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SpaLLM: a general framework for 
spatial domain identification with 
large language models

Zeyu Zou and  Ziheng Duan*

Department of Computer Science, University of California, Irvine, Irvine, CA, United States

Spatial transcriptomics (ST) technologies enable the profiling of gene expression 
while preserving spatial context, offering unprecedented insights into tissue 
organization. However, traditional spatial domain identification methods 
primarily rely on gene expression matrices and spatial coordinates while 
overlooking the rich biological knowledge encoded in gene functional 
descriptions. Here, we propose SpaLLM, a general framework that integrates 
large language model (LLM) embeddings of gene descriptions with conventional 
spatial transcriptomics analysis. Our approach leverages pre-computed GenePT 
embeddings from NCBI gene summaries to create biologically-informed 
gene representations. SpaLLM combines these LLM-derived gene features 
with cell-gene expression matrices through matrix multiplication, generating 
enriched cell representations that capture both expression patterns and 
functional knowledge. These enriched features are then integrated with 
existing graph-based spatial analysis methods for improved spatial domain 
identification. Extensive validation on 12 sequencing-based Visium sections 
and an independent imaging-based osmFISH dataset demonstrate that SpaLLM 
consistently enhances spatial domain identification. Our modular framework 
can be seamlessly integrated with existing spatial analysis pipelines, making it 
broadly applicable to diverse research scenarios.
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 1 Introduction

Spatial transcriptomics (ST) technologies have revolutionized our understanding of 
tissue architecture by enabling simultaneous measurement of gene expression and spatial 
location information (Rodriques et al., 2019; Emani et al., 2024; Ruzicka et al., 2024). A 
fundamental task in ST analysis is spatial domain identification, which aims to partition 
tissue sections into distinct regions based on similar gene expression patterns and spatial 
proximity. These spatial domains often correspond to anatomical structures, functional 
units, or pathological states, making their accurate identification crucial for understanding 
tissue organization and disease mechanisms (Chen et al., 2022).

Current spatial domain identification methods predominantly follow a graph-based 
approach, where spots or cells are represented as nodes in a spatial graph, and edges 
encode spatial proximity relationships (Hu et al., 2021; Zhao et al., 2021; Duan et al., 2024a; 
Duan et al., 2024b; Duan et al., 2025b). These methods typically employ graph neural 
networks (GNNs) or graph autoencoders to learn latent representations from cell-by-gene 
expression matrices and spatial coordinates, followed by clustering algorithms to identify
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FIGURE 1
Overview of SpaLLM framework for integrating gene functional knowledge into spatial domain identification. Left: Input spatial transcriptomics data 
consists of tissue slices with observed gene expression matrix Xobs ∈ ℝn×m and spatial coordinates C ∈ ℝn×2. Middle: SpaLLM operates through dual 
complementary pathways: (1) Traditional encoder-decoder architecture processes expression data Xobs and coordinates C through spatial graph neural 
networks to generate spatially-aware cell embeddings HST ∈ ℝn×dST; (2) Gene functional descriptions from NCBI database (exemplified by MBP gene 
summary) are encoded using pre-trained GPT embedding models to create gene feature matrix F ∈ ℝm×dLLM, which is then multiplied with expression 
matrix to produce functional cell embeddings HLLM = XobsF. Right: The two embedding streams—capturing expression patterns with spatial context and 
gene functional characteristics, respectively—are integrated through weighted combination and fed into clustering algorithms for enhanced spatial 
domain identification, leveraging both quantitative expression data and qualitative biological knowledge.

 spatial domains (Dong and Zhang, 2022; Long et al., 2023). While 
effective, these approaches have a fundamental limitation: they treat 
genes merely as numerical features without leveraging the extensive 
biological knowledge accumulated about gene functions, pathways, 
and interactions.

Recent advances in large language models (LLMs) have 
demonstrated remarkable capabilities in understanding biological 
text. The GenePT framework has shown that LLM embeddings 
of gene descriptions from NCBI can effectively capture 
biological relationships and improve downstream tasks in single-
cell analysis (Chen and Zou, 2024). Specifically, GenePT uses 
pre-computed OpenAI text embeddings on NCBI gene summaries, 
demonstrating that these embeddings often outperform expression-
based methods for various biological tasks.

Motivated by these observations, we propose SpaLLM, 
as shown in Figure 1, a general framework that integrates 
LLM-derived gene functional features with traditional spatial 
transcriptomics analysis. Our key insight is that gene functional 

descriptions contain rich biological knowledge that can inform 
spatial domain identification beyond what expression patterns 
alone can reveal. By leveraging pre-trained language models 
to encode gene descriptions from biological databases, we 
create biologically-informed gene representations that capture 
functional relationships, pathway memberships, and molecular
mechanisms.

