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Introduction: The Axolotl (Ambystoma mexicanum) offers a deep insight into
brain regeneration by fully reconstructing its telencephalon post-injury, a
capability that most vertebrates do not have. This study aimed to identify
hub genes (highest-weighted genes) underlying this process and to map
their cell location by analyzing spatiotemporal transcriptomic data using
high-dimensional weighted gene co-expression network analysis, integrating
protein-protein interaction networks, and cross-validating findings through
literature.

Results: We identified 180 hub genes across the regeneration timeline,
including several with conserved orthologs previously reported in vertebrate
regeneration models. Among these candidates, TRH (Thyrotropin-Releasing
Hormone) displayed the most consistent spatiotemporal pattern, appearing
repeatedly as a hub gene and localizing to MSN enriched regions at multiple
stages. TRH is broadly characterized in vertebrates as a neuroendocrine peptide
with roles in hormonal signaling, and MSNs are known to respond to a
variety of hormonal and neuropeptidergic cues. In our dataset, this background
provides additional perspective on the transcriptional configurations in which
TRH appears. Other hub genes showed stage/cell specific patterns, together
outlining a heterogeneous and dynamic landscape of transcriptional states
detected during telencephalon regeneration.

Conclusion: This study provides a descriptive map of gene co-expression
dynamics during axolotl telencephalon regeneration. By integrating hdWGCNA,
spatial transcriptomics, and network-based context, we identify hub genes and
transcriptional states associated with injury response, including a persistent TRH
linked MSN state. These findings offer a foundation for future experimental
studies aimed at elucidating the molecular basis of axolotl brain repair.

axolotl, brain, hdWGCNA, hub genes, regeneration, single-cell, spatio-temporal,
telencephalon
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1 Introduction

Studies on the regenerative abilities of salamanders, including
brain tissue regeneration, have provided crucial insights into
neuroregeneration (Joven et al, 2019; Arenas Gomez and
Echeverri, 2021). Among salamander species, Axolotl is one
of the most extensively studied models in developmental
and regenerative biology (Arenas Gomez and Echeverri, 2021;
Boliik et al.,, 2022). The axolotl’s capacity for brain repair offers a
model to investigate the genetic regulatory mechanisms underlying
neuro-regeneration through the analysis of hub genes identified
via gene co-expression network analysis. In such networks, hub
genes represent the central role of their modules and are recognized
as central regulators of gene expression and cellular processes
(Yu et al., 2017).

When facing disruptive events such as brain injury, organisms
must reprogram cellular functions and molecular pathways to
ensure tissue recovery. This process involves dynamic changes in
cell-type proportions and gene regulatory programs that activate
specialized regenerative mechanisms (Goldman and Poss, 2020;
Bassat and Tanaka, 2021). Evidence of this phenomenon has
been reported across diverse organisms, from highly regenerative
species to mammals with limited capacity. In axolotls and newts,
differentiated cells regain plasticity and contribute to tissue
reconstruction, while zebrafish exhibit extensive regenerative
potential in organs such as the heart and fins through dynamic
cellular remodeling. Planarians regenerate entire bodies by
modulating the abundance of pluripotent cells, and Hydra
maintains continuous self-renewal through flexible transcriptional
programs. Partial manifestations of this process have also been
documented in mammals, particularly in liver regeneration and
neonatal cardiac repair (Gerber et al., 2018; Kikuchi et al., 2010;
Fincher et al, 2018; Siebert et al, 2019; Yanger et al, 2013;
Lietal, 2021).

Notably, a recent study employed surgical removal of the
telencephalon in the axolotl, monitoring regeneration with
single-cell spatial transcriptomics (Wei et al., 2022), Stereo-seq,
the technology used to generate this dataset, is a sequencing-
based spatial transcriptomics platform that captures mRNA
using patterned DNA nanoball arrays and achieves subcellular
to near-single-cell resolution (Chen et al., 2022). The dataset
analyzed here was processed with the Stereo-seq Analysis Workflow
(SAW), which performs read alignment, spatial binning, and
segmentation to produce gene-by-cell matrices suitable for
downstream analysis (Zhang and Horvath, 2005).

Here, we introduce a framework to elucidate the spatiotemporal
gene regulatory landscape of axolotl brain regeneration by
focusing on hub genes as functional proxies for cell-type
specific programs. We present an integrative framework that
leverages stereo-seq transcriptomic data and high-dimensional
weighted gene co-expression network analysis (hdWGCNA).
This approach identifies co-expressed gene modules across
distinct cell-types and the extraction of eigengenes, summary
profiles that capture the core activity of each module. By
constructing eigengene networks and pinpointing hub genes
with the highest connectivity, we map candidate regulatory
drivers within and between neighboring cell populations during
regeneration.

Frontiers in Bioinformatics

10.3389/fbinf.2025.1697212

This systems-level approach deepens our understanding of the
molecular mechanisms underlying brain repair in the axolotl and
lays the groundwork for developing novel therapeutic strategies to
promote regeneration and recovery following severe central nervous
system injury.

2 Materials and methods

This study aimed to identify and characterize key regulatory
hub genes involved in telencephalon regeneration in the
axolotl by leveraging spatial transcriptomic datasets and
computational network analysis. This research was designed as a
retrospective bioinformatics study utilizing publicly available spatial
transcriptomic data derived from axolotl telencephalon tissue across

multiple regenerative and control stages.

