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iINDAGO: a user-friendly interface
for seamless dual and bulk
RNA-Seq analysis

Gaetano Aufierot, Carmine Fruggiero' and Nunzio D'Agostino*

Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy

Dual RNA-sequencing enables simultaneous profiling of protein-coding and
non-coding transcripts from two interacting organisms, an essential capability
when physical separation is difficult, such as in host-parasite or cross-kingdom
interactions (e.g., plant-plant or host-pathogen systems). By allowing in silico
separation of mixed reads, dual RNA-seq reveals the transcriptomic dynamics
of both partners during interaction. However, existing analysis workflows often
require programming expertise, limiting accessibility. We present inDAGO, a free,
open-source, cross-platform graphical user interface designed for biologists
without coding skills. inDAGO supports both bulk and dual RNA sequencing,
with dual RNA sequencing further accommodating both sequential and
combined approaches. The interface guides users through key analysis steps,
including quality control, read alignment, read summarization, exploratory data
analysis, and identification of differentially expressed genes, while generating
intermediate outputs and publication-ready plots. Optimized for speed and
efficiency, inDAGO performs complete analyses on a standard laptop (16 GB
RAM) without requiring high-performance computing. We validated inDAGO
using diverse real datasets to demonstrate its reliability and usability. inDAGO,
available on CRAN (https://cran.r-project.org/web/packages/inDAGO/) and
GitHub (https://github.com/inDAGOverse/inDAGO), lowers the technical barrier
to dual RNA-seq by enabling robust, reproducible analyses, even for users
without coding experience.

KEYWORDS

transcriptomic dynamics, gene expression profiling, differentially expressed genes,
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Highlights

« inDAGO is a user-friendly, cross-platform software tool that enables both dual and
bulk RNA-seq analysis through a graphical user interface (GUI), removing the need for
programming skills and lowering the barrier for non-bioinformaticians.

o Supports both sequential and combined approaches for dual RNA-seq, offering
flexibility in genome indexing, read mapping, and read discrimination, making it
suitable for diverse interspecies interaction studies.

o Implements a complete RNA-seq workflow, from quality control and filtering to
mapping, summarization, exploratory data analysis, and differential gene expression
(DEQG) identification, optimized for standard laptops with at least 16 GB RAM.

« Promotes the democratization of bioinformatics by offering an open-source, R-Shiny-
based solution that enables researchers without coding experience to perform complex
transcriptomic analyses.
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1 Introduction

When studying tissues composed of material from two
distinct organisms, such as host-pathogen, host-symbiont, or
plant-parasitic plant interfaces, transcriptome profiling typically
follows one of two main strategies: (i) physical separation of the
constituent tissues or (ii) direct sequencing of the mixed sample
followed by computational assignment of reads. Physical separation
methods, including laser capture microdissection (LCM) or manual
microdissection followed by RNA extraction and sequencing,
minimize cross-contamination between organisms and allow
unambiguous transcript assignment. However, these approaches
require specialized instrumentation and trained personnel, and they
can be technically challenging or impractical when the interface is
structurally complex (Honaas et al., 2013; Jhu and Sinha, 2022).

Alternatively, RNA can be sequenced directly from the mixed
tissue, with sequencing reads computationally assigned to each
organism by mapping to their respective reference genomes
or transcriptomes. This strategy, commonly referred to as dual
RNA-sequencing (RNA-seq), avoids laborious microdissection
and enables simultaneous profiling of all interacting partners
(Westermann et al., 2012). However, it introduces analysis-
specific challenges, including ambiguously mapped reads,
extreme abundance imbalances that reduce sensitivity for low-
abundance transcripts, and dependence on the completeness
and quality of reference sequences for accurate organismal
assignment (Fruggiero et al., 2024).

To date, the dual RNA-seq approach has been employed
to study a broad spectrum of interspecies interactions, ranging
from mutualism (Mateus et al., 2019) to host-pathogen dynamics
(Westermann et al., 2017; Naidoo et al, 2018) and covering
nearly all taxonomic kingdoms, including bacteria, fungi, plants
and animals. Dual RNA-seq can be conducted following two
main approaches: combined and sequential. Although both
approaches share the fundamental steps of traditional bulk RNA-
sequencing (bulk RNA-seq) analysis (i.e., read quality control
and preprocessing, reference genome indexing, read mapping,
data summarization, exploratory data analysis, and identification
of differentially expressed genes (DEGs)), they differ in several
critical aspects. In the sequential approach, the genomes of the
interacting species are indexed separately, while in the combined
approach, all genomes are concatenated and indexed as a single
entity. The combined approach produces a unified sequence
alignment file (SAM/BAM/CRAM format) after mapping, whereas
the sequential approach generates separate alignment files for
each species. Therefore, the alignment results from the combined
approach needs to be carefully partitioned to extract species-
specific data (Espindula et al., 2019; Fruggiero et al., 2024). These
studies also compared sequential and combined read-mapping
strategies, finding that the combined approach generally provides
modestly improved performance. In summary, dual RNA-seq shares
many similarities with traditional bulk RNA-seq, with the key
differences primarily occurring in the genome indexing process
and the handling of alignment files before summarization. Bulk
RNA-seq analysis can be performed via the command line by
combining various software tools, enabling users to design custom
pipelines in different programming languages. Additionally, several
graphical user interfaces (GUIs) have been developed to streamline
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this process, including platforms such as RNASeqGUI (Russo
and Angelini, 2014), Galaxy (Afgan et al, 2018), RNAdetector
(La Ferlita et al., 2021), and RNAlysis (Teichman et al., 2023).
Despite the wide range of tools available for bulk RNA-seq analysis,
no dedicated platforms have been developed specifically for dual
RNA-seq analysis. Currently, performing dual RNA-seq analysis
requires the development of customized pipelines, which demand
proficiency in programming and scripting. This presents a challenge
for scientists who lack programming skills but wish to use a user-
friendly interface that guides them through the analysis process
step by step. To address this gap, this article introduces inDAGO, a
standalone software with a GUI designed to automate dual RNA-
seq analysis and assist users at every stage of the process. Unlike
other RNA-seq GUIs, inDAGO natively implements dual indexing
and mapping strategies, transparently handles cross-mapped
and unmapped reads, and integrates exploratory modules that
allow users to examine species-specific signals before performing
differential expression analyses. The software packages the entire
workflow into a user-friendly interface that ex-ports standard,
publication-ready outputs. inDAGO is compatible with multiple
operating systems and can run on either a high-performance
server or a laptop with at least 16 GB of RAM. No programming
expertise is needed, allowing users to smoothly navigate the steps
of the analysis and download intermediate results as required.
Furthermore, inDAGO includes additional modules for performing
classical bulk RNA-seq analysis, making it a versatile tool for a wide
range of RNA-seq applications.

