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Structural similarity metrics such as the Tanimoto coefficient (TC) miss many 
functionally related compounds—indeed, 60% of similarly bioactive ligand 
pairs in the ChEMBL database show TC < 0.30, revealing a major blind spot 
that constrains ligand-based discovery. Our motivation is to overcome this 
blind spot and enable the recovery of structurally different yet functionally 
equivalent chemotypes that structure-based similarity fails to detect. Here, 
we introduce the bioactivity similarity index (BSI), a machine learning model 
that estimates the probability that two molecules bind the same or related 
protein receptors. Trained under leave-one-protein-out (LOPO) across Pfam-
defined protein groups on dissimilar pairs, BSI not only outperforms TC but also 
surpasses modern molecular embedding baselines (ChemBERTa and contrastive 
language-molecule pre-training (CLAMP), using cosine similarity) across protein 
families. We further develop a cross-family model (BSI-Large) that, while 
slightly below group-specific models, generalizes better and can be fine-tuned 
with less data, consistently improving over models trained from scratch. In 
retrospective validation on new ChEMBL v35 data, BSI achieves strong early-
retrieval performance (top 2% enrichment factor, EF2%), with group-specific 
models delivering the best enrichment, and BSI-Large remaining competitive. 
In a realistic virtual screening-like scenario against the target gene ADRA2B, 
the mean rank of the next active, given a known active, improves from 45.2 
(TC) to 3.9 (BSI), with 54.9 for ChemBERTa and 28.6 for CLAMP. Altogether, BSI 
complements, rather than replaces, structure-based similarity and embedding-
based comparisons, extending hit finding to remote chemotypes that are 
structurally dissimilar yet functionally equivalent. The code is available at https://
github.com/gschottlender/bioactivity-similarity-index.
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Introduction

Developing new therapeutic drug-like compounds remains a central challenge in 
modern biomedicine, particularly in the face of increasing antimicrobial resistance and
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the high attrition rates in drug discovery pipelines. A critical 
step in this process is identifying chemical compounds with 
relevant and desired biological activities that can lead to novel 
therapeutic drugs down the clinical research pipeline. These lead 
compounds can be identified from purely experimental or virtual 
screening (VS) campaigns combined with experimental validation. 
A powerful strategy for selecting candidates is based on the 
assumption that structurally similar molecules will bind to the 
same protein and exhibit similar biological effects. This principle 
underlies, for example, the well-known use of substrate analogs 
as enzyme inhibitors. The chemical similarity strategy is further 
bolstered by the decades-long observation that structural similarity 
of compounds usually results in biological function similarity 
(Nikolova and Jaworska, 2003; Maggiora et al., 2014). Central to the 
strategy mentioned above is the following question: How can we 
effectively compare small molecules?

Over the last few decades, the dominant strategy has been 
to assess molecular resemblance using structural fingerprints, 
computing the so-called chemical similarity indices such as the 
Tanimoto coefficient (TC) (Bajusz et al., 2015). Although this type 
of approach has proven highly effective for predicting bioactivities of 
interest (Schuffenhauer et al., 2006; Chen et al., 2015), it inherently 
focuses on chemical features rather than directly capturing 
the underlying molecular mechanism resulting in its biological 
effect (Safizadeh et al., 2021; Fernández-Torras et al., 2022), 
limiting its ability to detect compounds with similar bioactivities 
but divergent structures (Martin et al., 2002). Moreover, a 
substantial fraction of functionally related compounds remains 
invisible to structure-based comparisons. In particular, many 
similarly bioactive ligand pairs in large public resources (e.g., 
ChEMBL) fall below conventional similarity cutoffs (such 
as TC < 0.30), creating a blind spot that constrains ligand-
based discovery and the exploration of structurally remote
chemotypes.

This issue is particularly pressing in the antimicrobial discovery 
and development field, where the need for innovation has driven 
the integration of genomics, structural biology, and computational 
methods to improve target prioritization and lead discovery 
(Sosa et al., 2018; Arcon et al., 2021; Serral et al., 2021; 
Serral et al., 2022; Marti et al., 2024). In this context, new 
strategies that go beyond structural similarity strategies that 
result in the generation of new drugs harboring the same 
chemical scaffold (for example, beta-lactams) but instead focus 
on the prediction of compound bioactivity represent a promising
research endeavor.

Most drugs exert their effect by binding tightly to a given protein 
target and modulating its activity, and as already mentioned, similar 
compounds usually bind to the same protein. Moreover, similar 
proteins also usually bind the same compound, and the combination 
of both observations results in similar compounds binding to similar 
proteins. Leveraging on this “guilt-by-association” principle and 
TC, in our previous study (Radusky et al., 2017), we demonstrated 
that significant enrichment of true binders can be achieved in the 
context of virtual screening. Moreover, this approach allows for 
the identification of potential molecular targets for compounds 
found to be active in phenotypic screens (Schottlender et al., 2022), 
as implemented in the platform available at https://github.com/
gschottlender/ReverseLigQ.

Both these applications are constrained by the method 
used to compute chemical similarity. However, it is a well-
established fact that some ligands that bind with similar 
strength to a given target can differ substantially in their 
chemical structures (Ghosh et al., 2012; Wang et al., 2018). 
In this scenario, we hypothesized that it could be possible to 
predict whether two molecules bind similarly to the same (or 
a related) target, without relying on conventional chemical 
similarity metrics. Such an approach could substantially broaden 
the scope of the aforementioned strategy in a VS context. 
To this end, we leveraged the growing availability of public 
protein–ligand-binding data and recent advances in deep
learning.

Recently, deep learning (DL) strategies have achieved 
remarkable progress in the life sciences, offering powerful tools for 
modeling complex patterns in biological and chemical data. These 
algorithms have been successfully applied to predict molecular 
properties (Feinberg et al., 2018; Walters and Barzilay, 2021; 
Pang et al., 2023), uncover nonlinear relationships between structure 
and biological activity (Jeon et al., 2021; Prajapati et al., 2025), and 
model protein structures and their interactions with small molecules 
(Abramson et al., 2024; Zhang et al., 2024). In the drug discovery 
field, deep neural networks offer the potential to overcome some of 
the limitations of structure-based similarity comparisons by more 
accurately capturing the subtle correlations between chemistry 
and bioactivity. Therefore, we decided to explore whether a DL 
architecture could capture the underlying similarity of the binding 
capacity of chemically diverse compounds.

