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Introduction: The Axolotl (Ambystoma mexicanum) offers a deep insight into 
brain regeneration by fully reconstructing its telencephalon post-injury, a 
capability that most vertebrates do not have. This study aimed to identify 
hub genes (highest-weighted genes) underlying this process and to map 
their cell location by analyzing spatiotemporal transcriptomic data using 
high-dimensional weighted gene co-expression network analysis, integrating 
protein-protein interaction networks, and cross-validating findings through 
literature.
Results: We identified 180 hub genes across the regeneration timeline, 
including several with conserved orthologs previously reported in vertebrate 
regeneration models. Among these candidates, TRH (Thyrotropin-Releasing 
Hormone) displayed the most consistent spatiotemporal pattern, appearing 
repeatedly as a hub gene and localizing to MSN enriched regions at multiple 
stages. TRH is broadly characterized in vertebrates as a neuroendocrine peptide 
with roles in hormonal signaling, and MSNs are known to respond to a 
variety of hormonal and neuropeptidergic cues. In our dataset, this background 
provides additional perspective on the transcriptional configurations in which 
TRH appears. Other hub genes showed stage/cell specific patterns, together 
outlining a heterogeneous and dynamic landscape of transcriptional states 
detected during telencephalon regeneration.
Conclusion: This study provides a descriptive map of gene co-expression 
dynamics during axolotl telencephalon regeneration. By integrating hdWGCNA, 
spatial transcriptomics, and network-based context, we identify hub genes and 
transcriptional states associated with injury response, including a persistent TRH 
linked MSN state. These findings offer a foundation for future experimental 
studies aimed at elucidating the molecular basis of axolotl brain repair.
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1 Introduction

Studies on the regenerative abilities of salamanders, including 
brain tissue regeneration, have provided crucial insights into 
neuroregeneration (Joven et al., 2019; Arenas Gómez and 
Echeverri, 2021). Among salamander species, Axolotl is one 
of the most extensively studied models in developmental 
and regenerative biology (Arenas Gómez and Echeverri, 2021; 
Bölük et al., 2022). The axolotl’s capacity for brain repair offers a 
model to investigate the genetic regulatory mechanisms underlying 
neuro-regeneration through the analysis of hub genes identified 
via gene co-expression network analysis. In such networks, hub 
genes represent the central role of their modules and are recognized 
as central regulators of gene expression and cellular processes
(Yu et al., 2017).

When facing disruptive events such as brain injury, organisms 
must reprogram cellular functions and molecular pathways to 
ensure tissue recovery. This process involves dynamic changes in 
cell-type proportions and gene regulatory programs that activate 
specialized regenerative mechanisms (Goldman and Poss, 2020; 
Bassat and Tanaka, 2021). Evidence of this phenomenon has 
been reported across diverse organisms, from highly regenerative 
species to mammals with limited capacity. In axolotls and newts, 
differentiated cells regain plasticity and contribute to tissue 
reconstruction, while zebrafish exhibit extensive regenerative 
potential in organs such as the heart and fins through dynamic 
cellular remodeling. Planarians regenerate entire bodies by 
modulating the abundance of pluripotent cells, and Hydra 
maintains continuous self-renewal through flexible transcriptional 
programs. Partial manifestations of this process have also been 
documented in mammals, particularly in liver regeneration and 
neonatal cardiac repair (Gerber et al., 2018; Kikuchi et al., 2010; 
Fincher et al., 2018; Siebert et al., 2019; Yanger et al., 2013;
Li et al., 2021).

Notably, a recent study employed surgical removal of the 
telencephalon in the axolotl, monitoring regeneration with 
single-cell spatial transcriptomics (Wei et al., 2022), Stereo-seq, 
the technology used to generate this dataset, is a sequencing-
based spatial transcriptomics platform that captures mRNA 
using patterned DNA nanoball arrays and achieves subcellular 
to near–single-cell resolution (Chen et al., 2022). The dataset 
analyzed here was processed with the Stereo-seq Analysis Workflow 
(SAW), which performs read alignment, spatial binning, and 
segmentation to produce gene-by-cell matrices suitable for 
downstream analysis (Zhang and Horvath, 2005).

Here, we introduce a framework to elucidate the spatiotemporal 
gene regulatory landscape of axolotl brain regeneration by 
focusing on hub genes as functional proxies for cell-type 
specific programs. We present an integrative framework that 
leverages stereo-seq transcriptomic data and high-dimensional 
weighted gene co-expression network analysis (hdWGCNA). 
This approach identifies co-expressed gene modules across 
distinct cell-types and the extraction of eigengenes, summary 
profiles that capture the core activity of each module. By 
constructing eigengene networks and pinpointing hub genes 
with the highest connectivity, we map candidate regulatory 
drivers within and between neighboring cell populations during
regeneration.

This systems-level approach deepens our understanding of the 
molecular mechanisms underlying brain repair in the axolotl and 
lays the groundwork for developing novel therapeutic strategies to 
promote regeneration and recovery following severe central nervous 
system injury. 

2 Materials and methods

This study aimed to identify and characterize key regulatory 
hub genes involved in telencephalon regeneration in the 
axolotl by leveraging spatial transcriptomic datasets and 
computational network analysis. This research was designed as a 
retrospective bioinformatics study utilizing publicly available spatial 
transcriptomic data derived from axolotl telencephalon tissue across 
multiple regenerative and control stages. 

