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Food-derived linear vs. rationally 
designed cyclic peptides as 
potent TNF-alpha inhibitors: an 
integrative computational study
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Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, 
Vellore, Tamil Nadu, India

Introduction: Tumor necrosis factor-alpha (TNF-alpha) is a central mediator of 
chronic inflammation and a validated therapeutic target in atherosclerosis and 
related cardiovascular disorders. Peptide therapeutics offer high specificity and 
low toxicity; however, few natural sequences have been optimized for durable 
TNF-alpha inhibition.
Methods: A dual in silico strategy was employed to identify potent inhibitors: 
(i) virtual screening of experimentally validated food-derived bioactive peptides 
and (ii) rational design of an N-C cyclized and disulfide-bridge peptide based on 
the TNF-alpha-TNFR1 interface. Molecular docking, 200-ns molecular dynamics 
simulations, and MM/PBSA free-energy analyses were performed.
Results: The selected peptides exhibited strong and persistent interactions with 
key TNF-alpha residues, particularly Tyr119. The cyclic analogue demonstrated 
deeper free-energy minima, higher binding affinity, and more stable hydrogen-
bond networks than the linear sequence. ADMET profiling revealed superior 
metabolic stability, reduced plasma clearance, and no predicted cardiotoxicity.
Discussion: These results indicate that dietary peptides can serve as templates 
for TNF-alpha inhibition, and interface-guided cyclization rationally enhances 
stability, binding affinity, and drug-like properties. This study provides a 
mechanistic framework for developing food-derived peptides as next-
generation TNF-alpha antagonists and supports United Nations SDGs 3 and 9 
by promoting innovative, low-toxicity therapeutics for chronic inflammation and 
cardiovascular diseases.

KEYWORDS

food-derived peptide, TNF-alpha, interface residue, molecular docking, cyclic peptide, 
linear peptide, disulfide-bridge peptide 

 1 Introduction

Atherosclerosis persists as a major global cause of death and disability (Bonow et al., 
2002), primarily driven by chronic, low-grade inflammation that disrupts vascular 
equilibrium. Among the mediators sustaining this pro-inflammatory state, tumor necrosis 
factor-alpha (TNF-alpha) plays a pivotal role (Kalliolias and Ivashkiv, 2016; Muller et al., 
2018). Originally identified as “cachectin” (Beutler and Cerami, 1986), TNF-alpha was 
later recognized as a key mediator of endothelial dysfunction and plaque progression
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in atherosclerosis (Feingold et al., 1998; Grunfeld and Feingold, 
1991). TNF-alpha is produced as a 233-amino-acid transmembrane 
precursor cleaved by TNF-alpha converting enzyme to release 
the active soluble form (Itai et al., 2001; Pennica et al., 1984), 
which signals mainly through TNFR1 (pro-inflammatory) and 
TNFR2 (regenerative) (Ma et al., 2015). Mapping the precise TNF-
alpha/TNFR1 interface residues provides a structural framework 
for developing short inhibitory peptides capable of competitively 
blocking this interaction.

Therapeutic neutralization of TNF-alpha using monoclonal 
antibodies such as infliximab has proven effective in autoimmune 
and inflammatory disorders (Jang et al., 2021). However, the 
large molecular size and foreign immunogenic epitopes of 
biologics contribute to adverse effects, including anaphylaxis, 
serum sickness, and cytokine release syndrome. Reports have 
also linked infliximab to hepatotoxicity and thrombocytopenia 
(Dang et al., 2014; Matsumoto and Mashima, 2016). Moreover, 
clinical reviews indicate that while TNF-alpha blockage improves 
subclinical vascular inflammation, its cardiovascular outcomes 
can vary depending on the diseases context. These limitations 
underscore the demand for alternative, selective inhibitors with 
improved safety and pharmacokinetics profiles.

Therapeutic peptides offer a promising approach to fill this 
gap. The smaller molecular size, higher target specificity, and 
intrinsic biodegradability result in reduced toxicity and minimal 
immunogenicity compared to antibody-based biologics. Rationally 
designed peptides can mimic receptor-binding epitopes to achieve 
high-affinity TNF-alpha inhibition with lower systemic risk, greater 
tissue permeability, and controlled clearance (Wang et al., 2023). 
In parallel, food protein-derived peptides have emerged as natural, 
multifunctional agents that regulate lipid metabolism, oxidative 
stress, and inflammatory signaling in both in vitro and in vivo
(Majumder et al., 2016). For instance, chickpea peptides produced 
through alcalase hydrolysis alleviate dyslipidaemia by reducing 
plasma and hepatic lipid levels in high-fat diet models (Shi et al., 
2019), while bean hydrolysates exhibit hypocholesterolemic 
effects in BALB/c mice (Gomes et al., 2020). Marine collagen-
derived peptides have shown antioxidant potential and functional 
applicability in geriatric nutrition (Kumar A. et al., 2019), 
Likewise, milk-derived tripeptides IPP and VPP significantly 
reduced atherosclerotic lesion size in ApoE knockout mice by 
downregulating TNF-alpha and other pro-inflammatory genes 
(Nakamura et al., 2013). While statins remain the clinical mainstay 
for managing dyslipidemia via 3-hydroxy-3-methylglutaryl-
CoA reductase inhibition, their adverse muscle and hepatic 
effects limit long-term use. In contrast, legume-derived peptides 
inhibit cholesterol biosynthesis with excellent safety margins 
(Fonseca Hernandez et al., 2024; Kumar V. et al., 2019). Recent 
findings emphasize that certain food-derived peptides also 
downregulate TNF-alpha–NF-κB signaling and promote endothelial 
protection, revealing their dual nutraceutical and therapeutic 
value. These cumulative insights establish a strong foundation 
for exploring peptide-based TNF-alpha modulators that combine 
the biochemical efficacy of biologics with the safety advantages 
of natural bioactives (Kotlyarov, 2025). An overview of key food-
derived peptides and their reported cardioprotective mechanisms 
is shown in Figure 1.

Despite these findings, few dietary peptides have been 
computationally evaluated for direct TNF-alpha inhibition. To 
explore this potential, we assembled a library of 200 experimentally 
validated bioactive peptides derived from diverse dietary sources, 
including milk, marine organisms, vegetables, fruits, and legumes 
such as lentils, beans, etc. Although many of these peptides show 
anti-inflammatory, antihypertensive, and antioxidant effects, their 
therapeutic promise has rarely been examined computationally. 
To address this gap, we adopted a two-step strategy. First, we 
performed virtual screening of the peptide library against TNF-
alpha to identify high-affinity binders. Second, rational design 
of N-C cyclic and disulfide-bridge peptides based on the TNF-
alpha–TNFR1 interface. Our approach aimed to not only identify 
high-affinity binders but also to critically evaluate whether structural 
modifications truly enhance conformational rigidity and binding 
stability, a common assumption in the literature. This integrative 
study provides a mechanistic framework for advancing food-
derived peptides as next-generation TNF-alpha antagonists. By 
leveraging naturally sourced bioactive peptides and computational 
design, this work aligns with the United Nations Sustainable 
Development Goals particularly SDG 3 (Good Health and Well-
Being) and SDG 9 (Industry, Innovation, and Infrastructure) 
by promoting sustainable, innovation-driven approaches for 
cardiovascular drug discovery. The overall methodology is presented
in Figure 2.

2 Materials and methods

2.1 Literature survey and peptide collection

A systematic literature review was performed to identify 
experimentally validated bioactive peptides derived from 
natural dietary sources, including milk, marine organisms, 
lentils, vegetables, and fruits. A total of 200 peptides were 
collected from peer-reviewed studies reporting anti-inflammatory, 
antihypertensive, and antioxidant activities supported by in vitro
and in vivo evidence. Peptide sequences, source organisms, and 
biological activities were manually curated to construct the peptide 
dataset for subsequent in silico screening. 

2.2 Peptide selection and classification

The physicochemical properties of the selected peptides 
were evaluated using PepCalc (https://pepcalc.com/) and 
ExPASy ProtParam (https://web.expasy.org/protparam/) to obtain 
parameters including molecular weight, theoretical isoelectric 
point (pI), amino acid composition, number of positively and 
negatively charged residues, net charge, extinction coefficient, 
estimated half-life, net charge, instability index, and grand average of 
hydropathicity (GRAVY). Toxicity prediction was performed using 
ToxIBTL (https://server.wei-group.net/ToxIBTL/Server.html), a 
deep learning-based classifier for toxic versus non-toxic peptides. 
Only non-toxic and physicochemically stable peptides were retained 
for further analyses (Wei et al., 2022). 
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FIGURE 1
Role of food-derived peptides in cardiovascular health.

FIGURE 2
A graphical representation of the research methodology, outlining the sequential steps undertaken from data acquisition to result interpretation.
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2.3 Systematic evaluation of peptide 
functional properties

The shortlisted peptides were evaluated for their potential 
bioactivity, cell-penetrating ability, peptide bioactivity score, 
and anti-inflammatory properties using multiple computational 
predictors. General bioactivity scores were calculated with 
PeptideRanker (http://distilldeep.ucd.ie/PeptideRanker), where 
peptides scoring above 0.5 were considered biologically active. 
The CellPPD server (https://webs.iiitd.edu.in/raghava/cellppd), 
was employed to assess cell-penetrating potential through an 
SVM-based model trained on experimentally validated CPPs 
(Gautam et al., 2015). Anti-inflammatory activity was further 
predicted using AIPpred (http://www.thegleelab.org/AIPpred/)
(Manavalan et al., 2018) which integrates amino acid and dipeptide 
composition-based features within a random forest framework. 
Peptides that demonstrated consistently high scores across these 
platforms were prioritized for modeling. 

2.4 Three-dimensional structural 
prediction of food-derived peptide

The three-dimensional conformations of the selected 
peptide molecules were predicted using the PEP-FOLD4.0 
web server (http://bioserv.rpbs.univ-paris-diderot.fr/services/
PEP-FOLD4) (Rey et al., 2023). PEP-FOLD4 is a robust de 
novo prediction tool that generates optimized, low-energy 
peptide structures. The resulting models were used for 
subsequent molecular docking and stability analyses. Detailed 
descriptions of the PEP-FOLD4 fragment-based modeling 
approach and sOPEP force field parameters are provided in the
Supplementary Material (Section 1.1). 

2.5 Identification and rational design of 
interacting peptides

The crystal structure of the TNF-alpha–TNFR1 complex (PDB 
ID: 7KPB) (Lightwood et al., 2021) was retrieved from the 
Protein Data Bank and analyzed in PyMOL (version 3.1.5.1) to 
identify protein–protein interacting residues. Three distinct TNFR1 
regions involved in TNF-alpha binding were identified, and the 
longest interacting peptide region was selected for further study 
due to its potential for stable interactions. To enhance stability 
and functional properties, rational redesign was performed by 
generating cyclic and disulfide-stabilized analogues. Cyclic peptides 
were modeled via N-to-C terminal covalent cyclization to improve 
conformational rigidity and proteolytic resistance, while disulfide-
stabilized peptides were designed by introducing cysteine residues 
to form S–S bridges, reinforcing structural robustness. All peptide 
variants were modeled using the PEPstrMOD server (Singh et al., 
2015), which incorporates secondary structure prediction, torsion 
angle constraints, and energy minimization. The resulting three-
dimensional structures were used for downstream docking and 
molecular dynamics analyses. 

