observed in the neutrophil
subset, or the total number of events decreased below that
anticipated compared to the control. This would suggest either a
heterogenous population from exposure to the pathogen or the
cells dying from the extended stimulatory response, effectively
dying of exhaustion (Nedeva, 2021). These findings align with the
known roles of neutrophils as rapid responders in innate immunity
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and lymphocytes in adaptive immunity, which involves a more
prolonged response.

Indeed, during the immune response, neutrophils would arrive
first at the site of infection, where they fight pathogens by releasing
other cytotoxic chemicals and reactive oxygen species, which would
cause the recruitment of monocytes to the site (Chaplin, 2010).
A curve for monocyte activation could not be calculated due
to low numbers and the white cell differential network’s ability
to discriminate activated from non-activated monocytes. The
monocyte activation curve would be seen following neutrophil
increase, albeit with a slight delay. Then, the macrophages, which
arise from monocyte differentiation, begin phagocytosing infective
agents, presenting antigens, and coordinating a longer-lasting
immune response by stimulating lymphocytes (Chaplin, 2010).
Typically, it
cells to clonally expand to mount an effective adaptive

would take many days for antigen-specific
immune response.

While donor-level experiments were qualitatively consistent
with flow cytometry trends, a direct quantitative correlation was not
calculated. The present validation was limited to parallel visual and
temporal comparison between methods. The observed lymphocyte
activation pattern, while interesting, must be interpreted carefully.
The timeframe of the experiments (12 h) is generally insufficient for
a full primary adaptive immune response, which typically requires
several days for significant clonal expansion and effector function
development (Hoffbrand and Lewis, 1989; Hoftbrand et al., 2006).
The detected lymphocyte activation may represent early activation
events or innate-like responses from specific lymphocyte subsets
rather than evidence of immunological memory. This accelerated
activation likely reflects artefacts of the in vitro environment
rather than physiological responses. Isolated lymphocytes in culture
can demonstrate non-specific activation due to multiple factors,
including mechanical stress during isolation, exposure to foreign
serum components in the culture media, or altered cellular densities
and spatial arrangements that differ significantly from in vivo
conditions (Yassouf et al., 2022). Additionally, the absence of
regulatory mechanisms in the complete immune microenvironment
may permit activation processes that would otherwise be controlled
in the body (Goldmann et al., 2024). Therefore, while the current
system successfully detects cellular activation states, the temporal
dynamics observed, particularly for lymphocytes, should not be
directly extrapolated to in vivo immune responses without further
validation in more physiologically relevant models. Future studies
incorporating specific memory markers and longer observation
periods would be needed to distinguish between primary and
memory responses. Regardless, these observations highlight the
complementary roles of the innate response (represented by
neutrophils) and the developing adaptive response (represented by
lymphocytes) in antimicrobial defence (Chaplin, 2010).

Cell morphology changes as cells age, with leukocytes
demonstrating altered nuclear shapes, reduced membrane integrity,
and decreased cytoplasmic granularity (Belhadj et al., 2023).
These age-related changes could potentially influence sample
classification accuracy, introducing an additional variable that
warrants consideration in future validation studies. Fixation of
leukocytes presents an alternative approach that could address
some of the challenges encountered with live cell analysis.
Chemical fixatives such as paraformaldehyde or glutaraldehyde
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preserve cellular morphology by cross-linking proteins, potentially
capturing activation-specific structural features while preventing
further morphological changes during processing and analysis
(Qin et al, 2021). This approach offers several advantages,
including extended sample stability, reduced biohazard risks,
and standardisation of morphological features at specific time
points post-activation. However, fixed cells often exhibit shrinkage,
increased membrane rigidity, nuclear condensation and altered
granule appearance compared to their living counterparts, which
could impact the features used by neural networks for classification
(Crawford and Barer, 1951; Chen et al., 2012). Future studies could
explore whether a fixed-cell approach might improve detection
consistency, particularly for monocytes, by comparing classification
accuracy between fixed and unfixed samples across various time
points post-activation.

