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Modern biology often relies on the analysis of entire sets of molecules (omics). 
A subset of omics uses nucleic acid sequencing to reconstruct genomes and 
profile gene expression. Novel findings and existing data are contextualized by 
databases, which have been growing exponentially due to falling sequencing 
costs and increased computing access. The increasing accessibility of omics 
has led to rapid adoption and widespread self-training via open-access tools. In 
this training environment new users (many of whom are students also applying 
computing for the first time) are confronted with Terabytes of sequence data and 
an ocean of topic-specific computing guides (often directed at high-level users). 
This flood of information creates an initial barrier of confusion and frustration, 
where it is challenging to identify the overarching goals of omics analyses 
through the details of computing. We believe this confusion is understandable 
but not pre-destined, as omics is–at its core–simple. This simplicity comes 
from its modular nature, where any analysis requires familiarity with only a few 
consistent steps. Here, we identify core elements of all omics analyses–data 
products, tools, and workflows–using microbiology applications to ground the 
discussion. This structure is informed by first-hand experience training early-
stage omics users, where covering omics theory provides a foundation for 
practical implementation.
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 1 Introduction

Analyzing nucleic acid sequences (omics) is a universal tool in contemporary biology. 
In this world, new biologists benefit from understanding the foundational motivations and 
methods of omics analyses whether or not they intend to apply these tools themselves. In 
our experience teaching omics to students for both future use and background context, we 
see that most are competent biologists lacking computing experience. For these students, 
the technical details of computing often obscure the fact that omics analyses are simple 
arrangements of a few modular tools, producing a few consistent outputs. To highlight the 
simplicity of omics, we focused this review on broadly applicable theory to provide a view 
of the omics “bigger picture”. Further, to avoid distracting from this perspective, we limited 
our discussion of the technical details of computing, which is available in other excellent 
guides as needed (see “Section 5.1.1 Opportunities for Further Training”).

We organized this review in four parts, providing an increasingly granular 
understanding of nucleic acid omics. Part 1 (Section 2) describes the biological goals
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of different types of omics by discussing the history of their 
development. Part 2 (Section 3) identifies the analytical goals of 
omics by identifying the core data products. Part 3 (Section 4) 
describes the repeated modular steps of omics analyses that are 
used to generate core data products. Part 4 (Section 5) concludes 
with computational and non-computational tips for new users. The 
review’s structure ensures that a student can read it completely for 
a top-to-bottom guide to nucleic acid omics, or individual sections 
to clarify specific questions. For some readers, this review will be 
sufficient to understand the “methods” sections of manuscripts, 
while others will want to continue with more specific training to 
run omics analyses independently. For both groups, this review 
should make nucleic acid omics more tractable, providing a 
foundation for engaging more deeply with omics literature and/or
code. 

2 The development of omics: a short 
history

2.1 What is omics?

The term omics describes analyzing a system (single cells, 
organs, organisms, or communities of organisms) using its 
biological molecules (DNA, RNA, proteins, metabolites). The 
biological molecule in-question determines the name of the omics 
analysis (DNA: gen-omics, RNA: transcript-omics, proteins: prote-
omics, metabolites: metabol-omics), while the system’s scope 
determines the prefix (“meta-” applies to community studies: 
meta-genomics, meta-transcriptomics, while no prefix is applied 
to single-species studies). In this review, we will focus on nucleic 
acid-based omics techniques, using the terms “genomics” and 
“transcriptomics” for consistency, though the topics are applicable 
to community scale meta-omics (Box 1). Nucleic acid sequences 
are the foundation of omics as they (especially genomes) provide 
the near-complete repertoire of life’s function-encoding units 
(protein coding genes and transcripts, rRNA, tRNA, …). Many 
of these coding units are conserved across the domains of life 
allowing researchers to assign likely function and taxonomic 
identity to newly acquired sequences by comparing them to 
ever-expanding reference databases. These modern technical 
capacities were developed over decades, and understanding this 
history–especially past limitations–is essential for adding new 
data into a historic literature (Brock, 1999). To that aim, we will 
cover a brief history of the development of modern nucleic acid
omics. 

2.1.1 Nucleic acids and the central dogma
The groundwork for modern omics was laid by identifying 

DNA as the molecule of genetic inheritance (Avery et al., 1944), 
description of DNA’s structure (Watson and Crick, 1953), 
and the articulation (Crick, 1958) and experimental support 
(Gros et al., 1961; Brenner et al., 1961) of the Central Dogma of 
molecular biology: genetic information stored in DNA, transmitted 
by RNA, and manifested as proteins. This biochemical linkage means 
that the study of any of these molecules informs the understanding 
of their precursors or derivatives. 

2.1.2 Marker genes
Informed by the Central Dogma, particular gene sequences 

(DNA and RNA) proved to be especially predictive (e.g., 
phenotype, evolution, heredity, behavior) and are termed 
“marker genes” (Box 1). Study of marker gene distribution and 
variance to understand biological phenomena was the direct 
precursor to omics approaches (marker gene analyses are not always 
considered “omics” because they do not capture “entire subsets of 
molecules”, though we discuss marker genes throughout this review 
as they are related to other DNA and RNA-based approaches).

A landmark example of marker gene analyses used the 
conserved and abundant ribosomal RNA (rRNA; Figure 1A) to 
study evolution across the tree of life. Using rRNA digestion 
fragmentation patterns on gels, Archaea were discovered in 1977, 
upending conceptions of the origin of Eukaryotes (Woese and 
Fox, 1977). Purified rRNA remained a popular molecule for 
reconstructing phylogenies, with methods developed to sequence 
it directly (Stahl et al., 1984; Lane et al., 1985; Figure 1A; Box 1). 
In parallel, methods developed to multiply and sequence the less 
abundant DNA fraction, opening the possibility of examining 
other marker genes, though rRNA remained a popular target to 
study evolution. Initial sequencing of DNA marker genes required 
cloning target genes into viral vectors–notably used to place the 
bacterial origin of the mitochondrion (Yang et al., 1985) – a labor 
and resource intensive effort. Acquiring enough DNA to sequence 
marker genes was greatly simplified by the invention of PCR in 
1985 (Saiki et al., 1985), allowing near-direct sequencing of low 
abundance DNA encoded genes. This method was soon applied 
to study rRNA genes in mixed microbial communities in 1990 
revealing previously unknown diversity (Giovannoni et al., 1990).

Beyond the use of rRNA to assign taxonomy and reconstruct 
evolutionary lineages, marker genes can also be used to screen 
organisms for pre-selected functions ranging from diagnosing sickle-
cell anemia in humans (Kan and Dozy, 1978) to the identification of 
nitrogen fixing bacteria in the ocean (Tschitschko et al., 2024). 

Marker gene analyses upended evolutionary biology, radically 
increased our catalogue of biodiversity, and made it possible 
to understand phenotypes without direct observation. Marker 
gene analyses continue to be useful in studying genes already 
identified as important, though they only provide “snapshots of 
organisms” (Pace, 1997). Organisms are constructed from hundreds 
to thousands of genes (Hou and Lin, 2009), and a single marker gene 
only explains a tiny percentage of any organism’s genetic potential. 
Genome sequencing is required to understand co-occurring genes 
in a single organism and is the domain of genomics. 

2.1.3 Genomics
Genomics (Box 1) provides greater coding context than single 

marker genes and emerged with the publication of the first genome 
in 1977 (the virus phiX; Sanger et al., 1977a; Box 1) and ushered 
in the age of analyzing large collections of genes (Figure 1B). This 
first viral genome was small (5,386 bases) but was followed up 
with genomes from bacteria (Haemophilus influenzae, ∼1.83 Mbp; 
Fleischmann et al., 1995) and eventually humans (∼6.3 Gbp, diploid; 
(International Human Genome Sequencing Consortium et al., 2001; 
Venter et al., 2001; Figure 1B). Larger genomes were increasingly 
complex, but all possessed the conceptual simplicity that all 
sequences originated from a single organism. The concepts of 
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FIGURE 1
Illustrative timeline of the development of nucleic acid omics. Included are the first examples of technologies that enabled–or are–modern omics 
between 1975 and 2010, covering (A) marker gene sequencing, (B) genomics, (C) transcriptomics, and (D) the availability of different sequencing 
technologies–shaded from their announcement to the end of the timeline. IHGSC = International Human Genome Sequencing Consortium.

single organism sequencing were quickly applied to sequencing 
genomic material from complex microbial communities. Multi-
species microbiomes were sequenced by first inserting large 
(50+ kbp) fragments of DNA into Escherichia coli and later 
sequencing these clone libraries either randomly to survey the 
community (Béjà et al., 2000), or deliberately to capture specific 
taxa (Stein et al., 1996) or functions (Rondon et al., 2000). This 
sequencing of genomic DNA from multi-species communities were 
the first metagenomes, expanding the knowledge of protein-coding 
gene diversity and the environmental distribution of metabolic 
functions and taxa (DeLong et al., 2006; Yooseph et al., 2007). 
Further, genes encoding taxonomy and function often co-occurred 
on a single large fragment (Stein et al., 1996; Béjà et al., 2000) 
allowing researchers to describe an organism solely through 
molecular data–first identifying it (see marker gene above) 
and then hypothesizing its “functional potential”. This work 
linking taxonomy-to-function in metagenomes advanced when 
metagenomic sequences were used to reconstruct individual 
complete (or near-complete) microbial genomes (Tyson et al., 2004). 
These metagenome-assembled genome (MAG; Parks et al., 2017; 
Yutin et al., 2021; Box 1) and non-MAG (Dragone et al., 2022; 
Bertagnolli et al., 2023) approaches are now widely applied 
on diverse uncultured microorganisms to understand their 
taxonomies and functional potential. The distinction of “functional 
potential” is essential, as genomes provide evidence that a 
function might be performed, but do not demonstrate activity 
(Hatzenpichler et al., 2020). Activity can be more accurately 
approximated by studying gene expression–a sort of “metabolic 
intention” – which is the domain of transcriptomics (Box 1). 

2.1.4 Transcriptomics
To understand “metabolic intention” the sequencing methods 

of DNA pools were applied to RNA (following reverse transcription 
of RNA to cDNA), creating the field of transcriptomics. 
Early sequencing of untargeted RNA provided initial insights 

into the diversity of expressed genes in different cell types, 
requiring the cloning of individual cDNA transcripts into 
E. coli clones (Adams et al., 1991). Accurately quantifying 
RNA expression–allowing rigorous comparison between cell 
types–became possible with the advent of microarrays. There, cDNA 
from thousands of pre-selected gene targets were attached to glass 
slides and then hybridized with experimentally sourced (extracted 
and reverse transcribed) cDNA, creating fluorescence proportional 
to the sample cDNA, allowing quantification (Schena et al., 1995). 
Derivatives of these technologies are still in-use today and set the 
stage for “transcriptomics” where RNA sequencing was used in-
concert with existing genomes to identify expressed genomic regions 
(Velculescu et al., 1997), which began using “Serial Analysis of 
Gene Expression” (SAGE). In SAGE-based transcriptomics, cDNA 
was sequenced by cleaving each cDNA transcript into a short tag 
(9–11 bp), the tags concatenated into a longer sequence, cloned 
into E. coli, PCR amplified, and sequenced. These tags were then 
extracted bioinformatically, aligned against a reference genome, 
where alignment (Box 1) of an RNA tag to a DNA sequence 
indicated gene expression and the number of tags aligning to any 
DNA sequence used to quantify expression (Velculescu et al., 1995; 
Velculescu et al., 1997). SAGE transcriptomics was first used in 1997 
on yeast cultures with RNA tags aligned to the new yeast genome 
(Goffeau et al., 1996) to generate maps of thousands of expressed 
genes (Velculescu et al., 1997; Figure 1C). Advances in sequencing 
(RNA-seq; Bainbridge et al., 2006; Nagalakshmi et al., 2008), 
resulted in more and longer RNA sequences (beyond SAGE’s 
10s of bp tag approach) increasing its sensitivity (identifying 
splicing and lowly expressed genes), read coverage, and data 
volume. As transcriptomics advanced, it was applied to mixed-
species microbiomes, revealing gene expression by dominant 
(Frias-Lopez et al., 2008; Hewson et al., 2010; Stewart et al., 2012) 
and less abundant taxa (Stewart et al., 2012) in the
environment. 
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2.1.5 Perspectives
In the last century, biologists have learned that DNA is 

the molecule of trait inheritance and can now measure gene 
expression from nanogram quantities of RNA in the wild. These new 
approaches have enabled sequence-based investigations of diversity 
and function across earth (Sunagawa et al., 2020; Nayfach et al., 2021; 
Shaffer et al., 2022) and into space (International Space Station; 
Castro-Wallace et al., 2017), surpassing the dreams of early omics 
scientists (Pace, 1997).

