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Artificial intelligence (Al) has become a common tool for bioinformatics, with
hundreds of methods published in recent years. Due to the training data
demands of deep-learning algorithms, high-throughput single-cell and spatial
transcriptomics is one of the most popular areas for these applications. Here we
review how Al is being used for single-cell and spatial transcriptomics analysis,
and how these approaches compare to alternative statistical or heuristic-
based methods. We explored 10 common analysis tasks: dimensionality
reduction, cross-dataset integration, data denoising, data augmentation,
deconvolution, cell-cell interactions, transcriptional velocity, transcriptomic-
chromatin accessibility integration, and integrating single-cell and spatial
transcriptomics modalities. We highlight which algorithms are likely to be useful
for discovery researchers, and which are not yet ready for general research use.

KEYWORDS
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dimensionality reduction, integrating single-cell and spatial transcriptomics modalities,
transcriptional velocity

1 Introduction

Artificial intelligence (AI) has revolutionized the analysis of big data across many fields,
including biomedical research, and is entering clinical practice, with over 1,000 algorithms
and devices approved by the FDA (Health, 2025). While the predominant use of Al in clinical
practice is in biomedical image analysis, in research, Al approaches have gained increasing
popularity in bioinformatics, and especially single-cell and spatial transcriptomics
(Ge et al., 2024; Erfanian et al., 2023; Zahedi et al., 2024; Molho et al., 2024; Ma and
Xu, 2022). Al is often used synonymously or as a subtopic of the broader field of machine
learning. Machine learning involves a computer or algorithm deriving at least some aspects
of a model from observed or “training” data. This includes tasks as simple as estimating
the slope and intercept of the best-fit line, or those as complex as labelling MRI images
with specific pathological lesions. Al, or deep learning (DL) as we will refer to it, is a
specific class of models based on neural networks (NN) with multiple interconnected layers
of functions capable of learning complex, non-linear patterns within large-scale datasets.

01 frontiersin.org


https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2025.1715821
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2025.1715821&domain=pdf&date_stamp=
2026-01-22
mailto:tandrew6@uwo.ca
mailto:tandrew6@uwo.ca
https://doi.org/10.3389/fbinf.2025.1715821
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1715821/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1715821/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1715821/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1715821/full
https://orcid.org/0009-0000-0499-6026
https://orcid.org/0000-0002-4198-8014
https://orcid.org/0009-0006-0101-7375
https://orcid.org/0000-0003-1120-2196
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Tchatchoua Ngassam et al.

Single-cell and spatial transcriptomics are especially amenable
to DL due to the large number of observations, as most datasets
consist of thousands to millions of individual cells and thousands
to tens of thousands of transcripts (Svensson et al., 2018). State-
of-the-art single-cell transcriptomics (scRNA-seq) experiments
typically generate large-scale datasets composed of 20,000-500,000
individual cells from at least three samples from one or more
conditions (Figure 1A). These data undergo quality control,
normalization, dimensionality reduction, integration across samples
or across modalities, then they are clustered and annotated with
cell type labels based on the expression of characteristic genes
(Heumos et al., 2023; Luecken and Theis, 2019; Andrews and
Hemberg, 2018; Kiselev et al., 2019). Many of these tasks are classic
machine learning problems which could potentially be performed by
DL models. Spatial transcriptomics (ST) adds two additional layers
of information: two-dimensional coordinates of each cell, which
may soon to be three-dimensional (Schott et al., 2024), as well as
one or more layers of histology (H&E) and/or immunofluorescent
(IF) images of the tissue. ST comes in two main types: sequencing-
based (Figure 1B) and imaging-based (Figure 1C). In imaging-based
ST, transcripts are individually measured with single-molecule
fluorescent in situ hybridization (Chen et al., 2015; He et al., 2022)
(Figures 1B,C). Transcripts are aggregated at the level of individual
cells by identifying nuclei and cell boundaries, referred to as
tissue-segmentation or simply segmentation (Mitchel et al., 2025;
Polanski et al., 2024). In many cases, this single-cell resolution ST
data is analyzed using the same tools developed for scRNAseq.
For sequencing-based ST, tissue is placed on a slide covered in
oligonucleotide spots which capture and tag transcripts with a spatial
barcode. Resolution is determined by the size of each uniquely
barcoded spot. In many cases, these spots will overlap more than
1 cell, thus requiring “deconvolution” to estimate the contribution
of each cell to the transcripts captured by that spot (Stahl et al., 2016;
Rodriques et al., 2019; Gaspard-Boulinc et al., 2025). For both
approaches, but particularly for sequencing-based techniques,
information from the matching images can be combined with
transcriptomics to improve the identification of distinct anatomical
regions either in parallel with or integrated into the ST analysis
workflow (Williams et al., 2022; Pham et al., 2023; Zhao et al., 2021).
Tissue segmentation and extraction of biologically relevant
features from tissue imaging is dominated by DL algorithms
(Chen et al., 2024; Stringer et al., 2021; Warren and Moustafa, 2023;
Kuntz et al., 2021; Greenwald et al., 2022).

While these technologies have generated large amounts of
high-dimensional datasets, the analysis of these data is challenged
by a combination of biological complexity and technical noise.
Biologically, cellular states exist along continuous trajectories—such
as differentiation or activation—and exhibit high heterogeneity
within and across tissues. Technically, the data is affected by
low sensitivity, batch effects, ambient RNA contamination, and
spatial blur in low-resolution spatial assays (Ge et al., 2024;
Kiselev et al., 2019; Mitchel et al., 2025; Lahnemann et al., 2020;
Young and Behjati, 2020; Svensson et al., 2017). These factors
introduce spurious variation, obscure true biological signals, and
complicate tasks such as clustering, integration, and cell-cell
communication inference.

In recent years, DL has emerged as a novel approach to
address the computational challenges of scRNA-seq and ST.
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These methods excel at feature extraction and classification of
high-dimensional, noisy data, thus making them well-suited for
cell type annotation, multimodal data integration, and nonlinear
dimensionality reduction (Erfanian et al., 2023; Karin et al., 2024;
Sarker, 2021). DL methods can take advantage of GPU, parallel
computing, and iterative optimization on batches of data to scale
analyses to datasets of millions of observations; however, similar
or better performance can also be achieved by optimizing classical
statistical methods (Chockalingam et al., 2025). DL models are
extremely flexible and can be combined to allow for the joint analysis
of multiple data types such as integration of scRNA-seq and ST data,
or imaging and transcriptomic data.

In recent years, there has been an explosion of methods
developed for scRNA-seq and ST analysis using DL models (Table 1).
Despite their growing number, only a few have achieved broad
adoption in the research community. While existing reviews
(Zahedi et al., 2024; Ma and Xu, 2022; LiY. et al, 2022
Era et al., 2019; Luo et al,, 2024; Wani et al., 2025) have primarily
focused on the technical aspects of these models, their architecture,
and training strategies, we focus instead on their performance
in biological discovery research and on which, if any, of these
tools have been shown to enhance accuracy, reproducibility, and
sensitivity for biological discovery. As such, we first provide a
brief overview of different model architectures, then discuss DL
approaches to addressing specific bioinformatics analysis tasks, and
their applicability to real-world discovery research. This will help
biologically focused researchers understand when and how to use
these methods and help bioinformaticians determine which tasks
are appropriate for DL models and how to evaluate their design
to ensure the resulting model is useful to the biomedical research
community.

2 Common deep learning architecture
2.1 Convolutional neural networks (CNN)

Convolutional neural networks (CNN) were

developed for structured data in the form of multiple arrays, such

originally

as images which are composed of pixel intensities in 2D arrays
for each color channel (Lecun and Bengio, 1998). Their design is
built around three core principles (Lecun and Bengio, 1998): (i)
local receptive fields, which focus computation on neighboring
input values to capture features such as edges and corners in
images; (ii) shared weights, which enable the same filter to be
applied across inputs, thereby reducing the number of parameters;
and (iii) subsampling or pooling operations, which introduce
robustness of outputs to distortions and shifts. Together, these
principles allow CNNs to efficiently recognize local patterns and
build hierarchical feature representations using fewer parameters
than fully connected networks (Figure 2A). Due to these advantages,
CNNs have become a popular architecture in fields such as computer
vision, where extracting informative features from local patterns
is crucial.

Although scRNA-seq lacks inherent spatial structure, gene
expression data has been successfully adapted by restructuring
it into an image-like format used by CNNs. A method called
convolutional neural network for co-expression (CNNC) encodes
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FIGURE 1
Single cell and spatial transcriptomics workflow. (A) Droplet-based single cell RNA sequencing. Tissue is dissociated into single cells which are

co-encapsulated with barcoded beads by microfluidics. Released transcripts are captured by poly T and sequenced following library preparation. (B)
Sequencing-based ST. A tissue section is placed on a slide with spatially barcoded capture spots. Transcripts are captured and sequenced following
library preparation. (C) Image-based ST. Transcripts are hybridized with fluorescence probes and imaged over multiple rounds. After images decoding
and cell segregation, each fluorescent dot represents an individual transcript. All methods produce gene expression, with spatial methods providing
additional x, y coordinates for downstream analysis.

