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Recent trends in machine 
learning and deep 
learning-based prediction of 
G-protein coupled 
receptor-ligand binding affinities

Joshua Stephenson and  Konda Reddy Karnati*

Department of Natural Sciences, Bowie State University, Bowie, MD, United States

Accurately predicting protein-ligand binding affinity is key in drug discovery. 
Machine Learning and Deep Learning methods used in the drug discovery 
process have advanced the prediction of drug–target binding affinities, 
particularly for G protein–coupled receptors (GPCRs), a pharmacologically 
significant yet structurally heterogeneous protein family. In this review, binding 
affinity prediction models are examined and organized according to sequence-
based one-dimensional, graph-based two-dimensional, and structure-based 
three-dimensional frameworks. Sequence-based models utilize convolutional 
neural networks for high-throughput screening. Recently published models 
incorporated attention mechanisms and self-supervised learning, enhancing 
interpretability and reducing dependence on annotated datasets. Graph-
based models employ graph neural networks and molecular contact maps 
to capture topological features, enabling substructure-sensitive predictions. 
Structure-based approaches integrate spatial and conformational data into 
high-resolution interaction models. The hybrid use of these three approaches 
could significantly increase the success rate of in silico models for drug 
discovery, particularly for GPCRs.
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Introduction

Binding affinity is the key parameter in drug discovery for predicting the 
strength between protein and ligand (Spassov, 2024; Gilson and Zhou, 2007). 
Predicting accurate binding affinity is challenging with current computational 
methods; strategies such as molecular docking are used for binding affinity prediction, 
but do not yield highly satisfactory results (Spassov, 2024). To overcome this 
limitation, binding affinity prediction models using Machine Learning (ML) and 
Deep Learning (DL) have become more prevalent in the drug discovery workflow. 
These models assist with the estimation of the strength of interactions between 
small molecules and biological macromolecules, which are often calculated as Kd, 
Ki, or IC50; this guides prioritization of compounds before costly experimental 
assays. The dimensionality of the input representations, one-dimensional (1D),
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FIGURE 1
Workflow of ML/DL based binding-affinity prediction, beginning with data input and encoding, proceeding through the model architecture and the 
interaction module (where SMILES and amino-acid embeddings are fused), concluding with the affinity prediction.

two-dimensional (2D), and three-dimensional (3D) models, can 
broadly rank the models. 1D models operate on sequences or 
chemical strings, 2D models use graph-based molecular topologies 
or contact maps, and 3D models use inputs of spatial coordinates 
of atoms or coarse-grained conformations (Chen et al., 2016; 
Wang, 2024; Nguyen et al., 2024; Wang et al., 2015).

DL, which is a subset of ML, is a branch of artificial intelligence 
(AI) that enables computers to observe patterns from data 
and make predictions without strict rule-based programming 
(LeCun et al., 2015; Mahesh, 2020). Traditional ML approaches 
were lacking in their ability to process original data in its base 
state; they relied on engineered descriptors and algorithms such 
as decision trees, support vector machines, or random forests 
(Mahesh, 2020; LeCun et al., 2015). In contrast, DL leverages 
layered neural network architectures to change internal parameters 
by using backpropagation within the algorithm (Figure 1) 
(LeCun et al., 2015). Over the last decade, these methods have 
transformed early-stage drug discovery by accelerating virtual 
screening and reducing the difficulties of synthesis experiments 
(Paul et al., 2021; Blanco-González et al., 2023). They have 
enabled structure-based virtual screening (Cheng et al., 2012; 
Kitchen et al., 2004), kinase selectivity profiling (Davis et al., 2011), 
and the identification of ligand-binding residues (Chen et al., 2014).

