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SpalLLM: a general framework for
spatial domain identification with
large language models
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Spatial transcriptomics (ST) technologies enable the profiling of gene expression
while preserving spatial context, offering unprecedented insights into tissue
organization. However, traditional spatial domain identification methods
primarily rely on gene expression matrices and spatial coordinates while
overlooking the rich biological knowledge encoded in gene functional
descriptions. Here, we propose SpalLlLM, a general framework that integrates
large language model (LLM) embeddings of gene descriptions with conventional
spatial transcriptomics analysis. Our approach leverages pre-computed GenePT
embeddings from NCBI gene summaries to create biologically-informed
gene representations. SpaLLM combines these LLM-derived gene features
with cell-gene expression matrices through matrix multiplication, generating
enriched cell representations that capture both expression patterns and
functional knowledge. These enriched features are then integrated with
existing graph-based spatial analysis methods for improved spatial domain
identification. Extensive validation on 12 sequencing-based Visium sections
and an independent imaging-based osmFISH dataset demonstrate that SpaLLM
consistently enhances spatial domain identification. Our modular framework
can be seamlessly integrated with existing spatial analysis pipelines, making it
broadly applicable to diverse research scenarios.

graph neural networks, large language models, multimodality, spatial domain
identification, spatial transcriptomics

1 Introduction

Spatial transcriptomics (ST) technologies have revolutionized our understanding of
tissue architecture by enabling simultaneous measurement of gene expression and spatial
location information (Rodriques et al., 2019; Emani et al., 2024; Ruzicka et al., 2024). A
fundamental task in ST analysis is spatial domain identification, which aims to partition
tissue sections into distinct regions based on similar gene expression patterns and spatial
proximity. These spatial domains often correspond to anatomical structures, functional
units, or pathological states, making their accurate identification crucial for understanding
tissue organization and disease mechanisms (Chen et al., 2022).

Current spatial domain identification methods predominantly follow a graph-based
approach, where spots or cells are represented as nodes in a spatial graph, and edges
encode spatial proximity relationships (Hu et al., 2021; Zhao et al., 2021; Duan et al., 2024a;
Duan et al,, 2024b; Duan et al.,, 2025b). These methods typically employ graph neural
networks (GNNs) or graph autoencoders to learn latent representations from cell-by-gene
expression matrices and spatial coordinates, followed by clustering algorithms to identify
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MBP (Myelin Basic Protein) is a Protein Coding gene. Expression is enriched in oligodendrocytes of the
human cortex. Mutations and dysregulation have been linked to demyelinating disorders such as multi-
ple sclerosis. Among its related pathways are myelination and axon ensheathment. Gene Ontology (GO)
annotations related to this gene include structural constituent of myelin sheath and protein binding.
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FIGURE 1

Overview of SpalLLM framework for integrating gene functional knowledge into spatial domain identification. Left: Input spatial transcriptomics data
consists of tissue slices with observed gene expression matrix X s € R™™ and spatial coordinates C € R™2. Middle: SpaLLM operates through dual
complementary pathways: (1) Traditional encoder-decoder architecture processes expression data X, and coordinates C through spatial graph neural
networks to generate spatially-aware cell embeddings Hgr € R™%; (2) Gene functional descriptions from NCBI database (exemplified by MBP gene
summary) are encoded using pre-trained GPT embedding models to create gene feature matrix F € R™%uw, which is then multiplied with expression
matrix to produce functional cell embeddings H,, ,, = X,,sF. Right: The two embedding streams—capturing expression patterns with spatial context and
gene functional characteristics, respectively—are integrated through weighted combination and fed into clustering algorithms for enhanced spatial
domain identification, leveraging both quantitative expression data and qualitative biological knowledge.

spatial domains (Dong and Zhang, 2022; Long et al., 2023). While
effective, these approaches have a fundamental limitation: they treat
genes merely as numerical features without leveraging the extensive
biological knowledge accumulated about gene functions, pathways,
and interactions.

Recent advances in large language models (LLMs) have
demonstrated remarkable capabilities in understanding biological
text. The GenePT framework has shown that LLM embeddings
of gene descriptions from NCBI can effectively capture
biological relationships and improve downstream tasks in single-
cell analysis (Chen and Zou, 2024). Specifically, GenePT uses
pre-computed OpenAl text embeddings on NCBI gene summaries,
demonstrating that these embeddings often outperform expression-
based methods for various biological tasks.

