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Recent trends in machine
learning and deep
learning-based prediction of
G-protein coupled
receptor-ligand binding affinities

Joshua Stephenson and Konda Reddy Karnati*

Department of Natural Sciences, Bowie State University, Bowie, MD, United States

Accurately predicting protein-ligand binding affinity is key in drug discovery.
Machine Learning and Deep Learning methods used in the drug discovery
process have advanced the prediction of drug-target binding affinities,
particularly for G protein—coupled receptors (GPCRs), a pharmacologically
significant yet structurally heterogeneous protein family. In this review, binding
affinity prediction models are examined and organized according to sequence-
based one-dimensional, graph-based two-dimensional, and structure-based
three-dimensional frameworks. Sequence-based models utilize convolutional
neural networks for high-throughput screening. Recently published models
incorporated attention mechanisms and self-supervised learning, enhancing
interpretability and reducing dependence on annotated datasets. Graph-
based models employ graph neural networks and molecular contact maps
to capture topological features, enabling substructure-sensitive predictions.
Structure-based approaches integrate spatial and conformational data into
high-resolution interaction models. The hybrid use of these three approaches
could significantly increase the success rate of in silico models for drug
discovery, particularly for GPCRs.

drug—target binding affinity, G protein—coupled receptors (GPCRs), binding affinity
prediction, machine learning (ML), deep learning (DL)

Introduction

Binding affinity is the key parameter in drug discovery for predicting the
strength between protein and ligand (Spassov, 2024; Gilson and Zhou, 2007).
Predicting accurate binding affinity is challenging with current computational
methods; strategies such as molecular docking are used for binding affinity prediction,
but do not yield highly satisfactory results (Spassov, 2024). To overcome this
limitation, binding affinity prediction models using Machine Learning (ML) and
Deep Learning (DL) have become more prevalent in the drug discovery workflow.
These models assist with the estimation of the strength of interactions between
small molecules and biological macromolecules, which are often calculated as K,
K, or ICs; this guides prioritization of compounds before costly experimental
assays. The dimensionality of the input representations, one-dimensional (1D),
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Workflow of ML/DL based binding-affinity prediction, beginning with data input and encoding, proceeding through the model architecture and the
interaction module (where SMILES and amino-acid embeddings are fused), concluding with the affinity prediction.
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two-dimensional (2D), and three-dimensional (3D) models, can
broadly rank the models. 1D models operate on sequences or
chemical strings, 2D models use graph-based molecular topologies
or contact maps, and 3D models use inputs of spatial coordinates
of atoms or coarse-grained conformations (Chen et al, 2016;
Wang, 2024; Nguyen et al., 2024; Wang et al., 2015).

DL, which is a subset of ML, is a branch of artificial intelligence
(AI) that enables computers to observe patterns from data
and make predictions without strict rule-based programming
(LeCun et al.,, 2015; Mahesh, 2020). Traditional ML approaches
were lacking in their ability to process original data in its base
state; they relied on engineered descriptors and algorithms such
as decision trees, support vector machines, or random forests
(Mahesh, 2020; LeCun et al., 2015). In contrast, DL leverages
layered neural network architectures to change internal parameters
by using backpropagation within the algorithm (Figure 1)
(LeCun et al., 2015). Over the last decade, these methods have
transformed early-stage drug discovery by accelerating virtual
screening and reducing the difficulties of synthesis experiments
(Paul et al, 2021; Blanco-Gonzilez et al, 2023). They have
enabled structure-based virtual screening (Cheng et al., 2012;
Kitchen et al., 2004), kinase selectivity profiling (Davis et al., 2011),
and the identification of ligand-binding residues (Chen et al., 2014).

