:' frontiers ‘ Frontiers in Bioinformatics

‘ @ Check for updates

OPEN ACCESS

Sean |. O'Donoghue,
University of New South Wales, Australia

Junhan Zhao,

University of Chicago, United States
Busra Ozgode Yigin,

Tilburg University, Netherlands

Susanne Zabel,
susanne.zabel@uni-tuebingen.de

Kay Nieselt,
kay.nieselt@uni-tuebingen.de

06 October 2025

24 November 2025
05 December 2025

02 January 2026

Zabel S, Hennig P and Nieselt K (2026)
Visualizing stability: a sensitivity analysis
framework for t-SNE embeddings.
Front. Bioinform. 5:1719516.

doi: 10.3389/fbinf.2025.1719516

© 2026 Zabel, Hennig and Nieselt. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is
permitted which does not comply with
these terms.

Frontiers in Bioinformatics

Original Research
02 January 2026
10.3389/fbinf.2025.1719516

Visualizing stability: a sensitivity
analysis framework for t-SNE
embeddings

Susanne Zabel'*, Philipp Hennig? and Kay Nieselt'*

!Institute for Bioinformatics and Medical Informatics, University of Tubingen, Tubingen, Germany,
’Department of Computer Science, University of Tubingen, Tubingen, Germany

t-distributed Stochastic Neighbour Embedding (t-SNE) is a cornerstone for
visualizing high-dimensional biological data, where each high-dimensional data
point is represented as a point in a two-dimensional map. However, this static
map provides no information about the stability of the visual layout, the features
that influence it, or the impact of uncertainty in the input data. This work
introduces a computational framework that allows one to extend the standard
t-SNE plot by visual clues about the stability of the t-SNE embedding. First,
we perform a sensitivity analysis to determine feature influence: by combining
the Implicit Function Theorem with automatic differentiation, our method
computes the sensitivity of the embedding w.r.t. the input data, provided in
a Jacobian of first-order derivatives. Heatmap-visualizations of this Jacobian
or summarizations thereof reveal which input features are most influential in
shaping the embedding and identifying regions of structural instability. Second,
when input data uncertainty is available, our framework uses this Jacobian
to propagate error, probabilistically quantifying the positional uncertainty of
each embedded point. This uncertainty is visualized by augmenting the
plot with hypothetical outcomes, which display the positional confidence
of each point. We apply our framework to three diverse biological datasets
(bulk RNA-seq, proteomics, and single-cell transcriptomics), demonstrating
its ability to directly link visual patterns to their underlying biological drivers
and reveal ambiguities invisible in a standard plot. By providing this principled
means to assess the robustness and interpretability of t-SNE visualizations,
our work enables more rigorous and informed scientific conclusions in
bioinformatics.

t-SNE, uncertainty, explainable machine learning, error propagation, visualization, data
insights

1 Introduction

At the intersection of artificial intelligence and biology, data visualization serves
as a critical bridge between complex computational models and human insight. t-
Distributed Stochastic Neighbor Embedding (t-SNE) is a cornerstone of modern
data exploration, enabling researchers to visualize the structure of high-dimensional
datasets, such as clusters, in intuitive mostly two-dimensional maps (Van der Maaten
and Hinton, 2008). Its widespread adoption in bioinformatics is a testament to
its power in revealing meaningful patterns and guiding hypothesis generation,
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from identifying cell populations in single-cell transcriptomics
(e.g., Kobak and Berens, 2019; Zhou and Jin, 2020) to visualizing
sample relationships in proteomic data (Abdelmoula et al., 2016;
Schessner et al., 2022) and genomic data (Platzer, 2013), and many
other applications.

Despite its power, a standard t-SNE plot is a static endpoint
that obscures critical information. This creates two fundamental
challenges for rigorous interpretation. First, the plot provides no
direct insight into the feature influence: we cannot easily determine
which input features are most responsible for a point’s placement.
While linear methods like PCA (Pearson, 1901; Hotelling, 1933)
yield feature loadings, the non-linear t-SNE model remains a
“black box”. Second, biological data is inherently noisy (Kavran
and Clauset, 2021), and standard t-SNE ignores this measurement
uncertainty. This leaves a crucial question unanswered: how would
the embedding change if we could account for this input noise, and
how could this be visually implemented?

