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Modern biology often relies on the analysis of entire sets of molecules (omics).
A subset of omics uses nucleic acid sequencing to reconstruct genomes and
profile gene expression. Novel findings and existing data are contextualized by
databases, which have been growing exponentially due to falling sequencing
costs and increased computing access. The increasing accessibility of omics
has led to rapid adoption and widespread self-training via open-access tools. In
this training environment new users (many of whom are students also applying
computing for the first time) are confronted with Terabytes of sequence data and
an ocean of topic-specific computing guides (often directed at high-level users).
This flood of information creates an initial barrier of confusion and frustration,
where it is challenging to identify the overarching goals of omics analyses
through the details of computing. We believe this confusion is understandable
but not pre-destined, as omics is—at its core—simple. This simplicity comes
from its modular nature, where any analysis requires familiarity with only a few
consistent steps. Here, we identify core elements of all omics analyses—data
products, tools, and workflows—using microbiology applications to ground the
discussion. This structure is informed by first-hand experience training early-
stage omics users, where covering omics theory provides a foundation for
practical implementation.

beginner, early career, FAIR, guide, ISA, MAGS, metabarcoding, pipeline

1 Introduction

Analyzing nucleic acid sequences (omics) is a universal tool in contemporary biology.
In this world, new biologists benefit from understanding the foundational motivations and
methods of omics analyses whether or not they intend to apply these tools themselves. In
our experience teaching omics to students for both future use and background context, we
see that most are competent biologists lacking computing experience. For these students,
the technical details of computing often obscure the fact that omics analyses are simple
arrangements of a few modular tools, producing a few consistent outputs. To highlight the
simplicity of omics, we focused this review on broadly applicable theory to provide a view
of the omics “bigger picture”. Further, to avoid distracting from this perspective, we limited
our discussion of the technical details of computing, which is available in other excellent
guides as needed (see “Section 5.1.1 Opportunities for Further Training”).

We organized this review in four parts, providing an increasingly granular
understanding of nucleic acid omics. Part 1 (Section 2) describes the biological goals
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of different types of omics by discussing the history of their
development. Part 2 (Section 3) identifies the analytical goals of
omics by identifying the core data products. Part 3 (Section 4)
describes the repeated modular steps of omics analyses that are
used to generate core data products. Part 4 (Section 5) concludes
with computational and non-computational tips for new users. The
review’s structure ensures that a student can read it completely for
a top-to-bottom guide to nucleic acid omics, or individual sections
to clarify specific questions. For some readers, this review will be
sufficient to understand the “methods” sections of manuscripts,
while others will want to continue with more specific training to
run omics analyses independently. For both groups, this review
should make nucleic acid omics more tractable, providing a
foundation for engaging more deeply with omics literature and/or
code.

2 The development of omics: a short
history

2.1 What is omics?

The term omics describes analyzing a system (single cells,
organs, organisms, or communities of organisms) using its
biological molecules (DNA, RNA, proteins, metabolites). The
biological molecule in-question determines the name of the omics
analysis (DNA: gen-omics, RNA: transcript-omics, proteins: prote-
omics, metabolites: metabol-omics), while the system’s scope
determines the prefix (“meta-” applies to community studies:
meta-genomics, meta-transcriptomics, while no prefix is applied
to single-species studies). In this review, we will focus on nucleic
acid-based omics techniques, using the terms “genomics” and
“transcriptomics” for consistency, though the topics are applicable
to community scale meta-omics (Box 1). Nucleic acid sequences
are the foundation of omics as they (especially genomes) provide
the near-complete repertoire of life’s function-encoding units
(protein coding genes and transcripts, rRNA, tRNA, ...). Many
of these coding units are conserved across the domains of life
allowing researchers to assign likely function and taxonomic
identity to newly acquired sequences by comparing them to
ever-expanding reference databases. These modern technical
capacities were developed over decades, and understanding this
history-especially past limitations—is essential for adding new
data into a historic literature (Brock, 1999). To that aim, we will
cover a brief history of the development of modern nucleic acid
omics.

2.1.1 Nucleic acids and the central dogma

The groundwork for modern omics was laid by identifying
DNA as the molecule of genetic inheritance (Avery et al., 1944),
description of DNAs structure (Watson and Crick, 1953),
and the articulation (Crick, 1958) and experimental support
(Gros et al.,, 1961; Brenner et al., 1961) of the Central Dogma of
molecular biology: genetic information stored in DNA, transmitted
by RNA, and manifested as proteins. This biochemical linkage means
that the study of any of these molecules informs the understanding
of their precursors or derivatives.
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2.1.2 Marker genes

Informed by the Central Dogma, particular gene sequences
(DNA and RNA) proved to be especially predictive (e.g.,
phenotype,
“marker genes” (Box 1). Study of marker gene distribution and

evolution, heredity, behavior) and are termed
variance to understand biological phenomena was the direct
precursor to omics approaches (marker gene analyses are not always
considered “omics” because they do not capture “entire subsets of
molecules”, though we discuss marker genes throughout this review
as they are related to other DNA and RNA-based approaches).

A landmark example of marker gene analyses used the
conserved and abundant ribosomal RNA (rRNA; Figure 1A) to
study evolution across the tree of life. Using rRNA digestion
fragmentation patterns on gels, Archaea were discovered in 1977,
upending conceptions of the origin of Eukaryotes (Woese and
Fox, 1977). Purified rRNA remained a popular molecule for
reconstructing phylogenies, with methods developed to sequence
it directly (Stahl et al., 1984; Lane et al., 1985; Figure 1A; Box 1).
In parallel, methods developed to multiply and sequence the less
abundant DNA fraction, opening the possibility of examining
other marker genes, though rRNA remained a popular target to
study evolution. Initial sequencing of DNA marker genes required
cloning target genes into viral vectors—notably used to place the
bacterial origin of the mitochondrion (Yang et al., 1985) - a labor
and resource intensive effort. Acquiring enough DNA to sequence
marker genes was greatly simplified by the invention of PCR in
1985 (Saiki et al., 1985), allowing near-direct sequencing of low
abundance DNA encoded genes. This method was soon applied
to study rRNA genes in mixed microbial communities in 1990
revealing previously unknown diversity (Giovannoni et al., 1990).

Beyond the use of rRNA to assign taxonomy and reconstruct
evolutionary lineages, marker genes can also be used to screen
organisms for pre-selected functions ranging from diagnosing sickle-
cell anemia in humans (Kan and Dozy, 1978) to the identification of
nitrogen fixing bacteria in the ocean (Tschitschko et al., 2024).

Marker gene analyses upended evolutionary biology, radically
increased our catalogue of biodiversity, and made it possible
to understand phenotypes without direct observation. Marker
gene analyses continue to be useful in studying genes already
identified as important, though they only provide “snapshots of
organisms” (Pace, 1997). Organisms are constructed from hundreds
to thousands of genes (Hou and Lin, 2009), and a single marker gene
only explains a tiny percentage of any organism’s genetic potential.
Genome sequencing is required to understand co-occurring genes
in a single organism and is the domain of genomics.

2.1.3 Genomics

Genomics (Box 1) provides greater coding context than single
marker genes and emerged with the publication of the first genome
in 1977 (the virus phiX; Sanger et al., 1977a; Box 1) and ushered
in the age of analyzing large collections of genes (Figure 1B). This
first viral genome was small (5,386 bases) but was followed up
with genomes from bacteria (Haemophilus influenzae, ~1.83 Mbp;
Fleischmann et al., 1995) and eventually humans (~6.3 Gbp, diploid;
(International Human Genome Sequencing Consortium etal.,2001;
Venter et al., 2001; Figure 1B). Larger genomes were increasingly
complex, but all possessed the conceptual simplicity that all
sequences originated from a single organism. The concepts of
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Illustrative timeline of the development of nucleic acid omics. Included are the first examples of technologies that enabled—or are—-modern omics
between 1975 and 2010, covering (A) marker gene sequencing, (B) genomics, (C) transcriptomics, and (D) the availability of different sequencing
technologies—shaded from their announcement to the end of the timeline. IHGSC = International Human Genome Sequencing Consortium.

single organism sequencing were quickly applied to sequencing
genomic material from complex microbial communities. Multi-
species microbiomes were sequenced by first inserting large
(50+ kbp) fragments of DNA into Escherichia coli and later
sequencing these clone libraries either randomly to survey the
community (Béja et al., 2000), or deliberately to capture specific
taxa (Stein et al., 1996) or functions (Rondon et al., 2000). This
sequencing of genomic DNA from multi-species communities were
the first metagenomes, expanding the knowledge of protein-coding
gene diversity and the environmental distribution of metabolic
functions and taxa (DeLong et al., 2006; Yooseph et al., 2007).
Further, genes encoding taxonomy and function often co-occurred
on a single large fragment (Stein et al., 1996; Béja et al., 2000)
allowing researchers to describe an organism solely through
molecular data—first identifying it (see marker gene above)
and then hypothesizing its “functional potential” This work
linking taxonomy-to-function in metagenomes advanced when
metagenomic sequences were used to reconstruct individual
complete (or near-complete) microbial genomes (Tyson et al., 2004).
These metagenome-assembled genome (MAG; Parks et al., 2017;
Yutin et al, 2021; Box 1) and non-MAG (Dragone et al., 2022;
Bertagnolli et al., 2023) approaches are now widely applied
on diverse uncultured microorganisms to understand their
taxonomies and functional potential. The distinction of “functional
potential” is essential, as genomes provide evidence that a
function might be performed, but do not demonstrate activity
(Hatzenpichler et al, 2020). Activity can be more accurately
approximated by studying gene expression-a sort of “metabolic
intention” - which is the domain of transcriptomics (Box 1).

2.1.4 Transcriptomics

To understand “metabolic intention” the sequencing methods
of DNA pools were applied to RNA (following reverse transcription
of RNA to cDNA), creating the field of transcriptomics.
Early sequencing of untargeted RNA provided initial insights
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into the diversity of expressed genes in different cell types,
requiring the cloning of individual ¢DNA transcripts into
E. coli clones (Adams et al., 1991). Accurately quantifying
RNA expression-allowing rigorous comparison between cell
types—became possible with the advent of microarrays. There, cDNA
from thousands of pre-selected gene targets were attached to glass
slides and then hybridized with experimentally sourced (extracted
and reverse transcribed) cDNA, creating fluorescence proportional
to the sample cDNA, allowing quantification (Schena et al., 1995).
Derivatives of these technologies are still in-use today and set the
stage for “transcriptomics” where RNA sequencing was used in-
concert with existing genomes to identify expressed genomic regions
(Velculescu et al., 1997), which began using “Serial Analysis of
Gene Expression” (SAGE). In SAGE-based transcriptomics, cDNA
was sequenced by cleaving each ¢cDNA transcript into a short tag
(9-11 bp), the tags concatenated into a longer sequence, cloned
into E. coli, PCR amplified, and sequenced. These tags were then
extracted bioinformatically, aligned against a reference genome,
where alignment (Box 1) of an RNA tag to a DNA sequence
indicated gene expression and the number of tags aligning to any
DNA sequence used to quantify expression (Velculescu et al., 1995;
Velculescu et al., 1997). SAGE transcriptomics was first used in 1997
on yeast cultures with RNA tags aligned to the new yeast genome
(Goffeau et al., 1996) to generate maps of thousands of expressed
genes (Velculescu et al., 1997; Figure 1C). Advances in sequencing
(RNA-seq; Bainbridge et al, 2006; Nagalakshmi et al., 2008),
resulted in more and longer RNA sequences (beyond SAGE’s
10s of bp tag approach) increasing its sensitivity (identifying
splicing and lowly expressed genes), read coverage, and data
volume. As transcriptomics advanced, it was applied to mixed-
species microbiomes, revealing gene expression by dominant
(Frias-Lopez et al., 2008; Hewson et al., 2010; Stewart et al., 2012)
abundant taxa (Stewart et al, 2012) in the

and less

environment.
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2.1.5 Perspectives

In the last century, biologists have learned that DNA is
the molecule of trait inheritance and can now measure gene
expression from nanogram quantities of RNA in the wild. These new
approaches have enabled sequence-based investigations of diversity
and function across earth (Sunagawa et al., 2020; Nayfach et al., 2021;
Shaffer et al., 2022) and into space (International Space Station;
Castro-Wallace et al., 2017), surpassing the dreams of early omics
scientists (Pace, 1997).