2.1 Spatial transcriptomics dataset

Spatial transcriptomic data from the telencephalon of Axolotl
were retrieved from the public STOmics/ARTISTA repository
(https://db.cngb.org/stomics/artista/), corresponding to the dataset
reported by Wei etal. (Science, 2022). This dataset comprises
24 telencephalic sections spanning developmental stages (St. 44,
54, 57), juveniles, adults, metamorphosed individuals, and post-
injury samples collected at 2, 5, 10, 15, 20, 30, and 60 days post-
injury (DPI). Telencephalic injury experiments in the original
study were performed in juvenile axolotls (10-13 cm in body
length), in which brain lesions were generated by controlled
extirpation of a reproducible 0.5 x 0.5mm portion of the
dorsal pallium in the left telencephalic hemisphere of ~11cm
individuals.

In the original publication, raw Stereo-seq reads were initially
processed using the SAW (Stereo-seq Analysis Workflow),
which performs read alignment, spatial registration, single-cell
segmentation, and quantification of unique molecular identifiers
(UMIs) to generate cell-by-gene expression matrices. The resulting
matrices, deposited in STOmics, are fully preprocessed, quality-
controlled, and annotated to the Axolotl reference genome
(AmexG_v6.0-DD, axolotl-omics.org). The genome annotation was
generated by the genome authors based on sequence homology
to orthologous genes from other vertebrates, primarily human.
Consequently, the dataset includes both genes labeled with human-
like symbols and Axolotl specific identifiers (e.g., AMEX60DD_
XXXXX). All genes present in the preprocessed matrices were
retained to capture both conserved and axolotl-specific transcripts.

For the present study, analyses were restricted to juvenile, adult,
and post-injury telencephalic sections, excluding all developmental-
stage and metamorphosed samples. We analyzed all injury-
associated sections (2-60 DPI) and used uninjured juvenile and
adult samples as biological controls. Preprocessed matrices and
corresponding metadata were downloaded in RDS format and
imported into R (v4.2.2) using the native readRDS() function.
No additional preprocessing, filtering, or realignment was applied,
thereby preserving the original metadata, spatial coordinates,
and gene annotations for downstream transcriptomic and co-
expression analyses.
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2.2 Library and requirements

All analyses were conducted in RStudio using Seurat v4.4
(https://github.com/satijalab/seurat) and hdWGCNA v0.4.01
(https://smorabit.github.io/hdWGCNA/) as the primary toolkit
for spatial and single-cell transcriptomic analyses. Additional
including  'WGCNA, UCell,
GeneOverlap, and devtools were installed to support gene network

dependencies, GenomicRanges,
construction, module comparison, and spatial mapping. The Seurat
package was installed directly from the satijalab GitHub repository
to ensure compatibility with hdWGCNA workflows.

2.3 Co-expression network construction

Weighted gene co-expression networks were built for each
regeneration time point (2, 5, 10, 15, 20, 30, and 60 DPI) and for
both control conditions (juvenile and adult) using the hdAWGCNA
framework, following the official workflow for single-cell data. All
analyses were performed independently for each annotated cell-
type within each sample, as implemented in the supplementary code
hdWGCNA_pipeline.R.

Gene filtering was conducted using the SetupForWGCNA()
function with gene_select = “fraction” and a detection threshold
of 5% (fraction = 0.05). Under this configuration, a gene is
retained only if it is expressed in at least 5% of cells within each
specific cell-type. This parameter is defined by the hdWGCNA
framework and is applied directly to the data; consequently,

genes with sparse or highly cell-type restricted expression may
be excluded from network construction in cell-types where they
do not meet this threshold. Expression values were extracted
from the SCTransform-normalized assay (“SCT, slot = “counts”),
which contains Pearson residuals generated through regularized
negative binomial regression. These variance stabilized values
preserve biological heterogeneity while mitigating batch effects and
sequencing depth variation.

Metacell aggregation was used to increase network stability and
reduce noise. Metacells were generated with MetacellsByGroups()
by grouping cells according to their annotated identity ( group.by
= “Annotation”) and aggregating k = 25 nearest neighbors per
metacell (with max_shared = 30). The resulting metacell matrices
were normalized using NormalizeMetacells() before network
construction.

Soft-thresholding power was estimated for each cell-type
using TestSoftPowers() across the default candidate range (1-30).
hdWGCNA selects the lowest power that achieves a scale-
free topology fit index (R* > 0.80), ensuring adequate network
connectivity and adherence to scale-free properties. When no
candidate power reached this threshold for a given cell-type, that
cell-type was excluded from downstream network analysis. This
exclusion results from framework defined criteria, and not from
gene expression patterns alone.

Network then with
ConstructNetwork() using the selected soft power for each

construction ~ was performed
cell-type. Module eigengenes (MEs) were computed using
ModuleEigengenes(), scaled with ScaleData() while preserving cell-
type annotation, and stored within the Seurat object. Gene-module

connectivity (kME) was obtained with ModuleConnectivity()
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to quantify the correlation between each gene and its

module eigengene, enabling the identification of highly

connected hub genes.

2.4 |dentification of
regeneration-expressed genes

To identify genes exhibiting regeneration-specific expression
patterns, we employed a comparative set-based strategy integrating
co-expression modules from hdWGCNA outputs across all
timepoints and conditions (‘common_genes_across_timepoints.R).

