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t-distributed Stochastic Neighbour Embedding (t-SNE) is a cornerstone for 
visualizing high-dimensional biological data, where each high-dimensional data 
point is represented as a point in a two-dimensional map. However, this static 
map provides no information about the stability of the visual layout, the features 
that influence it, or the impact of uncertainty in the input data. This work 
introduces a computational framework that allows one to extend the standard 
t-SNE plot by visual clues about the stability of the t-SNE embedding. First, 
we perform a sensitivity analysis to determine feature influence: by combining 
the Implicit Function Theorem with automatic differentiation, our method 
computes the sensitivity of the embedding w.r.t. the input data, provided in 
a Jacobian of first-order derivatives. Heatmap-visualizations of this Jacobian 
or summarizations thereof reveal which input features are most influential in 
shaping the embedding and identifying regions of structural instability. Second, 
when input data uncertainty is available, our framework uses this Jacobian 
to propagate error, probabilistically quantifying the positional uncertainty of 
each embedded point. This uncertainty is visualized by augmenting the 
plot with hypothetical outcomes, which display the positional confidence 
of each point. We apply our framework to three diverse biological datasets 
(bulk RNA-seq, proteomics, and single-cell transcriptomics), demonstrating 
its ability to directly link visual patterns to their underlying biological drivers 
and reveal ambiguities invisible in a standard plot. By providing this principled 
means to assess the robustness and interpretability of t-SNE visualizations, 
our work enables more rigorous and informed scientific conclusions in
bioinformatics.
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 1 Introduction

At the intersection of artificial intelligence and biology, data visualization serves 
as a critical bridge between complex computational models and human insight. t-
Distributed Stochastic Neighbor Embedding (t-SNE) is a cornerstone of modern 
data exploration, enabling researchers to visualize the structure of high-dimensional 
datasets, such as clusters, in intuitive mostly two-dimensional maps (Van der Maaten 
and Hinton, 2008). Its widespread adoption in bioinformatics is a testament to 
its power in revealing meaningful patterns and guiding hypothesis generation,
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from identifying cell populations in single-cell transcriptomics 
(e.g., Kobak and Berens, 2019; Zhou and Jin, 2020) to visualizing 
sample relationships in proteomic data (Abdelmoula et al., 2016; 
Schessner et al., 2022) and genomic data (Platzer, 2013), and many 
other applications.

Despite its power, a standard t-SNE plot is a static endpoint 
that obscures critical information. This creates two fundamental 
challenges for rigorous interpretation. First, the plot provides no 
direct insight into the feature influence: we cannot easily determine 
which input features are most responsible for a point’s placement. 
While linear methods like PCA (Pearson, 1901; Hotelling, 1933) 
yield feature loadings, the non-linear t-SNE model remains a 
“black box”. Second, biological data is inherently noisy (Kavran 
and Clauset, 2021), and standard t-SNE ignores this measurement 
uncertainty. This leaves a crucial question unanswered: how would 
the embedding change if we could account for this input noise, and 
how could this be visually implemented?

Recognizing these and other challenges, an active field of 
research has emerged to enhance t-SNE’s reliability. One line of 
work assesses the fidelity of the embedding by quantifying distortion 
errors or identifying false neighbors, thus evaluating the map’s 
quality with respect to a fixed input dataset (Han et al., 2022; 
Zhao et al., 2024; Ozgode Yigin and Saygili, 2022). Other approaches 
modify the algorithm itself, either by incorporating supervised 
class labels to improve cluster separation (Meng et al., 2023; 
Hajderanj et al., 2019) or by integrating input uncertainty directly 
into the optimization objective, as in the Ut-SNE’s preprint (Ma 
and Chen, 2024). More recently, gradient-based methods using 
the Implicit Function Theorem have been introduced for local 
explanation (Corbugy et al., 2024). However, this initial gradient-
based approach relies on a simplifying assumption, analyzing a 
single point while holding all others fixed. While these are all 
valuable contributions, a framework is still needed that can (1) 
analyze the sensitivity of the complete, coupled t-SNE embedding 
in a post-hoc manner, and (2) use this analysis to address the critical 
and distinct problem of propagating input data uncertainty.

Here, we introduce such a framework. It is crucial to distinguish 
the stability we address here from the well-known variability of t-
SNE arising from different random initializations or hyperparameter 
choices (Belkina et al., 2019). Such studies concern the algorithm’s 
global stability. Our work, in contrast, focuses on the local stability 
of a single, converged t-SNE solution. We ask: given a specific, 
optimized embedding, how robust is it to small perturbations in the 
input data, what drives this sensitivity, and how can this be visually 
integrated into the plot? To answer these questions, our central 
contribution is a method based on the Implicit Function Theorem 
(IFT) (Cauchy, 1831; Krantz and Parks, 2002) to efficiently compute 
the complete sensitivity Jacobian of the embedding, overcoming the 
intractability of differentiating through the optimizer. This approach 
extends the concept of uncertainty-aware dimensionality reduction 
we previously developed for PCA (Zabel et al., 2023), applying 
it to the more complex setting of t-SNE. The resulting Jacobian 
enables two key visual enhancements—feature influence heatmaps 
and uncertainty visualizations—that provide a practical toolkit for 
moving beyond static plots towards a more robust and interpretable 
use of t-SNE.