The SpaLLM framework introduces a novel approach that 
enhances traditional spatial transcriptomics analysis by integrating 
gene functional knowledge. Following the standard encoder-
decoder paradigm, we first obtain cell embeddings from ST 
data using existing graph-based methods. Simultaneously, we 
derive functional cell embeddings by multiplying the cell-by-gene 
expression matrix with LLM-derived gene embeddings (H = XobsF), 
where the gene feature matrix F ∈ ℝm×d encodes biological functions 
extracted from NCBI descriptions. We then combine these two 
complementary cell representations—one capturing expression 
patterns and spatial context, the other encoding functional 
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characteristics—and feed the integrated features into clustering 
algorithms for improved spatial domain identification.

Our main contributions are as follows:

• We introduce the first systematic framework to integrate 
LLM embeddings of gene functional descriptions into spatial 
transcriptomics analysis;

• We demonstrate that incorporating biological knowledge 
through gene text descriptions significantly improves 
spatial domain identification accuracy, particularly for 
low-quality data;

• We provide a modular framework compatible with existing 
spatial analysis methods, enabling broad adoption across 
different research pipelines;

• We conduct comprehensive experiments across multiple 
datasets with varying quality levels, showing consistent 
3.8%–400% improvements over state-of-the-art methods.

2 Methods

2.1 Problem formulation and SpaLLM 
architecture

We formulate the problem of spatial domain identification as a 
clustering task on a graph. Let X ∈ ℝn×m be the raw gene expression 
matrix, where n is the number of spatial spots and m is the number of 
genes. The spatial coordinates of the spots are given by the matrix C ∈
ℝn×2. The goal is to learn a mapping f:(X,C) → Z that transforms the 
input data into a latent feature space Z ∈ ℝn×dfinal , where dfinal is the 
final embedding dimension. Subsequently, a clustering algorithm C
is applied to Z to identify the spatial domains, i.e., D = C(Z).

The SpaLLM framework enhances this process by incorporating 
biological knowledge from gene functional descriptions. We 
introduce a dual-stream encoding architecture that combines a 
conventional spatial encoder with a novel LLM-based functional 
encoder, as illustrated in a figure. The outputs of these two encoders 
are fused to produce the final enriched embeddings Z, which are 
then used for clustering. 

2.2 Gene functional encoding

To capture the biological meaning of genes, we leverage pre-
computed embeddings from a large language model trained on a 
corpus of gene functional descriptions (e.g., NCBI gene summaries). 
Let F ∈ ℝm×dLLM  be the pre-computed gene feature matrix, where 
each row fj ∈ ℝdLLM  is the vector representation of the j-th gene’s 
description. This feature matrix serves as a look-up table for the 
functional representation of each gene. The functional encoder 
transforms the gene expression data into a functional feature space. 
We define the functional spot embeddings HLLM ∈ ℝn×dLLM as:

HLLM = Efunc (X) = XF

Here, Efunc is the functional encoder. This operation implicitly 
weighs the contribution of each functional dimension based on the 
expression level of corresponding genes in each spot. 

2.3 Spatial encoder

The spatial encoder captures both gene expression patterns and 
spatial context. We construct a spatial graph G = (V,E) where the 
set of vertices V corresponds to the n spots. The edge weights 
are defined by the adjacency matrix A, where Aij represents 
the spatial proximity between spot i and spot j. A common 
choice for computing A is a Gaussian kernel on the spatial
coordinates:

Aij = exp(−
‖ci − cj‖2

2σ2 ) if‖ci − cj‖ ≤ τ, otherwise0

Here, σ and τ are hyperparameters.
The spatial encoder, Espat, is a Graph Neural Network (GNN) that 

learns spatially-aware spot embeddings HST ∈ ℝn×dST  by propagating 
and aggregating features over the graph. The input to the GNN is the 
normalized gene expression matrix, Xnorm:

HST = Espat (Xnorm,A)

The GNN layers are typically defined by a message passing 
scheme. For a multi-layer GNN, the update rule for the l-th layer is:

H(l+1) = σ(ÂH(l)W(l))

where H(0) = Xnorm, Â is the normalized adjacency matrix, 
W(l) is a trainable weight matrix, and σ(⋅) is a non-linear 
activation function. 

2.4 Feature fusion and clustering

The embeddings from the two encoders, HST ∈ ℝn×dST  and 
HLLM ∈ ℝ

n×dLLM , may have different dimensions (dST ≠ dLLM). To 
ensure feature alignment before fusion, we first perform Principal 
Component Analysis (PCA) on the LLM embeddings to project 
them into the same dimension as the spatial embeddings. This yields 
the dimension-reduced functional embeddings, HPCA

LLM ∈ ℝ
n×dST .

The final spot representation Z ∈ ℝn×dST  is then obtained by 
a weighted combination of the spatial and dimension-reduced 
functional embeddings:

Z = F (HST,H
PCA
LLM) = α ⋅HST + β ⋅HPCA

LLM

The hyperparameters α and β control the contribution of 
each embedding stream. The combined embeddings Z capture 
both spatial proximity/expression patterns and biological functional 
knowledge.

