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Artificial intelligence (AI) has become a common tool for bioinformatics, with 
hundreds of methods published in recent years. Due to the training data 
demands of deep-learning algorithms, high-throughput single-cell and spatial 
transcriptomics is one of the most popular areas for these applications. Here we 
review how AI is being used for single-cell and spatial transcriptomics analysis, 
and how these approaches compare to alternative statistical or heuristic-
based methods. We explored 10 common analysis tasks: dimensionality 
reduction, cross-dataset integration, data denoising, data augmentation, 
deconvolution, cell-cell interactions, transcriptional velocity, transcriptomic-
chromatin accessibility integration, and integrating single-cell and spatial 
transcriptomics modalities. We highlight which algorithms are likely to be useful 
for discovery researchers, and which are not yet ready for general research use.
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 1 Introduction

Artificial intelligence (AI) has revolutionized the analysis of big data across many fields, 
including biomedical research, and is entering clinical practice, with over 1,000 algorithms 
and devices approved by the FDA (Health, 2025). While the predominant use of AI in clinical 
practice is in biomedical image analysis, in research, AI approaches have gained increasing 
popularity in bioinformatics, and especially single-cell and spatial transcriptomics 
(Ge et al., 2024; Erfanian et al., 2023; Zahedi et al., 2024; Molho et al., 2024; Ma and 
Xu, 2022). AI is often used synonymously or as a subtopic of the broader field of machine 
learning. Machine learning involves a computer or algorithm deriving at least some aspects 
of a model from observed or “training” data. This includes tasks as simple as estimating 
the slope and intercept of the best-fit line, or those as complex as labelling MRI images 
with specific pathological lesions. AI, or deep learning (DL) as we will refer to it, is a 
specific class of models based on neural networks (NN) with multiple interconnected layers 
of functions capable of learning complex, non-linear patterns within large-scale datasets.
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Single-cell and spatial transcriptomics are especially amenable 
to DL due to the large number of observations, as most datasets 
consist of thousands to millions of individual cells and thousands 
to tens of thousands of transcripts (Svensson et al., 2018). State-
of-the-art single-cell transcriptomics (scRNA-seq) experiments 
typically generate large-scale datasets composed of 20,000–500,000 
individual cells from at least three samples from one or more 
conditions (Figure 1A). These data undergo quality control, 
normalization, dimensionality reduction, integration across samples 
or across modalities, then they are clustered and annotated with 
cell type labels based on the expression of characteristic genes 
(Heumos et al., 2023; Luecken and Theis, 2019; Andrews and 
Hemberg, 2018; Kiselev et al., 2019). Many of these tasks are classic 
machine learning problems which could potentially be performed by 
DL models. Spatial transcriptomics (ST) adds two additional layers 
of information: two-dimensional coordinates of each cell, which 
may soon to be three-dimensional (Schott et al., 2024), as well as 
one or more layers of histology (H&E) and/or immunofluorescent 
(IF) images of the tissue. ST comes in two main types: sequencing-
based (Figure 1B) and imaging-based (Figure 1C). In imaging-based 
ST, transcripts are individually measured with single-molecule 
fluorescent in situ hybridization (Chen et al., 2015; He et al., 2022) 
(Figures 1B,C). Transcripts are aggregated at the level of individual 
cells by identifying nuclei and cell boundaries, referred to as 
tissue-segmentation or simply segmentation (Mitchel et al., 2025; 
Polański et al., 2024). In many cases, this single-cell resolution ST 
data is analyzed using the same tools developed for scRNAseq. 
For sequencing-based ST, tissue is placed on a slide covered in 
oligonucleotide spots which capture and tag transcripts with a spatial 
barcode. Resolution is determined by the size of each uniquely 
barcoded spot. In many cases, these spots will overlap more than 
1 cell, thus requiring “deconvolution” to estimate the contribution 
of each cell to the transcripts captured by that spot (Ståhl et al., 2016; 
Rodriques et al., 2019; Gaspard-Boulinc et al., 2025). For both 
approaches, but particularly for sequencing-based techniques, 
information from the matching images can be combined with 
transcriptomics to improve the identification of distinct anatomical 
regions either in parallel with or integrated into the ST analysis 
workflow (Williams et al., 2022; Pham et al., 2023; Zhao et al., 2021). 
Tissue segmentation and extraction of biologically relevant 
features from tissue imaging is dominated by DL algorithms 
(Chen et al., 2024; Stringer et al., 2021; Warren and Moustafa, 2023; 
Kuntz et al., 2021; Greenwald et al., 2022).

While these technologies have generated large amounts of 
high-dimensional datasets, the analysis of these data is challenged 
by a combination of biological complexity and technical noise. 
Biologically, cellular states exist along continuous trajectories—such 
as differentiation or activation—and exhibit high heterogeneity 
within and across tissues. Technically, the data is affected by 
low sensitivity, batch effects, ambient RNA contamination, and 
spatial blur in low-resolution spatial assays (Ge et al., 2024; 
Kiselev et al., 2019; Mitchel et al., 2025; Lähnemann et al., 2020; 
Young and Behjati, 2020; Svensson et al., 2017). These factors 
introduce spurious variation, obscure true biological signals, and 
complicate tasks such as clustering, integration, and cell–cell 
communication inference.

In recent years, DL has emerged as a novel approach to 
address the computational challenges of scRNA-seq and ST. 

These methods excel at feature extraction and classification of 
high-dimensional, noisy data, thus making them well-suited for 
cell type annotation, multimodal data integration, and nonlinear 
dimensionality reduction (Erfanian et al., 2023; Karin et al., 2024; 
Sarker, 2021). DL methods can take advantage of GPU, parallel 
computing, and iterative optimization on batches of data to scale 
analyses to datasets of millions of observations; however, similar 
or better performance can also be achieved by optimizing classical 
statistical methods (Chockalingam et al., 2025). DL models are 
extremely flexible and can be combined to allow for the joint analysis 
of multiple data types such as integration of scRNA-seq and ST data, 
or imaging and transcriptomic data.

In recent years, there has been an explosion of methods 
developed for scRNA-seq and ST analysis using DL models (Table 1). 
Despite their growing number, only a few have achieved broad 
adoption in the research community. While existing reviews 
(Zahedi et al., 2024; Ma and Xu, 2022; Li Y. et al., 2022; 
Era et al., 2019; Luo et al., 2024; Wani et al., 2025) have primarily 
focused on the technical aspects of these models, their architecture, 
and training strategies, we focus instead on their performance 
in biological discovery research and on which, if any, of these 
tools have been shown to enhance accuracy, reproducibility, and 
sensitivity for biological discovery. As such, we first provide a 
brief overview of different model architectures, then discuss DL 
approaches to addressing specific bioinformatics analysis tasks, and 
their applicability to real-world discovery research. This will help 
biologically focused researchers understand when and how to use 
these methods and help bioinformaticians determine which tasks 
are appropriate for DL models and how to evaluate their design 
to ensure the resulting model is useful to the biomedical research 
community.

2 Common deep learning architecture

2.1 Convolutional neural networks (CNN)

Convolutional neural networks (CNN) were originally 
developed for structured data in the form of multiple arrays, such 
as images which are composed of pixel intensities in 2D arrays 
for each color channel (Lecun and Bengio, 1998). Their design is 
built around three core principles (Lecun and Bengio, 1998): (i) 
local receptive fields, which focus computation on neighboring 
input values to capture features such as edges and corners in 
images; (ii) shared weights, which enable the same filter to be 
applied across inputs, thereby reducing the number of parameters; 
and (iii) subsampling or pooling operations, which introduce 
robustness of outputs to distortions and shifts. Together, these 
principles allow CNNs to efficiently recognize local patterns and 
build hierarchical feature representations using fewer parameters 
than fully connected networks (Figure 2A). Due to these advantages, 
CNNs have become a popular architecture in fields such as computer 
vision, where extracting informative features from local patterns 
is crucial.

Although scRNA-seq lacks inherent spatial structure, gene 
expression data has been successfully adapted by restructuring 
it into an image-like format used by CNNs. A method called 
convolutional neural network for co-expression (CNNC) encodes 
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FIGURE 1
Single cell and spatial transcriptomics workflow. (A) Droplet-based single cell RNA sequencing. Tissue is dissociated into single cells which are 
co-encapsulated with barcoded beads by microfluidics. Released transcripts are captured by poly T and sequenced following library preparation. (B)
Sequencing-based ST. A tissue section is placed on a slide with spatially barcoded capture spots. Transcripts are captured and sequenced following 
library preparation. (C) Image-based ST. Transcripts are hybridized with fluorescence probes and imaged over multiple rounds. After images decoding 
and cell segregation, each fluorescent dot represents an individual transcript. All methods produce gene expression, with spatial methods providing 
additional x, y coordinates for downstream analysis.

gene pair co-expression as 2D histograms, which serve as input 
“images” (Yuan and Bar-Joseph, 2019). This approach allows CNNs 
to learn complex, nonlinear gene-to-gene relationships directly from 
single-cell expression data. CNNs are particularly valuable for ST to 
extract morphological features from tissue sections that complement 
transcriptomics data. Methods such as SpaCell (Tan et al., 2020) 
combine pretrained CNN models with an autoencoder network 
to learn joint embeddings of histology and gene expression. 
Similarly, stLearn (Pham et al., 2023) leverages a pretrained CNN 
model to extract morphological features from histology images and 
integrates them with gene expression data to map spatial domains 
within tissue sections. 

2.2 Autoencoders (AE)

Autoencoders (AE) are deep feed-forward neural networks 
fundamentally designed for unsupervised representation learning, 
where the goal is to learn lower-dimensional features of high-
dimensional data. Structurally, an AE consists of an encoder network 
and a decoder network (Figure 2B). The encoder compresses input 
data (such as gene expression vector from a cell) into a lower-
dimensional latent space, while retaining the most significant 
features. The decoder, which typically mirrors the architecture 
of the encoder, aims to reconstruct the high-dimensional input 
data from the learned low-dimensional representation. The entire 
network is trained to minimize the reconstruction error given as 
the mean squared error between input and reconstructed data. 
The resulting latent representations, also called embeddings, are 
particularly valuable as they serve as nonlinear counterparts to 
traditional linear dimensionality reduction techniques such as 

Principal Component Analysis (PCA). While popular pipelines like 
Seurat (Stuart et al., 2019; Satija et al., 2015; Butler et al., 2018) 
use PCA and assume linear relationships among genes, AEs can 
capture complex nonlinear relationships inherent in scRNA-seq 
data. A key advantage of AEs lies in their flexibility to adapt the 
reconstruction objective based on the statistical properties of the 
data. For instance, loss functions can use negative binomial or zero-
inflated negative binomial distributions, which are appropriate for 
single-cell and spatial transcriptomics data (BinTayyash et al., 2021; 
Svensson, 2020; Zhao et al., 2022) instead of standard statistics 
such as mean squared error (MSE), which assume Gaussian 
noise. This way, AE can incorporate probabilistic assumptions 
directly into the loss function by modeling the likelihood of an 
appropriate probability distribution. The model can then account 
for data-specific characteristics such as sparsity, overdispersion, 
and technical noise commonly observed in scRNA-seq data, 
hence learning more biologically meaningful representations that 
respect the underlying statistical structure of gene expression 
measurements.