Recognizing these and other challenges, an active field of
research has emerged to enhance t-SNE’s reliability. One line of
work assesses the fidelity of the embedding by quantifying distortion
errors or identifying false neighbors, thus evaluating the map’s
quality with respect to a fixed input dataset (Han et al., 2022;
Zhao et al., 2024; Ozgode Yigin and Saygili, 2022). Other approaches
modify the algorithm itself, either by incorporating supervised
class labels to improve cluster separation (Meng et al., 2023;
Hajderanj et al., 2019) or by integrating input uncertainty directly
into the optimization objective, as in the Ut-SNE’s preprint (Ma
and Chen, 2024). More recently, gradient-based methods using
the Implicit Function Theorem have been introduced for local
explanation (Corbugy et al., 2024). However, this initial gradient-
based approach relies on a simplifying assumption, analyzing a
single point while holding all others fixed. While these are all
valuable contributions, a framework is still needed that can (1)
analyze the sensitivity of the complete, coupled t-SNE embedding
in a post-hoc manner, and (2) use this analysis to address the critical
and distinct problem of propagating input data uncertainty.

Here, we introduce such a framework. It is crucial to distinguish
the stability we address here from the well-known variability of t-
SNE arising from different random initializations or hyperparameter
choices (Belkina et al., 2019). Such studies concern the algorithm’s
global stability. Our work, in contrast, focuses on the local stability
of a single, converged t-SNE solution. We ask: given a specific,
optimized embedding, how robust is it to small perturbations in the
input data, what drives this sensitivity, and how can this be visually
integrated into the plot? To answer these questions, our central
contribution is a method based on the Implicit Function Theorem
(IFT) (Cauchy, 1831; Krantz and Parks, 2002) to efficiently compute
the complete sensitivity Jacobian of the embedding, overcoming the
intractability of differentiating through the optimizer. This approach
extends the concept of uncertainty-aware dimensionality reduction
we previously developed for PCA (Zabel et al, 2023), applying
it to the more complex setting of t-SNE. The resulting Jacobian
enables two key visual enhancements—feature influence heatmaps
and uncertainty visualizations—that provide a practical toolkit for
moving beyond static plots towards a more robust and interpretable
use of t-SNE.

We first detail the theory behind our IFT-based approach
followed by our visualization design decisions, and then apply our
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framework to a biological time-series dataset, demonstrating how
sensitivity analysis can deconstruct the embedding to identify key
biological drivers and how uncertainty visualization can reveal
structural ambiguities. Our work provides a practical toolkit for
moving beyond static plots towards a more interpretable use of t-
SNE.

2 Methods

Our framework aims to conduct a sensitivity analysis of a t-SNE
embedding to its input data. This sensitivity, which is quantified by a
Jacobian matrix, then enables both direct feature influence analysis
and principled uncertainty propagation. A principled uncertainty
propagation determines how uncertainties in input measurements
affect the uncertainty of a calculated quantity (in our case the
embedded values). For an efficient calculation of the Jacobian, we
will leverage the Implicit Function Theorem.

2.1 t-Distributed Stochastic Neighbor
Embedding (t-SNE)

t-Distributed ~ Stochastic =~ Neighbor ~ Embedding  (t-
SNE) (Van der Maaten and Hinton, 2008) is
dimensionality reduction technique that computes a low-

a nonlinear

dimensional embedding of high-dimensional data while preserving
local neighborhoods. Given a set of high-dimensional data points
Y ={y,,....yy}, where each y; is of dimension D, the algorithm
first converts the Euclidean distances between points into joint
probabilities, p;;, representing their pairwise similarity. To compute
these probabilities, for each pair (i,j) we first compute the
conditional probability that y; is a neighbor of y;:

lly, ;I
P\" 22

b=~ (1)

y exp(_ Hy";:f" )

k#i

The variance o is chosen on a per-point basis to match a
user-defined hyperparameter known as perplexity, which controls
neighborhood size. The probability p;; is symmetrized by

Pyt Py
iT 2N

2

For the corresponding low-dimensional embedding points Z =
{z1,...,zy}, where each z; is typically of dimension P = 2, a similar
set of joint probabilities, q;, is computed. A key feature of t-SNE is
its use of a heavy-tailed Student’s t-distribution with one degree of
freedom for this low-dimensional space, which helps to alleviate the
crowding of points:

(1+lz;-21?) "
q; = o
D (-l

The goal of t-SNE is to find an embedding Z where the
probability distribution Q = {g;} best models the distribution P =
{p;;}. This is achieved by minimizing the Kullback-Leibler (KL)

3)
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divergence between the two distributions. The objective is thus to
minimize the cost function C, which can be written as a function of
the vectorized input data y and the embedding z:

P

Ci2) q;(2)’

=Y py(Mlog—— (4)

i#]

This cost function is minimized using an iterative optimization
method, typically gradient descent, to find the final, optimal
embedding z*. The gradient of C w.r.t. z; is

=4 (p;—a;) i)

aC
i i 1+|z;- Zj"Z

e (5)

2.2 Sensitivity analysis: problem
formulation

To analyze the sensitivity of the t-SNE embedding, we must
first formalize the relationship between the input and its output.