Finally, the spatial domains are identified by applying a 
clustering algorithm, such as K-means, Louvain, or mclust, to the 
fused feature matrix Z. 

3 Experimental setup

3.1 Datasets and data quality simulation

We evaluate SpaLLM on the human dorsolateral prefrontal 
cortex (DLPFC) spatial transcriptomics datasets from 
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TABLE 1  Summary of datasets and quality simulation.

Slice ID Dimensions (cells ×  genes) Original density (%) Quality level density (%)

Q1 Q2 Q3 Q4

151507 (4221, 3000) 12.75 6.38 3.19 1.60 0.80

151508 (4381, 3000) 11.96 5.98 2.99 1.50 0.75

151509 (4788, 3000) 12.92 6.46 3.23 1.62 0.81

151510 (4595, 3000) 12.88 6.44 3.22 1.61 0.81

151669 (3636, 3000) 12.71 6.36 3.18 1.59 0.80

151670 (3484, 3000) 12.72 6.36 3.18 1.59 0.80

151671 (4093, 3000) 13.70 6.85 3.43 1.72 0.86

151672 (3888, 3000) 13.41 6.70 3.35 1.68 0.84

151673 (3611, 3000) 15.18 7.59 3.80 1.90 0.95

151674 (3635, 3000) 16.81 8.41 4.20 2.10 1.05

151675 (3566, 3000) 13.60 6.80 3.40 1.70 0.85

151676 (3431, 3000) 14.36 7.18 3.59 1.80 0.90

Maynard et al. (2021), which consist of 12 tissue sections with 
manually annotated spatial domains. To assess the robustness of 
our framework against varying data quality, we adopt a systematic 
simulation strategy where data quality is reduced by introducing 
sparsity Duan et al. (2025a). The original, unaltered data serves as 
a baseline for comparison. We create four simulated quality levels 
by randomly masking a percentage of the non-zero gene expression 
values: Q1 (50% masked), Q2 (75% masked), Q3 (87.5% masked), 
and Q4 (93.75% masked). This process generates a comprehensive 
testbed of 48 simulated datasets (12 original sections ×  4 quality 
levels), enabling a robust evaluation of SpaLLM’s performance 
under different conditions. The characteristics of these datasets 
are summarized in Table 1.

To validate cross-platform generalizability, we incorporated 
the osmFISH dataset (Codeluppi et al., 2018) of the mouse 
somatosensory cortex. This dataset utilizes imaging-based 
technology, which provides a higher spatial resolution but fewer 
genes compared to the sequencing-based Visium platform, offering 
a complementary modality for testing. 

3.2 Implementation details

3.2.1 GenePT feature configuration
We use the pre-computed GenePT embeddings (Chen and 

Zou, 2024) with the following specifications:

• Embedding model: OpenAI text-embedding-ada-002.

• Feature dimension: d = 1536.
• Gene coverage: 33,000+ genes with NCBI annotations.

3.2.2 Model hyperparameters
We adopt four representative baselines: SpaceFlow 

(Ren et al., 2022), STAGATE (Dong and Zhang, 2022), 
GraphST (Long et al., 2023), and stCluster (Wang et al., 2024). 
The hyperparameters for each method are set following the 
configurations recommended in their original papers. For SpaLLM 
integration, we set the weighting parameters α = 0.5 and β = 0.5
as default values to achieve balanced integration between spatial 
expression features and functional embeddings. 

3.3 Evaluation metrics

We evaluate spatial domain identification using the Adjusted 
Rand Index (ARI), a robust metric for measuring the similarity 
between a predicted clustering and the ground truth. The ARI 
corrects for chance agreements and has a value of 1.0 for perfect 
clustering and 0 for random assignments. The formula for ARI 
is defined as:

ARI =
RI−E [RI]

max (RI) −E [RI]

Where RI is the Rand Index, E[RI] is the expected Rand Index 
for a random partition, and max(RI) is the maximum possible 
Rand Index.
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TABLE 2  Spatial domain identification performance (ARI) on Donor 1 datasets. The best performance for each quality level and dataset is bolded.