These global surveys of commonplace (seawater, soils, human 
skin) and extreme (hot springs, alkaline lakes) environments were 
essential to fill the complete vacuum of information about the 
diversity and distribution of uncultured microorganisms. However, 
the number of unexplored ecosystems shrinks daily, and as-such, 
modern microbiologists should not expect that sequence-based 
surveys will provide the acclaim of the early days of sequencing.

Today’s omics researchers should follow the example of early 
scientists to answer specific biological questions (reconstructing the 
tree of life, Woese and Fox, 1977; reconstructing the evolution 
of symbionts; Lane et al., 1985; Yang et al., 1985) using available 
tools. The basic toolkit of omics is well established (at least since 
2008; Figure 1), but advances in rapid cheap sequencing and ∼50 
years of archived sequencing data have produced opportunities 
to answer new biological questions with global samples (The 
Earth Microbiome Project, Thompson et al., 2017; TARA Oceans; 
Sunagawa et al., 2020) and replication across space and time 
(the National Science Foundation’s: National Ecological Observatory 
Network, Dantzer et al., 2023; and Long Term Ecological Research 
Network; Knapp et al., 2012). Zooming-in, omics now has the capacity 
to sequence the genomes (Raghunathan et al., 2005; Woyke et al., 2009) 
and transcriptomes (Ma et al., 2023) of single cells; part of a 
broader interest in understanding heterogeneity between single cells 
(Hatzenpichler et al., 2020; Kitzinger et al., 2020; Marlow et al., 2020). 
Microbiology’s newfound acquisition of spatially resolved (micron to 
global) and longitudinal (decades) sequencing data is one exciting new 
frontier for omics research (Eren and Banfield, 2024). 

2.2 Nucleic acid sequence analyses are 
everywhere

Omics use has grown exponentially since its inception 
(Gauthier et al., 2019). One indicator of omics use is the rate of 
sequence deposits into reference databases. The NCBI Sequence Read 
Archive (the major public repository for unprocessed sequence data 
globally) has added 25.6 Petabase pairs (2.56 × 1016 base pairs - the 
data equivalent of ∼6,500,000 human genomes; Nurk et al., 2022) from 
2012 to 2021 (Katz et al., 2022). The NCBI GenBank (a repository 
for assembled sequence data) has doubled in size every ∼2 years 
from 2013 to 2024, to a total of 3.4 × 1013 bp (Sayers et al., 2025). 
The number of available reference genomes also indicate use, with 
the number of human genomes doubling every 7 months from 2001 
to 2015 (Stephens et al., 2015). This exponential data production 
has been accompanied with a proportionate development of new 
bioinformatics approaches (Gauthier et al., 2019), with a conservative 
estimate of 25,000 unique bioinformatics tools produced between 
1990 and 2017 (Clément et al., 2018). This flood of data and tools 
has created an application bottleneck, where many omics practitioners 

simplify analytical decisions by focusing on the straightforward aim 
of recovering genomes to describe the metabolism of focal taxa. This 
simplifying approach makes sense in-light of abundant data and tool 
options, but we believe that reducing complexity through genome-only 
analyses is unnecessary. The apparent complexity of nucleic acid omics 
is illusory, with all omics analyses built on a simple and consistent set of 
data products and methodologies. In this review we will distill diverse 
omics analyses–extending beyond genomes–into their shared data 
products, the classes of tools to generate them, and how these tools and 
data are strung together into workflows to answer biological questions. 
We will begin by describing the five core omics data products. 

3 Omics data products: a few goals

Assuming the omics researcher has formulated a scientifically 
meaningful guiding question, the next step is to identify tractable 
computation goals: “Are we surveying functional and/or taxonomic 
content?”, “Do we need to contextualize these data phylogenetically?”, 
“Do we want genomes?”, “Do we need to quantify or statistically test our 
findings?”, etc. These procedural endpoints allow a bioinformatician 
to work backwards to construct an analytical workflow, identifying 
midpoint questions and target data products. These data products of 
omics (here: genomic, transcriptomic, and marker gene) fall into one 
of five classes: 1) sequence files, 2) sequence statistics, 3) taxonomy 
tables, 4) function tables, and 5) count tables. These data products 
are necessary to any omics analysis and must be incorporated into 
a larger biological narrative to be useful. With that in mind, we 
describe the general structure and uses for each of these data classes 
(summarized in Figure 2). 

3.1 Sequence files

Digitized biological sequences are the foundation of all 
omics (sequencing described below; “Section 4.1.1 Sequencing 
Technologies”) and commonly follow the FASTA or FASTQ formats. 
The FASTA format contains both a sequence identifier and sequence 
data (nucleic acid residues; Figure 2A) while FASTQ contains the 
same information as FASTA files as well as quality scores for 
each nucleic acid residue (Q-scores). These quality scores allow 
the user to remove low-confidence sequences and/or bases (which 
then produces quality filtered FASTA files) before further analysis 
(Figure 2A). There are three major types of sequence files: 1) reads, 2) 
assembled contiguous sequences (contigs; Box 1), and 3) genomes. 
Each of these classes are used to generate the next (reads are used 
to make contigs, reads and contigs to make genomes) resulting in 
increasingly long context-rich sequences. We will now describe the 
characteristics of each of these sequence classes. 

3.1.1 Reads
Reads are the raw product of the sequencing platform and the basis 

of marker gene (16S rRNA gene), genomic, and transcriptomic studies. 
Reads are classified as “short” or “long” depending on the sequencing 
technology used to generate them and length of output reads. Short 
reads are tens to hundreds of bases long, while it is possible for long 
reads to be thousands to millions of bases (Satam et al., 2023). These 
reads contain all the (relative) abundance information in a sequence 
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FIGURE 2
All nucleic acid sequence-based omics analyses rely on five core data products. Simplified examples of the core data products. (A) Sequence files (two 
common formats depicted) are used to encode reads, contigs, and genomes. They contain nucleic acid bases and some supporting metadata. 
Sequence files are used to derive all other data products. (B) Sequence statistics are used to describe the contents of a sequence file (often total 
number of sequences/base pairs or sequence lengths). (C) Taxonomy tables link sequences to likely source taxa. (D) Function tables link sequences to 
their likely functions. (E) Count tables are generated using read data and contain the estimated abundances of each sequence. Bp = base pairs; cond. = 
condition; ex. = example; ext. = extension; gen. = genome; seq. = sequence; stats = statistics.

library (Gloor et al., 2017; Box 1), with derivative sequences (contigs 
and genomes) requiring reads for quantification. 

Reads are the functional unit for marker gene studies, using 
fragments to full-length genes to identify microbial taxa (16S 
rRNA, rpoB; Thompson et al., 2017) or putative functions (pmoA, 
narG; Yu et al., 2024). In genomics and transcriptomics, read 
data are generally treated as a steppingstone to assembling contigs 
and recovering genomes. However, analysis of unassembled reads 
can be valuable as it uses the maximum amount of available 
data and therefore provides a relatively unbiased representation 
of microbiome gene content (Hauptfeld et al., 2024). Assuming 
individual reads are of a length sufficient for confident identification 
of homologous sequences (homologs) in a reference database, 
unassembled read datasets can be searched to identify taxonomically 
(Meier et al., 2017; Dragone et al., 2022) and functionally 
(Ortiz et al., 2021; Täumer et al., 2022; Maritan et al., 2025) 
informative marker genes. Read-based approaches can also be used 
to sift through reference databases to identify only the datasets that 

include metabolisms or taxa of interest (Speth and Orphan, 2018). 
Though read-based analyses have (often untapped) potential, the 
most common use of read data is the reconstruction of contigs, 
which we discuss next. 

3.1.2 Contigs
Contigs are generated by assembling reads into longer nucleic 

acid sequences. This approach is used in genomics to create 
genomic scaffolds (Prjibelski et al., 2020), and assembly-based 
transcriptomics to generate transcripts (Grabherr et al., 2011). 
Assembled contigs are, by definition, a subset of total 
sequencing effort, as not all reads can be placed into a contig 
(Hauptfeld et al., 2024). Despite data loss in assembly, contig 
sequences are useful for community taxonomic and functional 
reconstruction because their length enables more accurate 
identification of homologs compared to reads. If an assembled 
contig contains multiple protein coding sequences (genes of the 
same operon), this ‘genomic neighborhood’ (Wei et al., 2024) 
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can be used to increase confidence in assigning gene function 
(Mihelčić et al., 2019) or taxonomy (Mirdita et al., 2021). 
Contig-derived genes are also potential inputs for phylogenetic 
reconstruction, enabling contig-based evolutionary and taxonomic 
analysis of a microbiome. Though analysis of standalone contigs 
is useful, the most common use of contigs is to reconstruct
genomes. 

3.1.3 Genomes
Genomes are made by grouping (i.e., binning) contigs with 

similar features (details discussed below) into a single sequence 
file. In this review, we use the term “genome” to discuss a 
collection of sequences that likely come from the same organism, 
encompassing genomes recovered from pure cultures and mixed 
species consortia (termed: metagenome-assembled genomes; 
MAGs). Genome binning, like contig assembly, results in data 
loss (Hauptfeld et al., 2024) only examining a subset of the total 
microbiome. Despite this, genome-based analyses are appealing 
because they create a meaningful association among contigs, 
by which taxonomy or functional potential assigned to any 
contigs is passed onto all other contigs in the genome. This 
analysis allows a researcher to characterize the metabolic potential 
of individual microbes (Kohtz et al., 2024) and communities 
(Shoemaker et al., 2024; Ricci et al., 2025), even if the organisms 
containing these genomes have never previously been observed 
(Evans et al., 2015; Wurch et al., 2016). Genomes can also be used as 
references for aligning transcriptome sequences recovered from 
the same environment, thereby identifying expression patterns 
in individuals or communities across environmental gradients 
(Kitzinger et al., 2020; Porras et al., 2024). Beyond community 
description and reconstruction, genomes (Tripp et al., 2008) and 
transcriptomes (Bomar et al., 2011) can also be used to optimize 
cell culture (Wurch et al., 2016). The methods for generating and 
processing each of these types of sequence data are discussed in 
greater detail below. 

3.2 Sequence statistics

Sequence statistics are derived from sequence files and have 
two major purposes: 1) contextualizing a narrative (describing 
dataset size/complexity, sampling effort, and/or similarity between 
sequences) and 2) normalizing count data. Viewing and analyzing 
these statistics typically involves generating tables of total bases in 
each sequence library or of individual sequences (reads, contigs, or 
genomes; Figure 2B). The methods for generating sequence statistics 
are discussed in detail below (“Section 4.2 Sequence Statistics”). 

3.3 Taxonomy tables

Taxonomic classification (Box 1) aims to generate tables that 
relate a sequence identifier to a taxonomic lineage (Figure 2C). 
Taxonomic lineage is assigned to sequence data (reads, contigs, 
or genomes) by comparing unknown query sequences against 
reference sequences with known taxonomic origin. If the query 
sequence is sufficiently similar to a reference, the query is assigned 
the taxonomy of the reference (Goris et al., 2007; Jain et al., 2018; 

Parks et al., 2020). The methods for generating taxonomy 
tables are discussed in detail below (“Section 4.8 Taxonomic
Classification”). 

3.4 Function tables

Function annotation aims to generate tables that relate a 
sequence identifier to a descriptor of putative cellular function, 
often relating to metabolism, physiology, or behavior (Figure 2D; 
Box 1). Functional annotation of sequence data (reads, contigs, or 
genomes) compares an unknown query sequence against annotated 
(and potentially experimentally validated, although this is not always 
possible) reference sequences. There are at least two important 
caveats regarding using and interpreting functional annotations. 
First, the quality of any annotation is tied to the completeness 
and annotation accuracy of the reference database. Sequences 
from well represented model organisms (E. coli, Pseudomonas
sp., etc.) and their close relatives can typically be annotated 
with high confidence, while genes in non-model organisms will 
be less confidently annotated (Goodacre et al., 2014). Second, 
while functions identified in genomic data indicate metabolic 
potential and functions identified in transcriptomic data indicate 
gene expression, neither genomic nor transcriptomic evidence 
of putative function proves that amino acids were translated or 
their proteins were active. The methods for generating function 
tables are discussed in detail below (“Section 4.9 Function
Annotation”). 

3.5 Count matrices

Sequence quantification (reads, contigs, or genomes) aims to 
generate tables that relate a sequence identifier to an estimate of its 
relative abundance in a sample, thereby providing a loose indication 
of a gene or organism’s biological significance (Figure 2E). Read 
quantification often involves simple counting, while quantifying 
longer sequences (contigs and genomes) requires aligning the source 
reads to the longer sequences (Aroney et al., 2025). Counts can be 
used as a descriptor of community composition (Bollati et al., 2024), 
to test hypotheses of differences in abundance of functional potential 
or taxa (Maritan et al., 2025), to identify associations between taxa 
and environment (Mitchell et al., 2024), or as input for quantitative 
modeling (Louca et al., 2016). The methods for generating count 
matrices are discussed in detail below (“Section 4.10 Count Data”). 

