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inDAGO: a user-friendly interface 
for seamless dual and bulk 
RNA-Seq analysis

Gaetano Aufiero‡ , Carmine Fruggiero†‡  and Nunzio D’Agostino*

Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy

Dual RNA-sequencing enables simultaneous profiling of protein-coding and 
non-coding transcripts from two interacting organisms, an essential capability 
when physical separation is difficult, such as in host-parasite or cross-kingdom 
interactions (e.g., plant-plant or host-pathogen systems). By allowing in silico
separation of mixed reads, dual RNA-seq reveals the transcriptomic dynamics 
of both partners during interaction. However, existing analysis workflows often 
require programming expertise, limiting accessibility. We present inDAGO, a free, 
open-source, cross-platform graphical user interface designed for biologists 
without coding skills. inDAGO supports both bulk and dual RNA sequencing, 
with dual RNA sequencing further accommodating both sequential and 
combined approaches. The interface guides users through key analysis steps, 
including quality control, read alignment, read summarization, exploratory data 
analysis, and identification of differentially expressed genes, while generating 
intermediate outputs and publication-ready plots. Optimized for speed and 
efficiency, inDAGO performs complete analyses on a standard laptop (16 GB 
RAM) without requiring high-performance computing. We validated inDAGO 
using diverse real datasets to demonstrate its reliability and usability. inDAGO, 
available on CRAN (https://cran.r-project.org/web/packages/inDAGO/) and 
GitHub (https://github.com/inDAGOverse/inDAGO), lowers the technical barrier 
to dual RNA-seq by enabling robust, reproducible analyses, even for users 
without coding experience.

KEYWORDS

transcriptomic dynamics, gene expression profiling, differentially expressed genes, 
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Highlights

• inDAGO is a user-friendly, cross-platform software tool that enables both dual and 
bulk RNA-seq analysis through a graphical user interface (GUI), removing the need for 
programming skills and lowering the barrier for non-bioinformaticians.

• Supports both sequential and combined approaches for dual RNA-seq, offering 
flexibility in genome indexing, read mapping, and read discrimination, making it 
suitable for diverse interspecies interaction studies.

• Implements a complete RNA-seq workflow, from quality control and filtering to 
mapping, summarization, exploratory data analysis, and differential gene expression 
(DEG) identification, optimized for standard laptops with at least 16 GB RAM.

• Promotes the democratization of bioinformatics by offering an open-source, R-Shiny-
based solution that enables researchers without coding experience to perform complex 
transcriptomic analyses.
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 1 Introduction

When studying tissues composed of material from two 
distinct organisms, such as host–pathogen, host–symbiont, or 
plant–parasitic plant interfaces, transcriptome profiling typically 
follows one of two main strategies: (i) physical separation of the 
constituent tissues or (ii) direct sequencing of the mixed sample 
followed by computational assignment of reads. Physical separation 
methods, including laser capture microdissection (LCM) or manual 
microdissection followed by RNA extraction and sequencing, 
minimize cross-contamination between organisms and allow 
unambiguous transcript assignment. However, these approaches 
require specialized instrumentation and trained personnel, and they 
can be technically challenging or impractical when the interface is 
structurally complex (Honaas et al., 2013; Jhu and Sinha, 2022).

Alternatively, RNA can be sequenced directly from the mixed 
tissue, with sequencing reads computationally assigned to each 
organism by mapping to their respective reference genomes 
or transcriptomes. This strategy, commonly referred to as dual 
RNA-sequencing (RNA-seq), avoids laborious microdissection 
and enables simultaneous profiling of all interacting partners 
(Westermann et al., 2012). However, it introduces analysis-
specific challenges, including ambiguously mapped reads, 
extreme abundance imbalances that reduce sensitivity for low-
abundance transcripts, and dependence on the completeness 
and quality of reference sequences for accurate organismal 
assignment (Fruggiero et al., 2024).

To date, the dual RNA-seq approach has been employed 
to study a broad spectrum of interspecies interactions, ranging 
from mutualism (Mateus et al., 2019) to host-pathogen dynamics 
(Westermann et al., 2017; Naidoo et al., 2018) and covering 
nearly all taxonomic kingdoms, including bacteria, fungi, plants 
and animals. Dual RNA-seq can be conducted following two 
main approaches: combined and sequential. Although both 
approaches share the fundamental steps of traditional bulk RNA-
sequencing (bulk RNA-seq) analysis (i.e., read quality control 
and preprocessing, reference genome indexing, read mapping, 
data summarization, exploratory data analysis, and identification 
of differentially expressed genes (DEGs)), they differ in several 
critical aspects. In the sequential approach, the genomes of the 
interacting species are indexed separately, while in the combined 
approach, all genomes are concatenated and indexed as a single 
entity. The combined approach produces a unified sequence 
alignment file (SAM/BAM/CRAM format) after mapping, whereas 
the sequential approach generates separate alignment files for 
each species. Therefore, the alignment results from the combined 
approach needs to be carefully partitioned to extract species-
specific data (Espindula et al., 2019; Fruggiero et al., 2024). These 
studies also compared sequential and combined read-mapping 
strategies, finding that the combined approach generally provides 
modestly improved performance. In summary, dual RNA-seq shares 
many similarities with traditional bulk RNA-seq, with the key 
differences primarily occurring in the genome indexing process 
and the handling of alignment files before summarization. Bulk 
RNA-seq analysis can be performed via the command line by 
combining various software tools, enabling users to design custom 
pipelines in different programming languages. Additionally, several 
graphical user interfaces (GUIs) have been developed to streamline 

