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Protein—protein interactions (PPIs) are vital for regulating various cellular
functions and understanding how diseases are developed. The traditional ways
to identify the PPIs are costly and time-consuming. In recent years, the
disruptive advances in deep learning (DL) have transformed computational PPI
prediction by enabling automatic feature extraction from protein sequences
and structures. This survey presents a comprehensive analysis of DL-based
models developed for PPI prediction, including convolutional neural networks
(CNNs), recurrent neural networks (RNNs), deep neural networks (DNNs),
graph convolutional networks (GCNs), and ensemble architectures. The review
compares their feature representations, learning strategies, and evaluation
benchmarks, emphasizing their strengths and limitations in capturing complex
dependencies and structural relationships. In addition, the paper elaborates
on different benchmarks and biological databases that are commonly used in
different experiments for performance comparison. Finally, we outline open
challenges and future research directions to enhance model generalization,
interpretability, and integration with biological knowledge for reliable PPI
prediction.

protein-protein interaction, deep learning, artificial neural networks, machine learning,
bioinformatics

1 Introduction

Protein-protein interactions play critical roles in many physiological activities, such
as gene replication, transcription, translation, cell cycle regulation, signal transduction,
immune response, etc. To understand and utilize these interactions, it is necessary to
identify residues at the interaction interface (Zeng et al., 2016). Protein-protein interactions
(PPIs) are pivotal in maintaining the integrity and functionality of cellular processes.
These interactions mediate a variety of critical functions, including signal transduction,
metabolic regulation, and the control of cell growth. As essential building blocks of cellular
machinery, PPIs facilitate the coordination of numerous physiological and pathological
processes. By studying PPIs, researchers can understand how proteins collaborate to modify
enzyme Kinetics, activate or suppress specific proteins, regulate molecular pathways, and
even transport molecules across cellular compartments. The comprehensive mapping of
PPIs, often referred to as the “interactome;” offers a profound insight into cellular functions
and disease mechanisms. For example, the disruption of specific PPIs can lead to cellular
dysfunction, making them an attractive target for therapeutic interventions, particularly
in diseases like cancer, where altered signaling events are key drivers of tumorigenesis.
Targeting PPIs provides a novel therapeutic approach by promoting or inhibiting these
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interactions to restore normal cellular behavior or inhibit disease
progression. This strategy has shown promise in the development
of new cancer therapies, aiming to interfere with the molecular
interactions that enable cancer cells to thrive (Xia et al., 2016). In
addition, PPI networks serve as a valuable resource for uncovering
essential biological knowledge. By analyzing the interactions
between proteins, researchers can gain a deeper understanding
of cellular pathways, protein complexes, and their involvement
in different diseases. Through this analysis, novel drug targets
can be identified, which could lead to the development of more
precise and effective treatments. Moreover, understanding the
specific interactions between proteins in varying contexts, such
as different cell types, developmental stages, or environmental
conditions, is crucial to advance personalized medicine and improve
therapeutic outcomes (Xia et al., 2016).

Studies have shown that the protein interaction interface is
generally large; a typical interaction inter-face is about 1200-2000
A2, but only a few (<5%) of the residues called hotspots contribute
to most of the binding free energy and play an important role in the
stability of protein binding (Moreira et al., 2007). The widely used
databases of experimentally verified hotspots include the Alanine
Scanning Energetics Database(ASEdb) (Thorn and Bogan, 2001),
the Binding Interface Database(BID) (Fischer et al, 2003), the
Protein-protein Interaction Thermodynamic (PINT) (Kumar
and Gromiha, 2006), and the Structural Database of Kinetics
and Energetics of Mutant Protein Interactions (SKEMPI) (Moal
2012).
PPI identification, including yeast two-hybrid screening, co-

and Fern’andez-Recio, Experimental techniques for
immunoprecipitation, and tandem affinity purification, remain
time-consuming, expensive, and prone to false positives or
negatives. To overcome these challenges, computational prediction
methods have emerged as efficient alternatives capable of large-
scale analysis across proteomes. However, the complexity of protein
structures, variability in data quality, and imbalance between
positive and negative samples present major obstacles to achieving
accurate and generalizable predictions. Computational methods
thus aim to complement experimental studies by providing scalable,
interpretable, and biologically relevant models that can prioritize
candidate interactions for laboratory validation.

Computational PPI prediction can generally be divided into two
core tasks. One is the prediction of putative interaction sites on
the surface of an isolated protein, known to be involved in PPI
sites prediction (PPISP), but where the structure of the partner
or complex is unknown (Jones and Thornton, 1997). The second
prediction problem is the prediction of pair-wise interactions to
predict interfacial residues of a pair of proteins, which is related
to the docking of two proteins. A large amount of PPI data for
different species, generated through high-throughput experimental
techniques, presents a significant challenge in data integration,
noise reduction, and reliability assessment, making it a crucial
area of research in computational biology. However, the absence
of information about the partner proteins makes the latter also
relatively more challenging (Ahmad and Mizuguchi, 2011).

Existing PPI prediction methods can be roughly divided
into three types: knowledge-based methods, molecular simulation
techniques, and machine learning methods (Deng et al., 2013).
The knowledge-based empirical function evaluates the change in
binding free energy by reducing the empirical model obtained
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using experiments. The introduced molecular dynamics model
uses alanine to perform fixed-point scanning by the mutagenesis
technique to detect the PPIs by examining the change of binding
energy in the process of mutation to alanine. However, such an
in silico technique is limited by factors such as the expense of the
experimental equipment, the long computing time it takes, and the
limited number of PPIs tested. Machine learning approaches provide
a more convenient way for PPI prediction.

The formation of a suitable feature set and the selection of
favorable machine learning algorithms are two major stages in
the development of prosperous predictions. The feature set can be
constructed wisely in such a way that it could cover the maximum
information or key features from the structure of the proteins.
Among the structures, the primary structure, i.e., the sequences of
the protein, is the most common to work on because of the availability
of huge data (Wang L. et al., 2019). To extract protein interaction
information, several feature extraction methods have been developed
in the past to represent protein information in numerical forms
(Jia et al,, 2015; Cho et al., 2009). For PPI prediction, each feature
extraction algorithm requires a favorable classifier to appropriately
classify the interaction or no interaction according to the feature
sets. The researchers applied various classification algorithms such
as Random Forest (RF), Support Vector Machines (SVM), and
their derivatives (Wei et al., 2016; Guyon et al, 2002), gradient
boosting decision trees (Deng et al., 2013), and ensemble classifiers
(Wang L.etal., 2019). Deep learning algorithms, which mimic the deep
neural connections and learning processes of the human brain, have
received considerable attention due to their successful applications in
speech and image recognition (Guglani and Mishra, 2021), natural
language understanding (Bacciu et al.,, 2021), and decision making
(Silver et al, 2016). Compared to traditional machine learning
methods, deep learning algorithms can handle large-scale raw and
complex data and automatically learn useful and more abstract features
(LeCun et al.,, 2015). In recent years, these algorithms have been
applied in Bioinformatics to manage large high-dimensional data
generated by high-throughput techniques (Zhang et al., 2016). Figure 1
shows typical applications of deep learning in PPI prediction. Usually,
the input to the PPI predictor is a target interface residue that is
encoded by a variety of sequence, structural, and energy features.
Dimensionality reduction (feature selection or feature extraction) is
then used to remove irrelevant/redundant information and obtain a
set of principal variables. Finally, predictive models are built using
efficient deep learning algorithms.

This paper provides an in-depth exploration of Deep Learning-
based methods for predicting protein-protein interactions (PPIs),
with a specific focus on sequence-based PPI prediction using deep
learning (DL) models. In addition, we highlight key challenges
and considerations when adopting these approaches, including
feature generation, dimensionality reduction, and algorithm design.
The paper classifies existing DL approaches based on factors such
as extracted features, benchmark datasets, research contributions,
model hyperparameters, and prediction performance, offering a
comprehensive analysis of the strengths and weaknesses of widely
used biological features and classical deep learning algorithms. The
scope of this paper is primarily confined to the primary structure of
proteins, i.e., the amino acid sequence, and its use in PPI prediction.
For the first time, the significance of the protein’s primary structure
and the approaches to representing protein sequences through deep
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FIGURE 1
Overview of deep learning approaches to predict PPIs. For the binding of interface residues in PPIs, a large number and variety of features are extracted
from diverse data sources. Then, feature extraction and feature selection approaches are used for dimensionality reduction. Finally, the deep
learning-based prediction models are trained and applied to make predictions of PPIs. For some approaches, the machine learning model is attached
to another deep learning model to complete the classification task.

learning are discussed in detail. The paper emphasizes the central
importance of understanding protein sequences in the context of PPI
prediction.

The paper is structured as follows: Section 1 introduces the
concept of proteins and PPIs, explores the benefits of detecting
PPIs, and provides an overview of recent advances in computational
approaches within Bioinformatics. Section 2 discusses the different
features that can be extracted from protein sequences, protein
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structure, and protein energy for PPI prediction. In Section 3,
four prominent deep learning models are presented in addition
to the ensemble learning models. Section 4 reviews research
publications on sequence-based PPI prediction using DL, assessing
their pros, cons, and performance outcomes. Section 5 offers a
critical discussion on the effectiveness of deep learning in PPI
prediction, and Section 6 concludes the paper and summarizes
findings and potential future directions in this area of research.
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2 Feature generation

Feature engineering is a crucial step in the development
of effective PPI prediction approaches. Typically, raw data is
transformed into features that have a significant impact on
prediction performance. Often, a large number of features or
attributes are collected from the protein sequence, structure, and
energy data. Dimensionality reduction approaches are used to
obtain the most effective features for future classification tasks.

2.1 PPl sequence-based features

2.1.1 Position-specific scoring matrix (PSSM)

The position-specific scoring matrix (PSSM) is a kind of
sequence matrix derived from multiple sequence alignment and
captures the probability of amino acids or nucleotides occurring
in each position. PSSM was introduced by Gribskov et al. (1987)
to detect distantly related proteins. The rows in PSSM represent
the position of residues in an alignment, and the columns specify
the names of residues or amino acids. In protein sequences, PSSM
has 20 columns representing the 20 amino acids. From a structural
point of view, several amino acid residues could be mutated without
altering the structure of the protein, making it possible that two
proteins could share similar structures with different amino acid
compositions. Figure 2 depicts the PSSM matrix structure, where
o(i,j) represents the probability that the ith residue was mutated
into the jth amino acid during the evolutionary process. Position-
Specific Iterated BLAST (PSI-BLAST) is a tool used to compute
PSSM from the multiple sequence alignments of sequences scored
above a certain threshold using protein-protein BLAST (Ahmad
and Sarai, 2005). The PSSM is further updated by going through
a set of iterations to search the NR database for new matches
(Altschul et al., 1990). As such, each protein sequence is converted
into a Nx20 PSSM matrix where N is the length of the protein
sequence. Figure 3 presents a snapshot of the PSSM matrix of a
protein sequence of length 37.