2 Materials and methods
2.1 Functionality overview

The inDAGO software is fully implemented in the R
programming language (R Core Team, 2024), with its GUI
developed using the Shiny application framework (Chang et al.,
2025). It is compatible with GNU-Linux, Windows, and macOS
operating systems. As illustrated in Figure 1, inDAGO offers
a seamlessly integrated analysis workflow that supports both
sequential and combined approaches for key steps, including
indexing, mapping, and read discrimination (the latter applied
only in the combined approach). This flexibility enables the
workflow to be tailored to the specific needs of dual RNA-seq
experiments. Another key strength of inDAGO is its dedicated
modules for bulk RNA-seq analysis, covering the entire workflow
from quality control to the final stages of analysis (Figure 2). In
addition to supporting bulk RNA-seq, inDAGO offers specialized
tools for managing unmapped reads (sequences that do not align
to any reference genome). These unmapped reads can be further
analyzed by mapping them to alternative reference sequences,
aiding in the detection of potential contaminants, such as reads
originating from unintended organisms. Additionally, inDAGO
enables remapping of previously unmapped reads by adjusting
mapping stringency parameters, such as the allowed number of
mismatches or the treatment of multi-mapped reads, thereby
improving read assignment accuracy. This flexibility enhances
inDAGO’s utility for both dual and bulk RNA-seq workflows.
inDAGO consists of seven distinct modules: (1) quality control, (2)
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filtering, (3) genome indexing, (4) mapping, (5) summarization, (6)
exploratory data analysis (EDA), and (7) identification of DEGs. The
layout and functionality of the GUT is shown in Figure 3, reporting
the quality control module for illustrative purposes. Navigation
between modules is streamlined via tab panels and drop-down
menus, allowing users to quickly access any desired analysis step.
To run the inDAGO pipeline starting from the quality assessment
module, paired-end reads in FASTQ format are required, along
with the reference genome and annotation files (FASTA and GTF
or SAF) for one or both species, depending on whether a bulk or
dual RNA-seq analysis is performed. Each module automatically
generates additional output files, including BAM alignments and
results from DEG analysis. The workflow is specifically optimized
for paired-end reads, as single-end reads were excluded due to
their lower mapping accuracy and reduced reliability in dual-origin
or complex transcriptomes. Additionally, ongoing analysis can be
terminated and restarted at any time, offering greater flexibility
and control over the workflow. The inDAGO package is freely
available through both CRAN (https://cran.r-project.org/web/
packages/inDAGO/index.html) and the GitHub repository (https://
github.com/inDAGOverse/inDAGO).

2.2 Methodology

2.2.1 Quality control

The module is designed to process paired-end reads obtained
from the Illumina sequencing platforms in FASTQ format. It
extracts essential information from these files and should be run
both before and after the filtering step to assess the reliability of
the reads and evaluate whether filtering has improved the data
quality. The quality control process mainly uses functions from
the ShortRead (Morgan et al., 2009) and Biostrings (Pages et al.,
2025) packages to efficiently handle FASTQ files and process
quality scores, and ggplot2 (Wickham, 2009) and custom R code
to produce the graphical outputs. The module enables analysis
of all reads, though this can be computationally intensive, or
allows examination of a random subset of records from each
input FASTQ file. It also provides a preliminary count of reads
in each input file. To accelerate processing, users can specify the
number of cores for parallel computation. Results are generated in
tabular format, with additional options to visualize and download
graphical representations of the data in three formats, displaying
either all samples or a selected subset. The module offers a
comprehensive overview of key quality metrics, including base
quality and distribution, read length distribution, GC content, and
base composition. These metrics are visualized through line plots,
boxplots, area charts, and density plots, providing a clear assessment
of sequencing data quality and characteristics. This information
supports informed decisions for downstream analyses.

2.2.2 Filtering

The filtering module processes raw sequencing data stored
in paired-end FASTQ format, improving read quality through
multiple refinement steps. It enhances data quality by (1) trimming
low-quality bases from the ends of each read; (2) applying a
sliding window approach to filter out sequences with a high
proportion of low-quality bases; (3) removing adapter sequences.
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The filtering process, as well as quality control, also uses functions
from the ShortRead and Biostrings packages. To ensure accurate
read retention, the module implements several key parameters.
First, bases below the defined quality threshold are identified and
excised from both ends until only high-quality bases remain. A
sliding window analysis is performed along each read, examining
a set number of neighboring bases; if too many low-quality bases
appear in sequence, trimming occurs at that point. Then, known
adapter sequences are detected and clipped out with allowance
for a small, controlled number of mismatches, ensuring that
contamination is removed without sacrificing genuine sequence
data. Finally, sequences shorter than the specified minimum
read length are removed. The module allows adjustment of
quality score formats to ensure compatibility with different
sequencing platforms, either via automatic detection or by selecting
a predefined format. Performance and storage efficiency can be
optimized by enabling file compression, which generates ‘gz’
files to reduce disk usage. Processing speed can be improved
by parallelizing the analysis, distributing tasks across multiple
jobs for faster execution. Additionally, datasets can be divided
into smaller sub-samples for sequential processing, helping to
balance computational resources, memory usage, and filtering
efficiency. After processing, the module outputs the filtered reads
in FASTQ format, ensuring high-quality data for downstream
analysis.