In scRNA-seq analysis, Deep Count Autoencoders (DCA) 
leverage the flexibility of AE by modeling the output as the 
parameters of the zero-inflated negative binomial distribution 
(Eraslan et al., 2019), commonly used for RNA-seq counts 
(Svensson, 2020). Additionally, prior domain knowledge can be 
incorporated into an AE in a semi-supervised training manner 
as implemented by scDCC (Single Cell Deep Constrained 
Clustering) (Tian et al., 2021). scDCC integrates soft pairwise 
constraints derived from prior biological information (marker 
genes or cell type annotation) into the model’s loss function. 
These constraints guide the model to group related cells and 
separate dissimilar ones during latent space optimization, effectively 
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TABLE 1  Deep learning-based tools in single-cell RNA sequencing and spatial transcriptomics.

Tool name Task category Modality DL model Key features/notes Year Code

SCANVI Annotation/transfer scRNA-seq, ST Conditional VAE Semi-supervised cell labeling. 
Exetends scVI for annotation

2021 Code

BBKNN Batch correction scRNA-seq Graph-KNN Batch integration 2020 Code

BERMUDA Batch correction scRNA-seq AE + clustering Deep AE-based alignment 2019 Code

scArches Batch correction/integration scRNA-seq VAE w/fine-tuning Architectural surgery for model 
reuse

2021 Code

trVAE Batch correction/integration scRNA-seq Conditional VAE Domain transfer using 
adversarial training

2020 Code

scGEN Batch correction/integration scRNA-seq VAE Predicts perturbed gene states 2019 Code

Graphcomm Cell-cell interaction scRNA-seq GAT Integrates multimodal data for 
cell-cell communication

2025 Code

scSDNE Cell-cell interaction scRNA-seq GNN + AE Semi-supervised graph 
embedding integrating 
ligand-receptor and gene 
regulation data

2025 Code

DeepCCI Cell-cell interaction scRNA-seq GCN + ResNet Supervised cell–cell interaction 
network prediction using L–R 
pairs

2023 Code

scTenifoldXct Cell-cell interaction scRNA-seq Neural networ + 
semi-supervised, manifold 
alignment

Predicts cell-cell interactions 
and maps communication 
graphs using ligand-receptor 
gene embedding and manifold 
alignment

2023 Code

Spatialscope Cell-cell interaction Spatial transcriptomics Deep generative model Decomposes ST spots to single 
cells using generative models

2023 Code

CellFM Cell type annotation scRNA-seq RetNet Foundamental model for 
annotation

2025 Code

scAtlasVAE Cell type annotation scRNA-seq VAE Cross atlas comparison and 
transfer learning for cell subtype 
annotation

2024 Code

scGAA Cell type annotation scRNA-seq Transformer Combines horizontal and 
vertical attention mechanisms, 
does not require batch 
information

2024 Code

TOSICA Cell type annotation scRNA-seq Transformer Combine cell type marker genes 
and transformer attention layers

2023 Code

scBERT Cell type annotation scRNA-seq Transformer Pretrained on gene expression 2022 Code

SIMS Classification scRNA-seq Transformer Uses TabNet transformer for 
lable transfer from cell atlas

2024 Code

expiMap Classification scRNA-seq AE w/pathway constraints Maps cells to known pathways 
in a reference dataset

2023 Code

scDLC Classification scRNA-seq LSTM + DNN Sequential modeling for 
classification

2022 Code

SEDR Clustering Spatial transcriptomics VGAE Integrates latent of GE + spatial 
embedding

2024 Code

(Continued on the following page)
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TABLE 1  (Continued) Deep learning-based tools in single-cell RNA sequencing and spatial transcriptomics.

Tool name Task category Modality DL model Key 
features/notes

Year Code

SiGra Clustering Spatial transcriptomics Graph transformer Integrates multichannel 
images + expression

2023 Code

SpaGCN Clustering Spatial transcriptomics GCN Uses spatial coordinates + 
histology + GE

2021 Code

scDCC Clustering scRNA-seq AE Semi-supervised with 
pairwise constraints

2021 Code

scVAE Clustering scRNA-seq VAE Use VAE to learn low 
dimensional representation 
to facilitate accurate 
clustering

2020 Code

scDeepCluster Clustering scRNA-seq AE Unsupervised clustering 
with deep autoencoder

2019 Code

GSI Clustering Spatial transcriptomics VAE Integrates image + GE + 
spatial coordinates to 
improve clustering

2025 Code

Deep scSTAR Clustering/Annotation/
Embedding

scRNA-seq DAE + MLP + MTL Denoising autoencoder 
with supervised MLP in 
latent space

2025 Code

SAUCIE Clustering/Batch 
corrcetion

scRNA-seq AE Use maximal mean 
discrepancy penalty to 
match distributions of 
batches

2019 Code

STAGATE Clustering/batch correction Spatial transcriptomics GAT Adaptive graph attention 
on spots

2022 Code

SPADE Clustering/deconvolution Spatial transcriptomics spaGCN + Lasso regression H&E img + GE for 
clustering, then uses ref 
scRNAseq data for domain 
deconvolution

2024 Code

SPACEL Clustering/deconvolution Spatial transcriptomics VAE + GCN Self-supervised local 
clustering + simulation

2023 Code

SpaCell Clustering/embedding ST + histology AE + CNN AE model for embeddings 
and CNN for classification

2020 Code

scResolve Deconvolution Spatial transcriptomics Transformer + VAE Reference-free, integrate 
cell segmentation of 
histology image

2024 Code

UniCell Deconvolve Deconvolution Spatial transcriptomics + 
bulk RNA seq

Deep feedforward network Foundamental model 2023 Code

DAISM-DNNXMBD Deconvolution Bulk RNA seq DNN Train 1 DNN for each cell 
type

2022 Code

Tangram Deconvolution Spatial transcriptomics Custom model Custom probablistic 
model + gradient descent 
optimization + 
backpropagation

2021 Code

DSTG Deconvolution Spatial transcriptomics CCA + MNN + GCN Graph reconstruction 2021 Code

Scaden Deconvolution Bulk RNA seq DNN Ensemble of three 
best-permorning DNN

2020 Code

(Continued on the following page)
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TABLE 1  (Continued) Deep learning-based tools in single-cell RNA sequencing and spatial transcriptomics.

Tool name Task category Modality DL model Key features/notes Year Code

scAR Denoising scRNA-seq VAE Ambient RNA denoising 2022 Code

DCA Denoising/imputation scRNA-seq Autoencoder Deep count autoencoder 
(NB/ZINB)

2018 Code

STGNNks Embedding Spatial transcriptomics GAE Graph-based clustering 2023 Code

scSemiProfiler Embedding scRNA-seq VAE-GAN + active learning Learns cell states via active 
bulk supervision

2023 Code

scGNN Embedding/clustering scRNA-seq GNN Graph-based denoising, 
clustering, embedding

2021 Code

scVI Embedding/imputation/
integration

scRNA-seq, ST VAE Probabilistic latent space, 
batch correction

2018 Code

scGFT Generation scRNA-seq GAN, VAE, GFT Generate synthetic scRNA 
seq data that reflects natural 
biological variability

2025 Code

STAGE Generation Spatial transcriptomics AE Data generation 2024 Code

scCross Generation scRNA-seq VAE + GAN + MNN Cross-domain latent space 
used for simulation

2024 Code

SRTsim Generation Spatial transcriptomics Empirical sim Simulates spot-based ST data 2023 Code

cscGAN Generation scRNA-seq Conditional GAN Cell type aware generator 2020 Code

scIGANs Imputation scRNA-seq GAN Conditional GAN 2020 Code

DeepImpute Imputation scRNA-seq DNN Imputation using sub-neural 
network modules

2019 Code

autoCell Imputation/feature 
extraction

scRNA-seq Graph-enhanced VAE Uses VAE and GNN 2023 Code

scGPT Integration scRNA-seq Transformer Foundational model 2024 Code

SpatialGLUE Integration ST + proteinmics + 
epigenomics

AE + graph fusion Integrate the different omics 
modalities with spatial 
information

2024 Code

MultiVI Integration scRNA + ATAC VAE Joint ATAC–RNA modeling 2023 Code

SCALEX Integration scRNAseq Encoder + GAN Use feature links to preserve 
biological variation

2021 Code

spaVAE Low-dimensional space Spatial transcriptomics VAE NB model based VAE, 
combining Gaussian process 
prior and Gaussian prior

2024 Code

COVET Low-dimensional space scRNA-seq, ST ENVI + CVAE Encode the covariance of 
gene expression between 
neighboring cells joint latent 
space

2024 Code

scMODAL Multimodal integration scRNA-seq + ATAC Multimodal AE + GAN Use feature links to align cell 
embeddings

2025 Code

scMVP Multimodal integration scRNA-seq + scATAC-seq Multi-view VAE Handles paired multi-omics, 
encodes ATAC with 
attention, integrates views for 
embedding and clustering.

2022 Code

(Continued on the following page)
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TABLE 1  (Continued) Deep learning-based tools in single-cell RNA sequencing and spatial transcriptomics.

Tool name Task category Modality DL model Key features/notes Year Code

GLUE Multimodal integration scRNA-seq, scATAC-seq, 
snmC-seq

VAE per modality + graph 
linking features

Models regulatory feature 
interaction across 
modalities; scalable 
large-dataset integration.

2022 Code

totalVI Multimodal integration scRNA-seq + protein VAE Probabilistic multimodal 
model

2021 Code

Cobolt Multimodal integration scRNA-seq + scATAC-seq 
(and others)

Multimodal VAE Integrates joint and 
single-modality datasets.