We first detail the theory behind our IFT-based approach 
followed by our visualization design decisions, and then apply our 

framework to a biological time-series dataset, demonstrating how 
sensitivity analysis can deconstruct the embedding to identify key 
biological drivers and how uncertainty visualization can reveal 
structural ambiguities. Our work provides a practical toolkit for 
moving beyond static plots towards a more interpretable use of t-
SNE. 

2 Methods

Our framework aims to conduct a sensitivity analysis of a t-SNE 
embedding to its input data. This sensitivity, which is quantified by a 
Jacobian matrix, then enables both direct feature influence analysis 
and principled uncertainty propagation. A principled uncertainty 
propagation determines how uncertainties in input measurements 
affect the uncertainty of a calculated quantity (in our case the 
embedded values). For an efficient calculation of the Jacobian, we 
will leverage the Implicit Function Theorem. 

2.1 t-Distributed Stochastic Neighbor 
Embedding (t-SNE)

t-Distributed Stochastic Neighbor Embedding (t-
SNE) (Van der Maaten and Hinton, 2008) is a nonlinear 
dimensionality reduction technique that computes a low-
dimensional embedding of high-dimensional data while preserving 
local neighborhoods. Given a set of high-dimensional data points 
Y = {y1,…,yN}, where each yi is of dimension D, the algorithm 
first converts the Euclidean distances between points into joint 
probabilities, pij, representing their pairwise similarity. To compute 
these probabilities, for each pair (i, j) we first compute the 
conditional probability that yj is a neighbor of yi:

pj|i =
exp(−

‖yi−yj‖
2

2σ2
i
)

∑
k≠i

exp(− ‖yi−yk‖
2

2σ2
i
)

(1)

The variance σ2
i  is chosen on a per-point basis to match a 

user-defined hyperparameter known as perplexity, which controls 
neighborhood size. The probability pij is symmetrized by

pij =
pj|i + pi|j

2N
. (2)

For the corresponding low-dimensional embedding points Z =
{z1,…,zN}, where each z i is typically of dimension P = 2, a similar 
set of joint probabilities, qij, is computed. A key feature of t-SNE is 
its use of a heavy-tailed Student’s t-distribution with one degree of 
freedom for this low-dimensional space, which helps to alleviate the 
crowding of points:

qij =
(1+ ‖z i − z j‖2)

−1

∑
k≠l
(1+ ‖zk − z l‖

2)−1
. (3)

The goal of t-SNE is to find an embedding Z where the 
probability distribution Q = {qij} best models the distribution P =
{pij}. This is achieved by minimizing the Kullback-Leibler (KL) 

Frontiers in Bioinformatics 02 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1719516
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Zabel et al. 10.3389/fbinf.2025.1719516

divergence between the two distributions. The objective is thus to 
minimize the cost function C, which can be written as a function of 
the vectorized input data y and the embedding z:

C (y,z) = ∑
i≠j

pij (y) log
pij (y)

qij (z)
. (4)

This cost function is minimized using an iterative optimization 
method, typically gradient descent, to find the final, optimal 
embedding z∗. The gradient of C w.r.t. z i is

∂C
∂z i
= 4∑

j≠i
(pij − qij)

(z i − z j)

1+ ‖z i − z j‖
2 . (5)

 

2.2 Sensitivity analysis: problem 
formulation

To analyze the sensitivity of the t-SNE embedding, we must 
first formalize the relationship between the input and its output. 
Let the high-dimensional input data be a matrix Y ∈ ℝN×D and its 
vectorized form be y = vec (Y) ∈ ℝND. The t-SNE algorithm operates 
on a specific point estimate of this data, which we denote as the mean 
y∗. Through the optimization described in Section 2.1, it produces a 
corresponding optimal low-dimensional embedding, denoted z∗ ∈
ℝNP (where P is typically 2).

Our primary goal is to perform a sensitivity analysis by 
computing the Jacobian of the optimal solution map, ∂z∗(y)

∂y
. 

This matrix quantifies how the final, optimized embedding 
z∗ changes in response to perturbations of the input data 
y. A naïve approach to compute this Jacobian would be to 
apply automatic differentiation (AD) through the entire iterative 
gradient descent procedure. However, a typical t-SNE optimization 
involves hundreds or thousands of steps. Unrolling this entire 
process creates an exceptionally large computational graph, leading 
to prohibitive memory consumption and potential numerical 
instability. Therefore, a more direct and memory-efficient method 
is required. Instead of differentiating through the optimizer, our 
approach is to differentiate the optimality conditions at the final 
converged solution. 