2.2.3 Genome indexing

The genome indexing module begins with reference genomes
in FASTA format (which can be provided in compressed or
uncompressed forms using the GNU-Linux gzip utility) and
constructs a data structure that enables efficient access to
the genome.

A hash-table data structure is generated from the reference
genome file, enabling rapid and efficient read alignment while
significantly reducing processing time. The indexing processes
utilize the buildindex functions from the Rsubread (Liao et al., 2019)
package. This module comprises three sub-modules, supporting
dual RNA-seq analysis in both sequential and combined modes,
as well as conventional bulk RNA-seq analysis. In sequential
mode, the module generates separate genome indexes for each
target organism, ensuring independent alignment. In contrast, the
combined mode creates a single index by concatenating the genomes
of the interacting organisms, assuring a unified mapping process.
The required inputs include the two genomes for dual RNA-seq or a
single genome for bulk RNA-seq, which must be indexed before the
mapping step. In the combined dual RNA-seq approach, inDAGO
allows us to assign distinct prefixes to each genome to ensure clear
labelling of genome sequences. The module allows configuration of
advanced parameters for filtering repetitive sequences and splitting
the index into chunks when available RAM is insufficient for a single
block. Additionally, indexing can be performed on one genome at
a time or on both genomes simultaneously. This option is available
only in sequential mode, when generating two separate indexes is
required. The output consists of two binary index files for each index
block, which are saved in the designated folders, along with three
plain text documents.
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FIGURE 1

Overview of the iInDAGO dual RNA-seq workflow supporting sequential and combined mapping approaches. The workflow consists of seven steps,
with steps 1, 2, 5, 6 and 7 being common to both approaches, while steps 3 and 4 are approach specific. Step 1: Quality control of raw mixed reads
(organism a+ organism b in FASTQ format) is performed using the Biostrings and ShortRead packages and graphical results are generated through
ggplot2 and custom R scripts. Step 2: Filtering of raw mixed reads is performed using the Biostrings and ShorRead packages (Input format: FASTQ).
Step 3: Genome indexing of reference sequences (Input format: FASTA and GTF or SAF) is performed with the Rsubread package and built-in R
functions. In the sequential approach, separate genome indexing is done for each organism (Step 3.1), while in the combined approach, a single
concatenated genome is indexed (Step 3.2). Step 4: Alignment of filtered reads to the reference genomes, their manipulation and the in silico
discrimination of mixed transcripts are conducted using Rsubread, Rsamtools and built-in R functions. In the sequential approach, a double mapping
step is performed (one for each organism) (Step 4.1), while in the combined approach, a single mapping is followed by in silico read discrimination
(Steps 4.2 and 4.3) (Input format: FASTQ and SAM/BAM). Step 5: Mapped reads are summarized using the Rsubread package (Input format: SAM/BAM).
Step 6: Summarized reads are explored through statistical analysis and visualizations using custom R code, along with the ggplot2, pheatmap, Hmisc,
and RNAseQC packages (Input format: TSV; TAB-separated values). Step 7: Differentially expressed genes (DEGs) are identified using the edgeR and
HTSFilter packages (Input format: TSV). The genomes of the two organisms are represented in different colors (yellow and blue). When analyzed
separately, each genome appears as an independent block in the workflow. When analyzed together, the genomes are displayed as connected blocks.

a = organism a
b organism b
SEQ = sequential approach

COM = combined approach

2.2.4 Mapping

Similarly to the indexing module, the mapping process varies
depending on the chosen analysis approach. In all cases, reads
are aligned to the specified reference sequences, generating
alignment files in SAM/BAM format, while unmapped reads
are output in FASTQ format. The mapping processes utilize
the subjunc functions from the Rsubread to perform read
alignment. While the manipulation of resulting BAM files
is performed using Rsamtools (Morgan et al., 2025) package
and the generation of the concatenated genome and the in
silico separation of mixed reads is conducted using R built-in
functions.
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For the combined approach, aligned reads are assigned to their
respective reference sequences, and cross-mapped reads (those that
align to multiple genomes) are also output in BAM format.

The sequential approach requires two separate genome indexes,
whereas the combined approach and bulk RNA-seq require only a
single index. These indexes, along with input reads in FASTQ format,
serve as the necessary input for the mapping process. The analysis
can be fine-tuned by adjusting parameters that affect mapping
stringency, handling of multi-mapped reads, and processing speed.
Alignment outputs can be generated in either uncompressed
or compressed formats, with the number of cores and threads
configurable for parallel processing. The results consist of two BAM
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FIGURE 2

the dual RNA-seq workflow.