These global surveys of commonplace (seawater, soils, human
skin) and extreme (hot springs, alkaline lakes) environments were
essential to fill the complete vacuum of information about the
diversity and distribution of uncultured microorganisms. However,
the number of unexplored ecosystems shrinks daily, and as-such,
modern microbiologists should not expect that sequence-based
surveys will provide the acclaim of the early days of sequencing.

Today’s omics researchers should follow the example of early
scientists to answer specific biological questions (reconstructing the
tree of life, Woese and Fox, 1977; reconstructing the evolution
of symbionts; Lane et al., 1985; Yang et al., 1985) using available
tools. The basic toolkit of omics is well established (at least since
2008; Figure 1), but advances in rapid cheap sequencing and ~50
years of archived sequencing data have produced opportunities
to answer new biological questions with global samples (The
Earth Microbiome Project, Thompson et al., 2017; TARA Oceans;
Sunagawa et al, 2020) and replication across space and time
(the National Science Foundation’s: National Ecological Observatory
Network, Dantzer et al., 2023; and Long Term Ecological Research
Network; Knapp et al., 2012). Zooming-in, omics now has the capacity
to sequence the genomes (Raghunathan et al., 2005; Woyke et al., 2009)
and transcriptomes (Ma et al, 2023) of single cells; part of a
broader interest in understanding heterogeneity between single cells
(Hatzenpichler et al., 2020; Kitzinger et al., 2020; Marlow et al., 2020).
Microbiology’s newfound acquisition of spatially resolved (micron to
global) and longitudinal (decades) sequencing data is one exciting new
frontier for omics research (Eren and Banfield, 2024).

2.2 Nucleic acid sequence analyses are
everywhere

Omics use has grown exponentially since its inception
(Gauthier et al., 2019). One indicator of omics use is the rate of
sequence deposits into reference databases. The NCBI Sequence Read
Archive (the major public repository for unprocessed sequence data
globally) has added 25.6 Petabase pairs (2.56 x 10'® base pairs - the
data equivalent of ~6,500,000 human genomes; Nurk et al., 2022) from
2012 to 2021 (Katz et al.,, 2022). The NCBI GenBank (a repository
for assembled sequence data) has doubled in size every ~2 years
from 2013 to 2024, to a total of 3.4 x 10" bp (Sayers et al., 2025).
The number of available reference genomes also indicate use, with
the number of human genomes doubling every 7 months from 2001
to 2015 (Stephens et al., 2015). This exponential data production
has been accompanied with a proportionate development of new
bioinformatics approaches (Gauthier et al., 2019), with a conservative
estimate of 25,000 unique bioinformatics tools produced between
1990 and 2017 (Clément et al., 2018). This flood of data and tools
has created an application bottleneck, where many omics practitioners
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simplify analytical decisions by focusing on the straightforward aim
of recovering genomes to describe the metabolism of focal taxa. This
simplifying approach makes sense in-light of abundant data and tool
options, but we believe that reducing complexity through genome-only
analyses is unnecessary. The apparent complexity of nucleic acid omics
isillusory, with all omics analyses built on a simple and consistent set of
data products and methodologies. In this review we will distill diverse
omics analyses-extending beyond genomes-into their shared data
products, the classes of tools to generate them, and how these tools and
data are strung together into workflows to answer biological questions.
We will begin by describing the five core omics data products.

3 Omics data products: a few goals

Assuming the omics researcher has formulated a scientifically
meaningful guiding question, the next step is to identify tractable
computation goals: “Are we surveying functional and/or taxonomic
content?”, “Do we need to contextualize these data phylogenetically?”,
“Do we want genomes?”, “Do we need to quantify or statistically test our
findings?”, etc. These procedural endpoints allow a bioinformatician
to work backwards to construct an analytical workflow, identifying
midpoint questions and target data products. These data products of
omics (here: genomic, transcriptomic, and marker gene) fall into one
of five classes: 1) sequence files, 2) sequence statistics, 3) taxonomy
tables, 4) function tables, and 5) count tables. These data products
are necessary to any omics analysis and must be incorporated into
a larger biological narrative to be useful. With that in mind, we
describe the general structure and uses for each of these data classes
(summarized in Figure 2).

3.1 Sequence files

Digitized biological sequences are the foundation of all
omics (sequencing described below; “Section 4.1.1 Sequencing
Technologies”) and commonly follow the FASTA or FASTQ formats.
The FASTA format contains both a sequence identifier and sequence
data (nucleic acid residues; Figure 2A) while FASTQ contains the
same information as FASTA files as well as quality scores for
each nucleic acid residue (Q-scores). These quality scores allow
the user to remove low-confidence sequences and/or bases (which
then produces quality filtered FASTA files) before further analysis
(Figure 2A). There are three major types of sequence files: 1) reads, 2)
assembled contiguous sequences (contigs; Box 1), and 3) genomes.
Each of these classes are used to generate the next (reads are used
to make contigs, reads and contigs to make genomes) resulting in
increasingly long context-rich sequences. We will now describe the
characteristics of each of these sequence classes.

3.1.1 Reads

Reads are the raw product of the sequencing platform and the basis
of marker gene (16S rRNA gene), genomic, and transcriptomic studies.
Reads are classified as “short” or “long” depending on the sequencing
technology used to generate them and length of output reads. Short
reads are tens to hundreds of bases long, while it is possible for long
reads to be thousands to millions of bases (Satam et al., 2023). These
reads contain all the (relative) abundance information in a sequence
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FIGURE 2

All nucleic acid sequence-based omics analyses rely on five core data products. Simplified examples of the core data products. (A) Sequence files (two
common formats depicted) are used to encode reads, contigs, and genomes. They contain nucleic acid bases and some supporting metadata.
Sequence files are used to derive all other data products. (B) Sequence statistics are used to describe the contents of a sequence file (often total
number of sequences/base pairs or sequence lengths). (C) Taxonomy tables link sequences to likely source taxa. (D) Function tables link sequences to
their likely functions. (E) Count tables are generated using read data and contain the estimated abundances of each sequence. Bp = base pairs; cond. =
condition; ex. = example; ext. = extension; gen. = genome; seq. = sequence; stats = statistics.

library (Gloor et al., 2017; Box 1), with derivative sequences (contigs
and genomes) requiring reads for quantification.

Reads are the functional unit for marker gene studies, using
fragments to full-length genes to identify microbial taxa (16S
rRNA, rpoB; Thompson et al., 2017) or putative functions (pmoA,
narG; Yu et al, 2024). In genomics and transcriptomics, read
data are generally treated as a steppingstone to assembling contigs
and recovering genomes. However, analysis of unassembled reads
can be valuable as it uses the maximum amount of available
data and therefore provides a relatively unbiased representation
of microbiome gene content (Hauptfeld et al., 2024). Assuming
individual reads are of a length sufficient for confident identification
of homologous sequences (homologs) in a reference database,
unassembled read datasets can be searched to identify taxonomically
(Meier et al., 2017; Dragone et al, 2022) and functionally
(Ortiz et al., 2021; Taumer et al.,, 2022; 2025)
informative marker genes. Read-based approaches can also be used
to sift through reference databases to identify only the datasets that

Maritan et al.,
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include metabolisms or taxa of interest (Speth and Orphan, 2018).
Though read-based analyses have (often untapped) potential, the
most common use of read data is the reconstruction of contigs,
which we discuss next.

3.1.2 Contigs

Contigs are generated by assembling reads into longer nucleic
acid sequences. This approach is used in genomics to create
genomic scaffolds (Prjibelski et al., 2020), and assembly-based
2011).
of total
sequencing effort, as not all reads can be placed into a contig
(Hauptfeld et al., 2024). Despite data loss in assembly, contig
sequences are useful for community taxonomic and functional

transcriptomics to generate transcripts (Grabherr et al.,

Assembled  contigs by definition, a subset

are,

reconstruction because their length enables more accurate
identification of homologs compared to reads. If an assembled
contig contains multiple protein coding sequences (genes of the
same operon), this ‘genomic neighborhood” (Wei et al., 2024)
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can be used to increase confidence in assigning gene function
(Mihel¢i¢ et al, 2019) or taxonomy (Mirdita et al, 2021).
Contig-derived genes are also potential inputs for phylogenetic
reconstruction, enabling contig-based evolutionary and taxonomic
analysis of a microbiome. Though analysis of standalone contigs
is useful, the most common use of contigs is to reconstruct
genomes.

3.1.3 Genomes

Genomes are made by grouping (i.e., binning) contigs with
similar features (details discussed below) into a single sequence
file. In this review, we use the term “genome” to discuss a
collection of sequences that likely come from the same organism,
encompassing genomes recovered from pure cultures and mixed
species consortia (termed: metagenome-assembled genomes;
MAGs). Genome binning, like contig assembly, results in data
loss (Hauptfeld et al., 2024) only examining a subset of the total
microbiome. Despite this, genome-based analyses are appealing
because they create a meaningful association among contigs,
by which taxonomy or functional potential assigned to any
contigs is passed onto all other contigs in the genome. This
analysis allows a researcher to characterize the metabolic potential
of individual microbes (Kohtz et al., 2024) and communities
(Shoemaker et al.,, 2024; Ricci et al., 2025), even if the organisms
containing these genomes have never previously been observed
(Evans et al., 2015; Wurch et al., 2016). Genomes can also be used as
references for aligning transcriptome sequences recovered from
the same environment, thereby identifying expression patterns
in individuals or communities across environmental gradients
(Kitzinger et al., 2020; Porras et al., 2024). Beyond community
description and reconstruction, genomes (Tripp et al., 2008) and
transcriptomes (Bomar et al., 2011) can also be used to optimize
cell culture (Wurch et al., 2016). The methods for generating and
processing each of these types of sequence data are discussed in
greater detail below.

3.2 Sequence statistics

Sequence statistics are derived from sequence files and have
two major purposes: 1) contextualizing a narrative (describing
dataset size/complexity, sampling effort, and/or similarity between
sequences) and 2) normalizing count data. Viewing and analyzing
these statistics typically involves generating tables of total bases in
each sequence library or of individual sequences (reads, contigs, or
genomes; Figure 2B). The methods for generating sequence statistics
are discussed in detail below (“Section 4.2 Sequence Statistics”).

3.3 Taxonomy tables

Taxonomic classification (Box 1) aims to generate tables that
relate a sequence identifier to a taxonomic lineage (Figure 2C).
Taxonomic lineage is assigned to sequence data (reads, contigs,
or genomes) by comparing unknown query sequences against
reference sequences with known taxonomic origin. If the query
sequence is sufficiently similar to a reference, the query is assigned
the taxonomy of the reference (Goris et al., 2007; Jain et al., 2018;
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Parks et al, 2020). The methods for generating taxonomy
tables are discussed in detail below (“Section 4.8 Taxonomic
Classification”).

3.4 Function tables

Function annotation aims to generate tables that relate a
sequence identifier to a descriptor of putative cellular function,
often relating to metabolism, physiology, or behavior (Figure 2D;
Box 1). Functional annotation of sequence data (reads, contigs, or
genomes) compares an unknown query sequence against annotated
(and potentially experimentally validated, although this is not always
possible) reference sequences. There are at least two important
caveats regarding using and interpreting functional annotations.
First, the quality of any annotation is tied to the completeness
and annotation accuracy of the reference database. Sequences
from well represented model organisms (E. coli, Pseudomonas
sp., etc.) and their close relatives can typically be annotated
with high confidence, while genes in non-model organisms will
be less confidently annotated (Goodacre et al., 2014). Second,
while functions identified in genomic data indicate metabolic
potential and functions identified in transcriptomic data indicate
gene expression, neither genomic nor transcriptomic evidence
of putative function proves that amino acids were translated or
their proteins were active. The methods for generating function
tables are discussed in detail below (“Section 4.9 Function
Annotation”).

3.5 Count matrices

Sequence quantification (reads, contigs, or genomes) aims to
generate tables that relate a sequence identifier to an estimate of its
relative abundance in a sample, thereby providing a loose indication
of a gene or organism’s biological significance (Figure 2E). Read
quantification often involves simple counting, while quantifying
longer sequences (contigs and genomes) requires aligning the source
reads to the longer sequences (Aroney et al., 2025). Counts can be
used as a descriptor of community composition (Bollati et al., 2024),
to test hypotheses of differences in abundance of functional potential
or taxa (Maritan et al., 2025), to identify associations between taxa
and environment (Mitchell et al., 2024), or as input for quantitative
modeling (Louca et al., 2016). The methods for generating count
matrices are discussed in detail below (“Section 4.10 Count Data”).

