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Assessment of phylogenetic
informativeness in mitochonderial
and nuclear genes for
mammalian systematics using
sparse learning

Carlos G. Schrago* and Beatriz Mello*

Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Despite the growing availability of nuclear genomic data, mitochondrial genes
remain the most widely used molecular markers in mammalian systematics.
However, a quantitative assessment of the phylogenetic information content of
mitochondrial loci compared to nuclear loci has never been carried out. Here,
we apply a sparse learning approach based on Lasso regression to evaluate
the contribution of alignment sites to phylogenetic likelihoods, providing the
first estimates of phylogenetically effective lengths for markers commonly
used in mammalian systematics. Analyzing more than 30,000 complete
mammalian mitochondrial genomes and nuclear panels composed of either
100 randomly selected complete coding sequences or of partial gene segments
from conventional markers, we examined phylogenetic informativeness at two
taxonomic levels: within-species and among-species. On average, ~32% of
mitochondrial sites and ~38% of nuclear sites were classified as phylogenetically
informative. We found that the number of phylogenetically informative
sites were positively correlated with total gene length. Therefore, longer
mitochondrial genes, particularly ND5, COX1, and CYTB, harbored the largest
numbers of informative sites. Although nuclear coding sequences contained,
on average, more informative sites, mitochondrial genes also yielded consistent
resolution of among-species relationships. Overall, our results provide the
first large-scale, quantitative comparison of phylogenetic information content
across mammalian mitochondrial and nuclear genes, offering a principled
framework for marker selection in future systematics studies that can be broadly
applied to any lineage.

phylogenetic informativeness, phylogenetic signal, mitochondrial genome, species
delimitation, molecular taxonomy, sparse learning, Lasso regression

Introduction

In mammalian systematics, as in many other animal lineages, mitochondrial genes
remain widely used to investigate evolutionary history despite the increasing affordability
of whole-genome sequencing (Mackiewicz et al., 2019; Zhang et al, 2021; 2023).
Their use is prevalent in shallow-level taxonomic studies, such as those involving
populations and closely related species (Phillips et al., 2022; Carriéon-Olmedo and
Brito, 2025; Ribeiro et al., 2025). Among these, the mitochondrial genes cytochrome b
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(CYTB) and the cytochrome oxidase I (COX1) have been partially or
fully sequenced for more than 5,000 and 3,000 mammalian species,
respectively. For both markers, more than 80% of the species have
multiple individuals sequenced, allowing within-species analyses
(NCBIL, https://www.ncbi.nlm.nih.gov, as of September 2025).
In contrast, for mammalian nuclear genes, only humans have
been sampled at a comparable scale. The number of articles
employing mitochondrial genes that address mammalian taxonomic
problems has grown exponentially over the years (Scopus, https://
www.scopus.com, as of September 2025). Therefore, until genome
sequencing becomes substantially more affordable and current
bioinformatics bottlenecks are mitigated, mitochondrial genes are
likely to remain a key resource for systematics.

Surprisingly, although mitochondrial genes are extensively used
in mammalian systematics, few studies have specifically assessed
their information content for resolving evolutionary relationships
in mammals (Zardoya and Meyer, 1996; Corneli and Ward, 2000, p.
200; Duchéne et al., 2011). Therefore, the reliance on mitochondrial
loci in mammalian systematics has been guided largely by tradition.
Indeed, many studies have adopted operational criteria, such as
genetic distance thresholds, for species delimitation, which are
seldom critically evaluated (Bradley and Baker, 2001; Schrago and
Mello, 2020). To date, no large-scale analysis has formally compared
the efficacy of mammalian mitochondrial genes with that of nuclear
genomic regions.

This gap largely reflects the absence of methodological
approaches capable of addressing systematists’ central questions.
For instance, given a set of genes, which one carries
the most phylogenetic information for both topology and
branch length estimation? Despite their importance, such
operational questions have received relatively little attention
from statistical biologists. Previous efforts have mainly focused
(Kishino
and Hasegawa, 1989; Shimoidara, 2002). Some studies have

on contrasting the fit of competing topologies
introduced metrics like the phylogenetic informativeness profiles
(Townsend, 2007) or have employed log-likelihood comparisons
across candidate trees (Lopez-Girdldez et al., 2013). However, these
approaches typically rely on predefined hypotheses or reference
topologies, limiting their suitability for general, data-driven
assessments of phylogenetic information content.