Overview of the inDAGO bulk RNA-seq workflow. The inDAGO workflow for bulk RNA-seq analysis consists of seven key steps that trace the full
analytical process, ultimately leading to the identification of differentially expressed genes (DEGs) between experimental conditions. Step 1: Quality
control of raw reads (Input format: FASTQ). Step 2: Filtering of low-quality reads (Input format: FASTQ). Step 3: Indexing of reference genome (Input
format: FASTA and GTF or SAF). Step 4: Alignment of reads to the reference (Input format: FASTQ). Step 5: Summarization of mapped reads by
biological units (e.g., genes) (Input format: SAM/BAM). Step 6: Statistical exploration of read counts (Input format: TSV). Step 7: Identification of
differentially expressed genes (Input format: TSV). The bulk RNA-seq workflow follows the same sequence and uses the same underlying packages as
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FIGURE 3
Graphical User Interface of inDAGO. Screen captures from inDAGO illustrating key stages of the analysis workflow: (a) welcome screen; (b) quality

control opening screen, with the built-in documentation screen overlapping; (c) module view during process execution, with the display of results after
analysis completion overlapping. Together, these images provide a comprehensive overview of inDAGO's user-friendly interface and functionality.
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files: one for each reference sequence in the dual RNA-seq approach,
and a single BAM file for bulk RNA-seq. In the combined approach,
a single mapping is performed, resulting in a preliminary alignment
file. This file is then processed and split according to each interacting
organism, generating two organism-specific BAM files. Additionally,
cross-mapped reads are stored in a separate output BAM file.
Unmapped reads are provided in FASTQ format. Furthermore, three
text files are generated that detail the discovered junctions, indels,
and a summary of the analysis.

2.2.5 Summarization

The summarization process uses the featureCounts function
from the Rsubread package to assign mapped reads (i.e., SAM/BAM
files) to specific genomic features and quantifying gene expression
for each sample. It generates a count table that reports the number
of reads mapped to each selected feature (e.g., exon). Starting
from this step onwards in dual RNA-seq, the organisms can
be analyzed independently, as the previous module has already
differentiated the reads between the two organisms. To operate,
the module requires alignment files and an annotation file in
GTF/SAF format. Multiple customizable parameters allow users
to adjust how annotation data is processed, providing flexibility
to tailor the analysis to specific experimental needs. The module
retrieves the chosen genomic feature (e.g., exons) and its identifier
(e.g., gene_id) from the appropriate annotation file columns. Read
counts can be aggregated either across entire genes or at the
level of individual features, such as exons. Further customizable
parameters offer control over read assignment, handling of multi-
mapped reads, quality filtering, paired-end read management, and
parallel processing. Strand-specific read counting can be enabled
if a strand-specific sequencing protocol was used, ensuring correct
transcript quantification. The module produces four key output files
per sample: an annotation file, a quantification file, a summary of
the quantification process (in CSV (comma-separated values) or
TSV formats), and a log file documenting the workflow. Together,
these files offer a comprehensive and structured foundation for
downstream analysis.

2.2.6 Exploratory data analysis

The primary objective of EDA is to examine and interpret data
in relation to the specific biological question under investigation.
This process allows researchers to refine their research questions
or determine whether additional data collection is needed when
existing data are insufficient. This module generates a series
of exploratory plots that are essential for identifying patterns,
detecting potential outliers, and visualizing key insights. These
visualizations not only enhance data comprehension but also serve
as powerful communication tools when presenting findings in
scientific publications. The module exploits the ggplot2, pheatmap
(Kolde, 2025), and RNAseQC (Dufort, 2025) packages to generate
the primary visualizations, while the plotly (Sievert, 2020) package
is used to create interactive versions for dynamic visualization.
The required inputs include count matrices generated during
the summarization step for each sample, as well as a matrix
indicating the group assignments for each sample. Alternatively,
group assignments can be manually defined via the interface. Group
assignment refers to categorizing samples into different groups based
on experimental conditions or other relevant factors. This is essential
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in data analysis, particularly in biological and clinical studies, where
comparisons between groups help identify meaningful differences.
The module offers full interactive control over plot appearance,
including a wide range of color-palette options. It also supports
exporting figures in multiple formats (JPEG, PNG, TIFE EPS,
SVG, PDF), customizable dimensions (height and width in inches,
cm, mm, or pixels), and adjustable resolution. Plots are generated
twice (i.e., before and after normalization) allowing for a visual
comparison of the normalization effect, as the module also performs
count normalization. To explore and visualize the variability and
structure within gene expression data, various techniques are
implemented in inDAGO. These include dimensionality reduction
methods like Multi-Dimensional Scaling (MDS) and Principal
Component Analysis (PCA), which help to reveal patterns across
samples or conditions. Moreover, the distribution of count data,
such as log-transformed values, is visualized using boxplots, while
library sizes are represented using bar plots. Additionally, heatmaps
can be used to examine variability in gene expression or correlation
between samples. Finally, saturation plots can be generated to
evaluate the extent of gene detection.

2.2.7 |dentification of DEGs

The final module of the workflow begins by utilizing the same
data from the EDA module and concludes by generating a list of
differentially expressed genes along with key statistical parameters,
including log, fold change, p-value, and adjusted p-value which is
output in CSV format.