Motivated by these observations, we propose SpalLM,
as shown in Figure 1, a general framework that integrates
LLM-derived gene functional features with traditional spatial
transcriptomics analysis. Our key insight is that gene functional
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descriptions contain rich biological knowledge that can inform
spatial domain identification beyond what expression patterns
alone can reveal. By leveraging pre-trained language models
to encode gene descriptions from biological databases, we
create biologically-informed gene representations that capture
functional relationships, pathway memberships, and molecular
mechanisms.

The SpaLLM framework introduces a novel approach that
enhances traditional spatial transcriptomics analysis by integrating
gene functional knowledge. Following the standard encoder-
decoder paradigm, we first obtain cell embeddings from ST
data using existing graph-based methods. Simultaneously, we
derive functional cell embeddings by multiplying the cell-by-gene
expression matrix with LLM-derived gene embeddings (H = X, .F),
where the gene feature matrix F € R™ encodes biological functions
extracted from NCBI descriptions. We then combine these two
complementary cell representations—one capturing expression
patterns and spatial context, the other encoding functional
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characteristics—and feed the integrated features into clustering
algorithms for improved spatial domain identification.
Our main contributions are as follows:

o We introduce the first systematic framework to integrate
LLM embeddings of gene functional descriptions into spatial
transcriptomics analysis;

o We demonstrate that incorporating biological knowledge
through gene text descriptions significantly improves
spatial domain identification accuracy, particularly for
low-quality data;

« We provide a modular framework compatible with existing
spatial analysis methods, enabling broad adoption across
different research pipelines;

o We conduct comprehensive experiments across multiple
datasets with varying quality levels, showing consistent
3.8%-400% improvements over state-of-the-art methods.

2 Methods

2.1 Problem formulation and SpalLLM
architecture

We formulate the problem of spatial domain identification as a
clustering task on a graph. Let X € R™" be the raw gene expression
matrix, where # is the number of spatial spots and m is the number of
genes. The spatial coordinates of the spots are given by the matrix C €
R™2, The goal is to learn a mapping f:(X,C) — Z that transforms the
input data into a latent feature space Z € R™%, where dfnar is the
final embedding dimension. Subsequently, a clustering algorithm C
is applied to Z to identify the spatial domains, i.e., D = C(Z).

The SpaLLM framework enhances this process by incorporating
biological knowledge from gene functional descriptions. We
introduce a dual-stream encoding architecture that combines a
conventional spatial encoder with a novel LLM-based functional
encoder, as illustrated in a figure. The outputs of these two encoders
are fused to produce the final enriched embeddings Z, which are
then used for clustering.

2.2 Gene functional encoding

To capture the biological meaning of genes, we leverage pre-
computed embeddings from a large language model trained on a
corpus of gene functional descriptions (e.g., NCBI gene summaries).
Let F € R™ux be the pre-computed gene feature matrix, where
each row f; € R is the vector representation of the j-th gene’s
description. This feature matrix serves as a look-up table for the
functional representation of each gene. The functional encoder
transforms the gene expression data into a functional feature space.
We define the functional spot embeddings H; ;,, € R™% as:

Hpy= gfunc (X) = XF
Here, &, is the functional encoder. This operation implicitly

weighs the contribution of each functional dimension based on the
expression level of corresponding genes in each spot.
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2.3 Spatial encoder

The spatial encoder captures both gene expression patterns and
spatial context. We construct a spatial graph G = (V,E) where the
set of vertices V corresponds to the n spots. The edge weights
are defined by the adjacency matrix A, where A; represents
the spatial proximity between spot i and spot j. A common
choice for computing A is a Gaussian kernel on the spatial
coordinates:

Aij =exp

lle; - < & . .
_T ifflc; - chI < 1, otherwise 0
Here, 0 and 7 are hyperparameters.
&, 18 a Graph Neural Network (GNN) that

spat>
learns spatially-aware spot embeddings Hg, € R™47 by propagating

The spatial encoder,

and aggregating features over the graph. The input to the GNN is the
normalized gene expression matrix, X, .-

HST = gspat (Xnorm’A)

The GNN layers are typically defined by a message passing
scheme. For a multi-layer GNN, the update rule for the I-th layer is:

HO = o(AHOWO)

where H® = X, orm>
W® is a trainable weight matrix, and o(-) is a non-linear
activation function.