3.6 Putting it all together: merging and 
using omics data

These data products are often the midpoint and endpoint goals 
of an omics workflow. Once data tables are generated (if all samples, 
metadata, and sequences have consistent naming), they can be 
merged into a “master table” for downstream filtering, plotting, 
phylogenetic inference, statistical tests, or other direct comparisons. 
However, merging tables without a specific goal may not be 
useful as it can create unwieldy tables with millions of columns
or rows.
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By clearly describing the core data products of all omics, we hope 
to make the endeavor less abstract. Thus far we have covered what is 
generated from omics (the five core data products), below we address 
how omics is executed via specific tools and workflows. 

4 The omics toolkit: descriptions of 
common approaches, their purposes, 
and connections

The toolkit of nucleic acid omics involves extraction and 
sequencing of nucleic acids with subsequent processing of generated 
sequences to make the data products outlined in Section 3. We 
now explore the methods available to do this, with each major 
computational step summarized in Figure 3.

4.1 Acquiring sequences

Sequencing is the basis of omics analyses with sequences 
generated de novo or downloaded from public databases. In either 
case, the quality and utility of any sequence dataset is underpinned 
by the quantity and length of output reads and confidence 
in the constituent bases–more and longer reads, with high 
confidence bases are markers of quality. These qualities are largely 
determined by the choice of nucleic acid extraction and sequencing
technology. 

4.1.1 Sequencing technologies
Nucleic acid sequencing has had three major technological 

generations, each of which are still in-use and have pros and cons 
(reviewed in; Cheng et al., 2023; Satam et al., 2023). First generation 
sequencing is often referred to as “sequencing by termination” 
or “Sanger sequencing” after Frederick Sanger, its inventor and 
publisher of the first genome (Sanger et al., 1977a; 1977b; 
Figure 1D). This technology sequences one DNA molecule at a time, 
producing long sequences with low error rates (Cheng et al., 2023), 
and was used to achieve other genome “firsts” (bacterial, 
Fleischmann et al., 1995; yeast; Goffeau et al., 1996; human; 
International Human Genome Sequencing Consortium et al., 2001; 
Venter et al., 2001; Figure 1B). Today, Sanger sequencing is 
still in wide use: cheaply characterizing PCR amplicons from 
pure cultures and cloned genes, or in sequencing across gaps 
between contigs in draft genome assemblies (Drevinek et al., 2023; 
Katara et al., 2024). However, it is inefficient for processing dozens 
to hundreds of samples simultaneously (Panahi et al., 2024) – a need 
for efficient microbiome surveys–solved by later generations of
sequencing.

Second generation sequencing is also known as “next-
generation” or “short-read” sequencing” (Figure 1D) and is 
largely synonymous with the most prominent producer of 
short-read sequencers: “Illumina” (though expiring patents and 
new competitors are driving innovation and price reductions; 
Eisenstein, 2023; De Ronne et al., 2025). Short read sequencing 
generally entails spatially separating DNA fragments and observing 
the synthesis of bases (via fluorescence or pH change), producing 
short (25–300 bp) reads (Cheng et al., 2023; Satam et al., 2023). 
These reads can be analyzed with minimal processing (16S rRNA 

marker gene sequencing and transcriptomics) or assembled into 
contigs and binned into genomes. Genomes can be challenging 
to complete using short read data, because complex genomic 
regions are often longer than the technology’s maximum read 
length (∼500 bp; Satam et al., 2023; Panahi et al., 2024), 
preventing their reconstruction (Mise and Iwasaki, 2022). The 
read length limitation has been addressed by third generation
sequencing.

Third generation sequencing is also known as “long-read 
sequencing” or by the trade names of the most prominent 
producers of long-read sequencers: Oxford Nanopore Technologies 
(ONT) or Pacific Biosciences (PacBio; Figure 1D). As the name 
suggests, long-read sequencing generates longer reads than second 
generation (10 kb+; Satam et al., 2023) which allows each read 
to capture greater genomic context (e.g., full length 16S rRNA 
genes, near-complete genomes). This technology passes (near-) 
full length nucleic acid molecules through a fixed sequencing 
unit (conductive pore or modified DNA polymerase), recording 
bases as they pass through. This technology can have higher error 
rates than short-read sequencing (Panahi et al., 2024), though 
it is possible to combine the higher quality short reads and 
the greater genomic context of long-reads to create long, high 
quality contigs (Antipov et al., 2016; see “Section 4.3.3 Contigs” 
below). Additionally, it is important to note that the name “long-
read sequencing” indicates only a technological capacity–not a 
guarantee–to produce long reads. Sequenced read length depends 
on the length of the nucleic acids provided to the sequencer, which 
in-turn depends on minimally fragmenting nucleic acids during 
extraction, which we will discuss below. 

4.1.2 Nucleic acid extraction and sequencing
Generating new sequence data proceeds via two steps: 1) nucleic 

acid extraction and 2) sequencing, where the intended sequencing 
technology should inform extraction method. All nucleic acid 
extractions aim to lyse cells, expose nucleic acids, remove non-
nucleic acid lysate, and collect enough nucleic acids to sequence 
anything. Though all these steps are important, the method of initial 
lysis largely determines sequencer compatibility.

Long-read sequencing requires minimally fragmented 
(high molecular weight) nucleic acids to produce long reads, 
whereas short read sequencing is less sensitive to fragmentation 
(Table 1; Zhang et al., 2022). For this reason, extraction 
for long-read sequencing should use “gentler” chemical lysis 
(detergents: SDS, solvents: Phenol-chloroform, TRIzol, or enzymes: 
lysozyme; Trigodet et al., 2022), while short read sequencing 
can combine chemical and mechanical (bead beating, freeze-
thaw; Hamilton et al., 2011) lysis to maximize nucleic acid yields.

4.1.3 Data mining
Sample collection, extraction, and sequencing are all costly and 

can be reduced by using publicly available sequence datasets (NCBI 
SRA, Leinonen et al., 2011; NCBI nt/nr Sayers et al., 2024; EMBL 
UniProt; The UniProt Consortium et al., 2025). These datasets, 
combined with robust questions can be impactful (see “The 
Parasite Awards”, awarded “for rigorous secondary analysis of data”; 
https://researchparasite.com/). As examples, Kumagai et al. (2018) 
leveraged both public and newly sequenced genomes to explain 
the distribution of light harvesting proteins in marine bacteria. 
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FIGURE 3
Nucleic acid sequence-based omics analyses are modular and complementary. Generalized workflow for performing marker gene, genomics, and 
transcriptomics analyses, with each demarcated by dashed lines. Within a single approach major processing steps are grouped within colored boxes, 
with inset, lighter boxes indicating subsidiary tasks. Discrete processing steps are named on white boxes (with example tools for performing the task 
alongside), colored boxes are used for clarity, but do not indicate importance. Data inputs and outputs are connected to processing steps with arrows. 
All pipelines begin with “Raw Reads” at the top of their respective approach. Marker gene: Marker gene analyses (from targeted amplification and 
untargeted genomics/transcriptomics) begin with quality filtering (B,K) and are then used to immediately generate counts and predict taxonomy and 
function (C,K). Genomics: All genomic analyses generally begin by quantifying sequencing effort and calculating read statistics (A) and quality filtering 
reads (B). Contig-based analyses assemble reads into contigs to generate count, taxonomy, and function tables (D). Genome-based analyses use these 
contigs to generate genomes for subsequent generation of count, taxonomy, and function tables (F,G). All genomic analyses are well suited for 
comparison against existing sequence databases (H-J). Transcriptomics: Transcriptomic analyses begin by quality filtering reads (L). There is then a split 
where some transcriptomics use genomics as a reference (reference-based; (M)) while others proceed independently and assemble RNA contigs 
(transcripts) requiring functional annotation and taxonomic classification of each transcript (de novo assembly; (N)) Both reference-based and de novo
 (Continued)
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FIGURE 3 (Continued)
transcriptomics quantify expression by aligning RNA reads against the longer reference (genome or assembled transcripts) with the transcript 
aligned to determining taxonomy and function, with the number of reads aligning indicating expression (count table; (G,N)) Abd. = abundance, 
asse. = assembly; compl. = completion; contam. = contamination; db = database; DEG = differentially expressed genes; diff. = differential; div. = 
diversity; fn. = function; GOI = gene of interest; ind. = individual; opt. = optional; QC = quality control; ref. = reference; sam. = sample; seq(s). = 
sequence(s); tax. = taxon/taxonomy; w/wgd. = with regard to.

TABLE 1  Summary characteristics of short read and long read sequencers. Highlighting differences in read lengths and nucleic acid extraction methods.

Features Short read (“second generation”) Long read (“third generation”)

Usual Read Lengths (bp) 100s 10,000–1,000,000s

Common Manufacturers Illumina, Element Biosciences Oxford Nanopore, Pacific Biosciences

Optimal Nucleic Acid Extraction Methods Mechanical (bead beating, freeze thaw) and/or 
Chemical (detergents, enzymes)

Chemical (detergents, enzymes)

While Henriques et al. (2024) used publicly available vertebrate 
genomes to reconstruct the evolutionary trajectories of endogenous 
viral genes domesticated for host function in placental mammals. 
Though studies based on data mining are useful, it should 
be noted that papers centered around data mining are always 
limited by available resources. It should be noted that the use 
of others’ data requires careful attribution of the datasets used 
(citations, accession numbers) and potentially the consent of those 
who generated the data. Best practices for using and sharing 
public data should always be followed and are described in 
publishing policies in academic journals, or in review papers 
(Sielemann et al., 2020; Hug et al., 2025). 

4.1.4 Sequencing effort
For both new and mined read data, it is essential to consider 

sequencing effort. When sequencing genome(s), it is essential to 
sequence enough to capture the sequence diversity present in 
a sample. The relationship between sequencing effort and new 
information obtained follows a logarithmic relationship, where 
more sequencing recovers more and more novelty, until enough 
sequencing has been performed and novelty saturates. Identifying 
where a sample lies on the sequencing effort-to-novelty plot is 
a measure of sequence “coverage” which describes the fraction 
of the genome(s) represented by sequenced reads (Rodriguez-
R and Konstantinidis, 2014). The number of reads needed to 
achieve high (>90%) coverage varies by system (Rodriguez-
R et al., 2018), with larger genomes (human) and diverse 
microbiomes (sediments) requiring more sequencing effort than 
small genomes (phiX) or simple microbiomes (hot springs). A 
sample with suboptimal coverage can still be analyzed, but with 
the caveat that the analysis will be incomplete due to unidentified
sequences. 

4.1.5 Perspectives
Since its invention ∼50 years ago, sequencing 

quality has improved while costs have decreased 
(Cheng et al., 2023; Satam et al., 2023). Sequencing will 
continue to evolve as existing technologies mature and new 
ones emerge, leaving technology selection a constantly evolving 

decision. Given the increased use of sequencing, public 
sequence data will likely continue to expand, a monumental 
resource to scientific discovery by secondary analyses. Now, 
after acquiring nucleic acid sequences, omics analysis can
begin. 

4.2 Sequence statistics

The first products of any omics analysis are generally 
sequence statistics, used for narrative or quantitative purposes 
(Figures 2B, 3A). For narrative purposes, read statistics are 
used to show that there is sufficient sampling to test a 
hypothesis (total bp sequenced per sample; Liu et al., 2015). For 
contigs, descriptive statistics are used to summarise assembly 
success: longest contig, total contig counts, N50, L50 metrics 
(Mikheenko et al., 2016). Genome statistics can indicate binning 
success: contamination in genomes (Bowers et al., 2017), genome 
size (Chklovski et al., 2023), and how representative the genomes 
are of a sampled community (percent of reads mapping to all 
genomes; Hauptfeld et al., 2024). These statistics should be 
generated any time that a sequence file is acquired or produced, 
with multiple tools available to streamline these calculations 
(reads: Nonpareil3, Rodriguez-R et al., 2018; contigs: QUAST; 
Mikheenko et al., 2016; genomes: BUSCO; Seppey et al., 2019; 
CheckM2; Chklovski et al., 2023). For quantitative purposes, 
sequence statistics are generally used to normalize count data 
against the length of the sequence and sequence library size, or 
to compare counts across or within datasets (simplified by efficient 
tools; SeqKit, Shen et al., 2024). For there to be any sequences 
to statistically summarise, we must first apply quality control
standards. 