2021 Code

scButterfly Multimodal integration scRNAseq + ATAC U-net + AE Image-guided gene 
embedding

2024 Code

Monae Multimodal integration scRNAseq + ATAC AE + Contranstive learning Modality-specific 
auto-encoders

2024 Code

MIDAS Multimodal 
integration/Batch 
correction/Embedding

scRNAseq + ATAC + ADT 
(proteomics)

AE Self supervised modality 
alignment, transfer learning

2024 Code

BIDCell Self-supervised learning Spatial transcriptomics AE + biologically-informed 
loss

Learns spatial gene-region 
relationships

2023 Code

STAGNN Spatial clustering Spatial transcriptomics GAT Graph attention network 
(GAT) and the time series 
model informer

2024 Code

TransformerST Spatial domain clustering Spatial transcriptomics ViT + adaptive graph 
transformer

Uses H7E image features and 
GE in self-attention 
transformer

2024 Code

DeepST Spatial domain detection Spatial transcriptomics Multi-stage deep learning 
using DNN, VGAE

Image + gene-based spatial 
clustering

2022 Code

GIST ST integration Spatial transcriptomics CNN + graph transformer Uses GE + cell 
type-informative paired 
tissue images e.g., IF

2022 Code

DeepVelo Trajectory/RNA velocity 
embedding

scRNA-seq GCN + DNN Models gene- and 
cell-specific transcriptional 
kinetics

2024 Code

VeloVI Trajectory/RNA velocity 
embedding

scRNA-seq VAE Learns gene-specific kinetics, 
provides uncertainty 
quantification for velocities; 
flexible for time-dependent 
transcription rates.

2023 Code

cellDancer Trajectory/RNA velocity 
embedding

scRNA-seq DNN Predicts cell- and 
gene-specific transcription, 
splicing and degradation 
rates

2023 Code

VeloVAE Trajectory/RNA velocity 
embedding

scRNA-seq VAE Extends velocity modelling 
with VAE framework to 
capture kinetic variability.

2022 Code

LatentVelo Trajectory/RNA velocity 
embedding

scRNA-seq VAE/latent emberdding 
model

Learns latent representation 
for velocity; enables batch 
correction and dynamics 
embedding.

2022 Code

VeloAE Trajectory/RNA velocity 
embedding

scRNA-seq AE Embeds velocity information 
(spliced/unspliced) for better 
dynamic modelling.

2021 Code
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FIGURE 2
Deep learning architectures commonly applied to single-cell and spatial transcriptomics. (A) Convolutional neural network (CNN): extracts local spatial 
patterns from image-like inputs (e.g., cell/spot × gene maps) via convolution–pooling stacks. (B) Autoencoder (AE): learns a low-dimensional latent 
vector (z) that reconstructs the input, enabling denoising and feature learning. (C) Variational autoencoder (VAE): probabilistic AE that learns a 
distribution over (z) (parameterized by (µ, σ) and samples (z + ε ∼ N (0,1)) for generative modeling. (D) Generative adversarial network (GAN): a 
generator synthesizes expression profiles from noise while a discriminator distinguishes real from generated samples. (E) Transformer tokenizes inputs 
and applies positional embeddings with stacked self-attention and feed-forward blocks in an encoder to produce task-specific outputs. (F) Graph 
neural network (GNN): propagates information over a cell/spot graph to model neighborhood structure and produce node-level outputs.

shaping the embedding to reflect domain knowledge. This approach 
improves clustering accuracy and biological relevance, especially 
in complex or noisy datasets, showcasing autoencoders as versatile 
frameworks for single-cell data analysis. 

2.3 Variational autoencoders

Variational autoencoders (VAEs) are a probabilistic extension 
of standard AEs, designed to improve representation learning 
and generative modeling by incorporating principles of Bayesian 
inference to learn a distribution over a latent (lower-dimensional) 

space. This probabilistic formulation addresses a key limitation 
of AEs: their deterministic latent space, which often results in 
discontinuous or overfitted representations that generalize poorly 
to unseen data and lack support for structured sampling (Kingma 
and Welling, 2022; Doersch, 2021; Kingma and Welling, 2019; 
Rezende et al., 2014). Despite their architectural similarity, VAEs 
differ fundamentally in that they encode each input to the 
parameters of a probability distribution (usually Gaussian) from 
which a latent variable is sampled (Figure 2C). The decoder 
reconstructs the input data from this latent representation. This 
formulation enables VAEs to learn smooth, continuous, and 
structured latent representations by optimizing a joint loss function 
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composed of a reconstruction term and a Kullback-Leibler (KL) 
divergence term, which regularizes the approximate posterior 
distribution to be close to the prior distribution. The key advantage 
of VAEs lies in their ability to model data uncertainty and support 
generative capabilities through a probabilistic latent space. This 
is particularly valuable for scRNA-seq, where modeling sparsity, 
overdispersion and technical noise is essential (Svensson, 2020).

Models such as scVI (Lopez et al., 2018) (Single-Cell Variational 
Inference) build upon the VAE framework to model scRNA-
seq count data using a negative binomial likelihood, while 
simultaneously correcting for batch effects. Similarly, totalVI 
(Gayoso et al., 2021) extends the VAE architecture to jointly 
model RNA and protein data from CITE-seq (cellular indexing of 
transcriptomes and epitopes by sequencing), enabling multimodal 
inference (Stoeckius et al., 2017). Concretely, totalVI places a 
logistic-normal prior on a shared cell-level latent representation 
that parameterizes modality-specific likelihoods by using a negative 
binomial RNA counts and a negative-binomial mixture for proteins, 
respectively. In ST, SpaVAE (Tian et al., 2024) incorporates spatial 
coordinates via a Gaussian process prior on the latent space that 
is indexed by the spot coordinates while keeping some latent 
dimensions under the standard gaussian prior to capture non-
spatial spot variations. In general, VAEs are flexible in that different 
likelihoods can be used and latent priors can also be customized to 
encode known structure in the data such as spatial information and 
batch effects. 

2.4 Generative adversarial networks (GANs)

Instead of learning to reconstruct what already exists, GANs 
learn by deception (Goodfellow et al., 2014). They consist of a 
generator, which creates synthetic data from random noise, and 
a discriminator, which attempts to distinguish between real and 
generated samples (Figure 2D). Through adversarial training, the 
generator improves its ability to produce realistic outputs, while the 
discriminator becomes more adept at detecting “fake” or synthetic 
data. This dynamic results in a generator that can synthesize high-
quality, biologically plausible gene expression profiles.

In scRNA-seq, cscGAN/scGAN (Marouf et al., 2020) learns 
to generate cell type conditioned expression profiles that 
preserve gene–gene dependencies, supporting augmentation 
of rare populations and improving downstream classification 
and clustering. scIGAN (Xu et al., 2020) frames imputation 
as generation, using an adversarial loss (often combined 
with count-aware objectives) to recover missing values while 
retaining biological variability in different cell types. Adversarial 
alignment has also been used for batch/platform correction. For 
instance, iMAP (Wang D. et al., 2021) couples an autoencoder 
backbone with a GAN discriminator that removes batch signal 
from the latent space, enabling cross-platform integration of tumor 
microenvironment datasets while preserving cell-state structure.

GANs are widely used in digital pathology for histology image 
generation and translation, demonstrating strong capability on 
imaging. However, in ST there is still no widely adopted, end-to-
end GAN framework that jointly models histology images, gene 
expression, and spatial coordinates. Challenges such as training 
instability, mode collapse, and lack of biological interpretability 

make it difficult to ensure that generated spatial gene expression 
patterns reflect true biological variation rather than technical 
artifacts. As a result, GANs are not standard components of 
ST analysis pipelines, where AE, VAEs, GNNs, and transformers 
currently dominate. 

2.5 Transformer

Transformers are deep learning models originally developed 
for natural language processing (NLP) with an encoder-decoder 
architecture composed of self-attention layers (Vaswani et al., 2023) 
(Figure 2E). Although they are similar to AEs in design, they differ 
in several aspects. The encoder and decoder can be trained and 
used individually, as seen in models used by BERT and GPT 
respectively (Yenduri et al., 2023; Devlin et al., 2019). The self-
attention layers dynamically integrate each input element with all 
elements within the same input sequence, capturing contextual 
relationships. Additionally, the encoder is not constrained by a low-
dimensional latent space, and the decoder is usually trained to 
autoregressively generate a target sequence rather than reconstruct 
the input (Vaswani et al., 2023; Xiong et al., 2025). These properties 
have made transformers the backbone of modern foundational 
models, which are pretrained on large and heterogeneous datasets 
and then adapted to a wide range of downstream tasks with minimal 
supervision.

Transformers have driven significant advances in modeling 
sequential data in domains like natural language processing 
(Wu et al., 2025), time-series analysis (Wen et al., 2023), and DNA 
(Avsec et al., 2021) and protein sequences (Rives et al., 2021), 
for which they were originally designed. Transcriptomics data 
is inherently non-sequential and requires the encoding of gene 
expression values into token-like embeddings, analogous to tokens 
in NLP, which transformers can process. Current approaches vary in 
how they represent expression levels, each with distinct advantages 
and limitations. One approach is ordering, where genes are ranked 
by transcript abundance within a cell and treated as an ordered 
sequence of tokens, with each gene assigned a learned embedding 
(Levine et al., 2024), as implemented by tGPT (Shen et al., 2023), 
iSEEK (Shen et al., 2022), GeneMamba (Qi et al., 2025), and 
Geneformer (Theodoris et al., 2023). While this method captures 
relative patterns and is more robust to technical noise and batch 
effects (Shen et al., 2023; Qi et al., 2025), quantitative expression 
information is lost during data transformation (Levine et al., 2024), 
resulting in reduced data resolution. A second approach is bin-based 
discretization, where gene counts are grouped into predefined bin 
sizes, each with an assigned learnable embedding (Yang et al., 2022; 
Cui et al., 2024). Although the absolute scale of expression 
is preserved and sequence modeling is simplified, fine-grained 
biological signal is lost, particularly for genes with subtle but 
functionally relevant expression differences, which can be sensitive 
to bin boundaries and potentially affect downstream analysis. 
Alternatively, the value projection strategy avoids discretization 
altogether by directly mapping gene expression values to a learnable 
embedding, which is combined with a gene-specific embedding 
(Hao et al., 2024a; Zeng et al., 2025), resulting in a transformer input 
token. This retains the full resolution of the original data and avoids 
artifacts due to discretization.
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In ST, transformers’ ability to take multimodal input and model 
long range dependencies offers distinct advantages over other 
methods (Xu P. et al., 2023; Hao et al., 2024b; Wen et al., 2024). 
In contrast to local neighborhood-based approaches such as GNN 
or clustering algorithms, that focus on immediate spatial proximity, 
transformers can capture global spatial relationships across tissue 
sections through self-attention. 

2.6 Graph neural networks

Graph Neural Networks (GNNs) are deep learning models 
designed to operate on graph-structured data, where entities are 
represented as nodes and their relationships as edges (Figure 2F). 
Unlike architectures that treat samples as independent vectors, 
GNNs iteratively update node representations by aggregating 
information from their neighbors, making them well suited 
to capture community structure, dependencies, and spatial 
organization. This is particularly relevant for single-cell and spatial 
transcriptomics, where cells can be connected by transcriptional 
similarity, gene co-expression networks, or spatial spots by physical 
adjacency.