A is the normalized adjacency matrix,

2.4 Feature fusion and clustering

The embeddings from the two encoders, Hgy € R™%" and
H;,,, € R, may have different dimensions (dg; # d;;,,). To
ensure feature alignment before fusion, we first perform Principal
Component Analysis (PCA) on the LLM embeddings to project
them into the same dimension as the spatial embeddings. This yields
the dimension-reduced functional embeddings, H}LJLCIQ € R™dst,

The final spot representation Z € R is then obtained by
a weighted combination of the spatial and dimension-reduced
functional embeddings:

HPCA

PCA
H LLM

Z:}—(HST’ LLM) =a-Hgp+pB-

The hyperparameters « and f control the contribution of
each embedding stream. The combined embeddings Z capture
both spatial proximity/expression patterns and biological functional
knowledge.

Finally, the spatial domains are identified by applying a
clustering algorithm, such as K-means, Louvain, or mclust, to the
fused feature matrix Z.

3 Experimental setup
3.1 Datasets and data quality simulation

We evaluate SpaLLM on the human dorsolateral prefrontal

cortex (DLPFC) spatial transcriptomics datasets from
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TABLE 1 Summary of datasets and quality simulation.

Slice ID

Dimensions (cells x genes)

10.3389/fbinf.2025.1713975

Original density (%) Quality level density (%)

Q1 Q2 Q3

151507 (4221, 3000) 12.75 6.38 3.19 1.60 0.80
151508 (4381, 3000) 11.96 5.98 2.99 1.50 0.75
151509 (4788, 3000) 12.92 6.46 3.23 1.62 0.81
151510 (4595, 3000) 12.88 6.44 3.22 1.61 0.81
151669 (3636, 3000) 12.71 6.36 3.18 1.59 0.80
151670 (3484, 3000) 12.72 6.36 3.18 1.59 0.80
151671 (4093, 3000) 13.70 6.85 3.43 1.72 0.86
151672 (3888, 3000) 13.41 6.70 3.35 1.68 0.84
151673 (3611, 3000) 15.18 7.59 3.80 1.90 0.95
151674 (3635, 3000) 16.81 8.41 4.20 2.10 1.05
151675 (3566, 3000) 13.60 6.80 3.40 1.70 0.85
151676 (3431, 3000) 14.36 7.18 3.59 1.80 0.90

Maynard et al. (2021), which consist of 12 tissue sections with
manually annotated spatial domains. To assess the robustness of
our framework against varying data quality, we adopt a systematic
simulation strategy where data quality is reduced by introducing
sparsity Duan et al. (2025a). The original, unaltered data serves as
a baseline for comparison. We create four simulated quality levels
by randomly masking a percentage of the non-zero gene expression
values: Q1 (50% masked), Q2 (75% masked), Q3 (87.5% masked),
and Q4 (93.75% masked). This process generates a comprehensive
testbed of 48 simulated datasets (12 original sections x 4 quality
levels), enabling a robust evaluation of SpaLLM’s performance
under different conditions. The characteristics of these datasets
are summarized in Table 1.

To validate cross-platform generalizability, we incorporated
the osmFISH dataset (Codeluppi et al., 2018) of the mouse
This
technology, which provides a higher spatial resolution but fewer

somatosensory cortex. dataset utilizes imaging-based

genes compared to the sequencing-based Visium platform, offering
a complementary modality for testing.
3.2 Implementation details
3.2.1 GenePT feature configuration
We use the pre-computed GenePT embeddings (Chen and

Zou, 2024) with the following specifications:

« Embedding model: OpenAl text-embedding-ada-002.

Frontiers in Bioinformatics

o Feature dimension: d = 1536.
« Gene coverage: 33,000+ genes with NCBI annotations.

3.2.2 Model hyperparameters

We adopt four representative baselines: SpaceFlow
(Ren et al, 2022), STAGATE (Dong and Zhang, 2022),
GraphST (Long et al,, 2023), and stCluster (Wang et al., 2024).
The hyperparameters for each method are set following the
configurations recommended in their original papers. For SpaLLM
integration, we set the weighting parameters « =0.5 and =10.5
as default values to achieve balanced integration between spatial
expression features and functional embeddings.

3.3 Evaluation metrics

We evaluate spatial domain identification using the Adjusted
Rand Index (ARI), a robust metric for measuring the similarity
between a predicted clustering and the ground truth. The ARI
corrects for chance agreements and has a value of 1.0 for perfect
clustering and 0 for random assignments. The formula for ARI
is defined as:

RI-E[RI]]

ARI= % (RI)— E[RI]

Where RI is the Rand Index, E[RI] is the expected Rand Index

for a random partition, and max(RI) is the maximum possible
Rand Index.
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TABLE 2 Spatial domain identification performance (ARI) on Donor 1 datasets. The best performance for each quality level and dataset is bolded.