3.6 Putting it all together: merging and
using omics data

These data products are often the midpoint and endpoint goals
of an omics workflow. Once data tables are generated (if all samples,
metadata, and sequences have consistent naming), they can be
merged into a “master table” for downstream filtering, plotting,
phylogenetic inference, statistical tests, or other direct comparisons.
However, merging tables without a specific goal may not be
useful as it can create unwieldy tables with millions of columns
Or TOWS.

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1721028
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Maritan and Stewart

By clearly describing the core data products of all omics, we hope
to make the endeavor less abstract. Thus far we have covered what is
generated from omics (the five core data products), below we address
how omics is executed via specific tools and workflows.

4 The omics toolkit: descriptions of
common approaches, their purposes,
and connections

The toolkit of nucleic acid omics involves extraction and
sequencing of nucleic acids with subsequent processing of generated
sequences to make the data products outlined in Section 3. We
now explore the methods available to do this, with each major
computational step summarized in Figure 3.

4.1 Acquiring sequences

Sequencing is the basis of omics analyses with sequences
generated de novo or downloaded from public databases. In either
case, the quality and utility of any sequence dataset is underpinned
by the quantity and length of output reads and confidence
in the constituent bases-more and longer reads, with high
confidence bases are markers of quality. These qualities are largely
determined by the choice of nucleic acid extraction and sequencing
technology.

4.1.1 Sequencing technologies

Nucleic acid sequencing has had three major technological
generations, each of which are still in-use and have pros and cons
(reviewed in; Cheng et al., 2023; Satam et al., 2023). First generation
sequencing is often referred to as “sequencing by termination”
or “Sanger sequencing” after Frederick Sanger, its inventor and
publisher of the first genome (Sanger et al., 1977a; 1977b;
Figure 1D). This technology sequences one DNA molecule at a time,
producing long sequences with low error rates (Cheng et al., 2023),
and was used to achieve other genome “firsts” (bacterial,
Fleischmann et al, 1995; yeast; Goffeau et al., 1996; human;
International Human Genome Sequencing Consortium et al., 2001;
Venter et al, 2001; Figure 1B). Today, Sanger sequencing is
still in wide use: cheaply characterizing PCR amplicons from
pure cultures and cloned genes, or in sequencing across gaps
between contigs in draft genome assemblies (Drevinek et al., 2023;
Katara et al., 2024). However, it is inefficient for processing dozens
to hundreds of samples simultaneously (Panahi et al., 2024) — a need
for efficient microbiome surveys—solved by later generations of
sequencing.

Second generation sequencing is also known as “next-
generation” or “short-read” sequencing” (Figure 1D) and is
largely synonymous with the most prominent producer of
short-read sequencers: “Illumina” (though expiring patents and
new competitors are driving innovation and price reductions;
Eisenstein, 2023; De Ronne et al., 2025). Short read sequencing
generally entails spatially separating DNA fragments and observing
the synthesis of bases (via fluorescence or pH change), producing
short (25-300 bp) reads (Cheng et al., 2023; Satam et al., 2023).
These reads can be analyzed with minimal processing (16S rRNA
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marker gene sequencing and transcriptomics) or assembled into
contigs and binned into genomes. Genomes can be challenging
to complete using short read data, because complex genomic
regions are often longer than the technology’s maximum read
length (~500bp; Satam et al, 2023; Panahi et al, 2024),
preventing their reconstruction (Mise and Iwasaki, 2022). The
read length limitation has been addressed by third generation
sequencing.

Third generation sequencing is also known as “long-read
sequencing” or by the trade names of the most prominent
producers of long-read sequencers: Oxford Nanopore Technologies
(ONT) or Pacific Biosciences (PacBio; Figure 1D). As the name
suggests, long-read sequencing generates longer reads than second
generation (10 kb+; Satam et al., 2023) which allows each read
to capture greater genomic context (e.g., full length 16S rRNA
genes, near-complete genomes). This technology passes (near-)
full length nucleic acid molecules through a fixed sequencing
unit (conductive pore or modified DNA polymerase), recording
bases as they pass through. This technology can have higher error
rates than short-read sequencing (Panahi et al., 2024), though
it is possible to combine the higher quality short reads and
the greater genomic context of long-reads to create long, high
quality contigs (Antipov et al., 2016; see “Section 4.3.3 Contigs”
below). Additionally, it is important to note that the name “long-
read sequencing” indicates only a technological capacity-not a
guarantee—to produce long reads. Sequenced read length depends
on the length of the nucleic acids provided to the sequencer, which
in-turn depends on minimally fragmenting nucleic acids during
extraction, which we will discuss below.

4.1.2 Nucleic acid extraction and sequencing

Generating new sequence data proceeds via two steps: 1) nucleic
acid extraction and 2) sequencing, where the intended sequencing
technology should inform extraction method. All nucleic acid
extractions aim to lyse cells, expose nucleic acids, remove non-
nucleic acid lysate, and collect enough nucleic acids to sequence
anything. Though all these steps are important, the method of initial
lysis largely determines sequencer compatibility.

Long-read sequencing requires minimally fragmented
(high molecular weight) nucleic acids to produce long reads,
whereas short read sequencing is less sensitive to fragmentation
(Table 1; Zhang et al, 2022). For this reason, extraction
for long-read sequencing should use “gentler” chemical lysis
(detergents: SDS, solvents: Phenol-chloroform, TRIzol, or enzymes:
lysozyme; Trigodet et al, 2022), while short read sequencing
can combine chemical and mechanical (bead beating, freeze-

thaw; Hamilton et al., 2011) lysis to maximize nucleic acid yields.

4.1.3 Data mining

Sample collection, extraction, and sequencing are all costly and
can be reduced by using publicly available sequence datasets (NCBI
SRA, Leinonen et al., 2011; NCBI nt/nr Sayers et al., 2024; EMBL
UniProt; The UniProt Consortium et al., 2025). These datasets,
combined with robust questions can be impactful (see “The
Parasite Awards’, awarded “for rigorous secondary analysis of data”;
https://researchparasite.com/). As examples, Kumagai et al. (2018)
leveraged both public and newly sequenced genomes to explain
the distribution of light harvesting proteins in marine bacteria.
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FIGURE 3

Nucleic acid sequence-based omics analyses are modular and complementary. Generalized workflow for performing marker gene, genomics, and
transcriptomics analyses, with each demarcated by dashed lines. Within a single approach major processing steps are grouped within colored boxes,
with inset, lighter boxes indicating subsidiary tasks. Discrete processing steps are named on white boxes (with example tools for performing the task
alongside), colored boxes are used for clarity, but do not indicate importance. Data inputs and outputs are connected to processing steps with arrows.
All pipelines begin with "Raw Reads" at the top of their respective approach. Marker gene: Marker gene analyses (from targeted amplification and
untargeted genomics/transcriptomics) begin with quality filtering (B,K) and are then used to immediately generate counts and predict taxonomy and
function (C,K). Genomics: All genomic analyses generally begin by quantifying sequencing effort and calculating read statistics (A) and quality filtering
reads (B). Contig-based analyses assemble reads into contigs to generate count, taxonomy, and function tables (D). Genome-based analyses use these
contigs to generate genomes for subsequent generation of count, taxonomy, and function tables (F,G). All genomic analyses are well suited for
comparison against existing sequence databases (H-J). Transcriptomics: Transcriptomic analyses begin by quality filtering reads (L). There is then a split
where some transcriptomics use genomics as a reference (reference-based; (M)) while others proceed independently and assemble RNA contigs
(transcripts) requiring functional annotation and taxonomic classification of each transcript (de novo assembly; (N)) Both reference-based and de novo
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FIGURE 3 (Continued)

sequence(s); tax. = taxon/taxonomy; w/wgd. = with regard to.

transcriptomics quantify expression by aligning RNA reads against the longer reference (genome or assembled transcripts) with the transcript
aligned to determining taxonomy and function, with the number of reads aligning indicating expression (count table; (G,N)) Abd. = abundance,
asse. = assembly; compl. = completion; contam. = contamination; db = database; DEG = differentially expressed genes; diff. = differential; div. =
diversity; fn. = function; GOI = gene of interest; ind. = individual; opt. = optional; QC = quality control; ref. = reference; sam. = sample; seq(s). =

TABLE 1 Summary characteristics of short read and long read sequencers. Highlighting differences in read lengths and nucleic acid extraction methods.

Features

Short read (“second generation”)

Long read (“third generation”)

Usual Read Lengths (bp) 100s

10,000-1,000,000s

Common Manufacturers

Illumina, Element Biosciences

Oxford Nanopore, Pacific Biosciences

Optimal Nucleic Acid Extraction Methods

Mechanical (bead beating, freeze thaw) and/or
Chemical (detergents, enzymes)

Chemical (detergents, enzymes)

While Henriques et al. (2024) used publicly available vertebrate
genomes to reconstruct the evolutionary trajectories of endogenous
viral genes domesticated for host function in placental mammals.
Though studies based on data mining are useful, it should
be noted that papers centered around data mining are always
limited by available resources. It should be noted that the use
of others’ data requires careful attribution of the datasets used
(citations, accession numbers) and potentially the consent of those
who generated the data. Best practices for using and sharing
public data should always be followed and are described in
publishing policies in academic journals, or in review papers
(Sielemann et al., 2020; Hug et al., 2025).

4.1.4 Sequencing effort

For both new and mined read data, it is essential to consider
sequencing effort. When sequencing genome(s), it is essential to
sequence enough to capture the sequence diversity present in
a sample. The relationship between sequencing effort and new
information obtained follows a logarithmic relationship, where
more sequencing recovers more and more novelty, until enough
sequencing has been performed and novelty saturates. Identifying
where a sample lies on the sequencing effort-to-novelty plot is
a measure of sequence “coverage” which describes the fraction
of the genome(s) represented by sequenced reads (Rodriguez-
R and Konstantinidis, 2014). The number of reads needed to
achieve high (>90%) coverage varies by system (Rodriguez-
R et al, 2018), with larger genomes (human) and diverse
microbiomes (sediments) requiring more sequencing effort than
small genomes (phiX) or simple microbiomes (hot springs). A
sample with suboptimal coverage can still be analyzed, but with
the caveat that the analysis will be incomplete due to unidentified
sequences.

4.1.5 Perspectives

Since its invention ~50 years ago, sequencing
quality has improved while costs have decreased
(Cheng et al, 2023; Satam et al, 2023). Sequencing will
continue to evolve as existing technologies mature and new

ones emerge, leaving technology selection a constantly evolving
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decision. Given the increased use of sequencing, public
sequence data will likely continue to expand, a monumental
resource to scientific discovery by secondary analyses. Now,
after acquiring nucleic acid sequences, omics analysis can
begin.

4.2 Sequence statistics

The first products of any omics analysis are generally
sequence statistics, used for narrative or quantitative purposes
(Figures 2B, 3A). For narrative purposes, read statistics are
used to show that there is sufficient sampling to test a
hypothesis (total bp sequenced per sample; Liu et al., 2015). For
contigs, descriptive statistics are used to summarise assembly
success: longest contig, total contig counts, N50, L50 metrics
(Mikheenko et al., 2016). Genome statistics can indicate binning
success: contamination in genomes (Bowers et al., 2017), genome
size (Chklovski et al., 2023), and how representative the genomes
are of a sampled community (percent of reads mapping to all
genomes; Hauptfeld et al, 2024). These statistics should be
generated any time that a sequence file is acquired or produced,
with multiple tools available to streamline these calculations
(reads: Nonpareil3, Rodriguez-R et al., 2018; contigs: QUAST;
Mikheenko et al., 2016; genomes: BUSCO; Seppey et al., 2019;
CheckM2; Chklovski et al, 2023). For quantitative purposes,
sequence statistics are generally used to normalize count data
against the length of the sequence and sequence library size, or
to compare counts across or within datasets (simplified by efficient
tools; SeqKit, Shen et al., 2024). For there to be any sequences
to statistically summarise, we must first apply quality control
standards.