G-protein-coupled receptors (GPCRs) constitute the most
prominent family of druggable membrane proteins and control
multiple downstream cellular signals. Despite accounting for
one-third of marketed therapeutics, many GPCRs lack effective
pharmacological treatments (Hauser et al., 2017). Cryo-EM and
X-ray crystallography advances have improved the use of high-
resolution GPCR structures (Congreve et al,, 2020), revealing
conserved activation motifs (Venkatakrishnan et al., 2013) and
enabling structure-based design. Although recent cryo-EM
structures have improved coverage of GPCRs, high-resolution
structures capturing receptor activation states and receptor
conformations stabilized by a particular ligand remain uncommon,
especially at allosteric sites; this complicates the accuracy of binding
affinity inference and subtype selectivity (Congreve et al., 2020;
Wacker et al., 2017; Krishna Kumar et al., 2019; Xia et al., 2021).
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However, predicting GPCR-ligand binding affinity can be difficult
since the membrane receptors are dynamic and can adapt multiple
conformations, while their endogenous peptide ligands vary
widely in sequence, length, and post-translational modifications;
together, these limit available structural data and make it hard
for models to generalize beyond training sets. Due to GPCRs
having multiple allosteric and orthosteric sites with ligand-specific
pocket arrangements, any fixed representation risks missing
relevant details (Latorraca et al., 2017; Christopoulos, 2014).
Benchmarking also shows that distinguishing true binders from
closely related decoys is difficult due to binding-pocket similarity
across receptors (Hoegen Dijkhof et al., 2025). As a result of these
features, the use of 1D sequence-only models, 2D graph-based
models, 3D models, and structure-based models can potentially
improve the accuracy of binding affinity predictions and lower the
cost of resources for both in silico and experimental processes.

1D binding affinity models

1D ML models process sequential data, typically in 1D formats
such as text, time series, or biological sequences, to extract
patterns and make predictions (Kiranyaz et al., 2021). Proteins as
amino-acid sequences and ligands encoded as canonical SMILES
(Simplified Molecular Input Line Entry System) are fed into
tokenized sequences within convolutional or recurrent networks.
The use of 1D sequence-based models enables rapid, high-
throughput screening due to not having to rely on structural
data (Oztiirk et al, 2018; Wang, 2024). Their Convolutional
Neural Networks (CNN) encoders have given competitive results
(Table 1.) on benchmark datasets (e.g., Davis, KIBA) and can
outperform classical docking in some instances, making them
efficient and easy to scale (Oztiirk et al., 2018; Oztiirk et al., 2019;
Kitchen et al., 2004). Recent self-supervised approaches further
boost their effectiveness by learning useful representations from
extensive unlabeled data, reducing dependence on labeled data
(Schuh et al., 2025; LeCun et al,, 2015). 1D encodings can also
capture pharmacological properties in multi-task setups, which
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TABLE 1 The table below shows the metrics like Cl, MSE and RMSE of
various models.

Model ‘ Dataset Cl MSE RMSE
DeepDTA KIBA 0.863 0.194 0.440
DeepDTA Davis 0.878 0.261 0.51

WideDTA KIBA 0.875 0.179 0.423
WideDTA Davis 0.886 0.262 0.511
DeepAffinity Davis/KIBA N/A N/A N/A
GSAML-DTA Davis 0.896 0.201 N/A
AiGPro 36 GPCRs (per-receptor) 0.09-3.15 N/A

DEAttentionDTA CASF-2016 (core) 0.82 N/A 1.224

broadens their role as initial filters (Brahma et al., 2025; Jabeen
and Ranganathan, 2019). Recent studies have shown that coupling
1D CNN encoders for SMILES and protein sequences (Figure 2),
followed by fully connected layers to regress binding affinity, could
produce worthwhile results (Oztiirk et al., 2018; LeCun et al., 1998).
One of the models, DeepDTA (Oztiirk et al., 2018), incorporated
this approach and, despite its simplicity, outperformed classical
docking on the Davis and KIBA datasets and has the potential
to be adapted for GPCR-centric datasets. Its variant, WideDTA,
expands on this by incorporating additional textual descriptors
and interaction contexts (Oztiirk et al., 2019); all recent 1D
models' description is listed in Table 2. Barlow Twins, a self-
supervised architecture, was introduced to learn embeddings from
extensive unlabeled data, achieving optimal performance on diverse
drug target interaction (DTI) sets while requiring fewer labeled
examples (Schuh et al., 2025). Within GPCR drug discovery, multi-
task sequence models such as AiGPro can classify both agonism
versus antagonism across receptor subfamilies concurrently, which
demonstrates how 1D encodings can capture pharmacological
structures in addition to affinity (Brahma et al, 2025). These
models are supported by trends in ligand discovery using ML-
based algorithms (Jabeen & Ranganathan et al, 2019; Blanco-
Gonzalez et al., 2023; Lorente et al., 2025; Oztiirk et al., 2018).