2.1.2 Evolutionary conservation

Evolutionary conservation indicates that similar genes or
chromosome segments in different species reflect the common
origin of a species, as well as important functional properties.
Evolutionary conservation is computed by aligning the amino acid
sequences of proteins with the same function and from different
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species. It can be calculated by computing the similarity between
PSSM profiles of two proteins (Aybey and Giimiis, 2023), or by
considering the mutual information by Detecting the co-evolving
residues between two proteins (Hooft et al., 2008).

2.1.3 Residue conservation

Residue conservation measures the frequency of specific amino
acid residue in a protein is maintained across different species.
This measure indicates its importance for both the protein’s
structure and function. In isolated protein, sequence conservation is
calculated per residue from the amino acid frequency distribution
in the corresponding column of the multiple sequence alignment
of homologous proteins. It can be computed by the STRUM
method, which predicts the stability change caused by single-point
mutations (Quan et al., 2016).

2.1.4 Raw protein sequence

Most proteins consist of 20 types of different amino acids.
Thus, the 20xN one-hot encoding vectors are used to represent
the positions of the amino acids in the proteins, where N is the
length of the protein sequence. One-hot encoding (20-dimensional)
is used so each residue is represented as a sparse binary vector
where only one position is active, corresponding to the amino acid
type. Figure 4 shows a snapshot of the raw protein sequence feature
of the first residue of the mentioned protein sequence in the Dset
186 dataset (Murakami and Mizuguchi, 2010).

2.1.5 Position information

This feature is used by some approaches such as D-PPIsite
(Hu et al, 2023) and DELPHI (Li et al, 2021). The position
information (PI) of each residue is modeled as one feature source
to represent the feature of each residue. The PI of the i-th residue in
the protein of N residues is calculated as i/N.

2.1.6 High-scoring segment pair (HSP)

HSP is the local alignment that scores highest between two
proteins. The similarities between two sub-sequences of the same
length are measured by scoring matrices, such as PAM and
BLOSUM. It can be calculated using SPRINT (Li and Ilie, 2017).

2.1.7 The 3-mer amino acid embedding
(ProtVeci1D)

The concept of embedding is borrowed from natural language
processing (NLP) where a word is represented by numeric vectors
using techniques such as word2vec (Mikolov et al., 2013a). In
Bioinformatics, protein vectors are based on ProtVec (Asgari and
Mofrad, 2015), which also uses word2vec to construct a 100D for
each amino acid 3-mer. ProtVeclD is a one-dimensional vector (1D)
computed by summing the ProtVec components.

2.1.8 Hidden markov models profiles (HMM)

The HMM profile can be produced by running HHblits v3.0.3
(Remmert et al., 2012) to align the query sequence against the
UniClust30 database (Mirdita et al., 2017) with default parameters.
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FIGURE 3
PSSM matrix of a protein sequence of length 37.

2.2 Structure-based features

Protein tertiary structure refers to the folding arrangement of
amino acids in three dimensions, which can help to understand the
function of proteins at the molecular level. Incorporating structural
features can better apply the spatial structure features of proteins in
PPIs prediction, and generally obtains better results than sequence-
based features.

2.2.1 Secondary structure

The protein secondary structure depicts the regular folding or
local spatial structure of regions within one polypeptide chain. It is
very common to encode structural information of amino acids in
PPIs prediction. Secondary structure is typically generated by tools
such as DSSP (Zeng et al., 2020). In DSSP, there are eight categories
of secondary structures: 310-helix (G), a-helix (H), p-helix (I), b-
strand (E), b-bridge (B), b-turn (T), bend (S) and loop or irregular
(L). Considering that some amino acids do not have their secondary
structure stated in the DSSP file, thus 9D one-hot encoding vector is
used to encode the secondary structure. The first eight dimensions,
in the 9D one-hot vector, represent the state of each amino acid, and
the last dimension represents the absence of such information. Each
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protein sequence can be converted into an N x 9 DSSP matrix, where
N is the length of the protein sequence. Figure 5 shows a snapshot
of the secondary structure features of the sample annotated protein
sequences.

2.2.2 Relative solvent accessibility metrics (RSA)

This feature is also calculated by the DSSP library. RSA
reflects the fraction of a residue that is exposed to a potential
solvent. This is computed by sliding a spherical probe of the
radius of 1.4A [approximating the radius of a water molecule
(Eisenhaber et al., 1995)] over the Van Der Waals surface of
the protein near the residue of interest. The Area generated by
the center of the probe, as it is in contact with the residue,
is taken to be the accessible surface area. This is divided
by the maximum possible accessible surface area to achieve a
relative measure. Concretely, it can be predicted by subsequence
artificial neural network (SANN) (Joo et al, 2012), for each
query sequence, the RSA profile (N x 3 matrix, where N is the
length of the query sequence) includes the probabilities of three
solvent accessibility classes (i.e., buried (B), intermediate (I), and
exposed (E)).
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FIGURE 4
Raw protein sequence feature related to the first residue (K) of the mentioned protein sequence from the Dset 186 dataset.
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FIGURE 5
Protein secondary structure for each residue in a protein sequence extracted by DSSP.

2.2.3 PKx

PKx is a property of amino acids that measures the dissociation
constant (Kp), which is the propensity of an amino acid to separate
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(dissociate) into smaller components. It is calculated by applying the
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negative of the logarithm of the dissociation constant for any other
group in the molecule (Zhang B. et al., 2019; Li et al., 2021).
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2.2.4 3D-1D scores

The side-chain environment was first proposed by
Eisenhaber et al. (1995) and used in the 3D-profile structural
prediction method. 3D-1D scores are a feature that quantifies the
mismatch between the residue local environment in 3D structure
and its sequence context (1D). For each residue, a structural
environment descriptor is computed (e.g., RSA, contact density,
secondary structure) and compared with the corresponding
position in the 1D sequence (amino acid properties). The score
is computed as a normalized difference or similarity between these
representations (Matsuo et al., 1995). Authors in Fan et al. (2016)
utilized it for the prediction of protein solvent accessibility.

2.3 Hybrid features

This section includes features derived from amino acid
sequences, but they are inherently linked to residue-level
structure and folding. We classified these features hybrid,
representing physicochemical tendencies that bridge sequence and
structure spaces.

2.3.1 Physical properties

Some approaches extract the physical properties to represent
the protein sequence (Meiler et al., 2001). The seven-dimensional
physical properties are as follows: a steric parameter (graph
shape index), polarizability, volume (normalized van der Waals
volume), hydrophobicity, isoelectric point, helix probability, and
sheet probability.

2.3.2 Hydropathy index

A number that represents the Hydrophobicity scale. It is typically
composed of experimentally determined transfer-free energies for
each amino acid, as well as it is essential to understand the energetics
of protein-bilayer interactions (Wimley and White, 1996; Kyte and
Doolittle, 1982).

2.3.3 Physicochemical characteristics

Protein physicochemical characteristics include the number
of atoms, electrostatic charges, potential hydrogen bonds,
hydrophobicity, hydrophilicity, side-chain volume, polarity,
polarizability, solvent-accessible surface area (SASA), and side-chain
net charge index (NCI) (Zhang B. et al., 2019).

2.4 Energy-based features

2.4.1 Relative amino acid propensity (RAA)

The amino acid propensity for binding is quantified as the
relative difference in abundance of a given amino acid type
between binding residues and the corresponding non-binding
residues located on the protein surface (Li et al., 2021; Aybey and
Giimiis, 2023).

2.4.2 Van Der Waals energy

The Van Der Waals energy reflects the weak, non-
covalent interactions between non-bonded atoms. It
important in modeling the steric (spatial) compatibility between
protein surfaces (Meiler et al., 2001).

is
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2.5 Feature selection

Feature selection can provide a deeper insight into the
underlying means that generate the data, avoid overfitting,
and improve the prediction performance. Typical feature
selection algorithms include Fisher’s Score (F-score) (Chen
and Lin, 2006), random forest (Wei et al, 2016), and support
(SVM-RFE)
(Guyon et al., 2002). Several feature selection approaches have
been used for PPI prediction. APIS (Xia et al.,, 2010) used the F-
score, while the authors in (Cho et al., 2009) used a decision tree
to select relevant and useful features. Qiao et al. (2018) developed a

vector machines-recursive feature elimination

hybrid feature selection strategy that combines the F-score, mnRMR
(minimum redundancy maximum relevance), and the decision tree
to select the features.

2.6 Feature extraction

Feature extraction is the process of converting raw data into
numeric data or features. In many machine learning applications,
feature extraction techniques are used to select the most relevant
features by reducing the dimensionality of a dataset. Principal
component analysis (PCA) (Jia et al., 2018) and linear discriminant
analysis (LDA) (Mika et al., 1999) are two commonly used feature
extraction techniques. PCA works by establishing an orthogonal
transformation of the data to convert a set of possible correlated
variables into a set of linearly uncorrelated ones, the so-called
principal components. LDA can help improve the accuracy of
predictions by reducing the dimensionality of high-dimensional
data while retaining discriminative information.

3 Deep learning models

The selection of an appropriate DL technique plays an important
role in improving the performance of PPI prediction. This review
mainly considers four DL architectures: Deep Neural Networks
(DNN) (Zhang et al., 2016), Convolutional Neural Networks (CNN)
(Zeng et al., 2020), Recurrent Neural Network (RNN), and Graph
Convolutional Network (GCN) (Yuan et al., 2021). In addition, we
consider ensemble learning (EL) techniques (Wang X. et al., 2019),
which combine several learning models in one. These architectures
have been widely used in PPI prediction in recent years. This section
provides the reader with brief overview about these architectures.

3.1 Deep neural networks (DNN)

DNN:ss typically consist of more than one hidden layer, organized
in deeply nested network architectures. Furthermore, they usually
contain advanced neurons in contrast to simple Artificial Neural
Networks (ANNs). That is, they may use advanced operations (e.g.,
convolutions) or multiple activations in one neuron rather than
using a simple activation function (Li et al., 2022). The output of a
specific layer can be calculated as in Equation 1:

PV = (W P 2 )
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hidden layers
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FIGURE 6

inputs are computed to obtain an abstract representation.

Basic structure of DNNs with one input layer, two hidden layers, and one output layer. At each layer, the weighted sum and non-linear function of its

output layer

-

where p presents the activation function, W is the weight
matrix, P" is the inputted data for the n layer and Z is the
bias term (Guglani and Mishra, 2021). These characteristics allow
DNNs to be fed with raw input data and automatically discover a
representation that is needed for the corresponding learning task.
Adding more hidden layers to the network to learn from raw data is
the core capability of DNN to learn complex tasks; hence its name
DL, see Figure 6.