Recently, Kumar and Sharma (Kumar and Sharma, 2021) have
demonstrated the utility and flexibility of sparse learning methods
in phylogenetics, such as the Lasso regression (Tibshirani, 1996).
The Lasso regression represents a supervised machine learning
approach that performs automatic feature selection by penalizing
less informative predictors. Following the treatment presented
by Ecker etal. (Ecker et al, 2022), we proposed a method to
estimate the number of phylogenetically informative alignment
sites using a supervised sparse learning approach based on
the Lasso (Schrago, 2025). This method weights the contribution
of likelihoods of individual alignment sites to the overall tree
likelihood by generating an ensemble of random tree topologies and
calculating site-wise log-likelihoods under a probabilistic model.
Sites that consistently impact the phylogenetic likelihood, including
topology and branch lengths, are identified and considered as
phylogenetically informative. This approach provides a principled
means of quantifying phylogenetic informativeness and defining
phylogenetically effective gene length that is probabilistic and
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topology-agnostic, thereby enabling direct comparisons among loci
and facilitating filtering schemes to improve phylogenetic inference.

In this work, we used this Lasso approach to conduct a large-
scale analysis of phylogenetic informativeness across more than
30,000 mammalian mitochondrial genomes and two sets of nuclear
loci, one consisting of a random sample of coding sequences
from complete genomes, and another comprised of partial genes
conventionally used in mammalian systematics. Together, these
datasets allow us to provide the first comprehensive, comparative
assessment of the phylogenetic information content of these
genomic regions using statistical learning.

Materials and methods

Assembly of datasets and phylogenetic
analysis

To assess the information content of mitochondrial and nuclear
genes in mammals, we downloaded a total of 30,603 complete
mammalian mitochondrial genomes from the NCBI database. To
prevent over-representation of human sequences, all species of the
genus Homo were excluded. Besides the widely used CYTB and
COXI1 genes, we analyzed all mitochondrial protein-coding genes
longer than 700 bp in humans (CYTB, COX1, COX2, COX3, NDI,
ND2, ND4, and ND5) to avoid including very short sequences that
are less commonly used in phylogenetic studies. We also analyzed a
sub-dataset combining the CYTB and COX1 genes, as these are the
most frequently sequenced mitochondrial markers in mammalian
systematics.

Using NCBI-informed taxonomy ranks, we focused on
the two taxonomic levels at which mitochondrial genes are
commonly employed in mammalian systematics: (i) within-species,
corresponding to populational divergences, and (ii) among-species,
encompassing divergences among species within the same genus.
These levels are hereafter referred to as within-species and among-
species, respectively. At the within-species level, we gathered data for
122 species, each represented by at least 05 mitochondrial genomes.
At the among-species level, we investigated 100 genera, each with
mitochondrial genomes available for at least 05 species. In this case,
if multiple mitochondrial genomes were available for a given species,
one genome was randomly selected. Consequently, a total of 976
(122 species x 8 genes), and 800 (100 genera x 8 genes) alignments
were assembled.
we downloaded

For comparison with nuclear genes,

17,439 ortholog alignments of coding sequences (CDS) for

more than 500 mammalian species assembled employing
the TOGA (Tool to infer Orthologs from Genome
Alignments) pipeline (Kirilenko et al, 2023). To ensure

comparability between datasets, we selected nuclear genes with
coding sequence lengths ranging from 700 to 2,000 bp. Because the
availability of complete mammalian nuclear genomes for within-
species analyses is limited, the nuclear-mitochondrial comparison
was restricted to the among-species level. Within the TOGA
data set, we identifled eight genera represented by more than
five species with sequenced genomes: Balaenoptera (physalus,
bonaerensis, edeni, musculus, acutorostrata), Bos (gaurus, taurus,
mutus, indicus, grunniens, frontalis), Marmota (marmota, monax,

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1704212
https://www.ncbi.nlm.nih.gov
https://www.scopus.com/
https://www.scopus.com/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Schrago and Mello

10.3389/fbinf.2025.1704212

TABLE 1 Number of alignments and average alignment length of commonly used nuclear genes.