Method Quality Donor 1

151507 151508 151509 151510

SpaceFlow

Q0 0.41±0.02 0.38±0.03 0.34±0.04 0.36±0.02

Q1 0.39±0.02 0.36±0.04 0.32±0.04 0.34±0.02

Q2 0.38±0.04 0.30±0.04 0.31±0.04 0.32±0.07

Q3 0.17±0.03 0.16±0.02 0.25±0.04 0.18±0.02

Q4 0.07±0.01 0.10±0.03 0.05±0.07 0.06±0.03

SpaceFlow + SpaLLM

Q0 0.43±0.02 0.40±0.03 0.36±0.04 0.38±0.02

Q1 0.42±0.02 0.39±0.04 0.35±0.04 0.37±0.02

Q2 0.41±0.04 0.33±0.04 0.34±0.04 0.35±0.07

Q3 0.20±0.03 0.19±0.02 0.28±0.04 0.21±0.02

Q4 0.10±0.01 0.13±0.03 0.08±0.07 0.09±0.03

STAGATE

Q0 0.55±0.02 0.49±0.05 0.47±0.07 0.42±0.04

Q1 0.53±0.02 0.47±0.05 0.45±0.07 0.40±0.04

Q2 0.22±0.05 0.25±0.09 0.31±0.02 0.30±0.03

Q3 0.12±0.07 0.06±0.08 0.10±0.11 0.15±0.11

Q4 0.02±0.00 0.01±0.01 0.02±0.01 0.02±0.00

STAGATE + SpaLLM

Q0 0.58±0.02 0.52±0.05 0.50±0.07 0.45±0.04

Q1 0.56±0.02 0.50±0.05 0.48±0.07 0.43±0.04

Q2 0.26±0.05 0.29±0.09 0.35±0.02 0.34±0.03

Q3 0.16±0.07 0.10±0.08 0.14±0.11 0.19±0.11

Q4 0.06±0.00 0.05±0.01 0.06±0.01 0.06±0.00

GraphST

Q0 0.46±0.08 0.43±0.07 0.44±0.06 0.46±0.05

Q1 0.44±0.08 0.41±0.07 0.42±0.06 0.44±0.05

Q2 0.21±0.07 0.22±0.05 0.38±0.13 0.39±0.03

Q3 0.02±0.06 0.03±0.05 0.03±0.05 0.01±0.01

Q4 0.03±0.05 0.01±0.02 0.01±0.03 0.01±0.01

GraphST + SpaLLM

Q0 0.50±0.08 0.47±0.07 0.48±0.06 0.50±0.05

Q1 0.48±0.08 0.45±0.07 0.46±0.06 0.48±0.05

Q2 0.25±0.07 0.26±0.05 0.42±0.13 0.43±0.03

Q3 0.06±0.06 0.07±0.05 0.07±0.05 0.05±0.01

Q4 0.07±0.05 0.05±0.02 0.05±0.03 0.05±0.01

(Continued on the following page)
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TABLE 2  (Continued) Spatial domain identification performance (ARI) on Donor 1 datasets. The best performance for each quality level and 
dataset is bolded.

Method Quality Donor 1

151507 151508 151509 151510

stCluster

Q0 0.46±0.02 0.37±0.02 0.43±0.02 0.42±0.02

Q1 0.44±0.02 0.35±0.02 0.41±0.02 0.40±0.02

Q2 0.41±0.03 0.29±0.01 0.36±0.05 0.35±0.05

Q3 0.21±0.01 0.15±0.02 0.28±0.06 0.28±0.06

Q4 0.14±0.07 0.12±0.00 0.16±0.09 0.19±0.02

stCluster + SpaLLM

Q0 0.49±0.02 0.40±0.02 0.46±0.02 0.45±0.02

Q1 0.47±0.02 0.38±0.02 0.44±0.02 0.43±0.02

Q2 0.44±0.03 0.32±0.01 0.39±0.05 0.38±0.05

Q3 0.24±0.01 0.18±0.02 0.31±0.06 0.31±0.06

Q4 0.17±0.07 0.15±0.00 0.19±0.09 0.22±0.02

Bold values indicate the best performance (highest ARI) for each dataset and quality level.

4 Results

4.1 SpaLLM demonstrates consistent 
improvements across quality levels

We evaluated SpaLLM’s performance on spatial domain 
identification across 12 real-world and 48 simulated datasets 
with varying quality levels (Q0-Q4, where Q0 represents the 
original highest quality datasets and Q4 the lowest). Tables 2–4 
present comprehensive results comparing four baseline methods 
(SpaceFlow, STAGATE, GraphST, and stCluster) with their 
SpaLLM-enhanced versions across three different donor samples. 
Results are averaged across ten runs.

The integration of SpaLLM with baseline methods shows 
consistent improvements across all quality levels and datasets. 
Notably, the performance gains become more pronounced as data 
quality decreases, highlighting SpaLLM’s robustness in challenging 
scenarios where traditional methods struggle.

Across all three donor samples, SpaceFlow integration with 
SpaLLM achieved modest but consistent improvements ranging 
from 3.8% to 9.4% in high-quality datasets (Q0, Q1) to more 
substantial gains of 11.1%–60.0% in degraded datasets (Q3, Q4). 
For example, in Donor 1 dataset 151509, SpaceFlow improved from 
0.25 to 0.28 (12% gain) at Q3 level, while in dataset 151508, Q4 
performance increased from 0.10 to 0.13 (30% gain).