RMP and its

Let the high-dimensional input data be a matrix Y ¢
vectorized form be y = vec (Y) € RP. The t-SNE algorithm operates
on a specific point estimate of this data, which we denote as the mean
y*. Through the optimization described in Section 2.1, it produces a
corresponding optimal low-dimensional embedding, denoted z* €
RM (where P is typically 2).

Our primary goal is to perform a sensitivity analysis by

computing the Jacobian of the optimal solution map, Ak ).

This matrix quantifies how the final, optimized embeddy ing

5

z" changes in response to perturbations of the input data
y. A naive approach to compute this Jacobian would be to
apply automatic differentiation (AD) through the entire iterative
gradient descent procedure. However, a typical t-SNE optimization
involves hundreds or thousands of steps. Unrolling this entire
process creates an exceptionally large computational graph, leading
to prohibitive memory consumption and potential numerical
instability. Therefore, a more direct and memory-efficient method
is required. Instead of differentiating through the optimizer, our
approach is to differentiate the optimality conditions at the final
converged solution.

2.3 Computing embedding sensitivities via
the implicit function theorem

Our method relies on the stationary point condition of the
t-SNE optimizer. At a converged (local) minimum (y*,z"), the
gradient of the cost function with respect to the embedding

parameters (Equation 5) is zero:
V.C(y*,z") =0. (6)

We define G(y,z) =V,C(y,z). The
condition in Equation 6 is thus G(y*,z") =0, which implicitly

can a function
defines the optimal embedding z* as a function of the input y.
The Implicit Function Theorem formalizes this relationship.

The Implicit Function Theorem (Cauchy, 1831) states that
for a continuously differentiable function G:R"xR™ — R", if

(x*,y") € R" x R™ isa point such that G(x*,y*) = 0 and the Jacobian
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matrix %

is invertible at (x*,y"), then there exists a continuously
differentiable function f:R"” — R™ in a neighborhood of x* such

that G(x,f(x)) = 0. The Jacobian of this implicit function is given by:

o ) _ _[ oG (x,y)

ox ox (7)

9G (x,y) ]
y

To apply this theorem to our problem, we map our variables:
x—ye€ RNP, y—oze€ RM, and G(y,z) = V,C(y,z). The required
Jacobians of G are the second-order derivatives of the original cost

function C:
. g = —(V O == (the Hessian with respect to z).
. aaf = ;(VZC) == < (the mixed-partial derivatives).

Substituting these into the IFT (Equation 7) yields the Jacobian
of the optimal embedding map z* (y):

:

However, a critical challenge arises: the Hessian matrix H,, =
2
8375’ whose inverse is required by the theorem (Equation 8), is

9z” (y)

-1 a2c(y)z*)
dy ’

dyoz ®

*C(y,z") ]
0z?

singular for the standard t-SNE cost function. The singularity
stems from the fact that the t-SNE cost depends only on pairwise
Euclidean distances between embedded points. Consequently, the
cost function is invariant to transformations that preserve these
distances—namely, global translations and rotations of the entire
embedding. This invariance means the Hessian has a null space of
dimension three and is therefore not invertible.

Since the absolute position and orientation of a t-SNE plot
are irrelevant for interpretation, we employ the Moore-Penrose
pseudoinverse of the Hessian (H},) to satisfy the IFT’s requirement
on the subspace of meaningful variation. The pseudoinverse inverts
the transformation on the subspace orthogonal to the null space
while mapping the invariant directions to zero. This yields our final
expression for the sensitivity Jacobian:

' (y)  [PCyz) ] PCh.zY)
dy 922 oydz

)

This approach allows us to compute the complete sensitivity
profile of a t-SNE embedding using only derivatives of its cost
function evaluated at the single converged solution point.

2.4 Approximate Gaussian error
propagation through t-SNE

With the sensitivity Jacobian computed, we can perform
principled uncertainty propagation as a direct application.
Assuming the input uncertainty is modeled as a Gaussian
distribution, p(y) = N (»3¥",%,), we can approximate the output
distribution using a first-order Taylor expansion of the solution
map z*(y) around y*:

Z* (y)
dy

o
@)=+ -r). (10)
y
Under this linear approximation, the output distribution is

also approximately Gaussian, p(z*) = N(z*;z*(y*),X,), with a
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FIGURE 1

confidence of each point using hypothetical outcomes.