All  genes assigned to co-expression
extracted from hdWGCNA results
comprehensive gene by cell-type matrix stratified by timepoint
1).

intersection operations

modules were

and compiled into a

(Supplementary Data Sheet Gene set comparisons were

performed wusing set to identify
genes with consistent module membership across conditions.
This analysis generated three derivative datasets: 1. genes
all (2-60 DPL;

Supplementary Data Sheet 2); 2. genes present in both control

present across seven regeneration stages
samples (juvenile and adult; Supplementary Data Sheet 3); and 3.
regeneration-specific genes present in regeneration but absent from
control samples (Supplementary Data Sheet 4).

Genes detected during regeneration were first partitioned
according to their annotation status. AMEX-prefixed identifiers
were separated from genes with established ortholog assignments,
and both categories were retained for analysis in distinct output files.
Ortholog names were standardized by removing taxonomic suffixes
and extracting gene symbols from the pipe delimited format.

For the purposes of this study, genes of interest were defined
as those assigned to co-expression modules present in regenerating
samples (2-60 DPI) and absent from modules identified in control
tissues. This classification is based on the assumption that co-
expression modules reflect coordinated transcriptional activity,
enabling the identification of gene programs specifically associated

with the post-injury context.

2.5 Hub gene extraction and frequency
analysis

For each regeneration timepoint, hub genes were extracted
from hdWGCNA network outputs using GetHubGenes() with n_
hubs = 10, identifying the top 10 most highly connected genes
(by KME) within each co-expression module for every cell-type
(hubgenes_analysis.R). Hub genes were ranked by their module
connectivity, assigning rank levels 1-10 where level 1 represents the
most central hub gene.

The 180 regeneration-associated genes identified were cross-
referenced with hub gene lists to determine in which cell-types,
modules, and at what rank level each gene appeared. Genes not
identified as hub genes were filtered out, retaining only hub genes
for downstream spatial analysis.

To quantify how frequently each regeneration gene functioned
as a hub across different cellular contexts, module assignments were
parsed and counted using in hubgene_getfrequencie.R.
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This frequency analysis revealed which regeneration genes
consistently emerged as network hubs across modules and
timepoints. Hub gene annotations including AMEX gene identifiers,
gene names, associated cell-types, modules, rank positions, and hub
frequencies were consolidated in Supplementary Data Sheet 5.

2.6 Spatial mapping of cell-types and hub
gene expression

Spatial transcriptomics data were processed using Seurat’s
standard preprocessing workflow (hdWGCNA_spatial_pipeline.R),
which included normalization, identification of highly variable
features, data scaling, and principal component analysis. Shared
nearest neighbor graphs were constructed using the first 30
principal components, followed by UMAP dimensionality
reduction.

Spatial visualization of cell-type distributions was performed
with annotation based grouping. Visualization parameters were
optimized for clarity, coordinate transformation, and a custom
40 color palette for distinct cell-type identification. Spatial maps
were generated individually for each regeneration timepoint
by manually loading the corresponding spatial Seurat object
(RDS file).

For spatial expression analysis of hub genes, each of the
180 regeneration associated hub genes was manually queried
across all regeneration timepoints using spatial transcriptomics
datasets. The analysis prioritized genes at rank 1 within their
respective cell-types and modules. Spatial expression patterns
were retrieved from Seurat object metadata and visualized
manually, constructing a spatiotemporal atlas of hub gene
expression throughout the temporal progression of brain
regeneration.

2.7 STRING

Protein-protein interaction (PPI) networks were generated
using STRING (accessed August 2024) to explore potential
functional relationships among the 180 hub genes identified
across regeneration time points. The original annotation relies
on the Axolotl reference genome (AmexG_v6.0-DD, axolotl-
omics.org), which integrates gene symbols inferred through cross-
species homology.

For this analysis, we used the gene symbols provided in
that original annotation, which were assigned based on best-hit
homology to the human proteome and serve as functional proxies
for axolotl genes.

The Xenopus laevis proteome was selected as the reference
organism in STRING due to its phylogenetic proximity to Axolotl
within Amphibia, allowing accurate orthology-based transfer of
conserved protein interactions while preserving lineage-specific
context. This approach minimizes annotation mismatches that may
occur when querying against mammalian databases. All evidence
channels in STRING were enabled, and pairwise associations with
a combined confidence score >0.40 were retained for network
construction and visualization.
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2.8 Spatial co-localization analysis of TRH
expression and MSN cells during
regeneration

To investigate the spatial distribution of TRH (Thyrotropin-
Releasing Hormone) expression and its topographical relationship
with MSN (Medium Spiny Neurons) populations throughout axolotl
brain regeneration, spatially-resolved gene expression maps were
retrieved from the ARTISTA database in PNG format for each
control and post-injury time point examined (2, 5, 6, 10, 15,
21, 30, and 60 DPI). For each one, two distinct image datasets
were acquired: one depicting TRH expression within the lesioned
tissue and another representing MSN cell distribution in the
corresponding region. Image processing was performed using
a custom Python script implementing a color based detection
and morphological dilation algorithm. The algorithm identifies
expression signals in each image through intensity thresholding
in the RGB color space, applies binary dilation to enhance
marker visibility, and generates a composite image wherein TRH
expression is rendered in grayscale and red gradients according
to signal intensity, while MSN cell presence is encoded in yellow.
Signal overlay enables the identification of spatial co-localization
regions where TRH expression occurs in proximity to or within
MSN neuronal territories. The resulting composite images were
exported at 300 DPI resolution with transparent backgrounds,
facilitating visualization of temporal changes in TRH distribution
patterns and its spatial association with MSN cells throughout the
regenerative process.