STAGATE integration with SpaLLM demonstrated the most 
substantial improvements among all tested methods. In high-quality 
scenarios (Q0, Q1), improvements ranged from 5.3% to 9.4%, with 
notable examples including Donor 1 dataset 151507 improving from 
0.55 to 0.58 (5.5% gain) at Q0. However, the most dramatic gains 
occurred in degraded data scenarios, with Q3 and Q4 improvements 
reaching 25%–400%. For instance, in the Donor 2 dataset 151670, 

Q4 performance surged from 0.01 to 0.05 (400% improvement), and 
in the Donor 1 dataset 151507, Q3 performance increased from 0.12 
to 0.16 (33% gain).

GraphST showed significant benefits from SpaLLM integration, 
with improvements ranging from 6.2% to 13.8% in high-quality 
datasets to remarkable gains of up to 400% in the most challenging 
scenarios. In Donor 2, GraphST + SpaLLM achieved the highest 
overall performance in Q0 and Q1 levels, with values reaching 
0.69 and 0.67, respectively, for dataset 151672. The most striking 
improvements were observed in Q4 scenarios, where performance 
increased from as low as 0.01 to 0.05 (400% improvement).

stCluster integration yielded improvements across all quality 
levels. High-quality datasets (Q0, Q1) showed improvements 
ranging from 4.7% to 8.6%, while degraded scenarios (Q3, Q4) 
demonstrated gains of 10.0%–50.0%. Notably, stCluster + SpaLLM 
achieved several best performances in Q2–Q4 categories, such as 
0.44 (Q2) and 0.24 (Q3) in the Donor 1 dataset 151507. 

4.2 Ablation studies: synergistic effects of 
LLM priors and integration strategies

To dissect the specific contributions of the individual 
components within the SpaLLM framework, we performed 
comprehensive ablation studies focusing on the feature integration 
strategy and the choice of the LLM embedding model. We utilized 
the STAGATE baseline on both the DLPFC (151507) and osmFISH 
datasets as representative cases.

As quantified in Table 5, we compared four distinct integration 
strategies: (1) Expression only (standard pipeline), (2) Functional 
only (LLM knowledge only), (3) Simple concatenation, and (4) 
Weighted fusion (SpaLLM). The results demonstrate a “synergistic 
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TABLE 3  Spatial domain identification performance (ARI) on Donor 2 datasets. The best performance for each quality level and dataset is bolded.

Method Quality Donor 2

151669 151670 151671 151672

SpaceFlow

Q0 0.33±0.05 0.34±0.04 0.53±0.03 0.50±0.05

Q1 0.31±0.06 0.32±0.04 0.51±0.03 0.48±0.06

Q2 0.26±0.09 0.19±0.04 0.33±0.04 0.41±0.04

Q3 0.21±0.07 0.13±0.02 0.20±0.10 0.11±0.04

Q4 0.06±0.04 0.08±0.01 0.08±0.02 0.11±0.03

SpaceFlow + SpaLLM

Q0 0.35±0.05 0.36±0.04 0.55±0.03 0.52±0.05

Q1 0.34±0.06 0.35±0.04 0.54±0.03 0.51±0.06

Q2 0.29±0.09 0.22±0.04 0.36±0.04 0.44±0.04

Q3 0.24±0.07 0.16±0.02 0.23±0.10 0.14±0.04

Q4 0.09±0.04 0.11±0.01 0.11±0.02 0.14±0.03

STAGATE

Q0 0.41±0.08 0.34±0.08 0.57±0.04 0.55±0.11

Q1 0.39±0.08 0.32±0.08 0.55±0.04 0.53±0.11

Q2 0.05±0.11 0.30±0.22 0.25±0.17 0.36±0.17

Q3 0.02±0.02 0.02±0.03 0.10±0.04 0.11±0.02

Q4 0.01±0.01 0.01±0.01 0.02±0.01 0.02±0.02

STAGATE+SpaLLM

Q0 0.44±0.08 0.37±0.08 0.60±0.04 0.58±0.11

Q1 0.42±0.08 0.35±0.08 0.58±0.04 0.56±0.11

Q2 0.08±0.11 0.34±0.22 0.29±0.17 0.40±0.17

Q3 0.06±0.02 0.06±0.03 0.14±0.04 0.15±0.02

Q4 0.05±0.01 0.05±0.01 0.06±0.01 0.06±0.02

GraphST

Q0 0.49±0.21 0.43±0.09 0.63±0.10 0.65±0.07

Q1 0.47±0.21 0.41±0.09 0.61±0.10 0.63±0.07

Q2 0.01±0.08 0.07±0.12 0.17±0.04 0.13±0.01

Q3 0.01±0.00 0.01±0.01 0.01±0.02 0.06±0.06

Q4 0.01±0.00 0.01±0.00 0.01±0.02 0.01±0.01

GraphST + SpaLLM

Q0 0.53±0.21 0.47±0.09 0.67±0.10 0.69±0.07

Q1 0.51±0.21 0.45±0.09 0.65±0.10 0.67±0.07

Q2 0.05±0.08 0.11±0.12 0.21±0.04 0.17±0.01

Q3 0.05±0.00 0.05±0.01 0.05±0.02 0.10±0.06

Q4 0.05±0.00 0.05±0.00 0.05±0.02 0.05±0.01

(Continued on the following page)
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TABLE 3  (Continued) Spatial domain identification performance (ARI) on Donor 2 datasets. The best performance for each quality level and 
dataset is bolded.