2.1 Spatial transcriptomics dataset

Spatial transcriptomic data from the telencephalon of Axolotl 
were retrieved from the public STOmics/ARTISTA repository 
(https://db.cngb.org/stomics/artista/), corresponding to the dataset 
reported by Wei et al. (Science, 2022). This dataset comprises 
24 telencephalic sections spanning developmental stages (St. 44, 
54, 57), juveniles, adults, metamorphosed individuals, and post-
injury samples collected at 2, 5, 10, 15, 20, 30, and 60 days post-
injury (DPI). Telencephalic injury experiments in the original 
study were performed in juvenile axolotls (10–13 cm in body 
length), in which brain lesions were generated by controlled 
extirpation of a reproducible 0.5 × 0.5 mm portion of the 
dorsal pallium in the left telencephalic hemisphere of ∼11 cm
individuals.

In the original publication, raw Stereo-seq reads were initially 
processed using the SAW (Stereo-seq Analysis Workflow), 
which performs read alignment, spatial registration, single-cell 
segmentation, and quantification of unique molecular identifiers 
(UMIs) to generate cell-by-gene expression matrices. The resulting 
matrices, deposited in STOmics, are fully preprocessed, quality-
controlled, and annotated to the Axolotl reference genome 
(AmexG_v6.0-DD, axolotl-omics.org). The genome annotation was 
generated by the genome authors based on sequence homology 
to orthologous genes from other vertebrates, primarily human. 
Consequently, the dataset includes both genes labeled with human-
like symbols and Axolotl specific identifiers (e.g., AMEX60DD_
XXXXX). All genes present in the preprocessed matrices were 
retained to capture both conserved and axolotl-specific transcripts.

For the present study, analyses were restricted to juvenile, adult, 
and post-injury telencephalic sections, excluding all developmental-
stage and metamorphosed samples. We analyzed all injury-
associated sections (2–60 DPI) and used uninjured juvenile and 
adult samples as biological controls. Preprocessed matrices and 
corresponding metadata were downloaded in RDS format and 
imported into R (v4.2.2) using the native readRDS() function. 
No additional preprocessing, filtering, or realignment was applied, 
thereby preserving the original metadata, spatial coordinates, 
and gene annotations for downstream transcriptomic and co-
expression analyses. 
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2.2 Library and requirements

All analyses were conducted in RStudio using Seurat v4.4 
(https://github.com/satijalab/seurat) and hdWGCNA v0.4.01 
(https://smorabit.github.io/hdWGCNA/) as the primary toolkit 
for spatial and single-cell transcriptomic analyses. Additional 
dependencies, including WGCNA, UCell, GenomicRanges, 
GeneOverlap, and devtools were installed to support gene network 
construction, module comparison, and spatial mapping. The Seurat 
package was installed directly from the satijalab GitHub repository 
to ensure compatibility with hdWGCNA workflows. 

2.3 Co-expression network construction

Weighted gene co-expression networks were built for each 
regeneration time point (2, 5, 10, 15, 20, 30, and 60 DPI) and for 
both control conditions (juvenile and adult) using the hdWGCNA 
framework, following the official workflow for single-cell data. All 
analyses were performed independently for each annotated cell-
type within each sample, as implemented in the supplementary code 
hdWGCNA_pipeline.R.

Gene filtering was conducted using the SetupForWGCNA() 
function with gene_select = “fraction” and a detection threshold 
of 5% ( fraction = 0.05). Under this configuration, a gene is 
retained only if it is expressed in at least 5% of cells within each 
specific cell-type. This parameter is defined by the hdWGCNA 
framework and is applied directly to the data; consequently, 
genes with sparse or highly cell-type restricted expression may 
be excluded from network construction in cell-types where they 
do not meet this threshold. Expression values were extracted 
from the SCTransform-normalized assay (“SCT”, slot = “counts”), 
which contains Pearson residuals generated through regularized 
negative binomial regression. These variance stabilized values 
preserve biological heterogeneity while mitigating batch effects and 
sequencing depth variation.

Metacell aggregation was used to increase network stability and 
reduce noise. Metacells were generated with MetacellsByGroups() 
by grouping cells according to their annotated identity ( group.by 
= “Annotation”) and aggregating k = 25 nearest neighbors per 
metacell (with max_shared = 30). The resulting metacell matrices 
were normalized using NormalizeMetacells() before network 
construction.

Soft-thresholding power was estimated for each cell-type 
using TestSoftPowers() across the default candidate range (1–30). 
hdWGCNA selects the lowest power that achieves a scale-
free topology fit index (R2 ≥ 0.80), ensuring adequate network 
connectivity and adherence to scale-free properties. When no 
candidate power reached this threshold for a given cell-type, that 
cell-type was excluded from downstream network analysis. This 
exclusion results from framework defined criteria, and not from 
gene expression patterns alone.

Network construction was then performed with 
ConstructNetwork() using the selected soft power for each 
cell-type. Module eigengenes (MEs) were computed using 
ModuleEigengenes(), scaled with ScaleData() while preserving cell-
type annotation, and stored within the Seurat object. Gene-module 
connectivity (kME) was obtained with ModuleConnectivity() 

to quantify the correlation between each gene and its 
module eigengene, enabling the identification of highly 
connected hub genes. 