Taxonomic level

Number of alignments examined

Average alignment length (95%

quantile)?

Within species 224 1,173.7 (757.7-1,647.4)
IRBP

Among species 74 1,266.4 (861.4-1,698.0)

Within species 105 1,025.6 (737.4-1829.0)
BRCA1

Among species 28 1,356.1 (785.6-2,560.8)

Within species 160 1,173.3 (760.6-2085.7)
RAGI1

Among species 58 1,498.4 (773.1-2,925.9)

Within species 6 1,028.2 (849.4-1,198.4)
vWF

Among species 17 1,120.3 (916.2-1,302.6)

“Alignments lengths including gaps.

flaviventris, himalayana, vancouverensis), Mus (caroli, musculus,
spretus, pahari, spicilegus), Myotis (septentrionalis, lucifugus, davidii,
myotis, brandtii), Ovis (mivicola, orientalis, aries, canadensis,
ammon), Panthera (leo, pardus, uncia, onca, tigris), and Peromyscus
(californicus, crinitus, polionotus, maniculatus, leucopus, eremicus).
A total of 2,466 nuclear genes within the target length range
were common to all species listed above. Due to computational
constraints, we analyzed a random subset of 100 genes from this
pool, resulting in 800 alignments (8 genera x 100 genes).

Finally, to compare our results with common practice in
mammalian taxonomy, we surveyed all mammalian sequences
deposited in the NCBI database to identify which nuclear loci are
most frequently sequenced. Segments of the IRBP, BRCAI, RAGI,
and vWF genes were the most widely represented. We therefore
assembled an independent panel composed of these conventional
nuclear markers, including alignments that captured both within-
species and among-species levels of diversity (details in Table 1).

In total, we analyzed four datasets: two were composed of
genomic samples — a set of mitochondrial protein-coding genes and
another of nuclear CDS obtained through TOGA; and two reflecting
commonly used markers in mammalian systematics — a combined
CYTB + COX1 mitochondrial dataset and the panel of conventional
nuclear loci (IRBP, BRCAI1, RAGI, and vWF), which are hereafter
referred to as the conventional mitochondrial and conventional
nuclear marker datasets, respectively.

To facilitate site-level mapping, we first generated, for each
gene investigated, a single alignment that combined sequences from
both the within-species and among-species samples. Sequences
were then separated back into their respective within-species and
among-species groupings for all downstream analyses. Sequence
alignments for mitochondrial genes and partial nuclear genes were
performed with MAFFT 7.4 (Katoh and Standley, 2013) using
translated amino acid sequences when feasible to preserve reading
frames. All maximum likelihood (ML) phylogenetic inference
was conducted with IQ-TREE2 (Minh et al, 2020), employing
the substitution model selected by the ModelFinder algorithm
(Kalyaanamoorthy et al., 2017). ML topologies were estimated to
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compute branch supports, which were assessed by the parametric
approximate likelihood-ratio test (aLRT) statistic (Anisimova and
Gascuel, 2006). In total, 2,576 IQ-TREE analyses were performed.

Inference of phylogenetically informative
sites

Lasso regression is a supervised machine learning approach
that can be used to identify phylogenetically informative
sites by modeling how the likelihood of each alignment
column (sites) contributes to the overall likelihood of a
phylogenetic tree (Schrago, 2025). Hence, the method highlights
only the most influential predictors (alignment sites) of the tree
topology. To do so, for a given sequence alignment, thousands
of random phylogenetic trees are first generated, and the log-
likelihood of each site is calculated under each tree (topology and
branch lengths). These site-wise log-likelihoods are then used as
explanatory variables (features) in a regression model, with the
total log-likelihood of each tree as the response variable. Because of
the penalty imposed by Lasso on regression coeflicients (f5), many
sites receive coefficients of exactly zero, indicating no meaningful
contribution to the tree likelihood. Sites with non-zero coeflicients
are classified as phylogenetically informative. This framework
enables an objective identification of informative sites without
relying on predefined topologies or arbitrary filtering thresholds.