In addition to DEG list, two plots are provided to visualize
estimated dispersion: one based on the negative binomial
distribution and the other representing quasi-likelihood dispersion.
The process starts with importing the raw count data, followed
by constructing a design matrix to represent the experimental
design. The design matrix contains rows corresponding to samples
and columns representing experimental parameters, with values
coded as Os or 1s (1 indicating that a sample is assigned to a
specific condition, and 0 otherwise). Depending on the experimental
setup, the design matrix can include an intercept term. Currently,
inDAGO uses an intercept-free design matrix. Low-abundance
genes are filtered out, as they provide limited statistical power for
distinguishing between the null and alternative hypotheses. Next,
the data is normalized to account for variations such as sequencing
depth, and dispersion parameters calculated. Dispersion is a crucial
parameter in RNA-seq data analysis, as it quantifies variability and is
essential for identifying DEGs. After data pre-processing, hypothesis
testing is conducted using the defined contrasts. These contrasts
define the pairwise comparisons between experimental groups,
enabling the module to identify DEGs. To run the module, users
need a directory containing raw count data, a text file specifying
sample group assignments (or alternatively, assignments can be
made interactively), and an empty directory for output storage.
Input contrasts must also be defined to guide comparisons between
conditions. Additionally, advanced parameters are available for
further customization of the analysis. These parameters allow
fine-tuning of filtering thresholds, normalization methods, and
other statistical settings to meet specific research needs. Two
filtering methods are available. The first retains genes that meet
a minimum read count threshold across samples, as described by
(Chen et al., 2016). The second determines a threshold based on
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the pairwise Jaccard similarity index between replicates within
each experimental condition, as outlined by Rau et al. (2013)
and implemented in the R package HTSFilter. For statistical
testing, the module utilizes edgeR (Chen et al., 2025), supporting
three methods: exact tests (exactTests), quasi-likelihood F-tests
(QLFTest), and gene-wise likelihood ratio tests (LRT). Several
normalization approaches are available, including TMM (trimmed
mean of M-values) by Robinson and Oshlack (2010), TMMwsp
(a variant optimized for datasets with many zeros), RLE (relative
log expression) proposed by Anders and Huber (2010), and the
upper quartile method (Bullard et al., 2010). For multiple testing
corrections, various p-value adjustment methods are available,
including Bonferroni, Holm, Hochberg, Hommel, and FDR (false
discovery rate). Thresholds for both absolute log2 fold change
(log2 FC) and adjusted p-value can be specified to filter the
list of DEGs. Moreover, it is possible to merge all DEGs results
in a single merged table, and adding information retrieved
from columns of annotation file, such as “seqname”, “attribute’,
“description” etc. In addition, the module enables the formulation
of customizable volcano plots for each comparison, as well as
UpSet plots with the same customization options provided in the
EDA module. These visualizations are generated using the ggplot2
and UpSetR (Conway et al., 2017) packages. To make the plots
interactive, the plotly and upsetjs (Gratzl, 2022) packages are also
utilized.

2.3 Graphical structure and dynamic
documentation

Each module consists of a sidebar and a main panel, with
the sidebar guiding data input and parameter settings. The main
panel provides real-time feedback on the process status, displaying
notifications such as warnings, errors and execution time. If the
module generates graphical outputs, they will be presented here,
along with options for interactive modifications and downloads
of the plots. Each module provides concise, readily accessible
documentation to support the analysis workflow. Within the
main panel, the documentation is clearly organized into several
sections:

o “WHEN TO PERFORM?”: this section outlines the specific
circumstances or scenarios, where using the module is
appropriate;

o “WHAT IT DOES”: this section provides a brief description of
the analysis performed by the module;

o “OPERATIONAL INSTRUCTIONS”: this section provides a
step-by-step guide on how to execute the analysis effectively;

o “RESULTS”: describes the expected outcomes and the formats
in which they will be presented;

o “ADDITIONAL NOTES”: lists any supplementary options and
features available.

Additionally, to improve interaction with the documentation,
each sidebar input box features a question mark icon (tooltip)
that provides detailed, context-specific information, enhancing both
clarity and usability.
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2.4 Evaluation of inDAGO performance

To evaluate its usability and performance, inDAGO was
tested on three different machines, one running the Windows 11
with an Intel® Core™ i5-9300HF processor and 16 GB of RAM
(2,400 MHz), the second running the GNU/Linux distribution
Ubuntu 20.04.6 LTS (Focal Fossa) with an Intel® Core™ i7-1185G7
processor and 16 GB of RAM (1,600 MHz), and the last running
the macOS Sequoia version 15.5 with an Apple M1 chip and 16 GB
of RAM (2,666 MHz). Since it is not feasible to compare the entire
inDAGO workflow against a fully validated real-world project, we
divided the workflow into three distinct blocks for evaluation.
The first block focused on quality control, filtering, indexing, and
mapping using the combined approach. The second block evaluated
the summarization process, while the final block assessed data
exploration and the identification of differentially expressed genes.

2.4.1 Dataset 1 - Dual RNA-seq mapping
validation (Arabidopsis - Cuscuta)

To evaluate the quality control, filtering, indexing and mapping
modules (combined approach mode), we reproduced the dual RNA-
seq mapping experiment described by Fruggiero et al. (2024) which
simulated the interaction between A. thaliana (host plant) and
C. campestris (parasitic plant). Further methodological details and
complementary analyses can be found in the referenced publication.
RNA-seq data were retrieved from the European Nucleotide
Archive (ENA) and include A. thaliana stem tissue samples
(accession numbers: SRR22559142, SRR22559143, SRR22559144)
from the Columbia ecotype (Col-0) at the vegetative stage, with
an average of ~20.1 million reads per sample. Additionally, C.
campestris developing haustoria samples (accession numbers:
SRR12763776, SRR12763787, SRR12763788), collected in the
absence of host contact, were included, averaging ~14.7 million
reads per sample. Reads from both species were merged. Specifically,
the first replicate of Arabidopsis thaliana was combined with the
first replicate of Cuscuta campestris, and the same procedure
was applied to the other replicates. This resulted in three
merged transcriptome datasets: SRR22559142 + SRR12763776,
SRR22559143 + SRR12763787, and SRR22559144 + SRR12763788,
which were used for downstream analysis. Reference genomes
were retrieved from NCBI: A. thaliana (RefSeq GCF_000001735.4;
~119.1 Mb) and C. campestris (GenBank GCA_900332095.2;
~476.8 Mb). The three merged datasets were processed through
the inDAGO workflow to generate BAM files. Both input and
output sequence files were gzip-compressed, which required greater
computational resources compared to handling decompressed
files and resulted in significantly longer execution times. Each
module’s performance was evaluated using default settings. After
the quality control phase, the subsequent filtering module applied
a minimum read length threshold of 75 and a quality threshold of
20, with trimming performed on both ends of paired-end reads.
Indexing and mapping were performed next using a combined
approach. Indexing assumed the generation of a single-segment
index, excluding subreads (16 bp k-mers) that appeared more than
100 times from the genome indexing process. Mapping was carried
out with default advanced parameters: 14 subreads extracted per
read, a consensus threshold of 1, up to 3 allowed mismatches,
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allowance of 1 multi-mapped read, an indel length of 5, and fragment
lengths between 50 and 600 bp.

