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Advances in protein-protein 
interaction prediction: a deep 
learning perspective

Noor Alkhateeb and  Mamoun Awad*

College of IT, UAE University, Al-Ain, United Arab Emirates

Protein–protein interactions (PPIs) are vital for regulating various cellular 
functions and understanding how diseases are developed. The traditional ways 
to identify the PPIs are costly and time-consuming. In recent years, the 
disruptive advances in deep learning (DL) have transformed computational PPI 
prediction by enabling automatic feature extraction from protein sequences 
and structures. This survey presents a comprehensive analysis of DL-based 
models developed for PPI prediction, including convolutional neural networks 
(CNNs), recurrent neural networks (RNNs), deep neural networks (DNNs), 
graph convolutional networks (GCNs), and ensemble architectures. The review 
compares their feature representations, learning strategies, and evaluation 
benchmarks, emphasizing their strengths and limitations in capturing complex 
dependencies and structural relationships. In addition, the paper elaborates 
on different benchmarks and biological databases that are commonly used in 
different experiments for performance comparison. Finally, we outline open 
challenges and future research directions to enhance model generalization, 
interpretability, and integration with biological knowledge for reliable PPI 
prediction.
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 1 Introduction

Protein-protein interactions play critical roles in many physiological activities, such 
as gene replication, transcription, translation, cell cycle regulation, signal transduction, 
immune response, etc. To understand and utilize these interactions, it is necessary to 
identify residues at the interaction interface (Zeng et al., 2016). Protein-protein interactions 
(PPIs) are pivotal in maintaining the integrity and functionality of cellular processes. 
These interactions mediate a variety of critical functions, including signal transduction, 
metabolic regulation, and the control of cell growth. As essential building blocks of cellular 
machinery, PPIs facilitate the coordination of numerous physiological and pathological 
processes. By studying PPIs, researchers can understand how proteins collaborate to modify 
enzyme kinetics, activate or suppress specific proteins, regulate molecular pathways, and 
even transport molecules across cellular compartments. The comprehensive mapping of 
PPIs, often referred to as the “interactome,” offers a profound insight into cellular functions 
and disease mechanisms. For example, the disruption of specific PPIs can lead to cellular 
dysfunction, making them an attractive target for therapeutic interventions, particularly 
in diseases like cancer, where altered signaling events are key drivers of tumorigenesis. 
Targeting PPIs provides a novel therapeutic approach by promoting or inhibiting these
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interactions to restore normal cellular behavior or inhibit disease 
progression. This strategy has shown promise in the development 
of new cancer therapies, aiming to interfere with the molecular 
interactions that enable cancer cells to thrive (Xia et al., 2016). In 
addition, PPI networks serve as a valuable resource for uncovering 
essential biological knowledge. By analyzing the interactions 
between proteins, researchers can gain a deeper understanding 
of cellular pathways, protein complexes, and their involvement 
in different diseases. Through this analysis, novel drug targets 
can be identified, which could lead to the development of more 
precise and effective treatments. Moreover, understanding the 
specific interactions between proteins in varying contexts, such 
as different cell types, developmental stages, or environmental 
conditions, is crucial to advance personalized medicine and improve 
therapeutic outcomes (Xia et al., 2016).

Studies have shown that the protein interaction interface is 
generally large; a typical interaction inter-face is about 1200–2000 
Å2, but only a few (<5%) of the residues called hotspots contribute 
to most of the binding free energy and play an important role in the 
stability of protein binding (Moreira et al., 2007). The widely used 
databases of experimentally verified hotspots include the Alanine 
Scanning Energetics Database(ASEdb) (Thorn and Bogan, 2001), 
the Binding Interface Database(BID) (Fischer et al., 2003), the 
Protein-protein Interaction Thermodynamic (PINT) (Kumar 
and Gromiha, 2006), and the Structural Database of Kinetics 
and Energetics of Mutant Protein Interactions (SKEMPI) (Moal 
and Fern´andez-Recio, 2012). Experimental techniques for 
PPI identification, including yeast two-hybrid screening, co-
immunoprecipitation, and tandem affinity purification, remain 
time-consuming, expensive, and prone to false positives or 
negatives. To overcome these challenges, computational prediction 
methods have emerged as efficient alternatives capable of large-
scale analysis across proteomes. However, the complexity of protein 
structures, variability in data quality, and imbalance between 
positive and negative samples present major obstacles to achieving 
accurate and generalizable predictions. Computational methods 
thus aim to complement experimental studies by providing scalable, 
interpretable, and biologically relevant models that can prioritize 
candidate interactions for laboratory validation.

Computational PPI prediction can generally be divided into two 
core tasks. One is the prediction of putative interaction sites on 
the surface of an isolated protein, known to be involved in PPI 
sites prediction (PPISP), but where the structure of the partner 
or complex is unknown (Jones and Thornton, 1997). The second 
prediction problem is the prediction of pair-wise interactions to 
predict interfacial residues of a pair of proteins, which is related 
to the docking of two proteins. A large amount of PPI data for 
different species, generated through high-throughput experimental 
techniques, presents a significant challenge in data integration, 
noise reduction, and reliability assessment, making it a crucial 
area of research in computational biology. However, the absence 
of information about the partner proteins makes the latter also 
relatively more challenging (Ahmad and Mizuguchi, 2011).

Existing PPI prediction methods can be roughly divided 
into three types: knowledge-based methods, molecular simulation 
techniques, and machine learning methods (Deng et al., 2013). 
The knowledge-based empirical function evaluates the change in 
binding free energy by reducing the empirical model obtained 

using experiments. The introduced molecular dynamics model 
uses alanine to perform fixed-point scanning by the mutagenesis 
technique to detect the PPIs by examining the change of binding 
energy in the process of mutation to alanine. However, such an 
in silico technique is limited by factors such as the expense of the 
experimental equipment, the long computing time it takes, and the 
limited number of PPIs tested. Machine learning approaches provide 
a more convenient way for PPI prediction.

The formation of a suitable feature set and the selection of 
favorable machine learning algorithms are two major stages in 
the development of prosperous predictions. The feature set can be 
constructed wisely in such a way that it could cover the maximum 
information or key features from the structure of the proteins. 
Among the structures, the primary structure, i.e., the sequences of 
the protein, is the most common to work on because of the availability 
of huge data (Wang L. et al., 2019). To extract protein interaction 
information, several feature extraction methods have been developed 
in the past to represent protein information in numerical forms 
(Jia et al., 2015; Cho et al., 2009). For PPI prediction, each feature 
extraction algorithm requires a favorable classifier to appropriately 
classify the interaction or no interaction according to the feature 
sets. The researchers applied various classification algorithms such 
as Random Forest (RF), Support Vector Machines (SVM), and 
their derivatives (Wei et al., 2016; Guyon et al., 2002), gradient 
boosting decision trees (Deng et al., 2013), and ensemble classifiers 
(Wang L. et al., 2019). Deep learning algorithms, which mimic the deep 
neural connections and learning processes of the human brain, have 
received considerable attention due to their successful applications in 
speech and image recognition (Guglani and Mishra, 2021), natural 
language understanding (Bacciu et al., 2021), and decision making 
(Silver et al., 2016). Compared to traditional machine learning 
methods, deep learning algorithms can handle large-scale raw and 
complex data and automatically learn useful and more abstract features 
(LeCun et al., 2015). In recent years, these algorithms have been 
applied in Bioinformatics to manage large high-dimensional data 
generated by high-throughput techniques (Zhang et al., 2016). Figure 1 
shows typical applications of deep learning in PPI prediction. Usually, 
the input to the PPI predictor is a target interface residue that is 
encoded by a variety of sequence, structural, and energy features. 
Dimensionality reduction (feature selection or feature extraction) is 
then used to remove irrelevant/redundant information and obtain a 
set of principal variables. Finally, predictive models are built using 
efficient deep learning algorithms. 

This paper provides an in-depth exploration of Deep Learning-
based methods for predicting protein-protein interactions (PPIs), 
with a specific focus on sequence-based PPI prediction using deep 
learning (DL) models. In addition, we highlight key challenges 
and considerations when adopting these approaches, including 
feature generation, dimensionality reduction, and algorithm design. 
The paper classifies existing DL approaches based on factors such 
as extracted features, benchmark datasets, research contributions, 
model hyperparameters, and prediction performance, offering a 
comprehensive analysis of the strengths and weaknesses of widely 
used biological features and classical deep learning algorithms. The 
scope of this paper is primarily confined to the primary structure of 
proteins, i.e., the amino acid sequence, and its use in PPI prediction. 
For the first time, the significance of the protein’s primary structure 
and the approaches to representing protein sequences through deep 
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FIGURE 1
Overview of deep learning approaches to predict PPIs. For the binding of interface residues in PPIs, a large number and variety of features are extracted 
from diverse data sources. Then, feature extraction and feature selection approaches are used for dimensionality reduction. Finally, the deep 
learning-based prediction models are trained and applied to make predictions of PPIs. For some approaches, the machine learning model is attached 
to another deep learning model to complete the classification task.

learning are discussed in detail. The paper emphasizes the central 
importance of understanding protein sequences in the context of PPI 
prediction.

The paper is structured as follows: Section 1 introduces the 
concept of proteins and PPIs, explores the benefits of detecting 
PPIs, and provides an overview of recent advances in computational 
approaches within Bioinformatics. Section 2 discusses the different 
features that can be extracted from protein sequences, protein 

structure, and protein energy for PPI prediction. In Section 3, 
four prominent deep learning models are presented in addition 
to the ensemble learning models. Section 4 reviews research 
publications on sequence-based PPI prediction using DL, assessing 
their pros, cons, and performance outcomes. Section 5 offers a 
critical discussion on the effectiveness of deep learning in PPI 
prediction, and Section 6 concludes the paper and summarizes 
findings and potential future directions in this area of research. 
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FIGURE 2
PSSM matrix.

2 Feature generation

Feature engineering is a crucial step in the development 
of effective PPI prediction approaches. Typically, raw data is 
transformed into features that have a significant impact on 
prediction performance. Often, a large number of features or 
attributes are collected from the protein sequence, structure, and 
energy data. Dimensionality reduction approaches are used to 
obtain the most effective features for future classification tasks. 

2.1 PPI sequence-based features

2.1.1 Position-specific scoring matrix (PSSM)
The position-specific scoring matrix (PSSM) is a kind of 

sequence matrix derived from multiple sequence alignment and 
captures the probability of amino acids or nucleotides occurring 
in each position. PSSM was introduced by Gribskov et al. (1987) 
to detect distantly related proteins. The rows in PSSM represent 
the position of residues in an alignment, and the columns specify 
the names of residues or amino acids. In protein sequences, PSSM 
has 20 columns representing the 20 amino acids. From a structural 
point of view, several amino acid residues could be mutated without 
altering the structure of the protein, making it possible that two 
proteins could share similar structures with different amino acid 
compositions. Figure 2 depicts the PSSM matrix structure, where 
σ(i,j) represents the probability that the ith residue was mutated 
into the jth amino acid during the evolutionary process. Position-
Specific Iterated BLAST (PSI-BLAST) is a tool used to compute 
PSSM from the multiple sequence alignments of sequences scored 
above a certain threshold using protein–protein BLAST (Ahmad 
and Sarai, 2005). The PSSM is further updated by going through 
a set of iterations to search the NR database for new matches 
(Altschul et al., 1990). As such, each protein sequence is converted 
into a N×20 PSSM matrix where N is the length of the protein 
sequence. Figure 3 presents a snapshot of the PSSM matrix of a 
protein sequence of length 37.