3 Results

3.1 Hierarchical filtering of co-expression
networks defines a
regeneration-associated hub gene set

We first summarized the global co-expression structure
of the dataset by constructing hdWGCNA networks across
all cell-types, regeneration stages and uninjured controls. This
analysis yielded 1,048,576 gene-cell assignments distributed
into 3,324 co-expression modules, each representing a group of
genes with shared expression patterns in a specific cellular and
temporal context (Figure 1). A given gene may appear multiple
times if it is detected in different modules across timepoints or cell-
types, whereas genes not assigned to any module are grouped in the
“grey” category and excluded from downstream interpretation.

To focus on genes associated with the post-injury response,
we compared module composition between regenerating samples
and controls. Genes present in control modules were excluded.
This yielded 1,307 genes restricted to regeneration-specific modules,
comprising both annotated orthologs and axolotl-specific AMEX-
prefixed genes. Of these, 1,237 correspond to genes with assigned
orthologs, while the remaining AMEX-labeled genes represent
axolotl-specific transcripts that were used for future analysis
separately.

Within this regeneration-restricted set, we then examined
intramodular connectivity to identify hub genes as the most highly
connected members of each module. Aggregating hub assignments
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Top-ranked
Hub Genes

180

Regeneration-specific Unique Genes

1,307
Total Gene-Module Assignments
1,048,576

Global Modules Integrated
3,324

FIGURE 1
Hierarchical filtering of gene co-expression data. The outer circle

represents all gene—cell entries (1,048,576) grouped into 3,324
co-expression modules. From these, 1,307 genes were identified as
specific to regeneration, and 180 hub genes were retained as
representative regulators.

across all regeneration-associated modules yielded a non-redundant
set of 180 hub genes. This hub gene ensemble constitutes the
core group of candidates analyzed in subsequent sections, where
we characterize their temporal dynamics, spatial distribution and
interaction context.

3.2 Global distribution of hdWGCNA
modules across the regeneration timeline

To obtain a systems-level view of how transcriptional programs
evolve over time, we next summarized the global distribution
of hdWGCNA modules across all analyzed cell subtypes and
regeneration stages in a heatmap displayed in Figure 2. The total
number of co-expression modules detected when aggregating all
cell-types. The X-axis represents the full regeneration timeline,
including uninjured controls and post-injury stages at 2, 5, 10, 15,
20, 30, and 60 DPI. The Y-axis lists the annotated cell-types (clusters)
present in the dataset. Each tile represents the number of modules
detected within a specific cell-type at each timepoint.

The numbers shown above the heatmap indicate the total
number of cells analyzed at each timepoint, enabling visual
comparison between module counts and sampling depth. Detailed
information on cell-type annotations and their presence across the
regeneration timeline is provided in Supplementary Data Sheet 2.

This representation shows that multiple cell-types display a
higher number of co-expression modules at early and intermediate
post-injury stages compared with uninjured controls. By contrast,
at later timepoints (30-60 DPI), module counts within most cell-
types converge toward values similar to those observed in controls.
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Given this dynamic and complex modular landscape, we focused
subsequent analyses on hub genes allowing us to summarize co-
expression programs at single-cell resolution.

3.3 Cell-level mapping of hub genes
reveals regeneration-specific regulatory
signatures

Given this dynamic modular landscape across regeneration
stages, we examined how individual hub genes are distributed
at single-cell resolution along the regeneration timeline.
For each cell, the hdWGCNA networks were used to
identify the top-ranked hub gene (highest kME) within its
assigned module. Figure 3 summarizes these assignments by
displaying, for every cell, the hub gene with the strongest
intramodular connectivity at post-injury stages and in uninjured
controls. To support the biological interpretation of these 180
prioritized hubs, Supplementary Data Sheet 6 provides a curated
table compiling reported gene functions and injury/regeneration-
relevant evidence for each hub gene, with the corresponding
bibliographic sources.

Each panels A-G of Figure 3 shows the distribution of hub
genes in single cells at 2, 5, 10, 15, 20, 30, and 60 DPI, respectively.
Each panel displays the top-ranked hub gene within each cell’s
assigned module. This representation allows the spatial and cellular
distribution of hub-based regulatory states to be compared across
timepoints.

Panel H displays the uninjured control condition, where none
of the hub genes from regeneration-specific modules were detected
as the top-ranked hub in any cell. This absence reflects the filtering
used to define the 180 hub genes, which were selected from modules
present only in post-injury samples and therefore do not appear
in control modules by construction. Thus, the hub genes analyzed
here are observed exclusively in post-injury conditions and are not
characteristic of the baseline uninjured state.

Within this regeneration-associated hub gene set, several
genes showed recurrent detection across multiple cell-types and
regeneration stages (Supplementary Data Sheet 5). Notably, TRH
(Thyrotropin-Releasing Hormone) emerged as one of the most
frequently assigned hub genes, appearing as the top-ranked hub in
multiple modules and across several cell-types, including medium
spiny neuron-like populations, throughout the post-injury timeline.
In addition, approximately 30 other hub genes were identified as
hubs in more than one module and cell-type, showing that a subset of
genes repeatedly occupies central positions in distinct co-expression
programs during telencephalon regeneration.