2.3 Computing embedding sensitivities via 
the implicit function theorem

Our method relies on the stationary point condition of the 
t-SNE optimizer. At a converged (local) minimum (y∗,z∗), the 
gradient of the cost function with respect to the embedding 
parameters (Equation 5) is zero:

∇zC (y∗,z∗) = 0. (6)

We can define a function G(y,z) = ∇zC(y,z). The 
condition in Equation 6 is thus G(y∗,z∗) = 0, which implicitly 
defines the optimal embedding z∗ as a function of the input y. 
The Implicit Function Theorem formalizes this relationship.

The Implicit Function Theorem (Cauchy, 1831) states that 
for a continuously differentiable function G:ℝn ×ℝm→ℝm, if 
(x∗,y∗) ∈ ℝn ×ℝm is a point such that G(x∗,y∗) = 0 and the Jacobian 

matrix ∂G
∂y

 is invertible at (x∗,y∗), then there exists a continuously 
differentiable function f :ℝn→ℝm in a neighborhood of x∗ such 
that G(x, f (x)) = 0. The Jacobian of this implicit function is given by:

∂f (x)
∂x
= −[

∂G (x,y)
∂y
]
−1 ∂G (x,y)

∂x
. (7)

To apply this theorem to our problem, we map our variables: 
x→ y ∈ ℝND, y→ z ∈ ℝNP, and G(y,z) → ∇zC(y,z). The required 
Jacobians of G are the second-order derivatives of the original cost 
function C:

• ∂G
∂z
= ∂

∂z
(∇zC) = ∂2C

∂z2  (the Hessian with respect to z).
• ∂G

∂y
= ∂

∂y
(∇zC) = ∂2C

∂y∂z
 (the mixed-partial derivatives).

Substituting these into the IFT (Equation 7) yields the Jacobian 
of the optimal embedding map z∗(y):

∂z∗ (y)
∂y
= −[

∂2C (y,z∗)
∂z2 ]

−1 ∂2C (y,z∗)
∂y∂z
. (8)

However, a critical challenge arises: the Hessian matrix Hzz =
∂2C
∂z2 , whose inverse is required by the theorem (Equation 8), is 
singular for the standard t-SNE cost function. The singularity 
stems from the fact that the t-SNE cost depends only on pairwise 
Euclidean distances between embedded points. Consequently, the 
cost function is invariant to transformations that preserve these 
distances—namely, global translations and rotations of the entire 
embedding. This invariance means the Hessian has a null space of 
dimension three and is therefore not invertible.

Since the absolute position and orientation of a t-SNE plot 
are irrelevant for interpretation, we employ the Moore-Penrose 
pseudoinverse of the Hessian (H+zz) to satisfy the IFT’s requirement 
on the subspace of meaningful variation. The pseudoinverse inverts 
the transformation on the subspace orthogonal to the null space 
while mapping the invariant directions to zero. This yields our final 
expression for the sensitivity Jacobian:

∂z∗ (y)
∂y
= −[

∂2C (y,z∗)
∂z2 ]

+ ∂2C (y,z∗)
∂y∂z
. (9)

This approach allows us to compute the complete sensitivity 
profile of a t-SNE embedding using only derivatives of its cost 
function evaluated at the single converged solution point. 

2.4 Approximate Gaussian error 
propagation through t-SNE

With the sensitivity Jacobian computed, we can perform 
principled uncertainty propagation as a direct application. 
Assuming the input uncertainty is modeled as a Gaussian 
distribution, p(y) =N (y;y∗,Σy), we can approximate the output 
distribution using a first-order Taylor expansion of the solution 
map z∗(y) around y∗:

z∗ (y) ≈ z∗ (y∗) +
∂z∗ (y)

∂y
|
y∗
(y − y∗) . (10)

Under this linear approximation, the output distribution is 
also approximately Gaussian, p(z∗) ≈N (z∗;z∗(y∗),Σz), with a 
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FIGURE 1
Schematic Overview of the Proposed Visualization Framework. Our method uses the sensitivity Jacobian as a central component to generate multiple 
complementary visualizations that enhance the standard t-SNE plot. (a) The full sensitivity Jacobian (Jz∗) as a heatmap, showing the granular influence 
of input features on the embedding. (b) A feature influence map, created by summarizing the Jacobian column-wise to identify the most influential 
input features. (c) A sample sensitivity map, generated by summarizing the Jacobian row-wise and coloring points in the plot to highlight the most 
fragile or stable samples. (d) An uncertainty-aware visualization, which combines the Jacobian with input uncertainty to display the positional 
confidence of each point using hypothetical outcomes.

covariance matrix Σz ∈ ℝNP×NP given by the rules of Gaussian error 
propagation:

Σz ≈ (
∂z∗ (y)

∂y
|
y∗
)Σy(

∂z∗ (y)
∂y
|
y∗
)
⊺

. (11)
 

2.5 Design of visualization

The computed Jacobian and output covariance matrix 
enable powerful visual enhancements that reveal the stability 
and interpretability of a t-SNE embedding. We propose three 
complementary visualization strategies, summarized in Figure 1.