2.4 Identification of 
regeneration-expressed genes

To identify genes exhibiting regeneration-specific expression 
patterns, we employed a comparative set-based strategy integrating 
co-expression modules from hdWGCNA outputs across all 
timepoints and conditions (‘common_genes_across_timepoints.R’).

All genes assigned to co-expression modules were 
extracted from hdWGCNA results and compiled into a 
comprehensive gene by cell-type matrix stratified by timepoint 
(Supplementary Data Sheet 1). Gene set comparisons were 
performed using set intersection operations to identify 
genes with consistent module membership across conditions. 
This analysis generated three derivative datasets: 1. genes 
present across all seven regeneration stages (2–60 DPI; 
Supplementary Data Sheet 2); 2. genes present in both control 
samples (juvenile and adult; Supplementary Data Sheet 3); and 3. 
regeneration-specific genes present in regeneration but absent from 
control samples (Supplementary Data Sheet 4).

Genes detected during regeneration were first partitioned 
according to their annotation status. AMEX-prefixed identifiers 
were separated from genes with established ortholog assignments, 
and both categories were retained for analysis in distinct output files. 
Ortholog names were standardized by removing taxonomic suffixes 
and extracting gene symbols from the pipe delimited format.

For the purposes of this study, genes of interest were defined 
as those assigned to co-expression modules present in regenerating 
samples (2–60 DPI) and absent from modules identified in control 
tissues. This classification is based on the assumption that co-
expression modules reflect coordinated transcriptional activity, 
enabling the identification of gene programs specifically associated 
with the post-injury context. 

2.5 Hub gene extraction and frequency 
analysis

For each regeneration timepoint, hub genes were extracted 
from hdWGCNA network outputs using GetHubGenes() with n_
hubs = 10, identifying the top 10 most highly connected genes 
(by kME) within each co-expression module for every cell-type 
(hubgenes_analysis.R). Hub genes were ranked by their module 
connectivity, assigning rank levels 1–10 where level 1 represents the 
most central hub gene.

The 180 regeneration-associated genes identified were cross-
referenced with hub gene lists to determine in which cell-types, 
modules, and at what rank level each gene appeared. Genes not 
identified as hub genes were filtered out, retaining only hub genes 
for downstream spatial analysis.

To quantify how frequently each regeneration gene functioned 
as a hub across different cellular contexts, module assignments were 
parsed and counted using in hubgene_getfrequencie.R.
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This frequency analysis revealed which regeneration genes 
consistently emerged as network hubs across modules and 
timepoints. Hub gene annotations including AMEX gene identifiers, 
gene names, associated cell-types, modules, rank positions, and hub 
frequencies were consolidated in Supplementary Data Sheet 5. 

2.6 Spatial mapping of cell-types and hub 
gene expression

Spatial transcriptomics data were processed using Seurat’s 
standard preprocessing workflow (hdWGCNA_spatial_pipeline.R), 
which included normalization, identification of highly variable 
features, data scaling, and principal component analysis. Shared 
nearest neighbor graphs were constructed using the first 30 
principal components, followed by UMAP dimensionality
reduction.

Spatial visualization of cell-type distributions was performed 
with annotation based grouping. Visualization parameters were 
optimized for clarity, coordinate transformation, and a custom 
40 color palette for distinct cell-type identification. Spatial maps 
were generated individually for each regeneration timepoint 
by manually loading the corresponding spatial Seurat object
(RDS file).

For spatial expression analysis of hub genes, each of the 
180 regeneration associated hub genes was manually queried 
across all regeneration timepoints using spatial transcriptomics 
datasets. The analysis prioritized genes at rank 1 within their 
respective cell-types and modules. Spatial expression patterns 
were retrieved from Seurat object metadata and visualized 
manually, constructing a spatiotemporal atlas of hub gene 
expression throughout the temporal progression of brain
regeneration. 

2.7 STRING

Protein–protein interaction (PPI) networks were generated 
using STRING (accessed August 2024) to explore potential 
functional relationships among the 180 hub genes identified 
across regeneration time points. The original annotation relies 
on the Axolotl reference genome (AmexG_v6.0-DD, axolotl-
omics.org), which integrates gene symbols inferred through cross-
species homology.

For this analysis, we used the gene symbols provided in 
that original annotation, which were assigned based on best-hit 
homology to the human proteome and serve as functional proxies 
for axolotl genes.

The Xenopus laevis proteome was selected as the reference 
organism in STRING due to its phylogenetic proximity to Axolotl 
within Amphibia, allowing accurate orthology-based transfer of 
conserved protein interactions while preserving lineage-specific 
context. This approach minimizes annotation mismatches that may 
occur when querying against mammalian databases. All evidence 
channels in STRING were enabled, and pairwise associations with 
a combined confidence score ≥0.40 were retained for network 
construction and visualization. 