Method Quality Donor 1
151507 151509
QO 041,02 0.38.,003 0-34,004 0-36,0,02
Q1 0.39.0.02 0.36.0,04 0.3240,04 0.34,0
SpaceFlow Q2 0.38,0.04 0.30,,04 0.31,004 0.32,007
Q3 0.17.003 0.16.00 0.25,0,04 0.18,90
Q4 0.07,01 010,03 0.05,907 0.06,,03
Qo 0.43..0 040,40 0.36.,04 0.38.002
Ql 042,02 0.39,0,04 0.35,0,04 0.3750.02
SpaceFlow + Spal LM Q 0.41.,04 0.33,0,04 0.34,.04 0.35,907
Q3 0.20,,3 0.19,0, 0.28,0,04 0.21,40
Q4 0.10,91 0.13,03 008,07 0.09.0,03
Qo 0.5540.02 0.49,,5 0.47 0,07 0.42,0,04
Q1 0.53,002 047,005 045,07 040,04
STAGATE Q2 0.22,005 0.25,0.09 0.31,00 0.30, 05
Q3 0.12497 006,03 0.1049 0.15,11
Q4 0.02..,09 0.01.,01 0.02,,01 0.02,9,9
Qo0 0.58,,0 0.52,,05 0.50.7 045,004
Q1 0.56,, 0.50,0,5 0.48,7 0.43,0.04
STAGATE + SpaLLM
Q2 0.26,,05 0.29,0.09 0.354002 0.34, 03
Q3 016,07 010,05 0.1, 019,11
Q4 0.06.,09 0.054901 0.06,0,, 0.06.9,09
Qo 0.46..¢ 05 0.43.4,07 0.44.,06 0.46,,05
Q1 0.4, 05 0.41.07 0.42,006 0.44. 5
GraphST Q2 0.21,9¢7 0.22,4,05 0.38,3 0.39,4.03
Q3 0.02..4,0 0.03.4,05 0.03,,05 0.0L,90
Q4 0.03.,05 0.01,0, 0.01,4,03 0.01,4,,
Qo 0.50..¢,05 0.47..,07 0.48, 06 0.50.95
Ql 0.48..0,05 045,407 0.46,,06 0.48,5
GraphST + SpalLM Q 0.25,07 0.26,,5 0.42,; 0.43,0;
Q3 0‘06i0.06 0‘07i0.05 0'07i0,05 O'OSiO,Ol
Q4 0.07,0,5 0.05,002 0.05,¢,03 0.05,9,1
(Continued on the following page)
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TABLE 2 (Continued) Spatial domain identification performance (ARI) on Donor 1 datasets. The best performance for each quality level and
dataset is bolded.

Method Quality Donor 1
151507 151508 151509 151510
Qo 046, 0.37,40.02 043,002 042,40,
Q1 0.44.5,0 0.35,0.0 041,40 040,49
stCluster
Q2 041,005 0.29,.01 0.36,0,5 0.35.0,05
Q3 021,901 0.15.0.0 0.28.0,06 0.28,0,06
Q4 0.14,4,07 0.12,0,99 0.16.,09 0.19,,0
Q0 049,00 040,90 046,00 045,92
Q1 0.47 .00 0.38.0.02 0.44, 0, 0.43,
stCluster + Spal.LM Q 0.44.,; 032,901 0.39,0,05 038,905
Q3 0.24, 018, 031006 031,006
Q4 0.17.7 0.15,4,9 0.19,.09 0.22,,,

Bold values indicate the best performance (highest ARI) for each dataset and quality level.

4 Results Q4 performance surged from 0.01 to 0.05 (400% improvement), and
in the Donor 1 dataset 151507, Q3 performance increased from 0.12

4.1 SpalLLM demonstrates consistent t0 0.16 (33% gain).

improvements across quality levels GraphST showed significant benefits from SpaLLM integration,

with improvements ranging from 6.2% to 13.8% in high-quality

We evaluated SpalLLM’s performance on spatial domain  datasets to remarkable gains of up to 400% in the most challenging
identification across 12 real-world and 48 simulated datasets  scenarios. In Donor 2, GraphST + SpaLLM achieved the highest
with varying quality levels (Q0-Q4, where QO represents the overall performance in Q0 and QI levels, with values reaching
original highest quality datasets and Q4 the lowest). Tables 2-4  0.69 and 0.67, respectively, for dataset 151672. The most striking
present comprehensive results comparing four baseline methods  improvements were observed in Q4 scenarios, where performance
(SpaceFlow, STAGATE, GraphST, and stCluster) with their  increased from aslow as 0.01 to 0.05 (400% improvement).
SpaLLM-enhanced versions across three different donor samples. stCluster integration yielded improvements across all quality
Results are averaged across ten runs. levels. High-quality datasets (QO, Q1) showed improvements