2.1.2 Evolutionary conservation
Evolutionary conservation indicates that similar genes or 

chromosome segments in different species reflect the common 
origin of a species, as well as important functional properties. 
Evolutionary conservation is computed by aligning the amino acid 
sequences of proteins with the same function and from different 

species. It can be calculated by computing the similarity between 
PSSM profiles of two proteins (Aybey and Gümüş, 2023), or by 
considering the mutual information by Detecting the co-evolving 
residues between two proteins (Hooft et al., 2008). 

2.1.3 Residue conservation
Residue conservation measures the frequency of specific amino 

acid residue in a protein is maintained across different species. 
This measure indicates its importance for both the protein’s 
structure and function. In isolated protein, sequence conservation is 
calculated per residue from the amino acid frequency distribution 
in the corresponding column of the multiple sequence alignment 
of homologous proteins. It can be computed by the STRUM 
method, which predicts the stability change caused by single-point 
mutations (Quan et al., 2016). 

2.1.4 Raw protein sequence
Most proteins consist of 20 types of different amino acids. 

Thus, the 20xN one-hot encoding vectors are used to represent 
the positions of the amino acids in the proteins, where N is the 
length of the protein sequence. One-hot encoding (20-dimensional) 
is used so each residue is represented as a sparse binary vector 
where only one position is active, corresponding to the amino acid 
type. Figure 4 shows a snapshot of the raw protein sequence feature 
of the first residue of the mentioned protein sequence in the Dset 
186 dataset (Murakami and Mizuguchi, 2010).

2.1.5 Position information
This feature is used by some approaches such as D-PPIsite 

(Hu et al., 2023) and DELPHI (Li et al., 2021). The position 
information (PI) of each residue is modeled as one feature source 
to represent the feature of each residue. The PI of the i-th residue in 
the protein of N residues is calculated as i/N. 

2.1.6 High-scoring segment pair (HSP)
HSP is the local alignment that scores highest between two 

proteins. The similarities between two sub-sequences of the same 
length are measured by scoring matrices, such as PAM and 
BLOSUM. It can be calculated using SPRINT (Li and Ilie, 2017). 

2.1.7 The 3-mer amino acid embedding 
(ProtVec1D)

The concept of embedding is borrowed from natural language 
processing (NLP) where a word is represented by numeric vectors 
using techniques such as word2vec (Mikolov et al., 2013a). In 
Bioinformatics, protein vectors are based on ProtVec (Asgari and 
Mofrad, 2015), which also uses word2vec to construct a 100D for 
each amino acid 3-mer. ProtVec1D is a one-dimensional vector (1D) 
computed by summing the ProtVec components. 

2.1.8 Hidden markov models profiles (HMM)
The HMM profile can be produced by running HHblits v3.0.3 

(Remmert et al., 2012) to align the query sequence against the 
UniClust30 database (Mirdita et al., 2017) with default parameters. 
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FIGURE 3
PSSM matrix of a protein sequence of length 37.

2.2 Structure-based features

Protein tertiary structure refers to the folding arrangement of 
amino acids in three dimensions, which can help to understand the 
function of proteins at the molecular level. Incorporating structural 
features can better apply the spatial structure features of proteins in 
PPIs prediction, and generally obtains better results than sequence-
based features. 

2.2.1 Secondary structure
The protein secondary structure depicts the regular folding or 

local spatial structure of regions within one polypeptide chain. It is 
very common to encode structural information of amino acids in 
PPIs prediction. Secondary structure is typically generated by tools 
such as DSSP (Zeng et al., 2020). In DSSP, there are eight categories 
of secondary structures: 310-helix (G), a-helix (H), p-helix (I), b-
strand (E), b-bridge (B), b-turn (T), bend (S) and loop or irregular 
(L). Considering that some amino acids do not have their secondary 
structure stated in the DSSP file, thus 9D one-hot encoding vector is 
used to encode the secondary structure. The first eight dimensions, 
in the 9D one-hot vector, represent the state of each amino acid, and 
the last dimension represents the absence of such information. Each 

protein sequence can be converted into an N × 9 DSSP matrix, where 
N is the length of the protein sequence. Figure 5 shows a snapshot 
of the secondary structure features of the sample annotated protein 
sequences.

2.2.2 Relative solvent accessibility metrics (RSA)
This feature is also calculated by the DSSP library. RSA 

reflects the fraction of a residue that is exposed to a potential 
solvent. This is computed by sliding a spherical probe of the 
radius of 1.4Å [approximating the radius of a water molecule 
(Eisenhaber et al., 1995)] over the Van Der Waals surface of 
the protein near the residue of interest. The Area generated by 
the center of the probe, as it is in contact with the residue, 
is taken to be the accessible surface area. This is divided 
by the maximum possible accessible surface area to achieve a 
relative measure. Concretely, it can be predicted by subsequence 
artificial neural network (SANN) (Joo et al., 2012), for each 
query sequence, the RSA profile (N x 3 matrix, where N is the 
length of the query sequence) includes the probabilities of three 
solvent accessibility classes (i.e., buried (B), intermediate (I), and
exposed (E)). 
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FIGURE 4
Raw protein sequence feature related to the first residue (K) of the mentioned protein sequence from the Dset 186 dataset.

FIGURE 5
Protein secondary structure for each residue in a protein sequence extracted by DSSP.

2.2.3 PKx
PKx is a property of amino acids that measures the dissociation 

constant (KD), which is the propensity of an amino acid to separate 

(dissociate) into smaller components. It is calculated by applying the 
negative of the logarithm of the dissociation constant for any other 
group in the molecule (Zhang B. et al., 2019; Li et al., 2021). 
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2.2.4 3D-1D scores
The side-chain environment was first proposed by 

Eisenhaber et al. (1995) and used in the 3D-profile structural 
prediction method. 3D-1D scores are a feature that quantifies the 
mismatch between the residue local environment in 3D structure 
and its sequence context (1D). For each residue, a structural 
environment descriptor is computed (e.g., RSA, contact density, 
secondary structure) and compared with the corresponding 
position in the 1D sequence (amino acid properties). The score 
is computed as a normalized difference or similarity between these 
representations (Matsuo et al., 1995). Authors in Fan et al. (2016) 
utilized it for the prediction of protein solvent accessibility. 

2.3 Hybrid features

This section includes features derived from amino acid 
sequences, but they are inherently linked to residue-level 
structure and folding. We classified these features hybrid, 
representing physicochemical tendencies that bridge sequence and 
structure spaces. 

2.3.1 Physical properties
Some approaches extract the physical properties to represent 

the protein sequence (Meiler et al., 2001). The seven-dimensional 
physical properties are as follows: a steric parameter (graph 
shape index), polarizability, volume (normalized van der Waals 
volume), hydrophobicity, isoelectric point, helix probability, and 
sheet probability. 

2.3.2 Hydropathy index
A number that represents the Hydrophobicity scale. It is typically 

composed of experimentally determined transfer-free energies for 
each amino acid, as well as it is essential to understand the energetics 
of protein-bilayer interactions (Wimley and White, 1996; Kyte and 
Doolittle, 1982). 

2.3.3 Physicochemical characteristics
Protein physicochemical characteristics include the number 

of atoms, electrostatic charges, potential hydrogen bonds, 
hydrophobicity, hydrophilicity, side-chain volume, polarity, 
polarizability, solvent-accessible surface area (SASA), and side-chain 
net charge index (NCI) (Zhang B. et al., 2019). 

2.4 Energy-based features

2.4.1 Relative amino acid propensity (RAA)
The amino acid propensity for binding is quantified as the 

relative difference in abundance of a given amino acid type 
between binding residues and the corresponding non-binding 
residues located on the protein surface (Li et al., 2021; Aybey and 
Gümüş, 2023). 

2.4.2 Van Der Waals energy
The Van Der Waals energy reflects the weak, non-

covalent interactions between non-bonded atoms. It is 
important in modeling the steric (spatial) compatibility between 
protein surfaces (Meiler et al., 2001). 

2.5 Feature selection

Feature selection can provide a deeper insight into the 
underlying means that generate the data, avoid overfitting, 
and improve the prediction performance. Typical feature 
selection algorithms include Fisher’s Score (F-score) (Chen 
and Lin, 2006), random forest (Wei et al., 2016), and support 
vector machines–recursive feature elimination (SVM-RFE) 
(Guyon et al., 2002). Several feature selection approaches have 
been used for PPI prediction. APIS (Xia et al., 2010) used the F-
score, while the authors in (Cho et al., 2009) used a decision tree 
to select relevant and useful features. Qiao et al. (2018) developed a 
hybrid feature selection strategy that combines the F-score, mRMR 
(minimum redundancy maximum relevance), and the decision tree 
to select the features. 

2.6 Feature extraction

Feature extraction is the process of converting raw data into 
numeric data or features. In many machine learning applications, 
feature extraction techniques are used to select the most relevant 
features by reducing the dimensionality of a dataset. Principal 
component analysis (PCA) (Jia et al., 2018) and linear discriminant 
analysis (LDA) (Mika et al., 1999) are two commonly used feature 
extraction techniques. PCA works by establishing an orthogonal 
transformation of the data to convert a set of possible correlated 
variables into a set of linearly uncorrelated ones, the so-called 
principal components. LDA can help improve the accuracy of 
predictions by reducing the dimensionality of high-dimensional 
data while retaining discriminative information. 

3 Deep learning models

The selection of an appropriate DL technique plays an important 
role in improving the performance of PPI prediction. This review 
mainly considers four DL architectures: Deep Neural Networks 
(DNN) (Zhang et al., 2016), Convolutional Neural Networks (CNN) 
(Zeng et al., 2020), Recurrent Neural Network (RNN), and Graph 
Convolutional Network (GCN) (Yuan et al., 2021). In addition, we 
consider ensemble learning (EL) techniques (Wang X. et al., 2019), 
which combine several learning models in one. These architectures 
have been widely used in PPI prediction in recent years. This section 
provides the reader with brief overview about these architectures. 

3.1 Deep neural networks (DNN)

DNNs typically consist of more than one hidden layer, organized 
in deeply nested network architectures. Furthermore, they usually 
contain advanced neurons in contrast to simple Artificial Neural 
Networks (ANNs). That is, they may use advanced operations (e.g., 
convolutions) or multiple activations in one neuron rather than 
using a simple activation function (Li et al., 2022). The output of a 
specific layer can be calculated as in Equation 1:

P(n+1)x = μ(Wn+1
x Pn +Zn+1

x ) (1)
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FIGURE 6
Basic structure of DNNs with one input layer, two hidden layers, and one output layer. At each layer, the weighted sum and non-linear function of its 
inputs are computed to obtain an abstract representation.

where µ presents the activation function, W is the weight 
matrix, Pn is the inputted data for the nth layer and Z is the 
bias term (Guglani and Mishra, 2021). These characteristics allow 
DNNs to be fed with raw input data and automatically discover a 
representation that is needed for the corresponding learning task. 
Adding more hidden layers to the network to learn from raw data is 
the core capability of DNN to learn complex tasks; hence its name
DL, see Figure 6.