3.2 Convolutional neural network (CNN)

A CNN is a type of DL algorithm that processes input
in the form of images, assigning learnable weights and biases
to various features. This enables CNNs to distinguish between
different images with minimal pre-processing compared to other
classification algorithms (Wang L. et al, 2019). Structurally, a
CNN is a feed-forward neural network where neurons respond
to neighboring units within a defined coverage area, and it excels
in data feature extraction (Albawi et al., 2017). The output is
calculated using forward propagation, and weights and biases are
adjusted through backpropagation. Figure 7 illustrates the structure
of a CNN, which consists of the input layer, convolutional layer,
subsampling layer, fully connected layer, and output layer. The
feature map M, at the I’ layer is computed as in Equation 2
(Albawi et al., 2017):

M= fiM_; » W, +b)) 2)

where W, is the weight matrix of the convolution kernel of I*"
layer, b; is the offset vector, f represents the activation function,
and x denotes the convolution operation. The subsampling layer,
which is usually located behind the convolutional layer and
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the feature map, is sampled according to the following rules.
Suppose M; is a subsampling layer, which is formulated as in
Equation 3:

M, = subsampling (M, - 1) (3)

The fully connected layer is responsible for the classification
of the extracted features via several convolution and subsampling
operations. The fundamental mathematical notion of CNN is to
map the input matrix M, to a new feature representation R through
multi-layer data transformation, see Equation 4.

R() = Map (C = ¢, |Mg; (w,b)) (4)

where ¢; represents the I label class, Mo denotes the input matrix,
and R denotes the feature expression. The goal of CNN training is
to minimize the network loss function R(w, b). At the same time, to
ease the overfitting problem, The final loss function Z(w, b) is usually
controlled by a norm, and the intensity of the overfitting is controlled
by the parameter ¢, see Equation 5.

Z(w,b) = R(w, b) + ngw (5)

While CNNs are traditionally used for images, in PPI prediction,
they handle structured numerical data derived from protein
sequences, structures, or energy values. CNNs are particularly
effective at capturing local patterns, making them suitable for
identifying interaction motifs or residues crucial for binding.

3.3 Recurrent neural network (RNN)

The structure of RNNs has a recurring link in each hidden
layer, which is responsible for operating sequential information by
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FIGURE 8

Basic structure of RNNs with an input unit x, a hidden unit h and an output unit O. The recurrent computation can be expressed more explicitly if the
RNNs are unrolled in time. The index of each symbol represents the time step. In this way, h, receives input from x, and h,_; and then propagates the

some recurrent computation as shown in Figure 8. The previous
output (state vector) is kept in hidden units, and for the current
state, the output is calculated using the previous state vector and the
considered input (Li et al., 2021). The evolution of RNN over time is
expressed as in Equations 6, 7 below (Richoux et al., 2019):

0,=68(h; 0) (6)

he = g(h_1, x5 0); (7)

here, 0 includes weights and biases for the network, the first equation
expresses the dependency of the output O, at time t only with
the hidden layer h, using some computation function ¢ and the
second equation shows the dependency of the hidden layer A,
at time t with that of h,_; at time t — 1 and the input x, at
time f. RNNs can be used effectively in PPI prediction due to
their ability to process sequential data. Since protein sequences are
essentially linear chains of amino acids, RNNs are well-suited for
capturing the sequential dependencies and long-range interactions
between residues (Richoux et al., 2019).
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3.4 Graph convolutional network (GCN)

Graph Neural Networks (GNNs) are structured graphs built
from generalizing neural networks to work on arbitrarily structured
graphs. GCN was developed to solve many bioinformatics problems.
Defining parameterized filters that are used in a multi-layer GNN
leads to GCNs. Currently, most GNN models have a relatively
universal architecture in common. It is convolutional because
filter parameters are typically shared over all locations in the
graph. In Protein-Protein Interaction (PPI) prediction, proteins
can be modeled as nodes in a graph, where edges represent
potential interactions between them. GCNs are especially well-
suited for this task because they operate directly on graph-structured
data, capturing the relational dependencies between proteins more
effectively than traditional models. The layer-wise propagation rule

for a GCN is given in Equation 8.
HED = o(D‘iAD‘i H Wl) ®)

Where H' is the matrix of node representations at layer [, H® is the
input feature matrix, A = A + I is the adjacency matrix A of the graph
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The structure of GCN.

with added self-loops (identity matrix I), Dis the degree matrix of
A, Wis the weight matrix of the Ith layer, and o is the activation
function. Figure 9 illustrates the GCN structure.

3.5 Ensemble learning (EL)

Ensemble learning is a powerful machine learning technique
that involves the combination of multiple models to improve
overall performance, particularly in tasks such as classification,
regression, and prediction. Rather than relying on a single model,
ensemble learning leverages the strengths of various models to
create a more robust and accurate final prediction. The idea is
based on the principle that a group of weak learners (models that
perform slightly better than random guessing) can be combined
to form a strong learner. By combining the three deep learning
models (DNN, CNN, and GCN) with traditional machine learning
algorithms, researchers aim to build more comprehensive models
that can better predict PPIs by taking advantage of both high-level
feature learning and well-established traditional machine learning
techniques.

Figure 10 illustrates a schematic representation of a two-
tier machine learning framework to classify protein-protein
interactions. The training data are used to build and optimize
several base learners, including random forest, gradient boosting,
XGBoost, and LightGBM, through grid search optimization.
takes the
of these models to generate the final classification results
(Pratiwi et al., 2024).

A meta-learner, logistic regression, prediction
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4 PPI prediction approaches using
deep learning models

This section summarizes existing deep learning-based
approaches for PPI identification. Firstly, we will explore these
approaches from the perspective of protein shape, focusing on
two key approaches, namely, Approach A: site prediction of an
isolated protein and Approach B: prediction of PPI for a pair
of proteins. To date and to the best of our knowledge, there
are around 32 research papers that have been published for PPI
prediction using DL, see publication analysis in Figure 11. In
this section, we will elaborate on the studies performed on PPI
prediction tasks using DL. The summary of these studies can be
found in Table 1. We examined various feature representations,
including sequence-based, structure-based, and physicochemical
properties, to enhance the understanding and prediction of
PPI dynamics. The research studies in Table 1 are classified
based on: year of publication, research contribution, approach
type, dataset type, input features, and hyperparameters of the
network. The term “Approach” is written after each section to
indicate the category of the approach in the table. All important
abbreviated terms of the table are provided in expanded form in the
corresponding text, whereas the basic abbreviations are provided
after the abstract. The detailed description of this section is broadly
divided based on both approaches. For better readability and to
minimize confusion about abbreviations, Table 2 summarizes
the datasets that were considered for Approach A, and Table 3
lists the datasets for Approach B, as well as the cited papers in
subsequent sections.
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4.1 Approach A: PPI prediction in isolated
protein sequence

The PPI prediction in isolated protein sequences is crucial to
identify potential interaction sites without requiring structural or

Frontiers in Bioinformatics 11

pairing information. This method enables early-stage interaction
analysis, which makes it valuable for large-scale screening
and understanding intrinsic protein properties. Several studies
have explored sequence-based PPI prediction, emphasizing its
effectiveness in functional annotation and large-scale analysis.
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TABLE 2 Short names given for datasets considered by cited papers in Approach A.

S. No Dataset Short name Binding sites Non-binding sites References

1 Dset_186 A 5551 30,665 Murakami and Mizuguchi (2010)
2 Dset_72 B 3799 14,176 Murakami and Mizuguchi (2010)
3 Dset_164 C 6111 27,567 Singh et al. (2014)

4 heteromeric Dset_48 D Zhang B et al. (2019)

5 Dset_448 E 15,810 100,690 Zhang and Kurgan (2019)

6 Dset_355 F 11,467 84,473 Li et al. (2021)

7 Kinase G Luo et al. (2019)

8 Dset_338 H Kang et al. (2023)

9 protein-protein docking (DBD) v5.0 1 Vreven et al. (2015)

10 protein-protein docking (PBD) v4.0 ] Xie et al. (2020)

11 Dset_331 K 11,255 72,420 Kang et al. (2023)

The authors in (Xie et al, 2020) leveraged the residue binding
propensity to refine positive samples and introduced a context-
based binding (CBB) approach for PPI site prediction, achieving
remarkable results. In addition, it yielded much better results on
samples with a high binding propensity than on randomly selected
samples. Their findings indicated the presence of false-positive PPI
sites due to distance-based residue definitions.

To the PPI
approaches proposed the combination of local and global
features. Zeng et al. (2020) proposed DeepPPISP, a CNN-based
framework that integrates local contextual and global sequence
features. For local contextual features, a sliding window-based

enhance prediction of the site, some

method is applied to extract features of the neighbors of an amino
acid. By integrating local contextual and global sequence features,
DeepPPISP achieved a good performance. The DeepPPISP was
the first approach that combined the local contextual and global
sequence features and showed that global sequence features played
important roles in PPI site prediction.

In another advancement, the authors in Yang et al. (2021)
developed PhosIDN, a DNN model for phosphorylation site
prediction, integrating local patterns and long-range dependencies
from protein sequences. PhosIDN consists of three closely
connected sub-networks, including a sequence feature encoding
sub-network (SFENet), a PPI feature encoding sub-network
(IFENet), and a heterogeneous feature combination sub-network
(HFC-Net). Comprehensive experiments were conducted to
investigate the performance of this approach, and the evaluation
results demonstrated that it improved the prediction performance
of phosphorylation sites. Fur-thermore, by extracting features for the
first time, Li et al. (2021) introduced an ensemble learning method
for PPI prediction (DELPHI). It combined a CNN and an RNN
structure with a fine-tuning technique. They used 12 feature groups
to represent protein sequences, including 3 novel features (used for
the first time in PPI prediction), HSP, position information, and
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a reduced 3-mer amino acid embedding (ProtVeclD). DEL-PHI
outperformed the competitors in all metrics on all datasets, although
it shared the least similarities to the testing datasets. In addition,
DELPHT’s predicted PBR sites closely match known data from Pfam
(El-Gebali et al., 2019). To address the problem of an imbalanced
dataset, Zhang B. et al. (2019) developed a DL architecture (DLPred)
based on an SLSTM network. The Experimental results showed that
the model has improved F-measures, predictive accuracies, and
AUC values. Compared with other predictors, DLPred is simple but
more generalizable and one of the most popular solutions to improve
the performance of imbalance classification. Followed by that in the
same year, Wang X. et al. (2019) tackled the imbalance problem
using EL-SMURE, an ensemble learning approach combining the
synthetic minority oversampling technique (SMOTE) and Random
Forest to oversample interfacial residues. SMOTE and the RF
methods have been integrated to oversample interfacial residues
in the feature space by generating new data from two types of
sample data. They were the first who apply the fusion of sequence
profile features in PSSM (PSSM-SPF) and residue evolution rate
(RER) for feature extraction of neighboring residues with a sliding
window. SMOTE was then applied to oversample interface residues
in the feature space to deal with the imbalance problem. Then,
they opti-mized the parameters of RFs and selected a different
number of decision trees for different classifications by the leave-
one-out cross-validation. Finally, the ensemble learning model was
obtained by integrating the above-optimized RF classifier. Similarly,
to solve the imbalance problem (Wei et al., 2016), proposed an
ensemble model of SVM and sample-weighted random forests
(SSWRF) to deal with class imbalance. An SVM classifier was
trained and applied to estimate the weights of training samples.
Then, the training samples with estimated weights were utilized to
train sample-weighted random forests(SWRF). They extracted three
types of fea-tures, PSSM, averaged cumulative hydropathy (ACH),
and predicted RSA. The proposed SSWREF achieved 67.9% accuracy.
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TABLE 3 Short names given for datasets considered by cited papers in Approach B.