The integration of SpaLLM with baseline methods shows  ranging from 4.7% to 8.6%, while degraded scenarios (Q3, Q4)
consistent improvements across all quality levels and datasets. ~ demonstrated gains of 10.0%-50.0%. Notably, stCluster + SpaLLM
Notably, the performance gains become more pronounced as data  achieved several best performances in Q2-Q4 categories, such as
quality decreases, highlighting SpaLLM’s robustness in challenging ~ 0.44 (Q2) and 0.24 (Q3) in the Donor 1 dataset 151507.
scenarios where traditional methods struggle.

Across all three donor samples, SpaceFlow integration with

SpaLLM achieved modest but consistent improvements ranging 4.2 Ablation studies: synergistic effects of

from 3.8% to 9.4% in high-quality datasets (Q0, Q1) to more LM priors and integration strategies
substantial gains of 11.1%-60.0% in degraded datasets (Q3, Q4).

For example, in Donor 1 dataset 151509, SpaceFlow improved from To dissect the specific contributions of the individual
0.25 to 0.28 (12% gain) at Q3 level, while in dataset 151508, Q4  components within the SpalLM framework, we performed
performance increased from 0.10 to 0.13 (30% gain). comprehensive ablation studies focusing on the feature integration

STAGATE integration with SpaLLM demonstrated the most  strategy and the choice of the LLM embedding model. We utilized
substantial improvements among all tested methods. In high-quality ~ the STAGATE baseline on both the DLPFC (151507) and osmFISH
scenarios (Q0, Q1), improvements ranged from 5.3% to 9.4%, with  datasets as representative cases.
notable examples including Donor 1 dataset 151507 improving from As quantified in Table 5, we compared four distinct integration
0.55 to 0.58 (5.5% gain) at Q0. However, the most dramatic gains  strategies: (1) Expression only (standard pipeline), (2) Functional
occurred in degraded data scenarios, with Q3 and Q4 improvements ~ only (LLM knowledge only), (3) Simple concatenation, and (4)
reaching 25%-400%. For instance, in the Donor 2 dataset 151670,  Weighted fusion (SpaLLM). The results demonstrate a “synergistic
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TABLE 3 Spatial domain identification performance (ARI) on Donor 2 datasets. The best performance for each quality level and dataset is bolded.

Method Quality Donor 2
151669 151670 151671
Qo 0-3340,05 0.34,904 0-5340,03 050,05
Q1 0.3140.06 0.32,004 0.5140,03 0.48.,06
SpaceFlow Q2 026,009 019,00 033,004 041,40,
Q3 0.21,9,7 0.13.490 0.20,9.19 0.114004
Q4 006,04 0.08,901 0.08,, 0.11,03
Qo 0.35.,05 036,04 0.55,0,03 0.52.,05
Ql 0.34.,06 0.35.0,04 0.54,,03 0.51,,06
SpaceFlow + SpalLM Q2 0.29,,9 0.22,004 0.36.0,04 0.44.0,
Q3 0.24,,7 01640, 0.23,919 0.14,6.04
Q4 0.09.0,04 0.11,901 0-11,0 0.14.,0
Qo0 0.41 005 0.34,,05 0.57.0.04 0.55,011
Q1 0-39,0,08 0.32,9,08 0.55,0,04 0.53,011
STAGATE Q2 0.05,5,, 0.30,0,, 0.25,0 17 0.36,9 17
Q3 0.02,, 0.02,4,03 0.10,0,4 0.11,40,
Q4 0.01,901 0.01,,01 0.02,,01 0.02.,0
Qo 044,05 0.37,0.08 060,04 0.58,011
Q1 0.42.,.05 035,005 0.58,0.04 0.56..11
STAGATE+SpaLLM