4.3 Quality control
The quality of sequence files should be examined at the levels of

reads (Figures 3B,K), contigs (Figures 3D,N) or genomes (Figure 3F)
to increase confidence in any results.
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4.3.1 Contaminant removal

Non-target sequences (contaminants) should be removed from
a sequence library before downstream analysis (Figures 3B,K(,L).
Contaminating sequences can originate from several sources,
including defined organisms expected to be in the sample but not
the target of inquiry (human DNA sequences in an analysis of
the human skin microbiome) or incidental organisms that should
not be in the sample (plasmid or bacterial DNA in a reagent
solution). Defined contaminants can be removed by aligning the
new reads against a contaminant’s genome or transcriptome and
removing reads that align to the contaminant (Lataretu et al., 2025).
Incidental contaminants are ideally detected by sequencing negative
controls (where no sequences are expected) from various steps of
sampling and sequencing preparation, with any recovered sequences
representing potential contaminants (Fierer et al., 2025). These
sequences can be classified as contaminants based on statistical
probabilities (Davis et al., 2018) or taxonomy (based on taxa known
to contaminate molecular biology reagents; De Goffau et al., 2018).
In cases of limited contamination, it is recommended to remove
(and report) potential contaminant sequences (Clum et al., 2021)
while samples with rampant contamination may need to be
discarded entirely (Fierer et al., 2025). These removed sequences
may represent true biological signals, as knowledge of any biological
system is often incomplete-with any decontamination balancing
description of true novelty and cautious interpretation of data. Now
we discuss standard quality control methods in read data.

4.3.2 Reads

Evaluations of read quality should consider whether sequences
are of: 1) high quality and 2) sufficient quantity for the
planned analyses.

Assessments of read quality should consider both sequence
length and confidence in base assignment. A sequence substantially
shorter than expectations (relative to sequencing technology)
may indicate a poorly sequenced molecule and should be
removed (Martin, 2011). Base confidence (in FASTQ sequence
files) is encoded by the quality-score (Q-score), estimating
the probability that a single base in a sequence is correctly
assigned (A,C,G, or T), with higher Q-scores indicating higher
confidence (O'Rawe et al., 2015). Quality filtering reads first trims
sequences to remove low quality (user specified Q-score) bases,
with the whole sequence discarded if trimming shortens it past a
minimum length (TrimGalore! - https://github.com/FelixKrueger/
TrimGalore), a process that should be performed before assessing
sequence quantity or performing other omics analyses.

The necessary number of reads is dependent on the
type of sample, with more complex microbiomes requiring
sequencing than (Rodriguez-R
Konstantinidis, 2014). Sampling sufficiency can be assessed using

more simple ones and
rarefaction analysis, where cleaned reads are randomly subsampled,
a metric of novelty calculated at each increment, and then plotted
against one another (sequence diversity vs. read number; Rodriguez-
R et al, 2018). If novelty saturates (asymptotes) with increased
read number, most of the sequence diversity was captured, whereas
a linear relationship-without saturating-indicates unsequenced
diversity. Unrepresentative samples can be resolved with more
sequencing, but if this is not possible, such samples can still provide

useful-though caveated-information. Next, we discuss contigs.
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4.3.3 Contigs

Evaluations of contig quality should consider 1) assembly quality
and 2) if the assembled contigs represent the sequenced reads.

Assessments of assembly quality typically consider the number
of contigs, length of the longest contig and the metrics: L50 and N50.
Acceptable values for the number of contigs and longest contig can
vary depending on study goals and sequencing technology used, but
large values for both metrics indicate a better assembly. The metric
N50 calculates the length of the shortest contig at which all contigs
as long or longer than the N50 value encompass 50% of the contigs—a
weighted median contig length. Larger N50 values indicate that an
assembly consists of longer contigs, generally indicating assembly
success (International Human Genome Sequencing Consortium
etal, 2001). The metric L50 represents the smallest number of
contigs whose summed length constitutes half the total length
of the assembly. A large N50 value combined with a smaller
L50 indicates that the assembly is composed of a few long
(likely data-rich) sequences (Bradnam, 2015). Though informative,
using contig length to infer assembly quality requires caution,
as these metrics are useful to compare assemblies against one
another-especially when assembling a single genome-but in a
mixed microbiome, small contigs are not necessarily a problem.
Short (<2,000 bp) contigs can still provide valuable information
and can be common for communities enriched in plasmids,
viruses, mobile genetic elements, or low-abundance microbes
(Maguire et al., 2020; Kieft and Anantharaman, 2022). These
short contigs are often removed by default when binning genomes
(Alneberg et al, 2014), with the justification that the average
bacterial gene is ~1,000 bp (Xu et al., 2006) and shorter contigs
are unlikely to contain complete genes. This removal can discard
valuable genetic context and should be performed with full
knowledge of the risks for data loss.

Assessing the representativeness of assembled contigs for a
microbial community often involves aligning the un-assembled
reads to the assembled contigs (Aroney et al., 2025). The percentage
of reads aligning to the contigs indicates how much of the original
information is present in the derived contigs. If the percentage
of reads aligning to contigs is high (>90%) then the contigs can
be considered representative of the community while a low value
(<50%) indicates that the contigs are not representative. In cases
of unrepresentative contigs, the assemblies still contain useful
information for individual genomes, but community-scale inference
may require refining contig assembly (parameter optimization, more
sequencing) or performing read-only analyses (see Section: 4.4
Read-based Marker Gene Analyses”). Next, we discuss quality
control in genomes.

4.3.4 Genomes

Genome quality is most often assessed by the metrics of
“completeness” and “contamination”, for which there are published
quality standards (Bowers et al., 2017). User-friendly tools exist to
calculate both metrics, with new versions accounting for whole-
genome features (Chklovski et al., 2023). For illustrative purposes,
we will describe quality estimation using older methods-that use a
constrained number of single copy marker genes-as they are more
tractable for beginners (Parks et al., 2015). In the marker gene-
based approach, genomes are screened for the presence of a set
of single copy marker genes, with the assumption that a complete
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genome should have only one copy of each gene in the set. In this
approach, completeness is estimated as the percentage of marker
genes detected in the genome with contamination based on how
many times a single copy gene was duplicated—potentially indicating
errors in assembly or binning. Ideally, genome analysis would be
performed on whole uncontaminated genomes, but this is often
impossible due to limited sequencing data, requiring the use of
incomplete or contaminated genomes. These imperfect genomes can
still provide useful insights, if caveats in the interpretation of these
data are acknowledged.

Despite the utility of standard quality metrics, there are cases
where they are misleading. First, relying on simplifying metrics
obscures reality. Computationally, a “complete” genome does not
mean that the genome is “closed” or “finished” (i.e., represented
by a single contig without gaps; Bowers et al., 2017) which is an
even higher standard of quality. Further, many studies only analyze
“high to medium quality” genomes (Bowers et al., 2017), potentially
discarding other genomic data that does not conform to the
expectations of “completeness’, including endosymbionts, plasmids,
and viruses, all essential components of a system. Combining
both challenges, obtaining a “complete” or “closed” genome
cannot assess if a single organism contains multiple chromosomes
(Rhizobium, Landeta et al., 2011) and/or nucleic acids from other
sources (viruses, plasmids, endosymbionts). These shortcomings are
systemic but can be overcome with intentional analysis. Obtaining
closed genomes often requires focused efforts (long read and/or
deep sequencing), while recovering overlooked plasmids and viruses
can come from otherwise discarded data (Fogarty et al., 2024).
Identifying which chromosomes, endosymbionts, plasmids, and
viruses reside inside one organism requires sequencing single cells
(i.e., single amplified genomes; Labonté et al., 2015) to gain a fuller
understanding of their importance and functions. Now, we move on
to discuss the use of marker gene surveys in omics.

4.4 Read-based marker gene analyses

Quality controlled reads can be used to provide insight
into the taxonomy or functional potential of an organism or
community through the analysis of marker genes. Genes are
considered “markers” if they are involved in metabolisms of
interest (e.g., nifD: encoding the nitrogen fixing Nitrogenase
molybdenum-iron protein alpha chain or mcrA: encoding the
methane producing Methyl-coenzyme M reductase I subunit alpha)
or can be used to reconstruct evolutionary relationships (e.g.,
16S rRNA gene or rpoB encoding the beta subunit of bacterial
RNA polymerase). Such genes are typically well represented in
existing databases, serving as useful references for comparison
(phylogenetic analysis). Marker gene analyses most commonly use
targeted amplification and sequencing (Figure 3C). As an example
of taxonomically informative marker genes, Lozupone et al. (2013)
used 16S rRNA gene amplicons sourced from global sequencing of
human microbiomes to identify forces structuring communities
including disease status and body site. Surveying function,
Dumont et al. (2014) used gene amplification for pmoA (particulate
methane monooxygenase, beta subunit) to identify the presence
of methanotrophic bacteria and delineate phylogenetic clusters.
Somewhat less commonly, marker genes can be recovered
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from untargeted metagenomic and transcriptomic sequencing
(Figure 3K), where reads are aligned to marker gene databases,
with confident read alignments to a gene indicating its presence and
abundance. For example, Maritan et al. (2025) searched marine
sediment metagenomes for metabolic marker genes involved
in aerobic and anaerobic metabolisms in coral reef sediments.
For taxonomy, Urayama et al. (2024) surveyed the prokaryotic
taxonomic composition of metagenomes from several hot springs
using fragmentary rRNA sequences before digging deeper into
the sequences of co-existing viruses. Both amplification and
genome/transcriptome applications are appropriate for targeted
questions that involve the constrained goals of identifying
specific metabolisms or taxa. While the genomic/transcriptomic
approaches have the advantage of being able to initially query the
whole dataset (Hauptfeld et al., 2024) for specific genes and later
studying more detail though assembly and binning, which we will
discuss next.

4.5 Contig assembly and analysis

Contig assembly aims to reconstruct longer and more
information-rich sequences from shorter reads. This process entails
two steps: 1) normalization and 2) assembly.

4.5.1 Read normalization

Read normalization (Figure 3B) reduces the computational
burden of contig assembly by limiting the amount of data
passed to the algorithm. This is achieved by subsampling
redundant sequences and removing low abundance sequences
(that are unlikely to assemble). Normalization is appropriate for
diverse (e.g., sediments; Maritan et al., 2025) and simpler (e.g.,
hot springs; Colman et al., 2024) samples. Read normalization is
straightforward to implement with tools like bbnorm, developed
by the Joint Genome Institute (“https://sourceforge.net/projects/
bbmap/”), where read data is input and normalized, with the output
generally ready for contig assembly.

4.5.2 Contig assembly

Assemblers (Figures 3D,N) use short reads to reconstruct
longer sequences (DNA or RNA). Detailing assembly algorithms
is beyond the scope of this review (described in Ekim et al., 2021;
Yang et al., 2021), but illustratively, assemblers look for overlap
between reads and use this overlap to create longer and longer
sequences (Ayling et al., 2020). There are two major classes of
assembly: 1) guided and 2) de novo.

Guided (i.e., reference-based) assembly aligns reads to
sequences from related organism(s), serving as a scaffold to guide
placement of the read data. These guide sequences should be sourced
from organisms closely related to those in the reads and can be
a reference genome (i.e., reference guided assembly Lischer and
Shimizu, 2017); or long read data from the same sample (i.e., hybrid
assembly, Antipov et al., 2016).

De novo assembly has two varieties: 1) individual, and 2) co-
assembly. In individual assembly, reads from a single sample are
assembled into contigs. In that case, all assembled contigs are
by-definition present in that sample. In co-assembly, reads from
similar samples (soils from the same site; Riley et al., 2023) are
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combined and then assembled as a single dataset. This is often
done with the aim of generating contigs from lower abundance
organisms (Riley et al., 2023). Some resultant contigs from a co-
assembly might not be present in all the source samples, but
presence/absence can be determined by quantifying abundances
of the contigs in the sample (see “Section 4.10 Count Data’).
In co-assembly, reads should be normalized after combining
samples, thereby potentially retaining low abundance sequences
that might have been removed in individual normalization. To
maximize contig recovery, it is possible to assemble contigs
using both individual and co-assembly approaches and then later
remove any duplicated sequences (see “Section 4.7 Sequence
dereplication”).