S.No Dataset Short name References

1 Pan A Pan et al. (2010)

2 Swiss-Prot B Sun et al. (2017)

3 2010 HPRD C Huang et al. (2015)
4 2010 HPRD NR D Huang et al. (2015)
5 DIP E Lietal (2018)

6 HIPPIE F Sun et al. (2017)

7 InWeb in BioMap G Sun et al. (2017)

8 2005-Martin H Martin et al. (2005)
9 E. coli 1 Zhou et al. (2011)

10 D.melanogaster ] Das and Yu (2012)
11 C. elegans K Zhou et al. (2011)

12 HURI L Luck et al. (2020)

13 Yeast M Wang L et al. (2019)
14 Uniprot N Richoux et al. (2019)
15 S. cerevisiae [e] You et al. (2014)

16 H. pylori P Zhou et al. (2011)

17 Homo sapiens Q Zhou et al. (2011)

18 Mus musculus R Zhou et al. (2011)
19 human S You et al. (2013)

20 Human-Y.pestis T Kosesoy et al. (2019)
21 S.pombe v Das and Yu (2012)
22 SKEMPI w Moal and Fern "andez-Recio (2012)
23 A.thaliana X Das and Yu (2012)
24 B.subtilis Y Das and Yu (2012)
25 B.taurus Z Das and Yu (2012)
26 R.norvegicus Aa Das and Yu (2012)
27 Human-B.Anthracis Ab Das and Yu (2012)

Similarly, in the same year, the authors in Jia et al. (2016) proposed
a Sequence-Based Ensemble Clas-sifier for Identifying PPIs by
optimizing an imbalanced training dataset called iPPBS-Opt. They
used the K-Nearest Neighbors Cleaning (KNNC) and Inserting
Hypothetical Training Samples (IHTS) treatments to optimize the
training dataset. They used the ensemble voting approach to select
the most relevant features and the stationary wavelet transform to
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formulate the statistical samples. Two benchmark datasets were used
for this study. One is the “surface-residue” dataset, and the other is
“all-residue”. DSSP program (Hooft et al., 2008) was used to find
surface residues, while the PSAIA program (Mihel et al., 2008) was
used to find the interfacial residues. To optimize the unbalanced
training dataset they used K-Nearest Neighbors Cleaning (KNNC)
treatment to remove some redundant negative samples. Random
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Forest and Ensemble Classifier were used to train the dataset. They
supplied a web server for the predictor with step-by-step guide to
maximize the convenience of most experimental scientists.

Many approaches have integrated multiple models to achieve
better performance. Kang et al. (2023) integrated CNN, MLP-Mixer,
and LSTM models to create a hybrid network for PPI prediction
(HNPPISP). The HNPPISP model combined a two-stage multi-
branch network with an MLP-Mixer network, where the two-stage
multi- branch network extracted global features and the MLP-
Mixer network captured the long dependency among local features.
Similarly, the authors in Hu et al. (2023) introduced D-PPIsite,
an advanced deep learning model achieving an 87% accuracy
rate integrating multiple DNNs. The predictor is available freely
for academic use. Finally Aybey and Giimiis (2023), proposed
SENSDeep, an ensemble learning framework that integrates the
models of RNN, CNN, GRU sequence to sequence (GRUs2s), GRU
sequence to sequence with an attention layer (GRUs2satt), and
a multilayer perceptron. They added two more feature groups,
which are secondary structure and protein sequence information,
besides the current twelve groups. They proved that adding new
features to the training data sets at the expense of data loss
improves the prediction performance of the method and gives a
similar performance with less data. In addition, considering the
execution times, SENSDeep and its submodels seemed acceptable,
although the trainings were carried out using processors only. It has
been observed that these times have decreased considerably in the
voluntary trials with GPUs.

Recently, data structures such as graphs have been recognized
as one of the most convenient and intuitive ways to represent
residues in a protein and their interactions. Alkhateeb and Awad
(2024) trained a GCN model on protein interactions modeled
as structured graph data, which allowed capturing dependencies
between neighboring proteins more effectively than traditional
models. Their approach extended the feature space with specialized
input, yielding promising results. In the same direction, the
authors in (Feng et al., 2024) introduced DGCPPISP, a two-stage
transfer learning framework based on dynamic GCN. The main
contributions of this study included the encoding of the target
sequence in the first stage of transfer learning using the ESM-
2(a protein pre-trained language model (PLM)) (Lin et al., 2022),
coupled with four other sequence features as input to the training
model. They used a protein-peptide binding residue dataset that is
helpful for PPI prediction. By leveraging dynamic graph convolution
modules, they addressed limitations in traditional GNN-based
approaches.

In addition, recent advances showed a shift from isolated
architectures (CNN, RNN, GCN) toward hybrid and multimodal
PPI frameworks. Models such as SENSDeep (Aybey and
Guimiis, 2023) integrated CNN, RNN, and attention mechanisms
to capture both local and contextual dependencies. Moreover,
the advent of PLMS such as ProtBERT, ESM-1b, and ESM-2
has transformed PPI prediction by enabling transfer learning
from large-scale protein corporation. EGRET (Mahbub and
Bayzid, 2022) represented an important shift toward hybrid and
multimodal deep learning approaches for PPI prediction. Unlike
early sequence-based CNN and RNN models, EGRET utilized a
graph representation of proteins, where residues are modeled as
nodes connected based on structural or spatial proximity. Using
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edge-weighted graph attention networks (GATs), the model was
able to learn how to prioritize biologically meaningful residue
relationships. EGRET combined evolutionary features with graph
topological features, demonstrating that integrating sequence +
structure information improved generalization performance in
PPI site prediction. EGRetalso followed the recent progression
toward representation learning PLMs which generated rich residue-
level embeddings from protein sequences by fusing PLM-derived
sequence embeddings with graph-based structural encodings.
Thus, EGRET can be considered a bridge model between classical
handcrafted feature approaches and modern transformer-based
multimodal frameworks in structural bioinformatics. These models
generated contextual embeddings that can be integrated with
CNN or GCN backbones to capture both sequence semantics and
topological features, for example, DGCPPISP (Feng et al., 2024)
leveraged ESM-2, a transformer-based PLM, within a dynamic
GCN framework for improved generalization. In addtion HN-
PPISP (Kang et al., 2023) employed graph attention and MLP-Mixer
hybrids for 3D structure-based and sequence-based PPIs. Therefore,
while CNNs, RNNs, and GCNs remain essential, their integration
with PLM-derived representations marks a significant advance
toward more generalizable and interpretable predictive models.
Figure 12 presents the best performance in terms of accuracy with
the most suitable parameter settings of the various deep learning
approaches to predict PPIs in isolated protein sequences and
using different benchmark datasets. We can observe that D-PPIsite
(Hu et al., 2023), iPPBS-Opt (Jia et al., 2016), and SENSDeep (Aybey
and Giimiis, 2023) achieved the best prediction accuracy in DNN,
and EL, respectively. For more details, see Table 4.

4.2 Approach B: PPI prediction of pair of
proteins

Unlike the approaches that infer interactions from isolated
protein sequences, studying PPIs in pairs allows a direct examination
of binding events and interaction dynamics. In addition, it provides
detailed insights into the specificity and regulation of these
interactions. This section reviews state-of-the-art computational
models that integrate protein sequences, structural, and network
information to predict and validate protein interactions. The use
of DL algorithms in PPIs prediction tasks began in 2017 when
Sun etal. (2017) proposed the use of a stacked autoencoder (SAE) to
filter heterogeneous features in a low-dimensional space. The protein
sequences were numerically represented using auto-covariance (AC)
and conjoint triad (CT) methods. The representation of each protein
was then fed to a DNN model for training with ten-fold cross-
validation. The authors observed that with a one-hidden-layer, both
DNN models attained high accuracy. The authors concluded that the
accuracy of a model does not require a complicated network with a
large number of layers and neurons. In the final model construction,
they trained the DNN model on the entire benchmark dataset using
AC features, which had better accuracy. Finally, they compared their
results with other ML approaches that used the same dataset and
showed the superiority of their method. Very next in the same
year and following a similar pattern, Du et al. (2017) employed
the five widely used descriptors, namely AAC, DPC, QSO, APAAC,
and composition/transition/distribution, to represent the protein
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sequence, which is then effectively learned by a DNN model named
DeepPPI. The authors presented the performance of DeepPPI using
two different network architectures: one by connecting the two
inputs in a single network; and another using two networks for each
protein separately. Finally, they evaluated their model using a 5-
fold CV after setting the network with the best hyperparameters.
DeepPPI seemed superior in terms of accuracy and running time
on all other existing approaches: SVM, AdaBoost, and RE

The authors in Li et al. (2018) presented DNN-PPL a
generalization tool for PPI prediction for the first time. They
used Pan’s human PPI dataset for training. They built several
validation datasets from four well-known PPI data sources for
validation. They evaluated the performance of the model using
datasets from external species. The different types of features,
including semantic associations between amino acids, position-
related sequence segments (motif), and their long- and short-
term dependencies, were captured in the embedding, CNN, and
LSTM layers, respectively. The prediction results obtained by
DNN-PPI proved that it is a remarkable generalization tool for
identifying protein interactions. Furthermore, with the intention
of the generalization, a remarkable DL approach (DPPI) was
implemented by Hashemifar et al. (2018) to handle large training
data effectively and capture the potential features of protein pairs.
The successful execution of the three main modules contributes
to the design of the DPPI model. The first and core module
is the convolutional module, which consists of a set of filters
(convolutional layer, ReLU, batch normalization, and pooling layer)
responsible for mapping the protein sequences to a representation
suitable for further processing by detecting patterns that characterize
the interaction information. The input in DPPI was taken as the
sequence profiles, which were generated based on probability using
the PSI-BLAST algorithm. The next module is Random Projection
(RP), which consists of two FC sub-networks and is responsible
for projecting the convoluted representation of two proteins to two
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different spaces. The word ‘random’ is used to take the random
weights so that the model can learn motifs with different patterns.
The outcome of the RP module is the refined representation of
the proteins, which is then taken as the input by the last module,
i.e., the prediction module. The prediction module computes the
probability score by performing the element-wise multiplication on
the representation taken from the previous module, which indicates
the interaction probability of two proteins in a pair. This Siamese-like
CNN behaved very well when evaluated with different benchmark
datasets. The authors committed that DPPI can serve as a principal
model for sequence-based PPI prediction and is generalizable to
diverse applications.