Q 0.08,.11 0.34,,, 0.29,0.417 0.40,,;
Q3 0.06,¢, 006,03 0-140.04 0.15,0
Q4 0.0549,0 0.05,901 0.06,,, 0.06.,0
Qo 049,01 043,909 0.63,9.19 0.65,0,7
Q1 0.47,92, 0.41,09 0.6149.10 0.63.907
GraphST Q2 0.01,4,08 0.07,4415 0.17 .04 0.13,50;
Q3 0.01.9,09 0.01,,01 0.01,90, 0.06..¢,06
Q4 0.01,9,09 0.01 09 0.01,4, 0.01,90;
Qo 0.53,01 0.47,4,09 0.67.9.10 0.69.,7
Ql 0.5, 0.45.4,09 0.65.9.19 0.67.0,07
GraphST + SpalLM Q 005,05 0.11,9,, 021,904 0.17,001
Q3 O‘OSiU.OO 0'05101)1 O'OSiO,OZ 0. 10i0.06
Q4 005499 0.05,9,00 0.05,¢, 0.05,901

(Continued on the following page)
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TABLE 3 (Continued) Spatial domain identification performance (ARI) on Donor 2 datasets. The best performance for each quality level and
dataset is bolded.

Method Quality Donor 2
151669 151670 151671 151672

Qo 0.38.,09 0.37,0.05 0.55,0,03 064,410

Q1 0.36..,09 0-35,4,05 0.53.,03 0.62..19

stCluster Q2 025,09 021,40, 044,40, 0.34,9,,
Q3 0'24i0.08 0'1410.07 0'28t0.07 0'24i0.04

Q4 0.14,,05 0.11 44,08 0.09,0,02 0.06.,0

QO 041,009 040,95 0.58,003 0.67.0.10

Ql 0.39.0.09 0.38,005 0.56.,03 0.65.9.10

siCluster + Spal.LM Q2 028,009 024190 0.47 .0 0.37,011
Q3 0.27.0,08 017,907 031,907 0.27,904

Q4 0.17,0,05 0.14,,05 012,40, 0.09.400

Bold values indicate the best performance (highest ARI) for each dataset and quality level.

effect” While expression features are dominant in high-quality =~ accompanied by lower performance variance (standard deviations),
data (QO), they suffer from a catastrophic performance collapse as  prove that integrating LLM-derived knowledge provides a universal
sparsity increases; for example, the ARI on DLPFC drops from 0.55  enhancement for spatial domain identification that is independent
(QO) to a mere 0.02 (Q4). In contrast, the Functional only approach ~ of the wunderlying experimental modality or algorithmic
maintains remarkable stability (e.g., maintaining an ARTof 0.132 on  architecture.
osmFISH even at Q4), indicating that biological priors act as a vital
regularizer when the transcriptomic signal is severely degraded.
Furthermore, we evaluated two OpenAl embedding models: 4.4 Practical guidance for low-throughput
text-embedding-ada-002 (ada) and text-embedding-3-large (large). and sma[l-samp[e regions
Our analysis shows that while simple concatenation only yields
marginal gains, our Weighted fusion strategy achieves the best To provide concrete guidance for practitioners working
overall performance. Notably, the large model variant exhibits  with limited tissue sections, we analyzed the performance of
superior robustness in the most challenging scenarios (Q3-Q4),  Spal.LM on small spatial subregions. We randomly extracted 10
providing the highest ARI across both datasets. However, ada offers  contiguous subregions, each consisting of only 1,000 cells, from the
a comparable balance with lower computational overhead, whichwe  osmFISH tissue.
selected as the default configuration for general efficiency. As summarized in Table 7, the relative performance
improvement introduced by SpaLLM is even more pronounced
in these small-sample scenarios compared to full-tissue analysis.
4.3 Cross-platform generalizability: For example, GraphST’s performance gain increases from 8.3% on
validation on osmFISH full tissue to 27.3% on subregions. This suggests that when spatial
context is limited, LLM-derived gene functional knowledge helps
To ensure that SpaLLM is technology-agnostic, we extended our ~ anchor the identity of cell clusters, effectively compensating for the
evaluation to the osmFISH dataset (mouse somatosensory cortex).  lack of local cell-cell interaction information. Based on these results,
Unlike sequencing-based platforms, osmFISH is an imaging-based ~ We recommend SpaLLM as a critical enhancement for experiments
technology with a high spatial resolution but a specific gene panel involving small biopsies or sparse cell populations where traditional
(33 marker genes). methods often fail to recover clear domain boundaries.
We applied SpaLLM to four representative baselines: SpaceFlow,
STAGATE, GraphST, and stCluster. As summarized in Table 6,
SpaLLM consistently improved the ARI across all quality levels 5 Conclusion and discussion
for every baseline. For instance, GraphST + SpaLLM achieved the
highest ARI of 0.52 at Q0 (compared to 0.48 for base GraphST) and We presented SpaLLM, a general framework that integrates
maintained a significant lead even at Q4 (0.18 vs. 0.09). These results, ~ large language model embeddings of gene functional descriptions
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TABLE 4 Spatial domain identification performance (ARI) on Donor 3 datasets. The best performance for each quality level and dataset is bolded.