2.6 Docking protocol

Molecular docking was performed to investigate interactions of 
TNF-alpha with both food-derived and rationally designed peptides. 
The crystal structure of TNF-alpha (PDB ID: 2AZ5) (He et al., 
2005) was retrieved from the Protein Data Bank and prepared by 
removing water molecules and heteroatoms, followed by addition 
of hydrogens and charges using AutoDock tools (v1.5.6). The co-
crystallized ligand was extracted and used as a reference. Initial 
docking was conducted using HPEPDOCK 2.0, allowing flexible 
and cyclic peptide docking, with experimentally validated TNF-
alpha active site residues (A:57, A:59–61, A:119–122, and A:151) 
defined as the binding interface. The ten top-ranked docking poses 
were shortlisted for further analysis (Zhou et al., 2018). To validate 
and complement these results, docking was further performed 
using the HADDOCK 2.4 (High Ambiguity Driven protein–protein 
DOCKing) server, an information-driven flexible docking platform. 
Docking restraints were applied to the validated active-site residues, 
and resulting complexes were evaluated using the HADDOCK score, 
calculated as:

HADDOCK score = 1.0EvdW + 0.2Eelec + 1.0Edesolv + 0.1Eair

Where EvdW is the van der Waals energy, Eelec is the electrostatic 
energy, Edesolv is the desolvation energy, and Eair is the restraint 
violation energy. Lower HADDOCK scores indicate more favorable 
and stable complexes. Docked complexes were visualized and 
analyzed in PyMOL (version 3.1.5.1) to identify key hydrogen-
bonding, hydrophobic, and electrostatic interactions at the 
protein–peptide interface (Honorato et al., 2024). 

2.7 Molecular dynamics simulation

Molecular dynamics (MD) simulations were performed for both 
complexes, with system preparation carried out via the CHARMM-
GUI Solution Builder (Lee et al., 2019). Each complex was immersed 
in a TIP3P water box with a 15 Å buffer in all spatial dimensions. To 
mimic physiological ionic conditions and achieve charge neutrality, 
0.15 M sodium chloride (NaCl) was added to the solvent, and 
the overall system charge was balanced. The relaxation phase 
included two stages of energy minimization followed by a single 
equilibration step. During equilibration, the system’s temperature 
was controlled at 303.15 K using the Nose–Hoover thermostat, 
while the pressure was maintained at 1.0 bar via semi-isotropic 
Parrinello–Rahman pressure coupling. The LINCS algorithm was 
used to constrain bonds, and non-bonded interactions were treated 
using the Verlet cutoff method. The production run was executed 
for 200 nanoseconds using a 2-femtosecond time step, accumulating 
approximately 100 million integration steps. Ligand topology 
and parameters were generated using the Ligand Reader and 
Modeler module of CHARMM-GUI, which applies the CHARMM 
General Force Field (CGenFF) to produce force field-compatible 
input files (Kim et al., 2017). All simulations were conducted with 
GROMACS version 2021.4. The resulting trajectories were carefully 
analyzed to assess the structural stability of the complexes through 
calculations of RMSD, RMSF, Rg, and hydrogen bond interactions. 
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2.8 Advanced trajectory analysis

To analyze the molecular dynamics trajectories of the 
protein–peptide complexes, a multi-layered approach was 
employed, integrating Principal Component Analysis (PCA), 
secondary structure evolution via the Dictionary of Secondary 
Structure of Proteins (DSSP), and Free Energy Landscape (FEL) 
mapping. Structural interpretation was performed using the Geo_
measure 0.9 plugin in PyMOL (version 3.1.5.1) (Kagami et al., 
2020). FELs were constructed from Root Mean Square Deviation 
(RMSD) and Radius of Gyration (Rg) values, where RMSD 
measured deviations relative to the reference conformation, and Rg 
provided insights into overall compactness. FEL analysis identified 
thermodynamically favorable conformational states and transitional 
intermediates, providing a detailed view of conformational stability 
and dynamic fluctuations.

Secondary structure evolution was monitored with DSSP, 
classifying residues as helices (H), β-strands (E), or coils (C). 
DSSP profiles were exported as CSV files and visualized using 
Python libraries such as Seaborn (http://seaborn.pydata.org/)
and Matplotlib (http://matplotlib.org/) to capture temporal trends 
in secondary-structure stability. Collectively, the integration 
of PCA, FEL, DSSP, dynamic cross-correlation (DCCM), and 
statistical analyses provided a comprehensive, statistically validated 
assessment of conformational plasticity, thermodynamic stability, 
and dynamic interaction mechanisms in the protein–peptide 
complexes. 

2.9 MMPBSA

The Molecular Mechanics Poisson–Boltzmann Surface Area 
(MM/PBSA) method, one of the most widely used simulation 
approaches for calculating protein–ligand binding free energies, 
was employed to evaluate the binding affinities of TNF-alpha-
peptide complexes. All calculations were performed using the 
gmx_MMPBSA package (https://valdes-tresanco-ms.github.io/
gmx_MMPBSA/v1.6.0/) (Valdés-Tresanco et al., 2021), which 
integrates molecular mechanics and continuum solvent models 
to estimate the total binding free energy (ΔG_bind).

The binding free energy was computed as the difference between 
the free energy of the complex and that of its unbound components, 
using the following relationship:

ΔGbind = ΔGcomplex − (ΔGprotein +ΔGligand)

where ΔGcomplex represents the total free energy of the TNF-alpha-
peptide complex, and ΔGprotein and ΔGligand denote the free energies 
of the isolated TNF-alpha protein and the peptide, respectively.

Each free energy term (ΔG) was decomposed into potential 
energy (ΔE_MM) and solvation energy (ΔG_solv). The entropic 
contribution (−TΔS) was omitted to reduce computational cost, a 
common practice in comparative MM/PBSA analyses where relative 
binding energies are the focus. The total binding free energy can 
therefore be expressed as:

ΔGbind ≈ ΔGpotential +ΔGsolvation

ΔGbind ≈ (ΔEele +ΔEvdW) + (ΔGGB +ΔGSA)

In this formulation, ΔE_ele and ΔE_vdW correspond to the 
electrostatic and van der Waals interaction energies derived from 
molecular mechanics calculations, respectively. The solvation free 
energy (ΔG_solv) comprises polar (ΔG_GB) and nonpolar (ΔG_SA) 
contributions. The polar solvation energy was computed using the 
Generalized Born (GB) implicit solvent model, while the nonpolar 
term was estimated based on the solvent-accessible surface area 
(SASA). Together, these components represent the total energy 
required for complex formation and solvation.

Finally, per-residue decomposition analysis was performed to 
identify the amino acid residues contributing most significantly to 
the overall binding free energy. These residues were considered 
critical for stabilizing the peptide–TNF-alpha complex and 
enhancing binding affinity of the designed inhibitors. 

2.10 ADMET analysis

To assess the ADMET properties of the peptides, their 
sequences were converted into SMILES format using the 
PepSMI server (https://www.novoprolabs.com/tools/convert-
peptide-to-smiles-string) and subsequently analyzed with 
pkCSM to predict key pharmacokinetic and toxicity parameters, 
including absorption, distribution, metabolism, excretion, and 
potential toxicity (Pires et al., 2015). 

3 Results and discussion

3.1 Bioactive food-derived peptide 
curation

A comprehensive dataset of 200 bioactive peptides 
was systematically compiled from peer-reviewed literature, 
encompassing diverse biological activities including anti-
inflammatory, antioxidant, immunomodulatory, antitumor, and 
anti-diabetic effects. This curated dataset highlights the remarkable 
therapeutic potential of dietary sources, including milk, marine 
organisms, legumes, vegetables, and fruits, as abundant reservoirs 
of health-promoting compounds. For each peptide, the amino 
acid sequence, source organism, and experimentally validated 
bioactivities were carefully documented, ensuring both accuracy 
and reliability as a foundation for subsequent in silico analyses. 
The curated peptides varied in length from 3 to 30 amino acids, 
representing a spectrum of functional properties. Short linear 
peptides are likely to be rapidly absorbed and exert immediate 
systemic effects, whereas longer sequences may adopt complex 
conformations that facilitate multifaceted biological interactions. 
This structural and functional diversity highlights the versatility of 
dietary proteins as precursors for bioactive fragments with potential 
applications across multiple therapeutic domains. Interestingly, 
despite the broad range of reported activities, only a few peptides 
have been explicitly studied for their anti-atherosclerotic potential, 
revealing a significant knowledge gap. Addressing this gap 
represents the novelty of the present computational approach, 
which aims to repurpose dietary peptides as modulators of 
cardiovascular disease pathways. After eliminating redundancies, 
the dataset was refined to 158 unique peptides. This curated library 
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not only enhances the reliability of downstream computational 
analyses but also serves as a valuable resource for identifying 
nutraceutical candidates and peptide-based therapeutics targeting 
cardiovascular health. 

3.2 Physicochemical properties of 
food-derived peptide

The physicochemical properties of 158 food-derived peptides 
were systematically evaluated using well-established web servers, 
including PepCalc and ProtParam. A comprehensive set of 
parameters was analyzed, encompassing molecular weight, 
net charge, isoelectric point (pI), instability index, half-life in 
mammalian cells, GRAVY (grand average of hydropathicity), and 
the distribution of negatively and positively charged residues. To 
ensure the identification of peptides with favorable biochemical 
stability and therapeutic relevance, a stringent multi-parameter 
filtering strategy was applied. Specifically, the pI was restricted 
to the range of 5.0–10.0, thereby selecting peptides with an 
appropriate ionization profile near physiological pH. The GRAVY 
index was constrained to −0.6 to +0.6, favoring peptides with a 
balanced amphipathic character that is essential for maintaining 
solubility while supporting hydrophobic contacts at protein–protein 
interfaces. The molecular weight window of 450–3,500 Da, and 
the charged distribution is constrained such that peptides should 
either display a balanced charge or a slight positive dominance to 
complement the largely neutral and polar environment of the TNF-
alpha binding surface. Furthermore, only peptides predicted to be 
stable based on their instability index (<40) were retained.

Following the application of these rigorous thresholds, 19 
high-confidence peptides (see Table 1) were shortlisted from an 
initial pool of 158 candidates. The adoption of strict criteria 
was particularly critical in the context of TNF-alpha inhibition, 
as peptides targeting this cytokine must be sufficiently small 
to access its shallow binding interface, amphipathic to sustain 
favorable protein–peptide contacts, and tuned in charge balance 
to optimize interactions with its neutral/polar residues. Only 
peptides meeting these combined physicochemical requirements 
are likely to demonstrate the structural robustness, amphipathic 
balance, and favorable electrostatics necessary to effectively 
modulate this cytokine. A detailed biological justification for 
each filtering parameter in relation to TNF-alpha interaction is 
summarized in Supplementary Table S1, highlighting the rationale 
for enforcing such rigorous selection rules. Furthermore, toxicity 
evaluation using a deep learning-based tool, ToxIBTL, confirmed 
that all shortlisted peptides were non-toxic. Collectively, this 
systematic filtering strategy ensured that the prioritized food-
derived peptides represent the most promising candidates for 
further study.

3.3 Evaluation of cell-penetrating, 
anti-inflammatory property, and bioactivity 
score prediction of peptides

A total of 19 food-derived peptides were initially shortlisted 
based on favorable physicochemical properties. To further evaluate 

their therapeutic relevance, an in silico screening was conducted to 
assess bioactivity score, anti-inflammatory potential (AIP), and cell-
penetrating capacity (CPP). These parameters serve as important 
indicators of therapeutic efficacy, where the bioactivity score reflects 
the probability of biological activity, AIP prediction identifies 
potential anti-inflammatory effects, and CPP estimation indicates 
the ability of peptides to penetrate cellular membranes.