A key strength of GNNs is that they operate directly on 
graphs while integrating with other deep models, which improves 
representation learning for biological data. Graph Convolutional 
Networks (GCNs) extend convolution to cell–cell graphs and 
enable semi-supervised label transfer. scGCN (Song et al., 2021) 
builds a hybrid graph that links reference and query datasets 
through mutual-nearest-neighbor connections in a shared low-
dimensional space and augments it with within-query neighbors. 
A GCN then propagates labels across this graph using variable-
gene features, aligning matched cells and flagging unlabeled cells. 
In ST, SpaGCN (Hu et al., 2021) constructs a weighted spatial 
graph that combines spot proximity, histology image features and 
gene expression similarity and then uses a GCN to learn spot 
representations for tissue domain detection.

Beyond CNNs, GNNs have been incorporated into standard 
and variational AE frameworks to enable representation learning 
guided by transcriptomic similarity and spatial proximity. 
Models such as GVAE (Graph Variational Autoencoders) 
(Simonovsky and Komodakis, 2018) integrate GNNs with VAEs, 
leveraging the generative capacity of VAEs together with graph-
based regularization. In scRNA-seq, graph-sc (Ciortan and 
Defrance, 2022) uses a graph autoencoder framework to learn 
low-dimensional embeddings used for clustering, while scGNN 
(Wang J. et al., 2021) extends this approach by reconstructing both 
gene expression and cell similarity graph structures. More recently, 
self-attention has been incorporated into GNN, giving rise to Graph 
Attention Networks (GATs) that learn edge-specific weights during 
neighborhood aggregation instead of averaging contributions 
equally from all neighbors as in GCNs (Veličković et al., 2018). 
STAGATE (Dong and Zhang, 2022) adapts this approach with a 
graph-attention autoencoder on the spatial neighbor network, where 
self-attention layers learns edge-specific weights normalized with 
softmax which are then used to update spot specific representations. 
In contrast, GraphST (Long et al., 2023) employs a GNN encoder 
with contrastive learning on the spatial graph, encouraging nearby 
neighbors map to similar representations and forcing distant spots 

to map to dissimilar ones. This contrastive formulation yields 
representations that are more robust to noise and batch effects, 
thereby improving domain separation as well as downstream 
clustering. 

2.7 Hybrid models

Recent advances in deep learning for single-cell and spatial 
transcriptomics have led to the development of hybrid models that 
combine the strengths of multiple architectures to address complex, 
multimodal challenges. These models integrate components 
from different frameworks such as VAEs, GANs, GNNs, and 
Transformers to capture diverse aspects of biological data, including 
nonlinear dependencies, spatial structure, temporal dynamics, and 
multimodal relationships. Unlike monolithic architecture, hybrid 
models are designed to be modular and flexible, enabling tailored 
solutions for specific biological questions.

One common hybrid design combines VAEs and GANs, 
leveraging the probabilistic latent space of the VAE for structured 
representation learning and the adversarial refinement of the GAN 
for improved sample generation. iMAP (Wang D. et al., 2021) (AE + 
GAN) exemplifies this approach by using a GAN to align latent 
spaces across batches.

Another combination integrates GNNs with VAEs 
(different from GVAE), where the GNN captures spatial 
or transcriptional neighborhood information, and the VAE 
provides a probabilistic and generative framework. For 
instance, scGNN (Wang J. et al., 2021) combines graph-based 
message passing with autoencoding to jointly reconstruct gene 
expression and preserve cell-cell similarity.

More recently, hybrid models have incorporated transformers 
and GNNs, merging global attention with local graph 
structure. STAGATE (Dong and Zhang, 2022) uses a GAT to model 
spatial dependencies, effectively combining the neighborhood 
aggregation of GNNs with the weighted feature integration of 
attention. This allows the model to identify both local tissue domains 
and long-range functional relationships. These hybrid approaches 
demonstrate that the future of deep learning in genomics lies 
not in isolated architecture, but in strategic integration, where 
each component addresses a specific biological or technical 
challenge. By combining the generative power of VAEs, the spatial 
awareness of GNNs, the global context of transformers, and the 
realism of GANs, hybrid models offer a more comprehensive and 
interpretable framework for analyzing the complexity of single-cell 
and spatial data. 

3 Applications of DL to scRNA-seq and 
ST analysis tasks

Most methods utilize unsupervised models, which do not 
require any “ground truth” or predetermined labels for the 
training data. This enables these methods to be trained on each 
individual experiment, customizing the model for each application. 
Alternatively, DL models can be pretrained on hundreds to 
thousands of datasets of a similar type to create a generalizable 
‘foundation’ model (Chen et al., 2024; Heimberg et al., 2025). 
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For example, the UNI foundation model of pathology images was 
trained on over 100,000 individual images (Chen et al., 2024), 
whereas stLearn (Pham et al., 2023) and scVI (Lopez et al., 2018) 
retrain their NNs to extract dataset-specific features. In contrast, 
supervised models require training data with a known ground 
truth answer for the specific task it is designed to perform. Most 
often, these models involve classification, such as stDeepSort, which 
was trained on various reference datasets to annotate cell types 
in single-cell data (Shao et al., 2021), or Cellpose, trained to 
recognize and segment cells based on thousands of manually labelled 
training images (Stringer et al., 2021).

The most common use of DL when analyzing high dimensional 
data, such as scRNA-seq and ST, is to learn a lower dimensional 
embedding space, conceptually similar to principal component 
(PCA) space but without the assumptions and constraints. This 
embedding space can then be used for a variety of tasks either within 
the DL framework or extracted and used in standard statistical 
analysis as a replacement for PCA. Here we will discuss the main 
approaches to generating DL embeddings and their application for 
scRNA-seq and ST data. 

3.1 Dimensionality reduction, clustering, 
and spatial domain identification

Clustering is one of the most fundamental analytical tasks in 
scRNA-seq and ST as it enables researchers to uncover distinct 
cellular populations and tissue substructures in an unsupervised, 
unbiased manner. Due to the, high-dimensional nature of 
scRNA-seq and ST data, clustering is always performed on a 
lower dimensional representation of the data (Figures 3A,B). 
Conventionally, this is PCA space (Luecken and Theis, 2019; 
Kiselev et al., 2019; Butler et al., 2018; Wolf et al., 2018), which 
is used to generate a cell-cell similarity graph, to which community 
detection algorithms such as Louvain (Blondel et al., 2008) 
or Leiden (Traag et al., 2019) clustering are applied. However, PCA 
assumes the lower dimensions to be linear and orthogonal and 
requires input data to be approximately normally distributed, thus 
requires pre-processing and normalization prior to use with scRNA-
seq and ST data. To overcome these limitations, autoencoders 
(AEs/VAEs) and transformers can be used, and their learned lower 
dimensional embedding can be substituted for normalization and 
PCA in the conventional clustering pipeline. These approaches 
preserve the unsupervised and unbiased nature of the analysis while 
relaxing the assumptions and constraints required by PCA.

For scRNA-seq, a common approach is to use a VAE as 
implemented in scVI (Luecken and Theis, 2019; Kiselev et al., 2019; 
Lopez et al., 2018; Wolf et al., 2018), which incorporates a negative 
binomial distribution in the cost-function to model raw scRNA-seq 
data. Unlike most DL methods, scVI is widely used in biological 
analysis and is a foundation for other methods including scArches 
(Lotfollahi et al., 2022) and scANVI (Xu et al., 2021). In independent 
benchmarks, scVI embeddings are found to perform similarly to 
classical PCA for identification of cell types (Liang et al., 2024; Li and 
Quon, 2019). Other DL clustering methods for scRNA-seq include 
scDCC (Tian et al., 2021) and scDeepCluster (Tian et al., 2019). 
ScDeepCluster uses an AE architecture with a decoder that 
generates parameters of a zero-inflated negative binomial which 

is used to calculate a probabilistic loss function for scRNAseq 
data. scDCC extends scDeepCluster by incorporating soft pairwise 
constraints (e.g., must-link/cannot-link pairs derived from marker 
genes or protein expression) into the loss function, allowing prior 
biological knowledge to guide the clustering process. The method 
demonstrated good performance on both small (thousands of 
cells) and large (tens of thousands of cells) datasets, where even a 
few thousand constraints representing a small fraction of possible 
cell pairs enhanced clustering performance based on quantitative 
scores (e.g., Adjusted Rand Index) and more meaningful clusters 
than scDeepCluster, especially in difficult cases like the worm 
neuron dataset. However, scDCC performed similarly to state-of-
the-art non-DL methods in their in-house benchmark. Whereas 
scDeepCluster marginally outperformed rival methods but did not 
compare to Louvain/Leiden clustering. Benchmarking of clustering 
performance is challenging due to the lack of truly orthogonal 
ground truth; however, these results suggest that there is no 
need for non-linear DL dimensionality reduction for cell type 
identification in scRNA-seq. In terms of applicability to biological 
discovery, scVI and scANVI have been used in multiple studies 
for dataset integration and embedding, demonstrating their utility 
(Salcher et al., 2022; Lindeboom et al., 2024; Yang LX. et al., 2025).

In addition to the above methods, which train a model on one 
specific dataset, foundation models trained on hundreds of datasets 
are increasingly common in scRNA-seq. Pre-trained models, such 
as scGPT (Cui et al., 2024) or SCimilarity (Heimberg et al., 2025) 
project data onto a common lower-dimensional space which could 
be used for clustering and novel cell type discovery. Additionally, this 
lower dimensional data can also be used for automatic annotation, 
which we will discuss further in the next section, as this space 
can be biased towards the most frequent cell types and miss rare 
cell types (Cui et al., 2024). scAtlasVAE took a foundation model 
approach to specifically examining T-cell heterogeneity and was 
able to characterize novel T-cell phenotypes when used in an 
unsupervised manner, identifying 18 unique and reproducible T-
cell states (Xue et al., 2025).

DL approaches are also common for ST clustering due 
to the ease of incorporating image and/or spatial information 
into such models compared to the standard clustering pipeline. 
GCNs can incorporate spatial information by linking adjacent 
cells/spots into a spatial-proximity graph, leading to their use 
in methods such as SpaGCN (Hu et al., 2021), STAGATE 
(Dong and Zhang, 2022), GraphST (Long et al., 2023), SiGra 
(Tang et al., 2023), and DeepST (Xu et al., 2022). Similar 
to scRNA-seq, benchmarking studies find that DL approaches 
perform similarly to non-DL methods that also incorporate spatial 
information (Yuan et al., 2024; Hu et al., 2024a), but outperform 
methods that do not incorporate spatial information.