3.2 Convolutional neural network (CNN)

A CNN is a type of DL algorithm that processes input 
in the form of images, assigning learnable weights and biases 
to various features. This enables CNNs to distinguish between 
different images with minimal pre-processing compared to other 
classification algorithms (Wang L. et al., 2019). Structurally, a 
CNN is a feed-forward neural network where neurons respond 
to neighboring units within a defined coverage area, and it excels 
in data feature extraction (Albawi et al., 2017). The output is 
calculated using forward propagation, and weights and biases are 
adjusted through backpropagation. Figure 7 illustrates the structure 
of a CNN, which consists of the input layer, convolutional layer, 
subsampling layer, fully connected layer, and output layer. The 
feature map M1 at the lth layer is computed as in Equation 2
(Albawi et al., 2017):

Ml = f(Ml−1 ⋆Wl + bl) (2)

where W l is the weight matrix of the convolution kernel of lth

layer, bi is the offset vector, f  represents the activation function, 
and ⋆ denotes the convolution operation. The subsampling layer, 
which is usually located behind the convolutional layer and 

the feature map, is sampled according to the following rules. 
Suppose M l is a subsampling layer, which is formulated as in
Equation 3:

Ml = subsampling (Ml − 1) (3)

The fully connected layer is responsible for the classification 
of the extracted features via several convolution and subsampling 
operations. The fundamental mathematical notion of CNN is to 
map the input matrix Mo to a new feature representation R through 
multi-layer data transformation, see Equation 4.

R(l) =Map (C = c1 |MO ; (w,b)) (4)

where cl represents the lth label class, Mo denotes the input matrix, 
and R denotes the feature expression. The goal of CNN training is 
to minimize the network loss function R(w, b). At the same time, to 
ease the overfitting problem, The final loss function Z(w, b) is usually 
controlled by a norm, and the intensity of the overfitting is controlled 
by the parameter ϵ, see Equation 5.

Z(w,b) = R(w,b) + ε
2

wTw (5)

While CNNs are traditionally used for images, in PPI prediction, 
they handle structured numerical data derived from protein 
sequences, structures, or energy values. CNNs are particularly 
effective at capturing local patterns, making them suitable for 
identifying interaction motifs or residues crucial for binding. 

3.3 Recurrent neural network (RNN)

The structure of RNNs has a recurring link in each hidden 
layer, which is responsible for operating sequential information by 
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FIGURE 7
The structure of CNN.

FIGURE 8
Basic structure of RNNs with an input unit x, a hidden unit h and an output unit O. The recurrent computation can be expressed more explicitly if the 
RNNs are unrolled in time. The index of each symbol represents the time step. In this way, ht receives input from xt and ht−1 and then propagates the 
computed results to Ot and ht+1.

some recurrent computation as shown in Figure 8. The previous 
output (state vector) is kept in hidden units, and for the current 
state, the output is calculated using the previous state vector and the 
considered input (Li et al., 2021). The evolution of RNN over time is 
expressed as in Equations 6, 7 below (Richoux et al., 2019):

Ot = δ(ht; θ) (6)

ht = g(ht−1,xt; θ); (7)

here, θ includes weights and biases for the network, the first equation 
expresses the dependency of the output Ot  at time t only with 
the hidden layer ht  using some computation function δ and the 
second equation shows the dependency of the hidden layer ht
at time t with that of ht−1 at time t − 1 and the input xt  at 
time t. RNNs can be used effectively in PPI prediction due to 
their ability to process sequential data. Since protein sequences are 
essentially linear chains of amino acids, RNNs are well-suited for 
capturing the sequential dependencies and long-range interactions 
between residues (Richoux et al., 2019).

3.4 Graph convolutional network (GCN)

Graph Neural Networks (GNNs) are structured graphs built 
from generalizing neural networks to work on arbitrarily structured 
graphs. GCN was developed to solve many bioinformatics problems. 
Defining parameterized filters that are used in a multi-layer GNN 
leads to GCNs. Currently, most GNN models have a relatively 
universal architecture in common. It is convolutional because 
filter parameters are typically shared over all locations in the 
graph. In Protein-Protein Interaction (PPI) prediction, proteins 
can be modeled as nodes in a graph, where edges represent 
potential interactions between them. GCNs are especially well-
suited for this task because they operate directly on graph-structured 
data, capturing the relational dependencies between proteins more 
effectively than traditional models. The layer-wise propagation rule 
for a GCN is given in Equation 8.

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2 Hl Wl) (8)

Where H l is the matrix of node representations at layer l, H0 is the 
input feature matrix, Ã = A + I is the adjacency matrix A of the graph 
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FIGURE 9
The structure of GCN.

with added self-loops (identity matrix I), D̃ is the degree matrix of 
Ã, W  l is the weight matrix of the lth layer, and σ is the activation 
function. Figure 9 illustrates the GCN structure.

3.5 Ensemble learning (EL)

Ensemble learning is a powerful machine learning technique 
that involves the combination of multiple models to improve 
overall performance, particularly in tasks such as classification, 
regression, and prediction. Rather than relying on a single model, 
ensemble learning leverages the strengths of various models to 
create a more robust and accurate final prediction. The idea is 
based on the principle that a group of weak learners (models that 
perform slightly better than random guessing) can be combined 
to form a strong learner. By combining the three deep learning 
models (DNN, CNN, and GCN) with traditional machine learning 
algorithms, researchers aim to build more comprehensive models 
that can better predict PPIs by taking advantage of both high-level 
feature learning and well-established traditional machine learning
techniques.

Figure 10 illustrates a schematic representation of a two-
tier machine learning framework to classify protein-protein 
interactions. The training data are used to build and optimize 
several base learners, including random forest, gradient boosting, 
XGBoost, and LightGBM, through grid search optimization. 
A meta-learner, logistic regression, takes the prediction 
of these models to generate the final classification results
(Pratiwi et al., 2024).

4 PPI prediction approaches using 
deep learning models

This section summarizes existing deep learning-based 
approaches for PPI identification. Firstly, we will explore these 
approaches from the perspective of protein shape, focusing on 
two key approaches, namely, Approach A: site prediction of an 
isolated protein and Approach B: prediction of PPI for a pair 
of proteins. To date and to the best of our knowledge, there 
are around 32 research papers that have been published for PPI 
prediction using DL, see publication analysis in Figure 11. In 
this section, we will elaborate on the studies performed on PPI 
prediction tasks using DL. The summary of these studies can be 
found in Table 1. We examined various feature representations, 
including sequence-based, structure-based, and physicochemical 
properties, to enhance the understanding and prediction of 
PPI dynamics. The research studies in Table 1 are classified 
based on: year of publication, research contribution, approach 
type, dataset type, input features, and hyperparameters of the 
network. The term “Approach” is written after each section to 
indicate the category of the approach in the table. All important 
abbreviated terms of the table are provided in expanded form in the 
corresponding text, whereas the basic abbreviations are provided 
after the abstract. The detailed description of this section is broadly 
divided based on both approaches. For better readability and to 
minimize confusion about abbreviations, Table 2 summarizes 
the datasets that were considered for Approach A, and Table 3 
lists the datasets for Approach B, as well as the cited papers in
subsequent sections.
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FIGURE 10
Example of Ensemble classifier (Pratiwi et al., 2024).

FIGURE 11
Yearly publication analysis of PPI prediction using Deep Learning.

4.1 Approach A: PPI prediction in isolated 
protein sequence

The PPI prediction in isolated protein sequences is crucial to 
identify potential interaction sites without requiring structural or 

pairing information. This method enables early-stage interaction 
analysis, which makes it valuable for large-scale screening 
and understanding intrinsic protein properties. Several studies 
have explored sequence-based PPI prediction, emphasizing its 
effectiveness in functional annotation and large-scale analysis. 
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TABLE 2  Short names given for datasets considered by cited papers in Approach A.

S. No Dataset Short name Binding sites Non-binding sites References

1 Dset_186 A 5551 30,665 Murakami and Mizuguchi (2010)

2 Dset_72 B 3799 14,176 Murakami and Mizuguchi (2010)

3 Dset_164 C 6111 27,567 Singh et al. (2014)

4 heteromeric Dset_48 D - - Zhang B et al. (2019)

5 Dset_448 E 15,810 100,690 Zhang and Kurgan (2019)

6 Dset_355 F 11,467 84,473 Li et al. (2021)

7 Kinase G - - Luo et al. (2019)

8 Dset_338 H - - Kang et al. (2023)

9 protein-protein docking (DBD) v5.0 I - - Vreven et al. (2015)

10 protein-protein docking (PBD) v4.0 J - - Xie et al. (2020)

11 Dset_331 K 11,255 72,420 Kang et al. (2023)

The authors in (Xie et al., 2020) leveraged the residue binding 
propensity to refine positive samples and introduced a context-
based binding (CBB) approach for PPI site prediction, achieving 
remarkable results. In addition, it yielded much better results on 
samples with a high binding propensity than on randomly selected 
samples. Their findings indicated the presence of false-positive PPI 
sites due to distance-based residue definitions.

To enhance the prediction of the PPI site, some 
approaches proposed the combination of local and global 
features. Zeng et al. (2020) proposed DeepPPISP, a CNN-based 
framework that integrates local contextual and global sequence 
features. For local contextual features, a sliding window-based 
method is applied to extract features of the neighbors of an amino 
acid. By integrating local contextual and global sequence features, 
DeepPPISP achieved a good performance. The DeepPPISP was 
the first approach that combined the local contextual and global 
sequence features and showed that global sequence features played 
important roles in PPI site prediction.

In another advancement, the authors in Yang et al. (2021) 
developed PhosIDN, a DNN model for phosphorylation site 
prediction, integrating local patterns and long-range dependencies 
from protein sequences. PhosIDN consists of three closely 
connected sub-networks, including a sequence feature encoding 
sub-network (SFENet), a PPI feature encoding sub-network 
(IFENet), and a heterogeneous feature combination sub-network 
(HFC-Net). Comprehensive experiments were conducted to 
investigate the performance of this approach, and the evaluation 
results demonstrated that it improved the prediction performance 
of phosphorylation sites. Fur-thermore, by extracting features for the 
first time, Li et al. (2021) introduced an ensemble learning method 
for PPI prediction (DELPHI). It combined a CNN and an RNN 
structure with a fine-tuning technique. They used 12 feature groups 
to represent protein sequences, including 3 novel features (used for 
the first time in PPI prediction), HSP, position information, and 

a reduced 3-mer amino acid embedding (ProtVec1D). DEL-PHI 
outperformed the competitors in all metrics on all datasets, although 
it shared the least similarities to the testing datasets. In addition, 
DELPHI’s predicted PBR sites closely match known data from Pfam 
(El-Gebali et al., 2019). To address the problem of an imbalanced 
dataset, Zhang B. et al. (2019) developed a DL architecture (DLPred) 
based on an SLSTM network. The Experimental results showed that 
the model has improved F-measures, predictive accuracies, and 
AUC values. Compared with other predictors, DLPred is simple but 
more generalizable and one of the most popular solutions to improve 
the performance of imbalance classification. Followed by that in the 
same year, Wang X. et al. (2019) tackled the imbalance problem 
using EL-SMURF, an ensemble learning approach combining the 
synthetic minority oversampling technique (SMOTE) and Random 
Forest to oversample interfacial residues. SMOTE and the RF 
methods have been integrated to oversample interfacial residues 
in the feature space by generating new data from two types of 
sample data. They were the first who apply the fusion of sequence 
profile features in PSSM (PSSM-SPF) and residue evolution rate 
(RER) for feature extraction of neighboring residues with a sliding 
window. SMOTE was then applied to oversample interface residues 
in the feature space to deal with the imbalance problem. Then, 
they opti-mized the parameters of RFs and selected a different 
number of decision trees for different classifications by the leave-
one-out cross-validation. Finally, the ensemble learning model was 
obtained by integrating the above-optimized RF classifier. Similarly, 
to solve the imbalance problem (Wei et al., 2016), proposed an 
ensemble model of SVM and sample-weighted random forests 
(SSWRF) to deal with class imbalance. An SVM classifier was 
trained and applied to estimate the weights of training samples. 
Then, the training samples with estimated weights were utilized to 
train sample-weighted random forests(SWRF). They extracted three 
types of fea-tures, PSSM, averaged cumulative hydropathy (ACH), 
and predicted RSA. The proposed SSWRF achieved 67.9% accuracy. 