Inspiring the advances of ML approaches, the authors in
Wang et al. (2017) predicted the interactions among proteins
by combining the ensemble RF classifier and the discrete cosine
transform (DCT) algorithm. They calculated the PSSM matrix
from the alignment of amino acid sequences, and then the feature
vector was computed using DCT to present protein evolutionary
information. Their method achieved excellent results. They applied
their model to independent data sets and achieved good prediction
accuracy. Compared with the SVM method, this model had better
performance. In addition, in the same trend, Wang L. et al. (2019)
leveraged CNN to deeply extract hidden features from matrix-
based biological information of the protein generated by the PSSM
matrix. Then, the prediction task was accomplished by proposing
a Feature-Selective Rotation Forest algorithm (FSRF), whose main
purpose is to reduce data dimension and noisy information, and
to improve the prediction accuracy and the running time. The
proposed approach was experimented on two realistic datasets,
namely Yeast and Helicobacter Pylori. To further evaluate the
prediction performance, they compared the results of CNN-FSRF
with SVM and other methods. In addition, they tested CNN-
FSRF on other independent datasets and achieved favorable results.
The authors in Zhang et al. (2023) combined two-dimensional
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TABLE 4 Performance measures for PPls in Approach A.

Deep Name Datasets F-
learning measure
method
C 0.76 0.491 0.312 71.1 38.1 21.4 78.9
DLPred (Zhang B 0.779 0.553 0.401 73.1 46.5 29.8 81.1
Betal, 2019a) A 0.747 0.556 0.285 71.8 37.7 23.8 80.1
D 0.787 0.554 0.418 73.68 47.61 314 81.81
C 0.86 0.39 0.39 77.8 386 25 71
DNN
B 0.92 0.30 0.30 85.1 29.9 21.6 74
D-PPIsite (Hu et al., 2023) A 0.89 0.37 0.37 80.9 373 26 73.2
E 0.92 0.48 0.48 85.9 48 39.9 82.4
F 0.93 0.46 0.46 87.1 46 38.7 822
PhosIDN (Yang etal,, 2021) | G - 0.508 0.909 72.9 65.2 51.0 94.0
C
DeepPPISP
eepPPIS B - 0.577 0303 65.5 39.7 20.1 -
(Zeng et al., 2020)
CNN A
A,B,C - 0.632 0.324 66.7 42.7 24.4 36
HN-PPISP
(Kang et al., 2023)
K 0.449 0.253 76.2 32.4 20.4 25.3
C 0.76 0.8 0.77 77.7 78.2 55.4 88.7
ELSMURF (Wang
B 0.73 0.79 0.75 77.1 77.5 54.2 85.4
Xetal., 2019)
A 0.78 0.81 0.79 79.1 78.4 58.4 88.5
¢ 0.65 0.53 0.32 62.1 36.5 15.2
SSWRE (Wei et al., 2016) B 0.64 0.65 0.27 64.8 35.1 22.4 71.1
A 0.70 0.58 0.32 67.9 386 234
surface-residue 0.94 0.58 89.34 58.21 89.34
iPPBS-Opt (Jia et al., 2016) - -
all-residue 0.97 0.39 88.20 46.62 88.20
A 0.858 0.431 0.357 79.3 38.9 26.8 72.6
EL
B 0.832 0.448 0.258 78.8 327 224 714
ENSDeep (Aybey and
SENSDeep (Aybey an C 0.866 0355 0.363 77.6 35.8 23 685
Giimiis, 2023)
E 0.894 0.34 0.342 81.9 33.8 23.5 68.0
F 0.898 0.361 0.329 83.4 34.1 24.9 69.2
A 0.884 0.351 0.351 80.3 35.1 23.5 71.0
C 0.857 0.352 0.352 765 352 20.9 68.5
DELPHI (Li et al., 2021) B 0.914 0.274 0.274 84.7 27.4 18.9 71.1
E 0.901 0.371 0.371 82.9 37.1 27.2 73.7
F 0.914 0.364 0.364 84.8 36.4 27.8 74.6

(Continued on the following page)
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TABLE 4 (Continued) Performance measures for PPls in Approach A.
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Deep learning Name Datasets F-measure
method
Test_60 - 0.584 0.368 77.6 45.1 333 78.6
GraphPPIS
(Yuan et al., 2021)
C
B 0.715 0.561 0.358 71.5 43.8 27 71.9
EGRET (Mahbub and
GCN Bayzid, 2022) A
DGCPPISP A,B,CEK - 0.617 0.372 71.8 46.4 30.6 44.6
(Feng et al., 2024)
GCN (Alkhateeb and A,B,C - 0.45 0.74 79 49.0 - -
Awad, 2024)

CNN models to develop DeepSG2PPI. They calculated the protein
sequence and the local context information of each amino acid
residue. Then, they extracted features from a two-channel coding
structure using a two-dimensional CNN (2D-CNN) model. In the
2D-CNN model, an attention mechanism is embedded to set higher
weights to key features. The final biological features of the protein
are represented as a graph embedding vector, which includes the
global statistical information of each amino acid residue and the
relationship graph between the protein and Gene Ontology (GO).
Finally, a 2D-CNN model and two 1D-CNN models are combined
for PPI prediction. Comparison analysis with existing algorithms
showed that the DeepSG2PPI method has outstanding performance,
providing more accurate and effective prediction of PPI, which
can help reduce the cost and failure rate of biological experiments.
Similarly, using multiple DNNs, Zhang L. et al. (2019) introduced
EnsDNN, an ensemble DNN-based approach for PPI prediction. In
EnsDNN, three different feature sets are generated based on auto-
covariance (AC), local descriptor (LD), and multi-scale continuous
and discontinuous local descriptor (MCD). For each set of features,
they trained nine independent DNNs with different configurations
and parameter settings. The final 27 trained DNNs were ensembled
to form a two-layer NN for the prediction. This strong and capable
ensemble predictor leveraged the advantages of key information
about interaction generated by the three different feature extraction
approaches and an assortment of 27 DNNs. The model attained
remarkable performance when evaluated on training datasets as well
as independent datasets.

Employing the features of RNNs, Richoux et al. (2019) proposed
a fully connected model and a recurrent model to compare two
different neural network architectures. The dataset is extracted
from the UniProt website. With regard to performance, the fully
connected model achieved 76% accuracy and the recurrent model
achieved 78% accuracy. The authors claimed that they conducted
training and testing in strict conditions to build strong confidence
in the ability of a model to scale to larger datasets. In another
similar approach, Chen et al. (2019) attempted to capture the mutual
influence of the protein pairs in PPI prediction based on a Siamese
architecture (PIPR). Besides the binary prediction, PIPR addressed
the issues of the estimation of binding affinity and the prediction of
interaction type. PIPR incorporates a deep Siamese environment of a
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residual RCNN-based protein sequence encoder to better apprehend
the potential features for PPI representation. This deep encoder
comprises many occurrences of convolution layers with pooling and
bidirectional residual gated recurrent units to ease the training and
greatly diminish the updates of the parameters. For the numerical
representation of the protein sequences, PIPR transformed the
recognized amino acids based on their similarity in terms of co-
occurrences as well as electrostatic and hydrophobic properties, and
the pre-trained amino acid embedding. The resultant embeddings
were then fed to the RCNN encoder to capture the latent information
of the proteins. The output of the RCNN encoder, which is a refined
embedding of the protein sequences, is then merged to generate
a pair vector and passed into a multilayer perceptron (MLP) with
Leaky ReLU for PPI classification. PIPR proved promising results
by effectively covering the mutual influence among the protein
pairs and ascertaining the generalization without the inclusion of
hand-crafted features.

Following the same trend, the authors of Czibula et al. (2021)
used a Siamese structure and proposed a binary supervised classifier
(AutoPPI) to predict PPL They built and trained two autoencoders
(AE) for each class in the input data, namely, positive interaction
and negative interaction. The feature vectors combined AC, CT, and
PseAAC encodings. For each autoencoder, three NN architectures
were developed: 1) Joint-Joint architecture, which takes the features
of a pair of proteins as input and correspondingly returns the
renovated features at the output; 2) Siamese-Joint architecture,
which uses a shared encoder to compress the two proteins to learn
latent space representation, which is finally combined and used to
regenerate the pair; 3) Siamese-Siamese architecture in which a
common representation is generated by element-wise multiplication
of two encodings for each protein in a pair at the encoder side and
the reconstruction of proteins is obtained using a shared decoder. In
all three architectures, the SELU activation function and the Adam
optimizer were used.

Considering the context features of protein sequence, the
authors in Wang Y. et al. (2019) proposed a pure biological language
processing model for predicting PPIs. Their CNN model was
constructed based on a feature representation method for biological
sequences called bio-to-vector (Bio2Vec. They used the Skip-Gram
model (Mikolov et al., 2013b) to represent protein words. The
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prediction accuracy of their framework was 99.5%, which out-
performed the latest methods. Such impressive results inspired
other researchers to consider the context information and implicit
semantic information of the bio-sequence. Following a similar
pattern, the authors in (Jia et al., 2019) proposed a new predictor,
called “iPPI- PseAAC(CGR)’, by incorporating the information
of chaos game representation (CGR) into the PseAAC. They
extracted the PseAAC and used the CGR to define the pseudo
components. Finally, they applied the random forest and ensemble
classifier to perform the prediction. They achieved around 92.95%
accuracy in the benchmark datasets. A user-friendly web server has
been published with this predictor. Further in ensemble methods
(Chen et al., 2020), proposed an ensemble model called StackPPI to
predict PPIs. They used XGBoost to eliminate the noise and reduce
the dimensional-ity, which enhanced StackPPI's performance.
Finally, they built a stacked ensemble classifier that employs Random
Forest and extremely randomized trees (ET) as the base-classifiers,
and logistic regression (LR) as the meta-classifier. The distinct
feature of this model is its ability to infer biologically significant
PPI networks. StackPPT’s accurate prediction of functional pathways
made it the logical choice for studying the underlying mechanism of
PPIs, especially in drug design. Starting from 2020, the researchers
involved the graphs in the PPI problems of pairs of proteins.
The authors in Yang et al. (2020) involved Structural information
of PPI networks, such as their degree, position, and neighboring
nodes in a grap,h with the sequence information to be informative
in PPI prediction. Facing the challenge of representing graph
information, they introduced an improved graph representation
learning method. Their model can study PPI prediction based
on sequence information and graph structure. Moreover, their
approach takes advantage of a representation learning model and
employs a graph-based deep learning method for PPI prediction,
which showed superiority over existing sequence-based methods.
Followed by that, in 2022, the authors in Baranwal et al. (2022)
developed a mutual graph attention network and a corresponding
computational tool, Struct2Graph, to predict PPIs solely from
3D structural information. Struct2Graph used a graph-based
representation of a protein globule obtained using only the 3D
positions of atoms. This graph-based interpretation allows for neural
message passing for efficient representation learning of proteins.
A GCN maps graphs to real-valued embedding vectors in such a
way that the geometry of the embedding vectors reflects similarities
between the graphs. They achieved around 99% accuracy. This
model can identify residues that likely contribute to the formation
of the protein—protein complex. The identification of important
residues is tested for two different interaction types: (a) Proteins
with multiple ligands competing for the same binding area, (b)
Dynamic protein-protein adhesion interac-tion. For applying DNNs
on Human Protein, the authors in Le and Kha (2022) proposed a
novel method to realize PPI prediction utilizing the FASTA (Pearson
format) of amino acids. Compared with other ML methods, their
DNN model achieved higher prediction accuracy using five-fold
cross-validation. By evolving self-attention models, the authors in
Lietal. (2022) proposed SDNN-PPI, a PPI prediction method based
on self-attention and deep learning. The method adopts AAC, CT,
and AC to extract global and local features of protein sequences, and
leverages self-attention to enhance DNN feature extraction to more
effectively accomplish the prediction of PPIs. Satisfactory results
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were obtained on interspecific and intraspecific datasets, and good
performance was achieved in cross-species prediction. Recently, in
2023, the authors in Tran et al. (2023) proposed a DeepCF model
that combines the learned features and handcrafted features for
the first time. They utilized 5 protein sequence extractors: AAC,
PseAAC, APAAC, QSO, and DPC, to extract handcrafted features,
then applied a natural language processing technique, Word2vec,
to generate learned features by embedding protein sequences into
the feature space. Finally, a DNN architecture was employed for
combining two types of features and identifying PPIs. DeepCF was
evaluated on the Yeast core, Human, and eight independent datasets.
The experimental results demonstrated the superiority of DeepCF
over other methods.