These contigs can be used to study standalone genes, plasmids,
or viruses. For example, contigs were used by Priest et al. (2025)
to identify seasonal patterns of functional potential in the Arctic
Ocean, while Fogarty et al. (2024) searched for novel plasmids in
human gastrointestinal tracts, and Zhong et al. (2024) identified
viruses encoding methane cycling genes. Though these contig-
analyses are useful, the most common use of contigs is binning
into genomes.

4.6 Genome binning and analysis

Creating genomes from contigs (Figure 3F) involves grouping
contigs into distinct, taxonomically coherent “bins”. These
bins represent draft genomes that must then be evaluated
for quality, completeness, taxonomy, and function. Genomes
binned using sequences from pure culture isolates or single
(SAGs) may be
(Conrad et al, 2022). In contrast, genomes binned using

amplified genomes considered ~ “strains”
sequences from community sequencing are called metagenome-
assembled genomes (MAGs) that often represent consensus
sequences from multiple closely related strains sharing similar but

non-identical genomes (Meziti et al., 2021).

4.6.1 Binning contigs

Binning programs (binners) separate contigs

typically
into bins based on shared genomic features and read depth
(Bowers etal., 2017). Binners assume that intrinsic genomic features,
such as GC content and oligonucleotide (i.e., k-mer) frequency,
are consistent across a genome (Bussi et al, 2021), allowing
an initial univariate (GC) or multivariate (k-mer composition)
separation of contigs into clusters. These initial clusters can be
refined with the additional assumption that contig read depth-as
measured by the number of reads aligning to each assembled
contig-is also consistent for all contigs for a given genome
(Sharon et al, 2013). Each individual binning tool generally
implements all or some of these approaches (Alneberg et al., 2014),
creating draft genomes that can be further refined, annotated, and
compared.

4.6.2 Genome improvement

Maximizing the accuracy and information content of individual
genomes can be done by selecting the highest quality genomes
generated using multiple binning programs (refinement) and
reassembling high-quality genomes (reassembly).
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Refinement starts by using multiple binners to generate
somewhat redundant bins. The resulting genomes from each of
these binners are compared to find the highest quality genomes
with the highest completion and lowest contamination values.
Each chosen genome is placed in a final bin set, often with a
cleaning step to ensure each contig is only found in a single-highest
quality-bin (Uritskiy et al., 2018). Reassembly uses high quality
(quality controlled, refined, and/or dereplicated) genomes to try to
re-generate these genomes with even better contigs. This involves
aligning the original quality-controlled reads to each genome
to “isolate” sequences for an organism of interest. These reads
can then be re-assembled using a non-metagenome assembler
(SPAdes instead of metaSPAdes; Uritskiy et al., 2018), repeating
alignment and re-assembly until achieving a genome with the
greatest completion and smallest contamination values possible
(Kitzinger et al., 2020).

4.6.3 Shortcomings and hazards

While useful and widespread in omics, genome binning
does have shortcomings. First, not all sequences can be binned.
Binning relies on high quality assemblies that can be grouped
based on sequence similarity-which requires that disparate
parts of a single genome have similar sequence characteristics
(Nelson et al., 2020). This assumption may not be true for genome
fragments that have been acquired by horizontal gene transfer
(HGT), carrying sequence characteristics different from those
of the recipients genome (Mise and Iwasaki, 2022). Similarly,
genetic elements not incorporated into a genome (such as plasmids
and viruses; Eren and Banfield, 2024) or second chromosomes
(Landeta et al., 2011) do not meet the assumptions of binners.
Without contiguity and/or sequence similarity to the focal
chromosome, HGT-derived genes, mobile genetic elements, and
second chromosomes may be erroneously separated from their true
genomic neighbors (Maguire et al., 2020). Second, intergenic or
non-protein coding genomic regions (ribosomal RNA operons)
and genomic regions with repetitive sequence features, are often
challenging to assemble or bin correctly and are underrepresented
in genomes (Mise and Iwasaki, 2022; Wilbanks et al., 2022). Third,
in samples containing multiple closely related organisms, genome-
approaches collapse strain-level microbial diversity, blurring
intra-species genomic boundaries (Wilbanks et al., 2022) and
obscuring genomic novelty. In these instances when binning
excludes sequences or blurs organism boundaries, analysis of
binned data may lead to inaccurate measurements of community-
level diversity, fail to detect certain taxa or functions, and
provide an incomplete view of the genomic environment of
cells.

Many of these shortcomings can be minimized. Complex
and HGT-derived genomic sequences can be definitively linked
to their genomes using long-read sequencing to sequence across
ambiguous genome space (Wilbanks et al., 2022). Capturing the
diverse genomic material (chromosomes, plasmids, viruses) in a
single cell can be achieved with single amplified genome (SAG)
sequencing. SAGs also provide strain-level genomes, helping to
resolve heterogeneity among closely related genomes. Once reads,
contigs, and genomes are generated, they can be simplified by
dereplication before analysis.
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4.7 Sequence dereplication

Sequence redundancy is common from reads to genomes and
can be removed to reduce computing requirements or analytical
repetition. Dereplication calculates sequence similarity between
sequences (reads, contigs, and genomes) with an array of programs
(VSEARCH, Olm et al., 2017; Rognes et al., 2016; MMSeqs2;
Steinegger and Soding, 2017; CD-HIT; Fu et al., 2012) and then uses
similarity cutoffs to create clusters of similar sequences (sequence
clustering; Box 1). Once sequence clusters are identified, the highest
quality sequence in each cluster can be extracted and used as a
representative for all other sequences in its cluster. In read data,
clustering is most frequently seen in taxonomic marker gene analysis
using operational taxonomic units (OTUs; Hughes et al., 2001; Box
1). Contig clustering often takes the form of gene catalogues, where
protein coding sequences on a contig are clustered, often principally
by taxonomy and then by sequence similarity (Muratore et al., 2022;
Priest et al, 2025). Finally, genome clustering is most often
used for dereplication of entire genomes (Figure 3F). In all these
use cases, dereplication by sequence similarity is a powerful
and unbiased approach to simplify similar sequences. These
sequences are now ready for taxonomic classification and functional
annotation.

4.8 Taxonomic classification

4.8.1 Roadmap for implementation

Many analyses aim to connect sequences with taxonomic
labels (reads, Figures 3C,K; contigs; Figures 3E,N; and genomes;
Figure 3G). Taxonomic classification often relies on aligning an
unknown query sequence against a database (untargeted: NCBI
nt/nr; or molecule-specific: SILVA rRNA) of sequences with defined
taxonomies (i.e., subject sequences), with the query inheriting
the taxonomy of its-sufficiently similar-best aligned subject
sequence. A common implementation of taxonomy-by-alignment
involves using the NCBI BLAST webserver (Camacho et al., 2009;
https://blast.ncbinlm.nih.gov/Blast.cgi) to align a query against
one of multiple databases, providing accessible fast taxonomies.
Alignment-based classification is effective (Jain et al., 2018) but can
be supported by estimating evolutionary divergence of the query
sequence compared to taxonomically resolved homologues. These
homologues are selected to include both close and distant relatives
of the query and used to construct a phylogenetic tree (see “Section
4.11 Phylogeny”). In this method, the query inherits the taxonomy of
its-sufficiently similar-closest neighbor. Implementing phylogenies
is straightforward with multiple tools for automated (GTDB-
tk, Chaumeil et al, 2022) and semi-automated (PhyloPhlAn,
Asnicar et al., 2020; MarkerFinder; Martinez-Gutierrez and
Aylward, 2021) phylogenetic classification, providing broad access.

Though both direct-alignment and phylogenetic placement are
applicable to read, contig, and genome based-analyses, longer
sequences encode more evolutionarily relevant information and
thus provide better taxonomic resolution than shorter ones. This is of
limited concern for genome-based analyses (containing Megabases
to Gigabases; Milo and Phillips, 2015) but can produce less reliable
taxonomy for reads (100-250 bp; Hauptfeld et al., 2024). Read
length limitation can be overcome by using reads to reconstruct and
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classify the more informative contigs and genomes, then assigning
the constituent reads the taxonomies of their contigs and genomes.
Ultimately, this multi-step classification combines the taxonomic
clarity of genomes and the community representation of reads
(see “Section 4.4 Read-based Marker Gene Analyses”) to achieve
a high-quality understanding of the sequenced community (and is
implemented in open access tools; Hauptfeld et al., 2024).

4.8.2 Shortcomings and hazards

A note for users, the quality of taxonomic classification is
dependent on the completeness of the reference database. Under
ideal circumstances, database subject sequences originate from
an isolated, living specimen providing a confident association
between database taxonomy and a living organism. As sequencing
captures more diversity than exists in-culture, connecting a query
sequence to a type specimen is often not possible, instead requiring
comparison to uncultured sequences (MAGs; Murray et al., 2020).
This means that assigning taxonomy to divergent organisms
requires more effort (phylogenies; Eme et al, 2023) than in
organisms closely related to models (E. coli and Staphylococcus
aureus), potentially requiring the creation of new taxonomic
groups (Rinke et al., 2013; Murray et al., 2020). Another potential
concern for assigning taxonomy is the influence of horizontal
gene transfer. The exchange of genes between organisms (bacteria-
bacteria, Tschitschko et al., 2024; bacteria-virus; Li et al., 2025;
bacteria-eukaryote; Porras et al., 2024) can obscure the evolutionary
lineage of any one sequence. Disentangling the current genomic
placement-and taxonomy-of any gene generally requires situating
it in a complete, contiguous genome.

Taxonomy is a useful, but incomplete classification of living
organisms (Aldrich, 1927; Staley, 2009; O'Brien and Luo, 2022).
Indeed, ecosystem-scale analyses (biogeochemistry) sometimes pay
little to no attention to taxonomy, focusing only on functions
encoded in nucleic acids. In aid of both taxonomy-agnostic or
-informed analyses of encoded functions, we will next discuss
functional annotation.

4.9 Function annotation

The encoded biochemical outputs (expressed RNA and
translated proteins) are the focus of many analyses. The
act of assigning inferred function to a sequence is called
annotation. Functional annotation of reads (Figures 3C,K), contigs
(Figures 3E,N), or genomes (Figure 3G) predicts the potential
cellular activities of nucleic acid molecules (rRNA, tRNA) or-most
commonly-of encoded proteins. Like taxonomic classification,
functional annotation compares a query sequence against a database
of annotated reference sequences. Under ideal circumstances, prior
experimental studies have confirmed the biochemical function of
molecules encoded by the reference sequences.

Annotations of non-protein coding regions are identified
directly from nucleic acid sequences (rRNA: Barrnap, https://
tRNA: tRNAscan,
Eddy, 1997) while protein coding genes are either identified

github.com/tseemann/barrnap; Lowe and

directly from reads or from identified protein coding regions

(from reads, contigs, genomes). Identifying protein coding regions
(i.e., open reading frames, ORFs; Box 1) searches for their
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molecular characteristics (e.g., start and stop codons; tools: Prodigal,
Hyatt et al., 2010; FragGeneScan; Rho et al., 2010) outputting likely
protein-coding sequences for use in homology searches.

Functional annotation is performed as either a targeted
or untargeted search. A targeted search focuses on dozens of
genes of biogeochemical or ecological significance (Leung and
Greening, 2020; Zhou et al, 2022), identifying the potential
for a microbiome to perform specific functions of interest.
Targeted searches can input short reads (Dragone et al., 2022;
Bertagnolli et al., 2023) or open reading frames (Priest et al., 2025).
This approach can be used to quantify the presence of catalytic
genes in a sample. For example, Dragone et al. (2022) searched
Antarctic soil metagenomes for genes involved in trace gas cycling
to quantify the genomic potential of the entire microbiome to
utilize trace gasses across multiple environments. Targeted searches
are also useful as an initial screening of large genomic datasets
(reads to genomes) before digging deeper. For example, Speth and
Orphan (2018) were interested in the diversity of methanogens
across thousands of publicly available metagenome datasets. To
save computing time, they pre-screened datasets for the presence
of diagnostic methanogen gene mcrA (Methyl coenzyme M
reductase), only assembling contigs and binning genomes from
mcrA positive datasets.