In this context, our motivation is to recover structurally 
dissimilar yet functionally equivalent compounds, thereby 
expanding the discovery space and reducing screening burden. 
We therefore present the bioactivity similarity index (BSI), a deep 
learning-based method that compares pairs of molecules and 
estimates a bioactivity-centered similarity—that is, the probability 
that they bind to the same or related protein targets. BSI recovers 
and enriches functional analogs at low levels of structural similarity 
(e.g., TC < 0.30–0.40) across protein families and supports 
transfer learning for underrepresented families through the fine-
tuning of models trained on multiple families. Its current scope 
has limitations: performance is protein-group dependent with 
limited generalization to unseen families; fingerprint tokenization, 
while cost-efficient, may be suboptimal relative to more complex 
molecular representations and should be systematically evaluated 
in future work; and training relies on a finite labeled universe (e.g., 
ChEMBL), implying the need for fine-tuning or domain adaptation 
in different real-world scenarios. Accordingly, we position BSI 
as a complement—rather than a replacement—to conventional 
structure-based metrics and embedding-based similarities.

Our results show that BSI outperforms similarity comparisons 
between two modern state-of-the-art molecular representations 
(ChemBERTa and contrastive language-molecule pre-training 
(CLAMP)) in identifying compounds that share protein targets 
when they are structurally dissimilar.

Finally, we propose that the described method can be applied 
to clinically important protein groups, regardless of the specific 
target evaluated, and serve as a starting point for the development of 
more sophisticated tools for comparing compounds based on their 
bioactivities.
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Materials and methods

Retrieval of compounds from ChEMBL

All compounds with reported bioactivity, either characterized 
by a pChEMBL value (a standardized measure of bioactivity 
across assay types) (Bento et al., 2014) or otherwise annotated 
with a bioactivity comment, were retrieved through SQL queries 
from the ChEMBL database (version 33) (Zdrazil et al., 2024). 
For each compound, we retrieved its SMILES representations 
(Wigh et al., 2022), the corresponding protein targets (represented 
as UniProt IDs) (UniProt Consortium, 2025), and their associated 
Pfam families (Paysan-Lafosse et al., 2025).

Active or binder compounds were defined as those with a 
pChEMBL value above 6.5, roughly equivalent to a Ki of 300 nM, 
according to previously established criteria (Lenselink et al., 2017; 
Ye et al., 2022). Because experimentally confirmed non-binders are 
scarce, we defined experimentally verified inactives as compounds 
with pChEMBL <4.5 (≈ Ki ≥ 30 µM), in line with previous 
work (Burggraaff et al., 2020). A similar criterion was also 
adopted by the Directory of Useful Decoys, Enhanced (DUD-
E) (Mysinger et al., 2012), which defines them as compounds 
with no measurable affinity up to 30 μM (corresponding to a 
pChEMBL value, that is, the negative logarithm of a Ki of 4.52). 
Additionally, compounds explicitly marked as inactive in ChEMBL 
bioactivity comments were also included in this group. Because 
ChEMBL is highly imbalanced toward active compounds, additional 
inactive compounds (decoys) were built for each target using 
the DUD-E methodology. Specifically, for every compound that 
exhibited activity against any ChEMBL target, we generated a 
set of corresponding decoys. Each decoy is required to have a 
molecular weight within ±25 Da of the active ligand, a logP within 
±1 unit, the number of rotatable bonds within ±2, hydrogen bond 
acceptors and donors within ±1, and an identical net charge. A 
chemical similarity threshold (TC < 0.3) was therefore applied in 
concert with the preceding physicochemical constraints—precisely 
because compounds with similar bioactivities can also fall below 
this cutoff, a point that is critical to our study—in order to yield 
decoys whose bioactivity profiles are expected to diverge from those 
of the corresponding actives. This literature-supported strategy is 
clearly preferable to augmenting the dataset with random molecules 
(Mysinger et al., 2012; Scantlebury et al., 2020).

We finally ensured that the similarity distribution 
between active compounds and decoys resembled that 
observed between active and experimentally verified inactive 
compounds (See Supplementary Figure S1). A two-sample 
Kolmogorov–Smirnov test confirmed that the distributions of 
TC values for N pairs (composed of one active ligand and one 
inactive counterpart) built using the decoys and the distribution of 
coefficient values of those N pairs built using active and inactive 
compounds that were both derived from ChEMBL were effectively 
identical below TC = 0.40 (D = 0.019, p < 1 × 10−300; n = 5.1 × 106

and 8.6 × 106 pairs, respectively). A Jensen–Shannon divergence of 
0.02 further corroborated the negligible disparity between the two 
curves. Note that a minority of active–decoy pairs exhibits TC > 0.30 
because decoys were selected independently for each active ligand 
of the same protein, so a decoy chosen for one active can display 
marginally higher, yet still low, similarity to another active ligand. 

These results show that, within the relevant similarity range, the 
decoy-based negatives faithfully replicate the statistical properties 
of experimentally verified inactives. 

General dataset assembly for model 
training

The models were designed to classify compound pairs into two 
categories based on their bioactivity: pairs with similar bioactivities 
(S) and pairs with non-similar bioactivities (N). Therefore, S 
pairs consist of two molecules that are both active against the 
same protein target, while N pairs comprise one compound 
that is active and one compound that is inactive against the
same protein.

To mitigate dataset bias due to proteins with a disproportionately 
high number of active compounds, three clustering methods 
were sequentially applied. First, Bemis–Murcko scaffold clustering 
(Bemis and Murcko, 1996) was performed to group compounds by 
core structure, selecting one representative per cluster. Second, we 
applied Butina clustering with a TC threshold of 0.4 (Butina, 1999). 
Finally, if more than 100 compounds still remained for a given 
protein, K-means clustering (MacCuish and MacCuish, 2014) was 
used to reduce the number of actives to a maximum of 100 per 
protein, ensuring a balanced and diverse set of actives for each 
target. In contrast, inactive compounds for each target were selected 
according to the DUD-E criteria, as previously described. Due 
to the limited number of experimentally validated negatives, a 
data augmentation strategy was applied using decoys, which were 
individually selected for each active compound targeting the same 
protein, using the previously explained methodology.