4.3 Quality control

The quality of sequence files should be examined at the levels of 
reads (Figures 3B,K), contigs (Figures 3D,N) or genomes (Figure 3F) 
to increase confidence in any results. 
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4.3.1 Contaminant removal
Non-target sequences (contaminants) should be removed from 

a sequence library before downstream analysis (Figures 3B,K,L). 
Contaminating sequences can originate from several sources, 
including defined organisms expected to be in the sample but not 
the target of inquiry (human DNA sequences in an analysis of 
the human skin microbiome) or incidental organisms that should 
not be in the sample (plasmid or bacterial DNA in a reagent 
solution). Defined contaminants can be removed by aligning the 
new reads against a contaminant’s genome or transcriptome and 
removing reads that align to the contaminant (Lataretu et al., 2025). 
Incidental contaminants are ideally detected by sequencing negative 
controls (where no sequences are expected) from various steps of 
sampling and sequencing preparation, with any recovered sequences 
representing potential contaminants (Fierer et al., 2025). These 
sequences can be classified as contaminants based on statistical 
probabilities (Davis et al., 2018) or taxonomy (based on taxa known 
to contaminate molecular biology reagents; De Goffau et al., 2018). 
In cases of limited contamination, it is recommended to remove 
(and report) potential contaminant sequences (Clum et al., 2021) 
while samples with rampant contamination may need to be 
discarded entirely (Fierer et al., 2025). These removed sequences 
may represent true biological signals, as knowledge of any biological 
system is often incomplete–with any decontamination balancing 
description of true novelty and cautious interpretation of data. Now 
we discuss standard quality control methods in read data. 

4.3.2 Reads
Evaluations of read quality should consider whether sequences 

are of: 1) high quality and 2) sufficient quantity for the 
planned analyses.

Assessments of read quality should consider both sequence 
length and confidence in base assignment. A sequence substantially 
shorter than expectations (relative to sequencing technology) 
may indicate a poorly sequenced molecule and should be 
removed (Martin, 2011). Base confidence (in FASTQ sequence 
files) is encoded by the quality-score (Q-score), estimating 
the probability that a single base in a sequence is correctly 
assigned (A,C,G, or T), with higher Q-scores indicating higher 
confidence (O’Rawe et al., 2015). Quality filtering reads first trims 
sequences to remove low quality (user specified Q-score) bases, 
with the whole sequence discarded if trimming shortens it past a 
minimum length (TrimGalore! – https://github.com/FelixKrueger/
TrimGalore), a process that should be performed before assessing 
sequence quantity or performing other omics analyses.

The necessary number of reads is dependent on the 
type of sample, with more complex microbiomes requiring 
more sequencing than simple ones (Rodriguez-R and 
Konstantinidis, 2014). Sampling sufficiency can be assessed using 
rarefaction analysis, where cleaned reads are randomly subsampled, 
a metric of novelty calculated at each increment, and then plotted 
against one another (sequence diversity vs. read number; Rodriguez-
R et al., 2018). If novelty saturates (asymptotes) with increased 
read number, most of the sequence diversity was captured, whereas 
a linear relationship–without saturating–indicates unsequenced 
diversity. Unrepresentative samples can be resolved with more 
sequencing, but if this is not possible, such samples can still provide 
useful–though caveated–information. Next, we discuss contigs. 

4.3.3 Contigs
Evaluations of contig quality should consider 1) assembly quality 

and 2) if the assembled contigs represent the sequenced reads.
Assessments of assembly quality typically consider the number 

of contigs, length of the longest contig and the metrics: L50 and N50. 
Acceptable values for the number of contigs and longest contig can 
vary depending on study goals and sequencing technology used, but 
large values for both metrics indicate a better assembly. The metric 
N50 calculates the length of the shortest contig at which all contigs 
as long or longer than the N50 value encompass 50% of the contigs–a 
weighted median contig length. Larger N50 values indicate that an 
assembly consists of longer contigs, generally indicating assembly 
success (International Human Genome Sequencing Consortium 
et al., 2001). The metric L50 represents the smallest number of 
contigs whose summed length constitutes half the total length 
of the assembly. A large N50 value combined with a smaller 
L50 indicates that the assembly is composed of a few long 
(likely data-rich) sequences (Bradnam, 2015). Though informative, 
using contig length to infer assembly quality requires caution, 
as these metrics are useful to compare assemblies against one 
another–especially when assembling a single genome–but in a 
mixed microbiome, small contigs are not necessarily a problem. 
Short (<2,000 bp) contigs can still provide valuable information 
and can be common for communities enriched in plasmids, 
viruses, mobile genetic elements, or low-abundance microbes 
(Maguire et al., 2020; Kieft and Anantharaman, 2022). These 
short contigs are often removed by default when binning genomes 
(Alneberg et al., 2014), with the justification that the average 
bacterial gene is ∼1,000 bp (Xu et al., 2006) and shorter contigs 
are unlikely to contain complete genes. This removal can discard 
valuable genetic context and should be performed with full 
knowledge of the risks for data loss.

Assessing the representativeness of assembled contigs for a 
microbial community often involves aligning the un-assembled 
reads to the assembled contigs (Aroney et al., 2025). The percentage 
of reads aligning to the contigs indicates how much of the original 
information is present in the derived contigs. If the percentage 
of reads aligning to contigs is high (>90%) then the contigs can 
be considered representative of the community while a low value 
(<50%) indicates that the contigs are not representative. In cases 
of unrepresentative contigs, the assemblies still contain useful 
information for individual genomes, but community-scale inference 
may require refining contig assembly (parameter optimization, more 
sequencing) or performing read-only analyses (see Section: 4.4 
Read-based Marker Gene Analyses”). Next, we discuss quality 
control in genomes. 

4.3.4 Genomes
Genome quality is most often assessed by the metrics of 

“completeness” and “contamination”, for which there are published 
quality standards (Bowers et al., 2017). User-friendly tools exist to 
calculate both metrics, with new versions accounting for whole-
genome features (Chklovski et al., 2023). For illustrative purposes, 
we will describe quality estimation using older methods–that use a 
constrained number of single copy marker genes–as they are more 
tractable for beginners (Parks et al., 2015). In the marker gene-
based approach, genomes are screened for the presence of a set 
of single copy marker genes, with the assumption that a complete 
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genome should have only one copy of each gene in the set. In this 
approach, completeness is estimated as the percentage of marker 
genes detected in the genome with contamination based on how 
many times a single copy gene was duplicated–potentially indicating 
errors in assembly or binning. Ideally, genome analysis would be 
performed on whole uncontaminated genomes, but this is often 
impossible due to limited sequencing data, requiring the use of 
incomplete or contaminated genomes. These imperfect genomes can 
still provide useful insights, if caveats in the interpretation of these 
data are acknowledged.

Despite the utility of standard quality metrics, there are cases 
where they are misleading. First, relying on simplifying metrics 
obscures reality. Computationally, a “complete” genome does not 
mean that the genome is “closed” or “finished” (i.e., represented 
by a single contig without gaps; Bowers et al., 2017) which is an 
even higher standard of quality. Further, many studies only analyze 
“high to medium quality” genomes (Bowers et al., 2017), potentially 
discarding other genomic data that does not conform to the 
expectations of “completeness”, including endosymbionts, plasmids, 
and viruses, all essential components of a system. Combining 
both challenges, obtaining a “complete” or “closed” genome 
cannot assess if a single organism contains multiple chromosomes 
(Rhizobium, Landeta et al., 2011) and/or nucleic acids from other 
sources (viruses, plasmids, endosymbionts). These shortcomings are 
systemic but can be overcome with intentional analysis. Obtaining 
closed genomes often requires focused efforts (long read and/or 
deep sequencing), while recovering overlooked plasmids and viruses 
can come from otherwise discarded data (Fogarty et al., 2024). 
Identifying which chromosomes, endosymbionts, plasmids, and 
viruses reside inside one organism requires sequencing single cells 
(i.e., single amplified genomes; Labonté et al., 2015) to gain a fuller 
understanding of their importance and functions. Now, we move on 
to discuss the use of marker gene surveys in omics. 

4.4 Read-based marker gene analyses

Quality controlled reads can be used to provide insight 
into the taxonomy or functional potential of an organism or 
community through the analysis of marker genes. Genes are 
considered “markers” if they are involved in metabolisms of 
interest (e.g., nifD: encoding the nitrogen fixing Nitrogenase 
molybdenum-iron protein alpha chain or mcrA: encoding the 
methane producing Methyl-coenzyme M reductase I subunit alpha) 
or can be used to reconstruct evolutionary relationships (e.g., 
16S rRNA gene or rpoB encoding the beta subunit of bacterial 
RNA polymerase). Such genes are typically well represented in 
existing databases, serving as useful references for comparison 
(phylogenetic analysis). Marker gene analyses most commonly use 
targeted amplification and sequencing (Figure 3C). As an example 
of taxonomically informative marker genes, Lozupone et al. (2013) 
used 16S rRNA gene amplicons sourced from global sequencing of 
human microbiomes to identify forces structuring communities 
including disease status and body site. Surveying function, 
Dumont et al. (2014) used gene amplification for pmoA (particulate 
methane monooxygenase, beta subunit) to identify the presence 
of methanotrophic bacteria and delineate phylogenetic clusters. 
Somewhat less commonly, marker genes can be recovered 

from untargeted metagenomic and transcriptomic sequencing 
(Figure 3K), where reads are aligned to marker gene databases, 
with confident read alignments to a gene indicating its presence and 
abundance. For example, Maritan et al. (2025) searched marine 
sediment metagenomes for metabolic marker genes involved 
in aerobic and anaerobic metabolisms in coral reef sediments. 
For taxonomy, Urayama et al. (2024) surveyed the prokaryotic 
taxonomic composition of metagenomes from several hot springs 
using fragmentary rRNA sequences before digging deeper into 
the sequences of co-existing viruses. Both amplification and 
genome/transcriptome applications are appropriate for targeted 
questions that involve the constrained goals of identifying 
specific metabolisms or taxa. While the genomic/transcriptomic 
approaches have the advantage of being able to initially query the 
whole dataset (Hauptfeld et al., 2024) for specific genes and later 
studying more detail though assembly and binning, which we will 
discuss next. 

4.5 Contig assembly and analysis

Contig assembly aims to reconstruct longer and more 
information-rich sequences from shorter reads. This process entails 
two steps: 1) normalization and 2) assembly. 

4.5.1 Read normalization
Read normalization (Figure 3B) reduces the computational 

burden of contig assembly by limiting the amount of data 
passed to the algorithm. This is achieved by subsampling 
redundant sequences and removing low abundance sequences 
(that are unlikely to assemble). Normalization is appropriate for 
diverse (e.g., sediments; Maritan et al., 2025) and simpler (e.g., 
hot springs; Colman et al., 2024) samples. Read normalization is 
straightforward to implement with tools like bbnorm, developed 
by the Joint Genome Institute (“https://sourceforge.net/projects/
bbmap/”), where read data is input and normalized, with the output 
generally ready for contig assembly. 

4.5.2 Contig assembly
Assemblers (Figures 3D,N) use short reads to reconstruct 

longer sequences (DNA or RNA). Detailing assembly algorithms 
is beyond the scope of this review (described in Ekim et al., 2021; 
Yang et al., 2021), but illustratively, assemblers look for overlap 
between reads and use this overlap to create longer and longer 
sequences (Ayling et al., 2020). There are two major classes of 
assembly: 1) guided and 2) de novo.

Guided (i.e., reference-based) assembly aligns reads to 
sequences from related organism(s), serving as a scaffold to guide 
placement of the read data. These guide sequences should be sourced 
from organisms closely related to those in the reads and can be 
a reference genome (i.e., reference guided assembly Lischer and 
Shimizu, 2017); or long read data from the same sample (i.e., hybrid 
assembly, Antipov et al., 2016).

De novo assembly has two varieties: 1) individual, and 2) co-
assembly. In individual assembly, reads from a single sample are 
assembled into contigs. In that case, all assembled contigs are 
by-definition present in that sample. In co-assembly, reads from 
similar samples (soils from the same site; Riley et al., 2023) are 
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combined and then assembled as a single dataset. This is often 
done with the aim of generating contigs from lower abundance 
organisms (Riley et al., 2023). Some resultant contigs from a co-
assembly might not be present in all the source samples, but 
presence/absence can be determined by quantifying abundances 
of the contigs in the sample (see “Section 4.10 Count Data”). 
In co-assembly, reads should be normalized after combining 
samples, thereby potentially retaining low abundance sequences 
that might have been removed in individual normalization. To 
maximize contig recovery, it is possible to assemble contigs 
using both individual and co-assembly approaches and then later 
remove any duplicated sequences (see “Section 4.7 Sequence
dereplication”).

These contigs can be used to study standalone genes, plasmids, 
or viruses. For example, contigs were used by Priest et al. (2025) 
to identify seasonal patterns of functional potential in the Arctic 
Ocean, while Fogarty et al. (2024) searched for novel plasmids in 
human gastrointestinal tracts, and Zhong et al. (2024) identified 
viruses encoding methane cycling genes. Though these contig-
analyses are useful, the most common use of contigs is binning 
into genomes. 