2.5.1 Visualizing feature influence
To visualize the influence of input features on the embedding, we 

utilize the sensitivity Jacobian matrix Jz∗ ∈ ℝ
2N × ND. For datasets 

with a manageable number of input dimensions and sample size 
(on the order of thousands when multiplied), the full Jacobian can 
be directly visualized as a heatmap (Figure 1a). The rows of this 
heatmap correspond to the embedding coordinates (e.g., the x and 
y coordinates for each sample), and the columns correspond to the 
input features. This provides a granular view of which specific inputs 
affect which specific output coordinates.

For larger datasets where the full Jacobian is too vast to interpret 
directly, we compute a summary. We calculate a total sensitivity score 
for each of the ND input features (Figure 1b). The score for input 
feature k, sk, is the sum of the absolute values of its derivatives across 

all 2N embedding coordinates:

sk =
2N

∑
i=1
|Jz∗,ik|. (12)

These scores quantify the overall influence of each input feature 
on the entire embedding. These scores can then be visualized as a 
heatmap. For structured data, such as a time-series with multiple 
genes, this summary vector can be reshaped into a matrix (e.g., 
timepoints ×  genes) to reveal systematic patterns of influence. 

2.5.2 Visualizing sample sensitivity
In addition to identifying influential features, we can visualize 

the intrinsic sensitivity of each individual sample’s position. This is 
achieved by summarizing the Jacobian row-wise (Figure 1c). First, 
for each of the 2N output coordinates, we compute a sensitivity 
score ri by summing the absolute values of the corresponding row’s 
elements:

ri =
ND

∑
k=1
|Jz∗,ik|. (13)

Since each sample j (for j = 1,…,N) in a 2D embedding 
is represented by two coordinates (an x- and y-coordinate, 
corresponding to rows 2j− 1 and 2j of the Jacobian, respectively), 
we aggregate these scores to get a single, overall sensitivity score Sj
for that sample:

Sj = r2j−1 + r2j =
2j

∑
i=2j−1

ND

∑
k=1
|Jz∗,ik|. (14)
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These per-sample scores {S1,…,SN} can then be used to color the 
points directly in the t-SNE plot using a sequential colormap. This 
immediately highlights which samples have the most stable versus 
the most fragile positions in the map. 

2.5.3 Visualizing positional uncertainty
To visualize the propagated positional uncertainty, which 

is captured by the output covariance matrix Σz, we employ 
hypothetical outcome plots (Figure 1d). This technique involves 
drawing multiple random samples from the full multivariate Gaussian 
distribution p(z∗) ≈N (z∗; z∗(y∗), Σz). Each sample represents a 
plausible complete embedding given the input uncertainty. These 
outcomes can be rendered as a static overlay of semi-transparent 
points or, more powerfully, as a dynamic animation. However, 
displaying independent random samples as frames can result in a 
jerky, disconnected visual experience, making it difficult to perceive 
stable structures. To address this, we adopt a structured sampling 
approach to create a smooth animation, as detailed in our prior work 
on visualizing uncertainty in PCA (Zabel et al., 2023). This method 
traces a continuous path through a set of equiprobable embeddings, 
resulting in a smooth animation that greatly aids the visual perception 
of stable structures and correlated movements between points. 

2.6 Implementation

The t-SNE cost function (Equations 1–4), the sensitivities 
(Equation 9), and the Gaussian error propagation terms 
(Equation 11) were implemented in Python using the 
JAX library (Bradbury et al., 2018) for its automatic differentiation 
and GPU acceleration capabilities. The Hessian and mixed-partial 
derivatives required by the IFT are computed automatically from 
a JAX implementation of the t-SNE cost function’s gradient. To 
handle the potentially large matrices involved, we employ matrix-
free methods. The full output covariance matrix is constructed 
column-by-column using efficient Jacobian-vector products (JVPs) 
and vector-Jacobian products (VJPs) without explicitly instantiating 
the full mixed-Jacobian matrix. Further implementation details are 
provided in the Supplementary Method. 

3 Results

We demonstrate the utility of our framework on two distinct 
and highly relevant bioinformatics use cases: first, a bulk multi-
omics (RNA-seq and proteomics) time-series dataset with biological 
replicates to validate the full uncertainty propagation workflow, 
and second, a large-scale single-cell RNA-seq dataset to showcase 
the power of sensitivity analysis for feature attribution and cluster 
stability assessment. 