this process, including platforms such as RNASeqGUI (Russo 
and Angelini, 2014), Galaxy (Afgan et al., 2018), RNAdetector 
(La Ferlita et al., 2021), and RNAlysis (Teichman et al., 2023). 
Despite the wide range of tools available for bulk RNA-seq analysis, 
no dedicated platforms have been developed specifically for dual 
RNA-seq analysis. Currently, performing dual RNA-seq analysis 
requires the development of customized pipelines, which demand 
proficiency in programming and scripting. This presents a challenge 
for scientists who lack programming skills but wish to use a user-
friendly interface that guides them through the analysis process 
step by step. To address this gap, this article introduces inDAGO, a 
standalone software with a GUI designed to automate dual RNA-
seq analysis and assist users at every stage of the process. Unlike 
other RNA-seq GUIs, inDAGO natively implements dual indexing 
and mapping strategies, transparently handles cross-mapped 
and unmapped reads, and integrates exploratory modules that 
allow users to examine species-specific signals before performing 
differential expression analyses. The software packages the entire 
workflow into a user-friendly interface that ex-ports standard, 
publication-ready outputs. inDAGO is compatible with multiple 
operating systems and can run on either a high-performance 
server or a laptop with at least 16 GB of RAM. No programming 
expertise is needed, allowing users to smoothly navigate the steps 
of the analysis and download intermediate results as required. 
Furthermore, inDAGO includes additional modules for performing 
classical bulk RNA-seq analysis, making it a versatile tool for a wide 
range of RNA-seq applications. 

2 Materials and methods

2.1 Functionality overview

The inDAGO software is fully implemented in the R 
programming language (R Core Team, 2024), with its GUI 
developed using the Shiny application framework (Chang et al., 
2025). It is compatible with GNU-Linux, Windows, and macOS 
operating systems. As illustrated in Figure 1, inDAGO offers 
a seamlessly integrated analysis workflow that supports both 
sequential and combined approaches for key steps, including 
indexing, mapping, and read discrimination (the latter applied 
only in the combined approach). This flexibility enables the 
workflow to be tailored to the specific needs of dual RNA-seq 
experiments. Another key strength of inDAGO is its dedicated 
modules for bulk RNA-seq analysis, covering the entire workflow 
from quality control to the final stages of analysis (Figure 2). In 
addition to supporting bulk RNA-seq, inDAGO offers specialized 
tools for managing unmapped reads (sequences that do not align 
to any reference genome). These unmapped reads can be further 
analyzed by mapping them to alternative reference sequences, 
aiding in the detection of potential contaminants, such as reads 
originating from unintended organisms. Additionally, inDAGO 
enables remapping of previously unmapped reads by adjusting 
mapping stringency parameters, such as the allowed number of 
mismatches or the treatment of multi-mapped reads, thereby 
improving read assignment accuracy. This flexibility enhances 
inDAGO’s utility for both dual and bulk RNA-seq workflows. 
inDAGO consists of seven distinct modules: (1) quality control, (2) 
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filtering, (3) genome indexing, (4) mapping, (5) summarization, (6) 
exploratory data analysis (EDA), and (7) identification of DEGs. The 
layout and functionality of the GUI is shown in Figure 3, reporting 
the quality control module for illustrative purposes. Navigation 
between modules is streamlined via tab panels and drop-down 
menus, allowing users to quickly access any desired analysis step. 
To run the inDAGO pipeline starting from the quality assessment 
module, paired-end reads in FASTQ format are required, along 
with the reference genome and annotation files (FASTA and GTF 
or SAF) for one or both species, depending on whether a bulk or 
dual RNA-seq analysis is performed. Each module automatically 
generates additional output files, including BAM alignments and 
results from DEG analysis. The workflow is specifically optimized 
for paired-end reads, as single-end reads were excluded due to 
their lower mapping accuracy and reduced reliability in dual-origin 
or complex transcriptomes. Additionally, ongoing analysis can be 
terminated and restarted at any time, offering greater flexibility 
and control over the workflow. The inDAGO package is freely 
available through both CRAN (https://cran.r-project.org/web/
packages/inDAGO/index.html) and the GitHub repository (https://
github.com/inDAGOverse/inDAGO).

2.2 Methodology

2.2.1 Quality control
The module is designed to process paired-end reads obtained 

from the Illumina sequencing platforms in FASTQ format. It 
extracts essential information from these files and should be run 
both before and after the filtering step to assess the reliability of 
the reads and evaluate whether filtering has improved the data 
quality. The quality control process mainly uses functions from 
the ShortRead (Morgan et al., 2009) and Biostrings (Pagès et al., 
2025) packages to efficiently handle FASTQ files and process 
quality scores, and ggplot2 (Wickham, 2009) and custom R code 
to produce the graphical outputs. The module enables analysis 
of all reads, though this can be computationally intensive, or 
allows examination of a random subset of records from each 
input FASTQ file. It also provides a preliminary count of reads 
in each input file. To accelerate processing, users can specify the 
number of cores for parallel computation. Results are generated in 
tabular format, with additional options to visualize and download 
graphical representations of the data in three formats, displaying 
either all samples or a selected subset. The module offers a 
comprehensive overview of key quality metrics, including base 
quality and distribution, read length distribution, GC content, and 
base composition. These metrics are visualized through line plots, 
boxplots, area charts, and density plots, providing a clear assessment 
of sequencing data quality and characteristics. This information 
supports informed decisions for downstream analyses. 

2.2.2 Filtering
The filtering module processes raw sequencing data stored 

in paired-end FASTQ format, improving read quality through 
multiple refinement steps. It enhances data quality by (1) trimming 
low-quality bases from the ends of each read; (2) applying a 
sliding window approach to filter out sequences with a high 
proportion of low-quality bases; (3) removing adapter sequences. 

The filtering process, as well as quality control, also uses functions 
from the ShortRead and Biostrings packages. To ensure accurate 
read retention, the module implements several key parameters. 
First, bases below the defined quality threshold are identified and 
excised from both ends until only high-quality bases remain. A 
sliding window analysis is performed along each read, examining 
a set number of neighboring bases; if too many low-quality bases 
appear in sequence, trimming occurs at that point. Then, known 
adapter sequences are detected and clipped out with allowance 
for a small, controlled number of mismatches, ensuring that 
contamination is removed without sacrificing genuine sequence 
data. Finally, sequences shorter than the specified minimum 
read length are removed. The module allows adjustment of 
quality score formats to ensure compatibility with different 
sequencing platforms, either via automatic detection or by selecting 
a predefined format. Performance and storage efficiency can be 
optimized by enabling file compression, which generates ‘.gz’ 
files to reduce disk usage. Processing speed can be improved 
by parallelizing the analysis, distributing tasks across multiple 
jobs for faster execution. Additionally, datasets can be divided 
into smaller sub-samples for sequential processing, helping to 
balance computational resources, memory usage, and filtering 
efficiency. After processing, the module outputs the filtered reads 
in FASTQ format, ensuring high-quality data for downstream
analysis. 