G-protein-coupled receptors (GPCRs) constitute the most 
prominent family of druggable membrane proteins and control 
multiple downstream cellular signals. Despite accounting for 
one-third of marketed therapeutics, many GPCRs lack effective 
pharmacological treatments (Hauser et al., 2017). Cryo-EM and 
X-ray crystallography advances have improved the use of high-
resolution GPCR structures (Congreve et al., 2020), revealing 
conserved activation motifs (Venkatakrishnan et al., 2013) and 
enabling structure-based design. Although recent cryo-EM 
structures have improved coverage of GPCRs, high-resolution 
structures capturing receptor activation states and receptor 
conformations stabilized by a particular ligand remain uncommon, 
especially at allosteric sites; this complicates the accuracy of binding 
affinity inference and subtype selectivity (Congreve et al., 2020; 
Wacker et al., 2017; Krishna Kumar et al., 2019; Xia et al., 2021). 

However, predicting GPCR-ligand binding affinity can be difficult 
since the membrane receptors are dynamic and can adapt multiple 
conformations, while their endogenous peptide ligands vary 
widely in sequence, length, and post-translational modifications; 
together, these limit available structural data and make it hard 
for models to generalize beyond training sets. Due to GPCRs 
having multiple allosteric and orthosteric sites with ligand-specific 
pocket arrangements, any fixed representation risks missing 
relevant details (Latorraca et al., 2017; Christopoulos, 2014). 
Benchmarking also shows that distinguishing true binders from 
closely related decoys is difficult due to binding-pocket similarity 
across receptors (Hoegen Dijkhof et al., 2025). As a result of these 
features, the use of 1D sequence-only models, 2D graph-based 
models, 3D models, and structure-based models can potentially 
improve the accuracy of binding affinity predictions and lower the 
cost of resources for both in silico and experimental processes.

1D binding affinity models

1D ML models process sequential data, typically in 1D formats 
such as text, time series, or biological sequences, to extract 
patterns and make predictions (Kiranyaz et al., 2021). Proteins as 
amino-acid sequences and ligands encoded as canonical SMILES 
(Simplified Molecular Input Line Entry System) are fed into 
tokenized sequences within convolutional or recurrent networks. 
The use of 1D sequence-based models enables rapid, high-
throughput screening due to not having to rely on structural 
data (Öztürk et al., 2018; Wang, 2024). Their Convolutional 
Neural Networks (CNN) encoders have given competitive results 
(Table 1.) on benchmark datasets (e.g., Davis, KIBA) and can 
outperform classical docking in some instances, making them 
efficient and easy to scale (Öztürk et al., 2018; Öztürk et al., 2019; 
Kitchen et al., 2004). Recent self-supervised approaches further 
boost their effectiveness by learning useful representations from 
extensive unlabeled data, reducing dependence on labeled data 
(Schuh et al., 2025; LeCun et al., 2015). 1D encodings can also 
capture pharmacological properties in multi-task setups, which 
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TABLE 1  The table below shows the metrics like CI, MSE and RMSE of 
various models.

Model Dataset CI MSE RMSE 

DeepDTA KIBA 0.863 0.194 0.440

DeepDTA Davis 0.878 0.261 0.51

WideDTA KIBA 0.875 0.179 0.423

WideDTA Davis 0.886 0.262 0.511

DeepAffinity Davis/KIBA N/A N/A N/A

GSAML-DTA Davis 0.896 0.201 N/A

AiGPro 36 GPCRs (per-receptor) 0.09–3.15 N/A

DEAttentionDTA CASF-2016 (core) 0.82 N/A 1.224

broadens their role as initial filters (Brahma et al., 2025; Jabeen 
and Ranganathan, 2019). Recent studies have shown that coupling 
1D CNN encoders for SMILES and protein sequences (Figure 2), 
followed by fully connected layers to regress binding affinity, could 
produce worthwhile results (Öztürk et al., 2018; LeCun et al., 1998).