3.1 Application to bulk RNA-Seq & 
proteomics: interpreting a metabolic 
switch in Streptomyces coelicolor

In our first use case we applied our framework to a bulk 
multi-omics (RNA-seq and proteomics) dataset from Streptomyces 

coelicolor (S. coelicolor) (Sulheim et al., 2020), a bacterium known 
for its complex metabolic shifts. We first analyzed a time-series gene 
expression dataset. The dataset consists of RNA-seq measurements 
at eight timepoints (t1 to t8) during phosphate depletion, with three 
biological replicates per timepoint. Prior work (Sulheim et al., 2020) 
demonstrated that a major metabolic switch occurs between t3 and 
t4 in response to phosphate depletion. We focused our analysis 
on the top 5% most variable genes (396 genes, based on standard 
variance) to ensure matrices of appropriate size for visualization. 
The mean expression across replicates for each timepoint was 
used as the point estimate Y∗ ∈ ℝ8×396, and the variance of these 
means, estimated from the replicates, formed the diagonal input
covariance matrix Σy.

A standard t-SNE embedding of the mean expression data 
clearly separates the early (t1 − t3) from the subsequent (t4 − t8)
timepoints, reflecting a known major metabolic switch (Figure 2a). 
While this visualization confirms the expected biology, it offers 
no further insight into what drives this separation or how
stable it is.

We applied our framework (Equation 9) to compute 
the sensitivity Jacobian Jz∗ =

∂z
∗

∂y
 for this embedding (see 

Supplementary Figure S1 for a heatmap visualization). To identify 
the most influential genes and timepoints, we calculated a total 
sensitivity score for each input feature by summing the absolute 
values of its derivatives across all 16 embedding coordinates (see 
Equation 12). This analysis revealed some interesting results: a 
specific subset of genes exhibited exceptionally high sensitivity 
scores, primarily at the later timepoints (t5 − t8), with the highest 
sensitivity at t6 (Figure 2b). A query of their gene annotations 
identified these as the biosynthetic gene cluster (BGC) for the 
antibiotic actinorhodin (SCO5071-SCO5091). Their expression 
profiles show a characteristic sharp upregulation precisely 
during these late timepoints (Figure 2c). This result directly and 
quantitatively links the primary visual feature of the t-SNE plot—the 
separation of the late timepoints—to a specific, critical biological 
process. Furthermore, the analysis highlighted that the entire 
embedding was highly sensitive to the expression profile of sample 
t3 (see Figure 2b) underscoring the pivotal role of this transitional 
timepoint just prior to the metabolic switch.

Next, we used the Jacobian to propagate the input uncertainty 
derived from the biological replicates (see Equation 11). The 
resulting uncertainty visualization (Figure 2d; animated version 
available at https://github.com/Integrative-Transcriptomics/tsne/
blob/main/paper/figures_and_animations/M145.gif) showed that 
most timepoints are positioned with high confidence. However, 
timepoint t6 displayed notably larger positional uncertainty, with its 
position varying along the trajectory between the (t4, t5) and (t7, t8)
sub-clusters. This ambiguity is biologically plausible, as t6 represents 
a transitional metabolic state. Our framework not only visualizes 
this instability but, through the sensitivity analysis, attributes it to 
the variance in the expression of the highly influential actinorhodin 
BGC genes during this critical period.

To demonstrate the broad utility of our framework across 
different data modalities, we extended our analysis to a 
corresponding proteomics dataset from the same S. coelicolor time-
series experiment (Sulheim et al., 2020). We applied our sensitivity 
analysis to the t-SNE embedding of the proteome data to identify 
the most influential proteins driving its structure.
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FIGURE 2
Sensitivity Analysis and Uncertainty Visualization of S. coelicolor Time-Series Data. (a) Standard t-SNE embedding of mean gene expression profiles 
across eight timepoints, showing separation between early and late phases. (b) Heatmap of summarized sensitivity scores, highlighting the total 
influence of each gene (column) at each timepoint (row). A block of high-sensitivity genes is evident at late timepoints. (c) Mean expression profiles 
(log-scale) of the genes identified as most influential in panel B, corresponding to the actinorhodin biosynthetic gene cluster (BGC). (d)
Uncertainty-aware visualization showing hypothetical outcomes of the embedding based on propagated replicate variance. The position of timepoint 
t6 is revealed to be less stable.

The results provided a cross-modality validation of our findings. 
The sensitivity analysis of the proteome data independently 
highlighted proteins belonging to the very same metabolic 
pathway—the actinorhodin biosynthetic gene cluster—that 
was identified as the key driver in the transcriptomics data 
(see Supplementary Figure S2). This demonstrates that our 
framework can consistently pinpoint core biological drivers 
across distinct molecular layers, showcasing its robustness and 
utility for integrative multi-omics interpretation. The full t-SNE 
embedding, sensitivity analysis, uncertainty propagation, and 
detailed figures for the proteomics data are provided in the 
Supplementary Results, Section 2.2. 