4.6 Genome binning and analysis

Creating genomes from contigs (Figure 3F) involves grouping 
contigs into distinct, taxonomically coherent “bins”. These 
bins represent draft genomes that must then be evaluated 
for quality, completeness, taxonomy, and function. Genomes 
binned using sequences from pure culture isolates or single 
amplified genomes (SAGs) may be considered “strains” 
(Conrad et al., 2022). In contrast, genomes binned using 
sequences from community sequencing are called metagenome-
assembled genomes (MAGs) that often represent consensus 
sequences from multiple closely related strains sharing similar but 
non-identical genomes (Meziti et al., 2021). 

4.6.1 Binning contigs
Binning programs (binners) typically separate contigs 

into bins based on shared genomic features and read depth 
(Bowers et al., 2017). Binners assume that intrinsic genomic features, 
such as GC content and oligonucleotide (i.e., k-mer) frequency, 
are consistent across a genome (Bussi et al., 2021), allowing 
an initial univariate (GC) or multivariate (k-mer composition) 
separation of contigs into clusters. These initial clusters can be 
refined with the additional assumption that contig read depth–as 
measured by the number of reads aligning to each assembled 
contig–is also consistent for all contigs for a given genome 
(Sharon et al., 2013). Each individual binning tool generally 
implements all or some of these approaches (Alneberg et al., 2014), 
creating draft genomes that can be further refined, annotated, and
compared. 

4.6.2 Genome improvement
Maximizing the accuracy and information content of individual 

genomes can be done by selecting the highest quality genomes 
generated using multiple binning programs (refinement) and 
reassembling high-quality genomes (reassembly).

Refinement starts by using multiple binners to generate 
somewhat redundant bins. The resulting genomes from each of 
these binners are compared to find the highest quality genomes 
with the highest completion and lowest contamination values. 
Each chosen genome is placed in a final bin set, often with a 
cleaning step to ensure each contig is only found in a single–highest 
quality–bin (Uritskiy et al., 2018). Reassembly uses high quality 
(quality controlled, refined, and/or dereplicated) genomes to try to 
re-generate these genomes with even better contigs. This involves 
aligning the original quality-controlled reads to each genome 
to “isolate” sequences for an organism of interest. These reads 
can then be re-assembled using a non-metagenome assembler 
(SPAdes instead of metaSPAdes; Uritskiy et al., 2018), repeating 
alignment and re-assembly until achieving a genome with the 
greatest completion and smallest contamination values possible
(Kitzinger et al., 2020). 

4.6.3 Shortcomings and hazards
While useful and widespread in omics, genome binning 

does have shortcomings. First, not all sequences can be binned. 
Binning relies on high quality assemblies that can be grouped 
based on sequence similarity–which requires that disparate 
parts of a single genome have similar sequence characteristics 
(Nelson et al., 2020). This assumption may not be true for genome 
fragments that have been acquired by horizontal gene transfer 
(HGT), carrying sequence characteristics different from those 
of the recipient’s genome (Mise and Iwasaki, 2022). Similarly, 
genetic elements not incorporated into a genome (such as plasmids 
and viruses; Eren and Banfield, 2024) or second chromosomes 
(Landeta et al., 2011) do not meet the assumptions of binners. 
Without contiguity and/or sequence similarity to the focal 
chromosome, HGT-derived genes, mobile genetic elements, and 
second chromosomes may be erroneously separated from their true 
genomic neighbors (Maguire et al., 2020). Second, intergenic or 
non-protein coding genomic regions (ribosomal RNA operons) 
and genomic regions with repetitive sequence features, are often 
challenging to assemble or bin correctly and are underrepresented 
in genomes (Mise and Iwasaki, 2022; Wilbanks et al., 2022). Third, 
in samples containing multiple closely related organisms, genome-
approaches collapse strain-level microbial diversity, blurring 
intra-species genomic boundaries (Wilbanks et al., 2022) and 
obscuring genomic novelty. In these instances when binning 
excludes sequences or blurs organism boundaries, analysis of 
binned data may lead to inaccurate measurements of community-
level diversity, fail to detect certain taxa or functions, and 
provide an incomplete view of the genomic environment of
cells.

Many of these shortcomings can be minimized. Complex 
and HGT-derived genomic sequences can be definitively linked 
to their genomes using long-read sequencing to sequence across 
ambiguous genome space (Wilbanks et al., 2022). Capturing the 
diverse genomic material (chromosomes, plasmids, viruses) in a 
single cell can be achieved with single amplified genome (SAG) 
sequencing. SAGs also provide strain-level genomes, helping to 
resolve heterogeneity among closely related genomes. Once reads, 
contigs, and genomes are generated, they can be simplified by 
dereplication before analysis. 
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4.7 Sequence dereplication

Sequence redundancy is common from reads to genomes and 
can be removed to reduce computing requirements or analytical 
repetition. Dereplication calculates sequence similarity between 
sequences (reads, contigs, and genomes) with an array of programs 
(VSEARCH, Olm et al., 2017; Rognes et al., 2016; MMSeqs2; 
Steinegger and Söding, 2017; CD-HIT; Fu et al., 2012) and then uses 
similarity cutoffs to create clusters of similar sequences (sequence 
clustering; Box 1). Once sequence clusters are identified, the highest 
quality sequence in each cluster can be extracted and used as a 
representative for all other sequences in its cluster. In read data, 
clustering is most frequently seen in taxonomic marker gene analysis 
using operational taxonomic units (OTUs; Hughes et al., 2001; Box 
1). Contig clustering often takes the form of gene catalogues, where 
protein coding sequences on a contig are clustered, often principally 
by taxonomy and then by sequence similarity (Muratore et al., 2022; 
Priest et al., 2025). Finally, genome clustering is most often 
used for dereplication of entire genomes (Figure 3F). In all these 
use cases, dereplication by sequence similarity is a powerful 
and unbiased approach to simplify similar sequences. These 
sequences are now ready for taxonomic classification and functional
annotation. 

4.8 Taxonomic classification

4.8.1 Roadmap for implementation
Many analyses aim to connect sequences with taxonomic 

labels (reads, Figures 3C,K; contigs; Figures 3E,N; and genomes; 
Figure 3G). Taxonomic classification often relies on aligning an 
unknown query sequence against a database (untargeted: NCBI 
nt/nr; or molecule-specific: SILVA rRNA) of sequences with defined 
taxonomies (i.e., subject sequences), with the query inheriting 
the taxonomy of its–sufficiently similar–best aligned subject 
sequence. A common implementation of taxonomy-by-alignment 
involves using the NCBI BLAST webserver (Camacho et al., 2009; 
https://blast.ncbi.nlm.nih.gov/Blast.cgi) to align a query against 
one of multiple databases, providing accessible fast taxonomies. 
Alignment-based classification is effective (Jain et al., 2018) but can 
be supported by estimating evolutionary divergence of the query 
sequence compared to taxonomically resolved homologues. These 
homologues are selected to include both close and distant relatives 
of the query and used to construct a phylogenetic tree (see “Section 
4.11 Phylogeny”). In this method, the query inherits the taxonomy of 
its–sufficiently similar–closest neighbor. Implementing phylogenies 
is straightforward with multiple tools for automated (GTDB-
tk, Chaumeil et al., 2022) and semi-automated (PhyloPhlAn, 
Asnicar et al., 2020; MarkerFinder; Martinez-Gutierrez and 
Aylward, 2021) phylogenetic classification, providing broad access.

Though both direct-alignment and phylogenetic placement are 
applicable to read, contig, and genome based-analyses, longer 
sequences encode more evolutionarily relevant information and 
thus provide better taxonomic resolution than shorter ones. This is of 
limited concern for genome-based analyses (containing Megabases 
to Gigabases; Milo and Phillips, 2015) but can produce less reliable 
taxonomy for reads (100–250 bp; Hauptfeld et al., 2024). Read 
length limitation can be overcome by using reads to reconstruct and 

classify the more informative contigs and genomes, then assigning 
the constituent reads the taxonomies of their contigs and genomes. 
Ultimately, this multi-step classification combines the taxonomic 
clarity of genomes and the community representation of reads 
(see “Section 4.4 Read-based Marker Gene Analyses”) to achieve 
a high-quality understanding of the sequenced community (and is 
implemented in open access tools; Hauptfeld et al., 2024). 

4.8.2 Shortcomings and hazards
A note for users, the quality of taxonomic classification is 

dependent on the completeness of the reference database. Under 
ideal circumstances, database subject sequences originate from 
an isolated, living specimen providing a confident association 
between database taxonomy and a living organism. As sequencing 
captures more diversity than exists in-culture, connecting a query 
sequence to a type specimen is often not possible, instead requiring 
comparison to uncultured sequences (MAGs; Murray et al., 2020). 
This means that assigning taxonomy to divergent organisms 
requires more effort (phylogenies; Eme et al., 2023) than in 
organisms closely related to models (E. coli and Staphylococcus 
aureus), potentially requiring the creation of new taxonomic 
groups (Rinke et al., 2013; Murray et al., 2020). Another potential 
concern for assigning taxonomy is the influence of horizontal 
gene transfer. The exchange of genes between organisms (bacteria-
bacteria, Tschitschko et al., 2024; bacteria-virus; Li et al., 2025; 
bacteria-eukaryote; Porras et al., 2024) can obscure the evolutionary 
lineage of any one sequence. Disentangling the current genomic 
placement–and taxonomy–of any gene generally requires situating 
it in a complete, contiguous genome.

Taxonomy is a useful, but incomplete classification of living 
organisms (Aldrich, 1927; Staley, 2009; O’Brien and Luo, 2022). 
Indeed, ecosystem-scale analyses (biogeochemistry) sometimes pay 
little to no attention to taxonomy, focusing only on functions 
encoded in nucleic acids. In aid of both taxonomy-agnostic or 
-informed analyses of encoded functions, we will next discuss 
functional annotation. 

4.9 Function annotation

The encoded biochemical outputs (expressed RNA and 
translated proteins) are the focus of many analyses. The 
act of assigning inferred function to a sequence is called 
annotation. Functional annotation of reads (Figures 3C,K), contigs 
(Figures 3E,N), or genomes (Figure 3G) predicts the potential 
cellular activities of nucleic acid molecules (rRNA, tRNA) or–most 
commonly–of encoded proteins. Like taxonomic classification, 
functional annotation compares a query sequence against a database 
of annotated reference sequences. Under ideal circumstances, prior 
experimental studies have confirmed the biochemical function of 
molecules encoded by the reference sequences.

Annotations of non-protein coding regions are identified 
directly from nucleic acid sequences (rRNA: Barrnap, https://
github.com/tseemann/barrnap; tRNA: tRNAscan, Lowe and 
Eddy, 1997) while protein coding genes are either identified 
directly from reads or from identified protein coding regions 
(from reads, contigs, genomes). Identifying protein coding regions 
(i.e., open reading frames, ORFs; Box 1) searches for their 
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molecular characteristics (e.g., start and stop codons; tools: Prodigal, 
Hyatt et al., 2010; FragGeneScan; Rho et al., 2010) outputting likely 
protein-coding sequences for use in homology searches.

Functional annotation is performed as either a targeted 
or untargeted search. A targeted search focuses on dozens of 
genes of biogeochemical or ecological significance (Leung and 
Greening, 2020; Zhou et al., 2022), identifying the potential 
for a microbiome to perform specific functions of interest. 
Targeted searches can input short reads (Dragone et al., 2022; 
Bertagnolli et al., 2023) or open reading frames (Priest et al., 2025). 
This approach can be used to quantify the presence of catalytic 
genes in a sample. For example, Dragone et al. (2022) searched 
Antarctic soil metagenomes for genes involved in trace gas cycling 
to quantify the genomic potential of the entire microbiome to 
utilize trace gasses across multiple environments. Targeted searches 
are also useful as an initial screening of large genomic datasets 
(reads to genomes) before digging deeper. For example, Speth and 
Orphan (2018) were interested in the diversity of methanogens 
across thousands of publicly available metagenome datasets. To 
save computing time, they pre-screened datasets for the presence 
of diagnostic methanogen gene mcrA (Methyl coenzyme M 
reductase), only assembling contigs and binning genomes from 
mcrA positive datasets.