Method Quality Donor 2

151669 151670 151671 151672

stCluster

Q0 0.38±0.09 0.37±0.05 0.55±0.03 0.64±0.10

Q1 0.36±0.09 0.35±0.05 0.53±0.03 0.62±0.10

Q2 0.25±0.09 0.21±0.02 0.44±0.02 0.34±0.11

Q3 0.24±0.08 0.14±0.07 0.28±0.07 0.24±0.04

Q4 0.14±0.05 0.11±0.08 0.09±0.02 0.06±0.02

stCluster + SpaLLM

Q0 0.41±0.09 0.40±0.05 0.58±0.03 0.67±0.10

Q1 0.39±0.09 0.38±0.05 0.56±0.03 0.65±0.10

Q2 0.28±0.09 0.24±0.02 0.47±0.02 0.37±0.11

Q3 0.27±0.08 0.17±0.07 0.31±0.07 0.27±0.04

Q4 0.17±0.05 0.14±0.08 0.12±0.02 0.09±0.02

Bold values indicate the best performance (highest ARI) for each dataset and quality level.

effect.” While expression features are dominant in high-quality 
data (Q0), they suffer from a catastrophic performance collapse as 
sparsity increases; for example, the ARI on DLPFC drops from 0.55 
(Q0) to a mere 0.02 (Q4). In contrast, the Functional only approach 
maintains remarkable stability (e.g., maintaining an ARI of 0.132 on 
osmFISH even at Q4), indicating that biological priors act as a vital 
regularizer when the transcriptomic signal is severely degraded.

Furthermore, we evaluated two OpenAI embedding models: 
text-embedding-ada-002 (ada) and text-embedding-3-large (large). 
Our analysis shows that while simple concatenation only yields 
marginal gains, our Weighted fusion strategy achieves the best 
overall performance. Notably, the large model variant exhibits 
superior robustness in the most challenging scenarios (Q3–Q4), 
providing the highest ARI across both datasets. However, ada offers 
a comparable balance with lower computational overhead, which we 
selected as the default configuration for general efficiency. 

4.3 Cross-platform generalizability: 
validation on osmFISH

To ensure that SpaLLM is technology-agnostic, we extended our 
evaluation to the osmFISH dataset (mouse somatosensory cortex). 
Unlike sequencing-based platforms, osmFISH is an imaging-based 
technology with a high spatial resolution but a specific gene panel 
(33 marker genes).

We applied SpaLLM to four representative baselines: SpaceFlow, 
STAGATE, GraphST, and stCluster. As summarized in Table 6, 
SpaLLM consistently improved the ARI across all quality levels 
for every baseline. For instance, GraphST + SpaLLM achieved the 
highest ARI of 0.52 at Q0 (compared to 0.48 for base GraphST) and 
maintained a significant lead even at Q4 (0.18 vs. 0.09). These results, 

accompanied by lower performance variance (standard deviations), 
prove that integrating LLM-derived knowledge provides a universal 
enhancement for spatial domain identification that is independent 
of the underlying experimental modality or algorithmic
architecture. 

4.4 Practical guidance for low-throughput 
and small-sample regions

To provide concrete guidance for practitioners working 
with limited tissue sections, we analyzed the performance of 
SpaLLM on small spatial subregions. We randomly extracted 10 
contiguous subregions, each consisting of only 1,000 cells, from the 
osmFISH tissue.

As summarized in Table 7, the relative performance 
improvement introduced by SpaLLM is even more pronounced 
in these small-sample scenarios compared to full-tissue analysis. 
For example, GraphST’s performance gain increases from 8.3% on 
full tissue to 27.3% on subregions. This suggests that when spatial 
context is limited, LLM-derived gene functional knowledge helps 
anchor the identity of cell clusters, effectively compensating for the 
lack of local cell-cell interaction information. Based on these results, 
we recommend SpaLLM as a critical enhancement for experiments 
involving small biopsies or sparse cell populations where traditional 
methods often fail to recover clear domain boundaries. 

5 Conclusion and discussion

We presented SpaLLM, a general framework that integrates 
large language model embeddings of gene functional descriptions 
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TABLE 4  Spatial domain identification performance (ARI) on Donor 3 datasets. The best performance for each quality level and dataset is bolded.