After selecting active and inactive compounds for each protein, 
S pairs were generated by pairing all active compounds with each 
other (all-vs-all), while N pairs were formed by pairing each active 
compound with all inactive compounds. Only compound pairs (S 
and N) with a Tanimoto coefficient below 0.4 were retained to 
develop the algorithm on structurally dissimilar pairs, emphasizing 
bioactivity-centered signal over chemical structural likeness.

Finally, compound pairs were encoded by directly summing 
their Morgan fingerprints (256 bits, radius 2) (Morgan, 1965; Rogers 
and Hahn, 2010), as implemented in RDKit (https://www.rdkit.org). 
We built two types of datasets, one slightly imbalanced (25:75 
ratio of S to N pairs) and another heavily imbalanced (4:96 
ratio of S to N), by tenfold decoy augmentation. Protein groups 
with their corresponding targets and corresponding final S pairs 
are shown in Supplementary Table S2. 

Model training and evaluation metrics

All classification models were implemented as feedforward 
neural networks using PyTorch (version 2.5.1). The input layer 
received the combined fingerprint vector, and thus, the first layer 
has 256 neurons. The final layer is a one-neuron classifier using 
a sigmoid activation function that predicts the probability of 
the input (i.e., the compound pair) as belonging to the S or 
N category (Paszke et al., 2019). All hidden layers used the 
ReLU activation function. Unless otherwise specified, training was 
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performed using the Adam optimizer with a default learning rate of 
0.001, and binary cross-entropy was used as the loss function.

For each training scenario, hyperparameter tuning was carried 
out to identify the optimal architecture, including the number of 
hidden layers, dropout probability, and the number of training 
epochs (Gawehn et al., 2016; Rasamoelina et al., 2020). 

Reference methods for comparison

To place our method in the context of recent advances in 
molecular representation learning, we compared its performance 
with two state-of-the-art embedding models using cosine similarity.

We first employed ChemBERTa (Chithrananda et al., 2020), 
a Transformer-based architecture pretrained on molecular 
representations encoded from SMILES strings. The ChemBERTa 
models were implemented using the Hugging Face Transformers 
framework (Wolf et al., 2019), and molecular embeddings 
were generated with mean pooling. Three different pretrained 
versions were evaluated—DeepChem/ChemBERTa-100M-MLM, 
DeepChem/ChemBERTa-77M-MLM, and seyonec/ChemBERTa-
zinc-base-v1. Among them, DeepChem/ChemBERTa-77M-MLM 
exhibited the highest mean AUC (0.61) across the evaluated 
major protein groups (MPGs) and was therefore selected for 
subsequent analyses.

As a second reference method, we evaluated CLAMP 
(Seidl et al., 2023), a multimodal model trained with contrastive 
learning to align molecular representations with free-text bioassay 
descriptions. This makes it a natural baseline to probe bioactivity-
aware ligand encodings in our approach. Recent large-scale 
benchmarks reported a solid performance of pretrained CLAMP 
embeddings across diverse datasets, outperforming all other 
recent deep learning-based representations (Praski et al., 2025). 
We computed CLAMP molecular embeddings using the official 
implementation (by running the script encode_compound.py) 
provided in the GitHub repository. 

Predicting bioactivity compound similarity 
across major protein groups

Given the natural imbalance in the amount of ligand-target 
information for different protein families, we built different models 
for different protein groups. We first grouped targets according to 
protein families as defined in Pfam (Paysan-Lafosse et al., 2025). 
Families with the largest number of proteins (PF00001, PF00069, 
and PF07714) were further subdivided into smaller groups based 
on sequence identity (the corresponding targets belonging to each 
subgroup are detailed in Supplementary Table S2). These resulting 
clusters are referred to as MPGs.

We first built BSI models independently for each MPG, using a 
leave-one-protein-out (LOPO) approach (Høie et al., 2022). Thus, 
the model was trained on data from all proteins within the group 
except one, which was used for testing. This process was iterated over 
all proteins in each group. Evaluation was performed using the ROC 
and precision-recall (PR) AUCs, as described below.

To identify a reasonable parameter configuration that performed 
consistently across different biological contexts, three distinct test 

sets were defined, each corresponding to a specific protein group: 
PF00069 subgroup A, PF00026, and PF00089.

For each of these test sets, suitable parameter configurations 
for the MPG models were evaluated using the LOPO approach, 
by combining three hidden layer architectures ([256], [256, 128], 
and [256, 128, 64]), three dropout probabilities (0.1, 0.25, and 
0.5), and three training lengths (5 epochs, 10 epochs, and 15 
epochs), yielding a total of 27 configurations. Additional epochs 
were not considered as the loss function displayed progressively 
slower improvement beyond 10 epochs, while further training 
would substantially increase computational cost and the risk of 
overfitting. Given that multiple models had to be evaluated under 
different conditions, this trade-off was considered acceptable.

The configuration that achieved the most consistent 
performance across all three test sets was a relatively simple one: 
a single hidden layer with 256 neurons, a dropout rate of 0.5, and 
10 training epochs. This combination was ranked 3rd by ROC-
AUC on the PF00069 subgroup A dataset, 5th on PF00026, and 7th 
on PF00089.

In addition, because Morgan fingerprints were initially selected 
as the reference molecular representation, comparative analyses 
with the Molecular ACCess System (MACCS) (Joseph et al., 2002) 
and RDKit fingerprints were conducted (using the predetermined 
parameter configuration). These alternative representations showed 
comparable predictive performance, with Morgan fingerprints 
achieving slightly higher mean ROC-AUC values across the three 
test sets (0.80 per protein group), compared to 0.78 for MACCS and 
0.71 for RDKit fingerprints.