Image information is typically incorporated into ST clustering 
using a separate image-focused AE/VAE or GNN, which learns 
salient image features from individual image patches associated with 
the gene expression spots. These are then integrated with gene-
expression features to obtain a combined embedding for each tissue 
spot. Although deep learning is commonly used to extract complex, 
high-level image features in ST clustering, some methods use non-
DL approaches to integrate spatial context through hand-crafted 
image features. For instance, Squidpy (Palla et al., 2022) computes 
interpretable morphological features—such as summary statistics 

Frontiers in Bioinformatics 11 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1715821
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Tchatchoua Ngassam et al. 10.3389/fbinf.2025.1715821

FIGURE 3
Deep learning application in single cell transcriptomics and spatial transcriptomics. (A) Dimensionality reduction. High-dimensional data is projected 
into low-dimensional space (e.g., UMAP). (B) Cells are clustered into distinct groups represented by different colors. (C) Automatic annotation of cell 
clusters using a reference dataset. (D) Integration and batch correction across different batches. (E) Data is denoised to recover true signal. (F) Data 
imputation to infer missing gene expression. Grey blocks (left) represent missing values, and pink blocks (right) represent imputed values. (G) Synthetic 
cells are generated to enrich rare cell type (light grey shading). (H) A new dataset is generated by learning distribution parameters from a reference 
  (Continued)
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FIGURE 3 (Continued)

dataset. (I) Each spatial transcriptomics spot is resolved into cell type fractions. (J) Cell-cell interactions between different cell types (e.g., dendritic 
cells, cancer cells, and T cells) are modeled through ligand-receptor signaling to infer intercellular communication. (K) Directional RNA velocity 
vectors are projected onto a UMAP to infer cell state transitions and lineage trajectories.

(mean, standard deviation), histogram-based quantiles, or textural 
properties (contrast, homogeneity) derived from co-occurrence 
matrices—for each spatial spot directly from the histology image. 
Similarly, SpaGCN (Hu et al., 2021) integrates image information 
by mapping each spatial spot to its corresponding location in the 
H&E image, calculating a smoothed mean RGB color value from a 
local pixel neighborhood, and then combining these values into a 
single weighted feature that reflects tissue patterns. Whereas those 
which use AE/VAE extracted images, gain a significant benefit from 
the image features, but most of the performance is driven by the 
gene-expression information (Tang et al., 2023; Li B. et al., 2024).

All of these methods have been demonstrated to reproduce 
known anatomy, but none have demonstrated a capability to identify 
novel, biologically meaningful structures, due to limitations in 
validation and ground truth availability. Thus, these approaches 
should be considered validated as a supplement to aid anatomical 
annotation by an expert. However, their capacity for novel discovery 
remains unknown.

Overall, AE and VAE methods for scRNAseq perform 
comparably to PCA and may be good alternatives when working 
with very large datasets. In particular, scVI has proven strong 
performance in many studies. For ST, DL approaches are a necessity 
when integrating image information into lower dimensional 
embeddings. GraphST is currently the best performing DL method 
for ST spatial domain identification. 

3.2 Automatic annotation

Increasingly, scRNA-seq clustering is being supplemented with 
direct algorithmic annotation of cells with their cell type identity 
(Luecken and Theis, 2019) (Figure 3C). Comparing novel cells 
to existing annotated scRNA-seq dataset enables the inference of 
cell type identity through simple guilt-by-association approaches, 
and many early methods simply used standard similarity metrics 
or standard machine-learning algorithms such as support vector 
machines or random forests while achieving reasonably accurate 
results (Kiselev et al., 2018; Abdelaal et al., 2019). However, these 
methods tended to perform poorly on fine-scale classification of 
subtypes or cell-states.

DL models are highly amenable to supervised classification tasks 
such as cell type annotation, and, once trained, are highly efficient 
and scalable to millions of novel data points (Cheng et al., 2023a). 
Thus, dozens of novel DL models have been developed for this task 
using a variety of architectures, including GPT-4 and scBERT - large 
language models which use marker genes to annotate cells using 
the scientific literature (Yang et al., 2022; Hou and Ji, 2024); scGAA 
and TOSICA - attention-based transformer models which compare 
novel cells to narrow reference datasets (Chen J. et al., 2023); and 
pre-trained foundation models, such as scGPT (Cui et al., 2024) 
or CellFM (Zeng et al., 2025).

Most of these methods achieve annotation accuracies of 
∼80–90%; however, in many cases, benchmarking is performed by 
splitting individual datasets into training and test sets, which is 
biased in favor of good model performance. This is because there 
are no systematic batch effects between the training and test data, 
as would be present in a real use case when these models are 
applied to completely novel scRNA-seq dataset (Yang et al., 2022; 
Cui et al., 2024; Zeng et al., 2025; Cheng et al., 2023a). Only 
scGPT was tested on a left-out data partition, achieving good results
(accuracy > 85%) for 70% of cell–types; however, performance 
rapidly declined as the difference between query and reference 
datasets increased, with fewer than 50% of cell types achieving good 
performance when the query dataset originated from an unseen 
disease state (Cui et al., 2024). Many of these methods are so 
recent that no independent benchmarking is available. However, 
in previous independent benchmarks, DL models outperformed 
many non-DL annotation algorithms but did not outperform 
a support vector machine trained on the same reference data 
(Kiselev et al., 2018; Chen J. et al., 2023). In these independent 
benchmarks, performance was found to rapidly degrade for DL 
models when reference data does not exactly match the query data, 
in agreement with the results shown for scGPT. However, DL models 
do show promise in their ability to accurately distinguish similar cell 
subtypes when provided sufficient training data (Zeng et al., 2025).

In discovery research, automatic annotation is typically used 
simply as a first pass, which is then manually checked and 
refined. Thus, even imperfect results from automatic annotation 
can still be useful to guide and accelerate annotation efforts 
(Clarke et al., 2021). Algorithms that assign a confidence score 
to annotations are most useful, since novel cell types may 
be discovered where automatic annotation has low confidence 
(Chen J. et al., 2023; Ergen et al., 2024). DL models naturally 
provide quantitative scores for annotation confidence, enhancing 
their utility in this use-case. In addition, as scRNA-seq resources 
continue to grow, approaches such as foundation models may be 
more easily expanded or fine-tuned to incorporate new training 
data compared to approaches based on traditional statistics. Thus, 
researchers should either use the method with training data most 
similar to their own, or if that is unknown we recommend 
scGPT for human data due to its extensive benchmarking so 
users can accurately assess how confident they should be in
the results. 

3.3 Integration and batch effect correction

Transcriptomic experiments often include multiple biological 
replicates which may be collected across multiple experimental 
batches, individuals, tissues, or different platforms, leading 
to various non-biological variations known as batch effects 
(Figure 3D). These technical artifacts cause identical cell types from 
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different batches to appear distinct (Luecken et al., 2022; Chazarra-
Gil et al., 2021; Tran et al., 2020). Early batch effect correction 
approaches, such as Combat (Johnson et al., 2007), used statistical 
regression to remove batch covariates. However, these methods tend 
to remove important biological variation unless it is specified as a 
priori within the model. To circumvent this, the next-generation of 
methods used techniques such as canonical correlation analysis or 
mutual nearest neighbors to identify shared biological variation 
across batches to preserve, while removing factors of variation 
ascribed to batch effects (Butler et al., 2018; Haghverdi et al., 2018; 
Hie et al., 2024). The current state-of-the-art non-DL integration 
method is Harmony (Korsunsky et al., 2019), which uses an iterative 
clustering then correction approach and is consistently among the 
top-performing methods in recent benchmarks (Tran et al., 2020;
Antonsson and Melsted, 2024).

DL approaches to data integration modify the AE/VAE 
approach, as described above, to learn a ‘joint’ embedding space 
that captures biological groups while mixing different technical 
batches. A common approach to this modification is the use of 
adversarial learning, which penalizes the model for embeddings that 
leave batches separate (Hrovatin et al., 2024). Methods using this 
approach, such as scVI (Lopez et al., 2018), scANVI (Xu et al., 2021), 
and SAUCIE (Amodio et al., 2019), are not constrained by 
the linearity assumptions required by many non-DL methods, 
thus potentially enabling more efficient batch effect removal. An 
alternative approach uses conditional AE/VAEs which include the 
batch label in the joint embedding; data is then integrated by treating 
the batch effect as a linear transformation in the lower-dimensional 
space and projecting all batches onto a single reference sample or 
reference dataset. Prominent methods using this approach include 
scGen (Lotfollah et al., 2019) and scArches (Lotfollahi et al., 2022). 
Foundation models, such as scGPT, can also be fine-tuned to 
create project-specific joint embeddings. The extensive pre-training 
of such models includes ignoring batch effects and emphasizing 
conserved biology.

Despite theoretical advantages of DL methods for batch 
integration, they have often struggled in benchmarking studies, 
rarely matching the performance of Harmony (Luecken et al., 2022; 
Korsunsky et al., 2019; Lee et al., 2023). One potential 
cause of their poor performance is a tendency to over-
correct and remove biological information, particularly when 
batches have substantially different cell type proportions 
(Luecken et al., 2022; Hrovatin et al., 2024). This can be mitigated 
by explicitly modeling cell types to ensure their preservation, as 
can be done for scGen and scANVI; however, since the goal of 
integration is usually to merge samples prior to clustering and 
cell type annotation, such an approach is generally limited to 
meta-analyses and atlasing projects.

While scRNA-seq integration can be achieved even with 
linear models, DL methods have been more successful when 
integrating multi-omics data, i.e., joint scRNA-seq and single-
cell ATAC-seq (Lee et al., 2023). DL models excel at projecting 
different data types, such as multiome data, into similar 
embedding spaces, facilitating their integration (see section 3.9). 
This capability is further enhanced when combined with 
graph-based representations, which model cells as nodes and 
similarities or spatial relationships as edges. Graph structures 
enable the propagation of information across neighboring cells, 

effectively capturing local dependencies, preserving topology, and 
improving the alignment of biological states across datasets. This 
is particularly valuable for integrating spatial transcriptomics 
data or enforcing structural continuity multiple slides of the 
same tissue (Khan et al., 2025; Zhang C. et al., 2024). Similar 
to single-slide clustering performance, the top two methods 
for ST integration are a Bayesian statistical approach, (Li 
and Zhou, 2022), and a DL approach, (Long et al., 2023;
Hu et al., 2024a).

While some DL methods are competitive with state-of-the-
art non-DL approaches for dataset integration, there is no clear 
advantage to using DL for these tasks. Scalability is often cited as the 
main advantage of DL integration, there are several highly scalable 
non-DL approaches as well, including Harmony. Two non-DL 
approaches are consistently among top-performers in independent 
benchmarks: Harmony and scMerge (Luecken et al., 2022; 
Tran et al., 2020; Antonsson and Melsted, 2024; Lin et al., 2019). 
When integrating experimental replicates containing identical 
cell type frequencies Harmony is recommended, however, if 
samples contain some non-overlapping cell type scMerge is 
preferable (Tran et al., 2020). For atlasing and meta-analyses it 
can be more optimal to utilize scANVI if cell type labels are 
available for the respective datasets (Luecken et al., 2022). For 
ST data, these scRNAseq methods can be used when data is 
aggregated at the cell or spot level; however spatial information 
is lost and this often results in poor spatial contiguity of 
integrated clusters. For spatially contiguous ST data the Bayesian-
statistics based BASS algorithm has been shown to be the 
best option (Hu et al., 2024). However, altering observed data can 
only result in a loss of information, thus integration should only be 
used when inspection of the data indicates substantial batch effects
are present. 