From Table 2, it was observed that the predicted bioactivity 
values for the 19 peptides ranged between 0.068 and 0.91. Applying 
a threshold of ≥0.5, only eight peptides were initially considered 
promising candidates. This cutoff ensured the selection of sequences 
with higher potential to interact with relevant biological targets. 
Subsequently, all shortlisted peptides were further analyzed for their 
anti-inflammatory activity using the AIPpred server. Interestingly, 
with the exception of two peptides, nearly all food-derived peptides 
were predicted to possess anti-inflammatory properties. This finding 
is particularly important, as modulation of inflammation is central 
to the therapeutic strategy under investigation. Finally, the selected 
peptides were evaluated for their cell-penetrating property (CPP). 
None of the sequences were predicted as CPP, suggesting that 
their therapeutic action is likely mediated through extracellular 
or membrane-bound interactions rather than direct intracellular 
targeting, which aligns with the targeting of cytokines such as TNF-
alpha. Although this may limit their independent use as intracellular 
delivery agents, it does not diminish their potential value as anti-
inflammatory peptides. overall, this integrative analysis narrowed 
down the pool from nineteen to seven peptides that satisfied the 
dual criteria of high bioactivity (≥0.5) and positive AIP prediction. 
The shortlisted peptides were subjected to molecular docking and 
dynamics simulations, underscoring the value of multi-parameter in 
silico screening in prioritizing only the most promising candidates 
for resource-intensive analyses.

3.4 Structural integrity assessment of 
food-derived peptides

The three-dimensional (3D) structures of the shortlisted 
food-derived peptides were predicted using PEP-FOLD4, a state-
of-the-art fragment-based modeling approach optimized for 
short therapeutic peptides. The server employs a sophisticated 
workflow that combines a structural alphabet (SA) framework 
with a sOPEP coarse-grained force field to efficiently sample 
conformational space and generate five potential models for 
each peptide. The lowest-energy conformation was selected for 
all subsequent analyses. PEP-FOLD4 is uniquely suited for this 
task due to its use of shape descriptors and the inclusion of 
Debye–Hückel formalism to account for variations in pH and
ionic strength.

Following prediction, the models were subjected to rigorous 
stereochemical validation using the MolProbity server, with results 
visualized through Ramachandran plots (Figure 3). This analysis, a 
crucial quality control step, confirmed the correct stereochemical 
configuration of backbone torsion angles (ϕ and ψ) for each 
peptide. The plots demonstrate that the residues are positioned 
predominantly within the most favored and additionally in the 
allowed regions, with only a few falling into outlier zones. This 
distribution indicates that the predicted models are not only 
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TABLE 2  Different biological properties of the food-derived peptides.

SL No. Peptide sequence Bioactivity score AIP CPP Mutation

1 IAGPAGPRGPSGPA 0.76 AIP Non-CPP No mutation

2 ALNKTHLIQTK 0.106 Non-AIP Non-CPP No mutation

3 VVVLRDGAVQQLGTPR 0.121 AIP Non-CPP No mutation

4 IPDAHPVK 0.368 AIP Non-CPP No mutation

5 GVDYVRFF 0.857 AIP Non-CPP No mutation

6 GPEGPMGL 0.855 AIP Non-CPP No mutation

7 GPGLM 0.91 Non-AIP Non-CPP No mutation

8 PKKVV 0.068 AIP Non-CPP No mutation

9 MEPLGQG 0.283 AIP Non-CPP No mutation

10 KIWHHTF 0.732 AIP Non-CPP No mutation

11 ALGTWK 0.552 AIP Non-CPP No mutation

12 QCQCAVEGGL 0.607 AIP Non-CPP No mutation

13 TVNLAYY 0.101 AIP Non-CPP No mutation

14 LPHSGY 0.409 AIP Non-CPP No mutation

15 FGASTRGA 0.307 AIP Non-CPP No mutation

16 GAHAGPTWNPISIGISFMGNYMNR 0.285 AIP Non-CPP No mutation

17 PPYCTIVPFGIFGTNYR 0.781 AIP Non-CPP No mutation

18 IAYKPAG 0.465 AIP Non-CPP No mutation

19 LYTPH 0.331 AIP Non-CPP No mutation

theoretically stable but also physically feasible and biologically 
relevant. Such high structural fidelity provides strong confidence in 
their suitability for downstream computational analyses, including 
molecular docking and molecular dynamics simulations, ensuring 
that the modeled structures can faithfully engage in biologically 
meaningful interactions.

3.5 Rational redesign of TNFR1 binding 
motifs as potential TNF-alpha inhibitory 
peptides

To identify potential therapeutic peptides, the molecular 
interface of the TNF-alpha–TNFR1 complex (PDB ID: 7KPB) 
was first analyzed to map the critical binding motifs. This 
structural mapping revealed three short segments of TNFR1 that 
directly interact with TNF-alpha, namely residues 38–41 (TYLYN), 
51–59 (DCRECESG), and 69–80 (HCLSCSKCRKEM) (Figure 4A). 
These receptor-derived fragments represent key interface motifs 
mediating TNF-alpha recognition and were therefore extracted 
as candidate peptide templates for further evaluation. Following 

this initial identification, these sequences were evaluated for anti-
inflammatory potential (AIP), cell-penetrating property (CPP), 
and bioactivity score (Supplementary Table S2). While all three 
peptides showed anti-inflammatory activity, the shorter sequences, 
TYLYN and DCRECESG, exhibited low bioactivity scores, limiting 
their therapeutic suitability. Crucially, none of the three peptides 
displayed CPP activity, which suggested their functional role would 
be restricted to extracellular or receptor-level interactions.

Among the three receptor-derived motifs, HCLSCSKCRKEM 
(residues 69–80) emerged as the most promising candidate. In 
addition to its positive anti-inflammatory potential and favorable 
bioactivity score, its extended sequence length provides a broader 
interaction interface, which increases the likelihood of stable 
binding with TNF-alpha. This combination of properties led to its 
selection as the lead TNFR1-derived inhibitory peptide for rational 
redesign and optimization. To improve the drug-like properties 
and structural robustness, two modified analogues were rationally 
designed. The first, a cyclic analogue, was generated through N–C 
terminal (head-to-tail) cyclization, a strategy that eliminates the 
free N- and C-termini, thereby enhancing resistance to enzymatic 
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FIGURE 3
The Ramachandran plots of TNF-alpha inhibitory peptides. (A–G) illustrate backbone φ/ψ angles for Seq1–Seq7 and the reference complex, 
respectively. Blue contours mark favored/allowed regions, and black dots indicate residue conformations, confirming that all peptides adopt sterically 
allowed geometries.

degradation. This induced conformational pre-organization, which 
is highly advantageous as it minimizes the entropic penalty 
incurred upon target binding, resulting in improved affinity and 
specificity. While a disulfide-stabilized analogue was designed 
by incorporating intramolecular disulfide bridges. These covalent 
linkages enhance structural stability by constraining the backbone 
and preserving the bioactive conformation essential for effective 
interaction with the target protein. The compact, stabilized 
structure of both modified analogues is reported to confer 
cell-penetrating potential (Troeira Henriques et al., 2025). The 
three-dimensional structures of these redesigned analogues were 
subsequently modeled and refined using the PEPstrMOD server, 
providing accurate conformational representations for downstream 
computational analyses.

The stereochemical quality of the modeled peptides was 
rigorously validated using Ramachandran plot analysis, a 
key component of the MolProbity server comprehensive 
assessment (Figure 4B). The cyclic peptide showed the majority 
of residues clustered within highly favored regions of the φ–ψ 
torsional space, with Lys10 and Glu11 positioned in energetically 
stable conformations, reflecting the stabilizing influence of terminal 
cyclization. Likewise, the disulfide-stabilized peptide exhibited 
a similarly favorable distribution, with residues such as Ser4 
and Arg9 occupying permissible regions that are consistent with 
natural backbone flexibility. The introduction of disulfide linkages 
reinforced structural compactness while preserving stereochemical 
integrity. Overall, the structural validation of both cyclic and 
disulfide-stabilized variants confirmed their conformational 
stability, minimal steric clashes, and favorable stereochemical 
profiles. These findings establish that the rationally designed 

peptides are structurally viable candidates for downstream docking 
and molecular simulation analyses. Collectively, the identification 
of TNF-alpha interacting segments, coupled with rational peptide 
redesign and stereochemical validation, provides strong evidence 
that cyclic and disulfide-stabilized peptides can serve as promising 
inhibitors of TNF-alpha, thereby justifying their selection for 
computational and functional evaluations. 

3.6 Molecular docking of food-derived and 
designed peptides

To evaluate the binding potential of the selected peptides 
against TNF-alpha, a total of seven food-derived peptides and 
two rationally redesigned TNFR1-derived peptides (cyclic and 
disulfide-stabilized variants of HCLSCSKCRKEM) were subjected 
to molecular docking analyses using two independent platforms, 
HPEPDOCK and HADDOCK. Employing this dual-platform 
strategy ensured cross-validation of docking outcomes, thereby 
strengthening the reliability of the predictions. Peptides exhibiting 
high docking scores in both tools (above −170 kcal/mol in 
HPEPDOCK and better than −75 kcal/mol in HADDOCK) 
were shortlisted as top candidates for further investigation, 
as these thresholds correspond to strong binding affinity and 
optimal structural complementarity with TNF-alpha. Among 
the food-derived peptides, several sequences exhibited strong 
binding affinities. In particular, GVDYVRFF (marine), KIWHHTF 
(marine), and PPYCTIVPFGIFGTNYR (wheat) exhibited the most 
favorable docking scores, highlighting their potential as TNF-
alpha modulators. Specifically, GVDYVRFF scored −177.899 in 
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FIGURE 4
(A) Structural mapping and design of TNF-alpha–derived inhibitory peptides. Left: Crystal structure of the TNF-alpha–TNFR1 complex, with TNF-alpha 
shown in lavender and TNFR1 in golden. TNF-alpha residues that directly interact with the TNFR1 receptor are highlighted as spheres, indicating key 
binding sites. Right: Peptide design based on the TNF-alpha epitope HCLSCSKCRKEM (residues 69–80). Two cyclic variants are illustrated: top, N–C 
terminal cyclization; bottom, intramolecular disulfide (S–S) bridge between cysteine residues. For each variant, cartoon and stick representations depict 
the stabilized conformations used for computational analyses. (B) The Ramachandran plot of cyclic and disulfide peptides.

HPEPDOCK and −76.6 ± 0.8 in HADDOCK, KIWHHTF scored 
−194.936 and −88.9 ± 4.1, and PPYCTIVPFGIFGTNYR achieved 
−198.923 and −96.5 ± 5.1, respectively. These results indicate that 
peptides from both marine and plant sources can form stable and 
energetically favorable interactions with TNF-alpha, reflecting the 
therapeutic potential of structurally diverse dietary peptides.

The rationally redesigned TNFR1-derived peptide analogues 
also displayed notable stability in docking evaluations. The cyclic 
HCLSCSKCRKEM peptide achieved a docking score of −178.913 in 
HPEPDOCK and −77.7 ± 2.3 in HADDOCK, while the disulfide-
stabilized variant yielded −171.932 and −75.8 ± 2.7, respectively. 
Although their scores were slightly less favorable compared 
to the top-performing food-derived peptides, both redesigned 
analogues maintained consistently strong interactions with TNF-
alpha. Importantly, their docking results were substantially superior 
to the standard native ligand, which registered only −44.0 ± 1.3 in 
HADDOCK, thereby confirming the enhanced binding potential 

and therapeutic relevance of the redesigned peptides. The results are 
displayed in Table 3.

Overall, these docking analyses demonstrate that both food-
derived and rationally designed TNFR1-derived peptides possess 
strong TNF-alpha binding capabilities. The selected food-derived 
peptides, GVDYVRFF and KIWHHTF from marine sources, and 
PPYCTIVPFGIFGTNYR from wheat, highlight the therapeutic 
relevance of diverse dietary origins, while the cyclic and disulfide-
stabilized TNFR1-derived analogues confirm that structural 
optimization strategies can enhance stability and interaction 
potential. Based on these results, these five peptides were prioritized 
for subsequent molecular dynamics simulations to evaluate 
their temporal stability, conformational flexibility, and functional 
interactions under dynamic conditions. These findings underscore 
the value of combining dietary peptide screening with structure-
guided redesign to generate effective TNF-alpha inhibitors for 
potential therapeutic development. 

Frontiers in Bioinformatics 10 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1716375
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Shah and Arumugam 10.3389/fbinf.2025.1716375

TABLE 3  Docking score of the food-derived and redesigned peptide against TNF-alpha protein.