Schematic Overview of the Proposed Visualization Framework. Our method uses the sensitivity Jacobian as a central component to generate multiple
complementary visualizations that enhance the standard t-SNE plot. (a) The full sensitivity Jacobian (J,+) as a heatmap, showing the granular influence
of input features on the embedding. (b) A feature influence map, created by summarizing the Jacobian column-wise to identify the most influential
input features. (c) A sample sensitivity map, generated by summarizing the Jacobian row-wise and coloring points in the plot to highlight the most
fragile or stable samples. (d) An uncertainty-aware visualization, which combines the Jacobian with input uncertainty to display the positional

covariance matrix X, € RN given by the rules of Gaussian error
propagation:
a * a * T
Ezz< za(y) >zy< za(y) > . (11)
y y* y y*

2.5 Design of visualization

The computed Jacobian and output covariance matrix
enable powerful visual enhancements that reveal the stability
and interpretability of a t-SNE embedding. We propose three
complementary visualization strategies, summarized in Figure 1.

2.5.1 Visualizing feature influence

To visualize the influence of input features on the embedding, we
utilize the sensitivity Jacobian matrix J,» € R* * ™. For datasets
with a manageable number of input dimensions and sample size
(on the order of thousands when multiplied), the full Jacobian can
be directly visualized as a heatmap (Figure la). The rows of this
heatmap correspond to the embedding coordinates (e.g., the x and
y coordinates for each sample), and the columns correspond to the
input features. This provides a granular view of which specific inputs
affect which specific output coordinates.

For larger datasets where the full Jacobian is too vast to interpret
directly, we compute a summary. We calculate a total sensitivity score
for each of the ND input features (Figure 1b). The score for input
feature k, s, is the sum of the absolute values of its derivatives across
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all 2N embedding coordinates:

N
se= 2 o al- (12)

i=1

These scores quantify the overall influence of each input feature
on the entire embedding. These scores can then be visualized as a
heatmap. For structured data, such as a time-series with multiple
genes, this summary vector can be reshaped into a matrix (e.g.,
timepoints X genes) to reveal systematic patterns of influence.

2.5.2 Visualizing sample sensitivity

In addition to identifying influential features, we can visualize
the intrinsic sensitivity of each individual sample’s position. This is
achieved by summarizing the Jacobian row-wise (Figure 1c). First,
for each of the 2N output coordinates, we compute a sensitivity
score r; by summing the absolute values of the corresponding row’s
elements:

ND
ri= Y e al- (13)

k=1

Since each sample j (for j=1,...,N) in a 2D embedding
is represented by two coordinates (an x- and y-coordinate,
corresponding to rows 2j—1 and 2j of the Jacobian, respectively),
we aggregate these scores to get a single, overall sensitivity score §;
for that sample:

2j ND

Si=ry 1= Z Z T el

i=2j-1k=1

(14)
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These per-sample scores {S;, ..., Sy} can then be used to color the
points directly in the t-SNE plot using a sequential colormap. This
immediately highlights which samples have the most stable versus
the most fragile positions in the map.

2.5.3 Visualizing positional uncertainty

To visualize the propagated positional uncertainty, which
is captured by the output covariance matrix X, we employ
hypothetical outcome plots (Figure 1d). This technique involves
drawing multiple random samples from the full multivariate Gaussian
distribution p(z*) = N'(z*;z*(y*), £,). Each sample represents a
plausible complete embedding given the input uncertainty. These
outcomes can be rendered as a static overlay of semi-transparent
points or, more powerfully, as a dynamic animation. However,
displaying independent random samples as frames can result in a
jerky, disconnected visual experience, making it difficult to perceive
stable structures. To address this, we adopt a structured sampling
approach to create a smooth animation, as detailed in our prior work
on visualizing uncertainty in PCA (Zabel et al., 2023). This method
traces a continuous path through a set of equiprobable embeddings,
resulting in a smooth animation that greatly aids the visual perception
of stable structures and correlated movements between points.

2.6 Implementation

The t-SNE cost function (Equations 1-4), the sensitivities
(Equation 9), and the
(Equation 11) were implemented in Python wusing the
JAX library (Bradbury et al., 2018) for its automatic differentiation
and GPU acceleration capabilities. The Hessian and mixed-partial

Gaussian error propagation terms

derivatives required by the IFT are computed automatically from
a JAX implementation of the t-SNE cost function’s gradient. To
handle the potentially large matrices involved, we employ matrix-
free methods. The full output covariance matrix is constructed
column-by-column using efficient Jacobian-vector products (JVPs)
and vector-Jacobian products (VJPs) without explicitly instantiating
the full mixed-Jacobian matrix. Further implementation details are
provided in the Supplementary Method.

3 Results

We demonstrate the utility of our framework on two distinct
and highly relevant bioinformatics use cases: first, a bulk multi-
omics (RNA-seq and proteomics) time-series dataset with biological
replicates to validate the full uncertainty propagation workflow,
and second, a large-scale single-cell RNA-seq dataset to showcase
the power of sensitivity analysis for feature attribution and cluster
stability assessment.