gene pair co-expression as 2D histograms, which serve as input  Principal Component Analysis (PCA). While popular pipelines like
“images” (Yuan and Bar-Joseph, 2019). This approach allows CNNs Seurat (Stuart et al., 2019; Satija et al., 2015; Butler et al., 2018)
to learn complex, nonlinear gene-to-gene relationships directly from  use PCA and assume linear relationships among genes, AEs can
single-cell expression data. CNNs are particularly valuable for STto  capture complex nonlinear relationships inherent in scRNA-seq
extract morphological features from tissue sections that complement ~ data. A key advantage of AEs lies in their flexibility to adapt the
transcriptomics data. Methods such as SpaCell (Tan et al,, 2020)  reconstruction objective based on the statistical properties of the
combine pretrained CNN models with an autoencoder network  data. For instance, loss functions can use negative binomial or zero-
to learn joint embeddings of histology and gene expression. inflated negative binomial distributions, which are appropriate for
Similarly, stLearn (Pham et al., 2023) leverages a pretrained CNN  single-cell and spatial transcriptomics data (BinTayyash et al., 2021;
model to extract morphological features from histology images and ~ Svensson, 2020; Zhao et al., 2022) instead of standard statistics
integrates them with gene expression data to map spatial domains ~ such as mean squared error (MSE), which assume Gaussian
within tissue sections. noise. This way, AE can incorporate probabilistic assumptions
directly into the loss function by modeling the likelihood of an
appropriate probability distribution. The model can then account
2.2 Autoencoders (AE) for data-specific characteristics such as sparsity, overdispersion,
and technical noise commonly observed in scRNA-seq data,
Autoencoders (AE) are deep feed-forward neural networks  hence learning more biologically meaningful representations that
fundamentally designed for unsupervised representation learning,  respect the underlying statistical structure of gene expression
where the goal is to learn lower-dimensional features of high-  measurements.
dimensional data. Structurally, an AE consists of an encoder network In scRNA-seq analysis, Deep Count Autoencoders (DCA)
and a decoder network (Figure 2B). The encoder compresses input  leverage the flexibility of AE by modeling the output as the
data (such as gene expression vector from a cell) into a lower-  parameters of the zero-inflated negative binomial distribution
dimensional latent space, while retaining the most significant  (Eraslan et al, 2019), commonly used for RNA-seq counts
features. The decoder, which typically mirrors the architecture  (Svensson, 2020). Additionally, prior domain knowledge can be
of the encoder, aims to reconstruct the high-dimensional input  incorporated into an AE in a semi-supervised training manner
data from the learned low-dimensional representation. The entire  as implemented by scDCC (Single Cell Deep Constrained
network is trained to minimize the reconstruction error given as  Clustering) (Tian et al, 2021). scDCC integrates soft pairwise
the mean squared error between input and reconstructed data.  constraints derived from prior biological information (marker
The resulting latent representations, also called embeddings, are  genes or cell type annotation) into the model’s loss function.
particularly valuable as they serve as nonlinear counterparts to  These constraints guide the model to group related cells and
traditional linear dimensionality reduction techniques such as  separate dissimilar ones during latent space optimization, effectively
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TABLE 1 Deep learning-based tools in single-cell RNA sequencing and spatial transcriptomics.

10.3389/fbinf.2025.1715821

ol Task category Modality DL model Key features/notes Year | Code

SCANVI Annotation/transfer scRNA-seq, ST Conditional VAE Semi-supervised cell labeling. 2021 Code
Exetends scV1I for annotation

BBKNN Batch correction scRNA-seq Graph-KNN Batch integration 2020 Code

BERMUDA Batch correction scRNA-seq AE + clustering Deep AE-based alignment 2019 Code

scArches Batch correction/integration | scRNA-seq VAE w/fine-tuning Architectural surgery for model 2021 Code
reuse

trVAE Batch correction/integration | scRNA-seq Conditional VAE Domain transfer using 2020 Code
adversarial training

scGEN Batch correction/integration | scRNA-seq VAE Predicts perturbed gene states 2019 Code

Graphcomm Cell-cell interaction scRNA-seq GAT Integrates multimodal data for 2025 Code
cell-cell communication

scSDNE Cell-cell interaction scRNA-seq GNN + AE Semi-supervised graph 2025 Code
embedding integrating
ligand-receptor and gene
regulation data

DeepCCI Cell-cell interaction scRNA-seq GCN + ResNet Supervised cell-cell interaction 2023 Code
network prediction using L-R
pairs

scTenifoldXct Cell-cell interaction scRNA-seq Neural networ + Predicts cell-cell interactions 2023 Code

semi-supervised, manifold and maps communication
alignment graphs using ligand-receptor

gene embedding and manifold
alignment

Spatialscope Cell-cell interaction Spatial transcriptomics | Deep generative model Decomposes ST spots to single 2023 Code
cells using generative models

CellFM Cell type annotation scRNA-seq RetNet Foundamental model for 2025 Code
annotation

scAtlasVAE Cell type annotation scRNA-seq VAE Cross atlas comparison and 2024 Code
transfer learning for cell subtype
annotation

scGAA Cell type annotation scRNA-seq Transformer Combines horizontal and 2024 Code
vertical attention mechanisms,
does not require batch
information

TOSICA Cell type annotation scRNA-seq Transformer Combine cell type marker genes 2023 Code
and transformer attention layers

scBERT Cell type annotation scRNA-seq Transformer Pretrained on gene expression 2022 Code

SIMS Classification scRNA-seq Transformer Uses TabNet transformer for 2024 Code
lable transfer from cell atlas

expiMap Classification scRNA-seq AE w/pathway constraints Maps cells to known pathways 2023 Code
in a reference dataset

scDLC Classification scRNA-seq LSTM + DNN Sequential modeling for 2022 Code
classification

SEDR Clustering Spatial transcriptomics | VGAE Integrates latent of GE + spatial 2024 Code
embedding

(Continued on the following page)
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TABLE 1 (Continued) Deep learning-based tools in single-cell RNA sequencing and spatial transcriptomics.

Tool name

SiGra

Task category

Clustering

Modality

Spatial transcriptomics

DL model

Graph transformer

Key
features/notes

Integrates multichannel
images + expression

2023

Code

SpaGCN

Clustering

Spatial transcriptomics

GCN

Uses spatial coordinates +
histology + GE

2021

Code

scDCC

Clustering

scRNA-seq

AE

Semi-supervised with
pairwise constraints

2021

Code

scVAE

Clustering

scRNA-seq

VAE

Use VAE to learn low
dimensional representation
to facilitate accurate
clustering

2020

Code

scDeepCluster

Clustering

scRNA-seq

AE

Unsupervised clustering
with deep autoencoder

2019

Code

GSI

Clustering

Spatial transcriptomics

VAE

Integrates image + GE +
spatial coordinates to
improve clustering

2025

Code

Deep scSTAR

Clustering/Annotation/
Embedding

scRNA-seq

DAE + MLP + MTL

Denoising autoencoder
with supervised MLP in
latent space

2025

Code

SAUCIE

Clustering/Batch
corrcetion

scRNA-seq

AE

Use maximal mean
discrepancy penalty to
match distributions of
batches

2019

Code

STAGATE

Clustering/batch correction

Spatial transcriptomics

GAT

Adaptive graph attention
on spots

2022

Code

SPADE

Clustering/deconvolution

Spatial transcriptomics

spaGCN + Lasso regression

H&E img + GE for
clustering, then uses ref
scRNAseq data for domain
deconvolution

2024

Code

SPACEL

Clustering/deconvolution

Spatial transcriptomics

VAE + GCN

Self-supervised local
clustering + simulation

2023

Code

SpaCell

Clustering/embedding

ST + histology

AE + CNN

AE model for embeddings
and CNN for classification

2020

Code

scResolve

Deconvolution

Spatial transcriptomics

Transformer + VAE

Reference-free, integrate
cell segmentation of
histology image

2024

Code

UniCell Deconvolve

Deconvolution

Spatial transcriptomics +
bulk RNA seq

Deep feedforward network

Foundamental model

2023

Code

DAISM-DNNXMBD

Deconvolution

Bulk RNA seq

DNN

Train 1 DNN for each cell
type

2022

Code

Tangram

Deconvolution

Spatial transcriptomics

Custom model

Custom probablistic
model + gradient descent
optimization +
backpropagation

2021

Code

DSTG

Deconvolution

Spatial transcriptomics

CCA + MNN + GCN

Graph reconstruction

2021

Code

Scaden

Deconvolution

Bulk RNA seq

DNN

Ensemble of three
best-permorning DNN

2020

Code
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TABLE 1 (Continued) Deep learning-based tools in single-cell RNA sequencing and spatial transcriptomics.

Tool name | Task category Modality DL model Key features/notes ‘ Year ‘ Code
scAR Denoising scRNA-seq VAE Ambient RNA denoising 2022 Code
DCA Denoising/imputation scRNA-seq Autoencoder Deep count autoencoder 2018 Code
(NB/ZINB)
STGNNks Embedding Spatial transcriptomics GAE Graph-based clustering 2023 Code
scSemiProfiler Embedding scRNA-seq VAE-GAN + active learning | Learns cell states via active 2023 Code
bulk supervision
scGNN Embedding/clustering scRNA-seq GNN Graph-based denoising, 2021 Code
clustering, embedding
scVI Embedding/imputation/ scRNA-seq, ST VAE Probabilistic latent space, 2018 Code
integration batch correction
scGFT Generation scRNA-seq GAN, VAE, GFT Generate synthetic scRNA 2025 Code
seq data that reflects natural
biological variability
STAGE Generation Spatial transcriptomics AE Data generation 2024 Code
scCross Generation scRNA-seq VAE + GAN + MNN Cross-domain latent space 2024 Code
used for simulation
SRTsim Generation Spatial transcriptomics Empirical sim Simulates spot-based ST data | 2023 Code
cscGAN Generation scRNA-seq Conditional GAN Cell type aware generator 2020 Code
scIGANs Imputation scRNA-seq GAN Conditional GAN 2020 Code
DeepImpute Imputation scRNA-seq DNN Imputation using sub-neural 2019 Code
network modules
autoCell Imputation/feature scRNA-seq Graph-enhanced VAE Uses VAE and GNN 2023 Code
extraction
scGPT Integration scRNA-seq Transformer Foundational model 2024 Code
Spatial GLUE Integration ST + proteinmics + AE + graph fusion Integrate the different omics 2024 Code
epigenomics modalities with spatial
information
MultiVI Integration scRNA + ATAC VAE Joint ATAC-RNA modeling 2023 Code
SCALEX Integration scRNAseq Encoder + GAN Use feature links to preserve 2021 Code
biological variation
spaVAE Low-dimensional space Spatial transcriptomics VAE NB model based VAE, 2024 Code
combining Gaussian process
prior and Gaussian prior
COVET Low-dimensional space scRNA-seq, ST ENVI + CVAE Encode the covariance of 2024 Code
gene expression between
neighboring cells joint latent
space
scMODAL Multimodal integration scRNA-seq + ATAC Multimodal AE + GAN Use feature links to align cell 2025 Code
embeddings
scMVP Multimodal integration scRNA-seq + scATAC-seq Multi-view VAE Handles paired multi-omics, 2022 Code
encodes ATAC with
attention, integrates views for
embedding and clustering.
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TABLE 1 (Continued) Deep learning-based tools in single-cell RNA sequencing and spatial transcriptomics.