Peptide sequence Docking score HPEPDOCK HADDOCK

GVDYVRFF −177.899 −76.6 ± 0.8

IAGPAGPRGPSGPA −167.567 −73.8 ± 2.0

GPEGPMGL −131.349 −55.6 ± 0.9

ALGTWK −153.205 −69.9 ± 3.0

QCQCAVEGGL −152.937 −62.5 ± 1.5

KIWHHTF −194.936 −88.9 ± 4.1

PPYCTIVPFGIFGTNYR −198.923 −96.5 ± 5.1

HCLSCSKCRKEM (Cyclic peptide) −178.913 −77.7 ± 2.3

HCLSCSKCRKEM (Disulphide cyclic peptide) −171.932 −75.8 ± 2.7

Standard — −44.0 ± 1.3

3.6.1 Molecular interactions of food-derived and 
redesigned peptides

To gain deeper insight into the molecular determinants of TNF-
alpha inhibition, three food-derived peptides (Seq1: GVDYVRFF, 
Seq6: KIWHHTF, and Seq7: PPYCTIVPFGIFGTNYR) and two 
redesigned TNFR1-derived analogues (cyclic and disulfide-
stabilized HCLSCSKCRKEM) were analyzed for their interaction 
profiles with TNF-alpha (PDB ID: 2AZ5). Docking validation 
using both HPEPDOCK and HADDOCK 2.4 yielded consistent 
binding poses, underscoring the reliability of the predicted 
peptide–protein complexes Figures 5A–E. Table 4 summarizes the 
key residues, interaction types, and characteristic binding features 
for each peptide. The food-derived peptide GVDYVRFF (Seq1) 
exhibited strong binding affinity within the TNF-alpha interaction 
pocket through a network of hydrogen bonds and hydrophobic 
interactions. Polar contacts were formed with GLN61, SER60, 
GLN149, and HIS15, complemented by hydrophobic interactions 
involving TYR115, PRO117, LEU63, TYR59, and TYR151. Notably, 
TYR119 and LEU120 participated in both hydrogen bonding and 
hydrophobic interactions, acting as dual anchoring residues that 
reinforced complex stability.

Similarly, in Figure 5B, molecular interaction analysis of the 
other food-derived peptide KIWHHTF (Seq6) with TNF-alpha 
demonstrated a compact and stable binding conformation. This 
conformation was stabilized primarily by polar contacts with key 
residues GLN61, HIS15, SER60, and GLN149, and reinforced by 
hydrophobic interactions involving VAL13, LEU36, TYR59, LEU63, 
TYR119, and ILE155. The residue TYR151 contributed both via
π–π stacking and hydrophobic interactions, providing additional 
stability to the peptide’s presence at the binding interface.

The docking analysis of PPYCTIVPFGIFGTNYR (Seq7)
(Figure 5C) demonstrated a robust binding mode stabilized by 
multiple hydrogen bonds and hydrophobic forces. Key polar 
contacts were established with SER60, GLN61, SER95, and 
ASN92. Extensive hydrophobic contacts anchored the peptide 

via TYR59, LEU93, LEU94, ALA96, TYR119, LEU120, and 
ILE155. The protein residue TYR151 also contributed significantly 
through pi-pi stacking and hydrophobic interactions. Collectively, 
these combined polar, hydrophobic, and pi-pi stacking forces 
underscore the high binding affinity and structural robustness of 
the Seq7-TNF-alpha complex.

The redesigned constrained peptides exhibited highly 
stable binding modes (Figures 5D,E). The cyclic analogue, 
HCLSCSKCRKEM (with the N- and C-termini covalently linked 
to form a cyclic scaffold) exhibited a compact, conformationally 
constrained architecture that pre-organized key residues for target 
binding. A central polar interaction with SER60 served as a primary 
anchoring point, while a hydrophobic network involving LEU57, 
TYR59, TYR119, LEU120, VAL123, ILE155, and LEU157 enhanced 
van der Waals packing. TYR151 provided dual hydrogen bonding 
and hydrophobic interactions, promoting exceptional structural 
complementarity and rigidity.

Similarly, the disulfide-stabilized peptide (Figure 5E) 
(HCLSCSKCRKEM with a Cys2–Cys8 bridge) exploited its rigid, 
pre-organized conformation to achieve an optimal fit within the 
TNF-alpha binding pocket. This analogue was anchored through 
polar interactions with GLN61 and GLN149, supplemented by 
extensive hydrophobic packing involving TYR59, LEU57, TYR119, 
LEU120, and VAL123. The multifunctional TYR151 residue further 
reinforced the complex through concurrent hydrogen-bonding 
and hydrophobic contacts. Collectively, both constrained peptide 
architectures exhibited high-affinity, conformationally stable, and 
multi-residue engagement profiles, underscoring their structural 
resilience and inhibitory potential. Overall, the docking studies 
revealed that both the food-derived and redesigned peptides 
consistently engaged with the key functional residues of TNF-
alpha, including LEU57, TYR59, SER60, GLN61, TYR119, LEU120, 
GLY121, GLY122, and TYR151, thereby establishing a robust and 
well-defined interaction profile within the binding groove. Among 
these, TYR119 emerged as particularly significant, consistent 
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FIGURE 5
(A–C) Docking interactions of food-derived peptides with TNF-alpha. Binding interactions of food-derived peptides with TNF-alpha (light blue surface).
(A) Seq1 (sand), (B) Seq6 (hot pink), and (C) Seq7 (yellow). The left show the TNF-alpha surface representation with the peptide binding interface 
highlighted; the middle insets display 2D interaction maps illustrating hydrogen bonds and hydrophobic contacts; and the right present close-up 3D 
views of key interacting residues. (D,E) Docking interactions of designed peptides with TNF-alpha. Binding interactions of rationally designed peptides 
with TNF-alpha (light blue surface). (D) Cyclic peptide (orange) and (E) disulfide-stabilized peptide (wheat) are shown. The left display the TNF-alpha 
surface representation with each peptide at its binding interface; the middle insets illustrate 2D interaction maps indicating hydrogen bonds, 
hydrophobic, and polar contacts; and the right present close-up 3D views of key interacting residues.
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TABLE 4  Comparative summary of key TNF-alpha–peptide interactions.

Peptide ID Sequence Key polar 
interactions

Key 
hydrophobic 

residues

Dual/Special 
interactions

Distinctive 
feature

Seq1 GVDYVRFF GLN61, SER60, 
GLN149, HIS15

TYR59, LEU63, 
TYR115, PRO117, 

TYR151

TYR119 and 
LEU120-dual anchoring

Strong 
aromatic–aliphatic 
complementarity

Seq6 KIWHHTF GLN61, HIS15, SER60, 
GLN149

VAL13, LEU36, TYR59, 
TYR119, ILE155

TYR151- π–π stacking 
and hydrophobic 

interaction

Compact binding with 
stacking-driven stability

Seq7 PPYCTIVPFGIFGTNYR SER60, GLN61, SER95, 
ASN92

TYR59, LEU94, 
TYR119, LEU120, 

ILE155

TYR151 – π–π stacking Multisite anchoring, 
strong aromatic contacts

Cyclic HCLSCSKCRKEM SER60 LEU57, TYR59, 
TYR119, LEU120, 
VAL123, ILE155, 

LEU157

TYR151 – dual H-bond 
+ hydrophobic

Pre-organized backbone; 
high rigidity

Disulfide HCLSCSKCRKEM 
(Cys2–Cys8)

GLN61, GLN149 TYR59, LEU57, 
TYR119, LEU120, 

VAL123

TYR151 – dual 
anchoring

Disulfide constraint; 
enhanced persistence

with the observations of (He et al., 2005), who demonstrated 
that rotation of its χ1 angle facilitates ligand accommodation 
and promotes TNF-alpha dimer formation, and was likewise 
identified by (Shah and Arumugam, 2024), as a crucial determinant 
of ligand binding. Notably, TYR119, LEU120, and TYR151 exhibited 
a dual interaction pattern across all peptide complexes, contributing 
simultaneously through hydrophobic stacking and hydrogen-
bonding contacts. The consistent engagement of these residues, 
along with the surrounding stabilizing interactions, underscores 
the strong potential of both food-derived and redesigned peptides 
as structurally resilient and functionally effective TNF-alpha
inhibitors. 

3.7 Exploring the stability and flexibility of 
peptide–TNF-alpha complexes through 
MD simulations

To complement and validate the docking analyses, molecular 
dynamics (MD) simulations were conducted for the five prioritized 
peptides: three food-derived sequences (GVDYVRFF, KIWHHTF, 
PPYCTIVPFGIFGTNYR) and two rationally redesigned analogues 
(cyclic and disulfide-stabilized HCLSCSKCRKEM). Unlike static 
docking models, MD simulations provide a time-resolved 
representation of biomolecular interactions, enabling the assessment 
of structural stability, conformational flexibility, and binding 
persistence under near-physiological conditions. By monitoring 
key parameters such as root-mean-square deviation (RMSD), 
root-mean-square fluctuation (RMSF), hydrogen bond occupancy, 
and radius of gyration (Rg), the stability of the complexes 
was systematically evaluated. This dynamic approach not only 
confirmed the robustness of peptide binding but also revealed 
critical insights into the flexibility of interacting residues and 

the conformational adaptability of the cyclic peptides within the 
TNF-alpha binding pocket. 

3.7.1 RMSD-based stability assessment of 
food-derived and interface peptide–TNF-alpha 
complexes

The root mean square deviation (RMSD) profiles were evaluated 
to examine the stability of TNF-alpha in complex with food-
derived peptides, redesigned peptides, and the standard inhibitor 
over a 200 ns molecular dynamics simulation (Figure 6; Table 5). 
To improve clarity, the data were represented in four panels: (A) 
all six peptide complexes, (B) the standard inhibitor, (C) the three 
food-derived peptides (Seq1, Seq6, Seq7), and (D) the redesigned 
peptides (cyclic and disulfide). The standard inhibitor maintained 
a stable trajectory with an average RMSD of 0.199 ± 0.02 nm, 
serving as a benchmark for comparison. Among the food-derived 
peptides, Seq7 exhibited the lowest RMSD (0.186 ± 0.02 nm), which 
was slightly lower than the standard. Interestingly, after ∼30 ns, 
Seq7 showed a gradual downward trend, stabilizing even further 
as the simulation progressed, suggesting strong conformational 
adaptability within the TNF-alpha binding pocket. By contrast, 
Seq1 (0.221 ± 0.04 nm) and Seq6 (0.219 ± 0.04 nm) displayed 
nearly identical RMSD values and trends throughout the trajectory, 
remaining consistently close to the standard, which indicates that 
both peptides similarly adapt to the TNF-alpha structure. For 
the redesigned peptides, the cyclic peptide (0.204 ± 0.02 nm) 
demonstrated a trajectory nearly overlapping with the standard, 
with only minor fluctuations, underscoring the stabilizing influence 
of cyclization on conformational rigidity. On the other hand, the 
disulfide-stabilized peptide (0.256 ± 0.05 nm) showed a relatively 
higher RMSD and notable spikes after ∼50 ns, indicating transient 
conformational adjustments before stabilizing toward the latter part 
of the simulation. Despite these fluctuations, its RMSD remained 
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FIGURE 6
Backbone RMSD analysis of TNF-alpha–peptide complexes over 200 ns MD simulations. (A) presents the global RMSD profiles for all systems, enabling 
direct comparison between the standard reference, three food-derived peptides (Seq1, Seq6, Seq7), and two rationally designed peptides (cyclic, 
disulfide). (B) isolates the standard TNF-alpha complex, (C) displays only the food-derived peptide complexes, and (D) highlights the designed cyclic 
and disulfide inhibitors.