3.2 Application to single-cell RNA-Seq: 
assessing the stability and drivers of 
immune cell embeddings

To demonstrate our method’s scalability and utility on larger, 
contemporary datasets, we analyzed a single-cell transcriptomics 
dataset (GEO accessions: dataset GSE164378, sample GSM5008737) 
from Hao et al. (Hao et al., 2021). Data was further annotated by 
the corresponding metadata as well as cell type labels for six major 
cell types provided by Dietrich et al. (2024). The resulting dataset 

contained single cell expression data from six major immune cell 
types from eight human donors. After a standard preprocessing 
workflow (scanpy.pp.recipe_zheng17 (Zheng et al., 2017)) 
using Scanpy (Wolf et al., 2018), we retained the 100 most highly 
variable genes across 149,482 cells. We applied our framework in 
two complementary ways: first, we performed a per-cell sensitivity 
analysis on a subset of the data to identify fragile cell positions 
within the embedding, and second, we conducted an uncertainty 
propagation analysis on pseudo-bulk profiles to assess the stability 
of entire cell type clusters. 

3.2.1 Per-cell sensitivity analysis reveals unstable 
regions of the embedding

To first assess the intrinsic stability of individual cell positions 
in the t-SNE embedding, we performed a sensitivity analysis on the 
single-cell-resolution data. We computed a t-SNE embedding on a 
random subset of 1,000 cells and then calculated the full sensitivity 
Jacobian for this embedding according to Equation 9. The resulting 
Jacobian is a high-dimensional matrix detailing how each of the 
100 genes influences the coordinates of every one of the 1,000 cells. 
While this full matrix can be inspected directly to identify the 
specific genes that a particular cell’s position is most sensitive to, 
our primary goal here was to create a high-level visual summary of 
overall cell stability.
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FIGURE 3
Per-Cell Sensitivity Analysis of a Single-Cell t-SNE Embedding. t-SNE embedding of 1,000 single cells. Cell type identity is indicated by the colored 
border of each point. The fill color represents the intrinsic sensitivity of each cell’s position, calculated from a row-wise summary of the Jacobian 
(black = low sensitivity, light gray = high sensitivity).

To achieve this, we summarized the Jacobian to derive a 
single sensitivity score for each cell (see Equations 13, 14) and 
used these scores to color the points in the t-SNE plot, with 
a black-to-gray gradient indicating low-to-high sensitivity and 
colored borders retaining cell type identity. The resulting t-SNE 
visualization (Figure 3) revealed a complex stability landscape. 
The most pronounced sensitivity was observed at the interface 
between the CD4 and CD8 T cell populations, precisely where 
the two cell types are not clearly resolved in the embedding. This 
immediately highlights a region of known biological similarity 
and visual ambiguity as being the most fragile part of the map. 
Furthermore, the analysis revealed a non-obvious pattern within the 
well-separated clusters. Cells located in the dense cores of clusters 
like the monocytes often exhibited higher sensitivity than cells at the 
sparser cluster peripheries.

This analysis demonstrates that our framework can be used 
as a powerful diagnostic tool directly on standard single-cell 
embeddings, providing a data-driven method to identify which cells 
or regions of the t-SNE map are most “fragile” and whose positions 
should be interpreted with caution, even in the absence of an explicit 
uncertainty model. 

3.2.2 Cluster stability analysis using 
pseudo-bulk profiles

Next, to assess the stability of the overall cell type clusters, 
we created pseudo-bulk profiles by summarizing the expression 
data for each cell type within each donor, resulting in 6× 8 = 48
distinct samples. For each sample, we computed the mean expression 
profile (y∗) and the variance across all cells within that group (Σy), 
providing a direct measure of intra-celltype heterogeneity.

As expected, unsupervised clustering of the mean expression 
profiles shows that samples group primarily by cell type (Figure 4a). 
A standard t-SNE embedding of the 48 samples confirms this 
structure, revealing distinct clusters for B cells, NK cells, Monocytes, 
and Dendritic Cells (DCs) (Figure 4b). Due to their highly similar 

expression profiles, CD4 and CD8 T cells are positioned closely 
together and are not fully resolved into separate clusters, though they 
remain linearly separable.

Next, we applied our sensitivity analysis framework to this 
dataset. This revealed a notable structure in the Jacobian matrix: it 
was strongly diagonal (Figure 4c). This indicates that the position 
of a given sample’s embedding (e.g., Patient 1’s B cells) is almost 
exclusively sensitive to its own high-dimensional expression profile, 
with minimal influence from other samples. This suggests a relatively 
independent embedding for each sample. Crucially, the analysis also 
showed that the embeddings for CD4 and CD8 T cells were the 
most sensitive to input perturbations, consistent with their close 
proximity and the inherent difficulty in resolving them.