3.1 Application to bulk RNA-Seq &
proteomics: interpreting a metabolic
switch in Streptomyces coelicolor

In our first use case we applied our framework to a bulk
multi-omics (RNA-seq and proteomics) dataset from Streptomyces
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coelicolor (8. coelicolor) (Sulheim et al., 2020), a bacterium known
for its complex metabolic shifts. We first analyzed a time-series gene
expression dataset. The dataset consists of RNA-seq measurements
at eight timepoints (¢, to t5) during phosphate depletion, with three
biological replicates per timepoint. Prior work (Sulheim et al., 2020)
demonstrated that a major metabolic switch occurs between f; and
t, in response to phosphate depletion. We focused our analysis
on the top 5% most variable genes (396 genes, based on standard
variance) to ensure matrices of appropriate size for visualization.
The mean expression across replicates for each timepoint was
used as the point estimate ¥* € R®3%, and the variance of these
means, estimated from the replicates, formed the diagonal input
covariance matrix X,.

A standard t-SNE embedding of the mean expression data
clearly separates the early (f, —t;) from the subsequent (t,—fg)
timepoints, reflecting a known major metabolic switch (Figure 2a).
While this visualization confirms the expected biology, it offers
no further insight into what drives this separation or how
stable it is.

We applied our framework* (Equation 9) to compute

the sensitivity Jacobian J = aai for this embedding (see
Supplementary Figure S1 for a heatmap visualization). To identify
the most influential genes and timepoints, we calculated a total
sensitivity score for each input feature by summing the absolute
values of its derivatives across all 16 embedding coordinates (see
Equation 12). This analysis revealed some interesting results: a
specific subset of genes exhibited exceptionally high sensitivity
scores, primarily at the later timepoints (f; —tg), with the highest
sensitivity at t, (Figure 2b). A query of their gene annotations
identified these as the biosynthetic gene cluster (BGC) for the
antibiotic actinorhodin (SCO5071-SCO5091). Their expression
profiles show a characteristic sharp upregulation precisely
during these late timepoints (Figure 2c). This result directly and
quantitatively links the primary visual feature of the t-SNE plot—the
separation of the late timepoints—to a specific, critical biological
process. Furthermore, the analysis highlighted that the entire
embedding was highly sensitive to the expression profile of sample
t; (see Figure 2b) underscoring the pivotal role of this transitional
timepoint just prior to the metabolic switch.

Next, we used the Jacobian to propagate the input uncertainty
derived from the biological replicates (see Equation 11). The
resulting uncertainty visualization (Figure 2d; animated version
available at https://github.com/Integrative-Transcriptomics/tsne/
blob/main/paper/figures_and_animations/M145.gif) showed that
most timepoints are positioned with high confidence. However,
timepoint f; displayed notably larger positional uncertainty, with its
position varying along the trajectory between the (t,,¢;) and (t;,15)
sub-clusters. This ambiguity is biologically plausible, as t, represents
a transitional metabolic state. Our framework not only visualizes
this instability but, through the sensitivity analysis, attributes it to
the variance in the expression of the highly influential actinorhodin
BGC genes during this critical period.

To demonstrate the broad utility of our framework across
different data modalities, we extended our analysis to a
corresponding proteomics dataset from the same S. coelicolor time-
series experiment (Sulheim et al., 2020). We applied our sensitivity
analysis to the t-SNE embedding of the proteome data to identify
the most influential proteins driving its structure.
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FIGURE 2

tg is revealed to be less stable.

Sensitivity Analysis and Uncertainty Visualization of S. coelicolor Time-Series Data. (a) Standard t-SNE embedding of mean gene expression profiles
across eight timepoints, showing separation between early and late phases. (b) Heatmap of summarized sensitivity scores, highlighting the total
influence of each gene (column) at each timepoint (row). A block of high-sensitivity genes is evident at late timepoints. (c) Mean expression profiles
(log-scale) of the genes identified as most influential in panel B, corresponding to the actinorhodin biosynthetic gene cluster (BGC). (d)
Uncertainty-aware visualization showing hypothetical outcomes of the embedding based on propagated replicate variance. The position of timepoint
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The results provided a cross-modality validation of our findings.
The sensitivity analysis of the proteome data independently
highlighted proteins belonging to the very same metabolic
pathway—the actinorhodin biosynthetic ~gene
was identified as the key driver in the transcriptomics data
This
framework can consistently pinpoint core biological drivers

cluster—that

(see Supplementary Figure S2). demonstrates that our
across distinct molecular layers, showcasing its robustness and
utility for integrative multi-omics interpretation. The full t-SNE
embedding, sensitivity analysis, uncertainty propagation, and
detailed figures for the proteomics data are provided in the

Supplementary Results, Section 2.2.