3.4 Protein-protein interaction network
organization of regeneration-associated
hubgenes

Beyond their spatial and cellular distribution, we examined
potential functional relationships among the 180 hub genes by
constructing a protein—protein interaction (PPI) network using
STRING (Figure 4). Because axolotl-specific PPI resources are
not available, gene symbols were first mapped to their human
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FIGURE 2

Global distribution of hdWGCNA co-expression modules during axolotl telencephalon regeneration. Heatmap showing the number of hdWGCNA
modules detected per cell subtype across stages (uninjured juvenile/adult; 2, 5, 10, 15, 20, 30, and 60 DPI). Numbers above indicate total cells per
stage. Values are aggregated across subtypes; detailed subtype contributions are provided in Supplementary Data Sheet 2. Abbreviations: sfrpEGC, Sfrp
+ Ependymoglial; nptxEX, Nptx + lateral pallium excitatory neurons; obNBL, olfactory bulb neuroblasts; sstIN, Sst + inhibitory neurons; scgnIN, Scgn +
inhibitory neuron; cckiIN, Cck + inhibitory neurons; tINBL, telencephalon neuroblasts; WSN, wound-stimulated neurons; rIPC1, reactive intermediate
progenitor cells 1; npyIN, Npy + inhibitory neuron; wntEGC, Wnt + ependymoglial cells; mpIN, medial pallium inhibitory neurons; MCG, Microglia;
ntnglIN, Ntngl+ inhibitory neurons; reaEGC, reactive ependymoglial cells; MSN, medium spiny neuron; IMN, immature neurons; CMPN,
cholinergic/monoaminergic/peptidergic neurons; ribEGC, ribosomal EGC; CP, choroid plexus; dpEX, dorsal pallium excitatory neurons; mpEX, medial
pallium excitatory neuron; Oligo, oligodendrocytes; VLMC, leptomeningeal vascular cells; rIPC4, reactive intermediate progenitor cells 4.
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orthologs in the original annotation and then queried in STRING
using Xenopus laevis as the reference organism, thereby leveraging
conserved vertebrate interaction information. A complete record of
all 180 input genes and the corresponding X. laevis identifiers used
for the STRING query is provided in Supplementary Data Sheet 7.
The resulting network depicts the interaction landscape
among the proteins encoded by the 180 hub genes. Blue edges
represent interactions curated from databases and pink edges
correspond to experimentally determined interactions. Green,
red and navy blue lines indicate predicted associations based
on gene neighborhood, gene fusions and gene co-occurrence,
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respectively, whereas yellow, black and purple lines reflect
relationships supported by text mining, co-expression and
protein homology.

The PPI network reveals 180 hub genes connected by 523
interactions, with clustering of genes into distinct subnetworks.
Some genes show extensive connectivity (>10 interactions), while
others have limited connections (1-3 interactions). In the context
of limited axolotl-specific functional annotation, this network
provides a structural overview of how regeneration-associated
hub genes are organized within known and predicted vertebrate
interaction pathways.

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1697212
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Goémez-Morales et al.

10.3389/fbinf.2025.1697212

A) 2 DAYS POST INJURY

DHTKD1
MP2, KRT19,
",\ KRT18, TNC,IQCA1

FPGS, ENKD1

FAM43A, RBM7,
FBX03, MREG

SORCS1,
SDR16C5,
DTNB

CCT3,BUD31, ',
RECQL, PCGF6,
PICK1, SPART

RBP4,
ZDHHC20

B) 5 DAYS POST INJURY

T3, SARIB NMB
et VB 01qu1 s RPRML

TRH, AIMP2

ANAPC15,
PEX7, COX3

TRH,
CARTPT .

TRH, TRH, CHSTS,
PCP4L1, BTG, EHBP1, INPP1
THSD4, TIMM13 EGF, CH25H
TRH, CARTPT, RASGRP2
REM10,WIPF3

FZD2, ACSBGL,
ERRFIL, SDC4

e
WNT7B

C) 10 DAYS POST INJURY

MEGF11,

CFAP20,
cartpr,  ZADHZ ANAPC11 _ CIRBP,
BTBD2 > o . RUBCN, BRD2
ERI3,
RABGGTA N4BP3
CHMP2B, RGS2
i Ick MICOS13,
CDK12, ICE1 Micos1z,

TRH,
SCGN
SYTI0
TRH, POLE2,
COL1A2, KCNB2, 1;31?,{}\2?{%3
RASGRP2, SARNP, .
ZCCHC2, SUCLG2, X zNF385D

=g,
RBML11, PIP5K1A SELIL, g B ®
ATP6AP1L

D) 15 DAYS POST INJURY

C1QL1, MICOS13, PIPSK1B,
sTaT1 ACADMNCSTN  ANAPC15, CRIP1,SELENOH

&m KRT19,COL1A2,
4 +WDR45B,POLR2F

MRPL52, GTPBP6,
— PTAR1, NBN

MEGF11, C1QB,
SDF2L1, STRN4

UBACI, JAM2,
CAVL, C1QTNF4 Y ZNF365
TRH, ¥ MCOLN1,
SCGN CNF1
ZSCAN2, SCYL3,DAZAP2
PDZRN3
GARL, ", " POLE2, MED30
Usp25 2" TM3D3, MRPL51
PGAM2,
SCGN, TRIM67, CAMD.