Tool name | Task category Modality DL model Key features/notes ‘ Year ‘ Code
GLUE Multimodal integration scRNA-seq, scATAC-seq, VAE per modality + graph Models regulatory feature 2022 Code
snmC-seq linking features interaction across
modalities; scalable
large-dataset integration.
total VI Multimodal integration scRNA-seq + protein VAE Probabilistic multimodal 2021 Code
model
Cobolt Multimodal integration scRNA-seq + scATAC-seq Multimodal VAE Integrates joint and 2021 Code
(and others) single-modality datasets.
scButterfly Multimodal integration scRNAseq + ATAC U-net + AE Image-guided gene 2024 Code
embedding
Monae Multimodal integration scRNAseq + ATAC AE + Contranstive learning Modality-specific 2024 Code
auto-encoders
MIDAS Multimodal scRNAseq + ATAC + ADT AE Self supervised modality 2024 Code
integration/Batch (proteomics) alignment, transfer learning
correction/Embedding
BIDCell Self-supervised learning Spatial transcriptomics AE + biologically-informed Learns spatial gene-region 2023 Code
loss relationships
STAGNN Spatial clustering Spatial transcriptomics GAT Graph attention network 2024 Code
(GAT) and the time series
model informer
TransformerST Spatial domain clustering Spatial transcriptomics ViT + adaptive graph Uses H7E image features and | 2024 Code
transformer GE in self-attention
transformer
DeepST Spatial domain detection Spatial transcriptomics Multi-stage deep learning Image + gene-based spatial 2022 Code
using DNN, VGAE clustering
GIST ST integration Spatial transcriptomics CNN + graph transformer Uses GE + cell 2022 Code
type-informative paired
tissue images e.g., IF
DeepVelo Trajectory/RNA velocity scRNA-seq GCN + DNN Models gene- and 2024 Code
embedding cell-specific transcriptional
kinetics
VeloVI Trajectory/RNA velocity scRNA-seq VAE Learns gene-specific kinetics, | 2023 Code
embedding provides uncertainty
quantification for velocities;
flexible for time-dependent
transcription rates.
cellDancer Trajectory/RNA velocity scRNA-seq DNN Predicts cell- and 2023 Code
embedding gene-specific transcription,
splicing and degradation
rates
VeloVAE Trajectory/RNA velocity scRNA-seq VAE Extends velocity modelling 2022 Code
embedding with VAE framework to
capture kinetic variability.
LatentVelo Trajectory/RNA velocity scRNA-seq VAE/latent emberdding Learns latent representation 2022 Code
embedding model for velocity; enables batch
correction and dynamics
embedding.
VeloAE Trajectory/RNA velocity scRNA-seq AE Embeds velocity information | 2021 Code
embedding (spliced/unspliced) for better
dynamic modelling.
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FIGURE 2

Deep learning architectures commonly applied to single-cell and spatial transcriptomics. (A) Convolutional neural network (CNN): extracts local spatial
patterns from image-like inputs (e.g., cell/spot X gene maps) via convolution—pooling stacks. (B) Autoencoder (AE): learns a low-dimensional latent
vector (z) that reconstructs the input, enabling denoising and feature learning. (C) Variational autoencoder (VAE): probabilistic AE that learns a
distribution over (z) (parameterized by (u, o) and samples (z + ¢ ~ N (0,1)) for generative modeling. (D) Generative adversarial network (GAN): a
generator synthesizes expression profiles from noise while a discriminator distinguishes real from generated samples. (E) Transformer tokenizes inputs
and applies positional embeddings with stacked self-attention and feed-forward blocks in an encoder to produce task-specific outputs. (F) Graph
neural network (GNN): propagates information over a cell/spot graph to model neighborhood structure and produce node-level outputs.
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shaping the embedding to reflect domain knowledge. This approach
improves clustering accuracy and biological relevance, especially
in complex or noisy datasets, showcasing autoencoders as versatile
frameworks for single-cell data analysis.

2.3 Variational autoencoders

Variational autoencoders (VAEs) are a probabilistic extension
of standard AEs, designed to improve representation learning
and generative modeling by incorporating principles of Bayesian
inference to learn a distribution over a latent (lower-dimensional)
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space. This probabilistic formulation addresses a key limitation
of AEs: their deterministic latent space, which often results in
discontinuous or overfitted representations that generalize poorly
to unseen data and lack support for structured sampling (Kingma
and Welling, 2022; Doersch, 2021; Kingma and Welling, 2019;
Rezende et al., 2014). Despite their architectural similarity, VAEs
differ fundamentally in that they encode each input to the
parameters of a probability distribution (usually Gaussian) from
which a latent variable is sampled (Figure 2C). The decoder
reconstructs the input data from this latent representation. This
formulation enables VAEs to learn smooth, continuous, and
structured latent representations by optimizing a joint loss function
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composed of a reconstruction term and a Kullback-Leibler (KL)
divergence term, which regularizes the approximate posterior
distribution to be close to the prior distribution. The key advantage
of VAEs lies in their ability to model data uncertainty and support
generative capabilities through a probabilistic latent space. This
is particularly valuable for scRNA-seq, where modeling sparsity,
overdispersion and technical noise is essential (Svensson, 2020).

Models such as scVI (Lopez et al., 2018) (Single-Cell Variational
Inference) build upon the VAE framework to model scRNA-
seq count data using a negative binomial likelihood, while
simultaneously correcting for batch effects. Similarly, totalVI
(Gayoso et al,, 2021) extends the VAE architecture to jointly
model RNA and protein data from CITE-seq (cellular indexing of
transcriptomes and epitopes by sequencing), enabling multimodal
inference (Stoeckius et al., 2017). Concretely, totalVI places a
logistic-normal prior on a shared cell-level latent representation
that parameterizes modality-specific likelihoods by using a negative
binomial RNA counts and a negative-binomial mixture for proteins,
respectively. In ST, SpaVAE (Tian et al., 2024) incorporates spatial
coordinates via a Gaussian process prior on the latent space that
is indexed by the spot coordinates while keeping some latent
dimensions under the standard gaussian prior to capture non-
spatial spot variations. In general, VAEs are flexible in that different
likelihoods can be used and latent priors can also be customized to
encode known structure in the data such as spatial information and
batch effects.

2.4 Generative adversarial networks (GANSs)

Instead of learning to reconstruct what already exists, GANs
learn by deception (Goodfellow et al., 2014). They consist of a
generator, which creates synthetic data from random noise, and
a discriminator, which attempts to distinguish between real and
generated samples (Figure 2D). Through adversarial training, the
generator improves its ability to produce realistic outputs, while the
discriminator becomes more adept at detecting “fake” or synthetic
data. This dynamic results in a generator that can synthesize high-
quality, biologically plausible gene expression profiles.

In scRNA-seq, cscGAN/scGAN (Marouf et al., 2020) learns
to generate cell type conditioned expression profiles that
preserve gene-gene dependencies,
of rare populations and improving downstream classification

supporting augmentation

and clustering. scIGAN (Xu et al., 2020) frames imputation
as generation, using an adversarial loss (often combined
with count-aware objectives) to recover missing values while
retaining biological variability in different cell types. Adversarial
alignment has also been used for batch/platform correction. For
instance, iMAP (Wang D. et al., 2021) couples an autoencoder
backbone with a GAN discriminator that removes batch signal
from the latent space, enabling cross-platform integration of tumor
microenvironment datasets while preserving cell-state structure.
GANS are widely used in digital pathology for histology image
generation and translation, demonstrating strong capability on
imaging. However, in ST there is still no widely adopted, end-to-
end GAN framework that jointly models histology images, gene
expression, and spatial coordinates. Challenges such as training
instability, mode collapse, and lack of biological interpretability
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make it difficult to ensure that generated spatial gene expression
patterns reflect true biological variation rather than technical
artifacts. As a result, GANs are not standard components of
ST analysis pipelines, where AE, VAEs, GNNs, and transformers
currently dominate.

2.5 Transformer

Transformers are deep learning models originally developed
for natural language processing (NLP) with an encoder-decoder
architecture composed of self-attention layers (Vaswani et al., 2023)
(Figure 2E). Although they are similar to AEs in design, they differ
in several aspects. The encoder and decoder can be trained and
used individually, as seen in models used by BERT and GPT
respectively (Yenduri et al., 2023; Devlin et al, 2019). The self-
attention layers dynamically integrate each input element with all
elements within the same input sequence, capturing contextual
relationships. Additionally, the encoder is not constrained by a low-
dimensional latent space, and the decoder is usually trained to
autoregressively generate a target sequence rather than reconstruct
the input (Vaswani et al., 2023; Xiong et al., 2025). These properties
have made transformers the backbone of modern foundational
models, which are pretrained on large and heterogeneous datasets
and then adapted to a wide range of downstream tasks with minimal
supervision.

Transformers have driven significant advances in modeling
sequential data in domains like natural language processing
(Wu et al., 2025), time-series analysis (Wen et al., 2023), and DNA
(Avsec et al., 2021) and protein sequences (Rives et al., 2021),
for which they were originally designed. Transcriptomics data
is inherently non-sequential and requires the encoding of gene
expression values into token-like embeddings, analogous to tokens
in NLP, which transformers can process. Current approaches vary in
how they represent expression levels, each with distinct advantages
and limitations. One approach is ordering, where genes are ranked
by transcript abundance within a cell and treated as an ordered
sequence of tokens, with each gene assigned a learned embedding
(Levine et al., 2024), as implemented by tGPT (Shen et al., 2023),
iSEEK (Shen et al,, 2022), GeneMamba (Qi et al., 2025), and
Geneformer (Theodoris et al.,, 2023). While this method captures
relative patterns and is more robust to technical noise and batch
effects (Shen et al,, 2023; Qi et al., 2025), quantitative expression
information is lost during data transformation (Levine et al., 2024),
resulting in reduced data resolution. A second approach is bin-based
discretization, where gene counts are grouped into predefined bin
sizes, each with an assigned learnable embedding (Yang et al., 2022;
Cui et al, 2024). Although the absolute scale of expression
is preserved and sequence modeling is simplified, fine-grained
biological signal is lost, particularly for genes with subtle but
functionally relevant expression differences, which can be sensitive
to bin boundaries and potentially affect downstream analysis.
Alternatively, the value projection strategy avoids discretization
altogether by directly mapping gene expression values to a learnable
embedding, which is combined with a gene-specific embedding
(Hao etal., 2024a; Zeng et al., 2025), resulting in a transformer input
token. This retains the full resolution of the original data and avoids
artifacts due to discretization.
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In ST, transformers’ ability to take multimodal input and model
long range dependencies offers distinct advantages over other
methods (Xu P. et al., 2023; Hao et al., 2024b; Wen et al., 2024).
In contrast to local neighborhood-based approaches such as GNN
or clustering algorithms, that focus on immediate spatial proximity,
transformers can capture global spatial relationships across tissue
sections through self-attention.