2.2.3 Genome indexing
The genome indexing module begins with reference genomes 

in FASTA format (which can be provided in compressed or 
uncompressed forms using the GNU-Linux gzip utility) and 
constructs a data structure that enables efficient access to 
the genome.

A hash-table data structure is generated from the reference 
genome file, enabling rapid and efficient read alignment while 
significantly reducing processing time. The indexing processes 
utilize the buildindex functions from the Rsubread (Liao et al., 2019) 
package. This module comprises three sub-modules, supporting 
dual RNA-seq analysis in both sequential and combined modes, 
as well as conventional bulk RNA-seq analysis. In sequential 
mode, the module generates separate genome indexes for each 
target organism, ensuring independent alignment. In contrast, the 
combined mode creates a single index by concatenating the genomes 
of the interacting organisms, assuring a unified mapping process. 
The required inputs include the two genomes for dual RNA-seq or a 
single genome for bulk RNA-seq, which must be indexed before the 
mapping step. In the combined dual RNA-seq approach, inDAGO 
allows us to assign distinct prefixes to each genome to ensure clear 
labelling of genome sequences. The module allows configuration of 
advanced parameters for filtering repetitive sequences and splitting 
the index into chunks when available RAM is insufficient for a single 
block. Additionally, indexing can be performed on one genome at 
a time or on both genomes simultaneously. This option is available 
only in sequential mode, when generating two separate indexes is 
required. The output consists of two binary index files for each index 
block, which are saved in the designated folders, along with three 
plain text documents. 
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FIGURE 1
Overview of the inDAGO dual RNA-seq workflow supporting sequential and combined mapping approaches. The workflow consists of seven steps, 
with steps 1, 2, 5, 6 and 7 being common to both approaches, while steps 3 and 4 are approach specific. Step 1: Quality control of raw mixed reads 
(organism a+ organism b in FASTQ format) is performed using the Biostrings and ShortRead packages and graphical results are generated through 
ggplot2 and custom R scripts. Step 2: Filtering of raw mixed reads is performed using the Biostrings and ShorRead packages (Input format: FASTQ). 
Step 3: Genome indexing of reference sequences (Input format: FASTA and GTF or SAF) is performed with the Rsubread package and built-in R 
functions. In the sequential approach, separate genome indexing is done for each organism (Step 3.1), while in the combined approach, a single 
concatenated genome is indexed (Step 3.2). Step 4: Alignment of filtered reads to the reference genomes, their manipulation and the in silico
discrimination of mixed transcripts are conducted using Rsubread, Rsamtools and built-in R functions. In the sequential approach, a double mapping 
step is performed (one for each organism) (Step 4.1), while in the combined approach, a single mapping is followed by in silico read discrimination 
(Steps 4.2 and 4.3) (Input format: FASTQ and SAM/BAM). Step 5: Mapped reads are summarized using the Rsubread package (Input format: SAM/BAM). 
Step 6: Summarized reads are explored through statistical analysis and visualizations using custom R code, along with the ggplot2, pheatmap, Hmisc, 
and RNAseQC packages (Input format: TSV; TAB-separated values). Step 7: Differentially expressed genes (DEGs) are identified using the edgeR and 
HTSFilter packages (Input format: TSV). The genomes of the two organisms are represented in different colors (yellow and blue). When analyzed 
separately, each genome appears as an independent block in the workflow. When analyzed together, the genomes are displayed as connected blocks.

2.2.4 Mapping
Similarly to the indexing module, the mapping process varies 

depending on the chosen analysis approach. In all cases, reads 
are aligned to the specified reference sequences, generating 
alignment files in SAM/BAM format, while unmapped reads 
are output in FASTQ format. The mapping processes utilize 
the subjunc functions from the Rsubread to perform read 
alignment. While the manipulation of resulting BAM files 
is performed using Rsamtools (Morgan et al., 2025) package 
and the generation of the concatenated genome and the in 
silico separation of mixed reads is conducted using R built-in
functions.

For the combined approach, aligned reads are assigned to their 
respective reference sequences, and cross-mapped reads (those that 
align to multiple genomes) are also output in BAM format.

The sequential approach requires two separate genome indexes, 
whereas the combined approach and bulk RNA-seq require only a 
single index. These indexes, along with input reads in FASTQ format, 
serve as the necessary input for the mapping process. The analysis 
can be fine-tuned by adjusting parameters that affect mapping 
stringency, handling of multi-mapped reads, and processing speed. 
Alignment outputs can be generated in either uncompressed 
or compressed formats, with the number of cores and threads 
configurable for parallel processing. The results consist of two BAM 
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FIGURE 2
Overview of the inDAGO bulk RNA-seq workflow. The inDAGO workflow for bulk RNA-seq analysis consists of seven key steps that trace the full 
analytical process, ultimately leading to the identification of differentially expressed genes (DEGs) between experimental conditions. Step 1: Quality 
control of raw reads (Input format: FASTQ). Step 2: Filtering of low-quality reads (Input format: FASTQ). Step 3: Indexing of reference genome (Input 
format: FASTA and GTF or SAF). Step 4: Alignment of reads to the reference (Input format: FASTQ). Step 5: Summarization of mapped reads by 
biological units (e.g., genes) (Input format: SAM/BAM). Step 6: Statistical exploration of read counts (Input format: TSV). Step 7: Identification of 
differentially expressed genes (Input format: TSV). The bulk RNA-seq workflow follows the same sequence and uses the same underlying packages as 
the dual RNA-seq workflow. 
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FIGURE 3
Graphical User Interface of inDAGO. Screen captures from inDAGO illustrating key stages of the analysis workflow: (a) welcome screen; (b) quality 
control opening screen, with the built-in documentation screen overlapping; (c) module view during process execution, with the display of results after 
analysis completion overlapping. Together, these images provide a comprehensive overview of inDAGO’s user-friendly interface and functionality.
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files: one for each reference sequence in the dual RNA-seq approach, 
and a single BAM file for bulk RNA-seq. In the combined approach, 
a single mapping is performed, resulting in a preliminary alignment 
file. This file is then processed and split according to each interacting 
organism, generating two organism-specific BAM files. Additionally, 
cross-mapped reads are stored in a separate output BAM file. 
Unmapped reads are provided in FASTQ format. Furthermore, three 
text files are generated that detail the discovered junctions, indels, 
and a summary of the analysis. 