2.8 Spatial co-localization analysis of TRH 
expression and MSN cells during 
regeneration

To investigate the spatial distribution of TRH (Thyrotropin-
Releasing Hormone) expression and its topographical relationship 
with MSN (Medium Spiny Neurons) populations throughout axolotl 
brain regeneration, spatially-resolved gene expression maps were 
retrieved from the ARTISTA database in PNG format for each 
control and post-injury time point examined (2, 5, 6, 10, 15, 
21, 30, and 60 DPI). For each one, two distinct image datasets 
were acquired: one depicting TRH expression within the lesioned 
tissue and another representing MSN cell distribution in the 
corresponding region. Image processing was performed using 
a custom Python script implementing a color based detection 
and morphological dilation algorithm. The algorithm identifies 
expression signals in each image through intensity thresholding 
in the RGB color space, applies binary dilation to enhance 
marker visibility, and generates a composite image wherein TRH 
expression is rendered in grayscale and red gradients according 
to signal intensity, while MSN cell presence is encoded in yellow. 
Signal overlay enables the identification of spatial co-localization 
regions where TRH expression occurs in proximity to or within 
MSN neuronal territories. The resulting composite images were 
exported at 300 DPI resolution with transparent backgrounds, 
facilitating visualization of temporal changes in TRH distribution 
patterns and its spatial association with MSN cells throughout the 
regenerative process. 

3 Results

3.1 Hierarchical filtering of co-expression 
networks defines a 
regeneration-associated hub gene set

We first summarized the global co-expression structure 
of the dataset by constructing hdWGCNA networks across 
all cell-types, regeneration stages and uninjured controls. This 
analysis yielded 1,048,576 gene–cell assignments distributed 
into 3,324 co-expression modules, each representing a group of 
genes with shared expression patterns in a specific cellular and 
temporal context (Figure 1). A given gene may appear multiple 
times if it is detected in different modules across timepoints or cell-
types, whereas genes not assigned to any module are grouped in the 
“grey” category and excluded from downstream interpretation.

To focus on genes associated with the post-injury response, 
we compared module composition between regenerating samples 
and controls. Genes present in control modules were excluded. 
This yielded 1,307 genes restricted to regeneration-specific modules, 
comprising both annotated orthologs and axolotl-specific AMEX-
prefixed genes. Of these, 1,237 correspond to genes with assigned 
orthologs, while the remaining AMEX-labeled genes represent 
axolotl-specific transcripts that were used for future analysis 
separately.

Within this regeneration-restricted set, we then examined 
intramodular connectivity to identify hub genes as the most highly 
connected members of each module. Aggregating hub assignments 
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FIGURE 1
Hierarchical filtering of gene co-expression data. The outer circle 
represents all gene–cell entries (1,048,576) grouped into 3,324 
co-expression modules. From these, 1,307 genes were identified as 
specific to regeneration, and 180 hub genes were retained as 
representative regulators.

across all regeneration-associated modules yielded a non-redundant 
set of 180 hub genes. This hub gene ensemble constitutes the 
core group of candidates analyzed in subsequent sections, where 
we characterize their temporal dynamics, spatial distribution and 
interaction context. 

3.2 Global distribution of hdWGCNA 
modules across the regeneration timeline

To obtain a systems-level view of how transcriptional programs 
evolve over time, we next summarized the global distribution 
of hdWGCNA modules across all analyzed cell subtypes and 
regeneration stages in a heatmap displayed in Figure 2. The total 
number of co-expression modules detected when aggregating all 
cell-types. The X-axis represents the full regeneration timeline, 
including uninjured controls and post-injury stages at 2, 5, 10, 15, 
20, 30, and 60 DPI. The Y-axis lists the annotated cell-types (clusters) 
present in the dataset. Each tile represents the number of modules 
detected within a specific cell-type at each timepoint.

The numbers shown above the heatmap indicate the total 
number of cells analyzed at each timepoint, enabling visual 
comparison between module counts and sampling depth. Detailed 
information on cell-type annotations and their presence across the 
regeneration timeline is provided in Supplementary Data Sheet 2.

This representation shows that multiple cell-types display a 
higher number of co-expression modules at early and intermediate 
post-injury stages compared with uninjured controls. By contrast, 
at later timepoints (30–60 DPI), module counts within most cell-
types converge toward values similar to those observed in controls. 

Given this dynamic and complex modular landscape, we focused 
subsequent analyses on hub genes allowing us to summarize co-
expression programs at single-cell resolution. 

3.3 Cell-level mapping of hub genes 
reveals regeneration-specific regulatory 
signatures

Given this dynamic modular landscape across regeneration 
stages, we examined how individual hub genes are distributed 
at single-cell resolution along the regeneration timeline. 
For each cell, the hdWGCNA networks were used to 
identify the top-ranked hub gene (highest kME) within its 
assigned module. Figure 3 summarizes these assignments by 
displaying, for every cell, the hub gene with the strongest 
intramodular connectivity at post-injury stages and in uninjured 
controls. To support the biological interpretation of these 180 
prioritized hubs, Supplementary Data Sheet 6 provides a curated 
table compiling reported gene functions and injury/regeneration-
relevant evidence for each hub gene, with the corresponding 
bibliographic sources.

Each panels A–G of Figure 3 shows the distribution of hub 
genes in single cells at 2, 5, 10, 15, 20, 30, and 60 DPI, respectively. 
Each panel displays the top-ranked hub gene within each cell’s 
assigned module. This representation allows the spatial and cellular 
distribution of hub-based regulatory states to be compared across 
timepoints.