RABGAP1L

E) 20 DAYS POST INJURY

RPL8MAFK

WNT7B, USP8, v 5
RASSF8, TEX264 " ——RUVBL4
s SAMD9

MFN1,
TBC1D10A
ZNF385D

F)  30DAYS POST INJURY

RPRML > GO ST6GALNAC2,
g LRRC40

. NMB, MEGF10,
PLXNB1, ANKS1A

TRH, CARTPT,
KCNB2

G) 60 DAYS POST INJURY

H)

TBCID14
PHLDAL . i
117, - * PGS, LRRCA40, GIAL
L3MBTL1 i . GDI2, GATD1,
. KDM5C, COMMD?

MEGF10,
ST6GALNAC2, &
MORF4L1 - SCGN, MEGF11, NPY,
k £ % 'WDR45B, NCKIPSD,
" e e 4 NPY
TRH, CARTPT

“-YES1,
PIM1

FIGURE 3

Hub genes detected in individual cells across post-injury stages (2, 5, 10, 15, 20, 30, and 60 DPI) and in uninjured controls. (A—G) display the distribution
of hub genes identified by hdWGCNA in each cell across the corresponding regeneration time points. (H) shows the control condition, where no
regeneration-associated hub genes were detected, reflecting that the hub genes identified in this study were specific to post-injury co-expression

modules and did not appear in the uninjured telencephalon.

TRH-expressing cells were overlaid on MSN annotations
using Stereo-seq spatial coordinates for each post-injury
stage and for the juvenile control (Figure 5). In these
maps, grey dots represent all spatially resolved cells, yellow
indicates MSN-annotated cells, and TRH-positive cells are

3.5 Spatial mapping of TRH-expressing
cells during telencephalon regeneration

Given that TRH emerged as one of the most recurrent hub genes
in regeneration-associated modules, we next examined its spatial

distribution and temporal dynamics across the telencephalon.  shown in red.
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Quantitatively, TRH-positive cells accounted for approximately
6% of all cells in the juvenile control and increased markedly after
injury, reaching 37% at 2 DPI and 33% at 5 DPI. This proportion
then gradually decreased to 25% at 10 DPI, 24% at 15 DPI, and 28%
at 20 DPI, and subsequently declined to 7% at 30 DPI and 6% at
60 DPI, approaching control levels at later stages. These percentages
refer to the fraction of TRH-positive cells relative to the total cellular
population in each section, not exclusively to the MSN subset.

Across the entire regeneration timeline (2-60 DPI), TRH-
positive cells are predominantly located within MSN-enriched
regions. These spatial and quantitative observations show that
TRH expression is transiently expanded after injury and remains
repeatedly associated with MSN-enriched areas throughout the
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post-injury period, in agreement with its recurrent identification as
a hub gene in MSN linked modules. This visualization is intended
as a descriptive summary of TRH dynamics and co-localization and
does not, by itself, establish any functional contribution of TRH to
the regenerative process.

4 Discussion

We used hdWGCNA and spatial transcriptomics to map
transcriptional states across axolotl telencephalon regeneration,
identifying 180 hub genes that characterize the regenerative
timeline. TRH emerged as the most consistent hub, appearing
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FIGURE 5
Spatial distribution of TRH-expressing cells across the regeneration timeline in the axolotl telencephalon (2-60 DPI) and Control (Juvenile). Spatial

transcriptomic maps showing TRH-expressing cells (red) overlaid on medium spiny neuron (MSN) annotations (yellow) at multiple post-injury stages.
Grey dots represent all spatially resolved cells. TRH-positive signals consistently localize within MSN-enriched regions from early (2 DPI) to late
regeneration (60 DPI), illustrating the persistence of TRH-associated MSN states throughout the regenerative process. This visualization is descriptive

and does not imply functional involvement of TRH in regeneration.
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in multiple co-expression modules and showing persistent
spatial overlap with MSN-enriched regions from 2 to 60 DPL
Prior vertebrate studies have associated TRH with molecularly
defined neuronal subpopulations and neuroprotective effects
(Boutej et al., 2017; Maness, 1992). In this context, our integrative
hdWGCNA spatial framework places TRH within a spatially
resolved regenerative timeline; however, it cannot resolve whether
TRH contributes causally to regeneration or primarily marks an
injury-responsive transcriptional state.

Understanding hub genes in regenerative contexts requires
methods that preserve cellular heterogeneity. hdAWGCNA addresses
this by constructing co-expression networks at single-cell
resolution, avoiding the information loss inherent to bulk or
pseudo-bulk approaches. This method has successfully identified
biologically relevant hub genes in Alzheimer’s disease, tumor
microenvironments, and tissue degeneration, contexts where
cellular diversity drives pathology. In axolotl brain regeneration,
where marked spatial and temporal heterogeneity defines the
process, this single-cell resolution becomes particularly valuable
(Morabito et al., 2023; Sun et al, 2024; Zhao et al, 2025;
Zhu et al., 2025; Zhai et al., 2025).

In our analysis, hub genes represent the most highly connected
nodes within cell-type specific modules, serving as proxies for
dominant transcriptional programs. We focus here on the subset of
hubs that appear specifically in regeneration (absent from controls),
as these are most likely to mark injury-responsive states. The
180 hubs identified span all regeneration stages and multiple cell-
types, enabling both spatiotemporal mapping and cross-species
comparison.