Method Quality Donor 3
151673 151674 151676
Q0 0.39.0,04 0.34,002 041,005 0.38,003
Q1 0.37.0.04 0.32,002 0.39.0.06 0.36.,03
SpaceFlow Q2 0.31,002 0.28,4,0; 0.33,501 0.25,0.03
Q3 0.27.0.02 0.26,,3 0.214004 0.27.4001
Q4 0214001 0.21,90, 0.20,4,9 0.20,,01
Qo 041,04 0.36,002 043,05 040,405
Q1 0.40..,04 0.354002 0.42,4,06 0.39,0,03
SpaceFlow + SpalLM Q 0.34.,0 0.31,001 0.36,, 0.28,4,05
Q3 0.30, 0.29,0,03 0.24,04 0.30.,9
Q4 0.24., 024,002 0.23,902 0.23,001
Qo0 0.57.0.04 0.49,0,05 0.44, 0.53.0.09
Q1 055,004 047,05 042,02 0.51,909
STAGATE
Q2 0.36.0,04 0.28,00 0.31.4005 0.334002
Q3 0.16.4,0 0.16,,03 0.1244,01 0.15,9,3
Q4 0.03.,01 0.01,909 002,409 0.01,,01
Qo 0.60.,¢,04 0.52,,5 0.47..4, 0.56,,09
Q1 0.58,0,04 0.50,95 0.45,4, 0.54,4,9
STAGATE + SpaLLM
Q 0.40.,,04 0.32,402 0.3540.05 0.37.0.02
Q3 0.20,03 0.20,¢,03 0.16,901 0.19,0,03
Q4 0.07.901 0.05.9,00 0.06.,09 0.05,901
Q0 047,004 042,05 0.33.0.10 0.31,4,07
Q1 0.45.004 0.40,,05 0.3149.10 0.29.007
GraphST Q2 0.15.,03 0.17,40.02 0.14,4,04 0.15,9,2
Q3 0.12.,04 0.12,905 0.15.,05 011,405
Q4 0.13..01 0.01,4,; 008,405 0.01,00,
QO 0'5110.04 0'4610.05 0'3710.10 0'351:0.07
Ql 0.49..,04 0.44,05 0.35.0.10 0.33.0,07
GrephST + Spal LM Q 0.19,0,3 021, 018,004 0.19,9,12
Q3 0.16.0,04 0.16,5 0.19,903 0.15,9,05
Q4 0.17.0.01 0.05,9,01 0.12,4,05 0.05,,01
(Continued on the following page)
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TABLE 4 (Continued) Spatial domain identification performance (ARI) on Donor 3 datasets. The best performance for each quality level and
dataset is bolded.

Quality Donor 3
151673 151674 151675 151676

Qo 050,004 048,05 0.37,0,03 04308

Q1 048,404 0.46.. 05 0.35.0.03 041,405

sCluster Q2 0.44,3 0.38..0; 0.32,0.06 0.28,4,01
Q3 0.26.,06 0.324903 0.25,901 0.24,0,

Q4 018,004 0.23,001 0.19.,03 0.19,,01

Qo 0.53,004 0.51,905 040,003 046,05

Q1 0.51004 0.49,,05 0.38,003 0.44, 5

stCluster + Spal.LM Q2 0.47 .03 0.41,,, 0-35,0,06 031,901
Q3 0.29.0.06 0.35.003 0.28, 0.27.1001

Q4 0.21,4,04 0.26,, 0.22,5 022,90,

Bold values indicate the best performance (highest ARI) for each dataset and quality level.

TABLE 5 Comprehensive ablation study results (ARI) across DLPFC and osmFISH datasets using STAGATE.