TABLE 5  Average values of structural parameters for TNF–alpha-food-derived and designed complexes over the 200 ns MD simulation. The table 
presents the average values of RMSD, RMSF, radius of gyration, and H-bond for both protein–peptide complexes and their respective standard (native 
ligand), providing insights into their structural stability and compactness during the simulation period.

SL No. Average value  Food-derived peptide Redesigned peptide

Standard Seq1 Seq6 Seq7 Cyclic peptide Disulfide bridge peptide

1 RMSD 0.199 ± 0.02 0.221 ± 0.04 0.219 ± 0.04 0.186 ± 0.02 0.204 ± 0.02 0.256 ± 0.05

2 RMSF 0.103 ± 0.05 0.108 ± 0.06 0.124 ± 0.07 0.102 ± 0.06 0.106 ± 0.05 0.119 ± 0.07

3 H-bond 0.674 ± 0.84 1.395 ± 1.00 1.557 ± 1.48 1.543 ± 1.27 3.058 ± 1.42 1.656 ± 1.57

4 Rg 1.546 ± 0.006 1.565 ± 0.01 1.545 ± 0.009 1.546 ± 0.008 1.538 ± 0.007 1.534 ± 0.01

within an acceptable range (<0.30 nm), confirming the overall 
structural stability of the complex. In conclusion, these results 
highlight that Seq7 and the Cyclic peptide demonstrate stability 
profiles highly comparable to the standard inhibitor, positioning 
them as strong candidates for further development. The observed 
behavior also emphasizes the advantages of Cyclic peptides in 
maintaining structural integrity and the unique stability of Seq7, 
which even outperformed the standard. While Seq1, Seq6, and 
the disulfide peptide maintained slightly higher RMSD values, 
they still exhibited stable trajectories, validating their potential as
TNF-alpha binders.

3.7.1.1 Dynamic reaction patterns of the peptide-receptor 
conjugates

To further validate the inhibitory mechanisms of the peptide 
complexes, a comparative molecular dynamics (MD) analysis 
was performed by superimposing the trajectories of food-derived 
and designed peptide–TNF-alpha complexes with that of the 
standard ligand–TNF-alpha complex. This frame-wise evaluation 
over a 200 ns simulation window enabled the identification of 
temporally resolved polar contacts and their correspondence with 
the established inhibitory hotspot residues of TNF-alpha (Figure 7). 
The detailed interactions, including key residues, dominant 
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FIGURE 7
Panels (A–C) show structural superimposition of the TNF-alpha–ligand standard complex with peptide-bound complexes. The TNF-alpha backbone 
appears pale green for the standard complex and light blue for peptide-bound states. Peptides are displayed in distinct colors: Seq1 (sand), Seq6 (pink), 
and Seq7 (yellow). Panels (D) and (E) show similar overlays for the cyclic (orange) and disulfide-stabilized (wheat) peptides. The figure highlights 
comparable binding orientations and stabilization patterns of all peptides within the TNF-alpha binding groove, with hydrogen bonds represented as 
yellow dashed lines.

interaction types, interaction timeframes, and observed behavior, 
are summarized in Table 6, providing a concise comparative view of 
peptide binding dynamics.

The standard ligand established a persistent polar interaction 
with TYR119 at ∼55.6, consistent with its established role as a key 
residue mediating TNF-alpha inhibition (He et al., 2005). This stable 
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TABLE 6  Dynamic interaction profiles of peptide–TNF-alpha complexes from molecular dynamics simulations.

Peptide ID Interaction 
timeframe (ns)

Key residue involved Interaction type Observed 
behavior/stability

Standard 55.6 TYR119 Polar contact Persistent interaction; stable 
occupancy of inhibitory site

Seq1 (Food-derived peptide) 0–20 (initial) GLN61,
TYR119 (transient),

LEU120,
TYR151

Polar contact Alternative stabilization; 
maintains proximity to 

TYR119 hotspot

Seq6 (Food-derived peptide) 56.0 TYR151 (main anchor) Polar contact Alternative stabilization; 
anchors within the inhibitory 

region

Seq7 (Food-derived peptide) 55–57.1 TYR119,
LEU120

Polar contact High Fidelity; closely mimics 
standard ligand’s TYR119 

stabilization

Cyclic 53.3–56.9 GLN61,
TYR119

Polar contact High Fidelity; compact 
structure ensures consistent 

TYR119 engagement

Disulfide 55.0–56.8 TYR59,
SER60

TYR119
TYR151

Polar contact Dynamic behaviour, but 
maintains TYR119 

engagement

interaction effectively occupies the receptor-binding site, thereby 
preventing subsequent ligand engagement and downstream signal 
transduction. For the food-derived peptides, the analysis revealed 
distinct but effective binding strategies. The Seq1 peptide initially 
(0–20 ns) engaged LEU120, TYR151, and GLN61, before stabilizing 
with TYR151 and GLN61. While its interaction with TYR119 was 
transient, its close proximity to the inhibitory pocket confirms it 
can maintain binding-site fidelity. Similarly, Seq6 used an alternative 
anchoring strategy by interacting with TYR151 at ∼56 ns, a residue 
located within the same inhibitory region. Finally, the Seq7 peptide 
most closely mimicked the standard ligand, consistently forming 
polar bonds with TYR119 and LEU120 between 55 and 57.1 ns, 
effectively capitalizing on the crucial TYR119 mediated stabilization 
mechanism to physically block receptor binding. The analysis of the 
designed peptides further reinforced our findings.

Analysis of the designed analogues further reinforced these 
findings. The cyclic peptide formed stable polar interactions with 
GLN61 and TYR119 between ∼53.3 and 56.9 ns, successfully 
targeting the primary inhibitory hotspot. Its compact, head-to-tail 
cyclized structure imposed conformational rigidity that minimized 
structural drift, ensuring continuous engagement with TYR119 
throughout the simulation. Conversely, the disulfide-stabilized 
peptide displayed greater conformational flexibility, transitioning 
from initial contacts with SER60, TYR119, and TYR151 to more 
stable interactions with TYR59 and TYR119 between ∼55 and 
56.8 ns. This adaptive binding behavior enabled it to maintain 
inhibitory alignment within the binding pocket despite localized 
positional adjustments.

Overall, the docking studies revealed that all peptides 
consistently engaged the critical residues (TYR119, LEU120, and 
TYR151), and these interactions were further reaffirmed by the 

molecular dynamics simulation analysis. These residues exhibited 
dual interaction patterns across both docking and dynamic analyses, 
ensuring robust and persistent occupancy of the TNF-alpha binding 
pocket and highlighting the structural resilience of the peptide 
candidates. The mechanistic reliability of these binding modes 
across all peptides was further supported by persistent interactions 
with additional inhibitory residues (SER60 and GLN61), physically 
blocking receptor association and preventing downstream signaling. 
While Seq1 and Seq6 adopted alternative stabilizing strategies, their 
engagement within the same inhibitory region as the standard ligand 
maintained critical contacts. In contrast, Seq7, along with the cyclic 
and disulfide-stabilized peptides, demonstrated superior binding 
fidelity and structural stability, closely recapitulating the native 
ligand inhibitory mode and enhancing their capacity to disrupt 
TNF-alpha–mediated signaling. 

3.7.2 Flexibility profiling of TNF-alpha active site 
and loop regions

The Root Mean Square Fluctuation (RMSF) analysis was 
performed to evaluate residue-level flexibility of TNF-alpha in 
complex with the standard ligand, three food-derived peptides 
(Seq1, Seq6, Seq7), and redesigned peptides (cyclic and Disulfide) 
over the course of the 200 ns MD simulation (Figure 8A; Table 5). 
The RMSF profiles revealed that the majority of fluctuations were 
localized within the loop regions, as highlighted in red in the 
structural mapping, whereas the active site residues (depicted in 
blue) remained comparatively stable with minimal deviations. This 
observation indicates that peptide binding did not disrupt the 
conformational stability of the critical functional pocket of TNF-
alpha. The calculated average RMSF values were as follows: standard 
(0.103 ± 0.05 nm), Seq1 (0.108 ± 0.06 nm), Seq6 (0.124 ± 0.07 nm), 
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FIGURE 8
This figure presents a concise analysis of the peptide-TNF-alpha complexes stability over a 200 ns molecular dynamics simulation. (A) displays the 
RMSF (Root Mean Square Fluctuation) profile, which visually confirms the protein inherent dynamics: the β-sheet regions (blue) remain rigid, while the 
flexible loops (red) show expected fluctuation across all peptide complexes. (B) tracks the number of hydrogen bonds over time. Finally, (C) presents 
the Radius of Gyration (Rg) profiles.

Seq7 (0.106 ± 0.06 nm), cyclic peptide (0.106 ± 0.05 nm), and 
disulfide peptide (0.119 ± 0.07 nm). Among these, Seq6 and the 
disulfide peptide displayed slightly higher fluctuations, suggesting 
localized flexibility within certain loop regions, whereas Seq7 and 
the cyclic peptide showed RMSF values closely matching the 
standard ligand, highlighting their ability to maintain structural 
stability at the binding interface. Importantly, residues forming 
the TNF-alpha active site remained consistently rigid across all 
peptide complexes, indicating that the peptides do not induce 
destabilization of the critical binding pocket. This preservation of 
active site rigidity is particularly notable for Seq7 and the cyclic 
analogue, supporting their potential for high-affinity inhibition by 
maintaining precise complementarity with key functional residues. 
Collectively, these RMSF results suggest that while peripheral 
loop regions undergo natural dynamic motions, the peptide–TNF-
alpha complexes, especially those involving Seq7 and the cyclic 
peptide, maintain stable engagement with the active site, ensuring 
conformational integrity essential for inhibitory activity. These 
findings reinforce the observations from RMSD and molecular 
interaction analyses, highlighting the structural robustness and 
functional relevance of the prioritized peptides.

3.7.3 Hydrogen bond analysis
Hydrogen bonding plays a critical role in maintaining the 

stability and specificity of protein–ligand interactions. The hydrogen 
bond dynamics for all peptide–TNF-alpha complexes and the 

standard ligand were analyzed over the 200 ns simulation trajectory 
(Figure 8B; Table 5). The average number of hydrogen bonds 
observed for the standard ligand was 0.674 ± 0.84, whereas higher 
averages were recorded for food-derived peptides, including Seq1 
(1.395 ± 1.00), Seq6 (1.557 ± 1.48), and Seq7 (1.543 ± 1.27). The 
redesigned peptides demonstrated even greater hydrogen bonding 
capacity, with the cyclic peptide maintaining the highest average 
(3.058 ± 1.42), followed by the disulfide bridge peptide (1.656 ± 
1.57). A closer inspection of the trajectories highlights the dynamic 
nature of hydrogen bond formation. For the standard ligand, a 
consistent hydrogen bond network was observed between 75 and 
100 ns; however, this gradually diminished toward the later stages 
of the simulation. Seq1 displayed an initial burst of four hydrogen 
bonds (0–25 ns), which peaked to five bonds around 100–175 ns, 
and finally stabilized with two bonds at 200 ns. Seq6 exhibited 
strong early stability, forming six hydrogen bonds within 0–45 ns, 
which increased to seven around 125 ns before reducing to two 
by the end of the simulation. Seq7 maintained relatively stable 
interactions, with five hydrogen bonds during most of the trajectory, 
which decreased slightly to three bonds at 200 ns. The cyclic peptide 
demonstrated superior stability, maintaining a continuous hydrogen 
bond network ranging between four and eight throughout the 
entire 200 ns trajectory, and concluding with four bonds at the 
final frame. The disulfide peptide also showed favorable stability, 
with hydrogen bond interactions initiating after 25 ns and persisting 
consistently, ultimately forming six hydrogen bonds by the end of the 
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simulation. Collectively, these results indicate that while the food-
derived peptides establish moderate yet consistent hydrogen bonds 
with TNF-alpha, the designed peptides, particularly the cyclic and 
disulfide variants, exhibit a more stable and persistent hydrogen-
bonding network owing to their structural rigidity and constrained 
conformations. The findings underscore the therapeutic advantage 
of cyclic and disulfide-rich peptide designs, which not only stabilize 
binding but may also improve inhibitory efficacy compared to linear 
peptides and the standard ligand. 