The metrics obtained with the BSI models were compared 
to those from the reference methods, ChemBERTa and CLAMP 
(using cosine similarity). Statistical significance was assessed using 
Student's t-test to compare the performance of the BSI models 
against the reference methods.

We also built a general MPG model, referred to as BSI-Large, 
trained by merging the data of all MPG into a single training 
set. In this case, the best model hyperparameters were a hidden 
layer configuration of [512, 256, 128, 64], 10 training epochs, a 
learning rate of 0.0001, and a dropout of 0.3. BSI-Large performance 
was evaluated with ROC-AUC using the LOPO approach on four 
different protein groups: PF00209, PF00413, PF00520, and PF00850.

The numbers of active compounds, experimentally verified 
inactives, and decoys used in each dataset for model training are 
detailed in Supplementary Table S3. 

Model generalization assessments

To test the ability of the models to make predictions on 
protein groups whose data were not included in the training sets, 
we constructed additional datasets from families containing fewer 
than 10 protein targets and with reported bioactive compounds in 
ChEMBL. We refer to these as underrepresented protein groups 
(UPGs). Each group dataset was generated as previously described, 
comprising S pairs (containing two active compounds) and N pairs 
(each consisting of one active compound and one decoy) with a 25:75 
ratio for S and N pairs. Performance on the different UPG datasets 
for models trained on each MPG, as well as for the BSI-Large model, 
was evaluated using the ROC-AUC. 
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Transfer learning assessments on protein 
groups with limited data

For the transfer learning analysis, we selected the 15 protein 
groups with the fewest bioactive compounds and at least two targets 
reported in ChEMBL (a subset from the UPG, referred to as 
less represented protein groups, LRPGs). For each group, random 
samples of 99 active compounds were taken to standardize the 
dataset size across families. Training datasets were then assembled 
by progressively increasing the number of bioactive compounds in 
increments of 10. S pairs were constructed using only these bioactive 
compounds, while N pairs consisted of all active compounds paired 
with all of the corresponding decoys. For N pairs, the number of 
bioactive compounds and decoys used was kept equal. Evaluation 
was performed on the remaining data, ensuring that no compounds 
were shared between the training and evaluation sets.

The modeling approach consisted first of using the BSI-Large 
model and performing a fine-tuning with the data from each 
LRPG and, second, training a control model from scratch with the 
same architecture. Training was performed using five epochs and 
a learning rate of 0.0001, without layer freezing for the BSI-Large. 
Evaluation was carried out using the ROC-AUC to distinguish 
between S pairs and N pairs within each LRPG, for each number 
of active compounds used (and a similar number of decoys). 

Validation on new experimentally verified 
data from ChEMBL v35

Retrospective validation with ChEMBL 35 data was performed 
as an additional evaluation on previously unseen bioactivity records. 
Because all our models had been trained on ChEMBL version 33, we 
first compared this release with ChEMBL version 35 and retained 
only those records unique to the newer version. The resulting 
validation set comprised 88 targets distributed across 19 MPGs and 
21 targets belonging to 16 UPGs. For every target in this set, we 
generated compound pairs exactly as previously described, with 
a deliberately stronger class imbalance to emulate realistic virtual 
screening conditions. All pairs were required to exhibit a Tanimoto 
coefficient of less than 0.3.

The evaluation of MPG data employed the full suite of pretrained 
models—namely, the group-specific BSI models and the global BSI-
Large. For UPG data, we created a modified version of BSI-Large 
that was fine-tuned for five epochs on ChEMBL 33 data from 
the same 16 UPGs (learning rate of 0.0001, no layer freezing). 
Performance was quantified with the top 2% enrichment factor 
(EF2%), a metric that directly reflects hit-retrieval efficiency in 
virtual screening (Ganser et al., 2018). EF2% values obtained with 
predictions by the models were compared with results based on 
our reference methods, ChemBERTa and CLAMP, and statistical 
significance was assessed using Student's t-test for each evaluated 
protein group.

As a final case study, we performed a virtual screening (VS)-
like validation against α2B adrenergic receptor (ADRA2B; Pfam 
PF00001 subgroup D), which the previous EF analysis had identified 
as a favorable scenario. We built different sets containing 10 active 
compounds and 1,500 decoys, all having TC < 0.3 against any actives. 
We used the 10 active compounds as queries and recorded the 

ranking of the next (second) active for each case. Finally, the 10 
rankings were averaged. 

Molecular docking procedures

All docking experiments were conducted using AutoDock-GPU 
(Santos-Martins et al., 2021). The binding site was defined by a 
cubic grid of 50 Å × 50 Å × 50 Å with a spacing of 0.375 Å, 
centered on the known ligand-binding pocket as identified from 
available crystallographic structures, using the coordinates of the co-
crystallized natural substrate. The receptor structure was treated as 
rigid throughout all simulations, while full torsional flexibility was 
assigned to all rotatable bonds of the ligands. Ligands were prepared 
using Open Babel (O'Boyle et al., 2011) and assigned Gasteiger 
partial charges. Each docking run consisted of 100 independent 
genetic algorithm (GA) searches to ensure exhaustive exploration 
of the binding modes and conformational space. The maximum 
number of energy evaluations per run was set to 2.5 × 106, and other 
GA parameters were kept at their default values.

For each ligand, docking poses were clustered using a root 
mean square deviation (RMSD) cutoff of 2.0 Å. The representative 
binding mode was selected as the lowest energy conformation within 
the most populated cluster. Docking scores were computed based 
on the AutoDock4 scoring function (Morris et al., 2009), which 
combines van der Waals, electrostatic, desolvation, and torsional 
energy components.

Post-docking analysis included visual inspection of 
poses and identification of key interactions with active site 
residues using the software program VMD (Visual Molecular 
Dynamics) (Humphrey et al., 1996) and in-house Python scripts 
based on Biopython. 

Code availability

The set of scripts, Jupyter notebooks, and documentation used 
to generate, train, and evaluate the BSI models is publicly available 
at: https://github.com/gschottlender/bioactivity-similarity-index 
(MIT License).