Recent research has increasingly focused on hybrid and
multimodal frameworks that integrate complementary neural
components. For instance, CNN + GCN hybrids leverage
convolutional layers to extract local residue features while graph
convolutions capture global structural dependencies, improving
spatial awareness in PPI prediction. Similarly, RNNs enhanced
with attention mechanisms or transformer-style encoders have
demonstrated strong capability to model long-range residue
dependencies and contextual relationships. Such combinations
outperform traditional sequence-based encoders and highlight
a shift toward transformer-based multimodal approaches in
current PPI research. For instance, SDNN-PPI (Li et al., 2022)
employed self-attention to refine DNN feature extraction, and
DeepCF-PPI (Tran et al., 2023) combined handcrafted descriptors
with learned sequence embeddings (Word2Vec). In addition,
Struct2Graph (Baranwal et al., 2022) explored graph attention
and MLP-Mixer hybrids for 3D structure-based and sequence-
based PPIs.

Figure 13 presents the best performance in terms of accuracy
with the most suitable parameter settings of the various deep-
learning approaches to predict PPIs in pair of protein sequences.
It can be observed that the prediction accuracy is high (=90%),
and DeepPPI has achieved the highest accuracy on benchmark
datasets. Figure 14 illustrates the number of published research
papers employing various DL models in PPI prediction. As shown,
most studies utilized DNNs and EL, with a smaller number adopting
CNNs, and only a few incorporating graph networks. Despite
their limited representation, graph networks have demonstrated
promising results, making them a highly promising venue for future
research in the field of PPI prediction. Figure 15 presents the number
of research papers that were published using a particular approach.
We can observe that deep learning (DL) techniques were successfully
used for both approaches; however, they were more popular in the
prediction of pairs of proteins datasets (Approach B).

4.3 Experimental reproducibility

4.3.1 Implementation environment

Most PPI deep learning frameworks utilized either PyTorch
or TensorFlow, with hardware setups that include NVIDIA
GPUs (Tesla V100, A100, or RTX 3090). The training epochs
ranged from 50 to 300, depending on the dataset size and
convergence behavior.
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4.3.2 Feature preprocessing
Feature extraction plays a central role in reproducibility:

o PSSM and Evolutionary Features: most of the methods, like

SSWRE, DLPred, DeepPPISP, and CNN-ESRE generated the
PSSM using PSI-BLAST with default parameters of e-value =
0.001, BLOSUMS62 substitution matrix, and 3 iterations against
the NR (non-redundant) database.

Frontiers in Bioinformatics

e 3D-1D Features: derived using tools such as SPIDER3

(Heffernan et al., 2018), like in HN-PPISP or DSSP,
like in DELPHI and DeepPPISP, encoding solvent
accessibility and secondary structure probabilities into
1D descrip-tors.

Residue Conservation and Evolutionary Conservation: most
of the methods like DELPHI, D-PPIsite, HN-PPISP employed
Consurf (Armon et al., 2001) or Rate4Site (Pupko et al., 2002)
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m PPl in Isolated Protein = PPI In Pair of Protein

FIGURE 15
Number of published papers by DL in PPIs prediction.

algorithms, aligning multiple homologous sequences to infer
evolutionary conservation scores.

o Physicochemical Descriptors: Generated through ProPy
(Cao et al, 2013) like in iPPBS-Opt and D-PPIsite
or iFeature (Chen et al., 2018) like in EL-SMURE, including
hydrophobicity, charge, and polarity scales.

4.3.3 Hyperparameter settings

To ensure experimental reproducibility, we summarized
the hyperparameter configurations of the
reviewed models in Table 1. Across most CNN-based and
DNN-based architectures, the Adam optimizer was the choice,

and analyzed

typically using learning rates around 0.001 and dropout rates
between 0.2 and 0.7 to reduce overfitting. Models such as
DeepPPISP and DELPHI used moderate batch sizes (32-64)
and cross-entropy losses, while hybrid models like DLPred
and PhosIDN employed multiple hidden layers and dropout
regularization for better stability on small datasets. In graph-
based frameworks like DeepGCN and DGCPPISP, learning rates
were reduced further (0.0001-0.01) with 3-5 hidden layers,
ReLU or LeakyReLU activations, and batch normalization to
stabilize convergence. Ensemble learning approaches, including EL-
SMURE EnsDNN, and StackPP], integrated varied configurations
of base classifiers or neural sub-networks trained under diverse
dropout and feature window settings, providing robustness against
imbalance and overfitting. Models leveraging transfer learning,
like EGRET and DGCPPISP, combined pretrained embeddings
such as ProtBERT or ESM-2 with task-specific fine-tuning, often
requiring fewer epochs but larger feature dimensions. Overall,
while most studies converged on standard hyperparameter
ranges (learning rate 0.0001-0.01, dropout 0.2-0.7, batch size
32-256), explicit reporting remained inconsistent, underscoring the
importance of standardized reproducibility guidelines for future PPI
prediction research.
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5 Comparative assessment
5.1 Datasets

5.1.1 Approach A: PPIs in isolated protein
sequence

Three widely benchmarked datasets are used in PPI prediction
of isolated protein sequence: Dset 186, Dset 72 (Murakami and
Mizuguchi, 2010) and Dset 164 (Singh et al., 2014). The distribution
of the datasets is relatively unbalanced, with positive samples
accounting for only 10%-18% of the total sample size, which poses
a challenge for the generalization of the model. Although deep
learning models can effectively deal with the overfitting problem
caused by data imbalance, most of these computational methods are
very unstable and poorly generalized for these highly unbalanced
benchmark datasets, which implies some room for improvement.
Table 2 summarizes the main datasets used in PPI prediction. Dset
186 is built from the protein data bank (PDB) and consists of
186 protein sequences extracted from 105 heterodimeric protein
complexes with a sequence identity <25% and a resolution of
< 3.0A. Dset 186 has a total of 36216 residues (including 5551
interacting residues). Dset 72 and PDBset 164 are constructed in
a way similar to the construction of Dset 186. Dset 72 contains 72
protein sequences from 36 protein complexes in the protein-protein
docking benchmark set version 3.0. While under construction, all
sequences in Dset 72 that have > 25% sequence identity over a
90% overlap with any of the sequences in Dset 186 are removed.
It contains 17975 residues in total, with 3799 interacting residues.
Dset 164 consists of 164 non-redundant protein sequences with
the same filtering requirement as for Dset 186. There are 6111
interacting residues and a total of 33678 residues in Dset 164.
These datasets are used for training and testing deep learning
models. Zhang B. et al. (2019) applied the DLPred predictor to
the independent heteromeric dataset Dset 48, which is a subset of
Dset 72, and five homodimeric sequences, to evaluate the DLPred
model as a more general predictor. The study in (Hu et al., 2023)
added Dset 448 and Dset 335 datasets to evaluate the performance
of their model (D-PPIsite). Dset 448, which includes 448 protein
sequences, is collected from the BioLiP database (Yang et al., 2012).
The sequence identity between any two sequences in Dset 448 is less
than 25%. Dset 355 was generated in DELPHI (Li et al., 2021) via
removing the 93 redundant proteins from Dset 448. Furthermore,
they compiled a large dataset of 9982 non-redundant protein
sequences, including 427,687 binding and 3,826,511 non-binding
residues. The maximum sequence identity between any two protein
sequences in this dataset is 25%. Finally, they randomly selected
841 protein sequences to constitute the validation dataset, and
the remaining proteins were used in the training dataset. The
authors in (Kang et al., 2023) combined the three benchmark
datasets and constituted one fused dataset called Dset 186 72
PDB164. In addition, they reduced Dset 448 and produced the
Dset 331 with 331 valid proteins in total. They divided the two
datasets into a test set and a training set according to a ratio
of 1:6, respectively. Jia et al. (2016) used imbalanced datasets
for their approach on PPIs prediction; they did not use any of
the benchmark datasets. Instead, they extracted two datasets: the
surface-residue dataset and the all-residues dataset. The protein-
protein interfaces are usually formed by those residues that are
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exposed to the solvent after the two counter parts are separated
from each other. The work in (Yuan et al., 2021) integrated
three datasets, Dset 186, Dset 72 and Dset 164, into a fused
dataset and removed the redundant proteins with more than 25%
sequence similarities over 90% overlap on either sequence as
in Dset 186 and obtained 395 protein chains, from which they
randomly selected 335 protein chains for training (Train 335) and
used the remaining 60 chains as independent test (Test 60). To
further improve the stability and generalization performance of
the models, an ensemble learning methods are applied to deal
with the skewed distribution of categories in unbalanced datasets
like (WangY. et al., 2019; Jia et al., 2016; Wei et al., 2016).
DLPred is also a generalizable model and one of the most popular
solutions to improve the performance of imbalance classification
by applying the SLSTM Network (Zhang B. et al., 2019). Although
most benchmark datasets in PPI prediction in isolated protein
sequences focused on the annotated datasets extracted from the PDB
database, several deep learning models in this survey have already
utilized broader or disease-relevant resources. For example, EGRET
(Mahbub and Bayzid, 2022) integrated sequence and structure
data, and it was trained on multiple benchmark sets, such as Dset
186, Dset 72, and PDB164. These datasets include proteins from
H. pylori and E. coli, covering both prokaryotic and eukaryotic
species. GraphPPIS (Yang et al, 2020) was evaluated on Dset
331, which was derived from non-redundant PDB structures with
diverse species origin (bacterial and eukaryotic). These cross-species
datasets provide a valuable foundation for assessing generalization
ability across biological domains. Table 4 concludes the datasets and
the performance of each of them on PPIs prediction for isolated
protein sequences.