The leukocytes were able to activate at all concentrations
of bacteria down to around 25CFU per ml in the medium
(verified by plate count, 26.3 + 2.34), which is about 2.5-25
times above the detection limit of other technologies, such as
blood cultures for bloodstream infections (infections typically
detect down to 1-10 CFU per mL; Opota et al., 2015). However,
the accuracy of the count varied, with counts varying from 19
to 26 CFU per ml.

However, a follow-up experiment, seeding bacteria into a whole
blood sample, showed the white cell differential network was able
to identify activated white cells from a 30-min incubation Figure 9.
Checking the seeding concentration of whole blood revealed a
CFU per mL of 12, a concentration close to the detection limit of
1-10 CFU in clinical blood cultures. Therefore, it is not a stretch
to envisage the possibility of the white cell differential network
detecting the immune response to bacterial infection within this
range, if not below. Researchers have demonstrated the effect of low
concentrations of LPS (100 ng/mL) extracted from E. coli bacteria
and its efficiency in causing the production of immune-related
cytokines (Chen et al., 2017).

We tested the whole system on whole blood seeded with
around 10 CFU/mL of E. coli (11.11 + 4.79 CFU per ml), using two
networks—the whole blood differential network trained on whole
blood and the white cell differential network. The system isolated
the white cell images from the whole blood in a preliminary step
that excluded red cells and platelets. During operational inference,
this process is fully automated: the whole blood differential network
identifies leukocytes, which are automatically passed to the white
cell differential network for activation classification without manual
review. Manual curation of leukocyte images was performed only
during initial training dataset preparation to ensure high-quality
labels for training the white cell differential network. Then, the
white cell differential neural network was loaded and performed the
differential inference, discriminating between activated and non-
activated white cells. Here, any false positive detections from the
whole blood differential neural network were ignored as the white
cell differential network was trained only on white cell data, thus
reducing false detections. The whole inference took less than five
minutes once the data was captured. Interestingly, in Figure 9,
there was a strong activation of neutrophils due to the presence
of bacteria within the spiked blood sample, in comparison to the
lower percentage of activation of monocytes and lymphocytes. The
low presence of activated lymphocytes can be explained by the
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short incubation time with bacteria. Neutrophils and monocytes,
part of the innate immune system, respond to an in vivo bacterial
presence to initial infection. Additionally, neutrophils are known to
activate in response to stimulation with LPS (Gomes et al., 2010).
Thus, it is possible to theorise that within such an infection, the
neural network would be able to infer the presence of activated
white cells.

The growth curves of E. coli in LB broth and human plasma
(Figure 5) provide valuable context for interpreting the white
blood cell activation patterns. The rapid growth observed in
LB broth suggests a highly favourable environment for bacterial
proliferation. In contrast, the slower growth in human plasma
highlights the intrinsic antimicrobial properties of this environment,
which likely contributed to the observed white blood cell activation
profiles (Pont et al., 2020). Additionally, the limited or absent
growth in human plasma indicates potential nutritional constraints
that may restrict bacterial survival. Plasma may be deficient in
vital metabolic substrates needed for bacterial replication because
it lacks the complete nutritional profile of specialised bacterial
growth media (Bochkov et al., 2016). This nutritional deficiency in
plasma could significantly impede bacterial growth, explaining the
lower growth curves for plasma.

Overall, this study demonstrates the potential of AlI-based
approaches for analysing cellular morphological responses
to stimuli. The ability to accurately detect and quantify
activated white blood cell populations could have significant
implications for disease diagnosis, monitoring, and treatment.
This could be applied to any pathology with a morphological
manifestation, such as anaemias, where the morphological
change is specific to the anaemia type and cause (Chaparro
and Suchdev, 2024).
However, leukocyte changes are not uniquely diagnostic of

2019; American Society of Hematology,

bacterial infections, as morphological alterations can result from
diverse conditions, including viral infections, inflammatory
processes, autoimmune disorders, and systemic stress responses
(Thieblemont et al, 2016; Chmielewski and Strzelec, 2018;
Pozdnyakova et al., 2020; Sharma et al., 2023). The current
diagnostic system should not be used in isolation; accompanying
clinical assessment and patient history should be used in
combination to ensure accurate and nuanced medical interpretation.