3.4 Denoising and imputation

Denoising and imputation are two closely related but 
conceptually distinct tasks in single-cell transcriptomics. Denoising 
refers to the reduction of technical noise such as amplification 
bias, batch effects, or stochastic dropout while preserving the true 
biological signal (Figure 3E). The goal is not to “fill in” missing 
values, but to refine observed expression levels to better reflect 
underlying biology. In contrast, imputation explicitly aims to 
predict unobserved or missing values, such as zero counts, that 
are likely due to technical dropout rather than true biological 
absence (Figure 3F). While both processes can result in modified 
gene expression matrices, their objectives differ: denoising aims 
to improve signal-to-noise ratios, while imputation attempts 
to recover missing information. Despite this distinction, the 
terms are often used inconsistently in the scRNA-seq and ST 
literature. Many methods described as “imputation tools” (e.g., 
MAGIC (van Dijk et al., 2018), scImpute (Li and Li, 2018)) 
perform what is effectively denoising, as they smooth expression 
values without necessarily distinguishing between true zeros
and dropouts.

Denoising data was one of the first applications of DL models 
(Vincent et al., 2008). AE models have been used to denoise 
many types of data in various contexts; in the biomedical field, 
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(Gondara, 2016), (Su et al., 2015), and many–omics dataset 
(Eraslan et al., 2019; Lal et al., 2021; Webel et al., 2024). 
Due to the low input material in single-cell assays, there are 
many missing values, and sampling- or RNA-capture-related 
noise is high relative to the true biological signals. Hence, 
many DL algorithms have been developed to denoise scRNA-seq
and ST data.

One of the first and most used approaches is deep-count 
autoencoder (DCA) (Eraslan et al., 2019). DCA modified the 
traditional AE architecture to output parameters of a statistical 
distribution for each input gene, rather than a single predicted 
value. Multiple distributions are available, including negative 
binomial and zero-inflated negative binomial for RNA-seq 
data. This alteration allows DCA to account for uncertainty 
in the input data and biological stochasticity. Another popular 
method, scVI, takes a similar approach (Lopez et al., 2018). 
Many other model designs have been explored, including CNNs 
(Zhang W. et al., 2024), gene partitioning and sub-networks 
(Arisdakessian et al., 2019), GCNs (Huang et al., 2023), and 
contrastive learning (Xu et al., 2020; Shi et al., 2023). Application of 
these methods to biological datasets can improve the interpretability 
of the data; for instance, DCA increased CD3E expression from 80% 
to 99.9% in T cells and recovered ITGAX expression consistent with 
NK biology.

Only DCA, scVI, and DeepImpute have been independently 
benchmarked alongside non-DL denoising and imputation 
methods (Cheng et al., 2023b; Andrews and Hemberg, 2019; 
Hou et al., 2020; Huang et al., 2025). These benchmarks find 
conflicting results, reflecting differences in testing datasets and 
specific tasks used to evaluate performance. When evaluated on 
their ability to recover corrupted expression values or improve 
accuracy of automatic cell type annotation, DL denoising methods 
performed well, similar to other imputation and denoising methods. 
For unsupervised clustering and pseudotime analysis, results range 
from modest improvement to worse performance than the raw 
data, depending on the specific dataset and analysis pipeline. 
Whereas for gene-gene correlations, differential expression, cell 
type markers, and cell-cell interactions, all benchmarks find that 
denoising introduced a significant number of false-positive results. 
Hence, for scRNA-seq data, denoising remains controversial and 
rarely used in discovery research.

For ST data, integration with scRNA-seq is more common 
than direct denoising of ST data alone, which is discussed later 
in this manuscript. However, some methods do exist to directly 
denoise ST data using GNNs (Tang et al., 2023; Duan et al., 2024). 
Benchmarking of these methods is more limited, but SiGra 
is shown to increase the number of differentially expressed 
genes - though the extent to which these are false positives 
is not explored - and to improve distinctiveness of clustering. 
Whereas Impeller (Duan et al., 2024) is only shown to recover 
masked expression values.

Overall, it is not recommended to perform denoising or 
imputation except to enhance the sensitivity of clustering analysis, 
and caution must be exercised in the interpretation of results to 
avoid false-positives. Integration across experiments or modalities 
is likely a more useful task and more reliable approach for 
increasing statistical power by increasing the number of samples in 
discovery research. 

3.5 Data generation and augmentation

Deep learning has increasingly been leveraged for data 
generation and augmentation in scRNA-seq and ST to address 
limitations posed by small sample sizes, rare cell types, and 
costly experimental procedures. Data augmentation in scRNA-
seq and ST analysis is used differently than in machine learning 
and typically refers to the computational creation of additional 
data points, and adding them - ‘augmenting’ - to the original 
measured data (Figure 3G). In contrast, we will use ‘data generation’ 
to describe methods which create data either for the purposes of 
simulating data for benchmarking, or to generate data of a different 
modality–e.g., predict scRNA-seq from bulk RNA-seq.

In scRNA-seq, VAEs-based models like scVI and scVAE
(Li and Li, 2018) can be used to generate synthetic cells that preserve 
the statistical properties and cellular identities of the original cell 
(Figure 3H). Generative models such as cscGAN (Xu P. et al., 2023) 
and scGFT (Vincent et al., 2008) have demonstrated the ability 
to generate realistic synthetic cells that preserve intrinsic gene 
expression profiles of the original data. Current state-of-the-art 
clustering and trajectory analysis algorithms, such as maximum 
modularity or minimum spanning trees, can be biased with 
respect to the number of cells, leading to poor performance 
when datasets include rare cell types. Selective generation and 
augmentation using cscGAN or scGFT can rebalance datasets, 
which were shown to improve clustering and trajectory inference 
performance to correctly identify rare cell types and accurately 
resolve trajectory branches. However, similar to denoising, data 
augmentation involves artificially amplifying the power of statistical 
tests, thus. are likely to result in inflated type-1 errors if used for 
differential expression, though this has not yet been tested.

In spatial transcriptomics, data generation is typically used 
for denoising purposes (Hu et al., 2021; Tang et al., 2023; 
Pratama et al., 2025). For instance, SiGra, discussed previously, 
replaces observed data with generated data to perform its denoising. 
Similarly, the STAGE model focuses more on accurate data 
generation but uses that generated data to recover and denoise 
down-sampled data as well as to impute between sequential 
ST slices (Li et al., 2024b). Both methods integrate spatial 
embeddings with gene expression features using autoencoders and 
other representation learning approaches to learn a feature space, 
from which new samples can be drawn and decoded into new 
expression data. SiGra uses both gene expression and features from 
matching histology, whereas STAGE uses gene expression only. 
Compared to single-cell RNA-seq, there are currently relatively few 
methods dedicated specifically to data generation and augmentation 
in ST. While emerging techniques focus on integrating image 
features, spatial coordinates, and gene expression for augmentation, 
these models only generate gene expression data, not matching 
image data, thus lacking the ability to fully generate ST data.

Similar to imputation, there is substantial risk of increasing 
Type-I errors when augmenting datasets with synthetically 
generated data. Thus, such approaches must be used with care. 
For data augmentation, the main utility is in facilitating detection 
of rare cell types or smoothing out cell density along developmental 
trajectories to better align data with the limitations and assumptions 
of the analytical tools for clustering and trajectory analysis. The 
only other use for data generation is for benchmarking algorithms, 
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however, most DL generative algorithms lack the fine-scale control 
required to design specific ground-truth cases for that type of testing 
thus this area is still dominated by small-scale statistical simulation 
methods often custom designed for a specific benchmarking task. 

3.6 Deconvolution

In transcriptomics, deconvolution is the decomposition 
of bulk expression data into cell type proportions or cell 
type specific expression (Im and Kim, 2023) (Figure 3I). 
Deconvolution is typically applied to bulk RNA-seq or low-
resolution ST where each spot typically contains multiple 
cells. Methods for bulk RNA-seq deconvolution can be 
broadly grouped into statistical approaches: (Chu et al., 2022; 
Peng et al., 2019; Wang et al., 2019):enrichment-based methods 
(Aran et al., 2017; Yoshihara et al., 2013) and machine learning 
models (Newman et al., 2015; Newman et al., 2019). With the 
emergence of deep learning, at least 13 DL-based deconvolution 
tools have been developed for bulk RNA seq using a scRNA-
seq reference (Lomas Redondo et al., 2025). These methods are 
typically based on multilayer perceptrons (MLPs), autoencoders, or 
transformers, and are trained to reconstruct cell type proportions 
from mixed bulk expression profiles. Scaden (Menden et al., 2020) 
was one of the first deep learning tools in this area. It uses an 
ensemble strategy that combines three deep neural networks with 
different numbers of layers, activation functions, and dropout 
settings to improve generalization. DAISM-DNNXMBD (also called 
Aginome-XMU) instead trains a separate deep neural model for 
each cell type to predict proportions (Lin et al., 2022).

Bulk deconvolution methods are typically benchmarked 
by comparing their predictions against cell type proportions 
derived from in vitro experiments or from in silico bulk samples 
generated using single-cell RNA-seq data. Both Scaden and DAISM-
DNNXMBD have been independently benchmarked among the top-
performing methods, with Scaden suffering high false-positive rates 
(Tran et al., 2023) and DAISM performing well in both coarse-grain 
and fine-grain deconvolution (White et al., 2024). This demonstrates 
that deep learning provides a strong alternative to traditional 
approaches. Newer methods may outperform DAISM, but this 
cannot be established until a systematic benchmark study has been 
performed that includes the other DL-based deconvolution tools.

Overall, bulk RNA-seq deconvolution enables researchers to 
reduce experimental costs while still gaining insight into the tumor 
or tissue microenvironment. However, the performance of DL 
deconvolution methods requires high quality training dataset and is 
prone to poor generalization (Wolfram-Schauerte et al., 2025). Most 
researchers still rely on traditional deconvolution approaches, and 
only a few studies have utilized DL-based tools for deconvolution 
(Chen et al., 2025; Codino et al., 2025; D’Sa et al., 2025).

Bulk RNA-seq deconvolution tools can be used for ST 
data, but additional improvements in performance may be 
achieved by incorporating the spatial information. Many ST 
deconvolution methods use non-DL approaches such as numerical 
optimization (Dong and Yuan, 2021), or probabilistic models 
(Kleshchevnikov et al., 2022). Several DL-based deconvolution 
methods not only estimate the cell type fractions but can 
also estimate the number of cells per spot, generate gene 

expression for each deconvolved cell, or estimate individual cell 
locations (Gaspard-Boulinc et al., 2025).