Dataset Strategy/Model ’ Qo Q1 Q2 ’ (@K Q4
Expression only 0.55 0.53 0.22 0.12 0.02
Functional only 0.54 0.53 0.24 0.13 0.02
DLPFC Concatenation 0.56 0.54 0.24 0.14 0.04
Weighted (ada) 0.58 0.56 0.26 0.16 0.06
Weighted (large) 0.58 0.55 0.25 0.18 0.08
Expression only 0.397 0.372 0.305 0.182 0.085
Functional only 0.402 0.374 0.331 0.205 0.132
osmFISH Concatenation 0.411 0.389 0.357 0.215 0.142
Weighted (ada) 0.420 0.401 0.358 0.238 0.168
Weighted (large) 0.421 0.403 0.361 0.246 0.175

Bold values indicate the best performance (highest ARI) for each dataset and quality level.

into spatial transcriptomics analysis. By leveraging pre-computed =~ modular design enables seamless integration with existing spatial
GenePT features and combining them with expression data  analysis methods including SpaceFlow, STAGATE, GraphST,
through weighted matrix integration, SpaLLM consistently — and stCluster, making SpaLLM broadly applicable to diverse
improves spatial domain identification across varying data quality = research scenarios regardless of the underlying experimental
conditions. modality.

Our comprehensive evaluation on 12 sequencing-based DLPFC The success of SpaLLM demonstrates several key advantages:
datasets and an independent imaging-based osmFISH dataset  incorporating gene functional knowledge leads to more biologically
demonstrates substantial improvements in clustering accuracy. = meaningful clustering results, as evidenced by consistent
The gains range from 4% to 8% in high-quality data to remarkable =~ improvements across all tested methods. Detailed ablation studies
200%-400% improvements in severely degraded scenarios. The  confirm that our weighted fusion strategy outperforms simple
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TABLE 6 Full performance comparison (ARI) on the osmFISH dataset across different data quality levels.

Method Qo Q1 Q2 Q3 Q4

SpaceFlow 0.46,03 0.43,003 0.37.40.04 0.29,0.03 0.21,00,
SpaceFlow + SpaLLM 049,903 0.47 40,03 0.41,4 0.34,)03 0.27,0.02
STAGATE 0.39.0.04 0.36.40,04 0.29.,03 018,40 0.08.,,01
STAGATE + SpaLLM 0.43,0.4 0.40,,0, 0.33,0,3 023,00 0.14,0,
GraphST 0.48.,05 0.45,.5 0.314004 0.17.0.03 0.09.0,02
GraphST + SpaLLM 0.52,,5 049, 037,004 0.25,0.05 0.18,0,,
stCluster 044,003 042,403 036,04 0.28,4.03 0.22,0,
stCluster + SpaLLM 047,003 0.45,.03 040, 04 0.33,03 0.28,0,

Bold values indicate the best performance (highest ARI) for each dataset and quality level.

TABLE 7 Comparative ARI analysis on osmFISH subregions (1,000 cells) versus full tissue.

Method

SpaceFlow + SpaLLM (vs. base)

Subregion (1,000 cells)

0.41 vs. 0.35 (+17.1%)

Full tissue (4,839 cells)

0.49 vs. 0.46 (+6.5%)

STAGATE + SpaLLM (vs. base)

0.38 vs. 0.31 (+22.5%)

0.43 vs. 0.39 (+10.2%)

GraphST + SpaLLM (vs. base)

0.42 vs. 0.33 (+27.3%)

0.52 vs. 0.48 (+8.3%)

stCluster + SpaLLM (vs. base)

0.40 vs. 0.34 (+17.6%)

0.47 vs. 0.44 (+6.8%)

Bold values indicate the best performance (highest ARI) for each dataset and quality level.

concatenation, and while newer models like text-embedding-3-large
provide superior stability in extreme sparsity, text-embedding-ada-
002 remains a highly efficient default for routine analysis. Functional
features provide stable signals even when expression data is sparse
or degraded, with the most dramatic improvements observed in
Q3 and Q4 quality scenarios. Furthermore, our subregion analysis
reveals that SpaLLM is particularly transformative for small-scale
tissue samples (e.g., 1,000 cells), where the relative improvement
in ARI reaches up to 27.3%, effectively compensating for limited
spatial context.

While SpaLLM shows consistent effectiveness, its current
implementation depends on the accuracy of large language model
embeddings for capturing gene functional relationships. However,
with the rapid advancement of language model architectures and
the continuous expansion of biological knowledge databases, we
anticipate that this limitation will be progressively overcome, leading
to even more precise functional representations that better capture
the complexity of biological systems.

This work establishes a foundation for knowledge-guided
spatial omics analysis and demonstrates the potential for large
language models to enhance biological discovery through the
systematic integration of functional knowledge. The consistent
improvements across diverse datasets, varying tissue sizes, and
methods suggest that functional knowledge integration represents
a promising paradigm for advancing spatial transcriptomics
analysis.
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