Frontiers in Bioinformatics 17 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1710937
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Alkhateeb and Awad 10.3389/fbinf.2025.1710937

TABLE 3  Short names given for datasets considered by cited papers in Approach B.

S. No Dataset Short name References

1 Pan A Pan et al. (2010)

2 Swiss-Prot B Sun et al. (2017)

3 2010 HPRD C Huang et al. (2015)

4 2010 HPRD NR D Huang et al. (2015)

5 DIP E Li et al. (2018)

6 HIPPIE F Sun et al. (2017)

7 InWeb in BioMap G Sun et al. (2017)

8 2005-Martin H Martin et al. (2005)

9 E. coli I Zhou et al. (2011)

10 D.melanogaster J Das and Yu (2012)

11 C. elegans K Zhou et al. (2011)

12 HURI L Luck et al. (2020)

13 Yeast M Wang L et al. (2019)

14 Uniprot N Richoux et al. (2019)

15 S. cerevisiae O You et al. (2014)

16 H. pylori P Zhou et al. (2011)

17 Homo sapiens Q Zhou et al. (2011)

18 Mus musculus R Zhou et al. (2011)

19 human S You et al. (2013)

20 Human-Y.pestis T Kösesoy et al. (2019)

21 S.pombe V Das and Yu (2012)

22 SKEMPI W Moal and Fern´andez-Recio (2012)

23 A.thaliana X Das and Yu (2012)

24 B.subtilis Y Das and Yu (2012)

25 B.taurus Z Das and Yu (2012)

26 R.norvegicus Aa Das and Yu (2012)

27 Human-B.Anthracis Ab Das and Yu (2012)

Similarly, in the same year, the authors in Jia et al. (2016) proposed 
a Sequence-Based Ensemble Clas-sifier for Identifying PPIs by 
optimizing an imbalanced training dataset called iPPBS-Opt. They 
used the K-Nearest Neighbors Cleaning (KNNC) and Inserting 
Hypothetical Training Samples (IHTS) treatments to optimize the 
training dataset. They used the ensemble voting approach to select 
the most relevant features and the stationary wavelet transform to 

formulate the statistical samples. Two benchmark datasets were used 
for this study. One is the “surface-residue” dataset, and the other is 
“all-residue”. DSSP program (Hooft et al., 2008) was used to find 
surface residues, while the PSAIA program (Mihel et al., 2008) was 
used to find the interfacial residues. To optimize the unbalanced 
training dataset they used K-Nearest Neighbors Cleaning (KNNC) 
treatment to remove some redundant negative samples. Random 
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Forest and Ensemble Classifier were used to train the dataset. They 
supplied a web server for the predictor with step-by-step guide to 
maximize the convenience of most experimental scientists.

Many approaches have integrated multiple models to achieve 
better performance. Kang et al. (2023) integrated CNN, MLP-Mixer, 
and LSTM models to create a hybrid network for PPI prediction 
(HNPPISP). The HNPPISP model combined a two-stage multi-
branch network with an MLP-Mixer network, where the two-stage 
multi- branch network extracted global features and the MLP-
Mixer network captured the long dependency among local features. 
Similarly, the authors in Hu et al. (2023) introduced D-PPIsite, 
an advanced deep learning model achieving an 87% accuracy 
rate integrating multiple DNNs. The predictor is available freely 
for academic use. Finally Aybey and Gümüş (2023), proposed 
SENSDeep, an ensemble learning framework that integrates the 
models of RNN, CNN, GRU sequence to sequence (GRUs2s), GRU 
sequence to sequence with an attention layer (GRUs2satt), and 
a multilayer perceptron. They added two more feature groups, 
which are secondary structure and protein sequence information, 
besides the current twelve groups. They proved that adding new 
features to the training data sets at the expense of data loss 
improves the prediction performance of the method and gives a 
similar performance with less data. In addition, considering the 
execution times, SENSDeep and its submodels seemed acceptable, 
although the trainings were carried out using processors only. It has 
been observed that these times have decreased considerably in the 
voluntary trials with GPUs.

Recently, data structures such as graphs have been recognized 
as one of the most convenient and intuitive ways to represent 
residues in a protein and their interactions. Alkhateeb and Awad 
(2024) trained a GCN model on protein interactions modeled 
as structured graph data, which allowed capturing dependencies 
between neighboring proteins more effectively than traditional 
models. Their approach extended the feature space with specialized 
input, yielding promising results. In the same direction, the 
authors in (Feng et al., 2024) introduced DGCPPISP, a two-stage 
transfer learning framework based on dynamic GCN. The main 
contributions of this study included the encoding of the target 
sequence in the first stage of transfer learning using the ESM-
2(a protein pre-trained language model (PLM)) (Lin et al., 2022), 
coupled with four other sequence features as input to the training 
model. They used a protein-peptide binding residue dataset that is 
helpful for PPI prediction. By leveraging dynamic graph convolution 
modules, they addressed limitations in traditional GNN-based 
approaches.

In addition, recent advances showed a shift from isolated 
architectures (CNN, RNN, GCN) toward hybrid and multimodal 
PPI frameworks. Models such as SENSDeep (Aybey and 
Gümüş, 2023) integrated CNN, RNN, and attention mechanisms 
to capture both local and contextual dependencies. Moreover, 
the advent of PLMS such as ProtBERT, ESM-1b, and ESM-2 
has transformed PPI prediction by enabling transfer learning 
from large-scale protein corporation. EGRET (Mahbub and 
Bayzid, 2022) represented an important shift toward hybrid and 
multimodal deep learning approaches for PPI prediction. Unlike 
early sequence-based CNN and RNN models, EGRET utilized a 
graph representation of proteins, where residues are modeled as 
nodes connected based on structural or spatial proximity. Using 

edge-weighted graph attention networks (GATs), the model was 
able to learn how to prioritize biologically meaningful residue 
relationships. EGRET combined evolutionary features with graph 
topological features, demonstrating that integrating sequence + 
structure information improved generalization performance in 
PPI site prediction. EGRet also followed the recent progression 
toward representation learning PLMs which generated rich residue-
level embeddings from protein sequences by fusing PLM-derived 
sequence embeddings with graph-based structural encodings. 
Thus, EGRET can be considered a bridge model between classical 
handcrafted feature approaches and modern transformer-based 
multimodal frameworks in structural bioinformatics. These models 
generated contextual embeddings that can be integrated with 
CNN or GCN backbones to capture both sequence semantics and 
topological features, for example, DGCPPISP (Feng et al., 2024) 
leveraged ESM-2, a transformer-based PLM, within a dynamic 
GCN framework for improved generalization. In addtion HN-
PPISP (Kang et al., 2023) employed graph attention and MLP-Mixer 
hybrids for 3D structure-based and sequence-based PPIs. Therefore, 
while CNNs, RNNs, and GCNs remain essential, their integration 
with PLM-derived representations marks a significant advance 
toward more generalizable and interpretable predictive models. 
Figure 12 presents the best performance in terms of accuracy with 
the most suitable parameter settings of the various deep learning 
approaches to predict PPIs in isolated protein sequences and 
using different benchmark datasets. We can observe that D-PPIsite 
(Hu et al., 2023), iPPBS-Opt (Jia et al., 2016), and SENSDeep (Aybey 
and Gümüş, 2023) achieved the best prediction accuracy in DNN, 
and EL, respectively. For more details, see Table 4.

4.2 Approach B: PPI prediction of pair of 
proteins

Unlike the approaches that infer interactions from isolated 
protein sequences, studying PPIs in pairs allows a direct examination 
of binding events and interaction dynamics. In addition, it provides 
detailed insights into the specificity and regulation of these 
interactions. This section reviews state-of-the-art computational 
models that integrate protein sequences, structural, and network 
information to predict and validate protein interactions. The use 
of DL algorithms in PPIs prediction tasks began in 2017 when 
Sun et al. (2017) proposed the use of a stacked autoencoder (SAE) to 
filter heterogeneous features in a low-dimensional space. The protein 
sequences were numerically represented using auto-covariance (AC) 
and conjoint triad (CT) methods. The representation of each protein 
was then fed to a DNN model for training with ten-fold cross-
validation. The authors observed that with a one-hidden-layer, both 
DNN models attained high accuracy. The authors concluded that the 
accuracy of a model does not require a complicated network with a 
large number of layers and neurons. In the final model construction, 
they trained the DNN model on the entire benchmark dataset using 
AC features, which had better accuracy. Finally, they compared their 
results with other ML approaches that used the same dataset and 
showed the superiority of their method. Very next in the same 
year and following a similar pattern, Du et al. (2017) employed 
the five widely used descriptors, namely AAC, DPC, QSO, APAAC, 
and composition/transition/distribution, to represent the protein 
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FIGURE 12
Performance analysis of highest accuracy reported by various papers of Approach A (in %).

sequence, which is then effectively learned by a DNN model named 
DeepPPI. The authors presented the performance of DeepPPI using 
two different network architectures: one by connecting the two 
inputs in a single network; and another using two networks for each 
protein separately. Finally, they evaluated their model using a 5-
fold CV after setting the network with the best hyperparameters. 
DeepPPI seemed superior in terms of accuracy and running time 
on all other existing approaches: SVM, AdaBoost, and RF.

The authors in Li et al. (2018) presented DNN-PPI: a 
generalization tool for PPI prediction for the first time. They 
used Pan’s human PPI dataset for training. They built several 
validation datasets from four well-known PPI data sources for 
validation. They evaluated the performance of the model using 
datasets from external species. The different types of features, 
including semantic associations between amino acids, position-
related sequence segments (motif), and their long- and short-
term dependencies, were captured in the embedding, CNN, and 
LSTM layers, respectively. The prediction results obtained by 
DNN-PPI proved that it is a remarkable generalization tool for 
identifying protein interactions. Furthermore, with the intention 
of the generalization, a remarkable DL approach (DPPI) was 
implemented by Hashemifar et al. (2018) to handle large training 
data effectively and capture the potential features of protein pairs. 
The successful execution of the three main modules contributes 
to the design of the DPPI model. The first and core module 
is the convolutional module, which consists of a set of filters 
(convolutional layer, ReLU, batch normalization, and pooling layer) 
responsible for mapping the protein sequences to a representation 
suitable for further processing by detecting patterns that characterize 
the interaction information. The input in DPPI was taken as the 
sequence profiles, which were generated based on probability using 
the PSI-BLAST algorithm. The next module is Random Projection 
(RP), which consists of two FC sub-networks and is responsible 
for projecting the convoluted representation of two proteins to two 

different spaces. The word ‘random’ is used to take the random 
weights so that the model can learn motifs with different patterns. 
The outcome of the RP module is the refined representation of 
the proteins, which is then taken as the input by the last module, 
i.e., the prediction module. The prediction module computes the 
probability score by performing the element-wise multiplication on 
the representation taken from the previous module, which indicates 
the interaction probability of two proteins in a pair. This Siamese-like 
CNN behaved very well when evaluated with different benchmark 
datasets. The authors committed that DPPI can serve as a principal 
model for sequence-based PPI prediction and is generalizable to 
diverse applications.