2.4.2 Dataset 2 - Summarization validation (SEQC
human data)

To exclusively assess the performance of the summarization
module, BAM or SAM files are required, which can be generated
through the alignment module. For this evaluation, real RNA-
seq data with known count tables from the SEQC Project (GEO
accessions: GSM 1156797, GSM1156798, GSM1156799) were used.
Specifically, a library from a Homo sapiens RNA-seq project (SRA
accessions: SRR896663, SRR896664, SRR896665 contain ~5.7, ~6.1,
and ~5.6 million paired-end reads, respectively, with an average
length of 165 bp.) was downloaded from the Sequence Read Archive
(SRA). The dataset consists of paired-end FASTQ files generated on
an Illumina HiSeq 2000 platform. The hg38 human genome, along
with its corresponding annotation file, provided in FASTA and GTF
formats, respectively (RefSeq: GCF_000001405.39; genome size:
~3.1 GD) served as the reference for alignment and summarization.
Summarization was performed using default parameters, focusing
on meta-feature-level assignment and using the “gene_id” attribute
in the GTF annotation. This approach minimizes multiple overlaps
and excludes multi-mapping reads. The analysis was run in parallel
across the three samples, allocating two threads per sample.

2.4.3 Dataset 3 - Exploratory data analysis and
DEG identification (mouse mammary gland)

Finally, to evaluate the performance of the data exploration
and differential expression analysis modules, read count tables
are required, which can be generated through the alignment and
the subsequentially summarization module. For this evaluation,
we utilized RNA-seq data from luminal and basal mammary
epithelium cells collected from the mammary glands of virgin,
18.5-day pregnant, and 2-day lactating mice. This dataset,
originally from Fu et al. (2015), is also featured as a case study titled
“RNA-Seq profiles of mouse mammary gland” in the edgeR user
guide. The sequence and count data are publicly available in the Gene
Expression Omnibus (GEO) under accession number GSE60450.
After generating read count tables following recommendations
from the edgeR user guide, the data were explored through the
dedicated inDAGO module. Then differentially expressed genes
were identified using default advanced parameters. These included
a filtering method based on Chen et al. [20], quasi-likelihood F-
tests (QLFTest) for statistical evaluation, and TMM normalization.
P-values were adjusted using the false discovery rate (FDR), with
significance thresholds set at 0.05 and an absolute log, fold-change
([log2FC|) cutoff of 1.2 to classify genes as up or downregulated.
The dataset comprises luminal and basal mammary epithelial
cells from adult female mice at three physiological states: virgin,
pregnant (E18.5), and lactating (postpartum day 2). Six groups were
analyzed: Basal virgin (B_virgin), Basal pregnant (B_pregnant),
Basal lactating (B_lactate), Luminal virgin (L_virgin), Luminal
pregnant (L_pregnant), and Luminal lactating (L_lactate), each
with two biological replicates (total n = 12). The analysis included
in pairwise comparisons of B_pregnant vs. B_lactate, B_virgin vs.
L_virgin, and B_pregnant vs. L_pregnant.
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3 Result

3.1 Dataset 1 - Dual RNA-seq mapping
result (Arabidopsis - Cuscuta)

We tested the combined mapping workflow on three merged
samples created by pairing A. thaliana and C. campestris replicates.
Quality control indicated a mean base quality above Q35,
corresponding to an error rate of 0.035%, with an average read
length of approximately 150 bp. Base composition along the reads
was generally uniform, except for the initial bases affected by
hexamer priming during library preparation. Each merged sample
contained an average of 36.7 million reads. After filtering, only
0.05% of reads were discarded, and mapping achieved alignment
rates above 90% to the reference genomes. Two-sided cross-mapped
reads—aligning to both genomes—accounted for less than 0.01%,
while reads incorrectly assigned to the wrong genome represented
approximately 0.02% of the input (Tables 1, 2). These results are
consistent with those reported by Fruggiero et al. (2024), with minor
variations attributable to differences in the underlying algorithms.
Quality control plots are shown in Figure 4, and filtering summaries
are presented in Supplementary Table S1.

3.2 Dataset 2 - Summarization result
(SEQC human data)

To independently evaluate the summarization module, we
processed three human RNA-seq samples from the SEQC project.
Each sample had an average of 5.8 million aligned reads, with feature
assignment successfully capturing approximately 71% of mapped
reads under the default counting settings. Comparison of inDAGO’s
gene counts to the published SEQC reference showed a mean
relative difference of 0.24 across shared genes, indicating strong
concordance with established summarization outputs. Per-sample
assignment count tables are provided in Supplementary Table S2.

3.3 Dataset 3 - Exploratory data analysis
and DEG identification (mouse mammary
gland)

We analyzed a publicly available mammary gland RNA-seq
dataset using the EDA and differential expression modules to
evaluate biological signal detection and statistical performance
(Figures 5,6). The dataset includes 12 samples across six groups (B_
lactate, B_pregnant, B_virgin, L_lactate, L_pregnant, L_virgin) with
two replicates per group.

Dimensionality-reduction analyses (PCA and MDS) clearly
separate samples by physiological state and cell type: PCI explains
~69.5% of the variance, while PC2 accounts for ~13.5%, and the
MDS axes show a comparable pattern (Figures 5a,b). Separation is
more pronounced for luminal (L) samples than for basal (B) samples,
indicating stronger condition-specific transcriptional shifts within
the luminal population.

Per-sample sequencing depth ranges from ~12 million to ~29
million reads: L_lactate samples have the lowest depth (~12-13M),
L_virgin samples the highest (~27-29M), and basal groups fall in
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TABLE 1 Read mapping counts obtained with the combined approach.