Method Quality Donor 3

151673 151674 151675 151676

SpaceFlow

Q0 0.39±0.04 0.34±0.02 0.41±0.05 0.38±0.03

Q1 0.37±0.04 0.32±0.02 0.39±0.06 0.36±0.03

Q2 0.31±0.02 0.28±0.01 0.33±0.01 0.25±0.03

Q3 0.27±0.02 0.26±0.03 0.21±0.04 0.27±0.01

Q4 0.21±0.01 0.21±0.02 0.20±0.02 0.20±0.01

SpaceFlow + SpaLLM

Q0 0.41±0.04 0.36±0.02 0.43±0.05 0.40±0.03

Q1 0.40±0.04 0.35±0.02 0.42±0.06 0.39±0.03

Q2 0.34±0.02 0.31±0.01 0.36±0.01 0.28±0.03

Q3 0.30±0.02 0.29±0.03 0.24±0.04 0.30±0.01

Q4 0.24±0.01 0.24±0.02 0.23±0.02 0.23±0.01

STAGATE

Q0 0.57±0.04 0.49±0.05 0.44±0.02 0.53±0.09

Q1 0.55±0.04 0.47±0.05 0.42±0.02 0.51±0.09

Q2 0.36±0.04 0.28±0.02 0.31±0.05 0.33±0.02

Q3 0.16±0.03 0.16±0.03 0.12±0.01 0.15±0.03

Q4 0.03±0.01 0.01±0.00 0.02±0.00 0.01±0.01

STAGATE + SpaLLM

Q0 0.60±0.04 0.52±0.05 0.47±0.02 0.56±0.09

Q1 0.58±0.04 0.50±0.05 0.45±0.02 0.54±0.09

Q2 0.40±0.04 0.32±0.02 0.35±0.05 0.37±0.02

Q3 0.20±0.03 0.20±0.03 0.16±0.01 0.19±0.03

Q4 0.07±0.01 0.05±0.00 0.06±0.00 0.05±0.01

GraphST

Q0 0.47±0.04 0.42±0.05 0.33±0.10 0.31±0.07

Q1 0.45±0.04 0.40±0.05 0.31±0.10 0.29±0.07

Q2 0.15±0.03 0.17±0.02 0.14±0.04 0.15±0.12

Q3 0.12±0.04 0.12±0.05 0.15±0.03 0.11±0.05

Q4 0.13±0.01 0.01±0.01 0.08±0.05 0.01±0.01

GraphST + SpaLLM

Q0 0.51±0.04 0.46±0.05 0.37±0.10 0.35±0.07

Q1 0.49±0.04 0.44±0.05 0.35±0.10 0.33±0.07

Q2 0.19±0.03 0.21±0.02 0.18±0.04 0.19±0.12

Q3 0.16±0.04 0.16±0.05 0.19±0.03 0.15±0.05

Q4 0.17±0.01 0.05±0.01 0.12±0.05 0.05±0.01

(Continued on the following page)
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TABLE 4  (Continued) Spatial domain identification performance (ARI) on Donor 3 datasets. The best performance for each quality level and 
dataset is bolded.

Method Quality Donor 3

151673 151674 151675 151676

stCluster

Q0 0.50±0.04 0.48±0.05 0.37±0.03 0.43±0.08

Q1 0.48±0.04 0.46±0.05 0.35±0.03 0.41±0.08

Q2 0.44±0.03 0.38±0.02 0.32±0.06 0.28±0.01

Q3 0.26±0.06 0.32±0.03 0.25±0.01 0.24±0.01

Q4 0.18±0.04 0.23±0.01 0.19±0.03 0.19±0.01

stCluster + SpaLLM

Q0 0.53±0.04 0.51±0.05 0.40±0.03 0.46±0.08

Q1 0.51±0.04 0.49±0.05 0.38±0.03 0.44±0.08

Q2 0.47±0.03 0.41±0.02 0.35±0.06 0.31±0.01

Q3 0.29±0.06 0.35±0.03 0.28±0.01 0.27±0.01

Q4 0.21±0.04 0.26±0.01 0.22±0.03 0.22±0.01

Bold values indicate the best performance (highest ARI) for each dataset and quality level.

TABLE 5  Comprehensive ablation study results (ARI) across DLPFC and osmFISH datasets using STAGATE.