Panel H displays the uninjured control condition, where none 
of the hub genes from regeneration-specific modules were detected 
as the top-ranked hub in any cell. This absence reflects the filtering 
used to define the 180 hub genes, which were selected from modules 
present only in post-injury samples and therefore do not appear 
in control modules by construction. Thus, the hub genes analyzed 
here are observed exclusively in post-injury conditions and are not 
characteristic of the baseline uninjured state.

Within this regeneration-associated hub gene set, several 
genes showed recurrent detection across multiple cell-types and 
regeneration stages (Supplementary Data Sheet 5). Notably, TRH 
(Thyrotropin-Releasing Hormone) emerged as one of the most 
frequently assigned hub genes, appearing as the top-ranked hub in 
multiple modules and across several cell-types, including medium 
spiny neuron–like populations, throughout the post-injury timeline. 
In addition, approximately 30 other hub genes were identified as 
hubs in more than one module and cell-type, showing that a subset of 
genes repeatedly occupies central positions in distinct co-expression 
programs during telencephalon regeneration. 

3.4 Protein-protein interaction network 
organization of regeneration-associated 
hubgenes

Beyond their spatial and cellular distribution, we examined 
potential functional relationships among the 180 hub genes by 
constructing a protein–protein interaction (PPI) network using 
STRING (Figure 4). Because axolotl-specific PPI resources are 
not available, gene symbols were first mapped to their human 
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FIGURE 2
Global distribution of hdWGCNA co-expression modules during axolotl telencephalon regeneration. Heatmap showing the number of hdWGCNA 
modules detected per cell subtype across stages (uninjured juvenile/adult; 2, 5, 10, 15, 20, 30, and 60 DPI). Numbers above indicate total cells per 
stage. Values are aggregated across subtypes; detailed subtype contributions are provided in Supplementary Data Sheet 2. Abbreviations: sfrpEGC, Sfrp 
+ Ependymoglial; nptxEX, Nptx + lateral pallium excitatory neurons; obNBL, olfactory bulb neuroblasts; sstIN, Sst + inhibitory neurons; scgnIN, Scgn + 
inhibitory neuron; cckIN, Cck + inhibitory neurons; tlNBL, telencephalon neuroblasts; WSN, wound-stimulated neurons; rIPC1, reactive intermediate 
progenitor cells 1; npyIN, Npy + inhibitory neuron; wntEGC, Wnt + ependymoglial cells; mpIN, medial pallium inhibitory neurons; MCG, Microglia; 
ntng1IN, Ntng1+ inhibitory neurons; reaEGC, reactive ependymoglial cells; MSN, medium spiny neuron; IMN, immature neurons; CMPN, 
cholinergic/monoaminergic/peptidergic neurons; ribEGC, ribosomal EGC; CP, choroid plexus; dpEX, dorsal pallium excitatory neurons; mpEX, medial 
pallium excitatory neuron; Oligo, oligodendrocytes; VLMC, leptomeningeal vascular cells; rIPC4, reactive intermediate progenitor cells 4.

orthologs in the original annotation and then queried in STRING 
using Xenopus laevis as the reference organism, thereby leveraging 
conserved vertebrate interaction information. A complete record of 
all 180 input genes and the corresponding X. laevis identifiers used 
for the STRING query is provided in Supplementary Data Sheet 7.

The resulting network depicts the interaction landscape 
among the proteins encoded by the 180 hub genes. Blue edges 
represent interactions curated from databases and pink edges 
correspond to experimentally determined interactions. Green, 
red and navy blue lines indicate predicted associations based 
on gene neighborhood, gene fusions and gene co-occurrence, 

respectively, whereas yellow, black and purple lines reflect 
relationships supported by text mining, co-expression and
protein homology.

The PPI network reveals 180 hub genes connected by 523 
interactions, with clustering of genes into distinct subnetworks. 
Some genes show extensive connectivity (>10 interactions), while 
others have limited connections (1-3 interactions). In the context 
of limited axolotl-specific functional annotation, this network 
provides a structural overview of how regeneration-associated 
hub genes are organized within known and predicted vertebrate 
interaction pathways. 
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FIGURE 3
Hub genes detected in individual cells across post-injury stages (2, 5, 10, 15, 20, 30, and 60 DPI) and in uninjured controls. (A–G) display the distribution 
of hub genes identified by hdWGCNA in each cell across the corresponding regeneration time points. (H) shows the control condition, where no 
regeneration-associated hub genes were detected, reflecting that the hub genes identified in this study were specific to post-injury co-expression 
modules and did not appear in the uninjured telencephalon.

3.5 Spatial mapping of TRH-expressing 
cells during telencephalon regeneration

Given that TRH emerged as one of the most recurrent hub genes 
in regeneration-associated modules, we next examined its spatial 
distribution and temporal dynamics across the telencephalon.