2.6 Graph neural networks

Graph Neural Networks (GNNs) are deep learning models
designed to operate on graph-structured data, where entities are
represented as nodes and their relationships as edges (Figure 2F).
Unlike architectures that treat samples as independent vectors,
GNNs iteratively update node representations by aggregating
information from their neighbors, making them well suited
to capture community structure, dependencies, and spatial
organization. This is particularly relevant for single-cell and spatial
transcriptomics, where cells can be connected by transcriptional
similarity, gene co-expression networks, or spatial spots by physical
adjacency.

A key strength of GNNs is that they operate directly on
graphs while integrating with other deep models, which improves
representation learning for biological data. Graph Convolutional
Networks (GCNs) extend convolution to cell-cell graphs and
enable semi-supervised label transfer. scGCN (Song et al., 2021)
builds a hybrid graph that links reference and query datasets
through mutual-nearest-neighbor connections in a shared low-
dimensional space and augments it with within-query neighbors.
A GCN then propagates labels across this graph using variable-
gene features, aligning matched cells and flagging unlabeled cells.
In ST, SpaGCN (Hu et al, 2021) constructs a weighted spatial
graph that combines spot proximity, histology image features and
gene expression similarity and then uses a GCN to learn spot
representations for tissue domain detection.

Beyond CNNs, GNNs have been incorporated into standard
and variational AE frameworks to enable representation learning
guided by transcriptomic similarity and spatial proximity.
Models such as GVAE (Graph Variational Autoencoders)
(Simonovsky and Komodakis, 2018) integrate GNNs with VAEs,
leveraging the generative capacity of VAEs together with graph-
based regularization. In scRNA-seq, graph-sc (Ciortan and
Defrance, 2022) uses a graph autoencoder framework to learn
low-dimensional embeddings used for clustering, while scGNN
(Wang J. et al., 2021) extends this approach by reconstructing both
gene expression and cell similarity graph structures. More recently,
self-attention has been incorporated into GNN, giving rise to Graph
Attention Networks (GATs) that learn edge-specific weights during
neighborhood aggregation instead of averaging contributions
equally from all neighbors as in GCNs (Velickovi¢ et al., 2018).
STAGATE (Dong and Zhang, 2022) adapts this approach with a
graph-attention autoencoder on the spatial neighbor network, where
self-attention layers learns edge-specific weights normalized with
softmax which are then used to update spot specific representations.
In contrast, GraphST (Long et al., 2023) employs a GNN encoder
with contrastive learning on the spatial graph, encouraging nearby
neighbors map to similar representations and forcing distant spots
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to map to dissimilar ones. This contrastive formulation yields
representations that are more robust to noise and batch effects,
thereby improving domain separation as well as downstream
clustering.

2.7 Hybrid models

Recent advances in deep learning for single-cell and spatial
transcriptomics have led to the development of hybrid models that
combine the strengths of multiple architectures to address complex,
multimodal challenges. These models integrate components
from different frameworks such as VAEs, GANs, GNNs, and
Transformers to capture diverse aspects of biological data, including
nonlinear dependencies, spatial structure, temporal dynamics, and
multimodal relationships. Unlike monolithic architecture, hybrid
models are designed to be modular and flexible, enabling tailored
solutions for specific biological questions.

One common hybrid design combines VAEs and GANS,
leveraging the probabilistic latent space of the VAE for structured
representation learning and the adversarial refinement of the GAN
for improved sample generation. iIMAP (Wang D. et al., 2021) (AE +
GAN) exemplifies this approach by using a GAN to align latent
spaces across batches.

Another combination integrates GNNs with VAEs
(different from GVAE), where the GNN captures spatial
or transcriptional neighborhood information, and the VAE
provides a probabilistic and generative framework. For
instance, scGNN (WangJ. et al, 2021) combines graph-based
message passing with autoencoding to jointly reconstruct gene
expression and preserve cell-cell similarity.

More recently, hybrid models have incorporated transformers
and GNNs, merging global attention with local graph
structure. STAGATE (Dong and Zhang, 2022) uses a GAT to model
spatial dependencies, effectively combining the neighborhood
aggregation of GNNs with the weighted feature integration of
attention. This allows the model to identify both local tissue domains
and long-range functional relationships. These hybrid approaches
demonstrate that the future of deep learning in genomics lies
not in isolated architecture, but in strategic integration, where
each component addresses a specific biological or technical
challenge. By combining the generative power of VAEs, the spatial
awareness of GNNs, the global context of transformers, and the
realism of GANSs, hybrid models offer a more comprehensive and
interpretable framework for analyzing the complexity of single-cell
and spatial data.

3 Applications of DL to scRNA-seq and
ST analysis tasks

Most methods utilize unsupervised models, which do not
require any “ground truth” or predetermined labels for the
training data. This enables these methods to be trained on each
individual experiment, customizing the model for each application.
Alternatively, DL models can be pretrained on hundreds to
thousands of datasets of a similar type to create a generalizable
‘foundation’ model (Chen et al, 2024; Heimberg et al., 2025).
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For example, the UNI foundation model of pathology images was
trained on over 100,000 individual images (Chen et al., 2024),
whereas stLearn (Pham et al., 2023) and scVI (Lopez et al., 2018)
retrain their NNs to extract dataset-specific features. In contrast,
supervised models require training data with a known ground
truth answer for the specific task it is designed to perform. Most
often, these models involve classification, such as stDeepSort, which
was trained on various reference datasets to annotate cell types
in single-cell data (Shao et al, 2021), or Cellpose, trained to
recognize and segment cells based on thousands of manually labelled
training images (Stringer et al., 2021).

The most common use of DL when analyzing high dimensional
data, such as scRNA-seq and ST, is to learn a lower dimensional
embedding space, conceptually similar to principal component
(PCA) space but without the assumptions and constraints. This
embedding space can then be used for a variety of tasks either within
the DL framework or extracted and used in standard statistical
analysis as a replacement for PCA. Here we will discuss the main
approaches to generating DL embeddings and their application for
scRNA-seq and ST data.

3.1 Dimensionality reduction, clustering,
and spatial domain identification

Clustering is one of the most fundamental analytical tasks in
scRNA-seq and ST as it enables researchers to uncover distinct
cellular populations and tissue substructures in an unsupervised,
unbiased manner. Due to the, high-dimensional nature of
scRNA-seq and ST data, clustering is always performed on a
lower dimensional representation of the data (Figures 3A,B).
Conventionally, this is PCA space (Luecken and Theis, 2019;
Kiselev et al., 2019; Butler et al., 2018; Wolf et al., 2018), which
is used to generate a cell-cell similarity graph, to which community
detection algorithms such as Louvain (Blondel et al., 2008)
or Leiden (Traag et al., 2019) clustering are applied. However, PCA
assumes the lower dimensions to be linear and orthogonal and
requires input data to be approximately normally distributed, thus
requires pre-processing and normalization prior to use with scRNA-
seq and ST data. To overcome these limitations, autoencoders
(AEs/VAEs) and transformers can be used, and their learned lower
dimensional embedding can be substituted for normalization and
PCA in the conventional clustering pipeline. These approaches
preserve the unsupervised and unbiased nature of the analysis while
relaxing the assumptions and constraints required by PCA.

For scRNA-seq, a common approach is to use a VAE as
implemented in scVI (Luecken and Theis, 2019; Kiselev et al., 2019;
Lopez et al., 2018; Wolf et al., 2018), which incorporates a negative
binomial distribution in the cost-function to model raw scRNA-seq
data. Unlike most DL methods, scVI is widely used in biological
analysis and is a foundation for other methods including scArches
(Lotfollahietal., 2022) and scANVI (Xu et al., 2021). In independent
benchmarks, scVI embeddings are found to perform similarly to
classical PCA for identification of cell types (Liang et al., 2024; Li and
Quon, 2019). Other DL clustering methods for scRNA-seq include
scDCC (Tian et al., 2021) and scDeepCluster (Tian et al., 2019).
ScDeepCluster uses an AE architecture with a decoder that
generates parameters of a zero-inflated negative binomial which
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is used to calculate a probabilistic loss function for scRNAseq
data. scDCC extends scDeepCluster by incorporating soft pairwise
constraints (e.g., must-link/cannot-link pairs derived from marker
genes or protein expression) into the loss function, allowing prior
biological knowledge to guide the clustering process. The method
demonstrated good performance on both small (thousands of
cells) and large (tens of thousands of cells) datasets, where even a
few thousand constraints representing a small fraction of possible
cell pairs enhanced clustering performance based on quantitative
scores (e.g., Adjusted Rand Index) and more meaningful clusters
than scDeepCluster, especially in difficult cases like the worm
neuron dataset. However, scDCC performed similarly to state-of-
the-art non-DL methods in their in-house benchmark. Whereas
scDeepCluster marginally outperformed rival methods but did not
compare to Louvain/Leiden clustering. Benchmarking of clustering
performance is challenging due to the lack of truly orthogonal
ground truth; however, these results suggest that there is no
need for non-linear DL dimensionality reduction for cell type
identification in scRNA-seq. In terms of applicability to biological
discovery, scVI and scANVI have been used in multiple studies
for dataset integration and embedding, demonstrating their utility
(Salcher et al., 2022; Lindeboom et al., 2024; Yang LX. et al., 2025).

In addition to the above methods, which train a model on one
specific dataset, foundation models trained on hundreds of datasets
are increasingly common in scRNA-seq. Pre-trained models, such
as scGPT (Cui et al.,, 2024) or SCimilarity (Heimberg et al., 2025)
project data onto a common lower-dimensional space which could
be used for clustering and novel cell type discovery. Additionally, this
lower dimensional data can also be used for automatic annotation,
which we will discuss further in the next section, as this space
can be biased towards the most frequent cell types and miss rare
cell types (Cui et al., 2024). scAtlasVAE took a foundation model
approach to specifically examining T-cell heterogeneity and was
able to characterize novel T-cell phenotypes when used in an
unsupervised manner, identifying 18 unique and reproducible T-
cell states (Xue et al., 2025).

DL approaches are also common for ST clustering due
to the ease of incorporating image and/or spatial information
into such models compared to the standard clustering pipeline.
GCNs can incorporate spatial information by linking adjacent
cells/spots into a spatial-proximity graph, leading to their use
in methods such as SpaGCN (Hu et al, 2021), STAGATE
(Dong and Zhang, 2022), GraphST (Long et al, 2023), SiGra
(Tang et al, 2023), and DeepST (Xu et al, 2022). Similar
to scRNA-seq, benchmarking studies find that DL approaches
perform similarly to non-DL methods that also incorporate spatial
information (Yuan et al., 2024; Hu et al., 2024a), but outperform
methods that do not incorporate spatial information.