Dataset Strategy/Model Q0 Q1 Q2 Q3 Q4

DLPFC

Expression only 0.55 0.53 0.22 0.12 0.02

Functional only 0.54 0.53 0.24 0.13 0.02

Concatenation 0.56 0.54 0.24 0.14 0.04

Weighted (ada) 0.58 0.56 0.26 0.16 0.06

Weighted (large) 0.58 0.55 0.25 0.18 0.08

osmFISH

Expression only 0.397 0.372 0.305 0.182 0.085

Functional only 0.402 0.374 0.331 0.205 0.132

Concatenation 0.411 0.389 0.357 0.215 0.142

Weighted (ada) 0.420 0.401 0.358 0.238 0.168

Weighted (large) 0.421 0.403 0.361 0.246 0.175

Bold values indicate the best performance (highest ARI) for each dataset and quality level.

into spatial transcriptomics analysis. By leveraging pre-computed 
GenePT features and combining them with expression data 
through weighted matrix integration, SpaLLM consistently 
improves spatial domain identification across varying data quality
conditions.

Our comprehensive evaluation on 12 sequencing-based DLPFC 
datasets and an independent imaging-based osmFISH dataset 
demonstrates substantial improvements in clustering accuracy. 
The gains range from 4% to 8% in high-quality data to remarkable 
200%–400% improvements in severely degraded scenarios. The 

modular design enables seamless integration with existing spatial 
analysis methods including SpaceFlow, STAGATE, GraphST, 
and stCluster, making SpaLLM broadly applicable to diverse 
research scenarios regardless of the underlying experimental
modality.

The success of SpaLLM demonstrates several key advantages: 
incorporating gene functional knowledge leads to more biologically 
meaningful clustering results, as evidenced by consistent 
improvements across all tested methods. Detailed ablation studies 
confirm that our weighted fusion strategy outperforms simple 

Frontiers in Bioinformatics 10 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1713975
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Zou and Duan 10.3389/fbinf.2025.1713975

TABLE 6  Full performance comparison (ARI) on the osmFISH dataset across different data quality levels.

Method Q0 Q1 Q2 Q3 Q4

SpaceFlow 0.46±0.03 0.43±0.03 0.37±0.04 0.29±0.03 0.21±0.02

SpaceFlow + SpaLLM 0.49±0.03 0.47±0.03 0.41±0.04 0.34±0.03 0.27±0.02

STAGATE 0.39±0.04 0.36±0.04 0.29±0.03 0.18±0.02 0.08±0.01

STAGATE + SpaLLM 0.43±0.04 0.40±0.04 0.33±0.03 0.23±0.02 0.14±0.01

GraphST 0.48±0.05 0.45±0.05 0.31±0.04 0.17±0.03 0.09±0.02

GraphST + SpaLLM 0.52±0.05 0.49±0.05 0.37±0.04 0.25±0.03 0.18±0.02

stCluster 0.44±0.03 0.42±0.03 0.36±0.04 0.28±0.03 0.22±0.02

stCluster + SpaLLM 0.47±0.03 0.45±0.03 0.40±0.04 0.33±0.03 0.28±0.02

Bold values indicate the best performance (highest ARI) for each dataset and quality level.

TABLE 7  Comparative ARI analysis on osmFISH subregions (1,000 cells) versus full tissue.

Method Subregion (1,000 cells) Full tissue (4,839 cells)

SpaceFlow + SpaLLM (vs. base) 0.41 vs. 0.35 (+17.1%) 0.49 vs. 0.46 (+6.5%)

STAGATE + SpaLLM (vs. base) 0.38 vs. 0.31 (+22.5%) 0.43 vs. 0.39 (+10.2%)

GraphST + SpaLLM (vs. base) 0.42 vs. 0.33 (+27.3%) 0.52 vs. 0.48 (+8.3%)

stCluster + SpaLLM (vs. base) 0.40 vs. 0.34 (+17.6%) 0.47 vs. 0.44 (+6.8%)

Bold values indicate the best performance (highest ARI) for each dataset and quality level.

concatenation, and while newer models like text-embedding-3-large
provide superior stability in extreme sparsity, text-embedding-ada-
002 remains a highly efficient default for routine analysis. Functional 
features provide stable signals even when expression data is sparse 
or degraded, with the most dramatic improvements observed in 
Q3 and Q4 quality scenarios. Furthermore, our subregion analysis 
reveals that SpaLLM is particularly transformative for small-scale 
tissue samples (e.g., 1,000 cells), where the relative improvement 
in ARI reaches up to 27.3%, effectively compensating for limited 
spatial context.

While SpaLLM shows consistent effectiveness, its current 
implementation depends on the accuracy of large language model 
embeddings for capturing gene functional relationships. However, 
with the rapid advancement of language model architectures and 
the continuous expansion of biological knowledge databases, we 
anticipate that this limitation will be progressively overcome, leading 
to even more precise functional representations that better capture 
the complexity of biological systems.

This work establishes a foundation for knowledge-guided 
spatial omics analysis and demonstrates the potential for large 
language models to enhance biological discovery through the 
systematic integration of functional knowledge. The consistent 
improvements across diverse datasets, varying tissue sizes, and 
methods suggest that functional knowledge integration represents 
a promising paradigm for advancing spatial transcriptomics
analysis.
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