Reference-based DL deconvolution methods use three general 
strategies: supervised-learning, similarity-based integration, and 
foundation models. Supervised-learning creates synthetic ST spots 
by combining scRNA-seq data and use this as ground truth to 
train a neural network to predict cell type fractions from the 
aggregated expression profile (Lund et al., 2022; Bae et al., 2022; 
Zhan et al., 2025; Xu H. et al., 2023; Mañanes et al., 2024). Similarity-
based integration methods embed scRNA-seq and ST data into 
a shared space through graph construction (Long et al., 2023; 
Ding et al., 2024; Song and Su, 2021; Li and Luo, 2024; Yin et al., 2024; 
Zhang et al., 2023), autoencoders (Liao et al., 2022; Hao et al., 2024c; 
Coleman et al., 2023; Li H. et al., 2022), or optimization 
(Biancalani et al., 2021) to match ST spots to scRNA-seq cell types 
based on similarity or distance measures. In some methods, pseudo-
spots are generated to aid embedding (Ding et al., 2024; Song and 
Su, 2021; Li and Luo, 2024; Yin et al., 2024; Zhang et al., 2023; 
Li H. et al., 2022). UniCell Deconvolve (UCD) is the only foundation 
model trained for deconvolution (Charytonowicz et al., 2023). 
It is a feedforward neural network trained on over 840 cell 
types from 899 single cell datasets. UCD uses transfer learning 
to adapt the foundation model to specific context where users 
have an option to input a contextualized reference profile to 
fine-tune a regression model using UCD base embedding. UCD 
outperformed other methods on synthetic mixtures from its 
own training data, but had only average performance on out-
of-sample tests unless it was fine-tuned on the relevant datasets 
(Charytonowicz et al., 2023). An alternative approach is taken 
by scResolve, which imputes pixel-level gene expression which is 
combined with cell-segmentation of the respective histology image 
to infer single-cell resolution expression (Chen H. et al., 2023). This 
enables reference-free deconvolution and potentially novel cell type
discovery.

Due to the wide variety of spatial deconvolution tools, no 
systematic benchmark study has yet been conducted across 
all methods, and most DL-based approaches have not been 
benchmarked. Benchmarking is especially challenging in ST 
deconvolution since ground truth is not available; instead, 
simulated ST datasets generated from scRNA-seq are typically 
used. Tangram (Biancalani et al., 2021) and DSTG (Song and 
Su, 2021) have been benchmarked in multiple independent studies 
alongside non-DL methods (Li et al., 2023; Chen J. et al., 2022; 
Yan and Sun, 2023; Li B. et al., 2022). While Tangram was 
shown to be superior in predicting the spatial distribution of 
transcripts in one study, both Tangram and DTSG generally 
ranked within the top third of approaches benchmarked. 
However, the top three performing methods overall were 
non-DL approaches. DL methods have the advantage of 
integrating multimodal data, such as histology images, which may 
provide additional information such as cell morphology to aid
deconvolution.

For discovery focused researchers cell2Location 
(Kleshchevnikov et al., 2022) and SpatialDWLS (Dong and 
Yuan, 2021) remain top choices for deconvolution when reliable 
reference single-cell datasets are available. Tangram is an 
acceptable alternative, and scResolve is the only method capable 
of deconvolution when no reference single-cell data is available. 
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3.7 Cell-cell interactions

A key goal of single-cell RNAseq was to identify interactions 
between different cell types which would normally be obscured 
in bulk tissue samples. Many heuristic methods have been 
developed for this task, including CellChat (Jin et al., 2021), 
CellPhonedb (Efremova et al., 2020), SingleCellSignalR (Cabello-
Aguilar et al., 2020), and NicheNet (Browaeys et al., 2020), which 
use databases of ligand-receptor (LR) pairs and calculate a co-
expression score of each pair between pairs of cell types. Some of 
these have been expanded to account for spatial location, for use with 
spatial transcriptomics (Efremova et al., 2020; Dimitrov et al., 2024). 
Currently, there are only a few DL approaches to inferring these 
interactions in single cell data and none for spatial transcriptomics.

DeepCCI (Yang et al., 2023a) integrates ResNet and a GCN 
model to infer cell-cell interactions with a common decoding 
layer. This decoding layer is trained using consensus interactions 
obtained from the heuristic methods. As a result, in their in-house 
benchmarking DeepCCI identifies the same interaction as multiple 
heuristic methods though may have fewer false-positive results than 
any of the heuristic methods used alone. It is unclear whether 
DeepCCI gains anything from the DL components, as opposed to 
their in-house consensus of the heuristic models used to train it.

An advantage of DL approaches is the ability to integrate 
multiple data sources; this is utilized by GraphComm (So et al., 2025) 
to integrate pathway annotations in addition to direct LR 
interactions into a prior interaction probability between each LR 
pair. Coexpression of LR pairs is calculated and is integrated with 
the prior using a graph attention network. The embedding contains 
both cell types and LR genes and is used to generate LR pairwise 
scores and cell type x cell type scores by multiplying the respective 
embeddings. Alternatively, ScTenifoldXct (Yang Y. et al., 2023) 
and scSDNE (Jia et al., 2025) first infer gene-gene dependencies 
either using a DL model (scSDNE) or a regression model 
(ScTenifoldXct), which is combined with a LR coexpression 
score which is then used to generate a gene embedding space 
using a graph-autoencoder architecture. Cell-cell interactions 
are inferred from proximity of LR pairs in the gene embedding 
space. ScSDNE and ScTenifoldXct have the advantage of using 
semi-supervised learning, whereas GraphComm relies on database-
derived LR interactions to train their embedding space. Limited 
in-house benchmarking is available for these, but they perform 
similarly to heuristic methods, with GraphComm seeming to 
have higher sensitivity, whereas scSDNE and ScTenifoldXct 
are more conservative, performing similar to a consensus of 
heuristic methods.

Cell-cell interaction inference remains challenging, primarily 
due to the lack of any true gold-standard benchmarks. In many 
cases, methods are benchmarked using spatial transcriptomics data, 
as distant cells are unlikely to interact, but this cannot provide 
individual LR interaction information, or with very small sets of 
manually curated interactions. This is particularly problematic for 
DL algorithms due to their reliance on training data to optimize 
the models. Typically, researchers use multiple LR algorithms and 
use some kind of consensus as evidenced by the popularity of 
the LIANA package (Dimitrov et al., 2024). The natural ability of 
DL to integrate multiple types of data may be an advantage here, 
as significant amounts of perturbation data are available which 

could potentially be used to augment cell-cell interaction inference. 
However, currently there is little evidence due to lack of gold-
standard datasets to favour any specific method over any other. 

3.8 Combining single-cell and spatial 
transcriptomics

ST and scRNA-seq are complementary techniques; scRNA-seq 
accurately assesses the entire transcriptome for each individual cell 
but it loses all spatial information, whereas in ST spatial information 
is preserved but either data is not at single-cell resolution and/or 
does not capture the entire transcriptome. As a result, many methods 
have been developed to combine scRNA-seq and ST using different 
approaches. SIMO uses optimal-transport to align single cells to 
ST based on only RNAseq or both RNA and ATACseq modalities 
(Yang P. et al., 2025), Alternatively CellTrek (Wei et al., 2022) 
uses mutual-nearest-neighbour integration combined with random 
forests to predict spatial location of individual cells from proximity 
within the integrated embedding space. In in-house benchmarking 
CellTrek performed well on simulated ST data but was not compared 
to DL alternatives.

One of the first and most established models is Tangram, which 
learns a mapping between scRNA-seq and ST that optimizes the 
spatially correlation between mapped and observed gene expression 
(Biancalani et al., 2021). The authors demonstrate its effectiveness 
in recapitulating known expression patterns across cortical layers. 
In independent benchmarks, Tangram out-performs other methods 
for recovering downsampled gene expression values but shows 
modest performance at predicting cell type composition of ST 
data (Li B. et al., 2022). However, notably neither the original 
publication nor independent benchmarks assessed potential for 
generation of false-positive results. Generative DL models can 
predict scRNA-seq profiles from ST data based on a reference 
scRNA-seq dataset. For example, SpatialScope uses a probabilistic 
DL model to predict cell type composition of individual ST spots 
and to decompose gene expression by cell type, and then uses a 
generative DL model to create scRNA-seq for individual cells based 
on the decomposed profiles (Wan et al., 2023). In contrast, stImpute 
predicts gene expression for unmeasured genes in imaging-based ST 
using a joint AE embedding and GNN, based on known gene-gene 
relationships (Zeng et al., 2024).

Prediction of additional data modalities or higher 
resolution data from cheaper, lower resolution experimental 
protocols is a popular use-case for DL method development. 
ScSemiProfiler predicts scRNA-seq from bulk RNA, which 
has the advantage of being able to predict cell type specific 
differences in expression which is not possible with non-generative 
deconvolution methods (Wang et al., 2024). Using matched bulk 
and scRNA-seq data from COVID-19 patients, the authors were 
able to show their method could capture individual difference 
beyond what was present in the training data. However, they did 
not evaluate whether scSemiProfiler’s cells would lead to the same 
biological conclusions on the effect of COVID-19 as the original 
scRNA-seq. Thus, it remains unclear if this approach is viable for 
discovery research.

Lastly, over a dozen algorithms have been published that predict 
ST expression data from histology images. Histology images are 
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plentiful and easily collected, whereas ST is relatively rare and 
expensive; therefore, accurate prediction of the latter from the 
former would be very valuable. However, performance of all current 
methods is relatively poor with correlations between predicted 
gene expression and true measured gene expression below 0.2 for 
most genes (Wang et al., 2025). While performance is best for genes 
with strong spatial patterning, correlations remain below 0.5 in 
nearly all cases, still far below an accuracy that would be useful for 
discovery research. Such methods may improve as ST experimental 
platforms improve, though it is also possible that much of gene 
expression does not manifest as any visible difference in histology 
images, thus placing a hard limit on the maximum accuracy of these 
methods. The most likely limitation of current models, however, 
is the availability of ST training data with high quality matching 
histology images as most publicly available data only release a 
compressed low-resolution image.

Overall, discovery researchers are recommended to choose 
methods which project single-cells onto ST data rather than any 
generative approaches, such as SIMO or CellTrek, and to use 
multiple different methods to ensure conclusions are robust to the 
approach chosen. While generative DL approaches are promising for 
converting between transcriptomic technologies, there is insufficient 
benchmarking in real-world use cases to know whether these 
methods lead to false or misleading conclusions. 