10.3389/fbinf.2025.1696823

Libraries Replicate | Raw reads Processed Uniquely Uniquely Two-side Unmapped

(Arabidopsis reads mapped mapped Cross- and multiple

+ Cuscuta) onto onto mapped mapped?

Arabidopsis Cuscuta

SRR22559142 + Replicate 1 35702825 35685953 19595767 14811039 (41.5%) 938 (0.003%) 1278209 (3.58%)
SRR12763776 (54.91%)

SRR22559143 + Replicate 2 36282091 36261719 20066086 14801634 8799 (0.024%) 1385200 (3.82%)
SRR12763787 (55.34%) (40.82%)

SRR22559144 + Replicate 3 38034066 38014805 21403053 (56.3%) 15194496 1,474 (0.004%) 1415782 (3.72%)
SRR12763788 (39.97%)

“Multi-mapped reads are sequences that align to multiple locations within the reference genome.

TABLE 2 Count of reads correctly assigned to their respective genomes.

References genome Replicate | Unambiguously mapped Arabidopsis mapped Cuscuta mapped reads
reads reads
A. thaliana Replicate 1 19595767 19593126 (99.99%) 2,641 (0.01%)
A. thaliana Replicate 2 20066086 20061888 (99.98%) 4198 (0.02%)
A. thaliana Replicate 3 21403053 21399033 (99.98%) 4020 (0.02%)
C. campestris Replicate 1 14811039 714 (0.005%) 14810325 (99.995%)
C. campestris Replicate 2 14801634 10928 (0.07%) 14790706 (99.93%)
C. campestris Replicate 3 15194496 1,472 (0.01%) 15193024 (99.99%)

Base average quality

Base quality: SRR22559142SRR12763776_1.fasta.gz
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.
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Quality Control Module Outputs. This figure presents key quality control plots generated by inDAGO: (a) average base quality line plot; (b) sequence
length distribution; (c) GC content distribution across reads; (d) base quality boxplot showing average and variation per base position; (e) base

composition line plot; and (f) base composition area chart across the dataset. Together, these visualizations offer a comprehensive assessment of the
quality and characteristics of the raw sequencing data. The analyzed samples include Arabidopsis thaliana stem tissue (accessions SRR22559142,
SRR22559143, and SRR22559144) and Cuscuta campestris tissue (accessions SRR12763776, SRR12763787, and SRR12763788). Reads from each species
were paired to create three combined transcriptome datasets: SRR22559142 + SRR12763776 (resulting in SRR22559142SRR12763776_1. fastq.gz and
SRR22559142SRR12763776_2. fastq.gz), SRR22559143 + SRR12763787 (SRR22559143SRR12763787_1. fastq.gz and SRR22559143SRR12763787_2.
fastg.gz), and SRR22559144 + SRR12763788 (SRR22559144SRR12763788_1. fastq.gz and SRR22559144SRR12763788_2. fastg.gz). Quality assessments
for the paired-end reads are presented in the figure panel. Although all samples are displayed in panels (a—=c), only the sample
SRR22559142SRR12763776_1. fastq.gz is shown in panels (d—f), as the plots are limited to displaying one sample at a time.
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Qutputs from the exploratory data analysis (EDA) module. This figure displays graphical outputs produced by the EDA module based on the normalized
data, including (a) Principal Component Analysis (PCA) plot, (b) Multi-Dimensional Scaling (MDS) plot, (c) gene expression boxplot, (d) library size bar
plot, (e) gene expression heatmap, (f) correlation heatmap, and (g) saturation plot. These visualizations enable detailed examination of data distribution,
relationships, and overall expression patterns, helping to identify trends, biases, or outliers within the dataset. The GEO accession numbers for each
sample group are: L_virgin (GSM1480291, GSM1480292), L_pregnant (GSM1480293, GSM1480294), L_lactate (GSM1480295, GSM1480296), B_virgin
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an intermediate range (~21-27M). Replicates within each condition
are closely matched (differences of only ~1-2M reads), indicating
good technical reproducibility, although between-condition
differences in library size could affect sensitivity for low-abundance
transcripts (Figure 5d). Boxplots of log2 counts per million
(CPM) show broadly comparable distributions across all samples

(Figure 5¢).
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Sample clustering in the expression and sample-sample
correlation heatmaps confirms that luminal and basal samples
form distinct clusters and that biological replicates are consistent
(within-group correlations are high relative to between-group
correlations; Figures 5e,f). The sequencing saturation curve
indicates that a clear plateau has not been fully reached, suggesting

diminishing but non-negligible returns from additional sequencing
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Results from the identification of differentially expressed genes module. This figure displays key graphical outputs generated during the identification of
DEGs. (a) The volcano plot highlights the top 1,000 most significantly differentially expressed genes from the B_pregnant vs. B_lactate comparison.
Each point represents a gene, with the x-axis showing the log2 fold change and the y-axis the negative log10 p-value. The dashed lines indicate the
significance thresholds (p-value = 0.05 and |log2 fold change| = 0.58). Genes meeting these criteria are clearly marked, facilitating quick interpretation
of up- and downregulated genes. (b) The UpSet plot summarizes all considered comparisons, with horizontal bars indicating the number of genes in
each set and vertical bars showing the intersections, revealing shared DEGs across comparisons.

depth and that further sequencing could recover additional
low-abundance genes (Figure 5g).

Out of 42,396 genes tested, ~4,700 were identified as
differentially expressed (DEGs) using |log2FC| > 1.2 and FDR <0.05.
In the B_pregnant vs. B_lactate contrast (volcano plot, Figure 6a),
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genes with both large fold changes and strong statistical
significance are highlighted. Among these, 46 genes exhibit
very strong upregulation (log2FC > 4 and FDR <0.05), while
16 show very strong downregulation (log2FC < -4 and
FDR <0.05).
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TABLE 3 Stepwise execution times (minutes) recorded on three laptops running different operating systems.