Finally, we propagated the cell-to-cell variance for each sample 
through the t-SNE map to visualize the stability of their positions 
(Figure 4d; animated version available at https://github.com/
Integrative-Transcriptomics/tsne/blob/main/paper/figures_and_ani
mations/hao_mean_animation.gif). This result illustrates a key 
insight from our framework: positional uncertainty in a t-
SNE embedding is a product of both the mapping’s intrinsic 
sensitivity and the input data’s variance. For example, while the 
CD4 T cell embeddings have high sensitivity, their low intra-
population variance (Supplementary Figure S3) results in a relatively 
stable and certain position. Conversely, the DC population, which 
exhibits higher expression heterogeneity (high input variance), results 
in a much more uncertain embedding position despite having lower 
intrinsic sensitivity than the T cells. This analysis demonstrates how our 
method can deconstruct the sources of uncertainty, allowing for a more 
nuanced interpretation of cluster stability in a t-SNE visualization. 

4 Discussion

In this work, we have introduced a computational framework 
to move beyond static t-SNE plots, providing a principled 
methodology for both sensitivity analysis and uncertainty-aware 
visualization. Our central contribution is a method to efficiently 
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FIGURE 4
Sensitivity and Stability Analysis of Immune Cell Subsets. (a) Clustered heatmap of mean expression profiles for 48 pseudo-bulk samples (6 cell types x 
8 donors). Samples cluster primarily by cell type, with CD4 and CD8 T cells showing high similarity. (b) Standard t-SNE embedding of the 48 samples. 
Major cell types form distinct clusters, while CD4 and CD8 T cells are closely co-located. (c) Heatmap of the sensitivity Jacobian. The strong diagonal 
indicates that each sample’s embedding is primarily sensitive to its own input features. CD4 and CD8 T cells exhibit the highest sensitivity scores. Note 
that cell type colors follow the color code shown in Figure 4d. (d) Uncertainty-aware visualization of the t-SNE embedding. Ellipses represent the 
propagated intra-population variance.

compute the t-SNE Jacobian, which serves as a powerful diagnostic 
for interpretability and a foundation for robust uncertainty 
quantification. A key advantage of our approach, based on 
the Implicit Function Theorem, is that it operates directly on 
the optimality conditions of the t-SNE cost function. This 
makes our framework solver-agnostic: it can be applied to any 
converged t-SNE embedding, regardless of the specific optimization 
algorithm or software package used to generate it, from Barnes-Hut 
implementations (e.g., Van Der Maaten, 2014) to GPU-accelerated 
solvers (e.g., Chan et al., 2018).

While a standard t-SNE plot effectively visualizes high-
dimensional structure, interpreting this structure requires a 
demanding mental leap back to the original features to assess their 
relevance. Our framework is designed to bridge this interpretational 
gap by embedding analytical insights directly into the visualization. 
Instead of forcing users to guess which genes define a cluster, 
our feature influence maps provide a direct, data-driven answer. 
Similarly, rather than subjectively assessing cluster tightness, our 
uncertainty visualizations offer a quantitative measure of positional 
stability. By offloading this analytical burden from the user to the 
computation, our visualizations allow users to interpret the stability 
t-SNE plots more easily.

Our analyses across two distinct and challenging biological data 
modalities underscore the versatility of this framework. On bulk 
multiomics data, the method not only validated its uncertainty 
propagation capabilities against true biological replicates but also 
performed successful feature attribution, directly linking the visual 
separation of a time-series to the expression dynamics of a key 
antibiotic-producing gene cluster. Our application to single-cell 
data demonstrated the framework’s dual utility as a multi-scale 
diagnostic tool. The per-cell sensitivity analysis revealed a complex 
stability landscape, highlighting not only the expected fragility at 
the unresolved boundary of T-cell subtypes but also the counter-
intuitive finding that dense cluster cores can be more sensitive 
than their peripheries. Building on this, the pseudo-bulk analysis 
deconstructed the sources of overall cluster stability, showing how 
positional uncertainty is a product of both intrinsic sensitivity and 
biological heterogeneity.

Our work contributes to the broader effort within eXplainable 
AI (XAI) to bring interpretability to non-linear embeddings, a 
challenge being addressed from multiple angles. One major branch 
of research modifies the embedding algorithm itself. The Ut-SNEs 
preprint, for instance, integrates input uncertainty directly into 
the optimization objective to produce a single, uncertainty-aware 
embedding (Ma and Chen, 2024). In contrast, post-hoc frameworks, 
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including our own, analyze a standard, converged embedding 
without altering the algorithm.