Formally, we define the phylogenetically effective gene length
of a gene g with n alignment sites (PEGL) as the total number
of alignment sites assigned non-zero coefficients (f#0) in the
Lasso regression model under the penalization A selected by cross-
validation:

n

PEGL(g) = Y 1{B,(1*) # 0}

i=1

This quantity represents the subset of sites that meaningfully
contribute to the overall phylogenetic likelihood, providing a direct
and probabilistic estimate of gene’s effective length, independent of
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any assumed topology or arbitrary filtering thresholds. To facilitate
comparisons among loci of different sizes, we report the frequencies
of informative sites, i.e., PEGL( g)/n.

Lasso analysis was carried out independently for each gene
alignment using the glmnet package of R (Friedman et al., 2010). For
each alignment, we generated 10,000 random trees (including both
topology and branch lengths) using IQ-TREE2 (Minh et al., 2020),
employing the “-r” flag and the “--sitelh” command to record
site-wise log-likelihoods. This set of random trees provided the
observations used to estimate the 5 coeflicients of the linear model.

We compared the information content of coding sequences
using three metrics: (i) the proportion of informative sites
(PEGL(g)/n), (ii) the number of sites identified by Lasso as
phylogenetically informative (the effective gene length), and (iii)
the average parametric aLRT across internal branches of ML
phylogenies. The aLRT statistic was included because it depends
solely on tree topology, whereas the Lasso-based measure reflects
contributions to both topology and branch lengths. Additionally, for
the widely used CYTB and COX1 genes, we mapped the distribution
of informative sites along each coding sequence to highlight regions
enriched in phylogenetic signal.

Lastly, to test whether the mean percentage of informative sites
differed between mitochondrial and nuclear genes, we performed
a non-parametric bootstrap analysis at the among-species level.
Values from all mitochondrial genes were pooled into a single
vector, and values from nuclear genes were treated as a second
vector. We then generated 10,000 bootstrap replicates of the mean
difference between the two groups using the boot package (Canty
and Ripley, 2025) in R. The 95% confidence interval of the difference
was obtained using the percentile method (boot.ci). A difference
was considered statistically significant if the confidence interval
did not include zero. This approach is robust to deviations from
normality and enables inference on mean differences without relying
on parametric tests.

Results

In mammalian mitochondrial genes, regardless of the taxonomic
level, sparse learning with the Lasso method identified on average
32.7% of alignment sites as informative to tree likelihood. For
COX1 and CYTB, this frequency averaged 31.1% (Figures la,b).
At the within-species level, the proportion of informative sites
ranged from 2.8% to 94.3% (mean = 32.7%) when all mitochondrial
genes were considered, whereas the mean dropped to 30.6% for
CYTB and COX1 (8.3%-69.0%). In contrast, conventional nuclear
genes displayed higher frequency of informative sites at this
level, with the mean proportion of informative sites at 39.6%
(4.2%-81.3%) (Figure la).

At the among-species level, the frequency of sites informative
to the tree likelihood of mitochondrial genes ranged from 12.2%
to 62.2% (mean = 32.8%), while the combined CYTB + COX1I
dataset ranged from 20.6% to 47.4% (mean = 31.8%). Nuclear genes
randomly sampled from TOGA alignments, which were restricted
to the among-species level analysis, exhibited, on average, a higher
mean frequency (38.7%), with values ranging from 4.5% to 87.7%.
Conventional nuclear genes, on the other hand, performed more
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poorly at this level, with a frequency of 26.5% informative sites
(3.3%-65.7%) (Figure 1b).