3.2 Application to single-cell RNA-Seq:
assessing the stability and drivers of
immune cell embeddings

To demonstrate our method’s scalability and utility on larger,
contemporary datasets, we analyzed a single-cell transcriptomics
dataset (GEO accessions: dataset GSE164378, sample GSM5008737)
from Hao et al. (Hao et al., 2021). Data was further annotated by
the corresponding metadata as well as cell type labels for six major
cell types provided by Dietrich et al. (2024). The resulting dataset

Frontiers in Bioinformatics

contained single cell expression data from six major immune cell
types from eight human donors. After a standard preprocessing
workflow (scanpy .pp.recipe_zheng17 (Zhengetal., 2017))
using Scanpy (Wolf et al., 2018), we retained the 100 most highly
variable genes across 149,482 cells. We applied our framework in
two complementary ways: first, we performed a per-cell sensitivity
analysis on a subset of the data to identify fragile cell positions
within the embedding, and second, we conducted an uncertainty
propagation analysis on pseudo-bulk profiles to assess the stability
of entire cell type clusters.

3.2.1 Per-cell sensitivity analysis reveals unstable
regions of the embedding

To first assess the intrinsic stability of individual cell positions
in the t-SNE embedding, we performed a sensitivity analysis on the
single-cell-resolution data. We computed a t-SNE embedding on a
random subset of 1,000 cells and then calculated the full sensitivity
Jacobian for this embedding according to Equation 9. The resulting
Jacobian is a high-dimensional matrix detailing how each of the
100 genes influences the coordinates of every one of the 1,000 cells.
While this full matrix can be inspected directly to identify the
specific genes that a particular cell’s position is most sensitive to,
our primary goal here was to create a high-level visual summary of
overall cell stability.
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(black = low sensitivity, light gray = high sensitivity).

Per-Cell Sensitivity Analysis of a Single-Cell t-SNE Embedding. t-SNE embedding of 1,000 single cells. Cell type identity is indicated by the colored
border of each point. The fill color represents the intrinsic sensitivity of each cell’s position, calculated from a row-wise summary of the Jacobian

To achieve this, we summarized the Jacobian to derive a
single sensitivity score for each cell (see Equations 13, 14) and
used these scores to color the points in the t-SNE plot, with
a black-to-gray gradient indicating low-to-high sensitivity and
colored borders retaining cell type identity. The resulting t-SNE
visualization (Figure 3) revealed a complex stability landscape.
The most pronounced sensitivity was observed at the interface
between the CD4 and CD8T cell populations, precisely where
the two cell types are not clearly resolved in the embedding. This
immediately highlights a region of known biological similarity
and visual ambiguity as being the most fragile part of the map.
Furthermore, the analysis revealed a non-obvious pattern within the
well-separated clusters. Cells located in the dense cores of clusters
like the monocytes often exhibited higher sensitivity than cells at the
sparser cluster peripheries.

This analysis demonstrates that our framework can be used
as a powerful diagnostic tool directly on standard single-cell
embeddings, providing a data-driven method to identify which cells
or regions of the t-SNE map are most “fragile” and whose positions
should be interpreted with caution, even in the absence of an explicit
uncertainty model.

3.2.2 Cluster stability analysis using
pseudo-bulk profiles

Next, to assess the stability of the overall cell type clusters,
we created pseudo-bulk profiles by summarizing the expression
data for each cell type within each donor, resulting in 6 x 8 =48
distinct samples. For each sample, we computed the mean expression
profile (y*) and the variance across all cells within that group (Z,),
providing a direct measure of intra-celltype heterogeneity.

As expected, unsupervised clustering of the mean expression
profiles shows that samples group primarily by cell type (Figure 4a).
A standard t-SNE embedding of the 48 samples confirms this
structure, revealing distinct clusters for B cells, NK cells, Monocytes,
and Dendritic Cells (DCs) (Figure 4b). Due to their highly similar
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expression profiles, CD4 and CD8 T cells are positioned closely
together and are not fully resolved into separate clusters, though they
remain linearly separable.

Next, we applied our sensitivity analysis framework to this
dataset. This revealed a notable structure in the Jacobian matrix: it
was strongly diagonal (Figure 4c). This indicates that the position
of a given sample’s embedding (e.g., Patient 1’s B cells) is almost
exclusively sensitive to its own high-dimensional expression profile,
with minimal influence from other samples. This suggests a relatively
independent embedding for each sample. Crucially, the analysis also
showed that the embeddings for CD4 and CD8 T cells were the
most sensitive to input perturbations, consistent with their close
proximity and the inherent difficulty in resolving them.