Image information is typically incorporated into ST clustering
using a separate image-focused AE/VAE or GNN, which learns
salient image features from individual image patches associated with
the gene expression spots. These are then integrated with gene-
expression features to obtain a combined embedding for each tissue
spot. Although deep learning is commonly used to extract complex,
high-level image features in ST clustering, some methods use non-
DL approaches to integrate spatial context through hand-crafted
image features. For instance, Squidpy (Palla et al., 2022) computes
interpretable morphological features—such as summary statistics
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FIGURE 3
Deep learning application in single cell transcriptomics and spatial transcriptomics. (A) Dimensionality reduction. High-dimensional data is projected
into low-dimensional space (e.g., UMAP). (B) Cells are clustered into distinct groups represented by different colors. (C) Automatic annotation of cell
clusters using a reference dataset. (D) Integration and batch correction across different batches. (E) Data is denoised to recover true signal. (F) Data
imputation to infer missing gene expression. Grey blocks (left) represent missing values, and pink blocks (right) represent imputed values. (G) Synthetic
cells are generated to enrich rare cell type (light grey shading). (H) A new dataset is generated by learning distribution parameters from a reference
(Continued)
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FIGURE 3 (Continued)

dataset. (I) Each spatial transcriptomics spot is resolved into cell type fractions. (J) Cell-cell interactions between different cell types (e.g., dendritic
cells, cancer cells, and T cells) are modeled through ligand-receptor signaling to infer intercellular communication. (K) Directional RNA velocity
vectors are projected onto a UMAP to infer cell state transitions and lineage trajectories

(mean, standard deviation), histogram-based quantiles, or textural
properties (contrast, homogeneity) derived from co-occurrence
matrices—for each spatial spot directly from the histology image.
Similarly, SpaGCN (Hu et al., 2021) integrates image information
by mapping each spatial spot to its corresponding location in the
H&E image, calculating a smoothed mean RGB color value from a
local pixel neighborhood, and then combining these values into a
single weighted feature that reflects tissue patterns. Whereas those
which use AE/VAE extracted images, gain a significant benefit from
the image features, but most of the performance is driven by the
gene-expression information (Tang et al., 2023; Li B. et al., 2024).

All of these methods have been demonstrated to reproduce
known anatomy, but none have demonstrated a capability to identify
novel, biologically meaningful structures, due to limitations in
validation and ground truth availability. Thus, these approaches
should be considered validated as a supplement to aid anatomical
annotation by an expert. However, their capacity for novel discovery
remains unknown.

Overall, AE and VAE methods for scRNAseq perform
comparably to PCA and may be good alternatives when working
with very large datasets. In particular, scVI has proven strong
performance in many studies. For ST, DL approaches are a necessity
when integrating image information into lower dimensional
embeddings. GraphST is currently the best performing DL method
for ST spatial domain identification.

3.2 Automatic annotation

Increasingly, scRNA-seq clustering is being supplemented with
direct algorithmic annotation of cells with their cell type identity
(Luecken and Theis, 2019) (Figure 3C). Comparing novel cells
to existing annotated scRNA-seq dataset enables the inference of
cell type identity through simple guilt-by-association approaches,
and many early methods simply used standard similarity metrics
or standard machine-learning algorithms such as support vector
machines or random forests while achieving reasonably accurate
results (Kiselev et al., 2018; Abdelaal et al., 2019). However, these
methods tended to perform poorly on fine-scale classification of
subtypes or cell-states.

DL models are highly amenable to supervised classification tasks
such as cell type annotation, and, once trained, are highly efficient
and scalable to millions of novel data points (Cheng et al., 2023a).
Thus, dozens of novel DL models have been developed for this task
using a variety of architectures, including GPT-4 and scBERT - large
language models which use marker genes to annotate cells using
the scientific literature (Yang et al., 2022; Hou and Ji, 2024); scGAA
and TOSICA - attention-based transformer models which compare
novel cells to narrow reference datasets (Chen J. et al., 2023); and
pre-trained foundation models, such as scGPT (Cui et al., 2024)
or CellFM (Zeng et al., 2025).
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Most of these methods achieve annotation accuracies of
~80-90%; however, in many cases, benchmarking is performed by
splitting individual datasets into training and test sets, which is
biased in favor of good model performance. This is because there
are no systematic batch effects between the training and test data,
as would be present in a real use case when these models are
applied to completely novel scRNA-seq dataset (Yang et al., 2022;
Cui et al, 2024; Zeng et al., 2025; Cheng et al, 2023a). Only
scGPT was tested on a left-out data partition, achieving good results
(accuracy >85%) for 70% of cell-types; however, performance
rapidly declined as the difference between query and reference
datasets increased, with fewer than 50% of cell types achieving good
performance when the query dataset originated from an unseen
disease state (Cui et al, 2024). Many of these methods are so
recent that no independent benchmarking is available. However,
in previous independent benchmarks, DL models outperformed
many non-DL annotation algorithms but did not outperform
a support vector machine trained on the same reference data
(Kiselev et al., 2018; Chen]. et al, 2023). In these independent
benchmarks, performance was found to rapidly degrade for DL
models when reference data does not exactly match the query data,
in agreement with the results shown for scGPT. However, DL models
do show promise in their ability to accurately distinguish similar cell
subtypes when provided sufficient training data (Zeng et al., 2025).

In discovery research, automatic annotation is typically used
simply as a first pass, which is then manually checked and
refined. Thus, even imperfect results from automatic annotation
can still be useful to guide and accelerate annotation efforts
(Clarke et al.,, 2021). Algorithms that assign a confidence score
to annotations are most useful, since novel cell types may
be discovered where automatic annotation has low confidence
(Chen]J. et al,, 2023; Ergen et al, 2024). DL models naturally
provide quantitative scores for annotation confidence, enhancing
their utility in this use-case. In addition, as scRNA-seq resources
continue to grow, approaches such as foundation models may be
more easily expanded or fine-tuned to incorporate new training
data compared to approaches based on traditional statistics. Thus,
researchers should either use the method with training data most
similar to their own, or if that is unknown we recommend
scGPT for human data due to its extensive benchmarking so
users can accurately assess how confident they should be in
the results.

3.3 Integration and batch effect correction

Transcriptomic experiments often include multiple biological
replicates which may be collected across multiple experimental
batches, individuals, tissues, or different platforms, leading
to various non-biological variations known as batch effects
(Figure 3D). These technical artifacts cause identical cell types from
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different batches to appear distinct (Luecken et al., 2022; Chazarra-
Gil et al,, 2021; Tran et al., 2020). Early batch effect correction
approaches, such as Combat (Johnson et al., 2007), used statistical
regression to remove batch covariates. However, these methods tend
to remove important biological variation unless it is specified as a
priori within the model. To circumvent this, the next-generation of
methods used techniques such as canonical correlation analysis or
mutual nearest neighbors to identify shared biological variation
across batches to preserve, while removing factors of variation
ascribed to batch effects (Butler et al., 2018; Haghverdi et al., 2018;
Hie et al., 2024). The current state-of-the-art non-DL integration
method is Harmony (Korsunsky et al., 2019), which uses an iterative
clustering then correction approach and is consistently among the
top-performing methods in recent benchmarks (Tran et al., 2020;
Antonsson and Melsted, 2024).

DL approaches to data integration modify the AE/VAE
approach, as described above, to learn a joint’ embedding space
that captures biological groups while mixing different technical
batches. A common approach to this modification is the use of
adversarial learning, which penalizes the model for embeddings that
leave batches separate (Hrovatin et al., 2024). Methods using this
approach, such as scVI (Lopez et al., 2018), scANVI (Xu et al., 2021),
and SAUCIE (Amodio et al, 2019), are not constrained by
the linearity assumptions required by many non-DL methods,
thus potentially enabling more efficient batch effect removal. An
alternative approach uses conditional AE/VAEs which include the
batch label in the joint embedding; data is then integrated by treating
the batch effect as a linear transformation in the lower-dimensional
space and projecting all batches onto a single reference sample or
reference dataset. Prominent methods using this approach include
scGen (Lotfollah et al., 2019) and scArches (Lotfollahi et al., 2022).
Foundation models, such as scGPT, can also be fine-tuned to
create project-specific joint embeddings. The extensive pre-training
of such models includes ignoring batch effects and emphasizing
conserved biology.

Despite theoretical advantages of DL methods for batch
integration, they have often struggled in benchmarking studies,
rarely matching the performance of Harmony (Luecken et al., 2022;
Korsunsky et al, 2019; Lee et al, 2023). One potential
cause of their poor performance is a tendency to over-
correct and remove biological information, particularly when
batches have substantially different cell type proportions
(Luecken et al., 2022; Hrovatin et al., 2024). This can be mitigated
by explicitly modeling cell types to ensure their preservation, as
can be done for scGen and scANVI; however, since the goal of
integration is usually to merge samples prior to clustering and
cell type annotation, such an approach is generally limited to
meta-analyses and atlasing projects.

While scRNA-seq integration can be achieved even with
linear models, DL methods have been more successful when
integrating multi-omics data, ie., joint scRNA-seq and single-
cell ATAC-seq (Lee et al,, 2023). DL models excel at projecting
different data types, such as multiome data, into similar
embedding spaces, facilitating their integration (see section 3.9).
This capability is further enhanced when combined with
graph-based representations, which model cells as nodes and
similarities or spatial relationships as edges. Graph structures
enable the propagation of information across neighboring cells,
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effectively capturing local dependencies, preserving topology, and
improving the alignment of biological states across datasets. This
is particularly valuable for integrating spatial transcriptomics
data or enforcing structural continuity multiple slides of the
same tissue (Khan et al, 2025; Zhang C. et al., 2024). Similar
to single-slide clustering performance, the top two methods
for ST integration are a Bayesian statistical approach, (Li
and Zhou, 2022), and a DL approach, (Long et al, 2023;
Hu et al., 2024a).