Untargeted searches do not have specific genes of interest, 
instead aiming to annotate as many sequences as possible. This 
approach is best suited to ORFs because they contain enough 
genomic content to be confidently annotated against hundreds of 
thousands of reference genes. This endeavor often starts off semi-
targeted, using tools searching for tens of thousands of specific genes 
(Prokka, Seemann, 2014; KofamScan; Aramaki et al., 2020). The 
sequences that remain un-annotated after this first pass may still be 
amenable to annotation and can then be queried against even more 
comprehensive databases (NCBI nt/nr, UniProtKB). If homologs 
to these sequences cannot be identified, a cautious approach is 
to designate such ORFs as “proteins of unknown function”, or 
“hypothetical proteins”. The functions of these hypothetical proteins 
may be inferred based on the functions of nearby sequences (within 
the same operon; Mihelčić et al., 2019) or demonstrated using 
non-omics approaches (biochemistry and cell biology; discussed 
below). An untargeted approach will generate a lot of annotations 
and is most tractable when constraints are applied to its analysis. 
One way of constraining the analysis is by examining only a few 
genomes in-depth. For example, Mitchell et al. (2024) sought to 
examine gene expression for a single bacterium, using five semi-
targeted tools and the NCBI non-redundant protein database to 
annotate the genome. Another method to constrain the large 
volume of information from an untargeted analysis is to use an 
annotation system with a simplifying gene hierarchy (ontology; Box 
1). For example, Kelly et al. (2019) annotated seawater metagenomes 
with the SEED subsystem database–grouping genes by functional 
categories–which they used to collapse annotations into functional 
groups, making the analysis of thousands of sequences tractable.

Mechanistically, functional annotation often relies on sequence 
alignment or Hidden Markov Model (HMM) searches. Alignment 
compares a query sequence (nucleotide or translated amino acid) 
to a functionally annotated subject sequence, identifying regions 
of sequence similarity. If the two sequences are sufficiently similar, 
the query sequence is assigned the annotation of the subject. 

The most common sequence aligners are those of NCBI’s Basic 
Local Alignment Search Tool, which work by finding identical 
sequence fragments (substrings) between a query and reference 
and then expanding the alignment outward from the region of 
identity (BLAST, Camacho et al., 2009). BLAST searches can be 
performed via a web interface that accesses NCBI’s servers directly 
or–more efficiently–using BLAST software installed locally. BLAST-
based homolog identification can be computationally intensive 
but is generally accurate (Al-Fatlawi et al., 2023). In the decades 
since BLAST was introduced, other alignment alternatives have 
been developed, with many of these being faster and equally or 
more accurate (DIAMOND, Buchfink et al., 2015). HMM-based 
approaches use databases of homologs to build a profile/model for a 
protein or protein domain of interest. This HMM profile contains 
features (the probabilities of different amino acids at different 
positions) intrinsic to the protein or protein family and can be used 
to search a sequence dataset to identify putative homologs with 
high confidence (details of HMMs reviewed in Mor et al., 2021). 
HMMs can be more sensitive than BLAST searches in identifying 
distant homologues (Kirsip and Abroi, 2019) but require training 
on high quality sequence data. Fortunately, several repositories 
of pre-trained HMMs are available (TIGRFAM, Haft, 2001) with 
some integrated directly into annotation tools (KofamKOALA, 
Aramaki et al., 2020). Though not widespread yet, attention-
based artificial intelligence also holds great potential for functional 
annotation (Hwang et al., 2024) and prediction (Jumper et al., 2021) 
but is beyond the scope of this brief overview.

An important note, confidence in any gene’s annotation is a 
balance between effort and confidence. Many genes can be annotated 
quickly–to a high degree of confidence–but approaching “proving” 
that an encoded gene can perform a function requires increasing 
effort. This may require narrowing the focus from many (10,000+) 
to a few (1–10) genes, eventually departing from omics altogether 
for the domains of biochemistry and molecular genetics (Table 2). 
Protein purification or heterologous expression should only be used 
for absolute proof, as–in most cases–automated gene annotation 
or simple phylogenies are sufficient to hypothesize the functions 
of a gene. Solid annotations lay the foundation to compare 
gene prevalence, abundance, or expression between systems via 
quantification.

4.10 Count data

Quantifying omic features in a dataset (reads, Figures 3C,K; 
contigs; Figures 3E,N; or genomes; Figure 3G) uses read data. Read 
quantification involves counting reads of a given type (reads aligning 
to marker gene regions), typically followed by normalization to 
sequencing effort (e.g., Reads per Megabase of sequencing). Contig 
or genome quantification requires aligning reads to these longer 
sequences, typically followed by normalizing for contig/genome 
length and dataset size (e.g., Reads Per Kilobase of Contig per 
Megabase of sequencing). It should be noted that alignment-
based quantification may overestimate sequence abundances with 
methods developed to counteract this (TAD80; Viver et al., 2021).

Count data are prevalent across genomic studies, estimating the 
abundance of genes (Dragone et al., 2022; Maritan et al., 2025; 
Ricci et al., 2025) and microbes (Steinsdóttir et al., 2022; 

Frontiers in Bioinformatics 14 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1721028
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Maritan and Stewart 10.3389/fbinf.2025.1721028

TABLE 2  Increasing confidence in functional annotation is increasingly time intensive and eventually requires non-computational approaches: A simple 
workflow for increasingly confident annotations with steps, actions, realistic number of sequences to analyze, interpretations, and examples in the 
literature.

Steps Action Number of 
sequences analyzed 
with this technique 

in one study

If confirmatory, 
what does this tell 

you?

Published example

1: Identify likely homologues Identify candidate homologues 
(BLASTn/p, HMM)

10,000+
Target sequence is sufficiently 
similar to known sequence to 
be a homologue, though may 

include false positives

Screen thousands of genes 
(Anantharaman et al., 2016)

2: Contextualize 
phylogenetically

Phylogenetically place gene of 
interest against high 

confidence (SwissProt) gene 
sequences

10s
Target sequence is situated 

with other sequences known to 
perform the function of 

interest

Tree genes of interest (Graf 
et al., 2021)

4: Identify essential motifs and 
structures

Identify key motifs (Pfam) and 
structures (AlphaFold) 10s

Target sequence possesses 
necessary architecture for 

claimed function

Identify functional residues 
(Porras et al., 2024)

5: Assay with biochemistry 
and molecular biology

Knockout or clone gene of 
interest and biochemical assay

1–2 Target sequence performs the 
assayed function

Clone gene 
(Tsementzi et al., 2016)

Shoemaker et al., 2024) in a sample. In transcriptomics, cDNA-
derived reads are aligned to a reference sequence (genome, 
Bertrand et al., 2015; or assembled transcript; Sorek et al., 2018) 
to estimate transcription levels of genes. Metagenome and 
metatranscriptome studies can also quantify exact numbers of 
transcript molecules per amount of sample or per gene copy number. 
This is most precise when mRNA or genomic DNA standards are 
spiked into samples (Moran et al., 2013; Nowinski et al., 2023) 
but can also be estimated by normalizing gene expression to 
measured biochemical properties (expressed mRNA per gram soil; 
Söllinger et al., 2018; Täumer et al., 2022). This allows precise 
quantification of omics data and can be especially useful for 
estimating changes in metabolic activity.

These count data of gene abundances and expression levels 
provide a basis for hypothesizing about the function of a 
system but generally require other methodologies for confirmation 
(quantitative PCR, cell counts, chemical measures, or cell culture). 

4.11 Phylogeny

Because phylogenetic inference is essential to taxonomic and 
functional omics analyses, we will briefly summarise the methods 
for phylogeny construction here. However, we note that this is only 
a primer and does not cover all the details needed to correctly 
perform these analyses. For more in-depth discussion, we direct 
readers to excellent reviews describing the principles and tools for 
phylo-genetics/-genomics (Kapli et al., 2020; Steenwyk et al., 2023).

A phylogeny or phylogenetic tree (Figure 3J) shows the 
evolutionary relationship of a focal sequence relative to reference 
sequences. Interpreting a phylogeny involves examining two key 
features: 1) topology and 2) branch length. Topology describes 
the shape of a phylogenetic tree, including branching patterns 
and clusters of sequences (Kapli et al., 2020). Assuming there is 
statistical support (via bootstrapping) for the groupings in the tree, 

sequences clustering together is often used to support claims that 
a focal sequence shares evolutionary history with a taxonomic 
(Eme et al., 2023) or functional (Porras et al., 2024) group, 
permitting classification or annotation. Conversely, divergence 
between sequences can be used to delineate new taxonomic 
groups at coarse (Woese and Fox, 1977; Lane et al., 1985) or 
fine phylogenetic scales (Tsementzi et al., 2016) and follow up 
with the question: “what changes have accumulated between two 
diverging sequences” (e.g., individual sequences, Major et al., 2017; 
whole genomes, Conrad et al., 2022). Branch length–in a rooted 
tree–describes the distance from a phylogeny’s root to any 
tip, serving as a proxy for a lineage’s age. Time calibrated 
branch lengths (using dated fossils or geochemical evidence to 
contextualize divergence) provides insights into the exact timing 
of diversification (Damsté et al., 2004; LaJeunesse et al., 2018). 
Beyond describing divergence timing, branch lengths can be 
used to quantitatively assess how evolution drives ecological 
associations (Colman et al., 2024).

The creation of a phylogeny comprises three main steps: 
1) sequence acquisition, 2) multiple sequence alignment, 3) 
phylogenetic inference (reviewed in Kapli et al., 2020). Both nucleic 
acid and amino acid sequences can be used for phylogenetic 
inference. It is common practice to use nucleic acids to resolve 
closely related organisms (due to more combinations available for 
nucleic acids to specify any codon than for amino acids) and amino 
acid sequences for more distantly related sequences, though nucleic 
acids and amino acids may provide similar resolution for distant 
relationships (Kapli et al., 2023).

The first step of sequence acquisition involves identifying 
sequences for phylogenetic reconstruction. This can be done 
manually (BLAST genomic sequences against a gene of interest 
reference database) or automatically (MarkerFinder, Martinez-
Gutierrez and Aylward, 2021). If the analytical goal requires 
comparing homologs only, it may be necessary to remove potentially 
non-homologous–but similar–sequences identified by sequence 
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searches. This step often requires manual inspection and can be 
time-intensive (reviewed in Kapli et al., 2020). The product of 
sequence acquisition–a set of confident homologues–is the starting 
point for the next step, multiple sequence alignment (MSA). 
MSA compares sequences to correctly orient homologous base 
or amino acid positions along the sequence. This results in a 
matrix in which the rows indicate sequences and columns indicate 
homologous positions in a sequence, with residues (bases/amino 
acids) shared among sequences at the same position often 
indicating shared ancestral patterns of sequence change. If creating 
a phylogeny from multiple genes, genes may be first combined 
(concatenated) and then aligned or first aligned separately and 
then concatenated, in both cases creating an MSA supermatrix. 
The accuracy of phylogenetic reconstruction depends intrinsically 
on the accuracy of the MSA. Therefore, any MSA should be 
manually examined after the (typically) automatic step of alignment, 
potentially to verify strandedness of homologues (so as not to 
mistakenly compare palindromic regions), remove sequences that 
align poorly or with high percentages of gaps, or mask ambiguously 
aligned regions (Kapli et al., 2020). Finally, phylogenetic inference 
involves generating a bifurcating tree that estimates evolutionary 
relationships based on shared residues in the MSA and a model (set 
of assumptions) about the process of sequence change. This step can 
be performed by creating and merging multiple trees from each of 
the aligned genes or a single tree from the gene supermatrix. The 
methods for constructing trees are diverse and vary in the extent 
to which they estimate and incorporate parameters describing the 
evolutionary process and, consequently, the time and computational 
resources required for the analysis (Kapli et al., 2020).

Phylogeny, and all the previously described tools, were given 
only a brief treatment. Our aim was to provide a foundation for 
readers to seek out more in-depth guides as needed. We will end 
our discussion of tools by highlighting new frontiers for omics 
application. 

4.12 Contextualizing across datasets, time, 
space, and conditions

Individual tools are essential to produce the core omics 
data products, but once these data are produced, an omics 
scientist has the freedom to use these results to answer any 
number of scientific questions. We suggest that omics users 
make full use of publicly available databases to place their 
results into larger contexts (Figures 3H–J). Using public data, 
a researcher can compare their sequences against other similar 
(or different) studies to identify: shared or disparate trends 
(meta-analysis: Thompson et al., 2017; Kumagai et al., 2018; 
Ruff et al., 2024), reconstruct evolutionary histories (phylogeny: 
Hug et al., 2016; Eme et al., 2023), spatial distributions 
(biogeography: Härer and Rennison, 2023; Zhou et al., 2024), 
or driving environmental factors (modeling: Louca et al., 2016; 
Lui et al., 2021; Ramoneda et al., 2024; Chuckran et al., 2025). 
Each of these contexts is a discrete field with its own norms and 
tools beyond the scope of this review. In any case, situating omics 
findings in a broader context is almost always a worthwhile exercise 
that generally increases the utility and impact of omics research. 
We conclude this review with some final suggestions for new 

practitioners from our own experiences learning and teaching
omics. 