One of the models, DeepDTA (Öztürk et al., 2018), incorporated 
this approach and, despite its simplicity, outperformed classical 
docking on the Davis and KIBA datasets and has the potential 
to be adapted for GPCR-centric datasets. Its variant, WideDTA, 
expands on this by incorporating additional textual descriptors 
and interaction contexts (Öztürk et al., 2019); all recent 1D 
models' description is listed in Table 2. Barlow Twins, a self-
supervised architecture, was introduced to learn embeddings from 
extensive unlabeled data, achieving optimal performance on diverse 
drug target interaction (DTI) sets while requiring fewer labeled 
examples (Schuh et al., 2025). Within GPCR drug discovery, multi-
task sequence models such as AiGPro can classify both agonism 
versus antagonism across receptor subfamilies concurrently, which 
demonstrates how 1D encodings can capture pharmacological 
structures in addition to affinity (Brahma et al., 2025). These 
models are supported by trends in ligand discovery using ML-
based algorithms (Jabeen & Ranganathan et al., 2019; Blanco-
González et al., 2023; Lorente et al., 2025; Öztürk et al., 2018).

2D binding affinity models

2D models process spatial data represented in two dimensions, 
such as images, matrices, or other grid-like structures (Figure 3). 
These models, particularly within DL, are usually built on CNNs, 
which apply 2D filters to detect local patterns that extract features 
such as edges, textures, and shapes (Li et al., 2022). 2D models 
adapt chemical representation to graph structures in which atoms 
are nodes and bonds are edges, or to residue–residue contact 
maps for proteins. Graph neural networks (GNNs) can generate 
annotations along these edges, capturing the local topology and 
functional group context; this creates a balance between its ability to 
recognize the complex relationships within a chemical environment 
and computational effectiveness (Chen et al., 2016; El-Atawneh 

and Goldblum, 2024). Due to the efficiency of these models, 
millions of compounds can be screened before 3D docking or 
simulation while preserving chemical diversity (Sadybekov and 
Katritch, 2023; Chen et al., 2016).

The model DEAttentionDTA (See Table 2) integrates dynamic 
embedding with self-attention layers to re-weight atom and 
residue contributions, significantly improving Ki prediction on 
BindingDB and demonstrating strong similarities to GPCR sets 
(Chen et al., 2024). GSAML-DTA combines a GNN encoder with 
self-attention mechanisms and mutual-information shrinkage, 
yielding interpretable attention maps highlighting substructures 
while maintaining competitive performance (Liao et al., 2022). 
2D models are frequently used to sort millions of compounds 
before structure-based docking, significantly reducing the 
pool of molecules while retaining chemically diverse ones. 
(Chen et al., 2016; Sadybekov et al., 2023; Karimi et al., 2019).

3D binding affinity models

3D models (see Figure 4) leverage spatial structural information 
to capture complex molecular interactions. 3D models introduce 
spatial coordinates and conformational ensembles, which directly 
model non-covalent interactions such as hydrogen bonding, π-
stacking, and steric clashes. Techniques range from voxelated CNNs 
to SE (3) equivariant GNNs that respect rotational symmetry. By 
encoding ligand–target contact patterns as interaction fingerprints, 
these methods support computational simulations of biological 
changes and data-driven drug repurposing (Wacker et al., 2017; El-
Atawneh and Goldblum, 2024). By leveraging receptor dynamics, 
these models can distinguish between active and inactive GPCR 
receptor conformational states, which would improve the quality of 
ligand design (Buyanov and Popov, 2024).

Studies into this field have resulted in DeepREAL (See 
Table 2), a model that employs a multi-scale framework that fuses 
ligand graphs, receptor sequences, and coarse-grained 3D pocket 
descriptors. Trained not only for accuracy on training distribution, 
but also to generalize data drawn from different distributions, 
such as scaffold-split Distributionally Robust Optimization; it 
effectively predicts GPCR activity for novel chemical profiles 
(Cai et al., 2022). ML classifiers of GPCR conformational states use 
structural descriptors to distinguish between inactive, active, and 
intermediate poses obtained from molecular dynamics (Buyanov 
and Popov, 2024). Additionally, recurrent neural networks were 
used to forecast conformational transitions in molecular dynamics 
simulations (López-Correa et al., 2023). The CB1–Gi complex, 
which is a high-resolution cryo-electron microscopy (cryo-EM) 
structure of the cannabinoid receptor 1 (CB1) in complex with the 
Gi protein (Krishna Kumar et al., 2019), further enables transfer 
learning where pre-trained 3D encoders are based on ligand-
specific affinity labels, bridging experimental structural biology and 
computational predictions (Xia et al., 2021).