Inspiring the advances of ML approaches, the authors in 
Wang et al. (2017) predicted the interactions among proteins 
by combining the ensemble RF classifier and the discrete cosine 
transform (DCT) algorithm. They calculated the PSSM matrix 
from the alignment of amino acid sequences, and then the feature 
vector was computed using DCT to present protein evolutionary 
information. Their method achieved excellent results. They applied 
their model to independent data sets and achieved good prediction 
accuracy. Compared with the SVM method, this model had better 
performance. In addition, in the same trend, Wang L. et al. (2019) 
leveraged CNN to deeply extract hidden features from matrix-
based biological information of the protein generated by the PSSM 
matrix. Then, the prediction task was accomplished by proposing 
a Feature-Selective Rotation Forest algorithm (FSRF), whose main 
purpose is to reduce data dimension and noisy information, and 
to improve the prediction accuracy and the running time. The 
proposed approach was experimented on two realistic datasets, 
namely Yeast and Helicobacter Pylori. To further evaluate the 
prediction performance, they compared the results of CNN-FSRF 
with SVM and other methods. In addition, they tested CNN-
FSRF on other independent datasets and achieved favorable results. 
The authors in Zhang et al. (2023) combined two-dimensional 
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TABLE 4  Performance measures for PPIs in Approach A.

Deep 
learning 
method

Name Datasets SPE SEN PRE ACC F-
measure

MCC AUC

DNN

DLPred (Zhang 
B et al., 2019a)

C 0.76 0.491 0.312 71.1 38.1 21.4 78.9

B
A

0.779
0.747

0.553
0.556

0.401
0.285

73.1
71.8

46.5
37.7

29.8
23.8

81.1
80.1

D 0.787 0.554 0.418 73.68 47.61 31.4 81.81

D-PPIsite (Hu et al., 2023)

C 0.86 0.39 0.39 77.8 38.6 25 71

B 0.92 0.30 0.30 85.1 29.9 21.6 74

A 0.89 0.37 0.37 80.9 37.3 26 73.2

E 0.92 0.48 0.48 85.9 48 39.9 82.4

F 0.93 0.46 0.46 87.1 46 38.7 82.2

PhosIDN (Yang et al., 2021) G - 0.508 0.909 72.9 65.2 51.0 94.0

CNN

DeepPPISP 
(Zeng et al., 2020)

C

B – 0.577 0.303 65.5 39.7 20.1 –

A

HN-PPISP 
(Kang et al., 2023)

A, B, C - 0.632 0.324 66.7 42.7 24.4 36

K 0.449 0.253 76.2 32.4 20.4 25.3

EL

ELSMURF (Wang 
X et al., 2019)

C 0.76 0.8 0.77 77.7 78.2 55.4 88.7

B 0.73 0.79 0.75 77.1 77.5 54.2 85.4

A 0.78 0.81 0.79 79.1 78.4 58.4 88.5

SSWRF (Wei et al., 2016)

C 0.65 0.53 0.32 62.1 36.5 15.2

B 0.64 0.65 0.27 64.8 35.1 22.4 71.1

A 0.70 0.58 0.32 67.9 38.6 23.4

iPPBS-Opt (Jia et al., 2016)
surface-residue 0.94 0.58

-
89.34

-
58.21 89.34

all-residue 0.97 0.39 88.20 46.62 88.20

SENSDeep (Aybey and 
Gümüş, 2023)

A 0.858 0.431 0.357 79.3 38.9 26.8 72.6

B 0.832 0.448 0.258 78.8 32.7 22.4 71.4

C 0.866 0.355 0.363 77.6 35.8 22.3 68.5

E 0.894 0.34 0.342 81.9 33.8 23.5 68.0

F 0.898 0.361 0.329 83.4 34.1 24.9 69.2

DELPHI (Li et al., 2021)

A 0.884 0.351 0.351 80.3 35.1 23.5 71.0

C 0.857 0.352 0.352 76.5 35.2 20.9 68.5

B 0.914 0.274 0.274 84.7 27.4 18.9 71.1

E 0.901 0.371 0.371 82.9 37.1 27.2 73.7

F 0.914 0.364 0.364 84.8 36.4 27.8 74.6

(Continued on the following page)
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TABLE 4  (Continued) Performance measures for PPIs in Approach A.

Deep learning 
method

Name Datasets SPE SEN PRE ACC F-measure MCC AUC

GCN

GraphPPIS 
(Yuan et al., 2021)

Test_60 - 0.584 0.368 77.6 45.1 33.3 78.6

C

EGRET (Mahbub and 
Bayzid, 2022)

B 0.715 0.561 0.358 71.5 43.8 27 71.9

A

DGCPPISP 
(Feng et al., 2024)

A, B, C, E, K - 0.617 0.372 71.8 46.4 30.6 44.6

GCN (Alkhateeb and 
Awad, 2024)

A, B, C - 0.45 0.74 79 49.0 - -

CNN models to develop DeepSG2PPI. They calculated the protein 
sequence and the local context information of each amino acid 
residue. Then, they extracted features from a two-channel coding 
structure using a two-dimensional CNN (2D-CNN) model. In the 
2D-CNN model, an attention mechanism is embedded to set higher 
weights to key features. The final biological features of the protein 
are represented as a graph embedding vector, which includes the 
global statistical information of each amino acid residue and the 
relationship graph between the protein and Gene Ontology (GO). 
Finally, a 2D-CNN model and two 1D-CNN models are combined 
for PPI prediction. Comparison analysis with existing algorithms 
showed that the DeepSG2PPI method has outstanding performance, 
providing more accurate and effective prediction of PPI, which 
can help reduce the cost and failure rate of biological experiments. 
Similarly, using multiple DNNs, Zhang L. et al. (2019) introduced 
EnsDNN, an ensemble DNN-based approach for PPI prediction. In 
EnsDNN, three different feature sets are generated based on auto-
covariance (AC), local descriptor (LD), and multi-scale continuous 
and discontinuous local descriptor (MCD). For each set of features, 
they trained nine independent DNNs with different configurations 
and parameter settings. The final 27 trained DNNs were ensembled 
to form a two-layer NN for the prediction. This strong and capable 
ensemble predictor leveraged the advantages of key information 
about interaction generated by the three different feature extraction 
approaches and an assortment of 27 DNNs. The model attained 
remarkable performance when evaluated on training datasets as well 
as independent datasets.

Employing the features of RNNs, Richoux et al. (2019) proposed 
a fully connected model and a recurrent model to compare two 
different neural network architectures. The dataset is extracted 
from the UniProt website. With regard to performance, the fully 
connected model achieved 76% accuracy and the recurrent model 
achieved 78% accuracy. The authors claimed that they conducted 
training and testing in strict conditions to build strong confidence 
in the ability of a model to scale to larger datasets. In another 
similar approach, Chen et al. (2019) attempted to capture the mutual 
influence of the protein pairs in PPI prediction based on a Siamese 
architecture (PIPR). Besides the binary prediction, PIPR addressed 
the issues of the estimation of binding affinity and the prediction of 
interaction type. PIPR incorporates a deep Siamese environment of a 

residual RCNN-based protein sequence encoder to better apprehend 
the potential features for PPI representation. This deep encoder 
comprises many occurrences of convolution layers with pooling and 
bidirectional residual gated recurrent units to ease the training and 
greatly diminish the updates of the parameters. For the numerical 
representation of the protein sequences, PIPR transformed the 
recognized amino acids based on their similarity in terms of co-
occurrences as well as electrostatic and hydrophobic properties, and 
the pre-trained amino acid embedding. The resultant embeddings 
were then fed to the RCNN encoder to capture the latent information 
of the proteins. The output of the RCNN encoder, which is a refined 
embedding of the protein sequences, is then merged to generate 
a pair vector and passed into a multilayer perceptron (MLP) with 
Leaky ReLU for PPI classification. PIPR proved promising results 
by effectively covering the mutual influence among the protein 
pairs and ascertaining the generalization without the inclusion of 
hand-crafted features.

Following the same trend, the authors of Czibula et al. (2021) 
used a Siamese structure and proposed a binary supervised classifier 
(AutoPPI) to predict PPI. They built and trained two autoencoders 
(AE) for each class in the input data, namely, positive interaction 
and negative interaction. The feature vectors combined AC, CT, and 
PseAAC encodings. For each autoencoder, three NN architectures 
were developed: 1) Joint-Joint architecture, which takes the features 
of a pair of proteins as input and correspondingly returns the 
renovated features at the output; 2) Siamese-Joint architecture, 
which uses a shared encoder to compress the two proteins to learn 
latent space representation, which is finally combined and used to 
regenerate the pair; 3) Siamese–Siamese architecture in which a 
common representation is generated by element-wise multiplication 
of two encodings for each protein in a pair at the encoder side and 
the reconstruction of proteins is obtained using a shared decoder. In 
all three architectures, the SELU activation function and the Adam 
optimizer were used.

Considering the context features of protein sequence, the 
authors in Wang Y. et al. (2019) proposed a pure biological language 
processing model for predicting PPIs. Their CNN model was 
constructed based on a feature representation method for biological 
sequences called bio-to-vector (Bio2Vec. They used the Skip-Gram 
model (Mikolov et al., 2013b) to represent protein words. The 
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prediction accuracy of their framework was 99.5%, which out-
performed the latest methods. Such impressive results inspired 
other researchers to consider the context information and implicit 
semantic information of the bio-sequence. Following a similar 
pattern, the authors in (Jia et al., 2019) proposed a new predictor, 
called “iPPI- PseAAC(CGR)”, by incorporating the information 
of chaos game representation (CGR) into the PseAAC. They 
extracted the PseAAC and used the CGR to define the pseudo 
components. Finally, they applied the random forest and ensemble 
classifier to perform the prediction. They achieved around 92.95% 
accuracy in the benchmark datasets. A user-friendly web server has 
been published with this predictor. Further in ensemble methods 
(Chen et al., 2020), proposed an ensemble model called StackPPI to 
predict PPIs. They used XGBoost to eliminate the noise and reduce 
the dimensional-ity, which enhanced StackPPI’s performance. 
Finally, they built a stacked ensemble classifier that employs Random 
Forest and extremely randomized trees (ET) as the base-classifiers, 
and logistic regression (LR) as the meta-classifier. The distinct 
feature of this model is its ability to infer biologically significant 
PPI networks. StackPPI’s accurate prediction of functional pathways 
made it the logical choice for studying the underlying mechanism of 
PPIs, especially in drug design. Starting from 2020, the researchers 
involved the graphs in the PPI problems of pairs of proteins. 
The authors in Yang et al. (2020) involved Structural information 
of PPI networks, such as their degree, position, and neighboring 
nodes in a grap,h with the sequence information to be informative 
in PPI prediction. Facing the challenge of representing graph 
information, they introduced an improved graph representation 
learning method. Their model can study PPI prediction based 
on sequence information and graph structure. Moreover, their 
approach takes advantage of a representation learning model and 
employs a graph-based deep learning method for PPI prediction, 
which showed superiority over existing sequence-based methods. 
Followed by that, in 2022, the authors in Baranwal et al. (2022) 
developed a mutual graph attention network and a corresponding 
computational tool, Struct2Graph, to predict PPIs solely from 
3D structural information. Struct2Graph used a graph-based 
representation of a protein globule obtained using only the 3D 
positions of atoms. This graph-based interpretation allows for neural 
message passing for efficient representation learning of proteins. 
A GCN maps graphs to real-valued embedding vectors in such a 
way that the geometry of the embedding vectors reflects similarities 
between the graphs. They achieved around 99% accuracy. This 
model can identify residues that likely contribute to the formation 
of the protein–protein complex. The identification of important 
residues is tested for two different interaction types: (a) Proteins 
with multiple ligands competing for the same binding area, (b) 
Dynamic protein-protein adhesion interac-tion. For applying DNNs 
on Human Protein, the authors in Le and Kha (2022) proposed a 
novel method to realize PPI prediction utilizing the FASTA (Pearson 
format) of amino acids. Compared with other ML methods, their 
DNN model achieved higher prediction accuracy using five-fold 
cross-validation. By evolving self-attention models, the authors in 
Li et al. (2022) proposed SDNN-PPI, a PPI prediction method based 
on self-attention and deep learning. The method adopts AAC, CT, 
and AC to extract global and local features of protein sequences, and 
leverages self-attention to enhance DNN feature extraction to more 
effectively accomplish the prediction of PPIs. Satisfactory results 

were obtained on interspecific and intraspecific datasets, and good 
performance was achieved in cross-species prediction. Recently, in 
2023, the authors in Tran et al. (2023) proposed a DeepCF model 
that combines the learned features and handcrafted features for 
the first time. They utilized 5 protein sequence extractors: AAC, 
PseAAC, APAAC, QSO, and DPC, to extract handcrafted features, 
then applied a natural language processing technique, Word2vec, 
to generate learned features by embedding protein sequences into 
the feature space. Finally, a DNN architecture was employed for 
combining two types of features and identifying PPIs. DeepCF was 
evaluated on the Yeast core, Human, and eight independent datasets. 
The experimental results demonstrated the superiority of DeepCF 
over other methods.