3.7.4 Radius of gyration
The radius of gyration (Rg) was calculated to assess the 

structural integrity and overall compactness of TNF-alpha in 
complex with the food-derived and redesigned peptides over a 
200 ns simulation (Figure 8C; Table 5). The average Rg values 
indicated minimal deviations across all systems, reflecting stable 
folding and compactness of the protein–peptide complexes. The 
standard ligand maintained an Rg of 1.546 ± 0.006 nm, while 
the food-derived peptides exhibited values of 1.565 ± 0.01 nm 
(Seq1), 1.545 ± 0.009 nm (Seq6), and 1.546 ± 0.008 nm (Seq7), 
suggesting that Seq6 and Seq7 maintained structural compactness 
comparable to the standard. In contrast, Seq1 showed a slightly 
higher Rg, indicating minor fluctuations in protein compactness. 
The redesigned peptides demonstrated the greatest compactness: 
the cyclic peptide exhibited an Rg of 1.538 ± 0.007 nm, and the 
disulfide-stabilized analogue showed 1.534 ± 0.01 nm, reflecting 
enhanced rigidity and tighter packing at the TNF-alpha structure. 
This increased compactness aligns with observations from RMSD, 
RMSF, and hydrogen bond analyses, confirming that structural 
optimization strategies not only stabilize the peptide conformation 
but also promote a more compact protein–peptide interface.

Collectively, the analysis indicates that both linear and cyclic 
peptides hold significant therapeutic potential. Among the linear 
peptides, Seq7 (PPYCTIVPFGIFGTNYR) demonstrated the 
greatest stability with low RMSD and consistent RMSF, reflecting 
stable anchoring at key TNF-alpha residues, though minor Rg 
fluctuations arose from its flexible backbone and subtle protein 
loop movements. In contrast, the cyclic and disulfide-stabilized 
peptides exhibited enhanced rigidity, greater compactness, and a 
stronger, more persistent hydrogen-bond network. While overall 
Rg differences were modest due to natural loop dynamics, 
the cyclic designs formed a robust, tightly packed complex, 
supporting prolonged inhibitory activity within the TNF-alpha
binding site. 

3.8 Metadynamic analysis of the 
trajectories

3.8.1 Combined PCA–DCCM analysis of protein 
dynamics

The dynamically favorable conformational changes of the 
protein–peptide complexes were explored through principal 
component analysis (PCA), which captured the dominant motions 
within the essential subspace. The Cartesian coordinate PCA 
plots revealed distinct conformational landscapes across the 
quadrants defined by PC1 and PC2 (Figure 9, left). The PCA 
plots for food-derived peptides (Seq1, Seq6, and Seq7) revealed 

a broad distribution spanning multiple quadrants, indicating 
extensive exploration of the essential subspace. Seq6 and Seq7, in 
particular, display branched or arc-like patterns that reflect multiple 
metastable states and pronounced flexibility. Such dispersion 
denotes an induced-fit binding mode that allows adaptive surface 
complementarity but incurs a higher entropic penalty and can 
shorten residence time. In contrast, the cyclic peptide forms a 
compact cluster confined largely to the first quadrant, demonstrating 
a pre-organized, low-entropy ensemble, and rigid conformation 
optimized for stable binding. The disulfide-bridge peptide occupies 
the first quadrant with a gentle extension into the fourth, signifying 
intermediate flexibility, more constrained than linear food-derived 
peptides but less restricted than the cyclic designed.

To evaluate the collective internal motions of the 
peptide–TNF-alpha complexes, dynamic cross-correlation matrices 
(DCCMs) were generated, where red regions denote positively 
correlated residue motions and blue regions indicate anti-
correlated motions (Figure 9, right). Regions of strong positive 
correlation indicate residues that move cooperatively and can 
form communication pathways, whereas anti-correlated patches 
reflect hinge-like or compensatory motions that can alter long-
range coupling. The standard ligand and Seq1 exhibited only weak, 
localized correlations, consistent with pocket-filling interactions 
that preserve the native global dynamics of TNF-alpha. The Seq6 
and Seq7 generate red/blue networks across distal regions of TNF-
alpha. Signifying allosteric communication and redistribution of 
conformational fluctuations. Seq1 exhibits mostly weak correlation, 
consistent with a pocket-filling interaction that leaves the global 
dynamic network largely intact. The cyclic construct shows 
localized positive correlations confined to the binding interface, 
reinforcing its lock-and-key mechanism and localized stabilization 
of nearby residues. The disulfide variant produces broader 
correlated/anticorrelated regions than the cyclic peptide, reflecting 
moderate allosteric effects and controlled global perturbation that 
may enhance inhibitory efficacy.

The results of our analysis reveal a clear mechanistic 
distinction between the peptides. Linear food-derived peptides 
are highly flexible, utilizing an induced-fit mechanism to 
bind to TNF-alpha. This adaptability, however, leads to broad 
dynamic changes across the protein, as shown by the DCCM 
plots. Conversely, the rationally designed cyclic and disulfide 
peptides progressively limit conformational freedom, enhancing 
their thermodynamic stability and increasing their residence 
time. The cyclic peptide achieves this by rigidifying the local 
binding environment, whereas the disulfide-bridged peptide 
introduces a balance of rigidity and adaptive allosteric influence. 
Ultimately, our study demonstrates how targeted structural 
changes, such as cyclization or disulfide bonds, can directly 
manipulate a peptide binding and dynamic properties to enhance its
inhibitory power. 

3.8.2 Free energy landscape profiling
FEL analysis provided a thermodynamic and mechanistic 

view of the conformational preferences of linear and cyclic TNF-
alpha–peptide complexes. FELs were generated by projecting RMSD 
and radius of gyration (Rg) values from molecular dynamics 
trajectories, enabling the identification of energetically favored 
conformations, folding basins, and structural flexibility. RMSD 
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FIGURE 9
Principal component analysis (PCA) and dynamic cross-correlation matrices (DCCM) of TNF-alpha complexes with food-derived peptides, designed 
peptides, and the standard inhibitor. For each system (A) Seq1, (B) Seq6, (C) Seq7, (D) Cyclic, (E) Disulfide, and (F) Standard. The left shows PCA plots of 
the first two principal components (PC1 vs. PC2) colored by simulation frame, illustrating the dominant motions sampled during 200 ns molecular 
dynamics. The right presents the corresponding DCCM maps depicting correlated (blue) and anti-correlated (red) atomic fluctuations, highlighting 
differences in collective dynamics across peptide–TNF-alpha complexes.

quantifies structural deviation from a reference state, whereas Rg 
indicates overall compactness; lower Rg values correspond to more 
tightly folded, thermodynamically stable states (Figure 10). The 
reference TNF-alpha–ligand complex displayed a shallow, multi-
minima energy surface (RMSD ≈0.18–0.24 nm, Rg ≈ 1.20–1.40 nm, 
ΔG ≈ 0–2.5 kcal mol−1), indicating moderate conformational 
plasticity while maintaining its trimeric fold. The narrow Rg range 
suggests that fluctuations arise mainly from local loop motions and 
inter-subunit adjustments rather than large-scale unfolding Linear, 
food-derived peptides, exemplified by Seq1 and Seq6, exhibited 
broad and shallow basins spanning RMSD ≈ 0.20–0.25 nm and 
Rg ≈ 1.54–1.58 nm with ΔG ≈ 0–2.5 kcal/mol. These features 
indicate that the peptides sample a wide conformational space with 
multiple states of comparable energy, reflecting high structural 
flexibility. Such conformational plasticity is advantageous for 
dynamic interactions with TNF-alpha, as it allows the peptide 
to adapt to varying surface geometries and establish induced-fit 
binding. In contrast, Seq7 displayed a somewhat deeper and more 
localized basin (RMSD ≈ 0.18–0.22 nm, Rg ≈ 1.53–1.55 nm, ΔG 

≈ 0–2.3 kcal/mol), suggesting higher thermodynamic stability and 
a more defined folding pattern. The cyclic peptide, a rationally 
designed analogue, exhibited a single, narrow, and deep basin 
(RMSD ≈ 0.18–0.22 nm, Rg ≈ 1.49–1.52 nm, ΔG ≈ 0–2.0 kcal/mol), 
reflecting restricted conformational sampling and strong structural 
pre-organization. Such rigidity favors the maintenance of a specific, 
high-affinity binding geometry, enhancing the peptide inhibitory 
potential. The disulfide-stabilized peptide displayed multiple 
interconnected basins (RMSD ≈ 0.20–0.30 nm, Rg ≈ 1.51–1.53 nm, 
ΔG ≈ 0–2.5 kcal/mol), representing an intermediate conformational 
profile that balances moderate flexibility with thermodynamic 
stabilization.

3.8.3 DSSP analysis of secondary-structure 
transitions during MD simulations

To further elucidate the peptide binding-induced changes 
in secondary structure, DSSP-based time evolution profiles 
were computed using the PyMOL plugin Geo-measure, and 
the corresponding images were generated with Matplotlib. The 
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FIGURE 10
RMSD–Rg-based Gibbs Free Energy Landscape (FEL) plots of peptide–TNF-alpha complexes. The color gradient represents Gibbs free energy 
(kcal/mol), with blue indicating low-energy, stable conformations and red indicating high-energy, less stable conformations. (A) GVDYVRFF (Seq1), (B)
KIWHHTF (Seq6), (C) PPYCTIVPFGIFGTNYR (Seq7), (D) cyclic HCLSCSKCRKEM, (E) disulfide-stabilized HCLSCSKCRKEM, and (F) standard ligand 
complexed with TNF-alpha.

results, shown in Figure 11, illustrate the comparative secondary 
structure dynamics of the standard complex, the food-derived 
peptide, and the designed analogues. Across all systems, the β-
sheet framework within the active site remained largely conserved, 

confirming that peptide binding does not disrupt the essential 
scaffold required for TNF-alpha function. In contrast, localized 
induction of alpha-helical segments was observed in peptide-
bound systems, with this effect being most pronounced in Seq7, 
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cyclic, and disulfide-stabilized peptides compared to Seq1, Seq6, 
and the standard complex. Quantitative analysis of secondary 
structure composition (Figure 11G) revealed that helicity increased 
from 1.32% in the standard complex to 2.01% in Seq7, 1.95% in 
the cyclic peptide, and 1.82% in the disulfide-stabilized peptide, 
whereas Seq1 (1.31%) and Seq6 (1.28%) remained comparable 
to the standard. These variations were accompanied by modest 
adjustments in β-sheet and coil content, but the overall β-sheet 
dominance was preserved. The increase in alpha-helical content 
is particularly significant because alpha-helices confer structural 
rigidity, enhance intramolecular hydrogen bonding, and generate 
ordered surfaces that promote more specific and stable interactions 
at the protein–peptide interface. Following protein–peptide binding, 
helices also play a central role in molecular recognition by 
presenting a regular array of side chains for complementary surface 
interactions, thereby stabilizing the binding interface. Such helices 
are widely recognized as functional motifs in protein–protein 
interactions, either acting as mimics to competitively disrupt 
pathological signaling pathways or serving as templates for rational 
drug design. Overall, these findings demonstrate that while the β-
sheet scaffold of TNF-alpha is preserved across all systems, peptide 
binding particularly by conformationally constrained analogues 
such as Seq7, cyclic, and disulfide-stabilized peptides induces 
measurable increases in helical propensity. This structural shift 
may underpin their enhanced binding affinity, specificity, and 
overall complex stability, highlighting the therapeutic promise of 
constrained peptide analogues in modulating TNF-alpha function. 
Importantly, the food-derived peptide (Seq7) also exhibited a 
marked increase in alpha-helical content (2.01% helix, 49.28% 
β-sheet, and 48.71% coil), surpassing the standard and other 
linear analogues, thereby suggesting that naturally occurring 
peptides can provide biocompatible scaffolds with favorable 
conformational properties for therapeutic applications. In parallel, 
the engineered interacting-residue designed peptides namely the 
cyclic (1.95% helix, 48.75% β-sheet, 49.40% coil) and disulfide-
stabilized analogues (1.82% helix, 46.69% β-sheet, 51.49% coil) 
displayed the most pronounced helical induction, underscoring how 
rational design strategies can emulate stabilizing features of native 
motifs to achieve improved structural resilience and therapeutic 
potential against TNF-alpha.