Discussion

The growing integration of ML and DL in drug discovery 
has given rise to several binding affinity prediction models, each 
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FIGURE 2
1D binding affinity models utilize linear representations of molecules (e.g., SMILES) and proteins (amino acid sequences) processed by CNNs or 
recurrent layers to predict interactions without requiring structural data (Öztürk et al., 2018). The image above illustrates a 1-D Binding Affinity 
Prediction model.

showing a unique perspective on GPCR-targeted research. These 
models utilize a specific metric based on the dimensionality being 
used, as shown in Table 1 above; however, due to these differences in 
their select metrics, it's difficult to draw a comparison between 
the models; this highlights the importance of interchangeable 
splits for comparison analysis and consistent data standards. 1D 
models such as DeepDTA and WideDTA use sequence-based 
representations that produce high-throughput virtual screening 
(Öztürk et al., 2018; Öztürk et al., 2019). DEAttentionDTA and 
Barlow Twins models use attention mechanisms and self-supervised 
learning techniques to improve performance while reducing 
dependence on labeled data (Chen et al., 2024; Schuh et al., 2025). 
Models such as AiGPro include pharmacological properties such 
as receptor agonism and antagonism, which go beyond the 
scope of just adhering to binding affinity (Brahma et al., 2025). 
However, the limitations of 1D models are in their lack of 
spatial and structural information, which is crucial for modeling 
conformational dynamics and ligand-specific binding data 
(Hauser et al., 2017; Wacker et al., 2017). To provide a solution 
for this issue, 2D and 3D models introduce greater structural 
awareness; 2D models like GSAML-DTA and DEAttentionDTA 
utilize GNNs and self-attention mechanisms to capture local 
chemical context and observe key substructural features, which 
can improve functionality and affinity prediction (Liao et al., 2022; 
Chen et al., 2024). 3D models such as DeepREAL and GPCR 
Conformational Classifier incorporate spatial coordinates and 
molecular dynamics conformations that allow accurate modeling 
of complex GPCR-ligand interactions and receptor activation 
(Cai et al., 2022; Buyanov and Popov, 2024). Although these 
models need greater computational resources to operate proficiently, 
receiving high-quality structural input provides important 
insight into receptor signaling and potential effectiveness of 
compounds (Congreve et al., 2020; Krishna Kumar et al., 2019). and 

molecular dynamics conformations that allow accurate modeling 
of complex GPCR-ligand interactions and receptor activation 
(Cai et al., 2022; Buyanov and Popov, 2024). Although these 
models need greater computational resources to operate proficiently, 
receiving high-quality structural input provides important insight 
into receptor signaling and potential effectiveness of compounds 
(Congreve et al., 2020; Krishna Kumar et al., 2019).