2.2.5 Summarization
The summarization process uses the featureCounts function 

from the Rsubread package to assign mapped reads (i.e., SAM/BAM 
files) to specific genomic features and quantifying gene expression 
for each sample. It generates a count table that reports the number 
of reads mapped to each selected feature (e.g., exon). Starting 
from this step onwards in dual RNA-seq, the organisms can 
be analyzed independently, as the previous module has already 
differentiated the reads between the two organisms. To operate, 
the module requires alignment files and an annotation file in 
GTF/SAF format. Multiple customizable parameters allow users 
to adjust how annotation data is processed, providing flexibility 
to tailor the analysis to specific experimental needs. The module 
retrieves the chosen genomic feature (e.g., exons) and its identifier 
(e.g., gene_id) from the appropriate annotation file columns. Read 
counts can be aggregated either across entire genes or at the 
level of individual features, such as exons. Further customizable 
parameters offer control over read assignment, handling of multi-
mapped reads, quality filtering, paired-end read management, and 
parallel processing. Strand-specific read counting can be enabled 
if a strand-specific sequencing protocol was used, ensuring correct 
transcript quantification. The module produces four key output files 
per sample: an annotation file, a quantification file, a summary of 
the quantification process (in CSV (comma-separated values) or 
TSV formats), and a log file documenting the workflow. Together, 
these files offer a comprehensive and structured foundation for 
downstream analysis. 

2.2.6 Exploratory data analysis
The primary objective of EDA is to examine and interpret data 

in relation to the specific biological question under investigation. 
This process allows researchers to refine their research questions 
or determine whether additional data collection is needed when 
existing data are insufficient. This module generates a series 
of exploratory plots that are essential for identifying patterns, 
detecting potential outliers, and visualizing key insights. These 
visualizations not only enhance data comprehension but also serve 
as powerful communication tools when presenting findings in 
scientific publications. The module exploits the ggplot2, pheatmap 
(Kolde, 2025), and RNAseQC (Dufort, 2025) packages to generate 
the primary visualizations, while the plotly (Sievert, 2020) package 
is used to create interactive versions for dynamic visualization. 
The required inputs include count matrices generated during 
the summarization step for each sample, as well as a matrix 
indicating the group assignments for each sample. Alternatively, 
group assignments can be manually defined via the interface. Group 
assignment refers to categorizing samples into different groups based 
on experimental conditions or other relevant factors. This is essential 

in data analysis, particularly in biological and clinical studies, where 
comparisons between groups help identify meaningful differences. 
The module offers full interactive control over plot appearance, 
including a wide range of color-palette options. It also supports 
exporting figures in multiple formats (JPEG, PNG, TIFF, EPS, 
SVG, PDF), customizable dimensions (height and width in inches, 
cm, mm, or pixels), and adjustable resolution. Plots are generated 
twice (i.e., before and after normalization) allowing for a visual 
comparison of the normalization effect, as the module also performs 
count normalization. To explore and visualize the variability and 
structure within gene expression data, various techniques are 
implemented in inDAGO. These include dimensionality reduction 
methods like Multi-Dimensional Scaling (MDS) and Principal 
Component Analysis (PCA), which help to reveal patterns across 
samples or conditions. Moreover, the distribution of count data, 
such as log-transformed values, is visualized using boxplots, while 
library sizes are represented using bar plots. Additionally, heatmaps 
can be used to examine variability in gene expression or correlation 
between samples. Finally, saturation plots can be generated to 
evaluate the extent of gene detection. 

2.2.7 Identification of DEGs
The final module of the workflow begins by utilizing the same 

data from the EDA module and concludes by generating a list of 
differentially expressed genes along with key statistical parameters, 
including log2 fold change, p-value, and adjusted p-value which is 
output in CSV format.