Recent research has increasingly focused on hybrid and 
multimodal frameworks that integrate complementary neural 
components. For instance, CNN + GCN hybrids leverage 
convolutional layers to extract local residue features while graph 
convolutions capture global structural dependencies, improving 
spatial awareness in PPI prediction. Similarly, RNNs enhanced 
with attention mechanisms or transformer-style encoders have 
demonstrated strong capability to model long-range residue 
dependencies and contextual relationships. Such combinations 
outperform traditional sequence-based encoders and highlight 
a shift toward transformer-based multimodal approaches in 
current PPI research. For instance, SDNN-PPI (Li et al., 2022) 
employed self-attention to refine DNN feature extraction, and 
DeepCF-PPI (Tran et al., 2023) combined handcrafted descriptors 
with learned sequence embeddings (Word2Vec). In addition, 
Struct2Graph (Baranwal et al., 2022) explored graph attention 
and MLP-Mixer hybrids for 3D structure-based and sequence-
based PPIs.

Figure 13 presents the best performance in terms of accuracy 
with the most suitable parameter settings of the various deep-
learning approaches to predict PPIs in pair of protein sequences. 
It can be observed that the prediction accuracy is high (≥90%), 
and DeepPPI has achieved the highest accuracy on benchmark 
datasets. Figure 14 illustrates the number of published research 
papers employing various DL models in PPI prediction. As shown, 
most studies utilized DNNs and EL, with a smaller number adopting 
CNNs, and only a few incorporating graph networks. Despite 
their limited representation, graph networks have demonstrated 
promising results, making them a highly promising venue for future 
research in the field of PPI prediction. Figure 15 presents the number 
of research papers that were published using a particular approach. 
We can observe that deep learning (DL) techniques were successfully 
used for both approaches; however, they were more popular in the 
prediction of pairs of proteins datasets (Approach B).

4.3 Experimental reproducibility

4.3.1 Implementation environment
Most PPI deep learning frameworks utilized either PyTorch 

or TensorFlow, with hardware setups that include NVIDIA 
GPUs (Tesla V100, A100, or RTX 3090). The training epochs 
ranged from 50 to 300, depending on the dataset size and
convergence behavior. 
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FIGURE 13
Performance analysis of the highest accuracy reported by various papers of Approach B (in %).

FIGURE 14
The number of papers published using a particular approach.

4.3.2 Feature preprocessing
Feature extraction plays a central role in reproducibility:

• PSSM and Evolutionary Features: most of the methods, like 
SSWRF, DLPred, DeepPPISP, and CNN-FSRF, generated the 
PSSM using PSI-BLAST with default parameters of e-value = 
0.001, BLOSUM62 substitution matrix, and 3 iterations against 
the NR (non-redundant) database.

• 3D-1D Features: derived using tools such as SPIDER3
(Heffernan et al., 2018), like in HN-PPISP or DSSP, 
like in DELPHI and DeepPPISP, encoding solvent 
accessibility and secondary structure probabilities into
1D descrip-tors.

• Residue Conservation and Evolutionary Conservation: most 
of the methods like DELPHI, D-PPIsite, HN-PPISP employed 
Consurf (Armon et al., 2001) or Rate4Site (Pupko et al., 2002) 
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FIGURE 15
Number of published papers by DL in PPIs prediction.

algorithms, aligning multiple homologous sequences to infer 
evolutionary conservation scores.

• Physicochemical Descriptors: Generated through ProPy 
(Cao et al., 2013) like in iPPBS-Opt and D-PPIsite 
or iFeature (Chen et al., 2018) like in EL-SMURF, including 
hydrophobicity, charge, and polarity scales.

4.3.3 Hyperparameter settings
To ensure experimental reproducibility, we summarized 

and analyzed the hyperparameter configurations of the 
reviewed models in Table 1. Across most CNN-based and 
DNN-based architectures, the Adam optimizer was the choice, 
typically using learning rates around 0.001 and dropout rates 
between 0.2 and 0.7 to reduce overfitting. Models such as 
DeepPPISP and DELPHI used moderate batch sizes (32–64) 
and cross-entropy losses, while hybrid models like DLPred 
and PhosIDN employed multiple hidden layers and dropout 
regularization for better stability on small datasets. In graph-
based frameworks like DeepGCN and DGCPPISP, learning rates 
were reduced further (0.0001–0.01) with 3–5 hidden layers, 
ReLU or LeakyReLU activations, and batch normalization to 
stabilize convergence. Ensemble learning approaches, including EL-
SMURF, EnsDNN, and StackPPI, integrated varied configurations 
of base classifiers or neural sub-networks trained under diverse 
dropout and feature window settings, providing robustness against 
imbalance and overfitting. Models leveraging transfer learning, 
like EGRET and DGCPPISP, combined pretrained embeddings 
such as ProtBERT or ESM-2 with task-specific fine-tuning, often 
requiring fewer epochs but larger feature dimensions. Overall, 
while most studies converged on standard hyperparameter 
ranges (learning rate 0.0001–0.01, dropout 0.2–0.7, batch size 
32–256), explicit reporting remained inconsistent, underscoring the 
importance of standardized reproducibility guidelines for future PPI
prediction research. 

5 Comparative assessment

5.1 Datasets

5.1.1 Approach A: PPIs in isolated protein 
sequence

Three widely benchmarked datasets are used in PPI prediction 
of isolated protein sequence: Dset 186, Dset 72 (Murakami and 
Mizuguchi, 2010) and Dset 164 (Singh et al., 2014). The distribution 
of the datasets is relatively unbalanced, with positive samples 
accounting for only 10%–18% of the total sample size, which poses 
a challenge for the generalization of the model. Although deep 
learning models can effectively deal with the overfitting problem 
caused by data imbalance, most of these computational methods are 
very unstable and poorly generalized for these highly unbalanced 
benchmark datasets, which implies some room for improvement. 
Table 2 summarizes the main datasets used in PPI prediction. Dset 
186 is built from the protein data bank (PDB) and consists of 
186 protein sequences extracted from 105 heterodimeric protein 
complexes with a sequence identity <25% and a resolution of 
≤ 3.0A.̊ Dset 186 has a total of 36216 residues (including 5551 
interacting residues). Dset 72 and PDBset 164 are constructed in 
a way similar to the construction of Dset 186. Dset 72 contains 72 
protein sequences from 36 protein complexes in the protein-protein 
docking benchmark set version 3.0. While under construction, all 
sequences in Dset 72 that have ≥ 25% sequence identity over a 
90% overlap with any of the sequences in Dset 186 are removed. 
It contains 17975 residues in total, with 3799 interacting residues. 
Dset 164 consists of 164 non-redundant protein sequences with 
the same filtering requirement as for Dset 186. There are 6111 
interacting residues and a total of 33678 residues in Dset 164. 
These datasets are used for training and testing deep learning 
models. Zhang B. et al. (2019) applied the DLPred predictor to 
the independent heteromeric dataset Dset 48, which is a subset of 
Dset 72, and five homodimeric sequences, to evaluate the DLPred 
model as a more general predictor. The study in (Hu et al., 2023) 
added Dset 448 and Dset 335 datasets to evaluate the performance 
of their model (D-PPIsite). Dset 448, which includes 448 protein 
sequences, is collected from the BioLiP database (Yang et al., 2012). 
The sequence identity between any two sequences in Dset 448 is less 
than 25%. Dset 355 was generated in DELPHI (Li et al., 2021) via 
removing the 93 redundant proteins from Dset 448. Furthermore, 
they compiled a large dataset of 9982 non-redundant protein 
sequences, including 427,687 binding and 3,826,511 non-binding 
residues. The maximum sequence identity between any two protein 
sequences in this dataset is 25%. Finally, they randomly selected 
841 protein sequences to constitute the validation dataset, and 
the remaining proteins were used in the training dataset. The 
authors in (Kang et al., 2023) combined the three benchmark 
datasets and constituted one fused dataset called Dset 186 72 
PDB164. In addition, they reduced Dset 448 and produced the 
Dset 331 with 331 valid proteins in total. They divided the two 
datasets into a test set and a training set according to a ratio 
of 1:6, respectively. Jia et al. (2016) used imbalanced datasets 
for their approach on PPIs prediction; they did not use any of 
the benchmark datasets. Instead, they extracted two datasets: the 
surface-residue dataset and the all-residues dataset. The protein-
protein interfaces are usually formed by those residues that are 
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exposed to the solvent after the two counter parts are separated 
from each other. The work in (Yuan et al., 2021) integrated 
three datasets, Dset 186, Dset 72 and Dset 164, into a fused 
dataset and removed the redundant proteins with more than 25% 
sequence similarities over 90% overlap on either sequence as 
in Dset 186 and obtained 395 protein chains, from which they 
randomly selected 335 protein chains for training (Train 335) and 
used the remaining 60 chains as independent test (Test 60). To 
further improve the stability and generalization performance of 
the models, an ensemble learning methods are applied to deal 
with the skewed distribution of categories in unbalanced datasets 
like (Wang Y. et al., 2019; Jia et al., 2016; Wei et al., 2016). 
DLPred is also a generalizable model and one of the most popular 
solutions to improve the performance of imbalance classification 
by applying the SLSTM Network (Zhang B. et al., 2019). Although 
most benchmark datasets in PPI prediction in isolated protein 
sequences focused on the annotated datasets extracted from the PDB 
database, several deep learning models in this survey have already 
utilized broader or disease-relevant resources. For example, EGRET 
(Mahbub and Bayzid, 2022) integrated sequence and structure 
data, and it was trained on multiple benchmark sets, such as Dset 
186, Dset 72, and PDB164. These datasets include proteins from 
H. pylori and E. coli, covering both prokaryotic and eukaryotic 
species. GraphPPIS (Yang et al., 2020) was evaluated on Dset 
331, which was derived from non-redundant PDB structures with 
diverse species origin (bacterial and eukaryotic). These cross-species 
datasets provide a valuable foundation for assessing generalization 
ability across biological domains. Table 4 concludes the datasets and 
the performance of each of them on PPIs prediction for isolated 
protein sequences. 