While some DL methods are competitive with state-of-the-
art non-DL approaches for dataset integration, there is no clear
advantage to using DL for these tasks. Scalability is often cited as the
main advantage of DL integration, there are several highly scalable
non-DL approaches as well, including Harmony. Two non-DL
approaches are consistently among top-performers in independent
benchmarks: Harmony and scMerge (Luecken et al, 2022;
Tran et al.,, 2020; Antonsson and Melsted, 2024; Lin et al., 2019).
When integrating experimental replicates containing identical
cell type frequencies Harmony is recommended, however, if
samples contain some non-overlapping cell type scMerge is
preferable (Tran et al, 2020). For atlasing and meta-analyses it
can be more optimal to utilize scANVI if cell type labels are
available for the respective datasets (Luecken et al, 2022). For
ST data, these scRNAseq methods can be used when data is
aggregated at the cell or spot level; however spatial information
is lost and this often results in poor spatial contiguity of
integrated clusters. For spatially contiguous ST data the Bayesian-
statistics based BASS algorithm has been shown to be the
best option (Hu et al., 2024). However, altering observed data can
only result in a loss of information, thus integration should only be
used when inspection of the data indicates substantial batch effects
are present.

3.4 Denoising and imputation

Denoising and imputation are two closely related but
conceptually distinct tasks in single-cell transcriptomics. Denoising
refers to the reduction of technical noise such as amplification
bias, batch effects, or stochastic dropout while preserving the true
biological signal (Figure 3E). The goal is not to “fill in” missing
values, but to refine observed expression levels to better reflect
underlying biology. In contrast, imputation explicitly aims to
predict unobserved or missing values, such as zero counts, that
are likely due to technical dropout rather than true biological
absence (Figure 3F). While both processes can result in modified
gene expression matrices, their objectives differ: denoising aims
to improve signal-to-noise ratios, while imputation attempts
to recover missing information. Despite this distinction, the
terms are often used inconsistently in the scRNA-seq and ST
literature. Many methods described as “imputation tools” (e.g.,
MAGIC (van Dijk et al., 2018), scImpute (Li and Li, 2018))
perform what is effectively denoising, as they smooth expression
values without necessarily distinguishing between true zeros
and dropouts.

Denoising data was one of the first applications of DL models
(Vincent et al,, 2008). AE models have been used to denoise
many types of data in various contexts; in the biomedical field,
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(Gondara, 2016), (Su et al, 2015), and many-omics dataset
(Eraslan et al., 2019; Lal et al, 2021; Webel et al., 2024).
Due to the low input material in single-cell assays, there are
many missing values, and sampling- or RNA-capture-related
noise is high relative to the true biological signals. Hence,
many DL algorithms have been developed to denoise scRNA-seq
and ST data.

One of the first and most used approaches is deep-count
autoencoder (DCA) (Eraslan et al., 2019). DCA modified the
traditional AE architecture to output parameters of a statistical
distribution for each input gene, rather than a single predicted
value. Multiple distributions are available, including negative
binomial and zero-inflated negative binomial for RNA-seq
data. This alteration allows DCA to account for uncertainty
in the input data and biological stochasticity. Another popular
method, scVI, takes a similar approach (Lopez et al, 2018).
Many other model designs have been explored, including CNNs
(Zhang W. et al,, 2024), gene partitioning and sub-networks
(Arisdakessian et al., 2019), GCNs (Huang et al, 2023), and
contrastive learning (Xu et al., 2020; Shi et al., 2023). Application of
these methods to biological datasets can improve the interpretability
of the data; for instance, DCA increased CD3E expression from 80%
t099.9% in T cells and recovered ITGAX expression consistent with
NK biology.

Only DCA, scVI, and DeepImpute have been independently
benchmarked alongside non-DL denoising and imputation
methods (Cheng et al., 2023b; Andrews and Hemberg, 2019;
Hou et al., 2020; Huang et al., 2025). These benchmarks find
conflicting results, reflecting differences in testing datasets and
specific tasks used to evaluate performance. When evaluated on
their ability to recover corrupted expression values or improve
accuracy of automatic cell type annotation, DL denoising methods
performed well, similar to other imputation and denoising methods.
For unsupervised clustering and pseudotime analysis, results range
from modest improvement to worse performance than the raw
data, depending on the specific dataset and analysis pipeline.
Whereas for gene-gene correlations, differential expression, cell
type markers, and cell-cell interactions, all benchmarks find that
denoising introduced a significant number of false-positive results.
Hence, for scRNA-seq data, denoising remains controversial and
rarely used in discovery research.

For ST data, integration with scRNA-seq is more common
than direct denoising of ST data alone, which is discussed later
in this manuscript. However, some methods do exist to directly
denoise ST data using GNNs (Tang et al., 2023; Duan et al., 2024).
Benchmarking of these methods is more limited, but SiGra
is shown to increase the number of differentially expressed
genes - though the extent to which these are false positives
is not explored - and to improve distinctiveness of clustering.
Whereas Impeller (Duan et al, 2024) is only shown to recover
masked expression values.

Overall, it is not recommended to perform denoising or
imputation except to enhance the sensitivity of clustering analysis,
and caution must be exercised in the interpretation of results to
avoid false-positives. Integration across experiments or modalities
is likely a more useful task and more reliable approach for
increasing statistical power by increasing the number of samples in
discovery research.
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3.5 Data generation and augmentation

Deep learning has increasingly been leveraged for data
generation and augmentation in scRNA-seq and ST to address
limitations posed by small sample sizes, rare cell types, and
costly experimental procedures. Data augmentation in scRNA-
seq and ST analysis is used differently than in machine learning
and typically refers to the computational creation of additional
data points, and adding them - ‘augmenting’ - to the original
measured data (Figure 3G). In contrast, we will use ‘data generation’
to describe methods which create data either for the purposes of
simulating data for benchmarking, or to generate data of a different
modality-e.g., predict scRNA-seq from bulk RNA-seq.

In scRNA-seq, VAEs-based models like scVI and scVAE
(Liand Li, 2018) can be used to generate synthetic cells that preserve
the statistical properties and cellular identities of the original cell
(Figure 3H). Generative models such as cscGAN (Xu P. et al., 2023)
and scGFT (Vincent et al., 2008) have demonstrated the ability
to generate realistic synthetic cells that preserve intrinsic gene
expression profiles of the original data. Current state-of-the-art
clustering and trajectory analysis algorithms, such as maximum
modularity or minimum spanning trees, can be biased with
respect to the number of cells, leading to poor performance
when datasets include rare cell types. Selective generation and
augmentation using c¢scGAN or scGFT can rebalance datasets,
which were shown to improve clustering and trajectory inference
performance to correctly identify rare cell types and accurately
resolve trajectory branches. However, similar to denoising, data
augmentation involves artificially amplifying the power of statistical
tests, thus. are likely to result in inflated type-1 errors if used for
differential expression, though this has not yet been tested.

In spatial transcriptomics, data generation is typically used
for denoising purposes (Hu et al, 2021; Tang et al, 2023;
Pratama et al., 2025). For instance, SiGra, discussed previously,
replaces observed data with generated data to perform its denoising.
Similarly, the STAGE model focuses more on accurate data
generation but uses that generated data to recover and denoise
down-sampled data as well as to impute between sequential
ST slices (Li et al, 2024b). Both methods integrate spatial
embeddings with gene expression features using autoencoders and
other representation learning approaches to learn a feature space,
from which new samples can be drawn and decoded into new
expression data. SiGra uses both gene expression and features from
matching histology, whereas STAGE uses gene expression only.
Compared to single-cell RNA-seq, there are currently relatively few
methods dedicated specifically to data generation and augmentation
in ST. While emerging techniques focus on integrating image
features, spatial coordinates, and gene expression for augmentation,
these models only generate gene expression data, not matching
image data, thus lacking the ability to fully generate ST data.

Similar to imputation, there is substantial risk of increasing
Type-I errors when augmenting datasets with synthetically
generated data. Thus, such approaches must be used with care.
For data augmentation, the main utility is in facilitating detection
of rare cell types or smoothing out cell density along developmental
trajectories to better align data with the limitations and assumptions
of the analytical tools for clustering and trajectory analysis. The
only other use for data generation is for benchmarking algorithms,
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however, most DL generative algorithms lack the fine-scale control
required to design specific ground-truth cases for that type of testing
thus this area is still dominated by small-scale statistical simulation
methods often custom designed for a specific benchmarking task.

3.6 Deconvolution

In transcriptomics, deconvolution is the decomposition
of bulk expression data into cell type proportions or cell
type specific expression (Im and Kim, 2023) (Figure 3I).
Deconvolution is typically applied to bulk RNA-seq or low-
resolution ST where each spot typically contains multiple
Methods bulk RNA-seq deconvolution can be
broadly grouped into statistical approaches: (Chu et al., 2022;
Peng et al., 2019; Wang et al., 2019):enrichment-based methods
(Aran et al.,, 2017; Yoshihara et al, 2013) and machine learning
models (Newman et al., 2015; Newman et al., 2019). With the
emergence of deep learning, at least 13 DL-based deconvolution
tools have been developed for bulk RNA seq using a scRNA-

cells. for

seq reference (Lomas Redondo et al.,, 2025). These methods are
typically based on multilayer perceptrons (MLPs), autoencoders, or
transformers, and are trained to reconstruct cell type proportions
from mixed bulk expression profiles. Scaden (Menden et al., 2020)
was one of the first deep learning tools in this area. It uses an
ensemble strategy that combines three deep neural networks with
different numbers of layers, activation functions, and dropout
settings to improve generalization. DAISM-DNN*MBD (also called
Aginome-XMU) instead trains a separate deep neural model for
each cell type to predict proportions (Lin et al., 2022).

Bulk deconvolution methods are typically benchmarked
by comparing their predictions against cell type proportions
derived from in vitro experiments or from in silico bulk samples
generated using single-cell RNA-seq data. Both Scaden and DAISM-
DNN*MED have been independently benchmarked among the top-
performing methods, with Scaden suffering high false-positive rates
(Tran et al,, 2023) and DAISM performing well in both coarse-grain
and fine-grain deconvolution (White et al., 2024). This demonstrates
that deep learning provides a strong alternative to traditional
approaches. Newer methods may outperform DAISM, but this
cannot be established until a systematic benchmark study has been
performed that includes the other DL-based deconvolution tools.

Overall, bulk RNA-seq deconvolution enables researchers to
reduce experimental costs while still gaining insight into the tumor
or tissue microenvironment. However, the performance of DL
deconvolution methods requires high quality training dataset and is
prone to poor generalization (Wolfram-Schauerte et al., 2025). Most
researchers still rely on traditional deconvolution approaches, and
only a few studies have utilized DL-based tools for deconvolution
(Chen et al., 2025; Codino et al., 2025; D’Sa et al., 2025).