TRH-expressing cells were overlaid on MSN annotations 
using Stereo-seq spatial coordinates for each post-injury 
stage and for the juvenile control (Figure 5). In these 
maps, grey dots represent all spatially resolved cells, yellow 
indicates MSN-annotated cells, and TRH-positive cells are
shown in red.
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FIGURE 4
Protein–protein interaction (PPI) network of 180 hub genes identified from Axolotl transcriptomic data. Gene symbols were annotated via homology to 
human genes and queried in STRING using Xenopus laevis as the reference species, given the absence of axolotl-specific PPI data (Supplementary Data 
Sheet 7). Blue lines are known interactions from curated databases and pink lines are known interactions from experimentally determined. Green, red 
and navy blue lines correspond to predicted interactions from gene neighbourhood, gene fusions, gene co-occurrence. Yellow, black and purple lines 
correspond to textmining, co-expression, protein homology respectively.

Quantitatively, TRH-positive cells accounted for approximately 
6% of all cells in the juvenile control and increased markedly after 
injury, reaching 37% at 2 DPI and 33% at 5 DPI. This proportion 
then gradually decreased to 25% at 10 DPI, 24% at 15 DPI, and 28% 
at 20 DPI, and subsequently declined to 7% at 30 DPI and 6% at 
60 DPI, approaching control levels at later stages. These percentages 
refer to the fraction of TRH-positive cells relative to the total cellular 
population in each section, not exclusively to the MSN subset.

Across the entire regeneration timeline (2–60 DPI), TRH-
positive cells are predominantly located within MSN-enriched 
regions. These spatial and quantitative observations show that 
TRH expression is transiently expanded after injury and remains 
repeatedly associated with MSN-enriched areas throughout the 

post-injury period, in agreement with its recurrent identification as 
a hub gene in MSN linked modules. This visualization is intended 
as a descriptive summary of TRH dynamics and co-localization and 
does not, by itself, establish any functional contribution of TRH to 
the regenerative process. 

4 Discussion

We used hdWGCNA and spatial transcriptomics to map 
transcriptional states across axolotl telencephalon regeneration, 
identifying 180 hub genes that characterize the regenerative 
timeline. TRH emerged as the most consistent hub, appearing 
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FIGURE 5
Spatial distribution of TRH-expressing cells across the regeneration timeline in the axolotl telencephalon (2–60 DPI) and Control (Juvenile). Spatial 
transcriptomic maps showing TRH-expressing cells (red) overlaid on medium spiny neuron (MSN) annotations (yellow) at multiple post-injury stages. 
Grey dots represent all spatially resolved cells. TRH-positive signals consistently localize within MSN-enriched regions from early (2 DPI) to late 
regeneration (60 DPI), illustrating the persistence of TRH-associated MSN states throughout the regenerative process. This visualization is descriptive 
and does not imply functional involvement of TRH in regeneration.
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in multiple co-expression modules and showing persistent 
spatial overlap with MSN-enriched regions from 2 to 60 DPI. 
Prior vertebrate studies have associated TRH with molecularly 
defined neuronal subpopulations and neuroprotective effects 
(Boutej et al., 2017; Maness, 1992). In this context, our integrative 
hdWGCNA spatial framework places TRH within a spatially 
resolved regenerative timeline; however, it cannot resolve whether 
TRH contributes causally to regeneration or primarily marks an 
injury-responsive transcriptional state.

Understanding hub genes in regenerative contexts requires 
methods that preserve cellular heterogeneity. hdWGCNA addresses 
this by constructing co-expression networks at single-cell 
resolution, avoiding the information loss inherent to bulk or 
pseudo-bulk approaches. This method has successfully identified 
biologically relevant hub genes in Alzheimer’s disease, tumor 
microenvironments, and tissue degeneration, contexts where 
cellular diversity drives pathology. In axolotl brain regeneration, 
where marked spatial and temporal heterogeneity defines the 
process, this single-cell resolution becomes particularly valuable 
(Morabito et al., 2023; Sun et al., 2024; Zhao et al., 2025; 
Zhu et al., 2025; Zhai et al., 2025).

In our analysis, hub genes represent the most highly connected 
nodes within cell-type specific modules, serving as proxies for 
dominant transcriptional programs. We focus here on the subset of 
hubs that appear specifically in regeneration (absent from controls), 
as these are most likely to mark injury-responsive states. The 
180 hubs identified span all regeneration stages and multiple cell-
types, enabling both spatiotemporal mapping and cross-species 
comparison.

Among the 180 hub genes identified, 104 have orthologs 
previously implicated in regenerative processes across Danio 
rerio, Xenopus laevis, Ambystoma mexicanum, and Hydra spp. 
(Supplementary Data Sheet 6), This overlap is consistent with 
the view that at least part of the molecular machinery engaged 
during axolotl telencephalon regeneration involves genes that 
have been repeatedly associated with regeneration in other 
metazoan models, within coordinated modules mediating 
intercellular communication and tissue reorganization (Goldman 
and Poss, 2020; Bassat and Tanaka, 2021; Gerber et al., 2018; 
Kikuchi et al., 2010; Fincher et al., 2018; Siebert et al., 2019; 
Yanger et al., 2013; Wei et al., 2022). The remaining 76 hubs include 
both conserved vertebrate genes and axolotl-specific transcripts 
(AMEX-prefixed identifiers), reflecting a combination of shared 
components and responses that appear restricted to this species.

Taken together, these patterns suggest that the telencephalic 
response in this species involves genes repeatedly associated with 
regeneration in other models alongside additional components 
without previously described regenerative roles, which we interpret 
as a descriptive correspondence at the level of gene identity rather 
than evidence of conserved function across species.