2D binding affinity models

2D models process spatial data represented in two dimensions,
such as images, matrices, or other grid-like structures (Figure 3).
These models, particularly within DL, are usually built on CNNs,
which apply 2D filters to detect local patterns that extract features
such as edges, textures, and shapes (Li et al., 2022). 2D models
adapt chemical representation to graph structures in which atoms
are nodes and bonds are edges, or to residue-residue contact
maps for proteins. Graph neural networks (GNNs) can generate
annotations along these edges, capturing the local topology and
functional group context; this creates a balance between its ability to
recognize the complex relationships within a chemical environment
and computational effectiveness (Chen et al.,, 2016; El-Atawneh
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and Goldblum, 2024). Due to the efficiency of these models,
millions of compounds can be screened before 3D docking or
simulation while preserving chemical diversity (Sadybekov and
Katritch, 2023; Chen et al., 2016).

The model DEAttentionDTA (See Table 2) integrates dynamic
embedding with self-attention layers to re-weight atom and
residue contributions, significantly improving K; prediction on
BindingDB and demonstrating strong similarities to GPCR sets
(Chen et al., 2024). GSAML-DTA combines a GNN encoder with
self-attention mechanisms and mutual-information shrinkage,
yielding interpretable attention maps highlighting substructures
while maintaining competitive performance (Liao et al, 2022).
2D models are frequently used to sort millions of compounds
the
pool of molecules while retaining chemically diverse ones.
(Chen et al., 2016; Sadybekov et al., 2023; Karimi et al., 2019).

before structure-based docking, significantly reducing

3D binding affinity models

3D models (see Figure 4) leverage spatial structural information
to capture complex molecular interactions. 3D models introduce
spatial coordinates and conformational ensembles, which directly
model non-covalent interactions such as hydrogen bonding, -
stacking, and steric clashes. Techniques range from voxelated CNNs
to SE (3) equivariant GNNs that respect rotational symmetry. By
encoding ligand-target contact patterns as interaction fingerprints,
these methods support computational simulations of biological
changes and data-driven drug repurposing (Wacker et al., 2017; El-
Atawneh and Goldblum, 2024). By leveraging receptor dynamics,
these models can distinguish between active and inactive GPCR
receptor conformational states, which would improve the quality of
ligand design (Buyanov and Popov, 2024).

Studies into this field have resulted in DeepREAL (See
Table 2), a model that employs a multi-scale framework that fuses
ligand graphs, receptor sequences, and coarse-grained 3D pocket
descriptors. Trained not only for accuracy on training distribution,
but also to generalize data drawn from different distributions,
such as scaffold-split Distributionally Robust Optimization; it
effectively predicts GPCR activity for novel chemical profiles
(Cai et al., 2022). ML classifiers of GPCR conformational states use
structural descriptors to distinguish between inactive, active, and
intermediate poses obtained from molecular dynamics (Buyanov
and Popov, 2024). Additionally, recurrent neural networks were
used to forecast conformational transitions in molecular dynamics
simulations (Lopez-Correa et al., 2023). The CB1-Gi complex,
which is a high-resolution cryo-electron microscopy (cryo-EM)
structure of the cannabinoid receptor 1 (CB1) in complex with the
Gi protein (Krishna Kumar et al., 2019), further enables transfer
learning where pre-trained 3D encoders are based on ligand-
specific affinity labels, bridging experimental structural biology and
computational predictions (Xia et al., 2021).