3.9 Integrating multiomic data

ST data can be considered multiomic in that images and 
spatial coordinates can be treated as another layer of data to be 
integrated. However, more often multiomic data refers specifically 
to single-cell data where both mRNA is captured and sequenced 
and DNA is capture either for direct DNA sequencing or most 
often for ATAC assays, which measure open chromatin across the 
genome (Mimitou et al., 2021; Cao et al., 2018; Reyes et al., 2019). 
While first developed for single cells, equivalent assays have 
been developed for spatially-resolved assays (Jiang et al., 2023; 
Guo et al., 2025; Deng et al., 2022). However, currently only 
simultaneous single-cell RNA-seq and ATAC-seq has been 
developed into a simple off-the-shelf platform, thus is by far the 
most used multiome technique.

Popular methods for single-cell multiome (scMultiome) data 
integration and analysis include ArchR (Granja et al., 2021), 
Signac (Stuart et al., 2021), and MOFA (Argelaguet et al., 2020) 
which perform data normalization, dimensionality reduction, and 
clustering. Signac and ArchR in addition identify correlated 
open-chromatin peaks and nearby gene-expression which can be 
used to infer gene-regulatory networks. These approaches are all 
statistical approaches, with ArchR and Signac both using latent 
semantic indexing for data embedding, and MOFA using a Bayesian 
probabilistic model for joint factor analysis.

DL approaches have several advantages for multiomic data 
integration. They can innately align different input data such that 
ATAC peaks do not have to be assigned to genes prior to integration. 
They can be regularized to learn comparable representations for 
different modalities from the data rather than using heuristic 
normalization strategies. Finally, the architecture can be data-
type invariant allowing the same structure to be used for many 

different data modalities. The general structure of DL multiome 
methods starts with modality-specific AEs or VAEs then combines 
the modality-specific embeddings into a single representation 
(Ashuach et al., 2023; Gong et al., 2021; Li G. et al., 2022; Cao and 
Gao, 2022).

MultiVI (Ashuach et al., 2023) uses this approach to expand 
the scVI architecture to multiome data by penalizing the model 
for divergent representations for the same cell in different 
modalities then using the average representation for each cell. 
This enables efficient integration of paired and unpaired datasets 
since unpaired data simply uses the single representation value. 
Cobolt (Gong et al., 2021) has a very similar architecture but uses 
a Dirichlet prior and reconstructs the original matrices rather than 
using the decoder to estimate the original distribution. scMVP 
(Li G. et al., 2022) has the same overall architecture but uses self-
attention and mask-attention encoders for each modality and 
simply concatenates the latent spaces for the joint embedding. 
Whereas GLUE (Cao and Gao, 2022) uses heuristic methods to infer 
ATAC-peak to RNA-gene associations which are used as knowledge 
graph as an additional decoder output from the concatenated 
multiomic latent space of their AE.

In multiple independent benchmarks (Xiao et al., 2024; 
Liu et al., 2025; Hu et al., 2024b; Fu et al., 2025), Seurat’s 
weighted nearest network (WNN) consistently output performs 
other integration methods in perfectly matched RNA + ATAC data, 
whereas MultiVI is consistently optimal for partially overlapping 
datasets. In contrast, GLUE is the best performer when ATAC 
and RNA datasets are from separate samples. Notably, these 
results were simply for the level of integration of the lower 
dimensional embedding, i.e., the mixing of ATAC and RNA 
modalities while preserving or enhancing cell type identities. One 
benchmark (Hu et al., 2024b) evaluated modality prediction, and 
while MultiVI was a top performer, all methods had relatively poor
performance (correlation < 0.4) generally due to overestimation
for genes upregulated in a particular group of cells, this is in line with 
other benchmarking of imputation methods where data smoothing 
typically inflates signals resulting in false-positives (Andrews and 
Hemberg, 2019).

Overall MultiVI and GLUE are both established methods with 
strong performance in benchmarks and would be good choices 
especially for projects with not completely overlapping scMultiome 
data. Heuristic methods, particularly Seurat’s WNN method, are 
good choices for perfectly matched datasets but are inadequate 
for non-overlapping datasets. Imputation is still unreliable and 
should not be used for statistical analyses, though may be useful 
for identifying trends for independent validation. While DL 
algorithms have been developed for integration and imputation of 
scMultiome, inference of gene-regulatory networks which is often 
the main goal of Multiome studies has not yet been addressed 
with DL methods and may be an opportunity for future method
development.

In an independent benchmark on curated datasets, scJoint, 
MultiVI and GLUE were top performing methods for integrated cell 
type identification in scMultiome data (Xiao et al., 2024). However 
others find high variability in performance dataset to dataset and 
that MultiVI was particularly sensitive and either were among 
top performers or worse performers depending on the dataset 
in question (Lee et al., 2023).
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For spatial multiome, many of the above single-cell methods 
would be applicable; however, when spatial data includes contiguous 
homogeneous regions, it is often beneficial to incorporate spatial 
information as we noted above. Currently, the only method 
that integrates spatial location for spatial multiome data is 
SpatialGlue (Long et al., 2024). This method encodes spatial 
information as a graph linking spatially proximal cells or spots and 
uses an AE structure to learn a joint embedding space. To integrate 
RNA and ATAC data, separate GCN encoders combine the spatial 
graphs with modality-specific similarity graphs. These encodings are 
combined with an attention head to generate a single embedding 
space across both spatial modalities. In-house benchmarking on 
datasets with known anatomical regions showed good performance 
compared to non-spatial statistical or DL models. In agreement 
with ST vs. scRNA-seq data analysis, significant improvements in 
identifying spatial regions can be achieved by incorporating physical 
proximity, and DL models are more easily adapted to include this 
information than statistical methods. 

3.10 RNA velocity

While scRNA-seq provides a snapshot of transcriptional 
states, RNA velocity methods have become increasingly valuable 
tools for investigating cell trajectories (Shima and mura, 2025; 
Bergen et al., 2021; Ge et al., 2025). Although new, several 
computational approaches now exist that leverage the relative 
abundances of spliced and unspliced mRNA to quantify 
transcriptional dynamics. Early ordinary differential equation 
(ODE)-based approaches like velocyto assumed specific cells 
were near steady-state, whereas scVelo relaxed this assumption 
through maximum-likelihood inference (La Manno et al., 2018; 
Bergen et al., 2020). More recent approaches incorporate additional 
molecular information, such as chromatin accessibility and 
protein expression, thereby refining trajectory inference and 
interpretability (Luo et al., 2025).

Recently, DL-based RNA velocity models have emerged 
to better capture nonlinear transcriptional dynamics and 
complex cellular transitions (Ge et al., 2025; Luo et al., 2025; 
Gayoso et al., 2024). VeloAE employs an autoencoder architecture 
to learn denoised, low-dimensional representations of RNA velocity 
(Qiao and Huang, 2021). VeloVAE and VeloVI employ VAE 
frameworks to infer RNA velocity and jointly quantify uncertainty 
(Gayoso et al., 2024; Gu et al., 2022). VeloVAE models a shared 
developmental timeline across all cells by learning latent time 
and cell-state representations, enabling explicit modelling of cell-
fate branching and differentiation pathways. Conversely, VeloVI 
fits gene-specific dynamical models by leveraging information 
across cells, offering robust and reliable uncertainty estimates for 
RNA velocity at both gene and cell levels. DeepVelo integrates 
a graph convolutional network with a VAE to model gene- and 
cell-specific transcriptional kinetics, improving accuracy across 
heterogeneous cell populations (Chen Z. et al., 2022; Cui et al., 2023). 
LatentVelo and cellDancer both utilize neural architectures; 
LatentVelo embeds cell states and velocities into a latent space, 
while cellDancer employs gene-specific networks that aggregate 
local neighborhood information to infer cell- and gene-level kinetics 
(Li et al., 2024c; Farrell et al., 2023).

Regarding benchmarking, the accuracy and stability of these 
methods remain variable across datasets (Bergen et al., 2021; 
Luo et al., 2025; Gayoso et al., 2024; Gorin et al., 2022). Though 
deep learning approaches often perform better on complex datasets, 
no single method excels in both accuracy and stability (Shima 
and mura, 2025; Gayoso et al., 2024). Accuracy measures how 
closely predicted velocities align with known or expected biological 
trajectories. However, benchmarking remains limited due to 
limited ground truths, thus relying on indirect metrics based on 
velocity cosine similarity and agreement with known lineages 
(Bergen et al., 2021; Luo et al., 2025; Gayoso et al., 2024). Although 
most methods displayed locally consistent velocities between 
neighboring cells, most fail to reliably infer true cell-state transitions, 
particularly in complex or branching trajectories (Luo et al., 2025; 
Qiao and Huang, 2021; Gorin et al., 2022; Ancheta et al., 2024). 
In addition, discrepancies between methods remain common, 
primarily due to differences in model assumptions and datasets 
used (Bergen et al., 2021; Luo et al., 2025; Gayoso et al., 2024; 
Ancheta et al., 2024). Downsampling had the greatest impact on 
ground-truth recovery, while inter-method consistency remained 
stable. (Shima and mura, 2025; Luo et al., 2025; Ancheta et al., 2024). 
Notably, DeepVelo, scVelo, VeloVI, and velocyto often 
showed higher agreement among themselves, but none 
stood out in either accuracy or consistency across
datasets.

In discovery contexts, current RNA velocity approaches 
should be interpreted cautiously when resolving complex 
cell-state transitions (Bergen et al., 2021; Gorin et al., 2022) 
Methods like VeloVI and LatentVelo offer higher accuracy and 
stability in specific contexts, but none are universally dependable 
(Luo et al., 2025; Gayoso et al., 2024). Using multiple RNA 
velocity methods in combination can mitigate individual biases, 
while integrating multi-omic or lineage-tracing datasets can help 
correct technical biases by providing more reliable validation 
(Shima and mura, 2025; Bergen et al., 2020; Mao et al., 2025). 
As the field of RNA velocity advances, deep learning methods 
will become more robust, capturing transcriptional kinetics from 
diverse datasets and reducing dependence on traditional ODE
assumptions. 

4 Conclusion

A plethora of algorithms and software packages have been 
produced using DL to solve many common problems in scRNA-
seq and ST analysis. However, the performance of these models 
has been variable, with only the top models being competitive 
with state-of-the-art non-DL alternatives. There is no evidence that 
DL is inherently more accurate than non-DL algorithms, nor is 
it inherently more scalable when compared to optimized non-DL 
approaches. While DL can remove the linearity assumptions that 
constrain alternative approaches, there is little evidence that this 
provides a substantial benefit. The advantage of DL algorithms is 
their flexibility in handling a wide range of data types, which enables 
simple approaches for combining different data modalities, while 
graph-based models can be easily used to incorporate a spatial 
dimension. In addition, generative DL can enable novel approaches, 
mainly the prediction of one data modality from another, that are
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not easily amenable to non-DL models. However, it remains to be 
proven that such algorithms can reach sufficient precision for their 
use in discovery research.
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