Results

The results are organized as follows. First, we explore the 
limitations when comparing compounds through chemical 
similarity to predict related bioactivities. Second, we design, train, 
and evaluate a DL-based method to predict the similarity in 
bioactivity (i.e., binding to the same protein, to a protein within 
the protein group, or to both) of chemical dissimilar compounds. 
Subsequently, we explore the DL method's generalization capacity by 
evaluating its performance for an increasingly diverse set of proteins 
that are not part of the training set. We subsequently extend the 
methodology to little-known protein groups and assess the fine-
tuning of pretrained models on large and heterogeneous datasets 
to enhance predictive performance in protein families with limited 
data. Finally, we evaluated our strategy on new “unseen” ligands and 
in a VS-like scheme. 
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Bioactivity prediction based on structural 
similarity: capabilities and limitations

We begin by comparing the distribution of chemical similarities, 
computed using the Morgan fingerprint-based TC, for both 
bioactive similar (S) and non-similar (N) compound pairs. Two 
compounds are defined as being similarly bioactive if both 
are defined as actives; thus, they exhibit a pChEMBL value 
above 6.5 for the same target (i.e., they both bind strongly to 
the same protein), while a pair of compounds is considered 
non-similar when one compound is active against a given 
target, and the other is not active against the same target (see 
Methods for details on how active non-active compounds are
defined).

Figure 1 shows the corresponding TC histograms for the two 
types of compound pairs, S and N, in the whole dataset. The results 
show that with this “classical” methodology, using a threshold of TC 
of 0.4 leads, as expected, to a significant enrichment of S pairs and 
reflects the well-known observation that a similar chemical structure 
leads to similar bioactivity. However, there are many S pairs that 
display very low structural similarity. Indeed, 60% of S pairs have TC 
below 0.3, and 25% of them have TC below 0.2. Clearly, it is evident 
that protein binding depends on factors beyond chemical similarity. 
This observation underscores the fact that chemical similarity 
methods are robust for identifying compounds with a similar 
bioactivity profile in a range that nevertheless represents a minority 
of known compound pairs, leaving the effective comparison of 
structurally divergent, yet similarly bioactive, compounds as a major 
challenge. In the cases of our reference methods, ChemBERTa 
and CLAMP (Supplementary Figure S4), similarity values between 
compounds tend to be higher, although a substantial overlap 
between most S and N pairs persists.

Evaluation of deep learning models for a 
bioactivity similarity index on major protein 
groups

To build a DL model capable of predicting bioactivity similarity 
between compound pairs, particularly when they are structurally 
different (with TC < 0.4), we used a feedforward neural network 
architecture, using binary cross-entropy as the loss function, and 
trained it to predict whether the pair of compounds belonged to the 
S category or not. We first trained different models for each MPG, 
defined as groups with more than 10 proteins harboring the same 
domain with reported bioactivities for more than 25 compounds. 
The model predictions, which correspond to the probability that the 
model assigns the pair as being S, and thus lie in the 0 to 1 range, will 
be referred to as the BSI.

Evaluations were performed following a LOPO approach, in 
which, for each protein in the group, the model is trained on 
data from all other proteins, and the excluded protein is used 
as the test set. Two different dataset types were evaluated, one 
slightly imbalanced (25:75 ratio of S to N pairs) and another 
heavily imbalanced (4:96 ratio of S to N). Results were compared 
against cosine similarity between embeddings from two state-
of-the-art molecular representations, ChemBERTa and CLAMP 
(details in Methods).

Figure 2A shows the resulting ROC curves for two proteins 
from the MPG as representative examples (Q13547 from group 
PF00850 and P08253 from PF00413), evidencing superior 
performance of BSI over ChemBERTa and CLAMP cosine 
similarity, and a well-shaped ROC curve. Figure 2B shows the 
corresponding AUC for all MPG in descending order for the 
slightly imbalanced datasets. The findings indicate that BSI 
achieves strong predictive performance for most MPG, with AUC 
values above the mean value obtained using cosine similarity on 
ChemBERTa and CLAMP molecular embeddings, represented 
in the figure respectively by dashed blue and green lines. Similar 
results were obtained by the analysis of the precision–recall 
curve AUCs (See Supplementary Figure S5).

Figure 2B also shows that performance is highly variable for 
different MPGs. Interestingly, the following pattern is observed. For 
about half of the MPGs, low variability in the AUC is observed 
in the LOPO scheme, resulting in AUC values above 0.8, which 
is a very good predictive capacity. For other MPGs, the observed 
AUC variability is significantly higher, and the AUC values are more 
variable and tend to be lower. Similar results were obtained for the 
heavily imbalanced datasets, as shown in Supplementary Figure S6.

Overall, there appears to be some connection between data 
availability per protein and how well the models perform. Poorly 
performing protein groups—PF01094, PF00135, PF00067, PF00002, 
PF00520, PF00233, and PF00001 B—share the common feature of 
having relatively few bioactive compounds per protein (fewer than 
750 bioactive compounds in total). Notable exceptions are PF00209 
and PF00104, which, despite having a large amount of data per 
protein, exhibited considerable variability.

Conversely, PF00194 stands out as the top-performing family 
and also the one with the highest amount of bioactive compound 
data per protein. Strong results were likewise observed for PF07714 
B, PF00850, PF00001 D, PF00001 C, PF00413, PF00069 B, and 
PF00001 F, all of which have data counts above the median. Finally, 
four encouraging outliers—PF07714 A, PF00069 C, PF00069 D, and 
PF00112—achieved good model performance despite limited data 
per protein. It is worth noting that PF07714 and PF00069 constitute 
the two main kinase clades, which may partly explain their favorable 
performance even under data-scarce conditions.

In the performance comparison with modern state-of-the-
art models, the BSI model significantly outperformed both 
ChemBERTa and CLAMP (using cosine similarity) on average 
across all protein groups, according to paired t-tests applied to 
ROC-AUC and PR-AUC values. Specifically, for ROC-AUC, the 
differences were highly significant versus ChemBERTa (t = 11.99, p
< 1 × 10−11) and CLAMP (t = 10.23, p < 1 × 10−10). Similar results 
were observed for PR-AUC (ChemBERTa: t = 10.41, p < 1 × 10−10; 
CLAMP: t = 9.86, p < 1 × 10−9).