In addition to DEG list, two plots are provided to visualize 
estimated dispersion: one based on the negative binomial 
distribution and the other representing quasi-likelihood dispersion. 
The process starts with importing the raw count data, followed 
by constructing a design matrix to represent the experimental 
design. The design matrix contains rows corresponding to samples 
and columns representing experimental parameters, with values 
coded as 0s or 1s (1 indicating that a sample is assigned to a 
specific condition, and 0 otherwise). Depending on the experimental 
setup, the design matrix can include an intercept term. Currently, 
inDAGO uses an intercept-free design matrix. Low-abundance 
genes are filtered out, as they provide limited statistical power for 
distinguishing between the null and alternative hypotheses. Next, 
the data is normalized to account for variations such as sequencing 
depth, and dispersion parameters calculated. Dispersion is a crucial 
parameter in RNA-seq data analysis, as it quantifies variability and is 
essential for identifying DEGs. After data pre-processing, hypothesis 
testing is conducted using the defined contrasts. These contrasts 
define the pairwise comparisons between experimental groups, 
enabling the module to identify DEGs. To run the module, users 
need a directory containing raw count data, a text file specifying 
sample group assignments (or alternatively, assignments can be 
made interactively), and an empty directory for output storage. 
Input contrasts must also be defined to guide comparisons between 
conditions. Additionally, advanced parameters are available for 
further customization of the analysis. These parameters allow 
fine-tuning of filtering thresholds, normalization methods, and 
other statistical settings to meet specific research needs. Two 
filtering methods are available. The first retains genes that meet 
a minimum read count threshold across samples, as described by 
(Chen et al., 2016). The second determines a threshold based on 
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the pairwise Jaccard similarity index between replicates within 
each experimental condition, as outlined by Rau et al. (2013) 
and implemented in the R package HTSFilter. For statistical 
testing, the module utilizes edgeR (Chen et al., 2025), supporting 
three methods: exact tests (exactTests), quasi-likelihood F-tests 
(QLFTest), and gene-wise likelihood ratio tests (LRT). Several 
normalization approaches are available, including TMM (trimmed 
mean of M-values) by Robinson and Oshlack (2010), TMMwsp 
(a variant optimized for datasets with many zeros), RLE (relative 
log expression) proposed by Anders and Huber (2010), and the 
upper quartile method (Bullard et al., 2010). For multiple testing 
corrections, various p-value adjustment methods are available, 
including Bonferroni, Holm, Hochberg, Hommel, and FDR (false 
discovery rate). Thresholds for both absolute log2 fold change 
(log2 FC) and adjusted p-value can be specified to filter the 
list of DEGs. Moreover, it is possible to merge all DEGs results 
in a single merged table, and adding information retrieved 
from columns of annotation file, such as “seqname”, “attribute”, 
“description” etc. In addition, the module enables the formulation 
of customizable volcano plots for each comparison, as well as 
UpSet plots with the same customization options provided in the 
EDA module. These visualizations are generated using the ggplot2 
and UpSetR (Conway et al., 2017) packages. To make the plots 
interactive, the plotly and upsetjs (Gratzl, 2022) packages are also
utilized. 

2.3 Graphical structure and dynamic 
documentation

Each module consists of a sidebar and a main panel, with 
the sidebar guiding data input and parameter settings. The main 
panel provides real-time feedback on the process status, displaying 
notifications such as warnings, errors and execution time. If the 
module generates graphical outputs, they will be presented here, 
along with options for interactive modifications and downloads 
of the plots. Each module provides concise, readily accessible 
documentation to support the analysis workflow. Within the 
main panel, the documentation is clearly organized into several
sections:

• “WHEN TO PERFORM”: this section outlines the specific 
circumstances or scenarios, where using the module is 
appropriate;

• “WHAT IT DOES”: this section provides a brief description of 
the analysis performed by the module;

• “OPERATIONAL INSTRUCTIONS”: this section provides a 
step-by-step guide on how to execute the analysis effectively;

• “RESULTS”: describes the expected outcomes and the formats 
in which they will be presented;

• “ADDITIONAL NOTES”: lists any supplementary options and 
features available.

Additionally, to improve interaction with the documentation, 
each sidebar input box features a question mark icon (tooltip) 
that provides detailed, context-specific information, enhancing both 
clarity and usability. 

2.4 Evaluation of inDAGO performance

To evaluate its usability and performance, inDAGO was 
tested on three different machines, one running the Windows 11 
with an Intel® Core™ i5-9300HF processor and 16 GB of RAM 
(2,400 MHz), the second running the GNU/Linux distribution 
Ubuntu 20.04.6 LTS (Focal Fossa) with an Intel® Core™ i7-1185G7 
processor and 16 GB of RAM (1,600 MHz), and the last running 
the macOS Sequoia version 15.5 with an Apple M1 chip and 16 GB 
of RAM (2,666 MHz). Since it is not feasible to compare the entire 
inDAGO workflow against a fully validated real-world project, we 
divided the workflow into three distinct blocks for evaluation. 
The first block focused on quality control, filtering, indexing, and 
mapping using the combined approach. The second block evaluated 
the summarization process, while the final block assessed data 
exploration and the identification of differentially expressed genes. 

2.4.1 Dataset 1 - Dual RNA-seq mapping 
validation (Arabidopsis - Cuscuta)

To evaluate the quality control, filtering, indexing and mapping 
modules (combined approach mode), we reproduced the dual RNA-
seq mapping experiment described by Fruggiero et al. (2024) which 
simulated the interaction between A. thaliana (host plant) and 
C. campestris (parasitic plant). Further methodological details and 
complementary analyses can be found in the referenced publication. 
RNA-seq data were retrieved from the European Nucleotide 
Archive (ENA) and include A. thaliana stem tissue samples 
(accession numbers: SRR22559142, SRR22559143, SRR22559144) 
from the Columbia ecotype (Col-0) at the vegetative stage, with 
an average of ∼20.1 million reads per sample. Additionally, C. 
campestris developing haustoria samples (accession numbers: 
SRR12763776, SRR12763787, SRR12763788), collected in the 
absence of host contact, were included, averaging ∼14.7 million 
reads per sample. Reads from both species were merged. Specifically, 
the first replicate of Arabidopsis thaliana was combined with the 
first replicate of Cuscuta campestris, and the same procedure 
was applied to the other replicates. This resulted in three 
merged transcriptome datasets: SRR22559142 + SRR12763776, 
SRR22559143 + SRR12763787, and SRR22559144 + SRR12763788, 
which were used for downstream analysis. Reference genomes 
were retrieved from NCBI: A. thaliana (RefSeq GCF_000001735.4; 
∼119.1 Mb) and C. campestris (GenBank GCA_900332095.2; 
∼476.8 Mb). The three merged datasets were processed through 
the inDAGO workflow to generate BAM files. Both input and 
output sequence files were gzip-compressed, which required greater 
computational resources compared to handling decompressed 
files and resulted in significantly longer execution times. Each 
module’s performance was evaluated using default settings. After 
the quality control phase, the subsequent filtering module applied 
a minimum read length threshold of 75 and a quality threshold of 
20, with trimming performed on both ends of paired-end reads. 
Indexing and mapping were performed next using a combined 
approach. Indexing assumed the generation of a single-segment 
index, excluding subreads (16 bp k-mers) that appeared more than 
100 times from the genome indexing process. Mapping was carried 
out with default advanced parameters: 14 subreads extracted per 
read, a consensus threshold of 1, up to 3 allowed mismatches, 
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allowance of 1 multi-mapped read, an indel length of 5, and fragment 
lengths between 50 and 600 bp. 