Untargeted searches do not have specific genes of interest,
instead aiming to annotate as many sequences as possible. This
approach is best suited to ORFs because they contain enough
genomic content to be confidently annotated against hundreds of
thousands of reference genes. This endeavor often starts off semi-
targeted, using tools searching for tens of thousands of specific genes
(Prokka, Seemann, 2014; KofamScan; Aramaki et al., 2020). The
sequences that remain un-annotated after this first pass may still be
amenable to annotation and can then be queried against even more
comprehensive databases (NCBI nt/nr, UniProtKB). If homologs
to these sequences cannot be identified, a cautious approach is
to designate such ORFs as “proteins of unknown function’, or
“hypothetical proteins” The functions of these hypothetical proteins
may be inferred based on the functions of nearby sequences (within
the same operon; Mihel¢i¢ et al, 2019) or demonstrated using
non-omics approaches (biochemistry and cell biology; discussed
below). An untargeted approach will generate a lot of annotations
and is most tractable when constraints are applied to its analysis.
One way of constraining the analysis is by examining only a few
genomes in-depth. For example, Mitchell et al. (2024) sought to
examine gene expression for a single bacterium, using five semi-
targeted tools and the NCBI non-redundant protein database to
annotate the genome. Another method to constrain the large
volume of information from an untargeted analysis is to use an
annotation system with a simplifying gene hierarchy (ontology; Box
1). For example, Kelly et al. (2019) annotated seawater metagenomes
with the SEED subsystem database-grouping genes by functional
categories—which they used to collapse annotations into functional
groups, making the analysis of thousands of sequences tractable.

Mechanistically, functional annotation often relies on sequence
alignment or Hidden Markov Model (HMM) searches. Alignment
compares a query sequence (nucleotide or translated amino acid)
to a functionally annotated subject sequence, identifying regions
of sequence similarity. If the two sequences are sufficiently similar,
the query sequence is assigned the annotation of the subject.
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The most common sequence aligners are those of NCBI's Basic
Local Alignment Search Tool, which work by finding identical
sequence fragments (substrings) between a query and reference
and then expanding the alignment outward from the region of
identity (BLAST, Camacho et al., 2009). BLAST searches can be
performed via a web interface that accesses NCBI’s servers directly
or-more efficiently-using BLAST software installed locally. BLAST-
based homolog identification can be computationally intensive
but is generally accurate (Al-Fatlawi et al., 2023). In the decades
since BLAST was introduced, other alignment alternatives have
been developed, with many of these being faster and equally or
more accurate (DIAMOND, Buchfink et al., 2015). HMM-based
approaches use databases of homologs to build a profile/model for a
protein or protein domain of interest. This HMM profile contains
features (the probabilities of different amino acids at different
positions) intrinsic to the protein or protein family and can be used
to search a sequence dataset to identify putative homologs with
high confidence (details of HMMs reviewed in Mor et al., 2021).
HMMs can be more sensitive than BLAST searches in identifying
distant homologues (Kirsip and Abroi, 2019) but require training
on high quality sequence data. Fortunately, several repositories
of pre-trained HMMs are available (TIGRFAM, Haft, 2001) with
some integrated directly into annotation tools (KofamKOALA,
Aramaki et al, 2020). Though not widespread yet, attention-
based artificial intelligence also holds great potential for functional
annotation (Hwang et al., 2024) and prediction (Jumper et al., 2021)
but is beyond the scope of this brief overview.

An important note, confidence in any gene’s annotation is a
balance between effort and confidence. Many genes can be annotated
quickly-to a high degree of confidence-but approaching “proving”
that an encoded gene can perform a function requires increasing
effort. This may require narrowing the focus from many (10,000+)
to a few (1-10) genes, eventually departing from omics altogether
for the domains of biochemistry and molecular genetics (Table 2).
Protein purification or heterologous expression should only be used
for absolute proof, as-in most cases—automated gene annotation
or simple phylogenies are sufficient to hypothesize the functions
of a gene. Solid annotations lay the foundation to compare
gene prevalence, abundance, or expression between systems via
quantification.

4.10 Count data

Quantifying omic features in a dataset (reads, Figures 3C,K;
contigs; Figures 3E,N; or genomes; Figure 3G) uses read data. Read
quantification involves counting reads of a given type (reads aligning
to marker gene regions), typically followed by normalization to
sequencing effort (e.g., Reads per Megabase of sequencing). Contig
or genome quantification requires aligning reads to these longer
sequences, typically followed by normalizing for contig/genome
length and dataset size (e.g., Reads Per Kilobase of Contig per
Megabase of sequencing). It should be noted that alignment-
based quantification may overestimate sequence abundances with
methods developed to counteract this (TAD80; Viver et al., 2021).

Count data are prevalent across genomic studies, estimating the
abundance of genes (Dragone et al.,, 2022; Maritan et al., 2025;
Ricci et al, 2025) and microbes (Steinsdottir et al., 2022;
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TABLE 2 Increasing confidence in functional annotation is increasingly time intensive and eventually requires non-computational approaches: A simple
workflow for increasingly confident annotations with steps, actions, realistic number of sequences to analyze, interpretations, and examples in the

literature.

Action

Number of

sequences analyzed

with this technique
in one study

If confirmatory,
what does this tell
you?

Published example

Target sequence is sufficiently

and molecular biology

interest and biochemical assay

1: Identify likely homologues Identify candidate homologues 10,000+ similar to known sequence to Screen thousands of genes
(BLASTn/p, HMM) be a homologue, though may (Anantharaman et al.,, 2016)
include false positives
Phylogenetically place gene of Target sequence is situated

2: Contextualize interest against high 10s with other sequences known to Tree genes of interest (Graf

phylogenetically confidence (SwissProt) gene perform the function of etal, 2021)

sequences interest
4: Identify essential motifs and Identify key motifs (Pfam) and Target sequence possesses Identify functional residues
structures structures (AlphaFold) 10s necessary architecture for (Porras et al., 2024)
claimed function
5: Assay with biochemistry Knockout or clone gene of 1-2 Target sequence performs the Clone gene

assayed function

(Tsementzi et al., 2016)

Shoemaker et al.,, 2024) in a sample. In transcriptomics, cDNA-
derived reads are aligned to a reference sequence (genome,
Bertrand et al., 2015; or assembled transcript; Sorek et al., 2018)
to estimate transcription levels of genes. Metagenome and
metatranscriptome studies can also quantify exact numbers of
transcript molecules per amount of sample or per gene copy number.
This is most precise when mRNA or genomic DNA standards are
spiked into samples (Moran et al., 2013; Nowinski et al., 2023)
but can also be estimated by normalizing gene expression to
measured biochemical properties (expressed mRNA per gram soil;
Sollinger et al., 2018; Tdumer et al., 2022). This allows precise
quantification of omics data and can be especially useful for
estimating changes in metabolic activity.

These count data of gene abundances and expression levels
provide a basis for hypothesizing about the function of a
system but generally require other methodologies for confirmation
(quantitative PCR, cell counts, chemical measures, or cell culture).

4.11 Phylogeny

Because phylogenetic inference is essential to taxonomic and
functional omics analyses, we will briefly summarise the methods
for phylogeny construction here. However, we note that this is only
a primer and does not cover all the details needed to correctly
perform these analyses. For more in-depth discussion, we direct
readers to excellent reviews describing the principles and tools for
phylo-genetics/-genomics (Kapli et al., 2020; Steenwyk et al., 2023).

A phylogeny or phylogenetic tree (Figure3]) shows the
evolutionary relationship of a focal sequence relative to reference
sequences. Interpreting a phylogeny involves examining two key
features: 1) topology and 2) branch length. Topology describes
the shape of a phylogenetic tree, including branching patterns
and clusters of sequences (Kapli et al., 2020). Assuming there is
statistical support (via bootstrapping) for the groupings in the tree,
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sequences clustering together is often used to support claims that
a focal sequence shares evolutionary history with a taxonomic
(Eme et al, 2023) or functional (Porras et al, 2024) group,
permitting classification or annotation. Conversely, divergence
between sequences can be used to delineate new taxonomic
groups at coarse (Woese and Fox, 1977; Lane et al., 1985) or
fine phylogenetic scales (Tsementzi et al., 2016) and follow up
with the question: “what changes have accumulated between two
diverging sequences” (e.g., individual sequences, Major et al., 2017;
whole genomes, Conrad et al., 2022). Branch length-in a rooted
tree—describes the distance from a phylogeny’s root to any
tip, serving as a proxy for a lineage’s age. Time calibrated
branch lengths (using dated fossils or geochemical evidence to
contextualize divergence) provides insights into the exact timing
of diversification (Damsté et al., 2004; LaJeunesse et al., 2018).
Beyond describing divergence timing, branch lengths can be
used to quantitatively assess how evolution drives ecological
associations (Colman et al., 2024).

The creation of a phylogeny comprises three main steps:
1) sequence acquisition, 2) multiple sequence alignment, 3)
phylogenetic inference (reviewed in Kapli et al., 2020). Both nucleic
acid and amino acid sequences can be used for phylogenetic
inference. It is common practice to use nucleic acids to resolve
closely related organisms (due to more combinations available for
nucleic acids to specify any codon than for amino acids) and amino
acid sequences for more distantly related sequences, though nucleic
acids and amino acids may provide similar resolution for distant
relationships (Kapli et al., 2023).

The first step of sequence acquisition involves identifying
sequences for phylogenetic reconstruction. This can be done
manually (BLAST genomic sequences against a gene of interest
reference database) or automatically (MarkerFinder, Martinez-
Gutierrez and Aylward, 2021). If the analytical goal requires
comparing homologs only, it may be necessary to remove potentially
non-homologous-but similar-sequences identified by sequence
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searches. This step often requires manual inspection and can be
time-intensive (reviewed in Kapli et al., 2020). The product of
sequence acquisition-a set of confident homologues-is the starting
point for the next step, multiple sequence alignment (MSA).
MSA compares sequences to correctly orient homologous base
or amino acid positions along the sequence. This results in a
matrix in which the rows indicate sequences and columns indicate
homologous positions in a sequence, with residues (bases/amino
acids) shared among sequences at the same position often
indicating shared ancestral patterns of sequence change. If creating
a phylogeny from multiple genes, genes may be first combined
(concatenated) and then aligned or first aligned separately and
then concatenated, in both cases creating an MSA supermatrix.
The accuracy of phylogenetic reconstruction depends intrinsically
on the accuracy of the MSA. Therefore, any MSA should be
manually examined after the (typically) automatic step of alignment,
potentially to verify strandedness of homologues (so as not to
mistakenly compare palindromic regions), remove sequences that
align poorly or with high percentages of gaps, or mask ambiguously
aligned regions (Kapli et al., 2020). Finally, phylogenetic inference
involves generating a bifurcating tree that estimates evolutionary
relationships based on shared residues in the MSA and a model (set
of assumptions) about the process of sequence change. This step can
be performed by creating and merging multiple trees from each of
the aligned genes or a single tree from the gene supermatrix. The
methods for constructing trees are diverse and vary in the extent
to which they estimate and incorporate parameters describing the
evolutionary process and, consequently, the time and computational
resources required for the analysis (Kapli et al., 2020).

Phylogeny, and all the previously described tools, were given
only a brief treatment. Our aim was to provide a foundation for
readers to seek out more in-depth guides as needed. We will end
our discussion of tools by highlighting new frontiers for omics
application.

4.12 Contextualizing across datasets, time,
space, and conditions

Individual tools are essential to produce the core omics
data products, but once these data are produced, an omics
scientist has the freedom to use these results to answer any
number of scientific questions. We suggest that omics users
make full use of publicly available databases to place their
results into larger contexts (Figures 3H-J). Using public data,
a researcher can compare their sequences against other similar
(or different) studies to identify: shared or disparate trends
(meta-analysis: Thompson et al, 2017; Kumagai et al, 2018;
Ruff et al.,, 2024), reconstruct evolutionary histories (phylogeny:
Hug et al, 2016; Eme et al, 2023), spatial distributions
(biogeography: Hiarer and Rennison, 2023; Zhou et al.,, 2024),
or driving environmental factors (modeling: Louca et al, 2016;
Lui et al.,, 2021; Ramoneda et al., 2024; Chuckran et al., 2025).
Each of these contexts is a discrete field with its own norms and
tools beyond the scope of this review. In any case, situating omics
findings in a broader context is almost always a worthwhile exercise
that generally increases the utility and impact of omics research.
We conclude this review with some final suggestions for new
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practitioners from our own experiences learning and teaching
omics.