Finally, we propagated the cell-to-cell variance for each sample
through the t-SNE map to visualize the stability of their positions
(Figure 4d; animated version available at https://github.com/
Integrative-Transcriptomics/tsne/blob/main/paper/figures_and_ani
mations/hao_mean_animation.gif). This result illustrates a key
insight from our framework: positional uncertainty in a t-
SNE embedding is a product of both the mappings intrinsic
sensitivity and the input data’s variance. For example, while the
CD4T cell embeddings have high sensitivity, their low intra-
population variance (Supplementary Figure S3) results in a relatively
stable and certain position. Conversely, the DC population, which
exhibits higher expression heterogeneity (high input variance), results
in a much more uncertain embedding position despite having lower
intrinsic sensitivity than the T cells. This analysis demonstrates how our
method can deconstruct the sources of uncertainty, allowing for amore
nuanced interpretation of cluster stability in a t-SNE visualization.

4 Discussion

In this work, we have introduced a computational framework
to move beyond static t-SNE plots, providing a principled
methodology for both sensitivity analysis and uncertainty-aware
visualization. Our central contribution is a method to efficiently
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Sensitivity and Stability Analysis of Immune Cell Subsets. (a) Clustered heatmap of mean expression profiles for 48 pseudo-bulk samples (6 cell types x
8 donors). Samples cluster primarily by cell type, with CD4 and CD8 T cells showing high similarity. (b) Standard t-SNE embedding of the 48 samples.
Major cell types form distinct clusters, while CD4 and CD8 T cells are closely co-located. (c) Heatmap of the sensitivity Jacobian. The strong diagonal
indicates that each sample’'s embedding is primarily sensitive to its own input features. CD4 and CD8 T cells exhibit the highest sensitivity scores. Note
that cell type colors follow the color code shown in Figure 4d. (d) Uncertainty-aware visualization of the t-SNE embedding. Ellipses represent the
propagated intra-population variance.

compute the t-SNE Jacobian, which serves as a powerful diagnostic
for interpretability and a foundation for robust uncertainty
quantification. A key advantage of our approach, based on
the Implicit Function Theorem, is that it operates directly on
the optimality conditions of the t-SNE cost function. This
makes our framework solver-agnostic: it can be applied to any
converged t-SNE embedding, regardless of the specific optimization
algorithm or software package used to generate it, from Barnes-Hut
implementations (e.g., Van Der Maaten, 2014) to GPU-accelerated
solvers (e.g., Chan et al., 2018).

While a standard t-SNE plot effectively visualizes high-
dimensional structure, interpreting this structure requires a
demanding mental leap back to the original features to assess their
relevance. Our framework is designed to bridge this interpretational
gap by embedding analytical insights directly into the visualization.
Instead of forcing users to guess which genes define a cluster,
our feature influence maps provide a direct, data-driven answer.
Similarly, rather than subjectively assessing cluster tightness, our
uncertainty visualizations offer a quantitative measure of positional
stability. By offloading this analytical burden from the user to the
computation, our visualizations allow users to interpret the stability
t-SNE plots more easily.

Frontiers in Bioinformatics

Our analyses across two distinct and challenging biological data
modalities underscore the versatility of this framework. On bulk
multiomics data, the method not only validated its uncertainty
propagation capabilities against true biological replicates but also
performed successful feature attribution, directly linking the visual
separation of a time-series to the expression dynamics of a key
antibiotic-producing gene cluster. Our application to single-cell
data demonstrated the frameworks dual utility as a multi-scale
diagnostic tool. The per-cell sensitivity analysis revealed a complex
stability landscape, highlighting not only the expected fragility at
the unresolved boundary of T-cell subtypes but also the counter-
intuitive finding that dense cluster cores can be more sensitive
than their peripheries. Building on this, the pseudo-bulk analysis
deconstructed the sources of overall cluster stability, showing how
positional uncertainty is a product of both intrinsic sensitivity and
biological heterogeneity.

Our work contributes to the broader effort within eXplainable
AT (XAI) to bring interpretability to non-linear embeddings, a
challenge being addressed from multiple angles. One major branch
of research modifies the embedding algorithm itself. The Ut-SNEs
preprint, for instance, integrates input uncertainty directly into
the optimization objective to produce a single, uncertainty-aware
embedding (Ma and Chen, 2024). In contrast, post-hoc frameworks,
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including our own, analyze a standard, converged embedding
without altering the algorithm.