Within this mixed repertoire of conserved and axolotl restricted 
hubs, several genes also exhibit context-dependent transcriptional 
roles, whereby the same gene participates in distinct co-expression 
programs across cellular states. MMP2 illustrates this pattern by 
functioning as a hub in both reaEGC and mpEX cells during 
regeneration, within cell-type resolved co-expression modules. In 
mammals CNS injury, MMP2 and TNC are both engaged in wound 
healing remodeling and axonal regeneration (Hsu et al., 2006; 

Chen et al., 2010). The appearance of MMP2 in reaEGC alongside 
TNC, and its detection in other populations expressing SCGN, 
places these cell-types within a shared transcriptional context during 
early tissue remodeling. Consistent with this link, secretagogin has 
been mechanistically connected to neuronal MMP2 externalization 
in mammalian migratory circuits (Hanics et al., 2017) SCGN 
has also been linked to neuronal function and synaptic activity 
(Tu et al., 2023), and in other secretory systems its downregulation 
has been associated with increased vulnerability to stress induced 
cell death (Ouyang et al., 2024).

Transient immune populations also emerged specifically 
in the post-injury context. MCG were detected at 2 DPI 
and largely declined by 30 DPI (Figures 2, 3), paralleling 
the acute-to-resolving dynamics described after mammalian 
traumatic brain injury, where early microglial activation can 
support neuronal survival and tissue repair, whereas failure to 
resolve contributes to chronic neuroinflammation and secondary 
neurotoxicity (Loane and Kumar, 2016). TRH emerged as a hub 
gene within MCG at 5 DPI (Figure 3B); however, TRH-positive 
cells were already observed from 2 DPI in the spatial analysis 
(Figure 5), temporally aligning with this acute phase. Rather than 
implying microglial TRH production, we interpret this signal 
in the context of hypothalamic injury metabolic circuits where 
microglial inflammatory states can impact neighboring TRH 
neurons and systemic thyroid axis output (Veronesi et al., 2007). 
Consistent with this interpretation, TRH and TRH analogs have 
documented neuroprotective actions in vertebrate nervous system 
models, including protection against excitotoxicity/glutamate-
induced toxicity, oxidative stress, and inflammatory injury 
(Daimon et al., 2013; Kim et al., 2024). Whether the TRH-linked 
microglial program actively modulates inflammation or reflects 
coordinated cross-talk with other TRH expressing populations 
remains unresolved; however, thyroid hormone signaling has been 
shown to shape microglial immune responsiveness and to regulate 
adult neural stem/progenitor dynamics in injury-relevant contexts 
(López-Juárez et al., 2012; Thorrez et al., 2008).

Unlike hubs with clear functional annotation, we also 
observed a transient translation/ribosome associated hub signature, 
exemplified by the 60s ribosomal protein RPL8 emerging as a 
hub exclusively at 20 DPI within a microglia-enriched module 
(Figure 3E). Ribosomal protein transcripts are frequently modulated 
by global transcriptional output and cell-state transitions, 
and their coordinated variation can influence co-expression 
network structure even when they are not specific effectors of a 
regenerative pathway (Hafemeister and Satija, 2019; Ni et al., 2025; 
Boutej et al., 2017). This is consistent with single-cell RNA-
seq normalization frameworks that treat ribosomal genes as a 
major source of structured variation when modeling cell-to-cell 
expression differences (Ni et al., 2025). In microglia, activation 
states also involve post-transcriptional checkpoints that reshape 
translation programs, further supporting the interpretation of 
transient ribosome-linked hubs as markers of dynamic immune 
states rather than direct regenerative drivers (Szklarczyk et al., 2023). 
To place this hub signal in an orthogonal context, we queried 
STRING as a hypothesis generating resource. STRING linked 
RPL8 to GTPBP6, MRPL17, and KDM5C (Figure 4), genes 
detected in transitional populations at later stages (15–60 DPI; 
Figures 3D–G); however, these edges reflect curated and predicted 
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associations and do not establish coordinated activity across 
regeneration (Hanics et al., 2025). Notably, regulatory nodes such as 
RANBP2 have been implicated in selective translational control in 
neural systems, supporting the possibility that ribosome-associated 
signals can emerge during state remodeling without implying direct 
regenerative function.

In contrast to transiently detected hubs like RPL8, SCGN 
showed more sustained and interpretable neuronal signature. SCGN 
appeared as a hub across multiple neuronal populations, including 
scgnIN at 10 DPI, npyIN, MSN at 15 DPI and npyIN again at 60 
DPI (Figures 3C,D,G). During mammalian forebrain development, 
SCGN marks subsets of developing cortical GABAergic neurons 
and its expression is activity-modulated (Alzu’bi and Clowry, 2020; 
Raju et al., 2018; Maness, 1992), processes essential for circuit 
reconstruction. The detection of SCGN in inhibitory interneurons 
(npyIN) at both mid and late regeneration stages, alongside its 
appearance in MSN populations at 15 DPI, may reflect involvement 
in neuronal maturation programs across multiple cell-types. At 
late stages (60 DPI), additional hubs emerged in non-neuronal 
populations, including YES1 in scgnIN and GJA1 in sfrpEGC cells, 
both implicated in neuronal development and glial homeostasis 
in mammalian systems (Moore and O’Brien, 2015; Muñoz-
Manchado et al., 2018).