Among the 180 hub genes identified, 104 have orthologs
previously implicated in regenerative processes across Danio
rerio, Xenopus laevis, Ambystoma mexicanum, and Hydra spp.
(Supplementary Data Sheet 6), This overlap is consistent with
the view that at least part of the molecular machinery engaged
during axolotl telencephalon regeneration involves genes that
have been repeatedly associated with regeneration in other
metazoan models, within coordinated modules mediating
intercellular communication and tissue reorganization (Goldman
and Poss, 2020; Bassat and Tanaka, 2021; Gerber et al., 2018;
Kikuchi et al., 2010; Fincher et al.,, 2018; Siebert et al., 2019;
Yanger et al., 2013; Wei et al., 2022). The remaining 76 hubs include
both conserved vertebrate genes and axolotl-specific transcripts
(AMEX-prefixed identifiers), reflecting a combination of shared
components and responses that appear restricted to this species.

Taken together, these patterns suggest that the telencephalic
response in this species involves genes repeatedly associated with
regeneration in other models alongside additional components
without previously described regenerative roles, which we interpret
as a descriptive correspondence at the level of gene identity rather
than evidence of conserved function across species.

Within this mixed repertoire of conserved and axolotl restricted
hubs, several genes also exhibit context-dependent transcriptional
roles, whereby the same gene participates in distinct co-expression
programs across cellular states. MMP2 illustrates this pattern by
functioning as a hub in both reaEGC and mpEX cells during
regeneration, within cell-type resolved co-expression modules. In
mammals CNS injury, MMP2 and TNC are both engaged in wound
healing remodeling and axonal regeneration (Hsu et al., 2006;
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Chen et al,, 2010). The appearance of MMP2 in reaEGC alongside
TNC, and its detection in other populations expressing SCGN,
places these cell-types within a shared transcriptional context during
early tissue remodeling. Consistent with this link, secretagogin has
been mechanistically connected to neuronal MMP2 externalization
in mammalian migratory circuits (Hanics et al, 2017) SCGN
has also been linked to neuronal function and synaptic activity
(Tu et al., 2023), and in other secretory systems its downregulation
has been associated with increased vulnerability to stress induced
cell death (Ouyang et al., 2024).

Transient immune populations also emerged specifically
in the post-injury context. MCG were detected at 2 DPI
and largely declined by 30 DPI (Figures 2, 3), paralleling
the acute-to-resolving dynamics described after mammalian
traumatic brain injury, where early microglial activation can
support neuronal survival and tissue repair, whereas failure to
resolve contributes to chronic neuroinflammation and secondary
neurotoxicity (Loane and Kumar, 2016). TRH emerged as a hub
gene within MCG at 5 DPI (Figure 3B); however, TRH-positive
cells were already observed from 2 DPI in the spatial analysis
(Figure 5), temporally aligning with this acute phase. Rather than
implying microglial TRH production, we interpret this signal
in the context of hypothalamic injury metabolic circuits where
microglial inflammatory states can impact neighboring TRH
neurons and systemic thyroid axis output (Veronesi et al., 2007).
Consistent with this interpretation, TRH and TRH analogs have
documented neuroprotective actions in vertebrate nervous system
models, including protection against excitotoxicity/glutamate-
induced toxicity, oxidative stress, and inflammatory injury
(Daimon et al., 2013; Kim et al., 2024). Whether the TRH-linked
microglial program actively modulates inflammation or reflects
coordinated cross-talk with other TRH expressing populations
remains unresolved; however, thyroid hormone signaling has been
shown to shape microglial immune responsiveness and to regulate
adult neural stem/progenitor dynamics in injury-relevant contexts
(Lopez-Juarez et al., 2012; Thorrez et al., 2008).

Unlike hubs with
observed a transient translation/ribosome associated hub signature,

clear functional annotation, we also
exemplified by the 60s ribosomal protein RPL8 emerging as a
hub exclusively at 20 DPI within a microglia-enriched module
(Figure 3E). Ribosomal protein transcripts are frequently modulated
by global transcriptional output and cell-state transitions,
and their coordinated variation can influence co-expression
network structure even when they are not specific effectors of a
regenerative pathway (Hafemeister and Satija, 2019; Ni et al., 2025;
Boutej et al, 2017). This is consistent with single-cell RNA-
seq normalization frameworks that treat ribosomal genes as a
major source of structured variation when modeling cell-to-cell
expression differences (Ni et al., 2025). In microglia, activation
states also involve post-transcriptional checkpoints that reshape
translation programs, further supporting the interpretation of
transient ribosome-linked hubs as markers of dynamic immune
states rather than direct regenerative drivers (Szklarczyk et al., 2023).
To place this hub signal in an orthogonal context, we queried
STRING as a hypothesis generating resource. STRING linked
RPL8 to GTPBP6, MRPL17, and KDM5C (Figure 4), genes
detected in transitional populations at later stages (15-60 DPI;
Figures 3D-G); however, these edges reflect curated and predicted
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associations and do not establish coordinated activity across
regeneration (Hanics et al., 2025). Notably, regulatory nodes such as
RANBP2 have been implicated in selective translational control in
neural systems, supporting the possibility that ribosome-associated
signals can emerge during state remodeling without implying direct
regenerative function.