5 Tips for new practitioners

Starting to perform bioinformatics is formidable with
layers of challenges. First, there are the concrete ones, learning
how to code and manage terabyte sized sequencing datasets.
Second, there is the conceptual task of designing workflows
to generate useful results. Once these challenges are cleared,
there remains the most formidable challenge, performing
scientifically meaningful “experiments” on the computer. Thus
far, this review has focused on the conceptual task of designing
workflows for useful results. We will end with some suggestions
for future work and literature to handle the fine details of
coding and the broader issue of asking meaningful scientific
questions.

5.1 Bioinformatics advice

5.1.1 Opportunities for further training

Readers of this review should leave with an understanding
of the motivations and methods of nucleic acid omics. For
some readers, this review will be sufficient for their goals of
digesting the “methods” sections of manuscripts, while others
seeking to analyze data independently will need more specific
training.

For those looking for additional training, we recommend three
types of resources ordered from most accessible to most specialized.
First, for guided exposure to using real data to run specific omics
analyses, we recommend computing workshops or courses (in-
person or online). Such workshops can be broad (binning MAGs)
or specific (machine learning for protein prediction), providing an
opportunity to develop a range of skills. Second, for self-guided
learning of specific computing topics (read mapping to quantify
transcripts, identifying viruses in omics data), we recommend
online tutorials. These tutorials can be standalone websites (often
the online material from a prior workshop) or published as part
of a manuscript (e.g., Coenen et al.,, 2020). Tutorials are incredibly
useful for users that can read and write some code (see “Section
5.1.2 Scripting”) and want to see how specific analyses are run,
often demonstrated by analyzing subsampled real datasets. Finally,
when trying to implement a specific tool (often found through a
workshop or tutorial), we recommend reading the tool’s official
documentation. This documentation often exists in two forms.
First, many tools are announced with a publication describing their
construction and general uses-which is useful for an overview
but may overwhelm early omics users with technical information.
Second, each tool generally includes a manual written for practical
implementation. This may be as simple as a “README” text
file included in the downloaded source code or as involved
as a dedicated website to explain the uses and functions of
the tool.

Building on the foundation of knowledge from this review, early-
stage omics users will be able to acquire and integrate additional
training to analyze data independently.
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5.1.2 Scripting

To interact with omics datasets, users can begin by using
software that does not require much coding experience (Genious,
Galaxy, Kbase), though accessing the full capacity of omics datasets
requires learning to code (but does not require the skills of a
professional programmer).

Scripting is the computing equivalent of pipetting in a lab, and
aspiring bioinformaticians should be able to write and read code in
Bash and R or Python. Bash is the basic language for performing
omics analyses, used to interface with high performance computing
clusters and run bioinformatics programs. Though Python can be
used to write standalone programs, we suggest learning Python or
R for their capacities to manage spreadsheets, perform statistics,
and make plots. These tools take longer than Excel to master, but
they quickly outperform it in flexibility, speed, and reproducibility.
We suggest that bioinformaticians learn how to use either R or
Python, as it is unlikely that knowing both will be essential, and if
more languages are needed, they can be learned (Schloss, 2020). To
learn coding, there are lots of online resources, with more available
every day. For bash, we recommend chapters from the book Practical
Computing for Biologists (Haddock and Dunn, 2011) pertaining to
bash for a basic overview of some core commands and syntax and
immediately applying it on real data to get a feel for its use. For R,
the free online textbook R for Data Science (Wickham, 2023: https://
r4ds.hadley.nz/) is an approachable read, organized to be practical
and user friendly. For Python, we recommend the interactive free
courses offered on Codeacademy (https://www.codecademy.com/).
Though bash, R, and Python have been mainstream tools for
decades (and may remain so), the scripting toolkits available and the
resources to learn them will change over time, which should inform
the training tools selected.

If coding is like pipetting, writing code with Al is like operating
an automated liquid handler. Automating lab work may aid a
novice wet lab scientist, but scientists with hands-on experience
will better understand how to creatively and effectively implement
such automation. AI support in bioinformatics works better with
the specific vocabulary and perspectives that come from already
knowing how to write code and manipulate data. That being said,
we wholeheartedly recommend Al coding tools to help write tedious
scripts (loops), make existing scripts more efficient, installing tools,
debugging and explaining code. In any case AI users should
be updated on best practice recommendations and publishing
requirements (Buriak et al., 2023; Blau et al., 2024), they will change
over time. In any case, a bioinformatician who knows what they want
out of a workflow will be better able to get it with whatever basic or
advanced tools they bring to bear.

5.1.3 Local data organization

Data organization should be a primary directive. Files
(folders) will
always need organizing. We suggest you adopt a simple

will always need naming and directories
filing system (Noble, 2009) and adapt as you see fit. Do not proceed
without some kind of system, as impromptu “organization” will
eventually accumulate into an unwieldy mess. Two places where
poorly organized files can cause major trouble are raw sequencing
files and scripts.

All new sequence data should be placed in a clearly marked

and backed up location (if working on a team, this original data
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should be in a shared “group” directory, not on the bioinformatician’s
personal drive). This directory should have an informative name
that contains the elements required to understand what is inside,
for example,: sequencing run ID, sampling date, sequence type
(genome, transcriptome, amplicon ...), geographic source (country,
ocean basin, cell culture collection ...), and sequencing target (host
organism, enrichment culture, soil ...). In this directory, it is useful
to have two sub-directories for reads. First the minimally processed
reads from the sequencer (e.g., “001_raw_reads”) and a second
quality-controlled set (per “Section 4.3 Quality Control”; e.g., “002_
trimmed_reads”) as these processed reads will be used by multiple
steps in any analysis and should be easily accessible. A file name tip:

< » o« »

use character delimiters (e.g., “.” “_”) to separate phrases in a file

« >

name instead of spaces (“”), to avoid problems later while scripting.

Next, the scripts that are written to analyze an omics dataset
should be organized to allow the bioinformatician (or anyone else)
to follow the workflow and backed up to prevent loss. Writing
individual scripts for each step of an analysis is a good habit
to keep the workflow clear and easily debugged. We recommend
naming files sequentially so that auto-sorting arranges them
logically (e.g., “001_read_trimming.sh”, “002_read_normalization’,
“003_assembly”).

Again, the raw sequence data and scripts should be backed up
to prevent loss, as they are the minimum information required to
regenerate all results.

5.14 Public databases

One beautiful aspect of bioinformatics is the interoperability of
sequences from diverse sources. The base FASTA format-adopted in
1985 and used today-has ensured that almost all sequence data uses
consistent formatting (Wright et al., 2024). This consistency allows
straightforward comparison of new data to archived sequences in
repositories. Learning the major databases often involves talking
to other scientists and looking at the methods of published papers,
but once identified, these resources can easily provide sequences
to contextualize new data or to supply material for meta-analysis
(general: NCBI SRA, Leinonen et al, 2011; task specific: Tara
Oceans, Sunagawa et al., 2020). Some tools exist to make these
database searches easier (taxonomy browser, Parks et al., 2018;
metagenomes  pre-screened for community composition;
Woodcroft et al., 2025; NCBI webtools; Sayers et al., 2024) though
efficient use of these resources generally requires familiarity and
practice. This practice is beneficial for any omics scientist, for a
bioinformatician with databases is never without samples.

5.1.5 Responsible data sharing and reproducible
analyses

Thus far we have discussed scripting, data organization, and
public databases from the perspective of how they benefit the reader
of this review. Now, we will discuss the responsibilities of omics
users to the broader scientific community—focusing on practices that
ensure that published data and results are useful as long as possible.
At its core, this means ensuring that raw data from published
research is usable in the future and the results from a manuscript
can be reproduced.

In an omics context, the space available in a manuscript is
often too small to provide all the relevant data (sequences or
environmental measures) for long-term use, and the researcher
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must then rely on external resources to ensure the information is
accessible. To provide a brief coverage of the issue, we will discuss
data archiving and reproducible analyses (though this coverage is
necessarily incomplete and the reader should spend more time on
these important topics).

5.1.5.1 "FAIR" data archiving

Though sharing published data is a long-standing scientific
practice and many journals require that the raw (unprocessed)
data supporting the paper is made available, there is a lot of
variation in how “available” could be interpreted. To clarify this,
Wilkinson et al. (2016) introduced an influential set of guidelines
for data management and stewardship summarised in the acronym
“FAIR”: Findable, Accessible, Interoperable, and Reusable. We
will describe some practices for “FAIR” data management in
omics, though we will not cover each element of the acronym
specifically and readers should spend more time leaning about
the specific guidelines, especially before archiving their data
(reviewed in Carballo-Garcia and Boté-Vericad, 2022).

The foundation of omics data archiving requires that primary
data files (unprocessed reads, assembled sequences, environmental
measures) are available to other scientists, which is generally
achieved by depositing data in public repositories. To maximize
the lifespan of deposited data the repository needs to persist over
time. An excellent example of a durable repository is also the
most used for accademic omics data. The International Nucleotide
Sequence Database Collaboration (INSDC) is an international effort
to capture, preserve, and present nucleic acid sequence data for the
“permanent scientific record” (Karsch-Mizrachi et al., 2025). This
collaboration has operated for over 40 years, supported by the United
States of America (National Center for Biotechnology Information;
NCBI), Europe (European Molecular Biology Laboratory-European
Bioinformatics Institute; EMBL-EBI), and Japan (DNA Data Bank of
Japan; DDB]J). In this collaboration, data deposited to any participant
(NCBT’s Sequence Read Archive, EMBL-EBI’s European Nucleotide
Archive, and the DDBJ’s Sequence Read Archive) is exchanged with
the others daily, ensuring global access and redundancy (Karsch-
Mizrachi et al., 2025). Though other repositories exist for sequence
data, the global support and historic record of the INSDC’s
repository makes it one of the best options for most sequence data.
Now we will turn our attention to the other essential elements of
data archival.

One of the most critical elements of data archiving is that
all primary data files must have unique and fixed identifiers
(names). The exact names do not matter per se (though it is
useful when these names have some intrinsic meaning; see “Section
5.1.3 Local Data Organization”) because all file identifiers should
be explained by accompanying metadata. Metadata is essential to
explain what is encoded in the primary data, thereby linking the
primary datas identifier to relevant descriptions of “what it is”.
The types of collection descriptors are summarized in the widely
used acronym “ISA”: Investigation (e.g., principal investigator,
institutions), Study (e.g., location, organism, physical conditions,
experimental condition), and Assay (e.g., type of nucleic acid
sequenced, sequencing technology; Johnson et al., 2021). Lists of the
minimum ISA descriptors needed for different types of primary data
exist as “minimum information checklists” (examples at: https://
fairsharing.org) and are often organized as standard templates
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(examples at: https://fairsharing.org). When filling out the relevant
metadata, it is good practice to describe the data using well-defined
hierarchical ontologies (e.g., taxonomic rank; examples at: https://
www.ebi.ac.uk/ols4/) to avoid ambiguity, though new labels can be
added as needed.

Finally, to be consistent with FAIR principles, both primary data
and metadata should be encoded in widely available and commonly
used file formats that describe the permissions or restrictions for
reuse of the primary data, ensuring that anyone who retrieves the
data will be able to read it and know how to use it appropriately.

5.1.5.2 Reproducible analyses
Aside from sharing published data, omics users are expected to

follow practices to ensure reproducibility of their results, allowing
other scientists to double check their findings.

The most important elements of reproducibility are that other
scientists have access to the raw data and the analytical tools used
in the analysis. For access to raw sequence data most papers require
that research generating new sequence data deposit it publicly (see
“Section 5.1.5.1 ‘FAIR Data Archiving”) while those re-analyzing
data list their sources (see “Section 4.1.3 Data Mining”). However,
ensuring access to analytical tools is less regulated.

Though it is still common for scientists to use paid tools (“closed-
source”; e.g., ArcGIS, MATLAB) for analyses, there has been a
concerted effort by the broader scientific community to promote
the use of open-source (free) software for research (Schloss, 2020),
allowing broader access. For both closed- and open-source tools, it
is expected that published manuscripts describe the software names
and version used for each step in their analysis.

Finally, to ensure maximum reproducibility, omics users often
publish the exact code used to run their analyses. This code is
often written and organized with Git (a software for organizing code
and handling version control) and made public through GitHub (a
cloud-based service built on Git to share code). Publishing the code
used for analyses is less critical when the analysis uses the default
settings on published tools (which can be easily reported in a paper’s
“methods” section) but becomes increasingly important when the
research builds new tools and performs more complex analyses.