Discussion

The growing integration of ML and DL in drug discovery
has given rise to several binding affinity prediction models, each
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1D binding affinity models utilize linear representations of molecules (e.g., SMILES) and proteins (amino acid sequences) processed by CNNs or
recurrent layers to predict interactions without requiring structural data (Oztiirk et al., 2018). The image above illustrates a 1-D Binding Affinity
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showing a unique perspective on GPCR-targeted research. These
models utilize a specific metric based on the dimensionality being
used, as shown in Table 1 above; however, due to these differences in
their select metrics, it's difficult to draw a comparison between
the models; this highlights the importance of interchangeable
splits for comparison analysis and consistent data standards. 1D
models such as DeepDTA and WideDTA use sequence-based
representations that produce high-throughput virtual screening
(Oztiirk et al., 2018; Oztiirk et al., 2019). DEAttentionDTA and
Barlow Twins models use attention mechanisms and self-supervised
learning techniques to improve performance while reducing
dependence on labeled data (Chen et al., 2024; Schuh et al., 2025).
Models such as AiGPro include pharmacological properties such
as receptor agonism and antagonism, which go beyond the
scope of just adhering to binding affinity (Brahma et al., 2025).
However, the limitations of 1D models are in their lack of
spatial and structural information, which is crucial for modeling
conformational dynamics and ligand-specific binding data
(Hauser et al., 2017; Wacker et al., 2017). To provide a solution
for this issue, 2D and 3D models introduce greater structural
awareness; 2D models like GSAML-DTA and DEAttentionDTA
utilize GNNs and self-attention mechanisms to capture local
chemical context and observe key substructural features, which
can improve functionality and affinity prediction (Liao et al., 2022;
Chen et al., 2024). 3D models such as DeepREAL and GPCR
Conformational Classifier incorporate spatial coordinates and
molecular dynamics conformations that allow accurate modeling
of complex GPCR-ligand interactions and receptor activation
(Cai et al, 2022; Buyanov and Popov, 2024). Although these
models need greater computational resources to operate proficiently,
receiving high-quality structural input provides important
insight into receptor signaling and potential effectiveness of
compounds (Congreve et al., 2020; Krishna Kumar et al., 2019). and
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molecular dynamics conformations that allow accurate modeling
of complex GPCR-ligand interactions and receptor activation
(Cai et al, 2022; Buyanov and Popov, 2024). Although these
models need greater computational resources to operate proficiently,
receiving high-quality structural input provides important insight
into receptor signaling and potential effectiveness of compounds
(Congreve et al., 2020; Krishna Kumar et al., 2019).

Improving data quality and standardization will be critical in
overcoming limitations within this area of research. Inconsistent
assay protocols, mixed affinity metrics (Ky, K;, ICs), and
benchmark biases can distort true generalization and inflate
reported performance; adopting consistency between data standards
and transparent data workflow reporting are steps that can be used
for further advancement within this area. Random splits can leak
closely related scaffolds across training and test sets, overestimating
performance; scaffold splits provide a stricter estimate of practical
generalization to novel chemotypes (Yang et al., 2019). To ensure
reliability within these pipelines, incorporate explainable AI during
validation, and report results under a scaffold, time, or cluster splits
so explanations correspond to stable interactions rather than dataset
effects (Ong et al., 2023; Davis et al., 2011). For GPCRs, resources
that integrate sequence, structure, and function can benefit reliable
cross-study comparisons; clarifying and extending the effective
space can propel future innovation of these models. Evaluations
should be conditioned on the pocket and receptor state instead of
dataset-driven ones to assess the stability of the core framework
and chemical changes. The use of databases such as GPCRdb,
which offer sequences and structures that can be integrated within
docking or structure-based workflows, and GLASS, which provides
curated GPCR-ligand pairs and receptor subtype labels that can be
useful for training and or validation and scaffold- or time-split tests
(Munk et al., 2016; Chan et al., 2015; Hauser et al., 2017; Jabeen and
Ranganathan, 2019; Congreve et al., 2020; Nguyen et al., 2024).
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TABLE 2 This table combines the comparisons across 1D, 2D, and 3D models, showing the strengths and weaknesses of each model as well as their
architecture and metrics suited to each task. For the 1D models, the Concordance Index (Cl), which measures how well predicted binding affinities
preserve the rank ordering of experimental values, is used; Cl > 0.85 is generally considered strong (Oztiirk et al., 2018). For 2D models, Root Mean
Squared Error (RMSE) is used, which is a standard regression metric where lower values indicate more accurate predictions of continuous affinity
readouts, which is widely used on benchmarks like KIBA and Davis (Oztiirk et al., 2018). 3D models incorporate spatial and conformational data, which
could entail the fusing of ligand graphs, protein sequences, and 3D pocket descriptors (Cai et al., 2022).