A critical consideration for this technology is the potential
impact of false negatives in clinical settings. Failure to detect
activated leukocytes could delay crucial treatment interventions,
particularly in severe infections where timely diagnosis is
essential (Joo et al., 2014). The prototype’s differential performance
across cell types, robust for neutrophils but limited for monocytes,
could create diagnostic blind spots for infections where monocyte
activation predominates. The temporal dynamics observed, while
non-significant, also suggest detection sensitivity may vary
depending on the infection stage, potentially missing late-presenting
cases where neutrophil activation has already declined.

These
before implementation. Future work should quantify false

limitations necessitate careful clinical validation
negative rates at clinically relevant bacterial concentrations
and establish concordance with gold standard methods. While
offering advantages in speed and minimal sample handling, the

consequences of missed activation signals require a measured
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approach to clinical integration. While technologies like deep-
UV microscopy have demonstrated label-free haematological
diagnostics, our system differs by using entirely off-the-shelf, low-
cost optical and microfluidic components (Gorti and Robles, 2023;
Gorti et al., 2023). The setup requires no specialised alignment
or custom hardware and can be assembled with off the shelf
components. Moreover, both techniques require minimal sample
preparation, however deep-UV provides more granular data such
as haemoglobin mass compared to total cell counts (Robles and
Ojaghi, 2020).

Furthermore, as the technology can detect the activation of
leukocytes, detecting infections from viruses and fungi by proxy
could be possible. Additionally, this approach could be used to
expedite leukaemia diagnosis by concurrently doing cell counts
and morphological analysis. By analysing different cell types and
spotting any anomalies, the dedicated neural network can offer
a thorough blood count by analysing microscopy images. Then,
using a follow-up network, assessing the morphology of leukocytes
and detecting any alterations, including the presence of blast
cells or other abnormal cells, would be able to indicate the
presence of leukaemia (Dohner et al., 2022). This dual capability
would enable healthcare diagnostic laboratories to detect and treat
leukaemia more effectively by accelerating the diagnostic process,
reducing human error, and delivering holistic results. Currently, to
confirm a leukaemia diagnosis, both a differential cell count and
blood smear are required; this technology could also be applied
within veterinary medicine where only small amounts of blood
are available for a diagnosis, especially for pathologies such as
haemolytic anaemias in canines and felines (Swann et al., 2016;
Maldonado-Moreno et al., 2023; Baldwin et al., 2024). It is worth
considering the possibility of adding a red cell differential network
to investigate red cell morphology anomalies, which are telltale of
pathologies. One such example is sickle cell disease with crescent
moon shape disease (Elendu et al., 2023). Future work could focus
on improving the white cell differential model’s performance in
distinguishing activated monocytes and exploring its applicability
to other bacterial or viral pathogens. Another potential future work
could be the initial discrimination of the leukocytes followed by
a binary classification network responsible for the inference of the
status of the white cells and or detection of the potential leukaemic
status of cells.

Conclusion

We demonstrated the successful development of white
cell differential networks to detect and quantify activated
leukocytes in response to bacterial stimuli within the whole
blood environment. The system effectively detected activated
white cells at low bacterial concentrations, showcasing the
potential for expediting disease diagnosis and monitoring immune
responses. Rivalling flow cytometry by its ease of use and potential
integration of additional follow-up tests without the need for
further sample handling or trained technicians. Future work
should address the monocyte classification challenge; one main
avenue should be to increase the imaging monocyte dataset.
The integration of artificial neural networks, microfluidics,
to haematological

and microscopy promises revolutionise
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diagnostics, enabling more precise and accessible multi-pathology
diagnostics.
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