Detailed results per test protein showed that among the 343 
evaluated individual proteins (from all groups), BSI models achieved 
higher ROC-AUC values in 298 cases. In the remaining 55 proteins, 
30 showed the best performance with CLAMP, with three of these 
belonging to groups PF00001 B, PF00067, and PF00233. The other 
25 proteins performed better with ChemBERTa, including four cases 
from groups PF00233 and PF01094. All ROC-AUC and PR-AUC 
values obtained for each tested protein with each evaluated method 
are detailed in Supplementary Table S7. 
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FIGURE 1
Histograms of Tanimoto similarity for pairs of compounds with similar bioactivities (S pairs) and for pairs with non-similar bioactivities (N pairs). Two 
different examples of S pairs for the protein P56817 are shown with their corresponding location in the distribution: a chemically similar one 
(compounds CHEMBL3680857 and CHEMBL3680854, with a TC of 0.78) and a chemically dissimilar one (compounds CHEMBL3695732 and 
CHEMBL3680890, with a TC of 0.20).

Evaluation of a single BSI model for all 
major protein groups (BSI-Large)

As a further assessment, we trained a single model on the 
full MPG data to examine whether a unified bioactivity similarity 
index (referred to as BSI-Large) could be established for all the 
evaluated clinically relevant protein families. This global index is 
more user-friendly, although it no longer captures group-specific 
activity differences.

BSI-Large was evaluated on four representative protein 
families chosen to cover contrasting baseline scenarios: PF00413 
and PF00850, whose group-specific BSI models had performed 
very well, and PF00209 and PF00520, where those models 
had shown marked variability across proteins. Under leave-
one-protein-out cross-validation, BSI-Large delivered metrics 
that were slightly lower (with the most substantial decrease 
in performance in PF00520) than the group-specific models. 
However, for most proteins, it still outperformed the N-versus-
S discrimination achieved with ChemBERTa, CLAMP, or the 
Tanimoto coefficient (Supplementary Figure S8). These results 
show that, alongside differential indices trained for specific protein 
groups, a single BSI can also be developed to distinguish structurally 
diverse compounds.

Assessing model generalization

Our next goal was to determine the BSI models' ability to 
generalize, that is, to be able to predict similar bioactivity in proteins 
that are different from those used in training. The first evaluation 
focused on the MPG and involved using models trained for a 
given group to predict data for the other groups. As expected 
for such a challenging evaluation, overall performance was poor, 
with only a few predictable exceptions. Models trained on specific 
kinase subgroups (Pfam families PF00069 and PF07714) accurately 
predicted activities for other kinase subgroups. This trend did not 
hold for the Pfam family PF00001: models built from one subgroup 
of this family failed to generalize to the remaining subgroups.

As a second evaluation of the models' generalization capacity, 
we analyzed their performance in protein groups that do not have 
enough bioactivity data to train them. We called these groups 
underrepresented protein groups. Figure 3 shows the performance 
of previously retained BSI models on 92 UPGs. The results show 
that for the UPGs, the performance is quite poor except for some 
particular cases. Interestingly, for several of the UPGs, at least one 
of the BSI models trained on MPG data achieved moderate or even 
good performance (AUC >0.6 or >0.7). For example, the model 
trained on bioactivity data from the PF00002 family achieved an 
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FIGURE 2
(A) ROC curves for BSI, ChemBERTa, and CLAMP distinguishing S from N compound pairs for proteins Q13547 and P08253 (within their respective 
protein groups). (B) Boxplots of the ROC-AUC values obtained with the BSI method for each protein group under a leave-one-protein-out evaluation. 
The dashed orange line indicates the mean ChemBERTa ROC-AUC across all protein groups, and the dashed green line corresponds to the mean 
CLAMP ROC-AUC.

AUC between 0.6 and 0.7 when classifying compound pairs in 
seven different families. Similarly, the model trained on PF00194 
data reasonably predicted data from four families, with compound 
pairs related to the PF00484 and PF00884 families achieving an 
ROC-AUC greater than 0.7.

Because some of the MPG-trained models yield promising 
results for particular UPG and to increase the generalizability of 
the model, we decided to also evaluate the BSI-Large, which was 
built by merging all MPG data in a single training set, as previously 
explained. The model was evaluated on the UPG, and the results 
are presented in the last column of Figure 3. The BSI-Large model, 
as expected, shows a better overall performance and is in many 
cases at least as good, or even better, than the best MPG-trained 
model. However, for some particular UPG, the model still shows 
poor performance.

These results suggest that models trained with larger and 
more diverse protein sets can partially generalize and understand 
the underlying features that make two compounds display 
similar bioactivities in a wide range of protein targets, without 
compromising the higher predicting capacity achieved with a more 
focused training. 

Evaluations in protein groups with minimal 
data availability and the applicability of 
transfer learning to enhance predictive 
performance

Another potential approach to improve BSI model 
transferability, that is, its capacity for accurately predicting similar 
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FIGURE 3
Heatmap showing the performance (mean ROC-AUC per protein) of BSI models trained for major protein groups and the general MPG model, 
evaluated on datasets from the underrepresented protein groups. Assessments on UPGs with at least one model prediction on the corresponding 
dataset with a ROC-AUC above 0.6 are shown.

bioactivity in unseen protein groups, is based on the transfer 
learning strategy (Sevakula et al., 2019; Cai et al., 2020). In this 
case, the BSI-Large, the more general model, is fine-tuned on 
protein groups with very limited data. Fine-tuning is carried out by 
performing a second training of the BSI-Large model using new data 
from each UPG for five additional epochs (detailed in Methods).