Improving data quality and standardization will be critical in 
overcoming limitations within this area of research. Inconsistent 
assay protocols, mixed affinity metrics (Kd, Ki, IC50), and 
benchmark biases can distort true generalization and inflate 
reported performance; adopting consistency between data standards 
and transparent data workflow reporting are steps that can be used 
for further advancement within this area. Random splits can leak 
closely related scaffolds across training and test sets, overestimating 
performance; scaffold splits provide a stricter estimate of practical 
generalization to novel chemotypes (Yang et al., 2019). To ensure 
reliability within these pipelines, incorporate explainable AI during 
validation, and report results under a scaffold, time, or cluster splits 
so explanations correspond to stable interactions rather than dataset 
effects (Ong et al., 2023; Davis et al., 2011). For GPCRs, resources 
that integrate sequence, structure, and function can benefit reliable 
cross-study comparisons; clarifying and extending the effective 
space can propel future innovation of these models. Evaluations 
should be conditioned on the pocket and receptor state instead of 
dataset-driven ones to assess the stability of the core framework 
and chemical changes. The use of databases such as GPCRdb, 
which offer sequences and structures that can be integrated within 
docking or structure-based workflows, and GLASS, which provides 
curated GPCR–ligand pairs and receptor subtype labels that can be 
useful for training and or validation and scaffold- or time-split tests 
(Munk et al., 2016; Chan et al., 2015; Hauser et al., 2017; Jabeen and 
Ranganathan, 2019; Congreve et al., 2020; Nguyen et al., 2024).
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TABLE 2  This table combines the comparisons across 1D, 2D, and 3D models, showing the strengths and weaknesses of each model as well as their 
architecture and metrics suited to each task. For the 1D models, the Concordance Index (CI), which measures how well predicted binding affinities 
preserve the rank ordering of experimental values, is used; CI > 0.85 is generally considered strong (Öztürk et al., 2018). For 2D models, Root Mean 
Squared Error (RMSE) is used, which is a standard regression metric where lower values indicate more accurate predictions of continuous affinity 
readouts, which is widely used on benchmarks like KIBA and Davis (Öztürk et al., 2018). 3D models incorporate spatial and conformational data, which 
could entail the fusing of ligand graphs, protein sequences, and 3D pocket descriptors (Cai et al., 2022).

Dimension Model Architecture Strengths Weaknesses References

1D DeepDTA Dual CNN encoders on 
SMILES and protein 
sequences

Simple, fast, suitable for 
high-throughput 
screening

No explicit structural 
context; prone to dataset 
bias

Öztürk et al. (2018)

1D WideDTA CNN encoders with 
enriched token sets for 
SMILES and proteins

Improved expressivity 
and slight CI gains over 
DeepDTA

Sequence-only Öztürk et al. (2019)

1D DeepAffinity Hybrid CNN + BiLSTM 
encoders; unified 
sequence model

Captures long-range 
dependencies; 
interpretable sequence 
attention

Heavier computational 
footprint vs. pure CNNs

Karimi et al. (2019)

1D Barlow twins DNN 
(DTI)

Self-supervised; 
siamese-style encoders 
for 1D inputs

Leverages unlabeled 
data; good performance 
with fewer labeled 
examples

Still lacks structural 
context; may inherit 
dataset biases

Schuh et al. (2025)

1D AiGPro Multi-task sequence 
model profiling GPCR 
agonism vs. antagonism

Captures 
pharmacological 
outcomes beyond 
affinity; cross-receptor 
generalization

Sequence-only inputs Brahma et al. (2025)

2D DEAttentionDTA Dynamic embedding + 
self-attention on 
compound/protein 
features; GNN/CNN 
hybrids

Improved RMSE/R2 on 
BindingDB; 
interpretable attention 
over 
substructures/residues

2D graphs/contact maps 
ignore stereochemistry; 
sensitive to noisy inputs

Chen et al. (2024)

2D GSAML-DTA Graph neural networks + 
self-attention with 
mutual-information 
regularization

Interpretable attention 
maps; competitive on 
KIBA/Davis

Approximate spatial 
reasoning; limited 
explicit 3D context

Liao et al. (2022)

3D DeepREAL Ligand graphs + protein 
sequence + 3D pocket 
descriptors; multi-scale 
fusion

OOD-robust GPCR 
activity prediction; 
AUC > 0.85 on 
challenging splits

Depends on accurate 
pocket/structure data; 
higher computational 
cost

Cai et al. (2022)

3D GPCR conformational 
classifier

Supervised ML on 
MD-derived 
conformational 
descriptors

Able to determine active 
or inactive states (∼87% 
accuracy reported)