2.4.2 Dataset 2 - Summarization validation (SEQC 
human data)

To exclusively assess the performance of the summarization 
module, BAM or SAM files are required, which can be generated 
through the alignment module. For this evaluation, real RNA-
seq data with known count tables from the SEQC Project (GEO 
accessions: GSM1156797, GSM1156798, GSM1156799) were used. 
Specifically, a library from a Homo sapiens RNA-seq project (SRA 
accessions: SRR896663, SRR896664, SRR896665 contain ∼5.7, ∼6.1, 
and ∼5.6 million paired-end reads, respectively, with an average 
length of 165 bp.) was downloaded from the Sequence Read Archive 
(SRA). The dataset consists of paired-end FASTQ files generated on 
an Illumina HiSeq 2000 platform. The hg38 human genome, along 
with its corresponding annotation file, provided in FASTA and GTF 
formats, respectively (RefSeq: GCF_000001405.39; genome size: 
∼3.1 Gb) served as the reference for alignment and summarization. 
Summarization was performed using default parameters, focusing 
on meta-feature-level assignment and using the “gene_id” attribute 
in the GTF annotation. This approach minimizes multiple overlaps 
and excludes multi-mapping reads. The analysis was run in parallel 
across the three samples, allocating two threads per sample. 

2.4.3 Dataset 3 - Exploratory data analysis and 
DEG identification (mouse mammary gland)

Finally, to evaluate the performance of the data exploration 
and differential expression analysis modules, read count tables 
are required, which can be generated through the alignment and 
the subsequentially summarization module. For this evaluation, 
we utilized RNA-seq data from luminal and basal mammary 
epithelium cells collected from the mammary glands of virgin, 
18.5-day pregnant, and 2-day lactating mice. This dataset, 
originally from Fu et al. (2015), is also featured as a case study titled 
“RNA-Seq profiles of mouse mammary gland” in the edgeR user 
guide. The sequence and count data are publicly available in the Gene 
Expression Omnibus (GEO) under accession number GSE60450. 
After generating read count tables following recommendations 
from the edgeR user guide, the data were explored through the 
dedicated inDAGO module. Then differentially expressed genes 
were identified using default advanced parameters. These included 
a filtering method based on Chen et al. [20], quasi-likelihood F-
tests (QLFTest) for statistical evaluation, and TMM normalization. 
P-values were adjusted using the false discovery rate (FDR), with 
significance thresholds set at 0.05 and an absolute log2 fold-change 
(|log2FC|) cutoff of 1.2 to classify genes as up or downregulated. 
The dataset comprises luminal and basal mammary epithelial 
cells from adult female mice at three physiological states: virgin, 
pregnant (E18.5), and lactating (postpartum day 2). Six groups were 
analyzed: Basal virgin (B_virgin), Basal pregnant (B_pregnant), 
Basal lactating (B_lactate), Luminal virgin (L_virgin), Luminal 
pregnant (L_pregnant), and Luminal lactating (L_lactate), each 
with two biological replicates (total n = 12). The analysis included 
in pairwise comparisons of B_pregnant vs. B_lactate, B_virgin vs. 
L_virgin, and B_pregnant vs. L_pregnant. 

3 Result

3.1 Dataset 1 - Dual RNA-seq mapping 
result (Arabidopsis - Cuscuta)

We tested the combined mapping workflow on three merged 
samples created by pairing A. thaliana and C. campestris replicates. 
Quality control indicated a mean base quality above Q35, 
corresponding to an error rate of 0.035%, with an average read 
length of approximately 150 bp. Base composition along the reads 
was generally uniform, except for the initial bases affected by 
hexamer priming during library preparation. Each merged sample 
contained an average of 36.7 million reads. After filtering, only 
0.05% of reads were discarded, and mapping achieved alignment 
rates above 90% to the reference genomes. Two-sided cross-mapped 
reads—aligning to both genomes—accounted for less than 0.01%, 
while reads incorrectly assigned to the wrong genome represented 
approximately 0.02% of the input (Tables 1, 2). These results are 
consistent with those reported by Fruggiero et al. (2024), with minor 
variations attributable to differences in the underlying algorithms. 
Quality control plots are shown in Figure 4, and filtering summaries 
are presented in Supplementary Table S1.

3.2 Dataset 2 - Summarization result 
(SEQC human data)

To independently evaluate the summarization module, we 
processed three human RNA-seq samples from the SEQC project. 
Each sample had an average of 5.8 million aligned reads, with feature 
assignment successfully capturing approximately 71% of mapped 
reads under the default counting settings. Comparison of inDAGO’s 
gene counts to the published SEQC reference showed a mean 
relative difference of 0.24 across shared genes, indicating strong 
concordance with established summarization outputs. Per-sample 
assignment count tables are provided in Supplementary Table S2. 

3.3 Dataset 3 - Exploratory data analysis 
and DEG identification (mouse mammary 
gland)

We analyzed a publicly available mammary gland RNA-seq 
dataset using the EDA and differential expression modules to 
evaluate biological signal detection and statistical performance 
(Figures 5,6). The dataset includes 12 samples across six groups (B_
lactate, B_pregnant, B_virgin, L_lactate, L_pregnant, L_virgin) with 
two replicates per group.

Dimensionality-reduction analyses (PCA and MDS) clearly 
separate samples by physiological state and cell type: PC1 explains 
∼69.5% of the variance, while PC2 accounts for ∼13.5%, and the 
MDS axes show a comparable pattern (Figures 5a,b). Separation is 
more pronounced for luminal (L) samples than for basal (B) samples, 
indicating stronger condition-specific transcriptional shifts within 
the luminal population.

Per-sample sequencing depth ranges from ∼12 million to ∼29 
million reads: L_lactate samples have the lowest depth (∼12–13M), 
L_virgin samples the highest (∼27–29M), and basal groups fall in 
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TABLE 1  Read mapping counts obtained with the combined approach.