Together, this sustained interneuron associated hub signatures 
motivated us to examine whether any candidate showed a similarly 
coherent pattern across the MSN enriched compartment over the 
full regenerative timeline.

Among all hub genes identified in our dataset, TRH showed 
the most consistent spatiotemporal pattern, appearing as a hub 
across multiple stages and maintaining persistent spatial association 
with MSN-enriched regions from 2 to 60 DPI (Figure 5). This 
persistence distinguishes TRH from other hubs that showed 
more restricted temporal or cellular distributions. However, the 
TRH-MSN association detected here likely represents an injury-
induced transcriptional state rather than a canonical MSN identity. 
In healthy mammalian striatum, TRH expression is typically 
confined to interneuron lineages and absent from MSNs, (Cantuti-
Castelvetri et al., 2010), yet Parkinsonian rats treated with chronic 
L-DOPA show TRH induction specifically in dorsal striatal MSNs 
and their projections (Zhu et al., 2024), demonstrating that MSN 
TRH expression can be state-dependent and context-engaged. 
Mechanistically, TRH can act on striatal GABAergic neurons, 
preferentially D2-MSNs, through a TRHR-MAPK-RARα-DRD2 
pathway that modulates MSN phenotype (Obukohwo et al., 2024). 
Whether this mechanism operates in axolotl regeneration, or 
whether TRH expression simply accompanies the injury-responsive 
state without active signaling involvement, cannot be determined 
from transcriptomic data alone.

Beyond individual gene patterns, this work provides a 
spatiotemporal reference of hub gene activity across axolotl 
telencephalon regeneration. The spatial maps (Figure 3) 
document dynamic cellular reorganization following injury, 
including the emergence and resolution of populations such 
as reaEGC, obNBL, and MCG that appear specifically post-
injury and resolve by 30 DPI. This temporal progression parallels 
microglial responses in mammalian traumatic brain injury, 
where early microglial activation can support neuronal survival 
and tissue repair through cytokine and chemokine signaling 

(Obukohwo et al., 2024), whereas prolonged activation contributes 
to chronic neuroinflammation and secondary neurotoxicity, 
pointing to shared injury-response dynamics despite divergent 
regenerative outcomes. The 180 hub genes span all regeneration 
stages and multiple cell-types, with complete annotations including 
cell-type assignments, module membership, connectivity metrics, 
and hub frequencies provided in Supplementary Data Sheet 5. 
This atlas enables researchers to prioritize candidates based on 
hub frequency, evolutionary conservation, spatial distribution, 
or functional annotation, facilitating the transition from 
descriptive transcriptomics toward hypothesis-driven experimental 
investigation.

This computational approach complements recent experimental 
studies in axolotl regeneration by providing network-level context 
for gene interactions. While STRING analysis using X. laevis
introduces uncertainty for lineage-specific genes, it enables 
identification of conserved regulatory modules that may guide cross-
species comparisons. The integration of spatial transcriptomics 
with co-expression networks offers a systems-level perspective that 
individual gene lists cannot capture.

The spatiotemporal patterns identified here provide starting 
points for experimental investigation. Future studies could 
test whether persistent TRH-MSN co-expression reflects active 
signaling or an incidental injury response, examine the contribution 
of transiently expressed genes like those in microglia to early tissue 
reorganization, and assess whether hub genes with conserved 
regenerative roles actively participate in axolotl brain repair or 
simply mark cellular state transitions. Targeted perturbation 
of individual candidates or coordinated gene modules would 
distinguish drivers of regeneration from correlated transcriptional 
responses.

This spatiotemporal atlas of hub gene expression provides a 
framework for prioritizing candidates in axolotl brain regeneration. 
While computational findings require experimental validation, the 
integration of network analysis with spatial transcriptomics reveals 
organizational principles that may guide mechanistic studies in 
regenerative neuroscience. 

5 Conclusion

In this study, we provide a descriptive overview of gene co-
expression dynamics during axolotl telencephalon regeneration by 
integrating hdWGCNA with spatial transcriptomics and network-
based contextualization through STRING. This approach allowed 
us to identify hub genes and characterize their spatiotemporal 
patterns across the regeneration timeline, highlighting both broadly 
conserved responses and stage-specific transcriptional states. 
Among these, TRH emerged as the most consistently detected 
hub across time points, displaying a stable spatial association with 
MSN-enriched regions; however, this pattern should be interpreted 
as a regeneration-associated transcriptional state rather than a 
functional signature. Other hub genes exhibited more restricted 
temporal or cellular distributions, contributing to a heterogeneous 
landscape of transcriptional configurations engaged after injury.

Because functional information remains limited for many 
axolotl genes, our interpretation focused on candidates supported 
by available empirical or bibliographic evidence, ensuring that
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conclusions remain grounded in current knowledge while avoiding 
speculative assignments of biological roles. Overall, this integrative 
strategy offers a foundational map of regeneration-associated 
transcriptional organization and provides a framework for 
prioritizing genes for future mechanistic and experimental studies 
aimed at elucidating the molecular basis of axolotl brain repair.
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