Modules Parallel sampling? Operating systems
GNU-linux® Windows®
Quality control 1 7,5 7,6 4,0
Filtering 3 43,1 47.53 343
Dataset 1
Indexing 1 8,75 14,1 4,7
Mapping 1 384,20 462,42 354,1
Dataset 2 Summarization 3 0,7 1,3 0,4
Exploratory data analysis 1 <0,1 <0,1 <0,1
Dataset 3
Differential expression analysis 1 0,2 0,2 0,1

Execution times correspond to the specific datasets used. For details on data sizes, please refer to the Materials and Methods section.

“This refers to conducting the analysis on one or multiple samples simultaneously.
PGNU/Linux distribution Ubuntu 20.04.6 LTS (Focal Fossa) with an Intel®
“Windows 11 with an Intel® Core™ i5-9300HF, processor and 16 GB, of RAM (2,400 MHz).
9macOS$, Sequoia version 15.5 with an Apple M1 chip and 16 GB, of RAM (2,666 MHz).

The UpSet plot summarizes DEG overlap across comparisons
(Figure 6b): 2,216 DEGs are shared among the three comparisons
considered, with the B_pregnant vs. L_pregnant contrast contributing
the largest set of uniquely regulated genes (2,694 unique DEGs).
These results are consistent with outcomes obtained following
the edgeR Users Guide (https://bioconductor.org/packages/release/
bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf). Complete DEG
statistics are provided in Supplementary Table S3.

3.4 Computational performance

Execution times for each module are summarized in Table 3.
All runs were performed using default parameters unless
otherwise noted. For the mapping benchmark, compressed
input and output files were used, which is expected to increase
processing time compared to workflows with uncompressed
files.

4 Discussion

This work introduces inDAGO, a standalone, cross-platform
software tool with an intuitive graphical user interface that
eliminates the need for programming expertise. By lowering the
technical barrier, inDAGO exemplifies the democratization of
bioinformatics, addressing the critical need to make advanced
computational tools accessible to researchers regardless of
their coding background (Krampis, 2022). Many biologists
face significant challenges navigating complex data analysis
workflows, making user-friendly interfaces essential to overcoming
these obstacles. Open-source platforms that integrate diverse
bioinformatics tools into streamlined workflows simplify the
analysis of high-throughput sequencing data. By emphasizing ease of
use and accessibility, such platforms empower a broader community
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Core™i7-1185G7 processor and 16 GB, of RAM (1,600 MHz).

of researchers to independently perform sophisticated analyses,
fostering inclusivity and accelerating scientific progress.

inDAGO supports two types of transcriptomic analyses:
dual RNA-seq, which can be performed in either sequential
or combined modes, and bulk RNA-seq, both starting directly
from raw sequencing data. To evaluate its performance and
reliability, we tested inDAGO on public datasets across three
operating systems, using a standard laptop with 16 GB of
RAM. The results demonstrated that all modules functioned
efficiently and as expected. In particular, the read discrimination
results were consistent with those reported by Fruggiero et al.
(2024), with minor differences attributable to variations in the
underlying algorithms. Specifically, Trimmomatic (Bolger et al.,
2014) and STAR (Dobin et al., 2013) were used instead of the
embedded tools in inDAGO (primarily: ShortRead, Biostrings,
and Rsubread). The summarization achieved an assignment rate
comparable to what can be obtained by following the Rsubread
user’s guide pipeline. The minor discrepancies between the results
and the SEQC project likely stem from slight algorithmic and
parameter differences. While the results of DEG analysis are
consistent with those reported in the edgeR manual. Indeed, the
MDS and PCA plots show replicates from the same experimental
group clustering together, reflecting their biological similarity, while
samples from different groups form separate clusters, indicating
significant condition-specific differences. This pattern suggests that
inter-group variability exceeds intra-group variation, highlighting
meaningful differential expressions. These results demonstrate that
inDAGO produces outputs suitable for downstream biological
interpretation and can serve as a reliable end-to-end solution for
typical dual and bulk RNA-seq experiments. Benchmarking against
standard command-line workflows shows largely equivalent results,
with minor differences due to default parameter choices affecting a
small fraction of ambiguous reads. For routine analyses, users can
expect concordant biological conclusions regardless of workflow.
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of
mapping, such as interacting organisms with highly similar

For cases requiring strict ~minimization Cross-
genomes, more conservative settings (e.g., stricter mapping

parameters in a combined approach) are recommended,
improving accuracy (Fruggiero et al., 2024).

While inDAGO does not yet include integrated gene-set
enrichment, co-expression modules, or dedicated single-cell/non-
coding RNA workflows, it exports standardized count and
DEG tables compatible with popular downstream tools. Future
development will prioritize these additions alongside expanded
statistical options for DEG analysis.

Computational constraints are mitigated via chunked and
parallelized processing of large genomes and deep sequencing
datasets, enabling analysis on typical laptops. Therefore, processing
datasets larger than those used in the evaluation section results
in a linear increase in execution time, without risking memory
overflow. For projects aiming for maximum sensitivity in gene
discovery, users can export inDAGO’ intermediate files and re-
run alignment or quantification with alternative parameters. The
software is intentionally designed to facilitate these handoffs. By
providing comprehensive intermediate, BAM, and count files,
inDAGO enables transparent reporting while allowing users to
combine GUI-driven convenience with command-line precision.
Practical users will also benefit from the detailed guidance provided
in the documentation. In summary, inDAGO is a robust and
powerful tool that guides scientists through the complexities of dual
and bulk RNA-seq data analysis. Upcoming versions of inDAGO
will add new modules and enhanced statistical approaches for
downstream analyses.
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