Dimension Model Architecture Strengths Weaknesses References
1D DeepDTA Dual CNN encoders on Simple, fast, suitable for No explicit structural Oztiirk et al. (2018)
SMILES and protein high-throughput context; prone to dataset
sequences screening bias
1D WideDTA CNN encoders with Improved expressivity Sequence-only Oztiirk et al. (2019)
enriched token sets for and slight CI gains over
SMILES and proteins DeepDTA
1D DeepAffinity Hybrid CNN + BiLSTM Captures long-range Heavier computational Karimi et al. (2019)
encoders; unified dependencies; footprint vs. pure CNNs
sequence model interpretable sequence
attention
1D Barlow twins DNN Self-supervised; Leverages unlabeled Still lacks structural Schuh et al. (2025)
(DTI) siamese-style encoders data; good performance context; may inherit
for 1D inputs with fewer labeled dataset biases
examples
1D AiGPro Multi-task sequence Captures Sequence-only inputs Brahma et al. (2025)
model profiling GPCR pharmacological
agonism vs. antagonism outcomes beyond
affinity; cross-receptor
generalization
2D DEAttentionDTA Dynamic embedding + Improved RMSE/R? on 2D graphs/contact maps Chen et al. (2024)
self-attention on BindingDB; ignore stereochemistry;
compound/protein interpretable attention sensitive to noisy inputs
features; GNN/CNN over
hybrids substructures/residues
2D GSAML-DTA Graph neural networks + Interpretable attention Approximate spatial Liao et al. (2022)
self-attention with maps; competitive on reasoning; limited
mutual-information KIBA/Davis explicit 3D context
regularization
3D DeepREAL Ligand graphs + protein OOD-robust GPCR Depends on accurate Cai et al. (2022)
sequence + 3D pocket activity prediction; pocket/structure data;
descriptors; multi-scale AUC > 0.85 on higher computational
fusion challenging splits cost
3D GPCR conformational Supervised ML on Able to determine active Not a direct affinity Buyanov and Popov
classifier MD-derived or inactive states (~87% model; reliant on MD (2024)
conformational accuracy reported) data quality
descriptors

By aligning ESM sequence embeddings with pocket alignment
features on GPCRdb structures and GLASS subtype labels,
multimodal transfer learning can enhance out-of-distribution
(OOD) robustness while maintaining clear explanations of the
binding mechanism. (Munk et al, 2016; Chan et al, 2015;
Lin et al, 2023; Stirk et al, 2022; Corso et al, 2022). The
difficulty posed by screening multi-billion compound libraries
would suggest that ML-guided pre-screening will remain a
practical path; however, narrowing candidates before using more
advanced computational techniques would be necessary to spare
time and resources. Therefore, pipelines that can integrate 1D
sequence models for initial filtering of molecules that incorporate
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either 2D or 3D structural models for processing may offer the
most comprehensive approach to drug discovery. In parallel,
ESM-style protein language models contribute transfer-learned,
self-supervised embeddings that improve GPCR tasks without
labels, while equivariant and diffusion pose predictors such
as EquiBind and DiffDock give rapid predictions on ligand
poses which can be used to integrate with GPCRdb structures
for multimodal training and rapid screening (Lin et al., 2023;
Stark et al., 2022; Corso et al., 2022). The most beneficial outcome
for GPCR binding affinity predictions would be the success of
generative AI; having the ability to use all dimensional models
coherently to predict binding affinity accurately and at a rapid pace
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2D binding affinity models represent molecules as graphs where atoms are nodes and bonds are edges, and apply GNNs to capture topological and
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would outperform all current methods used for drug discovery.
When combined with rigorous data standards and an explainable
Al evaluation, self-supervised pretraining, along with generative
diffusion, offers a credible pathway to high-throughput GPCR
discovery.

Strengths and limitations

GPCRs pose substantial challenges for models to address
when predicting binding affinity. Receptors cycle through multiple
conformational and signaling states, such as G-protein and -
arrestin pathways, giving rise to biased agonism; a single static
structure cannot capture these features (Latorraca et al., 2017;
Preininger et al., 2013). ML models often struggle to new GPCR
subtypes when training is limited or imbalanced. If receptor
structural data (crystal structures or AlphaFold models) are not
incorporated, ML models miss receptor-specific features, limiting
their ability to distinguish closely related subtypes. Subtle sequence
and pocket differences across closely related GPCRs further
influence bias through pocket shape, water networks, and side-
chain rotamers, underscoring the need for approaches that can
integrate dynamics with the limitations of experimental workflows
(Venkatakrishnan et al., 2013; Michino et al., 2025). The influence
of Ki, Kd, and IC50 values, with Ki and Kd being equilibrium
affinity constants, whereas IC50 is a readout that depends on
the experimental assay conditions; mixing them without careful
normalization can introduce label bias (Gilson and Zhou, 2007;
Kitchen et al., 2004). Thus, it is important to recognize the potential
strengths and weaknesses of 1D, 2D, and 3D models pertaining to
the GPCRs binding affinity prediction, as shown in Table 2.