5.1.6 Quantitative results: statistics, modeling,
and guesswork

Omics analyses tend to present qualitative or descriptive
quantitative results, rather than explanatory or predictive ones.
Though the support of statistics or structure of modeling are not
necessary for many good omics papers, the field of microbiology
is ready to integrate these approaches more fully. There are
examples where omics data is used to model biogeochemical
processes (Louca et al., 2016; Tdumer et al., 2022) and frameworks
outlining how sequencing may be used in predictive models
(Lui et al., 2021). More informally, scientists should practice making
informed guesses, both qualitatively (from a literature base) and
quantitatively (using benchmarked biological values; Fox, 2011;
Milo and Phillips, 2015). Predictions (especially quantitative ones
from rigorous modeling or informal estimations) are an excellent
base from which to write clear, falsifiable hypotheses. Such
hypotheses—especially when grounded by scientific literature-are
foundational to any science (see “Section 5.2.1 Non-omics Literature
and Toolkits”).
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BOX 1 Glossary of key terms

rRNA: The gene encoding, or the transcript that is, a part of the ribosome across all domains of life. The 16S rRNA gene and transcript are the most popular target for
studying bacterial and archaeal evolution and diversity, though other rRNA subunits have been used and are informative for bacteria, archaea, and eukaryotes.
Assembly: The practice of reconstructing the sequences of the original nucleic acid molecules after their fragmentation before and during sequencing.

Clone Library: The product of inserting genetic material (targeted or untargeted) into a living vector (e.g., Escherichia coli), selecting for only the individuals that took up
the material while separating genetically distinct clones (e.g., spread plating isolates with an antibiotic screen) allowing the vector to multiply the genetic material of
interest sufficiently for further biochemical processing (e.g., sequencing).

Contiguous Sequence (Contig): The shortest output from the assembly of nucleic acid reads (DNA or RNA). DNA contigs can be further refined into scaffolds and
chromosomes.

FAIR Data Practices: A set of guidelines introduced by Wilkinson et al. (2016) outlining practices for ensuring long-term utility of published data, particularly though the
promotion of consistent identifiers, rich metadata, and accessible file formats.

Function Annotation: The practice of assigning a sequence (often a predicted ORF) a function if it shows sufficient similarity to a sequence with known function (see
marker gene).

Genomics: The study of life using the untargeted sequencing of DNA.

Genome: Strictly, the name for the complete set of chromosomes originating from the organism of study. Loosely, it also refers to assembled genomic material that is
grouped into candidate genomes (bins, MAGs, and SAGs).

[Finished, High, Medium, Low] Genome Quality: Classifications of genome quality introduced by Bowers et al. (2017) relying on contiguity and estimates of completion
and contamination.

[Genomic] Bin: A type of genome. A draft genome composed of contigs that have been grouped together based on similar characteristics (GC content, base frequency, or
coverage), but have not yet been deemed of sufficiently high quality to be considered a usable genome/MAG.

[Genomic] Chromosome: A product of genomic sequence assembly, the product of combining scaffolds to produce a complete gap-free digitized representation of the
source chromosome.

[Genomic] Scaffolds: A product of genomic sequence assembly, the product of combining multiple contigs with consistent orientation and defined gap sizes, though less
complete than a chromosome.

ISA Abstract Model: Is used to organize metadata collection and distribution, and is a flexible organizing framework describing the metadata necessary to convey key
elements of some data’s origin, including the Investigation, Study, and Assay that generated it.

L50: A metric for assessing an assembly’s quality via the number of assembled sequences. The metric of L50 describes how many of the longest sequences are needed to
account for 50% of the assembly size. Assuming the assembly is of high quality and sufficient sequencing coverage, smaller L50 values indicate the assembly is composed
of only a few sequences, which is considered a good thing.

Machine Learning: A class of tools developed from statistics (Bayesian statistics, game theory, computer vision) where algorithms are trained on existing data to identify
patterns in new datasets leading to diverse kinds of artificial learning, including: reinforcement learning, supervised learning, and recently popular unsupervised
generative learning (e.g., large language models).

Metagenome-assembled Genome (MAG): A type of genome. A bin becomes a MAG after passing quality control standards (see Genome Quality).

Marker Gene: Genetic sequences that are strongly associated with a biological process of interest including but not limited to: phenotypes, evolution, or behavior.
Minimum information checklist: Is used to organize metadata collection and distribution and provides guidelines for required data reporting for data arising from
specific classes of experiments or assays (see ISA) to ensure data usability without mandating exhaustive details.

N50: A metric for assessing an assembly’s quality via the length of contigs of an assembly, essentially a weighted median contig length. If all the contigs in an assembly are
arranged from longest to shortest and began summing contig lengths one contig at a time, the N50 value would be the length of the contig where 50% of the total length
has already been accounted for. Larger N50 values indicate that an assembly consists of longer contigs, generally indicating assembly success.

[Meta]-Omics: Omics is an analytical approach that studies entire sets of biological molecules (DNA, RNA, Proteins, Metabolites). Adding the prefix “meta” indicates that
the analysis explicitly considers more than one organism (though non-meta omics may incidentally sequence more than one organism).

Ontology: A hierarchically structure for terminology where each term becomes increasingly specific while still “contained” within its broader term (e.g., a twig on a
branch on a limb on a tree”) that is often used to describe gene functions (e.g., Gene Ontology) or metadata (e.g., The Environment Ontology).

Open Reading Frame (ORF): An open reading frame is a predicted protein coding region from a nucleic acid sequence predicted due to the presence of genetic features
characteristic of experimentally validated protein coding regions.

Operational Taxonomic Unit (OTU): A label for sequences (reads to genomes) that have been deemed to share taxonomy based on sequence clustering at a defined
percentage similarity threshold (often 95%).

Sequence Clustering: The practice of grouping like-with-like sequences (from reads to genomes), often using the measure of pairwise percentage similarity.

Single amplified genome (SAG): A type of genome. A SAG is produced by sequencing the genomic material from a single cell, ensuring that the genomic environment is
represented (distinct from a MAG, which may provide an incomplete understanding of the associated mobile genetic material or multiple chromosomes).

Sequence Alignment: The practice of comparing two sequences and searching for shared regions between the two. Often results in metrics describing the length of the
aligning region and the percentage similarity.

Sequence Library: The name of the sequences originating from a single sample (e.g., a single metagenome file).

Taxonomic Classification: The practice of assigning a sequence a taxonomic origin based on its similarity to a reference sequence with assigned taxonomy.
Transcriptomics: The study of life using the untargeted sequencing of RNA.

5.1.7 Independent work

A final bit of omics advice is to become independent at
performing the entire sample-to-analysis workflow: sample
collection and preservation, nucleic acid extraction, sequencing
prep (though we suggest out-sourcing sequencing to full-
time professionals), to most omics analyses. This capacity
simplifies affords

the generation of any omics data. This capacity makes a

troubleshooting and more control over

scientist more independent and useful, ultimately a better
hire.
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5.2 Non-computational advice

Any omics user exists in a larger scientific environment of non-
users. To integrate smoothly into this wider non-omics world, we
have included some non-computational tips.

5.2.1 Non-omics literature and toolkits

Though this review is focused on the technical details of
computing, omics (like other tools: purifying proteins, culturing
cells, or collecting samples) is a means to an end. The end goal of
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scientific inquiry is to incrementally improve human understanding
of how the world works. Studying biology requires specific biological
(not just computational) knowledge to guide analysis. This is
especially true for omics, as any sequencing produces potentially
overwhelming quantities of data, and biological context creates
order and provides needed direction.

Analytical direction generally comes in the form of a biological
question: “what are the tradeoffs involved in capturing light
energy?” (Kumagai et al.,, 2018), “what pH did life originate in?”
(Colman et al., 2024); “how does habitat specificity affect global
patterns of speciation?” (Sriswasdi et al., 2017); “how do viruses
shape mammalian biology?” (Henriques et al., 2024). In the best-
case scenario, a biological question is used to inform data collection
and analysis. However, as biological systems are often incompletely
characterized, omics must often be exploratory, sequencing poorly
understood microbiomes. In these cases, a focused scientific
narrative requires crafting a biological question retrospectively.

To this aim, an omics scientist should be comfortable with non-
computational biological literature (ecology, redox, stoichiometry,
developmental biology, physiology, oceanography, pathogenicity,
biochemistry). The goal of any omics scientist talking to an expert
in their biological field, should be to be seen as “one of us”
Further, it is important to become acquainted with non-omics
tools, especially how they fill the gaps left by omics (qPCR,
microscopy, rate measurements, stable isotope probing, enrichment
cultures, isolation, knockouts, microcosms, transformation, protein
purification) and as appropriate, add these tools to on€’s repertoire. A
scientist that understands how omics fits into a constellation of other
tools will be better equipped to plan research and identify tractable
next steps (even if they never intend to do it themselves, it will help
them find collaborators, see “Section 5.2.2 Networking”).

5.2.2 Networking

Well-read and self-aware omics scientists should see themselves
as a part of a global community with shared questions and aims.
Tapping into this community to access the knowledge and skills
of other scientists requires networking (i.e., making friends) in
one’s focal-field and beyond. A network of familiar scientists makes
scientific study more efficient, accessible, and enjoyable. Networking
can be done anywhere scientists congregate (conferences,
workshops, fieldwork, online) and is often more interesting and
fruitful when it bridges diverse disciplines (biogeochemistry,
ecology, biogeography, organismal biology) and departments
(microbiology, ecology, earth sciences, geography, biochemistry,
engineering). These connections can be used to identify good
colleagues and great collaborators. Collaborating (working on the
same projects together) with non-omics scientists will be far easier
if the omics-scientist understands diverse methodologies and can
effectively communicate what omics can and cannot do (see “Section
5.2.3 Communication”).

5.2.3 Communication

Maybe the most important part of any scientist’s job is effective
communication. Anyone can report sequence statistics, but it is the
job of a scientist to distill data into information, take the information
and communicate it as a coherent story, thereby creating knowledge
about how the world works (Schimel, 2012). These stories are
most often told via writing and speaking, reflecting the usual
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format of the exams and professional products of scientists (grant
proposals, manuscripts, and lectures). However, communication
can take other forms (videos, animations, infographics) and
requires calibration to the level of formality of the medium
(popular science magazine articles, general audience public radio
interviews). In all cases, the scientist needs to convince the
audience that their message is worth listening to, which requires
both understanding the message they want to deliver (ie.,
biological and bioinformatic literacy) and tailoring it to the
interests and knowledge of an audience. For both quantifiable
(accepted manuscripts, successful grant applications) and abstract
(successfully making and maintaining collaborations, effective
lectures) professional achievements, effective communication is
the whole product (Hazelett, 2025). Delivering consistent clear
messages requires frequent practice, with the best communicators
contributing more to the global scientific enterprise.

6 Conclusion

Omics is a glue that connects biological fields—there are few
biological questions that could not be enhanced with sequence-
based analyses. Though sequencing is expensive, costs have
plummeted, with the first human genome costing around $300
million (not-inflation adjusted) in 2001 (Service, 2006) to nearly
$100 in 2024 (Liu et al., 2024). This cheaper sequencing has led
databases to grow several million times larger in the last 20 years
(Hug et al., 2025), increasing access. This access is supported by
the development of tools that make data selection (Speth and
Orphan, 2018; Maurya et al., 2022; Woodcroft et al., 2025) and
use (Wright, 2024) less computationally demanding. Other groups
have spent time creating integrated systems to simplify tool use
(Anvio, Eren et al, 2015; QIIME2; Bolyen et al., 2019; mothur;
Schloss, 2020). This combination of accessible data and tools has
allowed unprecedented analyses using thousands of samples to
identify new biomarkers of human health (Piccinno et al., 2025)
and millions of samples to assess global patterns of microbiological
distribution (Rodrigues et al., 2025). In this moment, sequence
data generation will continue to be exponential, fueling a demand
for scientists able to answer biological questions with increasingly
large datasets (Stephens et al., 2015). Scientists able to understand
and effectively find, analyze, and integrate this sequence data
into larger biological narratives are poised to articulate biological
processes from micron to global scales, an unprecedented
opportunity. We believe this review provides a foundation for just
such scientists.
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