Libraries 
(Arabidopsis
+ Cuscuta)

Replicate Raw reads Processed 
reads

Uniquely 
mapped 

onto
Arabidopsis

Uniquely 
mapped 

onto
Cuscuta

Two-side 
cross-

mapped

Unmapped 
and multiple 

mappeda

SRR22559142 + 
SRR12763776

Replicate 1 35702825 35685953 19595767 
(54.91%)

14811039 (41.5%) 938 (0.003%) 1278209 (3.58%)

SRR22559143 + 
SRR12763787

Replicate 2 36282091 36261719 20066086 
(55.34%)

14801634 
(40.82%)

8799 (0.024%) 1385200 (3.82%)

SRR22559144 + 
SRR12763788

Replicate 3 38034066 38014805 21403053 (56.3%) 15194496 
(39.97%)

1,474 (0.004%) 1415782 (3.72%)

aMulti-mapped reads are sequences that align to multiple locations within the reference genome.

TABLE 2  Count of reads correctly assigned to their respective genomes.

References genome Replicate Unambiguously mapped 
reads

Arabidopsis mapped 
reads

Cuscuta mapped reads

A. thaliana Replicate 1 19595767 19593126 (99.99%) 2,641 (0.01%)

A. thaliana Replicate 2 20066086 20061888 (99.98%) 4198 (0.02%)

A. thaliana Replicate 3 21403053 21399033 (99.98%) 4020 (0.02%)

C. campestris Replicate 1 14811039 714 (0.005%) 14810325 (99.995%)

C. campestris Replicate 2 14801634 10928 (0.07%) 14790706 (99.93%)

C. campestris Replicate 3 15194496 1,472 (0.01%) 15193024 (99.99%)

FIGURE 4
Quality Control Module Outputs. This figure presents key quality control plots generated by inDAGO: (a) average base quality line plot; (b) sequence 
length distribution; (c) GC content distribution across reads; (d) base quality boxplot showing average and variation per base position; (e) base 
composition line plot; and (f) base composition area chart across the dataset. Together, these visualizations offer a comprehensive assessment of the 
quality and characteristics of the raw sequencing data. The analyzed samples include Arabidopsis thaliana stem tissue (accessions SRR22559142, 
SRR22559143, and SRR22559144) and Cuscuta campestris tissue (accessions SRR12763776, SRR12763787, and SRR12763788). Reads from each species 
were paired to create three combined transcriptome datasets: SRR22559142 + SRR12763776 (resulting in SRR22559142SRR12763776_1. fastq.gz and 
SRR22559142SRR12763776_2. fastq.gz), SRR22559143 + SRR12763787 (SRR22559143SRR12763787_1. fastq.gz and SRR22559143SRR12763787_2. 
fastq.gz), and SRR22559144 + SRR12763788 (SRR22559144SRR12763788_1. fastq.gz and SRR22559144SRR12763788_2. fastq.gz). Quality assessments 
for the paired-end reads are presented in the figure panel. Although all samples are displayed in panels (a–c), only the sample 
SRR22559142SRR12763776_1. fastq.gz is shown in panels (d–f), as the plots are limited to displaying one sample at a time.
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FIGURE 5
Outputs from the exploratory data analysis (EDA) module. This figure displays graphical outputs produced by the EDA module based on the normalized 
data, including (a) Principal Component Analysis (PCA) plot, (b) Multi-Dimensional Scaling (MDS) plot, (c) gene expression boxplot, (d) library size bar 
plot, (e) gene expression heatmap, (f) correlation heatmap, and (g) saturation plot. These visualizations enable detailed examination of data distribution, 
relationships, and overall expression patterns, helping to identify trends, biases, or outliers within the dataset. The GEO accession numbers for each 
sample group are: L_virgin (GSM1480291, GSM1480292), L_pregnant (GSM1480293, GSM1480294), L_lactate (GSM1480295, GSM1480296), B_virgin 
(GSM1480297, GSM1480298), B_pregnant (GSM1480299, GSM1480300), and B_lactate (GSM1480301, GSM1480302).

an intermediate range (∼21–27M). Replicates within each condition 
are closely matched (differences of only ∼1–2M reads), indicating 
good technical reproducibility, although between-condition 
differences in library size could affect sensitivity for low-abundance 
transcripts (Figure 5d). Boxplots of log2 counts per million 
(CPM) show broadly comparable distributions across all samples
(Figure 5c).

Sample clustering in the expression and sample–sample 
correlation heatmaps confirms that luminal and basal samples 
form distinct clusters and that biological replicates are consistent 
(within-group correlations are high relative to between-group 
correlations; Figures 5e,f). The sequencing saturation curve 
indicates that a clear plateau has not been fully reached, suggesting 
diminishing but non-negligible returns from additional sequencing 
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FIGURE 6
Results from the identification of differentially expressed genes module. This figure displays key graphical outputs generated during the identification of 
DEGs. (a) The volcano plot highlights the top 1,000 most significantly differentially expressed genes from the B_pregnant vs. B_lactate comparison. 
Each point represents a gene, with the x-axis showing the log2 fold change and the y-axis the negative log10 p-value. The dashed lines indicate the 
significance thresholds (p-value = 0.05 and |log2 fold change| = 0.58). Genes meeting these criteria are clearly marked, facilitating quick interpretation 
of up- and downregulated genes. (b) The UpSet plot summarizes all considered comparisons, with horizontal bars indicating the number of genes in 
each set and vertical bars showing the intersections, revealing shared DEGs across comparisons.

depth and that further sequencing could recover additional 
low-abundance genes (Figure 5g).

Out of 42,396 genes tested, ∼4,700 were identified as 
differentially expressed (DEGs) using |log2FC| > 1.2 and FDR <0.05. 
In the B_pregnant vs. B_lactate contrast (volcano plot, Figure 6a), 

genes with both large fold changes and strong statistical 
significance are highlighted. Among these, 46 genes exhibit 
very strong upregulation (log2FC > 4 and FDR <0.05), while 
16 show very strong downregulation (log2FC < −4 and
FDR <0.05).
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TABLE 3  Stepwise execution times (minutes) recorded on three laptops running different operating systems.