Not a direct affinity 
model; reliant on MD 
data quality

Buyanov and Popov 
(2024)

By aligning ESM sequence embeddings with pocket alignment 
features on GPCRdb structures and GLASS subtype labels, 
multimodal transfer learning can enhance out-of-distribution 
(OOD) robustness while maintaining clear explanations of the 
binding mechanism. (Munk et al., 2016; Chan et al., 2015; 
Lin et al., 2023; Stärk et al., 2022; Corso et al., 2022). The 
difficulty posed by screening multi-billion compound libraries 
would suggest that ML-guided pre-screening will remain a 
practical path; however, narrowing candidates before using more 
advanced computational techniques would be necessary to spare 
time and resources. Therefore, pipelines that can integrate 1D 
sequence models for initial filtering of molecules that incorporate 

either 2D or 3D structural models for processing may offer the 
most comprehensive approach to drug discovery. In parallel, 
ESM-style protein language models contribute transfer-learned, 
self-supervised embeddings that improve GPCR tasks without 
labels, while equivariant and diffusion pose predictors such 
as EquiBind and DiffDock give rapid predictions on ligand 
poses which can be used to integrate with GPCRdb structures 
for multimodal training and rapid screening (Lin et al., 2023; 
Stärk et al., 2022; Corso et al., 2022). The most beneficial outcome 
for GPCR binding affinity predictions would be the success of 
generative AI; having the ability to use all dimensional models 
coherently to predict binding affinity accurately and at a rapid pace 
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FIGURE 3
2D binding affinity models represent molecules as graphs where atoms are nodes and bonds are edges, and apply GNNs to capture topological and 
substructural information (Liao et al., 2022). The image above illustrates a 2-D Binding Affinity Prediction model.

would outperform all current methods used for drug discovery. 
When combined with rigorous data standards and an explainable 
AI evaluation, self-supervised pretraining, along with generative 
diffusion, offers a credible pathway to high-throughput GPCR 
discovery.

Strengths and limitations

GPCRs pose substantial challenges for models to address 
when predicting binding affinity. Receptors cycle through multiple 
conformational and signaling states, such as G-protein and β-
arrestin pathways, giving rise to biased agonism; a single static 
structure cannot capture these features (Latorraca et al., 2017; 
Preininger et al., 2013). ML models often struggle to new GPCR 
subtypes when training is limited or imbalanced. If receptor 
structural data (crystal structures or AlphaFold models) are not 
incorporated, ML models miss receptor-specific features, limiting 
their ability to distinguish closely related subtypes. Subtle sequence 
and pocket differences across closely related GPCRs further 
influence bias through pocket shape, water networks, and side-
chain rotamers, underscoring the need for approaches that can 
integrate dynamics with the limitations of experimental workflows 
(Venkatakrishnan et al., 2013; Michino et al., 2025). The influence 
of Ki, Kd, and IC50 values, with Ki and Kd being equilibrium 
affinity constants, whereas IC50 is a readout that depends on 
the experimental assay conditions; mixing them without careful 
normalization can introduce label bias (Gilson and Zhou, 2007; 
Kitchen et al., 2004). Thus, it is important to recognize the potential 
strengths and weaknesses of 1D, 2D, and 3D models pertaining to 
the GPCRs binding affinity prediction, as shown in Table 2.

1D models would do best for rapid screening of very large 
libraries (Wang, 2024). However, a potential issue for 1D-
type models could be the impact of SMILES on the dataset 
used. Although it has been shown that CNNs using 1D inputs 
perform well under random splits, they collapse whenever 
there are unseen inhibitors, indicating that redundancy and 
leakage drive performance rather than learned interactions 
(Ong et al., 2023). When known SMILES are replaced with junk 
SMILES per inhibitor, accuracy remains unchanged and sometimes 
improves (Ong et al., 2023). This shows that these models mainly 
learn SMILES substrings as identifiers rather than structurally 
relevant features. This exposes a core limitation of SMILES 
encodings, where models can potentially fail to recognize that two 
different encodings can describe the same molecule, providing 
the need for more improved structure-based representations
(Ong et al., 2023).