5.1.2 Approach B: PPIs in pair of protein 
sequences

There have been several benchmark datasets used to evaluate 
deep learning models trained on pairs of protein sequences. The 
S.cerevisiae dataset (You et al., 2014) is a core subset of the Database 
of Interacting Proteins (DIP). The positive and negative datasets are 
combined into a total of 11188 protein pairs. Martin et al. (2005) 
used the Helicobacter pylori proteins to construct a validation dataset, 
which is composed of 2916 protein pairs (1458 interacting pairs 
and 1458 non-interacting pairs). The study in Huang et al. (2015) 
constructed the Human dataset from the Human Protein Reference 
Database (HPRD). The Human dataset has 8161 protein pairs 
(3899 interacting pairs and 4262 non-interacting pairs). The 
authors in Zhou et al. (2011) collected five datasets: Caenorhabditis 
elegans (4013 interacting pairs), Escherichia coli (6954 interacting 
pairs), Homo sapiens (1412 interacting pairs), Mus musculus (313 
interacting pairs), and H.pylori dataset (1420 interacting pairs). 
Sun et al. (2017) and Li et al. (2018) generated additional testing 
datasets from the 20160430 version of the Database of Interacting 
Proteins (DIP, Human). After the removal of common protein 
pairs from the benchmark dataset, 2908 pairs were obtained. 
Sun et al. (2017) used the HIPPIE dataset, release v2.0. It contains 
human PPIs from 7 large databases. They categorized the data, 
based on the PPI score, into “high quality” data (≥0.73) and 
“low quality” data (<0.73). After the removal of pairs shared 
with the benchmark dataset, they obtained 30074 high-quality 
interacting protein pairs and 220442 low-quality interacting pairs. 

The newly released InWeb inBioMap contains the human PPIs from 
8 large databases. They screened out the PPIs with a “confidence 
score” equal to 1 as the “high quality” (HQ) data and treated 
the rest as the “low quality” (LQ) data. After the removal of 
pairs shared with the benchmark dataset, they identified 155465 
of ‘high quality’ PPIs dataset and 459231 of “low quality” PPIs 
dataset. Martin et al. (2005) have generated the 2005-Martin 
dataset, which was used in other studies such as (Pan et al., 2010). 
(Richoux et al., 2019) retrieved human sequences from the UniProt 
database and split them into three datasets for training, validation, 
and testing. Li et al. (2018) added the Drosophila dataset, which 
contains 19133 positive samples and 18449 negative samples. Yeast 
dataset is used by Wang L. et al. (2019), Wang et al. (2017), and 
Chen et al. (2019). Baranwal et al. (2022) extracted a balanced 
dataset (consisting of an equal number of positive and negative 
pairs) and an unbalanced dataset (with a ratio of 1:10 between 
positive and negative pairs) from IntAct (Orchard et al., 2014) 
and STRING (Szklarczyk et al., 2019) databases. While most of 
these databases are compiled from eukaryotic model organisms 
such as Saccharomyces cerevisiae and Homo sapiens (human), 
emerging resources have broadened coverage to prokaryotes, 
virus–host systems, and disease-specific networks. For example, 
StackPPI (Chen et al., 2020) relied on datasets aggregated from 
IntAct and STRING, which have expanded their repositories 
to include archaeal and bacterial PPIs, such as those from 
Escherichia coli and Mycobacterium tuberculosis, which provide 
valuable information for studying essential metabolic pathways in 
prokaryotes. In addition, models such as SAE-based frameworks 
(Sun et al., 2017), DeepPPI (Du et al., 2017), and DNN-PPI 
(Li et al., 2018) relied heavily on the HIPPIE v2.0 and InWeb 
inBioMap datasets. HIPPIE computationally inferred PPIs from 
seven major databases (MINT, BioGRID, DIP, HPRD, IntAct, MIPS, 
and BIND) and categorizes them by reliability score. This scoring 
enables models to evaluate prediction stability across confidence 
levels and facilitates disease-specific network analysis. In particular, 
HIPPIE and InWeb annotate interactions with disease and tissue 
metadata, allowing researchers to map PPIs linked to cancer, 
cardiovascular, and neurodegenerative disorders. Several recent 
studies have exploited this property for model benchmarking and to 
explore context-specific sub-networks, such as Alzheimer’s disease-
related interactomes (Ginsberg et al., 2022). virus–host interaction 
datasets such as VirHostNet 3.0 (Guirimand et al., 2015), IntAct 
Virus–Host (Brito and Pinney, 2017), and BioGRID COVID-19 
(Oughtred et al., 2021) offer curated PPIs derived from experimental 
and text-mining sources, enabling the study of host–pathogen 
interface prediction via deep learning architectures. Although the 
models in this paper incorporate multiple datasets (e.g., Yeast, 
Human, H. pylori, S. cerevisiae, E. coli), we acknowledge that current 
benchmark collections still represent a limited biological spectrum. 
The diversity of protein structures, interaction mechanisms, and 
experimental biases remains a key constraint for evaluating 
deep learning models. Future studies should therefore focus on 
expanding dataset heterogeneity and establishing standardized 
cross-domain validation to ensure robust generalization. Table 4 
presents the different datasets used for PPIs prediction of pairs 
of proteins and the performance of the deep learning model in
each of them. 
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5.2 Performance measures

To quantify how correct the predictions made by an algorithm 
are, we used the following measures, including F1-score (F1), 
sensitivity (SEN), specificity (SPE), precision (PRE), accuracy 
(ACC), and Matthews correlation coefficient (MCC), see Equations 
9–14.

F1− score = 2×TP
2×TP+ FP+ FN

(9)

Recall = Sensitivity = TP
TP+ FN

(10)

Speci ficity = TN
TN+ FP

(11)

Precision = TP
TP+ FP

(12)

Accuracy = TP+TN
TP+TN+ FP+ FN

(13)

MCC =
(TP×Tn− FP× FN)

√(TP+ FP) × (TP+ FN) × (TN+ FP) × (TN+ FN)
(14)

 where TP, TN, FP, and FN represent the numbers of true positive, true 
negative, false positive, and false negative residues in the prediction, 
respectively. Additionally, we reported the area under the receiver 
operating characteristic curve (AUC) to assess the overall predictive 
performance. Tables 4, 5 present the performance measures of the 
papers presented in Approach A and Approach B, respectively. 

5.3 Comparative performance of deep 
learning models for PPI prediction

Understanding the suitability of deep learning architectures 
for PPI prediction requires examining their inductive biases, 
data handling capabilities, and empirical stability across datasets. 
In PPI site prediction in isolated protein sequences, model 
performance strongly depends on the ability to capture sequential 
dependencies and spatial context. Traditional recurrent networks 
such as RNN and GRU effectively model short-term dependencies 
but exhibit vanishing gradient effects when capturing long-range 
residue correlations, resulting in limited recall (average sensitivity 
≈ 0.30–0.45). Conversely, CNN-based architectures emphasize 
local motif learning through sliding windows, achieving moderate 
precision but often missing distal dependencies necessary for 
identifying the discontinuous binding residues. The SENSDeep 
ensemble addressed these limitations by integrating CNN, RNN, 
and attention-augmented GRUs (GRUs2satt) to com-bine both local 
and contextual information. On the Dset 72 dataset, SENSDeep 
achieved consistent gains across all folds with AUC ≈ 0.715 and 
AUPR ≈ 0.266, surpassing single encoders (AUC ≈ 0.69–0.71). 
This ensemble approach reduced prediction variance and enhanced 
robustness against class imbalance. When compared across the three 
annotated datasets (Dset 186, Dset 7, and Dset 164), Structure-aware 
CNNs (DELPHI and HN-PPISP) and hybrid GCN variants (EGRET 
and DGCPPISP) demonstrated progressive improvements in AUPR 
(0.36–0.45) and MCC (0.23–0.31), highlighting the contribution 
of spatial topology and pretrained embeddings (ProtBERT, ESM) 

in capturing non-local structural cues. For Pair-wise Protein 
Interaction Models (Approach B): Ensemble methods such as 
StackPPI and EnsDNN leveraged bagging and deep aggregation 
to mitigate imbalance, achieving AUC ≈ 0.96–0.97 and MCC ≈
0.80–0.90. Deep-feature approaches like DeepPPI further integrated 
physicochemical descriptors and convolutional encoders, improving 
predictive stability with AUC ≈ 0.99 and MCC ≈ 0.97. Graph 
representations such as Struct2Graph transformed proteins into 
atomic-contact networks, achieving similar performance (AUC 
≈ 0.995) while enhancing interpretability. Attention and feature-
fusion frameworks extend this progress. CNNFSRF integrated CNN 
layers with feature-selection and random-forest fusion, and achieved 
AUC ≈ 0.89 on H. pylori. DeepCF-PPI, which combined learned 
embeddings with handcrafted features via attention, reported an 
AUC ≈ 0.97, an AUPR ≈ 0.978, andanMCC ≈ 0.90, confirming that 
hybrid attention mechanisms efficiently capture complementary 
biological information. Overall, attention-enhanced and graph-
aware frameworks deliver superior generalization on unbalanced 
datasets by combining global reasoning with noise-tolerant feature 
fu-sion. The comparative ROC, AUPR, and MCC (Figures 16–19) 
visually confirm these trends for both isolated and pair-wise PPIs.

5.4 Transformer-based architectures and 
protein language models (PLMs)

Recent years have witnessed the rapid convergence 
of Transformer-based architectures with other deep 
architectures to enhance PPI prediction performance and 
interpretability. Transformer-based architectures such as ProtBERT 
(Gao et al., 2024), ProtT5 (Li et al., 2024), and the ESM (Evolutionary 
Scale Modeling) series (Xu, 2023) have been employed in protein 
representation and learning. These models are trained on billions 
of amino acid sequences and employ attention mechanisms to 
capture long-range dependencies and contextual relationships that 
are difficult to model with conventional DL architectures. Unlike 
convolutional sequence features, transformer-based embeddings 
encode deep contextual semantics that transfer effectively across 
diverse protein-related tasks, including PPI prediction, functional 
annotation, and structure modeling. For example, ProtBert-BiGRU-
Attention (Gao et al., 2024) and P-PPI (Anteghini et al., 2023) 
frameworks demonstrated superior cross-species generalization 
compared to sequence-only methods such as DLPred and 
DeepPPISP, achieving AUC values above 0.90 on the yeast test 
set. Similarly, the EGRET model integrated ProtBERT-based 
embeddings with GAT layers, improving sensitivity and robustness 
in residue-level binding site detection. In addition, ProtBERT and 
ESM-2 were able to capture global contextual dependencies within 
protein sequences using self-attention mechanisms, pro-viding 
residue-level embeddings rich in biochemical and evolutionary 
information. These advances indicate a paradigm shift in PPI 
prediction, moving from task-specific architectures toward 
pretrained foundation models that can be fine-tuned for various 
interaction modalities. However, despite their remarkable repre-
sentation power, PLMs remain computationally intensive, and 
they are often insufficient alone for modeling structural topology 
and intermolecular interactions. Therefore, hybrid models have 
emerged to integrate these embeddings with complementary 
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TABLE 5  Performance measurements for PPIs prediction in Approach B.