We evaluated the performance of the fine-tuned BSI-Large 
model on several UPGs and compared it to the baseline BSI-
Large model. The results, presented in Figure 4, demonstrate 
that fine-tuning (or transfer learning) substantially enhances the 
model's predictive capacity. For example, with less than 20 active 
compounds, the baseline model performs poorly, but the fine-
tuned model already achieves over 0.7 ROC-AUC. As expected, 
as more “unseen” data are used to fine-tune the model, the 
performance increases but tends to plateau. It is also interesting to 
note that additional data increases the performance of the baseline 
model. However, the fine-tuned general model still outperforms 
it. Overall, these results highlight first, the possibility of training 
models based on a small dataset that generate an effective BSI 
capable of accurate predictions over a much larger universe. 
Second, it underscores the contribution of transfer learning to 
enhance predictive performance in scenarios with very limited 

training data, which is especially promising in cases of scarce
information.

Validation on compounds with 
corresponding bioactivities recently 
determined by experimental methods

For subsequent validation using experimentally verified results, 
we selected pairs of compounds from ChEMBL version 35 that were 
not present in the training dataset (version 33). We analyzed the 
performance of different models on 109 proteins with new data, 
88 of them belonging to 19 different MPG and 21 proteins from 
16 distinct UPGs, selecting only those compound pairs with a TC 
< 0.3. We complemented the S pairs with N pairs using decoys, 
using a heavily imbalanced approach (2.25:97.75 ratio of S/N) to 
better reflect a realistic scenario, where only a small fraction of active 
compounds is typically found within a much larger database. The 
mean enrichment factor at the top 2% (EF2%) was evaluated and 
compared with ChemBERTa and CLAMP for each protein group, 
averaging across all proteins within the group.
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FIGURE 4
Boxplots comparing the distribution of performance (ROC-AUC per group) of models trained with and without transfer learning, across different 
training-test splits for datasets of less represented protein groups.

For proteins belonging to the MPG, we evaluated both the 
group-specific BSI models and the BSI-Large model. The group-
specific models achieved a mean EF2% greater than 5 in 10 protein 
groups, while for the remaining groups, the mean EF2% exceeded 
2. In the case of the BSI-Large model, a mean EF2% above 5 was 
observed in only six groups; in another nine groups, the mean 
EF2% ranged between 2 and 5, and in the remaining three groups, 
it was below 2. As expected, the TC showed no enrichment in 
S pairs (mean EF2% ≤ 1.0) for most groups (except for PF00067, 
which achieved an EF2% of 1.96), reflecting its limited ability to 
recover true S pairs among dissimilar compound pairs. ChemBERTa 
similarity showed enrichment (EF2% > 1.0) in 17 groups, ranging 
from 1.04 (PF00067) to 1.98 (PF00194), thus outperforming TC 
overall. CLAMP similarity yielded enrichment in 14 groups, with 
EF2% values above 2 for six of them: PF00001 C (3.39), PF00001 D 
(2.61), PF00001 E (2.63), PF00069 C (2.73), PF00089 (3.12), and 
PF00209 (2.57), indicating a significant improvement, although still 
considerably lower than the BSI models.

Overall, the best performance was achieved in fourteen protein 
groups with the group-specific BSI models, while the remaining five 
groups showed the highest enrichment with the general BSI-Large 
model. None of the evaluated groups exhibited better performance 
for ChemBERTa or CLAMP, although CLAMP outperformed the 
BSI-Large (but not the group-specific BSI) in two cases (PF00069 
C and PF00089). Statistical analysis further supported that both 
the group-specific BSI and general BSI-Large models achieved 
significantly higher enrichment than ChemBERTa and CLAMP. For 
the group-specific BSI models, the differences in EF2% were highly 
significant versus ChemBERTa (t = 6.08, p < 1 × 10−5) and CLAMP 

(t = 5.36, p < 5 × 10−5). For the BSI-Large model, the improvement 
remained significant (ChemBERTa: t = 3.58, p = 0.002; CLAMP: t = 
3.07, p = 0.007), supporting the overall robustness of the enrichment 
performance across MPG. Representative examples of the most 
promising BSI predictions in comparison with ChemBERTa and 
CLAMP for the MPG are shown in Figure 5 (left panel).

For the proteins in the UPG, we evaluated a BSI-Large model 
that was fine-tuned using all available data across the corresponding 
protein groups. The fine-tuned BSI-Large model achieved a mean 
EF2% larger than 5 in eight groups, with two of these groups reaching 
values above 10. In six additional groups, the mean EF2% ranged 
between 2 and 5, and in the remaining two groups (PF00017 and 
PF07690), the model showed poor performance, with mean EF2%
values close to 0. Similar to the evaluation performed for the 
MPG, the TC lacked predictive power, exhibiting no enrichment. 
ChemBERTa similarity showed enrichment in 11 groups, with 
EF2% values above 2 in four of them: 5.00 for PF00561, 4.96 for 
PF04389, 4.25 for PF00248 (an interesting case where ChemBERTa 
outperformed the fine-tuned BSI-Large, which showed an EF2%
of 2.64), and 2.18 for PF00102. CLAMP similarity also yielded 
enrichment in 11 groups, but only two displayed EF2% values greater 
than 2—PF00248 (3.07) and PF04622 (2.10).

Taken together, in the UPG, the fine-tuned BSI-Large retrieved 
the best performance in 13 groups. ChemBERTa performed 
better on two groups (PF00017, where the fine-tuned BSI-
Large showed no enrichment, and PF00248), while none of the 
methods achieved enrichment in the remaining group (PF07690). 
Statistical analysis supported that higher EF2% values were 
achieved using fine-tuned BSI-Large than both ChemBERTa 
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FIGURE 5
Enrichment factor at the top 2% (EF2%) for S pairs. On the left: data from the MPGs evaluated with the group-specific BSI model (blue), the global 
BSI-Large model (green), ChemBERTa (orange), and CLAMP (purple). Right panel: data from the UPGs assessed with a BSI-Large model fine-tuned on 
UPG data up to ChEMBL 33 (magenta), ChemBERTa (orange), and CLAMP (purple).

(t = 6.08, p < 1 × 10−5) and CLAMP (t = 5.36, p < 5 × 
10−5), confirming that the improvements remain statistically 
robust even in data-scarce conditions. Representative results for 
groups with mean EF2% values above 5 are shown in Figure 5 
(right panel), compared with the results from the other
two methods.