In contrast to transiently detected hubs like RPL8, SCGN
showed more sustained and interpretable neuronal signature. SCGN
appeared as a hub across multiple neuronal populations, including
scgnIN at 10 DPI, npyIN, MSN at 15 DPI and npyIN again at 60
DPI (Figures 3C,D,G). During mammalian forebrain development,
SCGN marks subsets of developing cortical GABAergic neurons
and its expression is activity-modulated (Alzu’bi and Clowry, 2020;
Raju et al., 2018; Maness, 1992), processes essential for circuit
reconstruction. The detection of SCGN in inhibitory interneurons
(npyIN) at both mid and late regeneration stages, alongside its
appearance in MSN populations at 15 DPI, may reflect involvement
in neuronal maturation programs across multiple cell-types. At
late stages (60 DPI), additional hubs emerged in non-neuronal
populations, including YES1 in scgnIN and GJAL1 in sfrpEGC cells,
both implicated in neuronal development and glial homeostasis
in mammalian systems (Moore and O’Brien, 2015; Munoz-
Manchado et al., 2018).

Together, this sustained interneuron associated hub signatures
motivated us to examine whether any candidate showed a similarly
coherent pattern across the MSN enriched compartment over the
full regenerative timeline.

Among all hub genes identified in our dataset, TRH showed
the most consistent spatiotemporal pattern, appearing as a hub
across multiple stages and maintaining persistent spatial association
with MSN-enriched regions from 2 to 60 DPI (Figure 5). This
persistence distinguishes TRH from other hubs that showed
more restricted temporal or cellular distributions. However, the
TRH-MSN association detected here likely represents an injury-
induced transcriptional state rather than a canonical MSN identity.
In healthy mammalian striatum, TRH expression is typically
confined to interneuron lineages and absent from MSNs, (Cantuti-
Castelvetri et al., 2010), yet Parkinsonian rats treated with chronic
L-DOPA show TRH induction specifically in dorsal striatal MSNs
and their projections (Zhu et al., 2024), demonstrating that MSN
TRH expression can be state-dependent and context-engaged.
Mechanistically, TRH can act on striatal GABAergic neurons,
preferentially D2-MSNs, through a TRHR-MAPK-RARa-DRD2
pathway that modulates MSN phenotype (Obukohwo et al., 2024).
Whether this mechanism operates in axolotl regeneration, or
whether TRH expression simply accompanies the injury-responsive
state without active signaling involvement, cannot be determined
from transcriptomic data alone.

Beyond individual gene patterns, this work provides a
spatiotemporal reference of hub gene activity across axolotl
The 3)
document dynamic cellular reorganization following injury,

telencephalon regeneration. spatial maps (Figure
including the emergence and resolution of populations such
as reaEGC, obNBL, and MCG that appear specifically post-
injury and resolve by 30 DPI. This temporal progression parallels
microglial responses in mammalian traumatic brain injury,
where early microglial activation can support neuronal survival

and tissue repair through cytokine and chemokine signaling
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(Obukohwo et al., 2024), whereas prolonged activation contributes
to chronic neuroinflammation and secondary neurotoxicity,
pointing to shared injury-response dynamics despite divergent
regenerative outcomes. The 180 hub genes span all regeneration
stages and multiple cell-types, with complete annotations including
cell-type assignments, module membership, connectivity metrics,
and hub frequencies provided in Supplementary Data Sheet 5.
This atlas enables researchers to prioritize candidates based on
hub frequency, evolutionary conservation, spatial distribution,
or functional annotation, facilitating the transition from
descriptive transcriptomics toward hypothesis-driven experimental
investigation.

This computational approach complements recent experimental
studies in axolotl regeneration by providing network-level context
for gene interactions. While STRING analysis using X. laevis
introduces uncertainty for lineage-specific genes, it enables
identification of conserved regulatory modules that may guide cross-
species comparisons. The integration of spatial transcriptomics
with co-expression networks offers a systems-level perspective that
individual gene lists cannot capture.

The spatiotemporal patterns identified here provide starting
points for experimental investigation. Future studies could
test whether persistent TRH-MSN co-expression reflects active
signaling or an incidental injury response, examine the contribution
of transiently expressed genes like those in microglia to early tissue
reorganization, and assess whether hub genes with conserved
regenerative roles actively participate in axolotl brain repair or
simply mark cellular state transitions. Targeted perturbation
of individual candidates or coordinated gene modules would
distinguish drivers of regeneration from correlated transcriptional
responses.

This spatiotemporal atlas of hub gene expression provides a
framework for prioritizing candidates in axolotl brain regeneration.
While computational findings require experimental validation, the
integration of network analysis with spatial transcriptomics reveals
organizational principles that may guide mechanistic studies in
regenerative neuroscience.

5 Conclusion

In this study, we provide a descriptive overview of gene co-
expression dynamics during axolotl telencephalon regeneration by
integrating hdWGCNA with spatial transcriptomics and network-
based contextualization through STRING. This approach allowed
us to identify hub genes and characterize their spatiotemporal
patterns across the regeneration timeline, highlighting both broadly
conserved responses and stage-specific transcriptional states.
Among these, TRH emerged as the most consistently detected
hub across time points, displaying a stable spatial association with
MSN-enriched regions; however, this pattern should be interpreted
as a regeneration-associated transcriptional state rather than a
functional signature. Other hub genes exhibited more restricted
temporal or cellular distributions, contributing to a heterogeneous
landscape of transcriptional configurations engaged after injury.

Because functional information remains limited for many
axolotl genes, our interpretation focused on candidates supported
by available empirical or bibliographic evidence, ensuring that
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conclusions remain grounded in current knowledge while avoiding
speculative assignments of biological roles. Overall, this integrative
strategy offers a foundational map of regeneration-associated
transcriptional organization and provides a framework for
prioritizing genes for future mechanistic and experimental studies
aimed at elucidating the molecular basis of axolotl brain repair.
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