Bulk RNA-seq deconvolution tools can be used for ST
data, but additional improvements in performance may be
achieved by incorporating the spatial information. Many ST
deconvolution methods use non-DL approaches such as numerical
optimization (Dong and Yuan, 2021), or probabilistic models
(Kleshchevnikov et al., 2022). Several DL-based deconvolution
methods not only estimate the cell type fractions but can
also estimate the number of cells per spot, generate gene
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expression for each deconvolved cell, or estimate individual cell
locations (Gaspard-Boulinc et al., 2025).

Reference-based DL deconvolution methods use three general
strategies: supervised-learning, similarity-based integration, and
foundation models. Supervised-learning creates synthetic ST spots
by combining scRNA-seq data and use this as ground truth to
train a neural network to predict cell type fractions from the
aggregated expression profile (Lund et al., 2022; Bae et al., 2022;
Zhan et al., 2025; Xu H. et al., 2023; Mafianes et al., 2024). Similarity-
based integration methods embed scRNA-seq and ST data into
a shared space through graph construction (Long et al., 2023;
Dingetal., 2024; Song and Su, 2021; Liand Luo, 2024; Yin et al., 2024;
Zhang et al., 2023), autoencoders (Liao et al., 2022; Hao et al., 2024c;
Coleman et al, 2023; LiH. et al, 2022), or optimization
(Biancalani et al., 2021) to match ST spots to scRNA-seq cell types
based on similarity or distance measures. In some methods, pseudo-
spots are generated to aid embedding (Ding et al., 2024; Song and
Su, 2021; Li and Luo, 2024; Yin et al,, 2024; Zhang et al., 2023;
Li H. etal., 2022). UniCell Deconvolve (UCD) is the only foundation
model trained for deconvolution (Charytonowicz et al., 2023).
It is a feedforward neural network trained on over 840 cell
types from 899 single cell datasets. UCD uses transfer learning
to adapt the foundation model to specific context where users
have an option to input a contextualized reference profile to
fine-tune a regression model using UCD base embedding. UCD
outperformed other methods on synthetic mixtures from its
own training data, but had only average performance on out-
of-sample tests unless it was fine-tuned on the relevant datasets
(Charytonowicz et al, 2023). An alternative approach is taken
by scResolve, which imputes pixel-level gene expression which is
combined with cell-segmentation of the respective histology image
to infer single-cell resolution expression (Chen H. et al., 2023). This
enables reference-free deconvolution and potentially novel cell type
discovery.

Due to the wide variety of spatial deconvolution tools, no
systematic benchmark study has yet been conducted across
all methods, and most DL-based approaches have not been
benchmarked. Benchmarking is especially challenging in ST
deconvolution since ground truth is not available; instead,
simulated ST datasets generated from scRNA-seq are typically
used. Tangram (Biancalani et al., 2021) and DSTG (Song and
Su, 2021) have been benchmarked in multiple independent studies
alongside non-DL methods (Li et al.,, 2023; Chen . et al., 2022;
Yan and Sun, 2023; LiB. et al, 2022). While Tangram was
shown to be superior in predicting the spatial distribution of
transcripts in one study, both Tangram and DTSG generally
ranked within the top third of approaches benchmarked.
However, the top three performing methods overall were
non-DL approaches. DL methods have the advantage of
integrating multimodal data, such as histology images, which may
provide additional information such as cell morphology to aid
deconvolution.

For  discovery  focused  researchers  cell2Location
(Kleshchevnikov et al., 2022) and SpatialDWLS (Dong and
Yuan, 2021) remain top choices for deconvolution when reliable
reference single-cell datasets are available. Tangram is an
acceptable alternative, and scResolve is the only method capable
of deconvolution when no reference single-cell data is available.
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3.7 Cell-cell interactions

A key goal of single-cell RNAseq was to identify interactions
between different cell types which would normally be obscured
in bulk tissue samples. Many heuristic methods have been
developed for this task, including CellChat (Jin et al, 2021),
CellPhonedb (Efremova et al., 2020), SingleCellSignalR (Cabello-
Aguilar et al., 2020), and NicheNet (Browaeys et al., 2020), which
use databases of ligand-receptor (LR) pairs and calculate a co-
expression score of each pair between pairs of cell types. Some of
these have been expanded to account for spatial location, for use with
spatial transcriptomics (Efremova et al., 2020; Dimitrov et al., 2024).
Currently, there are only a few DL approaches to inferring these
interactions in single cell data and none for spatial transcriptomics.

DeepCCI (Yang et al.,, 2023a) integrates ResNet and a GCN
model to infer cell-cell interactions with a common decoding
layer. This decoding layer is trained using consensus interactions
obtained from the heuristic methods. As a result, in their in-house
benchmarking DeepCClI identifies the same interaction as multiple
heuristic methods though may have fewer false-positive results than
any of the heuristic methods used alone. It is unclear whether
DeepCClI gains anything from the DL components, as opposed to
their in-house consensus of the heuristic models used to train it.

An advantage of DL approaches is the ability to integrate
multiple data sources; this is utilized by GraphComm (So et al., 2025)
to integrate pathway annotations in addition to direct LR
interactions into a prior interaction probability between each LR
pair. Coexpression of LR pairs is calculated and is integrated with
the prior using a graph attention network. The embedding contains
both cell types and LR genes and is used to generate LR pairwise
scores and cell type x cell type scores by multiplying the respective
embeddings. Alternatively, ScTenifoldXct (YangY. et al, 2023)
and scSDNE (Jia et al., 2025) first infer gene-gene dependencies
either using a DL model (scSDNE) or a regression model
(ScTenifoldXct), which is combined with a LR coexpression
score which is then used to generate a gene embedding space
using a graph-autoencoder architecture. Cell-cell interactions
are inferred from proximity of LR pairs in the gene embedding
space. SCSDNE and ScTenifoldXct have the advantage of using
semi-supervised learning, whereas GraphComm relies on database-
derived LR interactions to train their embedding space. Limited
in-house benchmarking is available for these, but they perform
similarly to heuristic methods, with GraphComm seeming to
have higher sensitivity, whereas scSDNE and ScTenifoldXct
are more conservative, performing similar to a consensus of
heuristic methods.

Cell-cell interaction inference remains challenging, primarily
due to the lack of any true gold-standard benchmarks. In many
cases, methods are benchmarked using spatial transcriptomics data,
as distant cells are unlikely to interact, but this cannot provide
individual LR interaction information, or with very small sets of
manually curated interactions. This is particularly problematic for
DL algorithms due to their reliance on training data to optimize
the models. Typically, researchers use multiple LR algorithms and
use some kind of consensus as evidenced by the popularity of
the LIANA package (Dimitrov et al., 2024). The natural ability of
DL to integrate multiple types of data may be an advantage here,
as significant amounts of perturbation data are available which
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could potentially be used to augment cell-cell interaction inference.
However, currently there is little evidence due to lack of gold-
standard datasets to favour any specific method over any other.

3.8 Combining single-cell and spatial
transcriptomics

ST and scRNA-seq are complementary techniques; scRNA-seq
accurately assesses the entire transcriptome for each individual cell
but it loses all spatial information, whereas in ST spatial information
is preserved but either data is not at single-cell resolution and/or
does not capture the entire transcriptome. As a result, many methods
have been developed to combine scRNA-seq and ST using different
approaches. SIMO uses optimal-transport to align single cells to
ST based on only RNAseq or both RNA and ATACseq modalities
(Yang P. et al,, 2025), Alternatively CellTrek (Wei et al., 2022)
uses mutual-nearest-neighbour integration combined with random
forests to predict spatial location of individual cells from proximity
within the integrated embedding space. In in-house benchmarking
CellTrek performed well on simulated ST data but was not compared
to DL alternatives.

One of the first and most established models is Tangram, which
learns a mapping between scRNA-seq and ST that optimizes the
spatially correlation between mapped and observed gene expression
(Biancalani et al., 2021). The authors demonstrate its effectiveness
in recapitulating known expression patterns across cortical layers.
In independent benchmarks, Tangram out-performs other methods
for recovering downsampled gene expression values but shows
modest performance at predicting cell type composition of ST
data (LiB. et al, 2022). However, notably neither the original
publication nor independent benchmarks assessed potential for
generation of false-positive results. Generative DL models can
predict scRNA-seq profiles from ST data based on a reference
scRNA-seq dataset. For example, SpatialScope uses a probabilistic
DL model to predict cell type composition of individual ST spots
and to decompose gene expression by cell type, and then uses a
generative DL model to create scRNA-seq for individual cells based
on the decomposed profiles (Wan et al., 2023). In contrast, stimpute
predicts gene expression for unmeasured genes in imaging-based ST
using a joint AE embedding and GNN, based on known gene-gene
relationships (Zeng et al., 2024).
of additional data
resolution data from cheaper, lower resolution experimental

Prediction modalities or higher
protocols is a popular use-case for DL method development.
ScSemiProfiler predicts scRNA-seq from bulk RNA, which
has the advantage of being able to predict cell type specific
differences in expression which is not possible with non-generative
deconvolution methods (Wang et al., 2024). Using matched bulk
and scRNA-seq data from COVID-19 patients, the authors were
able to show their method could capture individual difference
beyond what was present in the training data. However, they did
not evaluate whether scSemiProfiler’s cells would lead to the same
biological conclusions on the effect of COVID-19 as the original
scRNA-seq. Thus, it remains unclear if this approach is viable for
discovery research.

Lastly, over a dozen algorithms have been published that predict

ST expression data from histology images. Histology images are
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plentiful and easily collected, whereas ST is relatively rare and
expensive; therefore, accurate prediction of the latter from the
former would be very valuable. However, performance of all current
methods is relatively poor with correlations between predicted
gene expression and true measured gene expression below 0.2 for
most genes (Wang et al., 2025). While performance is best for genes
with strong spatial patterning, correlations remain below 0.5 in
nearly all cases, still far below an accuracy that would be useful for
discovery research. Such methods may improve as ST experimental
platforms improve, though it is also possible that much of gene
expression does not manifest as any visible difference in histology
images, thus placing a hard limit on the maximum accuracy of these
methods. The most likely limitation of current models, however,
is the availability of ST training data with high quality matching
histology images as most publicly available data only release a
compressed low-resolution image.

Overall, discovery researchers are recommended to choose
methods which project single-cells onto ST data rather than any
generative approaches, such as SIMO or CellTrek, and to use
multiple different methods to ensure conclusions are robust to the
approach chosen. While generative DL approaches are promising for
converting between transcriptomic technologies, there is insufficient
benchmarking in real-world use cases to know whether these
methods lead to false or misleading conclusions.