2D graph models are preferable for chemotype refinement when 
activity is driven by molecular topology (Liao et al., 2022). The 
trade-offs are that 2D encodings ignore stereochemistry and 3D 
orientations, which leads to dependence on approximations that 
can impact accuracy due to the sensitivity to input quality; this 
is especially true for the dynamic GPCR pockets (Wang, 2024; 
Congreve et al., 2020). Dataset biases could lead to inflated false-
positive results; this emphasizes the need for bias-aware splits and 
validation (Ong et al., 2023).

3D models provide mechanisms that can be based on a specific 
active site, are preferred for subtype selectivity, allostery, and 
for determining how a ligand resides within a receptor which 
emphasizes their use when reliable, high-quality structures exist or 
when optimizing for selectivity and allosteric effects. (Gilson and 
Zhou, 2007; Spassov, 2024; Congreve et al., 2020; Kitchen et al., 2004; 
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FIGURE 4
3D binding affinity models incorporate spatial and conformational information using atomic coordinates and pocket structures to simulate molecular 
interactions with high resolution (Cai et al., 2022). The image above illustrates a 3-D Binding Affinity Prediction model.

Cheng et al., 2012; Stärk et al., 2022; Corso et al., 2022). Despite 
the rapid progress, 3D GPCR binding-prediction needs more 
data for better efficacy; only a fraction of the ∼800 human 
GPCRs have been experimentally determined, which limits model 
training, pocket generalization, and the ability to study less-known 
receptors (Michino et al., 2025).

Conclusion and future directions

Binding affinity prediction for GPCRs has progressed from fast 
but superficial 1D sequence models to structurally informed 2D 
graphs and fully 3D, structurally-based models. Each methodology 
offers strengths that could support the other. 1D models enable 
rapid screening of large libraries, 2D models enhance chemical 
context and substructure awareness, and 3D models can effectively 
capture pocket geometry, receptor states, and substrate selectivity. 
Robust pipelines for GPCRs would benefit from the combination 
of dimensional scales rather than choosing among them. The 
use of 1D sequence-based models for initial screening, 2D 
graph and attention architectures for chemotype refinement, and 
3D structure-based models that focus on specific pockets and 
receptor states. When supported by high-quality data curation, 
consistent affinity measurements, and processes that account 
for bias, multidimensional workflows can yield more realistic 
generalizations with trustworthy results. Multimodal learning that 
aligns protein language model embeddings, pocket geometry, 
receptor state, and readouts related to signaling bias can improve 
the robustness of new data. Generative models that can propose 

ligands based on GPCR sequences, a set of different 3D pocket 
conformations, and desired biological profiles could bridge the gap 
between affinity prediction and de novo design. To make these 
systems optimal for clinical use, future work should prioritize GPCR 
benchmarks built on curated resources, utilizing scaffold and time-
split evaluations, and incorporating explainable AI analyses that 
can link the model to relevant chemical and structural features. 
Ultimately, the most impactful GPCR discovery platforms will 
treat 1D, 2D, and 3D representations as complementary parts of 
the same system, where they can be integrated into reproducible 
workflows that support experimental design, explain failures, and 
accelerate the progression from virtual candidates to safe and 
effective drugs.
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Glossary

CI Concordance Index (Calculates how well the model preserves 

the rank ordering of valid values)

RMSE Root Mean Squared Error (Calculates the average magnitude of 

prediction errors, with larger errors penalized more)

R2 Coefficient of Determination (Calculates the share of variance 

in the target that the model explains)

AUC Area Under the ROC Curve (Calculates the probability that a 

random positive score will be higher than a random negative 

for binary classifications)
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