The variance in the frequency of informative sites differed across
datasets. At the among-species level, mitochondrial genes showed
relatively lower variance (sd = 7.9%) compared with both nuclear
datasets (14.7% for TOGA CDS and 17.2% for conventional nuclear
markers). A similar pattern was observed at the within-species level,
where nuclear genes showed higher variance (sd = 21.2%) than
mitochondrial genes (16.6%). Bootstrap analysis indicated that the
mean percentage of informative sites did not differ significantly (p
=0.501) between the two genomic panels (mitochondrial genes and
nuclear CDS from TOGA). The 95% percentile confidence interval
of the difference included zero, confirming no detectable difference
between groups (Supplementary Figure S1).

Across genomic compartments,

longer genes

contained more sites classified as informative (Figure 2). The

generally

number of sites classified as informative by Lasso was positively
correlated with gapless sequence length in both mitochondrial
and nuclear genes (p < 0.01). The correlation was stronger for
mitochondrial genes (r = 0.70) than for nuclear genes (r = 0.52).
However, the rate of information gain per additional site was
lower in mitochondrial genes, with slopes of 0.23 and 0.36 for
mitochondrial and nuclear genes, respectively. Consequently, for
a given sequence length, nuclear genes tended to contain a greater
number of phylogenetically informative sites.

For within-species datasets, average aLRT values rarely exceeded
0.8. In contrast, for among-species datasets, average aLRT values for
above 0.75 were frequent, except for conventional nuclear markers.
At this level, both mitochondrial sets exhibited average aLRT values
(~0.67) comparable to nuclear genes from TOGA (0.67), whereas
the panel with conventional nuclear genes had an average aLRT of
0.57. Variance of average aLRT values was highest for TOGA CDS
(sd = 0.31) and lowest for conventional nuclear genes (sd = 0.22),
with both mitochondrial datasets showing similar intermediate
values (sd = 0.26). For resolving relationships among congeneric
species,30.5% of TOGA CDS alignments achieved an average aLRT
> 0.95, compared with 10.3% for mitochondrial genes, 11.3% of
CYTB + COX1, and 7.3% for conventional nuclear genes (Figure 3).

For both COX1I and CYTB, the distribution of phylogenetically
informative sites varied slightly depending on the taxonomic level
investigated (Figure 4). When resolving evolutionary relationships
within species, the first halves of both genes were generally more
informative. In contrast, for resolving among-species phylogenies,
phylogenetic information was more evenly distributed across the
coding sequence. Notably, some regions appeared to provide very
little information for resolving both within-species and among-
species relationships (low valleys in Figure 4). This artifact
resulted from indel-rich sites, which arose because alignments were
performed at the genus level rather than separately for individual
species, in order to facilitate the mapping of informative sites
across datasets.

Discussion

We showed that, on a genome-wide scale, nuclear genes exhibit
greater phylogenetic information content than mitochondrial genes.
On average, nuclear coding sequences contained a higher frequency

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1704212
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Schrago and Mello

1.0
» 0.8 —
]
=
@
)]
=
=
© -
£ 0.6
-
o
£
=
[e]
> 0.4
c
(]
=]
o
(O]
w
0.2
0.0 —
5 I\ 2
& &
oo&\&a 00+ ‘\-\\o“&e
NN X Q& L
9 ® NI
K & S F
S

FIGURE 1

10.3389/fbinf.2025.1704212

1.0 (b)
w 0.8
[0
=
7
o
=
=
S 06
£ a
Re)
£
—
(@]
3 0.4
[
[}
3
(on
[0}
u’:
0.2
H
0.0
\I I \I I
" a3 (]
o 0+ \o‘&e Sexr
S &8 O & @ s o2
o x & & QO
< R {& & ,5\9 RPN
NS ) O&c}e I @

Distribution of the frequency of phylogenetically informative sites across each data set studied. (a) Within-species and (b) among-species alignments.
Each point represents an alignment, showing the proportion of sites inferred as informative by Lasso regression.

of Lasso-identified informative sites, and ML phylogenies inferred
from nuclear loci showed a higher proportion of branches with
strong aLRT support. At the within-species level, the conventional
nuclear gene segments also displayed higher frequencies of
informative sites and higher average aLRT values, although
this same panel performed poorly among congeneric species.
Opverall, in the absence of whole-genome data, our results support
the common practice of combining mitochondrial and nuclear
markers in mammalian systematics, both for species delimitation
and for resolving phylogenetic relationships among closely
related species.