Modules Parallel samplinga Operating systems

GNU-linuxb Windowsc macOSd

Dataset 1

Quality control 1 7,5 7,6 4,0

Filtering 3 43,1 47.53 34.3

Indexing 1 8,75 14,1 4,7

Mapping 1 384,20 462,42 354,1

Dataset 2 Summarization 3 0,7 1,3 0,4

Dataset 3
Exploratory data analysis 1 <0,1 <0,1 <0,1

Differential expression analysis 1 0,2 0,2 0,1

Execution times correspond to the specific datasets used. For details on data sizes, please refer to the Materials and Methods section.
aThis refers to conducting the analysis on one or multiple samples simultaneously.
bGNU/Linux distribution Ubuntu 20.04.6 LTS (Focal Fossa) with an Intel® Core™ i7-1185G7 processor and 16 GB, of RAM (1,600 MHz).
cWindows 11 with an Intel® Core™ i5-9300HF, processor and 16 GB, of RAM (2,400 MHz).
dmacOS, Sequoia version 15.5 with an Apple M1 chip and 16 GB, of RAM (2,666 MHz).

The UpSet plot summarizes DEG overlap across comparisons 
(Figure 6b): 2,216 DEGs are shared among the three comparisons 
considered, with the B_pregnant vs. L_pregnant contrast contributing 
the largest set of uniquely regulated genes (2,694 unique DEGs). 
These results are consistent with outcomes obtained following 
the edgeR User’s Guide (https://bioconductor.org/packages/release/
bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf). Complete DEG 
statistics are provided in Supplementary Table S3. 

3.4 Computational performance

Execution times for each module are summarized in Table 3. 
All runs were performed using default parameters unless 
otherwise noted. For the mapping benchmark, compressed 
input and output files were used, which is expected to increase 
processing time compared to workflows with uncompressed
files.

4 Discussion

This work introduces inDAGO, a standalone, cross-platform 
software tool with an intuitive graphical user interface that 
eliminates the need for programming expertise. By lowering the 
technical barrier, inDAGO exemplifies the democratization of 
bioinformatics, addressing the critical need to make advanced 
computational tools accessible to researchers regardless of 
their coding background (Krampis, 2022). Many biologists 
face significant challenges navigating complex data analysis 
workflows, making user-friendly interfaces essential to overcoming 
these obstacles. Open-source platforms that integrate diverse 
bioinformatics tools into streamlined workflows simplify the 
analysis of high-throughput sequencing data. By emphasizing ease of 
use and accessibility, such platforms empower a broader community 

of researchers to independently perform sophisticated analyses, 
fostering inclusivity and accelerating scientific progress.

inDAGO supports two types of transcriptomic analyses: 
dual RNA-seq, which can be performed in either sequential 
or combined modes, and bulk RNA-seq, both starting directly 
from raw sequencing data. To evaluate its performance and 
reliability, we tested inDAGO on public datasets across three 
operating systems, using a standard laptop with 16 GB of 
RAM. The results demonstrated that all modules functioned 
efficiently and as expected. In particular, the read discrimination 
results were consistent with those reported by Fruggiero et al. 
(2024), with minor differences attributable to variations in the 
underlying algorithms. Specifically, Trimmomatic (Bolger et al., 
2014) and STAR (Dobin et al., 2013) were used instead of the 
embedded tools in inDAGO (primarily: ShortRead, Biostrings, 
and Rsubread). The summarization achieved an assignment rate 
comparable to what can be obtained by following the Rsubread 
user’s guide pipeline. The minor discrepancies between the results 
and the SEQC project likely stem from slight algorithmic and 
parameter differences. While the results of DEG analysis are 
consistent with those reported in the edgeR manual. Indeed, the 
MDS and PCA plots show replicates from the same experimental 
group clustering together, reflecting their biological similarity, while 
samples from different groups form separate clusters, indicating 
significant condition-specific differences. This pattern suggests that 
inter-group variability exceeds intra-group variation, highlighting 
meaningful differential expressions. These results demonstrate that 
inDAGO produces outputs suitable for downstream biological 
interpretation and can serve as a reliable end-to-end solution for 
typical dual and bulk RNA-seq experiments. Benchmarking against 
standard command-line workflows shows largely equivalent results, 
with minor differences due to default parameter choices affecting a 
small fraction of ambiguous reads. For routine analyses, users can 
expect concordant biological conclusions regardless of workflow.
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For cases requiring strict minimization of cross-
mapping, such as interacting organisms with highly similar 
genomes, more conservative settings (e.g., stricter mapping 
parameters in a combined approach) are recommended, 
improving accuracy (Fruggiero et al., 2024).

While inDAGO does not yet include integrated gene-set 
enrichment, co-expression modules, or dedicated single-cell/non-
coding RNA workflows, it exports standardized count and 
DEG tables compatible with popular downstream tools. Future 
development will prioritize these additions alongside expanded 
statistical options for DEG analysis.

Computational constraints are mitigated via chunked and 
parallelized processing of large genomes and deep sequencing 
datasets, enabling analysis on typical laptops. Therefore, processing 
datasets larger than those used in the evaluation section results 
in a linear increase in execution time, without risking memory 
overflow. For projects aiming for maximum sensitivity in gene 
discovery, users can export inDAGO’s intermediate files and re-
run alignment or quantification with alternative parameters. The 
software is intentionally designed to facilitate these handoffs. By 
providing comprehensive intermediate, BAM, and count files, 
inDAGO enables transparent reporting while allowing users to 
combine GUI-driven convenience with command-line precision. 
Practical users will also benefit from the detailed guidance provided 
in the documentation. In summary, inDAGO is a robust and 
powerful tool that guides scientists through the complexities of dual 
and bulk RNA-seq data analysis. Upcoming versions of inDAGO 
will add new modules and enhanced statistical approaches for 
downstream analyses.
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