Traditional post-hoc approaches, adapted from linear methods, 
attempt to interpret embedding axes, for example, by creating 
curved biplots (Coimbra et al., 2016). Besides that, many of the 
post-hoc methods rely on approximation or stochastic sampling. 
A popular strategy involves training a surrogate model, such as 
using a random forest to explain UMAP clusters (Ehiro, 2023) 
or adapting LIME (Ribeiro et al., 2016) to explain local t-SNE 
neighborhoods (Bibal et al., 2020). While powerful, these methods 
are inherently approximate, as they explain the surrogate model, not 
the embedding algorithm itself. Other post-hoc approaches assess 
reliability through resampling, for example, using bootstrapping to 
test the structural stability of clusters (Kobak and Berens, 2019), or 
by evaluating projection fidelity to quantify how well the 2D map 
represents true high-dimensional neighborhoods (Han et al., 2022). 
Our framework defines a distinct class of post-hoc analysis that is 
fully analytical and deterministic, moving beyond these approximate 
and stochastic techniques.

Our framework aligns with and extends the most 
recent class of methods: gradient-based explanation. The 
concurrent work of Corbugy et al. (2024) also uses the Implicit 
Function Theorem to provide instance-specific explanations. 
The fundamental difference lies in the problem formulation. 
Their method explains the position of a single instance under 
the simplifying assumption that all other embedded points 
are held constant. In contrast, our framework addresses the 
complete, simultaneous optimization problem, computing the 
full Jacobian ∂z

∂y
. This more challenging approach yields a richer 

result, allowing us to analyze the coupled dynamics of the entire 
visual structure. Moreover, our primary application of this full 
Jacobian—propagating input uncertainty to generate uncertainty-
aware visualizations—is a distinct contribution not explored in these 
other explanation-focused works.

It is also important to situate our definition of stability. 
Much of the existing literature on t-SNE stability focuses on the 
“global” variability arising from different random initializations 
or hyperparameter choices (Belkina et al., 2019). Our work is 
complementary, focusing instead on the “local” stability of a 
single, converged embedding, which is crucial for interpreting 
the final plot presented in a study. Our approach here extends 
the core ideas of uncertainty propagation we previously 
developed for PCA (Zabel et al., 2023) to the more complex, iterative 
optimization setting of t-SNE.

Despite its utility, our method has limitations that 
suggest avenues for future research. The primary constraint 
is computational complexity. Our empirical benchmarks (see 
Supplementary Section 2.4) confirm that the cost of computing 
the output covariance scales approximately cubically with the 
number of samples (O(N3)), driven by the Hessian pseudoinversion, 
and roughly linearly with the number of features (O(D)). This 
computational overhead is substantial compared to a standard t-
SNE run, making our full uncertainty propagation demanding for 
datasets with a very large number of samples (e.g., N > 10,000). 
However, the analysis also demonstrates that the framework remains 
highly practical ( <  1 h runtime on a typical server) for the moderate 
sample sizes common in many applications, such as the pseudo-bulk 
and proteomics analyses presented in this paper. For larger datasets, 

that are typical for example, for single-cell experiments, future work 
could therefore explore scalable approximations, such as iterative 
solvers for the pseudoinverse-vector products, to mitigate this 
bottleneck. Second, our uncertainty propagation relies on a first-
order Taylor approximation (Equation 10). The core quantitative 
output of our method is the full output covariance matrix, Σz, 
which provides a complete diagnostic of the embedding’s variance 
and covariance structure. Our visualizations, such as hypothetical 
outcome plots, are principled renderings of this matrix, designed to 
intuitively convey correlated uncertainties that are lost when only 
visualizing marginal confidence ellipses. However, the accuracy 
of this underlying covariance matrix is dependent on the local 
linearity of the t-SNE mapping. Lastly, our analysis is local to a 
single t-SNE optimum. For a comprehensive stability assessment, 
we therefore suggest a two-stage workflow that combines our local 
analysis with methods for assessing global stability. An analyst 
would first use established techniques, such as running t-SNE 
from multiple random initializations (Belkina et al., 2019), to select 
a globally stable and representative embedding. Our framework 
would then be applied to this single, chosen map to probe its local 
stability, revealing which structures are robust to input data noise 
and identifying their feature drivers.

Finally, while this work has focused on t-SNE, the underlying 
IFT-based framework is not inherently restricted to this one 
algorithm. We chose t-SNE as the initial application for this work 
due to its foundational status in the field and its well-defined, 
continuously differentiable cost function. In principle, however, our 
method can be extended to any embedding technique that relies on 
minimizing a differentiable objective function. The most logical and 
impactful next step would be Uniform Manifold Approximation and 
Projection (UMAP) (McInnes et al., 2018), another cornerstone of 
modern data visualization. Extending our work to UMAP would 
be an important step towards a unified framework for assessing the 
stability of non-linear embeddings.

In conclusion, this work provides a practical and powerful 
toolkit for enhancing the rigor and interpretability of t-SNE 
visualizations, and thus creates a more effective and insightful visual 
representations of the embedded data. By enabling researchers to 
quantify the influence of their features and visualize the uncertainty 
in their embeddings, our framework promotes a more critical 
and nuanced understanding of high-dimensional data. As AI-
driven visualization becomes more central to biological discovery, 
integrating such diagnostics for trust and transparency will be 
essential.
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