Traditional post-hoc approaches, adapted from linear methods,
attempt to interpret embedding axes, for example, by creating
curved biplots (Coimbra et al., 2016). Besides that, many of the
post-hoc methods rely on approximation or stochastic sampling.
A popular strategy involves training a surrogate model, such as
using a random forest to explain UMAP clusters (Ehiro, 2023)
or adapting LIME (Ribeiro et al, 2016) to explain local t-SNE
neighborhoods (Bibal et al., 2020). While powerful, these methods
are inherently approximate, as they explain the surrogate model, not
the embedding algorithm itself. Other post-hoc approaches assess
reliability through resampling, for example, using bootstrapping to
test the structural stability of clusters (Kobak and Berens, 2019), or
by evaluating projection fidelity to quantify how well the 2D map
represents true high-dimensional neighborhoods (Han et al., 2022).
Our framework defines a distinct class of post-hoc analysis that is
fully analytical and deterministic, moving beyond these approximate
and stochastic techniques.

Our
recent class

with and extends the

gradient-based explanation.

framework aligns most
of methods: The
concurrent work of Corbugy et al. (2024) also uses the Implicit
Function Theorem to provide instance-specific explanations.
The fundamental difference lies in the problem formulation.
Their method explains the position of a single instance under
the simplifying assumption that all other embedded points
are held constant. In contrast, our framework addresses the
complete, simultaneous optimization problem, computing the
full Jacobian Z—z. This more challenging approach yields a richer
result, allowing us to analyze the coupled dynamics of the entire
visual structure. Moreover, our primary application of this full
Jacobian—propagating input uncertainty to generate uncertainty-
aware visualizations—is a distinct contribution not explored in these
other explanation-focused works.

It is also important to situate our definition of stability.
Much of the existing literature on t-SNE stability focuses on the
“global” variability arising from different random initializations
or hyperparameter choices (Belkina et al., 2019). Our work is
complementary, focusing instead on the “local” stability of a
single, converged embedding, which is crucial for interpreting
the final plot presented in a study. Our approach here extends
the core ideas of uncertainty propagation we previously
developed for PCA (Zabel et al., 2023) to the more complex, iterative
optimization setting of t-SNE.
method has limitations that

suggest avenues for future research. The primary constraint

Despite its utility, our
is computational complexity. Our empirical benchmarks (see
Supplementary Section 2.4) confirm that the cost of computing
the output covariance scales approximately cubically with the
number of samples (O(N?)), driven by the Hessian pseudoinversion,
and roughly linearly with the number of features (O(D)). This
computational overhead is substantial compared to a standard t-
SNE run, making our full uncertainty propagation demanding for
datasets with a very large number of samples (e.g., N > 10,000).
However, the analysis also demonstrates that the framework remains
highly practical ( < 1 h runtime on a typical server) for the moderate
sample sizes common in many applications, such as the pseudo-bulk

and proteomics analyses presented in this paper. For larger datasets,

Frontiers in Bioinformatics

09

10.3389/fbinf.2025.1719516

that are typical for example, for single-cell experiments, future work
could therefore explore scalable approximations, such as iterative
solvers for the pseudoinverse-vector products, to mitigate this
bottleneck. Second, our uncertainty propagation relies on a first-
order Taylor approximation (Equation 10). The core quantitative
z,

output of our method is the full output covariance matrix, X,

which provides a complete diagnostic of the embedding’s variance
and covariance structure. Our visualizations, such as hypothetical
outcome plots, are principled renderings of this matrix, designed to
intuitively convey correlated uncertainties that are lost when only
visualizing marginal confidence ellipses. However, the accuracy
of this underlying covariance matrix is dependent on the local
linearity of the t-SNE mapping. Lastly, our analysis is local to a
single t-SNE optimum. For a comprehensive stability assessment,
we therefore suggest a two-stage workflow that combines our local
analysis with methods for assessing global stability. An analyst
would first use established techniques, such as running t-SNE
from multiple random initializations (Belkina et al., 2019), to select
a globally stable and representative embedding. Our framework
would then be applied to this single, chosen map to probe its local
stability, revealing which structures are robust to input data noise
and identifying their feature drivers.

Finally, while this work has focused on t-SNE, the underlying
IFT-based framework is not inherently restricted to this one
algorithm. We chose t-SNE as the initial application for this work
due to its foundational status in the field and its well-defined,
continuously differentiable cost function. In principle, however, our
method can be extended to any embedding technique that relies on
minimizing a differentiable objective function. The most logical and
impactful next step would be Uniform Manifold Approximation and
Projection (UMAP) (Mclnnes et al., 2018), another cornerstone of
modern data visualization. Extending our work to UMAP would
be an important step towards a unified framework for assessing the
stability of non-linear embeddings.

In conclusion, this work provides a practical and powerful
toolkit for enhancing the rigor and interpretability of t-SNE
visualizations, and thus creates a more effective and insightful visual
representations of the embedded data. By enabling researchers to
quantify the influence of their features and visualize the uncertainty
in their embeddings, our framework promotes a more critical
and nuanced understanding of high-dimensional data. As AI-
driven visualization becomes more central to biological discovery,
integrating such diagnostics for trust and transparency will be
essential.
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