The combined metadynamics analyses (PCA, DCCM, FEL, 
and DSSP) underscore a clear structure–function relationship 
between peptide topology and TNF-alpha modulation. Linear 
peptides display high flexibility and broad conformational sampling, 
inducing widespread dynamic changes across the protein. In 
contrast, cyclic peptides exhibit restricted motions, occupy well-
defined energy minima, and stabilize the local binding environment, 
with subtle secondary-structure adjustments observed in both cases 
while preserving the β-sheet core. 

3.9 Energy determinants of 
peptide-TNF-alpha interactions: MM-PBSA 
and residue decomposition

A critical determinant of molecular recognition is the binding 
free energy, which captures the overall thermodynamic favourability 
of a peptide–receptor complex. This parameter integrates several 

energetic components such as Van der Waals forces, electrostatic 
interactions, polar solvation, and non-polar solvation (SASA) to 
provide a holistic measure of both the strength and stability of 
binding. In this framework, more negative binding free-energy 
values signify stronger and more favorable interactions between 
ligand and target. To probe the binding efficiency and stability 
of our peptide candidates, we performed MM/PBSA calculations 
across six TNF-alpha–peptide systems in comparison with a known 
reference inhibitor (Figure 12; Table 7). The analysis revealed a clear 
trend in the total binding energies (ΔG_total), following the order: 
Seq7 (−31.82 kcal/mol−1) < Cyclic (−29.01 kcal/mol−1) < Disulfide 
(−27.71 kcal/mol−1) < Seq1 (−25.18 kcal/mol−1) < Seq6 (−20.21 
kcal/mol−1) < Standard (−16.88 kcal/mol−1). This ranking indicates 
that the food-derived Seq7 peptide and the rationally designed 
Cyclic analogue possess the highest binding affinities, exceeding 
that of the standard inhibitor and even the other food-derived 
sequences. A deeper decomposition of the energy components 
highlights the dominant role of van der Waals interactions, 
which consistently provided the most favorable stabilization across
all complexes.

Notably, Seq7 exhibited the strongest van der Waals contribution 
(−48.76 kcal/mol−1), closely followed by the Cyclic peptide (−40.65 
kcal/mol−1). Electrostatic interactions, while less prominent in most 
systems, were strikingly elevated in the Cyclic peptide (−210.09 
kcal/mol−1) and the Standard inhibitor (−136.69 kcal/mol−1), 
underscoring their critical role in these particular complexes. As 
anticipated, polar solvation energies were positive, counteracting 
the binding process and ranging widely from 25.57 kcal/mol−1 for 
Seq1 to a substantial 226.50 kcal/mol−1 for the Cyclic peptide. 
In contrast, the non-polar solvation (SASA) component made a 
modest but consistent stabilizing contribution of roughly −3 to −5 
kcal/mol−1 across all systems. Collectively, these results indicate 
that the most potent peptides achieve a favorable enthalpy–entropy 
balance by combining extensive hydrophobic packing with selected 
electrostatic interactions, despite desolvation penalties.

To pinpoint the molecular determinants of this thermodynamic 
profile, per-residue energy decomposition was performed over the 
final 200 ns of the MD trajectories. Notably, residues previously 
reported to interact with TNF-alpha inhibitors contributed 
substantially to the overall binding free energy (Figure 13). In 
the Seq1 complex, Tyr59 (−1.31 kcal/mol−1) and Tyr119 (−2.24 
kcal/mol−1) were key contributors. For Seq6, Tyr59 (−2.02 
kcal/mol−1), Gln61 (−2.35 kcal/mol−1), Tyr119 (2.59 kcal/mol−1), 
and Tyr151 (−3.15 kcal/mol−1) dominated. The Seq7 complex 
exhibited strong contributions from Val13 (−2.49 kcal/mol−1), 
Leu57 (−1.44 kcal/mol−1), Leu59 (−1.68 kcal/mol−1), and Tyr119 
(−3.38 kcal/mol−1). In the Cyclic complex, Tyr59 (−1.81 kcal/mol−1), 
Gln61 (−1.27 kcal/mol−1), Tyr119 (−3.57 kcal/mol−1), and Tyr151 
(−4.01 kcal/mol−1) were dominant contributors, whereas in the 
Disulfide complex, Tyr59 (−0.45 kcal/mol−1) and Tyr119 (−0.38 
kcal/mol−1) provided modest but notable stabilization. Among 
these, Tyr119 consistently emerged as the most influential hot-
spot, displaying the highest binding contributions in Seq7 and the 
Cyclic peptide. This per-residue decomposition analysis correlates 
well with our earlier docking and interacting-residue findings, 
reinforcing the identification of key hot-spot residues and validating 
the structural models. The superior thermodynamic stability of 
Seq7 and the Cyclic analogue can be attributed to their ability to (i) 
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FIGURE 11
Time-resolved secondary-structure evolution of TNF-alpha–peptide complexes during 200 ns MD simulations. (A–F) show DSSP profiles for (A)
standard complex, (B) Seq1, (C) Seq6, (D) Seq7, (E) cyclic peptide, and (F) disulfide-bridge peptide, illustrating residue-wise changes in α-helices, 
β-sheets, and coil regions over time. (G) illustrates the quantitative distribution of secondary-structure elements for each system, indicating changes in 
helical (blue) content while the β-sheet (orange) and coil (light green) framework remains largely conserved.

maximize van der Waals packing within the receptor cleft, (ii) exploit 
key residues such as Tyr119, Gln61, and Tyr151, and (iii) achieve 
an optimal enthalpic-entropic balance despite polar desolvation 
costs. Collectively, these results delineate a unified mechanism 
of TNF-alpha inhibition in which peptide binding is driven 
by synergistic hydrophobic enclosure and targeted electrostatic 
interactions anchored by conserved aromatic residues. These 
mechanistic insights not only validate the computational design 
strategy but also identify precise structural features, particularly 
π- π stacking with Tyr119 and complementary interactions with 
Gln61 and Tyr151, that can guide the rational optimization of next-
generation peptide therapeutics targeting TNF-alpha and related 
inflammatory pathways.

4 ADMET evaluation of food-derived 
and designed peptides

Based on molecular dynamics (MD) simulations and MM/PBSA 
binding-free energy analysis, Seq7 (linear) and the cyclic peptide 
were prioritized for detailed ADMET profiling to evaluate their 
pharmacokinetic behavior and safety (see Table 8). The ADMET 
analysis revealed comparable profiles for both peptides, with 
several advantages favoring the cyclic analogue. Both peptides 
exhibited moderate water solubility (log S = −2.892), poor Caco-
2 permeability (−0.434 for linear vs. −0.52 for cyclic), and 
negligible human intestinal absorption (0%), suggesting limited 
oral bioavailability. Both were predicted to be P-glycoprotein 
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FIGURE 12
Estimated binding free energies for TNF-alpha protein–peptide complexes calculated using MM/PBSA. The bar plot shows the MM/PBSA-derived van 
der Waals (ΔEvdW), electrostatic (ΔEelec), polar solvation (ΔEpolar), non-polar solvation (ΔESASA), and total binding free energies (ΔGbind) for 
TNF-alpha bound to linear peptides Seq1 (blue), Seq6 (yellow), Seq7 (violet), the designed Cyclic peptide (green), the Disulfide-stabilized peptide (brick 
red), and the standard (pink). Error bars represent the standard deviation across the sampled simulation frames.

TABLE 7  Binding free energies (kcal/mol) of TNF-alpha bound to food-derived and designed peptide and the standard as calculated by MM/PBSA 
analysis over a 200 ns molecular dynamics simulation.

Energies (kcal/mol) Food-derived peptide Designed peptide

Standard Seq1 Seq6 Seq7 Cyclic Disulfide

Van der Waal Energy (kcal/mol) −19.82 −33.52 −33.55 −48.76 −40.65 −31.73

Electrostatic energy (kcal/mol) −136.69 −13.28 −14.12 −14.72 −210.09 −15.11

Polar solvation energy (kcal/mol) 142.28 25.57 31.65 36.82 226.5 28.92

SASA energy (kcal/mol) −2.65 −3.95 −4.19 −5.17 −4.78 −3.78

Binding energy (kcal/mol) −16.88 −25.18 −20.21 −31.82 −29.01 −27.71

substrates but not inhibitors, indicating possible active efflux 
without significant drug–drug interaction risk. The cyclic peptide 
demonstrated a slightly higher fraction unbound (Fu = 0.398 
vs. 0.351) and a greater volume of distribution (log VDss = 
−0.196 vs. −0.31), reflecting marginally improved tissue distribution. 
Both peptides showed very low BBB permeability (log BB = 
−3.189 for linear, −2.892 for cyclic) and CNS permeability (log 

PS = −7.955 vs. −6.574), indicating minimal CNS exposure. 
Metabolic predictions indicated that the linear peptide is a CYP3A4 
substrate whereas the cyclic peptide is not, suggesting improved 
metabolic stability for the cyclic form. Excretion analysis showed 
that the cyclic peptide had lower total clearance (−1.823 vs. 
−0.381 log mL/min/kg) and a longer half-life (0.88 vs. 0.653), 
indicating slower elimination and prolonged systemic exposure. 
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FIGURE 13
Per-residue contributions to the total binding free energy (ΔG_total) for five peptide–TNF-alpha complexes. Negative values indicate favorable 
interactions, while positive values indicate unfavorable contributions. show: (A) Seq1, (B) Seq6, (C) Seq7, (D) Cyclic peptide, and (E)
Disulfide-stabilized peptide.

Toxicity predictions showed both peptides to be non-mutagenic 
(negative AMES test), non-carcinogenic, and with similar oral 
acute toxicity (LD50 = 2.482 mol/kg) and maximum tolerated dose 
(∼0.44 log mg/kg/day). However, the linear peptide was predicted 
to be a hERG II inhibitor, whereas the cyclic peptide showed no 
hERG inhibition, suggesting a lower cardiotoxicity risk. Collectively, 
these findings indicate that the cyclic peptide has a more favorable 
ADMET profile, with improved metabolic stability, longer systemic 
retention, and enhanced safety characteristics.

5 Mechanistic insights into linear and 
cyclic peptide architectures for 
TNF-alpha inhibition

The structural topology of a peptide is a critical determinant 
of its binding strength, conformational stability, pharmacokinetic 
behavior, and overall inhibitory efficiency against TNF-alpha. For 

a therapeutic peptide to be effective, it must not only establish high-
affinity interactions with TNF-alpha but also maintain sufficient 
stability in systemic circulation to ensure prolonged biological 
activity. To address this, both linear (Seq7) and rationally designed 
cyclic peptides were systematically evaluated using molecular 
dynamics (MD) simulations, free energy landscape (FEL) analysis, 
and ADMET predictions, enabling a comprehensive comparison of 
their structural, thermodynamic, and pharmacokinetic attributes.

Seq7 exhibited substantial conformational adaptability during 
MD simulations, engaging multiple hotspot residues within the 
TNF-alpha binding groove. Despite this flexibility, it maintained 
low RMSD and consistent RMSF values, indicating a relatively 
stable backbone. Its flexibility allowed transient hydrogen-bond 
formation and residue-level adjustments that supported binding, but 
this same adaptability resulted in higher radius of gyration (Rg) 
values, suggesting a less compact complex. Principal Component 
Analysis (PCA) and FEL mapping revealed that Seq7 explored a 
broader conformational space and occupied shallower free-energy 
basins, consistent with a dynamic but entropically more costly 
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TABLE 8  Predicted ADMET properties of the selected peptide from the pkCSM server.