5.1.2 Approach B: PPIs in pair of protein
sequences

There have been several benchmark datasets used to evaluate
deep learning models trained on pairs of protein sequences. The
S.cerevisiae dataset (You et al., 2014) is a core subset of the Database
of Interacting Proteins (DIP). The positive and negative datasets are
combined into a total of 11188 protein pairs. Martin et al. (2005)
used the Helicobacter pylori proteins to construct a validation dataset,
which is composed of 2916 protein pairs (1458 interacting pairs
and 1458 non-interacting pairs). The study in Huang et al. (2015)
constructed the Human dataset from the Human Protein Reference
Database (HPRD). The Human dataset has 8161 protein pairs
(3899 interacting pairs and 4262 non-interacting pairs). The
authors in Zhou et al. (2011) collected five datasets: Caenorhabditis
elegans (4013 interacting pairs), Escherichia coli (6954 interacting
pairs), Homo sapiens (1412 interacting pairs), Mus musculus (313
interacting pairs), and H.pylori dataset (1420 interacting pairs).
Sun et al. (2017) and Li et al. (2018) generated additional testing
datasets from the 20160430 version of the Database of Interacting
Proteins (DIP, Human). After the removal of common protein
pairs from the benchmark dataset, 2908 pairs were obtained.
Sun et al. (2017) used the HIPPIE dataset, release v2.0. It contains
human PPIs from 7 large databases. They categorized the data,
based on the PPI score, into “high quality” data (>0.73) and
“low quality” data (<0.73). After the removal of pairs shared
with the benchmark dataset, they obtained 30074 high-quality
interacting protein pairs and 220442 low-quality interacting pairs.
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The newly released InWeb inBioMap contains the human PPIs from
8 large databases. They screened out the PPIs with a “confidence
score” equal to 1 as the “high quality” (HQ) data and treated
the rest as the “low quality” (LQ) data. After the removal of
pairs shared with the benchmark dataset, they identified 155465
of ‘high quality’ PPIs dataset and 459231 of “low quality” PPIs
dataset. Martin et al. (2005) have generated the 2005-Martin
dataset, which was used in other studies such as (Pan et al., 2010).
(Richoux et al., 2019) retrieved human sequences from the UniProt
database and split them into three datasets for training, validation,
and testing. Li et al. (2018) added the Drosophila dataset, which
contains 19133 positive samples and 18449 negative samples. Yeast
dataset is used by Wang L. et al. (2019), Wang et al. (2017), and
Chen et al. (2019). Baranwal et al. (2022) extracted a balanced
dataset (consisting of an equal number of positive and negative
pairs) and an unbalanced dataset (with a ratio of 1:10 between
positive and negative pairs) from IntAct (Orchard et al, 2014)
and STRING (Szklarczyk et al, 2019) databases. While most of
these databases are compiled from eukaryotic model organisms
such as Saccharomyces cerevisiae and Homo sapiens (human),
emerging resources have broadened coverage to prokaryotes,
virus-host systems, and disease-specific networks. For example,
StackPPI (Chen et al., 2020) relied on datasets aggregated from
IntAct and STRING, which have expanded their repositories
to include archaeal and bacterial PPIs, such as those from
Escherichia coli and Mycobacterium tuberculosis, which provide
valuable information for studying essential metabolic pathways in
prokaryotes. In addition, models such as SAE-based frameworks
(Sun et al,, 2017), DeepPPI (Du et al., 2017), and DNN-PPI
(Li et al, 2018) relied heavily on the HIPPIE v2.0 and InWeb
inBioMap datasets. HIPPIE computationally inferred PPIs from
seven major databases (MINT, BioGRID, DIP, HPRD, IntAct, MIPS,
and BIND) and categorizes them by reliability score. This scoring
enables models to evaluate prediction stability across confidence
levels and facilitates disease-specific network analysis. In particular,
HIPPIE and InWeb annotate interactions with disease and tissue
metadata, allowing researchers to map PPIs linked to cancer,
cardiovascular, and neurodegenerative disorders. Several recent
studies have exploited this property for model benchmarking and to
explore context-specific sub-networks, such as Alzheimer’s disease-
related interactomes (Ginsberg et al., 2022). virus-host interaction
datasets such as VirHostNet 3.0 (Guirimand et al., 2015), IntAct
Virus-Host (Brito and Pinney, 2017), and BioGRID COVID-19
(Oughtred etal., 2021) offer curated PPIs derived from experimental
and text-mining sources, enabling the study of host-pathogen
interface prediction via deep learning architectures. Although the
models in this paper incorporate multiple datasets (e.g., Yeast,
Human, H. pylori, S. cerevisiae, E. coli), we acknowledge that current
benchmark collections still represent a limited biological spectrum.
The diversity of protein structures, interaction mechanisms, and
experimental biases remains a key constraint for evaluating
deep learning models. Future studies should therefore focus on
expanding dataset heterogeneity and establishing standardized
cross-domain validation to ensure robust generalization. Table 4
presents the different datasets used for PPIs prediction of pairs
of proteins and the performance of the deep learning model in
each of them.
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5.2 Performance measures

To quantify how correct the predictions made by an algorithm
are, we used the following measures, including Fl-score (F1),
sensitivity (SEN), specificity (SPE), precision (PRE), accuracy
(ACC), and Matthews correlation coefficient (MCC), see Equations
9-14.

F1 — score = _2xIP )
2Xx TP+ FP+FN
Recall = Sensitivity = P (10)
TP+ FN
TN
Speci ficity = 11
pecificity TN+ P (11)
TP
Precision = 12
recision = -0 (12)
TP+ TN
A = 13
Y = TP TN+ FP+ EN (13)
TPx Tn—FPXF.
McC= (IPx Tn—EPX ) (14)

V(TP + EP) x (TP + EN) x (TN + FP) x (TN + FN)

where TP, TN, FP, and FN represent the numbers of true positive, true
negative, false positive, and false negative residues in the prediction,
respectively. Additionally, we reported the area under the receiver
operating characteristic curve (AUC) to assess the overall predictive
performance. Tables 4, 5 present the performance measures of the
papers presented in Approach A and Approach B, respectively.

5.3 Comparative performance of deep
learning models for PPI prediction

Understanding the suitability of deep learning architectures
for PPI prediction requires examining their inductive biases,
data handling capabilities, and empirical stability across datasets.
In PPI site prediction in isolated protein sequences, model
performance strongly depends on the ability to capture sequential
dependencies and spatial context. Traditional recurrent networks
such as RNN and GRU effectively model short-term dependencies
but exhibit vanishing gradient effects when capturing long-range
residue correlations, resulting in limited recall (average sensitivity
0.30-0.45). Conversely, CNN-based architectures emphasize
local motif learning through sliding windows, achieving moderate

precision but often missing distal dependencies necessary for
identifying the discontinuous binding residues. The SENSDeep
ensemble addressed these limitations by integrating CNN, RNN,
and attention-augmented GRUs (GRUs2satt) to com-bine both local
and contextual information. On the Dset 72 dataset, SENSDeep
achieved consistent gains across all folds with AUC = 0.715 and
AUPR = 0.266, surpassing single encoders (AUC = 0.69-0.71).
This ensemble approach reduced prediction variance and enhanced
robustness against class imbalance. When compared across the three
annotated datasets (Dset 186, Dset 7, and Dset 164), Structure-aware
CNNs (DELPHI and HN-PPISP) and hybrid GCN variants (EGRET
and DGCPPISP) demonstrated progressive improvements in AUPR
(0.36-0.45) and MCC (0.23-0.31), highlighting the contribution
of spatial topology and pretrained embeddings (ProtBERT, ESM)
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in capturing non-local structural cues. For Pair-wise Protein
Interaction Models (Approach B): Ensemble methods such as
StackPPI and EnsDNN leveraged bagging and deep aggregation
to mitigate imbalance, achieving AUC = 0.96-0.97 and MCC =
0.80-0.90. Deep-feature approaches like DeepPPI further integrated
physicochemical descriptors and convolutional encoders, improving
predictive stability with AUC = 0.99 and MCC = 0.97. Graph
representations such as Struct2Graph transformed proteins into
atomic-contact networks, achieving similar performance (AUC
=~ 0.995) while enhancing interpretability. Attention and feature-
fusion frameworks extend this progress. CNNFSRF integrated CNN
layers with feature-selection and random-forest fusion, and achieved
AUC = 0.89 on H. pylori. DeepCF-PPI, which combined learned
embeddings with handcrafted features via attention, reported an
AUC = 0.97, an AUPR = 0.978, andanMCC = 0.90, confirming that
hybrid attention mechanisms efficiently capture complementary
biological information. Overall, attention-enhanced and graph-
aware frameworks deliver superior generalization on unbalanced
datasets by combining global reasoning with noise-tolerant feature
fu-sion. The comparative ROC, AUPR, and MCC (Figures 16-19)
visually confirm these trends for both isolated and pair-wise PPIs.

5.4 Transformer-based architectures and
protein language models (PLMs)

the
architectures

Recent years have witnessed

Transformer-based

rapid
of with
architectures to enhance PPI prediction performance and

convergence
other  deep
interpretability. Transformer-based architectures such as ProtBERT
(Gaoetal.,2024), ProtT5 (Li et al., 2024), and the ESM (Evolutionary
Scale Modeling) series (Xu, 2023) have been employed in protein
representation and learning. These models are trained on billions
of amino acid sequences and employ attention mechanisms to
capture long-range dependencies and contextual relationships that
are difficult to model with conventional DL architectures. Unlike
convolutional sequence features, transformer-based embeddings
encode deep contextual semantics that transfer effectively across
diverse protein-related tasks, including PPI prediction, functional
annotation, and structure modeling. For example, ProtBert-BiGRU-
Attention (Gao et al., 2024) and P-PPI (Anteghini et al., 2023)
frameworks demonstrated superior cross-species generalization
compared to sequence-only methods such as DLPred and
DeepPPISP, achieving AUC values above 0.90 on the yeast test
Similarly, the EGRET model integrated ProtBERT-based
embeddings with GAT layers, improving sensitivity and robustness

set.

in residue-level binding site detection. In addition, ProtBERT and
ESM-2 were able to capture global contextual dependencies within
protein sequences using self-attention mechanisms, pro-viding
residue-level embeddings rich in biochemical and evolutionary
information. These advances indicate a paradigm shift in PPI
prediction, moving from task-specific architectures toward
pretrained foundation models that can be fine-tuned for various
interaction modalities. However, despite their remarkable repre-
sentation power, PLMs remain computationally intensive, and
they are often insufficient alone for modeling structural topology
and intermolecular interactions. Therefore, hybrid models have
emerged to integrate these embeddings with complementary
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TABLE 5 Performance measurements for PPIs prediction in Approach B.

Deep Learning Datasets | SPE = SEN F-measure | MCC AUC
Method
C 99.21
D 97.14
E 93.77
SAE (Sun et al. (2017)) F - - - 92.24 - - -
F 87.04
G 91.14
G 87.99
RNN (Richoux et al., 2019) N - 0.86 0.95 0.91 091 - -
O 0.92 0.97 94.43 88.97
P 0.89 0.84 86.23 72.63
DeepPPI (Du et al., 2017)
C 0.89 0.89 89.0 0.89 95.0
Q 0.97 0.99 98.14 96.29
C 94.43 88.97
Deep neural networks E 8623
F 89.0
DNN-PPI (Li et al., 2018) G 98.1
I 0.94 0.98 95.94 95.81 91.94
Q 0.97 0.99 98.38 98.37 96.81
K 0.98 0.99 98.66 98.64 97.32
M 0.97 0.93 95 91
DeepCF (Tran et al., 2023) S 0.99 0.99 99 98
I 1 1 100 100
o 0.97 0.93 0.97 95 91 98
S 0.99 0.98 0.99 98 97 99
SDNN-PPI (Li et al., 2022)
Ab 0.96 0.96 0.90 93 86 98
T 0.93 0.93 0.84 83 77 95
DeepSG2PPI N &STRING 0.98 0.98 0.98 0.98
(Zhang et al., 2023)

(Continued on the following page)
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TABLE 5 (Continued) Performance measurements for PPIs prediction in Approach B.