5 Tips for new practitioners

Starting to perform bioinformatics is formidable with 
layers of challenges. First, there are the concrete ones, learning 
how to code and manage terabyte sized sequencing datasets. 
Second, there is the conceptual task of designing workflows 
to generate useful results. Once these challenges are cleared, 
there remains the most formidable challenge, performing 
scientifically meaningful “experiments” on the computer. Thus 
far, this review has focused on the conceptual task of designing 
workflows for useful results. We will end with some suggestions 
for future work and literature to handle the fine details of 
coding and the broader issue of asking meaningful scientific
questions. 

5.1 Bioinformatics advice

5.1.1 Opportunities for further training
Readers of this review should leave with an understanding 

of the motivations and methods of nucleic acid omics. For 
some readers, this review will be sufficient for their goals of 
digesting the “methods” sections of manuscripts, while others 
seeking to analyze data independently will need more specific
training.

For those looking for additional training, we recommend three 
types of resources ordered from most accessible to most specialized. 
First, for guided exposure to using real data to run specific omics 
analyses, we recommend computing workshops or courses (in-
person or online). Such workshops can be broad (binning MAGs) 
or specific (machine learning for protein prediction), providing an 
opportunity to develop a range of skills. Second, for self-guided 
learning of specific computing topics (read mapping to quantify 
transcripts, identifying viruses in omics data), we recommend 
online tutorials. These tutorials can be standalone websites (often 
the online material from a prior workshop) or published as part 
of a manuscript (e.g., Coenen et al., 2020). Tutorials are incredibly 
useful for users that can read and write some code (see “Section 
5.1.2 Scripting”) and want to see how specific analyses are run, 
often demonstrated by analyzing subsampled real datasets. Finally, 
when trying to implement a specific tool (often found through a 
workshop or tutorial), we recommend reading the tool’s official 
documentation. This documentation often exists in two forms. 
First, many tools are announced with a publication describing their 
construction and general uses–which is useful for an overview 
but may overwhelm early omics users with technical information. 
Second, each tool generally includes a manual written for practical 
implementation. This may be as simple as a “README” text 
file included in the downloaded source code or as involved 
as a dedicated website to explain the uses and functions of
the tool.

Building on the foundation of knowledge from this review, early-
stage omics users will be able to acquire and integrate additional 
training to analyze data independently. 
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5.1.2 Scripting
To interact with omics datasets, users can begin by using 

software that does not require much coding experience (Genious, 
Galaxy, Kbase), though accessing the full capacity of omics datasets 
requires learning to code (but does not require the skills of a 
professional programmer).

Scripting is the computing equivalent of pipetting in a lab, and 
aspiring bioinformaticians should be able to write and read code in 
Bash and R or Python. Bash is the basic language for performing 
omics analyses, used to interface with high performance computing 
clusters and run bioinformatics programs. Though Python can be 
used to write standalone programs, we suggest learning Python or 
R for their capacities to manage spreadsheets, perform statistics, 
and make plots. These tools take longer than Excel to master, but 
they quickly outperform it in flexibility, speed, and reproducibility. 
We suggest that bioinformaticians learn how to use either R or 
Python, as it is unlikely that knowing both will be essential, and if 
more languages are needed, they can be learned (Schloss, 2020). To 
learn coding, there are lots of online resources, with more available 
every day. For bash, we recommend chapters from the book Practical 
Computing for Biologists (Haddock and Dunn, 2011) pertaining to 
bash for a basic overview of some core commands and syntax and 
immediately applying it on real data to get a feel for its use. For R, 
the free online textbook R for Data Science (Wickham, 2023: https://
r4ds.hadley.nz/) is an approachable read, organized to be practical 
and user friendly. For Python, we recommend the interactive free 
courses offered on Codeacademy (https://www.codecademy.com/).
Though bash, R, and Python have been mainstream tools for 
decades (and may remain so), the scripting toolkits available and the 
resources to learn them will change over time, which should inform 
the training tools selected.

If coding is like pipetting, writing code with AI is like operating 
an automated liquid handler. Automating lab work may aid a 
novice wet lab scientist, but scientists with hands-on experience 
will better understand how to creatively and effectively implement 
such automation. AI support in bioinformatics works better with 
the specific vocabulary and perspectives that come from already 
knowing how to write code and manipulate data. That being said, 
we wholeheartedly recommend AI coding tools to help write tedious 
scripts (loops), make existing scripts more efficient, installing tools, 
debugging and explaining code. In any case AI users should 
be updated on best practice recommendations and publishing 
requirements (Buriak et al., 2023; Blau et al., 2024), they will change 
over time. In any case, a bioinformatician who knows what they want 
out of a workflow will be better able to get it with whatever basic or 
advanced tools they bring to bear. 

5.1.3 Local data organization
Data organization should be a primary directive. Files 

will always need naming and directories (folders) will 
always need organizing. We suggest you adopt a simple 
filing system (Noble, 2009) and adapt as you see fit. Do not proceed 
without some kind of system, as impromptu “organization” will 
eventually accumulate into an unwieldy mess. Two places where 
poorly organized files can cause major trouble are raw sequencing 
files and scripts.

All new sequence data should be placed in a clearly marked 
and backed up location (if working on a team, this original data 

should be in a shared “group” directory, not on the bioinformatician’s 
personal drive). This directory should have an informative name 
that contains the elements required to understand what is inside, 
for example,: sequencing run ID, sampling date, sequence type 
(genome, transcriptome, amplicon …), geographic source (country, 
ocean basin, cell culture collection …), and sequencing target (host 
organism, enrichment culture, soil …). In this directory, it is useful 
to have two sub-directories for reads. First the minimally processed 
reads from the sequencer (e.g., “o01_raw_reads”) and a second 
quality-controlled set (per “Section 4.3 Quality Control”; e.g., “o02_
trimmed_reads”) as these processed reads will be used by multiple 
steps in any analysis and should be easily accessible. A file name tip: 
use character delimiters (e.g., “ . ”, “_”) to separate phrases in a file 
name instead of spaces (“ ”), to avoid problems later while scripting.

Next, the scripts that are written to analyze an omics dataset 
should be organized to allow the bioinformatician (or anyone else) 
to follow the workflow and backed up to prevent loss. Writing 
individual scripts for each step of an analysis is a good habit 
to keep the workflow clear and easily debugged. We recommend 
naming files sequentially so that auto-sorting arranges them 
logically (e.g., “o01_read_trimming.sh”, “o02_read_normalization”, 
“o03_assembly”).

Again, the raw sequence data and scripts should be backed up 
to prevent loss, as they are the minimum information required to 
regenerate all results. 

5.1.4 Public databases
One beautiful aspect of bioinformatics is the interoperability of 

sequences from diverse sources. The base FASTA format–adopted in 
1985 and used today–has ensured that almost all sequence data uses 
consistent formatting (Wright et al., 2024). This consistency allows 
straightforward comparison of new data to archived sequences in 
repositories. Learning the major databases often involves talking 
to other scientists and looking at the methods of published papers, 
but once identified, these resources can easily provide sequences 
to contextualize new data or to supply material for meta-analysis 
(general: NCBI SRA, Leinonen et al., 2011; task specific: Tara 
Oceans, Sunagawa et al., 2020). Some tools exist to make these 
database searches easier (taxonomy browser, Parks et al., 2018; 
metagenomes pre-screened for community composition; 
Woodcroft et al., 2025; NCBI webtools; Sayers et al., 2024) though 
efficient use of these resources generally requires familiarity and 
practice. This practice is beneficial for any omics scientist, for a 
bioinformatician with databases is never without samples. 

5.1.5 Responsible data sharing and reproducible 
analyses

Thus far we have discussed scripting, data organization, and 
public databases from the perspective of how they benefit the reader 
of this review. Now, we will discuss the responsibilities of omics 
users to the broader scientific community–focusing on practices that 
ensure that published data and results are useful as long as possible. 
At its core, this means ensuring that raw data from published 
research is usable in the future and the results from a manuscript 
can be reproduced.

In an omics context, the space available in a manuscript is 
often too small to provide all the relevant data (sequences or 
environmental measures) for long-term use, and the researcher 
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must then rely on external resources to ensure the information is 
accessible. To provide a brief coverage of the issue, we will discuss 
data archiving and reproducible analyses (though this coverage is 
necessarily incomplete and the reader should spend more time on 
these important topics). 

5.1.5.1 “FAIR” data archiving
Though sharing published data is a long-standing scientific 

practice and many journals require that the raw (unprocessed) 
data supporting the paper is made available, there is a lot of 
variation in how “available” could be interpreted. To clarify this, 
Wilkinson et al. (2016) introduced an influential set of guidelines 
for data management and stewardship summarised in the acronym 
“FAIR”: Findable, Accessible, Interoperable, and Reusable. We 
will describe some practices for “FAIR” data management in 
omics, though we will not cover each element of the acronym 
specifically and readers should spend more time leaning about 
the specific guidelines, especially before archiving their data 
(reviewed in Carballo-García and Boté-Vericad, 2022).

The foundation of omics data archiving requires that primary 
data files (unprocessed reads, assembled sequences, environmental 
measures) are available to other scientists, which is generally 
achieved by depositing data in public repositories. To maximize 
the lifespan of deposited data the repository needs to persist over 
time. An excellent example of a durable repository is also the 
most used for accademic omics data. The International Nucleotide 
Sequence Database Collaboration (INSDC) is an international effort 
to capture, preserve, and present nucleic acid sequence data for the 
“permanent scientific record” (Karsch-Mizrachi et al., 2025). This 
collaboration has operated for over 40 years, supported by the United 
States of America (National Center for Biotechnology Information; 
NCBI), Europe (European Molecular Biology Laboratory-European 
Bioinformatics Institute; EMBL-EBI), and Japan (DNA Data Bank of 
Japan; DDBJ). In this collaboration, data deposited to any participant 
(NCBI’s Sequence Read Archive, EMBL-EBI’s European Nucleotide 
Archive, and the DDBJ’s Sequence Read Archive) is exchanged with 
the others daily, ensuring global access and redundancy (Karsch-
Mizrachi et al., 2025). Though other repositories exist for sequence 
data, the global support and historic record of the INSDC’s 
repository makes it one of the best options for most sequence data. 
Now we will turn our attention to the other essential elements of 
data archival.

One of the most critical elements of data archiving is that 
all primary data files must have unique and fixed identifiers 
(names). The exact names do not matter per se (though it is 
useful when these names have some intrinsic meaning; see “Section 
5.1.3 Local Data Organization”) because all file identifiers should 
be explained by accompanying metadata. Metadata is essential to 
explain what is encoded in the primary data, thereby linking the 
primary data’s identifier to relevant descriptions of “what it is”. 
The types of collection descriptors are summarized in the widely 
used acronym “ISA”: Investigation (e.g., principal investigator, 
institutions), Study (e.g., location, organism, physical conditions, 
experimental condition), and Assay (e.g., type of nucleic acid 
sequenced, sequencing technology; Johnson et al., 2021). Lists of the 
minimum ISA descriptors needed for different types of primary data 
exist as “minimum information checklists” (examples at: https://
fairsharing.org) and are often organized as standard templates 

(examples at: https://fairsharing.org). When filling out the relevant 
metadata, it is good practice to describe the data using well-defined 
hierarchical ontologies (e.g., taxonomic rank; examples at: https://
www.ebi.ac.uk/ols4/) to avoid ambiguity, though new labels can be 
added as needed.

Finally, to be consistent with FAIR principles, both primary data 
and metadata should be encoded in widely available and commonly 
used file formats that describe the permissions or restrictions for 
reuse of the primary data, ensuring that anyone who retrieves the 
data will be able to read it and know how to use it appropriately. 

5.1.5.2 Reproducible analyses
Aside from sharing published data, omics users are expected to 

follow practices to ensure reproducibility of their results, allowing 
other scientists to double check their findings.

The most important elements of reproducibility are that other 
scientists have access to the raw data and the analytical tools used 
in the analysis. For access to raw sequence data most papers require 
that research generating new sequence data deposit it publicly (see 
“Section 5.1.5.1 ‘FAIR’ Data Archiving”) while those re-analyzing 
data list their sources (see “Section 4.1.3 Data Mining”). However, 
ensuring access to analytical tools is less regulated.

Though it is still common for scientists to use paid tools (“closed-
source”; e.g., ArcGIS, MATLAB) for analyses, there has been a 
concerted effort by the broader scientific community to promote 
the use of open-source (free) software for research (Schloss, 2020), 
allowing broader access. For both closed- and open-source tools, it 
is expected that published manuscripts describe the software names 
and version used for each step in their analysis.

Finally, to ensure maximum reproducibility, omics users often 
publish the exact code used to run their analyses. This code is 
often written and organized with Git (a software for organizing code 
and handling version control) and made public through GitHub (a 
cloud-based service built on Git to share code). Publishing the code 
used for analyses is less critical when the analysis uses the default 
settings on published tools (which can be easily reported in a paper’s 
“methods” section) but becomes increasingly important when the 
research builds new tools and performs more complex analyses. 