At the level of individual genes, the phylogenetic information
content of the widely used mitochondrial genes CYTB and
COX1 was comparable to the average of the mitochondrial
coding sequences (Supplementary Figure S2). Both genes contain
a substantial number of informative sites in their 5’ regions,
which supports the common practice of sequencing the 5’ portion
of the COXI coding region using universal metazoan primers
(Folmer et al., 1994). This is further supported by the comparatively
higher resolution that both genes provided in phylogenetic inference
relative to nuclear coding sequences, as reflected in their generally
higher aLRT values (Figure 3b).

Beyond CYTB and COX1, the ND5 gene was also effective in
resolving phylogenetic relationships at both within- and among-
species levels (Supplementary Figure S2), likely due to its longer
sequence (1,812 bp) compared with other mitochondrial genes
(684-1,542 bp). However, COXI, although the second longest
sequence analyzed (1,542bp), provided resolution equivalent
or lower than shorter genes such as CYTB (1,141bp) and

Frontiers in Bioinformatics

05

ND4 (1,378 bp) in within-species and within-genera datasets,
respectively. This supports previous findings that CYTB generally
provides slightly better resolution than COXI for mammalian
phylogenies (Tobe et al., 2010). Shorter mitochondrial genes, such
as COX2 and COX3, despite containing a relatively high proportion
of informative sites, did not achieve high levels of phylogenetic
resolution, most likely because of their limited sequence length,
which reduces phylogenetic precision. In addition to CYTB and
COX1, the ND4 and ND5 genes—although far less commonly
employed in mammalian phylogenetics—represent highly suitable
markers for addressing phylogenetic questions in mammals.
This is consistent with the findings of previous studies that
evaluated mammalian deeper divergences (Duchéne et al., 2011)
and other metazoan lineages (Zardoya and Meyer, 1996;
Creer, 2003; Main et al., 2024).

Traditional Sanger sequencing with overlapping reads produces
~1,000 bp with high-quality base calling. This has long been
regarded as an advantage of sequencing mitochondrial genes,
which are generally not much longer than this. For example, the
most widely used mitochondrial marker in mammals, CYTB, is
1,141 bp in length. In contrast, although the coding sequences
of the nuclear genes we analyzed are of similar size (average
CDS length = 1,215 bp), their actual genomic lengths are much
greater due to the presence of introns. Nevertheless, some of the
nuclear genes analyzed warrant particular attention. Specifically,
SNUPN (1,641 bp), GPS2 (1,176 bp), and MBIP (1,603 bp) exhibited
both a high number and a high proportion of phylogenetically
informative sites, while the complete gene length was comparable
to the mitochondrial genes. To our knowledge, none of these have
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been employed in multi-gene phylogenetic studies of mammals to
date. This highlights the potential of the Lasso regression approach
to identify nuclear genes that could serve as valuable markers in
future studies aimed at resolving shallow phylogenetic relationships
in mammals. A complete list of the analyzed nuclear genes that
have CDSs shorter than 1,200 bp and are highly informative is
provided in the Supplementary Table S1.

Our analyses did not address potential topological differences
among mitochondrial markers, which may result from
statistical errors (e.g., limited taxon or site sampling) or model