Deep Learning 
Method

Name Datasets SPE SEN PRE ACC F-measure MCC AUC

Deep neural networks

SAE (Sun et al. (2017))

C 99.21

D 97.14

E 93.77

F - - - 92.24 - - -

F 87.04

G 91.14

G 87.99

RNN (Richoux et al., 2019) N - 0.86 0.95 0.91 0.91 - -

DeepPPI (Du et al., 2017)

O 0.92 0.97 94.43 88.97

P 0.89 0.84 86.23 72.63

C 0.89 0.89 89.0 0.89 95.0

Q 0.97 0.99 98.14 96.29

DNN-PPI (Li et al., 2018)

C 94.43 88.97

E 86.23

F 89.0

G 98.1

I 0.94 0.98 95.94 95.81 91.94

Q 0.97 0.99 98.38 98.37 96.81

K 0.98 0.99 98.66 98.64 97.32

DeepCF (Tran et al., 2023)

M 0.97 0.93 95 91

S 0.99 0.99 99 98

I 1 1 100 100

SDNN-PPI (Li et al., 2022)

O 0.97 0.93 0.97 95 91 98

S 0.99 0.98 0.99 98 97 99

Ab 0.96 0.96 0.90 93 86 98

T 0.93 0.93 0.84 83 77 95

DeepSG2PPI 
(Zhang et al., 2023)

N &STRING 0.98 0.98 0.98 0.98

(Continued on the following page)
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TABLE 5  (Continued) Performance measurements for PPIs prediction in Approach B.

Deep Learning 
Method

Name Datasets SPE SEN PRE ACC F-measure MCC AUC

Convolution neural networks

CNN-FSRF (Wang L et al., 2019)

M 0.96 0.996 0.96 97.75 97.79

P 0.87 0.92 0.87 88.96 89.26

K 0.96 96.41 98.17 95.57 97.54

I 0.95 95.47 97.68 78.09 87.08

Q 0.99 98.65 98.32

R 0.93 93.27 96.52

DPPI (Hashemifar et al., 2018) O 0.92 0.97 94.55

PIPR (Chen et al., 2019) M 0.97 0.971 0.97 97.09 97.09 94.17

Bio2Vec-based (Wang 
Y et al., 2019)

C 0.96 0.98 97.31 94.76 99.61

O 0.93 0.94 93.30 93.55 97.20

P 0.88 0.88 88.01 87.9 93.94

Ex-Human 0.996 0.995 99.58 99.16 99.95

Ensemble Learning

StackPPI (Chen et al., 2020)

P 0.88 0.90 89.27 78.59

O 0.93 0.96 94.64 89.34

Q 97.66

R 98.4

K 97.11

I 98.71

RF & DCT (Wang et al., 2017)

M 0.89 0.99 98.54 97.13

P 0.85 0.91 88.27 79.29

K 98.08

I 92.75

Q 98.87

R 98.72

iPPI-Esml (Jia et al., 2015) P 0.88 0.90 90.75 81.51

EnsDNN (Zhang B et al., 2019)

O 0.95 0.95 0.95 95.29 95.29 90.59 97

K 93.22

I 95.10

Q 95

P 89.14

R 94.06

(Continued on the following page)
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TABLE 5  (Continued) Performance measurements for PPIs prediction in Approach B.

Deep Learning 
Method

Name Datasets SPE SEN PRE ACC F-measure MCC AUC

iPPI-PseAAC(CGR) 
(Jia et al., 2019)

P 0.88 0.98 92.95 85.05

O 0.85 0.91 88.01 76.24

AutoPPI 
(Czibula et al., 2021)

C 0.99 0.92 0.97 97 97 97

Multispecies 0.96 0.97 0.99 97 97 97

Graph convolutional 
network

Struct2Graph 
(Baranwal et al., 2022)

Balanced dataset(1:1) 0.994 0.986 0.994 98.96 98.98 97.91 99.62

unbalanced dataset(1:2) 0.995 0.979 0.992 98.91 98.43 97.59 99.73

unbalanced dataset(1:3) 0.996 0.974 0.988 99.01 98.12 97.46 99.7

unbalanced dataset(1:5) 0.997 0.971 0.983 99.16 97.53 97.03 99.71

unbalanced dataset(1:10) 0.997 0.956 0.970 99.26 96.31 95.90 99.54

S-VGAE 
(Yang et al., 2020)

C,E,I,J,K 99.15 99.15

FIGURE 16
AUC values for the models in Approach A: AUC by Model/Dataset.

technologies. Following this trend, Several recent frameworks 
employed PLM embeddings as node features in GNNs to learn 
sequence and structural relationships. For example, in Approach A: 
EGRET combined ProtBERT embeddings with graph attention 
networks to model residue-level spatial dependencies, while 
DGCPPISP integrated ESM-2 representations within a dynamic 
GCN to capture conformational flexibility. Similarly, in Approach 
B, GraphPPIS encoded structural proximity through weighted 
graphs enriched with PLM features. Such fusions significantly 
improved generalization in disease-specific PPI interaction 

predictions. In addition, the frontier of PPI research lies in 
multimodal architectures that unify diverse biological data based on 
sequence, structure, and multi-omics. Frameworks such as ProtST 
(Xu et al., 2023) and BioT5+ (Pei et al., 2024) embedded PLM-
derived sequence features, AlphaFold (Faisal et al., 2025) predicted 
structural graphs, and co-expression signals from transcriptomic or 
proteomic data. By aligning modalities within a shared latent space, 
these models enhance biological interpretability and enable cross-
species transfer learning. Authors in (Chinami, 2025) employed 
AlphaFold3-guided structural profiling of PPIs, integrating 
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FIGURE 17
The comparative ROC and AUPR for the models in Approach A.

FIGURE 18
AUC values for the models in Approach B: AUC by Model/Dataset.

evolutionary distances and structural affinity metrics derived from 
predicted PPI complexes. They used PPI pairs from a cancer-wide 
interactome database with relevance to liver cancers. Their findings 
highlighted the power of integrative structural PPI mapping to 

uncover functionally significant distinctions in tumor biology 
and suggest a paradigm shift in cancer diagnostics enabled by 
next-generation structure-based analytics. Integrating PLMs with 
graph reasoning and omics data represents a promising route 
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FIGURE 19
The comparative AUC and MCC for the models in Approach B.

toward systems-level PPI inference and disease-specific interaction 
predictions. Collectively, these developments mark a paradigm shift 
from single-modality encoders toward context-aware, multimodal 
approaches, establishing a foundation for scalable and biologically 
grounded PPI discovery. 

6 Limitations and future directions

Despite the remarkable progress in deep learning models for PPI 
prediction, current methods still have several limitations that restrict 
their generalization, interpretability, and biological transferability. 
In this section, we will discuss these limitations, focusing on 
the recent advances in this domain. Traditional machine-learning 
methods, such as RF, SVM, and Gradient Boosting, rely on 
manually designed descriptors and handcrafted feature extraction 
methods from the annotated datasets. While these models, such 
as RF-PPI (Hou et al., 2017) and SSWRF, are interpretable 
and computationally efficient, they fail to capture the higher-
order dependencies between distant residues or conformational 
dynamics within the isolated protein surface. Early deep-learning 
models, such as DLPred and DeepPPISP, employed CNN and 
RNN architectures to automate feature ex-traction. However, CNNs 
suffer from limited receptive fields and tend to emphasize local 
patterns, while RNNs face gradient-vanishing issues and difficulty 
in learning long-range dependencies in long amino-acid chains. 
Consequently, both architectures struggle to model cooperative 
binding regions and generalize across species with significant 

sequence variation. To overcome these deficiencies, graph-based 
learning emerged as a powerful framework for encoding structural 
and relational information. Methods such as GraphPPIS and EGRET 
exploit graph-convolutional and attention mechanisms to propagate 
information across spatially proximal residues, capturing non-local 
structural dependencies. Nevertheless, the predictive performance 
of graph models can deteriorate on sparse or noisy interaction 
networks, and they remain sensitive to incomplete contact maps 
and imbalanced datasets. Ensemble methods, including StackPPI, 
SSWRF, and iPPBS-Opt, have been proposed to enhance robustness 
by aggregating multiple learners with complementary strengths. 
These models mitigate overfitting and bias by exploiting bagging 
and boosting strategies, improving stability and generalization 
in unbalanced or cross-domain PPI prediction tasks. Table 1 
concludes the reported limitations of some of the discussed DL 
models. Recent developments in Transformer architectures have 
significantly improved biological sequence modeling. Transformers 
leverage self-attention mechanisms to capture global relationships, 
enabling the modeling of long-range dependencies that CNNs 
and RNNs fail to preserve. PLMs such as ProtBERT and ESMs 
models are trained on millions of protein sequences, allowing them 
to learn high-level representations that generalize across species 
and functional classes. When integrated into downstream PPI 
frameworks (e.g., EGRET), PLM-derived embeddings substantially 
enhance transfer learning performance and improve the detection 
of disease-related or virus–host interactions. These advances 
underline the transition from purely feature-driven models toward 
context-aware, cross-species, and multimodal architectures, capable

Frontiers in Bioinformatics 32 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1710937
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Alkhateeb and Awad 10.3389/fbinf.2025.1710937

of integrating sequence, structural, and functional modalities 
within a unified learning framework. However, these models are 
computationally heavy, require large GPUs, and their interpretability 
and biological correlation are still limited. Future research should 
focus on (1) scaling PLMs with structural alignment and contact-
map supervision, (2) designing interpretable graph–Transformer 
hybrids to improve explainability, and (3) expanding benchmarking 
datasets beyond human and yeast to encompass archaeal, viral, 
and disease-specific PPIs. Such efforts will accelerate progress 
toward biologically faithful, generalizable, and clinically relevant PPI 
prediction. 

7 Conclusion

The prediction of protein-protein interaction (PPI) hot spots 
plays a critical role in understanding molecular interactions, 
aiding drug discovery, and advancing computational protein design. 
This paper provides a comprehensive review of PPI prediction 
using sequence information and focusing on four architectures 
of deep learning: DNNs, CNNs, GCNs, and RNNs. In addition, 
we considered deep learning variants techniques under ensemble 
methods. We broadly discussed the various approaches in terms 
of input data, objectives, research contribution, extracted features, 
and the structure of the deep learning architecture, along with 
their best-suited parameters. While deep learning models have 
significantly improved predictive accuracy, challenges such as 
data imbalance, model interpretability, selecting for a suitable 
architecture with favorable hyperparameters, and integrating diverse 
biological information remain unresolved and have room for 
investigation. In addition, the emergence of graph-based models 
and hybrid deep learning architectures presents a promising 
direction for future research. The continued advances in feature 
engineering, model optimization, and large-scale dataset availability 
will further enhance the reliability and applicability of deep learning 
in PPI hot spot prediction. The in-depth, detailed discussion 
presented herein carefully mines every possible information, can 
help researchers to further explore the success in this area. 
We believe that this literature survey will benefit scholars in 
the applications of deep learning in the prediction of PPIs in
imminent research.
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Glossary

DL Deep Learning

PPI Protein-Protein Interaction

DNN Deep Nueral Network

CNN Convolutional Neural Network

EL Deep Ensemble Learning

GCN Graph Convolutional Network

PBR Protein-Binding Residues

PSSM Position-Specific Scoring Matrix

RF Random Forest

SVM Support Vector Machine

RNN Recurrent Neural Network

GPU Graphics processing unit

GRU Gated Recurrent Units

GNN Graph Neural Network

HSP High-scoring Segment Pair

SLSTM Simplified Long Short-Term Memory

SAE Stacked Auto-Encoder

AC Auto Covariance Method

AAC Amino Acid Composition

PseAAC Pseudo-Amino Acid Composition

APAAC Amphiphilic PseAAC

QSO Quasi-Sequence-Order

DPC Dipeptide Composition

ET Extremely randomized Trees

DCT Discrete Cosine Transform

AC Auto covariance descriptor

MCD Multi-scale continuous and discontinuous local descriptor

LD Local Descriptor

CGR Chaos Game Representation

GAN Graph Attention Network

CT Conjoint Triad

CV Cross Validation

ML Machine Learning

ReLU Rectified Linear Unit

AF Activation Function

LF Loss Function
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