Frontiers in Bioinformatics

1D models would do best for rapid screening of very large
libraries (Wang, 2024). However, a potential issue for 1D-
type models could be the impact of SMILES on the dataset
used. Although it has been shown that CNNs using 1D inputs
perform well under random splits, they collapse whenever
there are unseen inhibitors, indicating that redundancy and
leakage drive performance rather than learned interactions
(Ong et al.,, 2023). When known SMILES are replaced with junk
SMILES per inhibitor, accuracy remains unchanged and sometimes
improves (Ong et al., 2023). This shows that these models mainly
learn SMILES substrings as identifiers rather than structurally
relevant features. This exposes a core limitation of SMILES
encodings, where models can potentially fail to recognize that two
different encodings can describe the same molecule, providing
the need for more improved structure-based representations
(Ong et al., 2023).

2D graph models are preferable for chemotype refinement when
activity is driven by molecular topology (Liao et al., 2022). The
trade-offs are that 2D encodings ignore stereochemistry and 3D
orientations, which leads to dependence on approximations that
can impact accuracy due to the sensitivity to input quality; this
is especially true for the dynamic GPCR pockets (Wang, 2024;
Congreve et al., 2020). Dataset biases could lead to inflated false-
positive results; this emphasizes the need for bias-aware splits and
validation (Ong et al., 2023).

3D models provide mechanisms that can be based on a specific
active site, are preferred for subtype selectivity, allostery, and
for determining how a ligand resides within a receptor which
emphasizes their use when reliable, high-quality structures exist or
when optimizing for selectivity and allosteric effects. (Gilson and
Zhou, 2007; Spassov, 2024; Congreve et al., 2020; Kitchen et al., 2004;
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Cheng et al., 2012; Stdrk et al,, 2022; Corso et al., 2022). Despite
the rapid progress, 3D GPCR binding-prediction needs more
data for better efficacy; only a fraction of the ~800 human
GPCRs have been experimentally determined, which limits model
training, pocket generalization, and the ability to study less-known
receptors (Michino et al., 2025).

Conclusion and future directions

Binding affinity prediction for GPCRs has progressed from fast
but superficial 1D sequence models to structurally informed 2D
graphs and fully 3D, structurally-based models. Each methodology
offers strengths that could support the other. 1D models enable
rapid screening of large libraries, 2D models enhance chemical
context and substructure awareness, and 3D models can effectively
capture pocket geometry, receptor states, and substrate selectivity.
Robust pipelines for GPCRs would benefit from the combination
of dimensional scales rather than choosing among them. The
use of 1D sequence-based models for initial screening, 2D
graph and attention architectures for chemotype refinement, and
3D structure-based models that focus on specific pockets and
receptor states. When supported by high-quality data curation,
consistent aﬁinity measurements, and processes that account
for bias, multidimensional workflows can yield more realistic
generalizations with trustworthy results. Multimodal learning that
aligns protein language model embeddings, pocket geometry,
receptor state, and readouts related to signaling bias can improve
the robustness of new data. Generative models that can propose
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ligands based on GPCR sequences, a set of different 3D pocket
conformations, and desired biological profiles could bridge the gap
between affinity prediction and de novo design. To make these
systems optimal for clinical use, future work should prioritize GPCR
benchmarks built on curated resources, utilizing scaffold and time-
split evaluations, and incorporating explainable AI analyses that
can link the model to relevant chemical and structural features.
Ultimately, the most impactful GPCR discovery platforms will
treat 1D, 2D, and 3D representations as complementary parts of
the same system, where they can be integrated into reproducible
workflows that support experimental design, explain failures, and
accelerate the progression from virtual candidates to safe and
effective drugs.
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Glossary

CI Concordance Index (Calculates how well the model preserves
the rank ordering of valid values)

RMSE Root Mean Squared Error (Calculates the average magnitude of
prediction errors, with larger errors penalized more)

R? Coefficient of Determination (Calculates the share of variance
in the target that the model explains)

AUC Area Under the ROC Curve (Calculates the probability that a

random positive score will be higher than a random negative

for binary classifications)
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