Properties Peptide sequences

Linear (Seq7) Cyclic

Absorption

Water solubility (log mol/L) −2.892 −2.892

Caco2 permeability ((log Papp in 10–6 cm/s) −0.434 −0.52

Intestinal absorption (human) (%) 0 0

P-glycoprotein substrate Yes Yes

P-glycoprotein I inhibitor No No

P-glycoprotein II inhibitor No No

Distribution

Fraction unbound (human) Numeric (Fu) 0.351 0.398

VDss (human) (log L/kg) −0.31 −0.196

BBB permeability (log BB) −3.189 −2.892

CNS permeability (log PS) −7.955 −6.574

Metabolism

CYP3A4 substrate/inhibitor Yes/No No/No

CYP1A2 inhibitor No No

CYP2D6 substrate/inhibitor No/No No/No

CYP2C9 inhibitor No No

Excretion
Total Clearance (log mL/min/kg) −0.381 −1.823

Half-life estimation (t1/2) 0.653 0.88

Toxicity

AMES toxicity No No

Max. tolerated dose (human) (log mg/kg/day) 0.438 0.439

hERG I/II inhibitor No/Yes No/No

Oral Rat Acute Toxicity (LD50) (mol/kg) 2.482 2.482

Oral Rat Chronic Toxicity (LOAEL) (log mg/kg_bw/day) 9.662 9.357

Carcinogenicity No No

T.Pyriformis toxicity (log ug/L) 0.285 0.285

binding mode. While such flexibility may facilitate accommodation 
of receptor plasticity and point mutations, it can also lead to faster 
dissociation and lower kinetic stability.

Conversely, the cyclic peptide was rationally engineered by 
incorporating key hotspot residues from the TNF-alpha–TNFR1 
interface (HCLSCSKCRKEM), effectively mimicking the natural 
receptor epitope. This interface-guided design pre-organizes the 
peptide into a geometry that closely aligns with the TNF-alpha 
binding surface, thereby reducing internal degrees of freedom 
and minimizing entropic penalties during complex formation. 
MD simulations revealed consistently lower Rg values for the 
cyclic peptide–TNF-alpha complex, reflecting improved structural 

compactness, while FEL profiling showed a deeper, well-defined 
minimum indicative of a thermodynamically more favorable and 
kinetically stable binding state. Furthermore, H-bond analysis and 
MM-PBSA calculations demonstrated that the cyclic peptide formed 
more persistent hydrogen-bond networks and exhibited stronger 
van der Waals and electrostatic interactions, supporting the notion 
of a more robust and long-lived complex. These observations are 
consistent with the findings of (Li et al., 2021), who reported 
that cyclic RGDfV–integrin αvβ3 complexes possess higher rupture 
forces and slower dissociation rates compared to their linear 
counterparts. This correlation supports the mechanistic basis of our 
results, where cyclization enhances conformational rigidity, reduces 
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entropic cost, and stabilizes peptide–protein interactions, ultimately 
conferring superior kinetic stability and prolonged inhibitory 
persistence in the TNF-alpha system.

These structural insights were strongly corroborated by ADMET 
predictions. The cyclic peptide exhibited superior pharmacokinetic 
properties, including improved plasma stability (t1/2 = 0.88 vs. 0.65 
for Seq7), reduced systemic clearance (log CL = −1.82 vs. −0.38), and 
slightly enhanced blood–brain barrier penetration (logBB = −2.89 
vs. −3.18) and CNS permeability, suggesting prolonged systematic 
circulation and improved tissue distribution. Similar findings by 
(Alaofi et al., 2016; Bogdanowich-Knipp et al., 1999) further validate 
the observed enrichment in the half-life and conferred resistance 
to proteolytic degradation for the cyclic peptide in our study. 
Whereas the disulfide-bridge peptides occupy an intermediate 
state, combining localized rigidity from the disulfide bond with 
global flexibility elsewhere. They form fewer persistent hydrogen 
bonds than cyclic peptides and sample broader conformational 
space, resulting in intermediate free-energy minima. This balance 
of rigidity and adaptability produces moderate binding stability and 
pharmacokinetic properties, distinguishing them from fully cyclic 
or linear scaffolds. Our results corroborate the principle, highlighted 
by studies on NGR-containing peptides (Negussie et al., 2010), that 
a peptide biological activity is determined by the conformational 
stability of its bioactive motif. Our study shows that while the 
linear Seq7 displayed adaptability, it had lower kinetic stability. 
In contrast, the cyclic peptide achieved pre-organization and 
persistent binding. These results provide a coherent mechanistic 
understanding. Linear peptides, though flexible, suffer from 
higher entropic penalties and shorter systemic persistence. Cyclic 
peptides, due to their rigid architecture, achieve deeper energy 
minima, resist proteolytic degradation, and display superior 
pharmacokinetic performance. Disulfide-bridge peptides, in turn, 
occupy an intermediate state. Compared with clinically approved 
biologics such as Infliximab, the peptide scaffolds identified in this 
study offer several advantages. Although Infliximab is an FDA-
approved TNF-alpha inhibitor with proven clinical utility, it exhibits 
less than 50% sustained efficacy in certain patient populations 
and has been associated with increased risk of congestive heart 
failure, severe infusion reactions, and immune-mediated adverse 
effects. Moreover, as a large, protein-based biologic, Infliximab 
requires intravenous administration and faces challenges related 
to delivery, stability, and immunogenicity (Sahu et al., 2024). 
In contrast, the food-derived and rationally designed peptide 
scaffolds developed here demonstrate predicted advantages in 
bioavailability, systemic stability, and reduced immunogenic 
potential, owing to their small molecular size and optimized cyclic 
architecture. This combination of favorable attributes underscores 
that naturally occurring linear bioactive peptides can be cyclized 
to stabilize their active conformations, enhance binding affinity, 
prolong residence time at the TNF-alpha interface, and leverage 
the pharmacokinetic advantages inherent to cyclic architectures. 
Collectively, these findings suggest that rationally designed cyclic 
peptides represent a safer, more versatile, and potentially oral 
alternative to injectable protein-based inhibitors such as Infliximab. 
This approach could transform food-derived peptides into potent, 
long-lasting therapeutic scaffolds for TNF-alpha inhibition and, 
by extension, provide a promising strategy to combat chronic 
inflammation underlying cardiovascular disease Figure 14.

6 Future directions, limitations, and 
opportunities in peptide therapeutics

The pharmacological relevance of the food-derived peptide 
is supported by its known anti-inflammatory and antioxidant 
activities; however, its direct inhibition of TNF-alpha and the 
efficacy of the designed cyclic analog require experimental 
validation. Both peptides should be synthesized and evaluated using 
ITC or MST to determine TNF-alpha binding affinity. Functional 
assessment can be performed through ELISA-based cytokine 
inhibition assays in LPS-stimulated macrophages, followed by in 
vivo validation in ApoE−/− or LDLR−/− mouse models to assess 
bioavailability, stability, and cardioprotective efficacy. These studies 
will serve as essential validation steps to translate computational 
predictions into therapeutic applications. Despite their clear 
pharmacological advantages, including enhanced conformational 
rigidity, proteolytic stability, and target-binding affinity. The cyclic 
and disulfide-stabilized peptides pose synthetic challenges. These 
include low synthetic yields, complex purification processes, high 
cost, and sequence-dependent folding constraints, particularly 
in peptides containing multiple cysteine residues. However, 
advances in chemoselective ligation, enzymatic cyclization, and 
orthogonal protection strategies are progressively mitigating these 
limitations, improving yield, reproducibility, and scalability for 
the synthesis of bioactive cyclic peptide therapeutics (Isidro-
Llobet et al., 2019; Zhang et al., 2019).

From a computational perspective, AI-based peptide screening 
and generative modeling have emerged as transformative tools for 
drug discovery, capable of exploring vast sequence spaces and 
accelerating lead optimization (Goles et al., 2024). Nevertheless, 
the predictive accuracy of these models critically depends on the 
quality, diversity, and representativeness of their training data 
(Hanna et al., 2025; Zhai et al., 2025). Currently, no curated 
database specifically catalogues food-derived peptide–TNF-alpha 
interactions, which constrains the accuracy, generalizability, and 
validation of computational models. Establishing such databases 
annotated with experimentally verified activity, structural, and 
binding data would significantly improve AI training, model 
benchmarking, and predictive performance in the development 
of inflammation-targeted peptide therapeutics. Future research 
should focus on integrating AI-driven prediction with physics-
based molecular simulations to provides a complementary strategy 
that merges computational scalability with detailed mechanistic and 
energetic understanding. Incorporating experimentally validated 
TNF-alpha interaction models into emerging generative deep 
docking frameworks (Zhao et al., 2025), will further refine 
predictive precision and expand the applicability of virtual screening 
pipelines. In parallel, establishing standardized benchmarks, 
open-access repositories, and collaborative research networks 
will be essential to ensure reproducibility, data transparency, and 
effective knowledge sharing across the peptide research community. 
Recent advancements in computational methodologies and deep 
learning frameworks (Wang et al., 2025; Zhao et al., 2024; 2022) 
underscore the growing potential of these integrated approaches to 
rationally design next-generation peptide therapeutics. Collectively, 
these technological and methodological innovations promise 
to accelerate the discovery of scalable, structurally stable, and 
mechanistically validated TNF-alpha inhibitors, thereby offering a 
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FIGURE 14
Comparative schematic of peptide architectures evaluated for TNF-alpha inhibition based on our results.

transformative path toward safe and effective treatments for chronic 
inflammatory diseases. 

7 Conclusion

The inherent advantages of peptides, including their ease 
of synthesis, low toxicity, and high target specificity, motivated 
this study to explore peptide-based inhibition of TNF-alpha. 
We successfully identified a food-derived bioactive peptide and 
rationally designed a cyclic analog from the TNF-alpha–TNFR1 
interface, both of which proved to be potent inhibitors capable 
of blocking downstream TNF-alpha signaling. By preventing 
the TNF-alpha/TNFR1 interaction, these peptides are expected 
to attenuate pro-inflammatory cascades without triggering 
downstream signaling events such as NF-κB activation, thereby 
reducing the risk of secondary inflammatory amplification. This 
work demonstrates a powerful strategy combining the intrinsic 
bioactivity of naturally occurring peptides with interface-guided 
cyclization to create effective therapeutic candidates. Our findings 
align with existing literature, which consistently reports that 
cyclic peptides possess superior stability and active-site retention 
compared to their linear counterparts. Computational analyses 
revealed that the designed interface cyclic peptide achieved 
deeper free-energy minima, prolonged retention within the 
binding pocket, and enhanced hydrogen-bond persistence. In 
contrast, the food-derived linear peptide, while maintaining strong 
binding, displayed greater conformational flexibility. This suggests 

that cyclization can further improve the structural stability and 
pharmacokinetic performance of naturally active food-derived 
peptides. Because the identified food-derived peptide already has 
reported bioactivities, its cyclization could potentially enhance 
these anti-inflammatory and anti-proliferative effects. This study 
provides a foundational framework for both discovering diverse 
food-based peptide inhibitors and designing potent, interface-
derived cyclic peptides as TNF-alpha antagonists. As a next 
step, experimental validation of the designed cyclic peptide 
is warranted to confirm its real-time clinical applicability and 
to fully assess its therapeutic potential. These findings also 
resonate with the United Nations Sustainable Development 
Goals, particularly SDG 3 (Good Health and Wellbeing) and 
SDG 9 (Industry, Innovation, and Infrastructure), by advancing 
sustainable, innovation-driven strategies for cardiovascular
drug discovery.
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