Deep Learning Datasets | SPE F-measure | MCC AUC
Method
M 0.96 0.996 0.96 97.75 97.79
P 0.87 0.92 0.87 88.96 89.26
K 0.96 96.41 98.17 95.57 97.54
CNN-FSRF (Wang L et al., 2019)
1 0.95 95.47 97.68 78.09 87.08
Q 0.99 98.65 98.32
R 0.93 93.27 96.52
Convolution neural networks
DPPI (Hashemifar et al., 2018) (0] 0.92 0.97 94.55
PIPR (Chen et al., 2019) M 0.97 0.971 0.97 97.09 97.09 94.17
C 0.96 0.98 97.31 94.76 99.61
(@] 0.93 0.94 93.30 93.55 97.20
Bio2Vec-based (Wang
Y etal., 2019)
P 0.88 0.88 88.01 87.9 93.94
Ex-Human 0.996 0.995 99.58 99.16 99.95
P 0.88 0.90 89.27 78.59
(¢} 0.93 0.96 94.64 89.34
Q 97.66
StackPPI (Chen et al., 2020)
R 98.4
K 97.11
I 98.71
M 0.89 0.99 98.54 97.13
P 0.85 0.91 88.27 79.29
K 98.08
RF & DCT (Wang et al., 2017)
Ensemble Learning I 92.75
Q 98.87
R 98.72
iPPI-Esml (Jia et al., 2015) P 0.88 0.90 90.75 81.51
(@] 0.95 0.95 0.95 95.29 95.29 90.59 97
K 93.22
1 95.10
EnsDNN (Zhang B et al., 2019)
Q 95
P 89.14
R 94.06

(Continued on the following page)
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TABLE 5 (Continued) Performance measurements for PPIs prediction in Approach B.
Deep Learning Datasets PRE ACC | F-measure | MCC AUC
Method
P 0.88 0.98 92.95 85.05
iPPI-PseAAC(CGR)
(Jia et al., 2019)
(6] 0.85 0.91 88.01 76.24
C 0.99 0.92 0.97 97 97 97
AutoPPI
(Czibula et al., 2021) . .
Multispecies 0.96 0.97 0.99 97 97 97
Balanced dataset(1:1) 0.994 0.986 0.994 98.96 98.98 97.91 99.62
unbalanced dataset(1:2) 0.995 0.979 0.992 98.91 98.43 97.59 99.73
Struct2Graph
unbalanced dataset(1:3) 0.996 0.974 0.988 99.01 98.12 97.46 99.7
. (Baranwal et al., 2022)
Graph convolutional
network unbalanced dataset(1:5) 0.997 0.971 0.983 99.16 97.53 97.03 99.71
unbalanced dataset(1:10) 0.997 0.956 0.970 99.26 96.31 95.90 99.54
S-VGAE CELJK 99.15 99.15
(Yang et al., 2020)

PPI Prediction in Approach A: AUC by Model/Dataset
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AUC values for the models in Approach A: AUC by Model/Dataset.
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technologies. Following this trend, Several recent frameworks
employed PLM embeddings as node features in GNNs to learn
sequence and structural relationships. For example, in Approach A:
EGRET combined ProtBERT embeddings with graph attention
networks to model residue-level spatial dependencies, while
DGCPPISP integrated ESM-2 representations within a dynamic
GCN to capture conformational flexibility. Similarly, in Approach
B, GraphPPIS encoded structural proximity through weighted
graphs enriched with PLM features. Such fusions significantly
improved generalization in disease-specific PPI interaction
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predictions. In addition, the frontier of PPI research lies in
multimodal architectures that unify diverse biological data based on
sequence, structure, and multi-omics. Frameworks such as ProtST
(Xu et al., 2023) and BioT5+ (Pei et al., 2024) embedded PLM-
derived sequence features, AlphaFold (Faisal et al., 2025) predicted
structural graphs, and co-expression signals from transcriptomic or
proteomic data. By aligning modalities within a shared latent space,
these models enhance biological interpretability and enable cross-
species transfer learning. Authors in (Chinami, 2025) employed

AlphaFold3-guided structural profiling of PPIs, integrating
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PPI Prediction in Approach A: AUC vs AUPR
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FIGURE 17
The comparative ROC and AUPR for the models in Approach A.

PPI Prediction in Approach B: AUC by Model/Dataset
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FIGURE 18
AUC values for the models in Approach B: AUC by Model/Dataset.

evolutionary distances and structural affinity metrics derived from  uncover functionally significant distinctions in tumor biology
predicted PPI complexes. They used PPI pairs from a cancer-wide  and suggest a paradigm shift in cancer diagnostics enabled by
interactome database with relevance to liver cancers. Their findings ~ next-generation structure-based analytics. Integrating PLMs with
highlighted the power of integrative structural PPI mapping to  graph reasoning and omics data represents a promising route
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PPI Prediction in Approach B: AUC vs MCC
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FIGURE 19
The comparative AUC and MCC for the models in Approach B.

toward systems-level PPI inference and disease-specific interaction
predictions. Collectively, these developments mark a paradigm shift
from single-modality encoders toward context-aware, multimodal
approaches, establishing a foundation for scalable and biologically
grounded PPI discovery.

6 Limitations and future directions

Despite the remarkable progress in deep learning models for PPI
prediction, current methods still have several limitations that restrict
their generalization, interpretability, and biological transferability.
In this section, we will discuss these limitations, focusing on
the recent advances in this domain. Traditional machine-learning
methods, such as RE SVM, and Gradient Boosting, rely on
manually designed descriptors and handcrafted feature extraction
methods from the annotated datasets. While these models, such
as RE-PPI (Hou et al, 2017) and SSWRE, are interpretable
and computationally efficient, they fail to capture the higher-
order dependencies between distant residues or conformational
dynamics within the isolated protein surface. Early deep-learning
models, such as DLPred and DeepPPISP, employed CNN and
RNN architectures to automate feature ex-traction. However, CNNs
suffer from limited receptive fields and tend to emphasize local
patterns, while RNNs face gradient-vanishing issues and difficulty
in learning long-range dependencies in long amino-acid chains.
Consequently, both architectures struggle to model cooperative
binding regions and generalize across species with significant
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sequence variation. To overcome these deficiencies, graph-based
learning emerged as a powerful framework for encoding structural
and relational information. Methods such as GraphPPIS and EGRET
exploit graph-convolutional and attention mechanisms to propagate
information across spatially proximal residues, capturing non-local
structural dependencies. Nevertheless, the predictive performance
of graph models can deteriorate on sparse or noisy interaction
networks, and they remain sensitive to incomplete contact maps
and imbalanced datasets. Ensemble methods, including StackPPI,
SSWRE and iPPBS-Opt, have been proposed to enhance robustness
by aggregating multiple learners with complementary strengths.
These models mitigate overfitting and bias by exploiting bagging
and boosting strategies, improving stability and generalization
in unbalanced or cross-domain PPI prediction tasks. Table 1
concludes the reported limitations of some of the discussed DL
models. Recent developments in Transformer architectures have
significantly improved biological sequence modeling. Transformers
leverage self-attention mechanisms to capture global relationships,
enabling the modeling of long-range dependencies that CNNs
and RNNGs fail to preserve. PLMs such as ProtBERT and ESMs
models are trained on millions of protein sequences, allowing them
to learn high-level representations that generalize across species
and functional classes. When integrated into downstream PPI
frameworks (e.g., EGRET), PLM-derived embeddings substantially
enhance transfer learning performance and improve the detection
of disease-related or virus-host interactions. These advances
underline the transition from purely feature-driven models toward
context-aware, cross-species, and multimodal architectures, capable
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of integrating sequence, structural, and functional modalities
within a unified learning framework. However, these models are
computationally heavy, require large GPUs, and their interpretability
and biological correlation are still limited. Future research should
focus on (1) scaling PLMs with structural alignment and contact-
map supervision, (2) designing interpretable graph-Transformer
hybrids to improve explainability, and (3) expanding benchmarking
datasets beyond human and yeast to encompass archaeal, viral,
and disease-specific PPIs. Such efforts will accelerate progress
toward biologically faithful, generalizable, and clinically relevant PPI
prediction.

7 Conclusion

The prediction of protein-protein interaction (PPI) hot spots
plays a critical role in understanding molecular interactions,
aiding drug discovery, and advancing computational protein design.
This paper provides a comprehensive review of PPI prediction
using sequence information and focusing on four architectures
of deep learning: DNNs, CNNs, GCNs, and RNNs. In addition,
we considered deep learning variants techniques under ensemble
methods. We broadly discussed the various approaches in terms
of input data, objectives, research contribution, extracted features,
and the structure of the deep learning architecture, along with
their best-suited parameters. While deep learning models have
significantly improved predictive accuracy, challenges such as
data imbalance, model interpretability, selecting for a suitable
architecture with favorable hyperparameters, and integrating diverse
biological information remain unresolved and have room for
investigation. In addition, the emergence of graph-based models
and hybrid deep learning architectures presents a promising
direction for future research. The continued advances in feature
engineering, model optimization, and large-scale dataset availability
will further enhance the reliability and applicability of deep learning
in PPI hot spot prediction. The in-depth, detailed discussion
presented herein carefully mines every possible information, can
help researchers to further explore the success in this area.
We believe that this literature survey will benefit scholars in
the applications of deep learning in the prediction of PPIs in
imminent research.
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Glossary

DL Deep Learning

PPI Protein-Protein Interaction

DNN Deep Nueral Network

CNN Convolutional Neural Network
EL Deep Ensemble Learning

GCN Graph Convolutional Network
PBR Protein-Binding Residues

PSSM Position-Specific Scoring Matrix
RF Random Forest

SVM Support Vector Machine

RNN Recurrent Neural Network

GPU Graphics processing unit

GRU Gated Recurrent Units

GNN Graph Neural Network

HSP High-scoring Segment Pair
SLSTM Simplified Long Short-Term Memory
SAE Stacked Auto-Encoder

AC Auto Covariance Method

AAC Amino Acid Composition
PseAAC Pseudo-Amino Acid Composition
APAAC Amphiphilic PseAAC

QSO Quasi-Sequence-Order

DPC Dipeptide Composition

ET Extremely randomized Trees
DCT Discrete Cosine Transform

AC Auto covariance descriptor

MCD Multi-scale continuous and discontinuous local descriptor
LD Local Descriptor

CGR Chaos Game Representation
GAN Graph Attention Network

CT Conjoint Triad

Cv Cross Validation

ML Machine Learning

ReLU Rectified Linear Unit

AF Activation Function

LF Loss Function
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