3.9 Integrating multiomic data

ST data can be considered multiomic in that images and
spatial coordinates can be treated as another layer of data to be
integrated. However, more often multiomic data refers specifically
to single-cell data where both mRNA is captured and sequenced
and DNA is capture either for direct DNA sequencing or most
often for ATAC assays, which measure open chromatin across the
genome (Mimitou et al., 2021; Cao et al., 2018; Reyes et al., 2019).
While first developed for single cells, equivalent assays have
been developed for spatially-resolved assays (Jiang et al., 2023;
Guo et al, 2025; Deng et al., 2022). However, currently only
simultaneous single-cell RNA-seq and ATAC-seq has been
developed into a simple off-the-shelf platform, thus is by far the
most used multiome technique.

Popular methods for single-cell multiome (scMultiome) data
integration and analysis include ArchR (Granja et al, 2021),
Signac (Stuart et al., 2021), and MOFA (Argelaguet et al., 2020)
which perform data normalization, dimensionality reduction, and
clustering. Signac and ArchR in addition identify correlated
open-chromatin peaks and nearby gene-expression which can be
used to infer gene-regulatory networks. These approaches are all
statistical approaches, with ArchR and Signac both using latent
semantic indexing for data embedding, and MOFA using a Bayesian
probabilistic model for joint factor analysis.

DL approaches have several advantages for multiomic data
integration. They can innately align different input data such that
ATAC peaks do not have to be assigned to genes prior to integration.
They can be regularized to learn comparable representations for
different modalities from the data rather than using heuristic
normalization strategies. Finally, the architecture can be data-
type invariant allowing the same structure to be used for many
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different data modalities. The general structure of DL multiome
methods starts with modality-specific AEs or VAEs then combines
the modality-specific embeddings into a single representation
(Ashuach et al.,, 2023; Gong et al., 2021; Li G. et al., 2022; Cao and
Gao, 2022).

MultiVI (Ashuach et al., 2023) uses this approach to expand
the scVI architecture to multiome data by penalizing the model
for divergent representations for the same cell in different
modalities then using the average representation for each cell.
This enables efficient integration of paired and unpaired datasets
since unpaired data simply uses the single representation value.
Cobolt (Gong et al., 2021) has a very similar architecture but uses
a Dirichlet prior and reconstructs the original matrices rather than
using the decoder to estimate the original distribution. scMVP
(Li G. et al., 2022) has the same overall architecture but uses self-
attention and mask-attention encoders for each modality and
simply concatenates the latent spaces for the joint embedding.
Whereas GLUE (Cao and Gao, 2022) uses heuristic methods to infer
ATAC-peak to RNA-gene associations which are used as knowledge
graph as an additional decoder output from the concatenated
multiomic latent space of their AE.

In multiple independent benchmarks (Xiao et al., 2024;
Liu et al, 2025; Hu et al., 2024b; Fu et al., 2025), Seurat’s
weighted nearest network (WNN) consistently output performs
other integration methods in perfectly matched RNA + ATAC data,
whereas MultiVI is consistently optimal for partially overlapping
datasets. In contrast, GLUE is the best performer when ATAC
and RNA datasets are from separate samples. Notably, these
results were simply for the level of integration of the lower
dimensional embedding, i.e., the mixing of ATAC and RNA
modalities while preserving or enhancing cell type identities. One
benchmark (Hu et al.,, 2024b) evaluated modality prediction, and
while MultiVI was a top performer, all methods had relatively poor
performance (correlation <0.4) generally due to overestimation
for genes upregulated in a particular group of cells, this is in line with
other benchmarking of imputation methods where data smoothing
typically inflates signals resulting in false-positives (Andrews and
Hemberg, 2019).

Overall MultiVI and GLUE are both established methods with
strong performance in benchmarks and would be good choices
especially for projects with not completely overlapping scMultiome
data. Heuristic methods, particularly Seurat’s WNN method, are
good choices for perfectly matched datasets but are inadequate
for non-overlapping datasets. Imputation is still unreliable and
should not be used for statistical analyses, though may be useful
for identifying trends for independent validation. While DL
algorithms have been developed for integration and imputation of
scMultiome, inference of gene-regulatory networks which is often
the main goal of Multiome studies has not yet been addressed
with DL methods and may be an opportunity for future method
development.

In an independent benchmark on curated datasets, scjoint,
MultiVI and GLUE were top performing methods for integrated cell
type identification in scMultiome data (Xiao et al., 2024). However
others find high variability in performance dataset to dataset and
that MultiVI was particularly sensitive and either were among
top performers or worse performers depending on the dataset
in question (Lee et al., 2023).
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For spatial multiome, many of the above single-cell methods
would be applicable; however, when spatial data includes contiguous
homogeneous regions, it is often beneficial to incorporate spatial
information as we noted above. Currently, the only method
that integrates spatial location for spatial multiome data is
SpatialGlue (Long et al, 2024). This method encodes spatial
information as a graph linking spatially proximal cells or spots and
uses an AE structure to learn a joint embedding space. To integrate
RNA and ATAC data, separate GCN encoders combine the spatial
graphs with modality-specific similarity graphs. These encodings are
combined with an attention head to generate a single embedding
space across both spatial modalities. In-house benchmarking on
datasets with known anatomical regions showed good performance
compared to non-spatial statistical or DL models. In agreement
with ST vs. scRNA-seq data analysis, significant improvements in
identifying spatial regions can be achieved by incorporating physical
proximity, and DL models are more easily adapted to include this
information than statistical methods.

3.10 RNA velocity

While scRNA-seq provides a snapshot of transcriptional
states, RNA velocity methods have become increasingly valuable
tools for investigating cell trajectories (Shima and mura, 2025;
Bergen et al., 2021; Ge et al, 2025). Although new, several
computational approaches now exist that leverage the relative
abundances of spliced and unspliced mRNA to quantify
transcriptional dynamics. Early ordinary differential equation
(ODE)-based approaches like velocyto assumed specific cells
were near steady-state, whereas scVelo relaxed this assumption
through maximum-likelihood inference (La Manno et al., 2018;
Bergen et al., 2020). More recent approaches incorporate additional
molecular information, such as chromatin accessibility and
protein expression, thereby refining trajectory inference and
interpretability (Luo et al., 2025).

Recently, DL-based RNA velocity models have emerged
to better capture nonlinear transcriptional dynamics and
complex cellular transitions (Ge et al., 2025; Luo et al.,, 2025;
Gayoso et al., 2024). VeloAE employs an autoencoder architecture
to learn denoised, low-dimensional representations of RNA velocity
(Qiao and Huang, 2021). VeloVAE and VeloVI employ VAE
frameworks to infer RNA velocity and jointly quantify uncertainty
(Gayoso et al,, 2024; Gu et al., 2022). VeloVAE models a shared
developmental timeline across all cells by learning latent time
and cell-state representations, enabling explicit modelling of cell-
fate branching and differentiation pathways. Conversely, VeloVI
fits gene-specific dynamical models by leveraging information
across cells, offering robust and reliable uncertainty estimates for
RNA velocity at both gene and cell levels. DeepVelo integrates
a graph convolutional network with a VAE to model gene- and
cell-specific transcriptional kinetics, improving accuracy across
heterogeneous cell populations (Chen Z. et al., 2022; Cui et al., 2023).
LatentVelo and cellDancer both wutilize neural architectures;
LatentVelo embeds cell states and velocities into a latent space,
while cellDancer employs gene-specific networks that aggregate
local neighborhood information to infer cell- and gene-level kinetics
(Li et al., 2024c; Farrell et al., 2023).
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Regarding benchmarking, the accuracy and stability of these
methods remain variable across datasets (Bergen et al., 2021;
Luo et al., 2025; Gayoso et al., 2024; Gorin et al., 2022). Though
deep learning approaches often perform better on complex datasets,
no single method excels in both accuracy and stability (Shima
and mura, 2025; Gayoso et al, 2024). Accuracy measures how
closely predicted velocities align with known or expected biological
trajectories. However, benchmarking remains limited due to
limited ground truths, thus relying on indirect metrics based on
velocity cosine similarity and agreement with known lineages
(Bergen et al., 2021; Luo et al., 2025; Gayoso et al., 2024). Although
most methods displayed locally consistent velocities between
neighboring cells, most fail to reliably infer true cell-state transitions,
particularly in complex or branching trajectories (Luo et al., 2025;
Qiao and Huang, 2021; Gorin et al., 2022; Ancheta et al., 2024).
In addition, discrepancies between methods remain common,
primarily due to differences in model assumptions and datasets
used (Bergen et al,, 2021; Luo et al, 2025; Gayoso et al., 2024;
Ancheta et al., 2024). Downsampling had the greatest impact on
ground-truth recovery, while inter-method consistency remained
stable. (Shima and mura, 2025; Luo et al., 2025; Ancheta et al., 2024).

Notably, DeepVelo, scVelo, VeloVI, and velocyto often
showed higher agreement among themselves, but none
stood out in either accuracy or consistency across
datasets.

In discovery contexts, current RNA velocity approaches
should be interpreted cautiously when resolving complex
cell-state transitions (Bergen et al, 2021; Gorin et al, 2022)
Methods like VeloVI and LatentVelo offer higher accuracy and
stability in specific contexts, but none are universally dependable
(Luo et al, 2025; Gayoso et al., 2024). Using multiple RNA
velocity methods in combination can mitigate individual biases,
while integrating multi-omic or lineage-tracing datasets can help
correct technical biases by providing more reliable validation
(Shima and mura, 2025; Bergen et al., 2020; Mao et al., 2025).
As the field of RNA velocity advances, deep learning methods
will become more robust, capturing transcriptional kinetics from
diverse datasets and reducing dependence on traditional ODE
assumptions.

4 Conclusion

A plethora of algorithms and software packages have been
produced using DL to solve many common problems in scRNA-
seq and ST analysis. However, the performance of these models
has been variable, with only the top models being competitive
with state-of-the-art non-DL alternatives. There is no evidence that
DL is inherently more accurate than non-DL algorithms, nor is
it inherently more scalable when compared to optimized non-DL
approaches. While DL can remove the linearity assumptions that
constrain alternative approaches, there is little evidence that this
provides a substantial benefit. The advantage of DL algorithms is
their flexibility in handling a wide range of data types, which enables
simple approaches for combining different data modalities, while
graph-based models can be easily used to incorporate a spatial
dimension. In addition, generative DL can enable novel approaches,
mainly the prediction of one data modality from another, that are
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not easily amenable to non-DL models. However, it remains to be
proven that such algorithms can reach sufficient precision for their
use in discovery research.
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