5.1.6 Quantitative results: statistics, modeling, 
and guesswork

Omics analyses tend to present qualitative or descriptive 
quantitative results, rather than explanatory or predictive ones. 
Though the support of statistics or structure of modeling are not 
necessary for many good omics papers, the field of microbiology 
is ready to integrate these approaches more fully. There are 
examples where omics data is used to model biogeochemical 
processes (Louca et al., 2016; Täumer et al., 2022) and frameworks 
outlining how sequencing may be used in predictive models 
(Lui et al., 2021). More informally, scientists should practice making 
informed guesses, both qualitatively (from a literature base) and 
quantitatively (using benchmarked biological values; Fox, 2011; 
Milo and Phillips, 2015). Predictions (especially quantitative ones 
from rigorous modeling or informal estimations) are an excellent 
base from which to write clear, falsifiable hypotheses. Such 
hypotheses–especially when grounded by scientific literature–are 
foundational to any science (see “Section 5.2.1 Non-omics Literature 
and Toolkits”).
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BOX 1 Glossary of key terms 
rRNA: The gene encoding, or the transcript that is, a part of the ribosome across all domains of life. The 16S rRNA gene and transcript are the most popular target for 
studying bacterial and archaeal evolution and diversity, though other rRNA subunits have been used and are informative for bacteria, archaea, and eukaryotes.
Assembly: The practice of reconstructing the sequences of the original nucleic acid molecules after their fragmentation before and during sequencing.
Clone Library: The product of inserting genetic material (targeted or untargeted) into a living vector (e.g., Escherichia coli), selecting for only the individuals that took up 
the material while separating genetically distinct clones (e.g., spread plating isolates with an antibiotic screen) allowing the vector to multiply the genetic material of 
interest sufficiently for further biochemical processing (e.g., sequencing).
Contiguous Sequence (Contig): The shortest output from the assembly of nucleic acid reads (DNA or RNA). DNA contigs can be further refined into scaffolds and
chromosomes.
FAIR Data Practices: A set of guidelines introduced by Wilkinson et al. (2016) outlining practices for ensuring long-term utility of published data, particularly though the 
promotion of consistent identifiers, rich metadata, and accessible file formats.
Function Annotation: The practice of assigning a sequence (often a predicted ORF) a function if it shows sufficient similarity to a sequence with known function (see
marker gene).
Genomics: The study of life using the untargeted sequencing of DNA.
Genome: Strictly, the name for the complete set of chromosomes originating from the organism of study. Loosely, it also refers to assembled genomic material that is 
grouped into candidate genomes (bins, MAGs, and SAGs).
[Finished, High, Medium, Low] Genome Quality: Classifications of genome quality introduced by Bowers et al. (2017) relying on contiguity and estimates of completion 
and contamination.
[Genomic] Bin: A type of genome. A draft genome composed of contigs that have been grouped together based on similar characteristics (GC content, base frequency, or 
coverage), but have not yet been deemed of sufficiently high quality to be considered a usable genome/MAG.
[Genomic] Chromosome: A product of genomic sequence assembly, the product of combining scaffolds to produce a complete gap-free digitized representation of the 
source chromosome.
[Genomic] Scaffolds: A product of genomic sequence assembly, the product of combining multiple contigs with consistent orientation and defined gap sizes, though less 
complete than a chromosome.
ISA Abstract Model: Is used to organize metadata collection and distribution, and is a flexible organizing framework describing the metadata necessary to convey key 
elements of some data’s origin, including the Investigation, Study, and Assay that generated it.
L50: A metric for assessing an assembly’s quality via the number of assembled sequences. The metric of L50 describes how many of the longest sequences are needed to 
account for 50% of the assembly size. Assuming the assembly is of high quality and sufficient sequencing coverage, smaller L50 values indicate the assembly is composed 
of only a few sequences, which is considered a good thing.
Machine Learning: A class of tools developed from statistics (Bayesian statistics, game theory, computer vision) where algorithms are trained on existing data to identify 
patterns in new datasets leading to diverse kinds of artificial learning, including: reinforcement learning, supervised learning, and recently popular unsupervised 
generative learning (e.g., large language models).
Metagenome-assembled Genome (MAG): A type of genome. A bin becomes a MAG after passing quality control standards (see Genome Quality).
Marker Gene: Genetic sequences that are strongly associated with a biological process of interest including but not limited to: phenotypes, evolution, or behavior.
Minimum information checklist: Is used to organize metadata collection and distribution and provides guidelines for required data reporting for data arising from 
specific classes of experiments or assays (see ISA) to ensure data usability without mandating exhaustive details.
N50: A metric for assessing an assembly’s quality via the length of contigs of an assembly, essentially a weighted median contig length. If all the contigs in an assembly are 
arranged from longest to shortest and began summing contig lengths one contig at a time, the N50 value would be the length of the contig where 50% of the total length 
has already been accounted for. Larger N50 values indicate that an assembly consists of longer contigs, generally indicating assembly success.
[Meta]-Omics: Omics is an analytical approach that studies entire sets of biological molecules (DNA, RNA, Proteins, Metabolites). Adding the prefix “meta” indicates that 
the analysis explicitly considers more than one organism (though non-meta omics may incidentally sequence more than one organism).
Ontology: A hierarchically structure for terminology where each term becomes increasingly specific while still “contained” within its broader term (e.g., a twig on a 
branch on a limb on a tree”) that is often used to describe gene functions (e.g., Gene Ontology) or metadata (e.g., The Environment Ontology).
Open Reading Frame (ORF): An open reading frame is a predicted protein coding region from a nucleic acid sequence predicted due to the presence of genetic features 
characteristic of experimentally validated protein coding regions.
Operational Taxonomic Unit (OTU): A label for sequences (reads to genomes) that have been deemed to share taxonomy based on sequence clustering at a defined 
percentage similarity threshold (often 95%).
Sequence Clustering: The practice of grouping like-with-like sequences (from reads to genomes), often using the measure of pairwise percentage similarity.
Single amplified genome (SAG): A type of genome. A SAG is produced by sequencing the genomic material from a single cell, ensuring that the genomic environment is 
represented (distinct from a MAG, which may provide an incomplete understanding of the associated mobile genetic material or multiple chromosomes).
Sequence Alignment: The practice of comparing two sequences and searching for shared regions between the two. Often results in metrics describing the length of the 
aligning region and the percentage similarity.
Sequence Library: The name of the sequences originating from a single sample (e.g., a single metagenome file).
Taxonomic Classification: The practice of assigning a sequence a taxonomic origin based on its similarity to a reference sequence with assigned taxonomy.
Transcriptomics: The study of life using the untargeted sequencing of RNA.

5.1.7 Independent work
A final bit of omics advice is to become independent at 

performing the entire sample-to-analysis workflow: sample 
collection and preservation, nucleic acid extraction, sequencing 
prep (though we suggest out-sourcing sequencing to full-
time professionals), to most omics analyses. This capacity 
simplifies troubleshooting and affords more control over 
the generation of any omics data. This capacity makes a 
scientist more independent and useful, ultimately a better
hire.

5.2 Non-computational advice

Any omics user exists in a larger scientific environment of non-
users. To integrate smoothly into this wider non-omics world, we 
have included some non-computational tips. 

5.2.1 Non-omics literature and toolkits
Though this review is focused on the technical details of 

computing, omics (like other tools: purifying proteins, culturing 
cells, or collecting samples) is a means to an end. The end goal of 

Frontiers in Bioinformatics 19 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1721028
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Maritan and Stewart 10.3389/fbinf.2025.1721028

scientific inquiry is to incrementally improve human understanding 
of how the world works. Studying biology requires specific biological 
(not just computational) knowledge to guide analysis. This is 
especially true for omics, as any sequencing produces potentially 
overwhelming quantities of data, and biological context creates 
order and provides needed direction.

Analytical direction generally comes in the form of a biological 
question: “what are the tradeoffs involved in capturing light 
energy?” (Kumagai et al., 2018), “what pH did life originate in?” 
(Colman et al., 2024); “how does habitat specificity affect global 
patterns of speciation?” (Sriswasdi et al., 2017); “how do viruses 
shape mammalian biology?” (Henriques et al., 2024). In the best-
case scenario, a biological question is used to inform data collection 
and analysis. However, as biological systems are often incompletely 
characterized, omics must often be exploratory, sequencing poorly 
understood microbiomes. In these cases, a focused scientific 
narrative requires crafting a biological question retrospectively.

To this aim, an omics scientist should be comfortable with non-
computational biological literature (ecology, redox, stoichiometry, 
developmental biology, physiology, oceanography, pathogenicity, 
biochemistry). The goal of any omics scientist talking to an expert 
in their biological field, should be to be seen as “one of us”. 
Further, it is important to become acquainted with non-omics 
tools, especially how they fill the gaps left by omics (qPCR, 
microscopy, rate measurements, stable isotope probing, enrichment 
cultures, isolation, knockouts, microcosms, transformation, protein 
purification) and as appropriate, add these tools to one’s repertoire. A 
scientist that understands how omics fits into a constellation of other 
tools will be better equipped to plan research and identify tractable 
next steps (even if they never intend to do it themselves, it will help 
them find collaborators, see “Section 5.2.2 Networking”). 

5.2.2 Networking
Well-read and self-aware omics scientists should see themselves 

as a part of a global community with shared questions and aims. 
Tapping into this community to access the knowledge and skills 
of other scientists requires networking (i.e., making friends) in 
one’s focal-field and beyond. A network of familiar scientists makes 
scientific study more efficient, accessible, and enjoyable. Networking 
can be done anywhere scientists congregate (conferences, 
workshops, fieldwork, online) and is often more interesting and 
fruitful when it bridges diverse disciplines (biogeochemistry, 
ecology, biogeography, organismal biology) and departments 
(microbiology, ecology, earth sciences, geography, biochemistry, 
engineering). These connections can be used to identify good 
colleagues and great collaborators. Collaborating (working on the 
same projects together) with non-omics scientists will be far easier 
if the omics-scientist understands diverse methodologies and can 
effectively communicate what omics can and cannot do (see “Section 
5.2.3 Communication”). 

5.2.3 Communication
Maybe the most important part of any scientist’s job is effective 

communication. Anyone can report sequence statistics, but it is the 
job of a scientist to distill data into information, take the information 
and communicate it as a coherent story, thereby creating knowledge 
about how the world works (Schimel, 2012). These stories are 
most often told via writing and speaking, reflecting the usual 

format of the exams and professional products of scientists (grant 
proposals, manuscripts, and lectures). However, communication 
can take other forms (videos, animations, infographics) and 
requires calibration to the level of formality of the medium 
(popular science magazine articles, general audience public radio 
interviews). In all cases, the scientist needs to convince the 
audience that their message is worth listening to, which requires 
both understanding the message they want to deliver (i.e., 
biological and bioinformatic literacy) and tailoring it to the 
interests and knowledge of an audience. For both quantifiable 
(accepted manuscripts, successful grant applications) and abstract 
(successfully making and maintaining collaborations, effective 
lectures) professional achievements, effective communication is 
the whole product (Hazelett, 2025). Delivering consistent clear 
messages requires frequent practice, with the best communicators 
contributing more to the global scientific enterprise. 

6 Conclusion

Omics is a glue that connects biological fields–there are few 
biological questions that could not be enhanced with sequence-
based analyses. Though sequencing is expensive, costs have 
plummeted, with the first human genome costing around $300 
million (not-inflation adjusted) in 2001 (Service, 2006) to nearly 
$100 in 2024 (Liu et al., 2024). This cheaper sequencing has led 
databases to grow several million times larger in the last 20 years 
(Hug et al., 2025), increasing access. This access is supported by 
the development of tools that make data selection (Speth and 
Orphan, 2018; Maurya et al., 2022; Woodcroft et al., 2025) and 
use (Wright, 2024) less computationally demanding. Other groups 
have spent time creating integrated systems to simplify tool use 
(Anvi’o, Eren et al., 2015; QIIME2; Bolyen et al., 2019; mothur; 
Schloss, 2020). This combination of accessible data and tools has 
allowed unprecedented analyses using thousands of samples to 
identify new biomarkers of human health (Piccinno et al., 2025) 
and millions of samples to assess global patterns of microbiological 
distribution (Rodrigues et al., 2025). In this moment, sequence 
data generation will continue to be exponential, fueling a demand 
for scientists able to answer biological questions with increasingly 
large datasets (Stephens et al., 2015). Scientists able to understand 
and effectively find, analyze, and integrate this sequence data 
into larger biological narratives are poised to articulate biological 
processes from micron to global scales, an unprecedented 
opportunity. We believe this review provides a foundation for just 
such scientists.
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