misspecification (e.g., inappropriate substitution models). Nor

Frontiers in Bioinformatics

did they consider topological differences between mitochondrial
and nuclear genes (in the case of among-species dataset), which
may stem from both biological processes (e.g., incomplete lineage
sorting, introgression) and statistical error. Thus, we did not
calculate any measure of the success rate of mitochondrial or nuclear
genes in recovering taxonomy-based mammalian relationships,
because such a statistic can only be formally assessed if the true
tree topology is known, which is rarely the case for empirical
data. Simulations, however, demonstrate that Lasso regression can
efficiently identify sequence sites that significantly contribute to the
tree likelihood (Schrago, 2025).
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It is also worth noting that mitochondrial genes are less effective
for resolving evolutionary divergences at the within-species level.
Although the average frequencies of informative sites were similar
between the within-species and among-species datasets (~32%), the
average aLRT was much lower for within-species comparisons. This
likely reflects differences in the pattern of site informativeness:
while both levels yield a comparable number of informative
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sites, within-species datasets may contain a larger proportion of
autapomorphic sites associated with terminal branches, probably
due to the presence of transient polymorphisms. Because aLRT
and other branch support statistics primarily assess resolution
of internal branches, sites containing autapomorphic changes
contribute mainly to the tree likelihood (which combines topology
and branch lengths) and not to aLRT values. These observations
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suggest that single mitochondrial genes may be insufficient
to resolve population divergences within mammalian species,
consistent with previous findings (Moron-Lopez et al, 2022).
A suitable strategy may be to combine mitochondrial loci with
segments of conventional nuclear markers, which our results
show to perform well at the within-species level and to offer
complementary information that mitochondrial genes alone
cannot capture.

Mitochondrial genes have long been recognized for substantial
heterogeneity in substitution rates among codon positions
(Brown et al.,, 1982; Irwin et al., 1991; Yang and Yoder, 2003).
Because changes in third codon positions are often synonymous,
substitution rates are generally higher than at first and second
positions. Our results are consistent with this pattern, as the number
of informative sites in third codon positions exceeded that in first
and second positions (Supplementary Figure S3). This pattern was
particularly pronounced for among-species datasets, where third
codon positions contained, on average, 1.8 times more informative
sites than first and second positions. The difference in informative
sites between first and second positions was minimal, supporting the
notion that these positions are under strong purifying selection and
justifying their combination into a single partition when analyzing
mitochondrial genes. It also demonstrates that third codon positions
are not saturated for resolving phylogenetic relationships within
mammal genera.

The approach we used to classify alignment sites by
informativeness, based on the Lasso regression sparse learning
method, is computationally intensive because it requires a very
large number of random phylogenetic trees to train the classifier.
This limitation prevented us from including a larger number of
nuclear genes in the within-genus comparisons. However, because
we selected a random sample of nuclear genes that were first filtered
based on CDS length—ensuring comparability with mitochondrial
CDSs—we believe that this set provides a suitable representation
of the overall nuclear CDSs, and that our analyses are unlikely
to be biased by this sampling. It is also important to highlight
potential future applications of our approach, such as evaluating
non-coding genomic regions. This could enable the identification
of the most informative genomic regions (e.g., CDSs, introns,
regulatory, intergenic) for resolving specific systematic or taxonomic
questions, including deeper divergences and other taxonomic
clades. Furthermore, as additional genomes become available, it
will be possible to compare the performance of mitochondrial and
nuclear genomic regions at the within-species level.

Our large-scale evaluation of mammalian mitochondrial
and nuclear genes using a sparse learning framework provides
the first quantitative benchmark of their relative phylogenetic
informativeness. Nuclear loci contained, on average, a higher
frequency of informative sites than mitochondrial genes. The
overall performances of mitochondrial genes, including the widely
sequenced CYTB and COX1I, were comparable to those of nuclear
genes. These findings reinforce that, in the absence of whole-genome
data, mitochondrial markers are useful for addressing shallow-level
taxonomic questions in mammals. Phylogenetic informativeness
can be further enhanced by combining mitochondrial genes with
conventionally sequenced nuclear segments (e.g., IRPB, BRCAI),
consistent with long-standing practices in mammalian systematics.
Moreover, nuclear loci also provide complementary information
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and are essential when processes such as incomplete lineage sorting,
recombination, or hybridization are relevant.

By integrating methodological innovation with extensive
comparative datasets, our study provides a principled foundation
for marker selection in mammalian taxonomy, species delimitation,
and evolutionary research, while offering a broadly applicable
framework that can be deployed in any lineage. Together, these
contributions pointing toward a more data-driven framework
for systematics in the genomic era. Users interested in applying
the workflow to their own datasets may download the Python
implementation at http://github.com/cschrago/LassoTrim.
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