As an additional case study in a VS-like setting, we selected 
the α2B adrenergic receptor (ADRA2B; UniProt P18089) that 
belongs to Pfam family PF00001, subgroup D. In our global 
evaluation, this subgroup consistently showed good EF2% values. 
For the experiment, we built a library of 1,500 chemically diverse 
compounds, of which only 10 were confirmed ADRA2B actives 
(≈0.7% prevalence), and all pairs have TC < 0.3. Using each of the 
10 active ligands as the query ligand, we ranked the whole library 
by similarity, recorded the rank of the next active, and averaged over 
all ten queries. TC showed an average rank of 45.2 (range: 1–205). 
Among the evaluated models, ChemBERTa retrieved an average 
rank of 54.9 (range: 1–288), while CLAMP performed better, with 
a mean rank of 28.6 (range: 1–107). In contrast, the BSI group-
specific model further reduced the rank to 3.9 (range: 1–17), and 
the BSI-Large model to 10.5 (range: 1–88).

These results can be interpreted as follows. Given a known active 
used as the query, a TC-based search would require testing ∼45 
compounds to find one new binder with a different chemotype, 
ChemBERTa would require testing ∼55 compounds, and CLAMP 
would require testing ∼29 compounds. In contrast, BSI requires 
testing fewer than 15. It is interesting to note that the BSI models 
also retrieved more remote chemotypes: the first active recovered by 
the group-specific model had a mean TC of 0.21 to the query, and 
BSI-Large had a TC of 0.18, whereas the TC similarity search itself 
yielded a less-dissimilar first hit with a mean TC ≈ 0.26. ChemBERTa 
and CLAMP likewise yielded first active hits with a low TC (0.22 and 
0.20, respectively), showing that these embedding-based methods 
can provide low-similarity actives that remain undetected in a TC-
only search. 

Illustrative examples of the BSI model's 
predictive capacity

To further illustrate the predictive capacity of BSI, we selected 
four representative examples of compound pairs that are known 
to bind the same protein target according to ChEMBL yet exhibit 
very low structural similarity (TC < 0.2). Figure 6 shows that 
in all these cases, BSI assigns high similarity values (BSI >0.75), 
successfully capturing their shared bioactivity despite the lack of 
obvious structural resemblance. The first target corresponds to the 
human H3 receptor (UniProt Q9Y5N1). For the human H3 receptor 
(UniProt Q9Y5N1), the pair CHEMBL126904 (diphenylalkylamine, 
diaryl-ether–piperidine) and CHEMBL560358 (tropane derivative) 
shows a very low structural similarity (TC = 0.18), yet BSI recognizes 
their shared activity, assigning a high score of 0.81 (pChEMBL 
8.05 and 7.0). For CYP11B2 (UniProt P19099), CHEMBL1765205 
(quinolinone derivative) and CHEMBL23731 (imidazole ester, 
etomidate-like) share a TC of 0.19 but achieve a BSI of 0.92 
(pChEMBL 8.96 and 10.0). For MAPK1 (UniProt P28482), the pair 
CHEMBL4650280 (indazole carboxamide) and CHEMBL4650284 
(quinazolinone derivative) displays a TC of 0.16 while reaching 
a BSI of 0.77 (pChEMBL 8.7 and 8.0). Finally, for TRPA1 
(UniProt O75762), CHEMBL3787566 (diaryl-azole carboxamide) 
and CHEMBL3982480 (diarylalkylamine, piperidine type) exhibit 
a TC of only 0.14, yet BSI assigns a strong similarity score of 0.86 
(pChEMBL 6.81 and 8.4).

For a better biological interpretation of the results obtained 
using the BSI, we analyzed the molecular interactions from two 
representative S pairs using molecular docking. In the first case, 
involving CHEMBL1765205 and CHEMBL23731, both ligands 
establish the key interaction with CYP11B2 through a pi-stacking 
(aromatic) interaction with PHE 130 and a hydrogen bond 
with LEU 451 in Figure 7A. Similarly, in the second example, 
the S pair CHEMBL126904/CHEMBL560358 forms aromatic 
interactions with residues PHE 398 and TRP 110 of the human 
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FIGURE 6
Pairs of active compounds for the same test targets (with their respective Pfam families) that exhibit a very low TC, showing that the BSI predicted with 
the model trained for the corresponding protein group achieved a high similarity value. The targets are named with their UniProt IDs.

H3 receptor (Figure 7B). These findings suggest that, in these 
examples, compounds with a low Tanimoto coefficient but a 
high BSI can share a similar action mechanism against the same 
protein, forming key interactions with certain identical amino
acid residues.

Discussion

Predicting similar chemical or biological activities between 
chemical compounds represents an important challenge. It is a 
highly valuable tool in a wide range of applications, including 
drug discovery. Structural similarity, commonly computed using 
the Tanimoto coefficient between molecular fingerprints, as well as 
other structure-based metrics, is a useful tool providing confident 
results, as shown in the first part of our work. However, its 
applicability is limited to a certain similarity threshold, and it also 
fails to capture the inherent complexities of molecular interactions. 
This leaves a practical blind spot: many functionally related ligands 
fall below similarity cutoffs of commonly used methods (e.g., 
TC < 0.30), narrowing ligand-based discovery and limiting the 

exploration of structurally remote chemotypes. Accordingly, new 
approaches are needed to address the problem of discovering 
novel bioactive compounds that cannot be identified through 
the conventional structural compound similarity approach. Using 
machine learning approaches for identifying compounds with 
similar bioactivities for the inhibition of different specific targets 
has become a common practice in recent years (Park et al., 2022; 
Shin et al., 2022; Hadipour et al., 2025). Methods designed 
to find structurally dissimilar compounds based on similar 
bioactivity profiles have been developed (Petrone et al., 2012; 
Yu et al., 2015), as well as those based on target similarity 
(Periwal et al., 2022). However, a reference benchmark is still 
missing. Recently, advanced deep learning architectures have been 
introduced to learn molecular similarity directly from pairs of 
compounds, providing an alternative to traditional structure-
based metrics (Fernández-Llaneza et al., 2021). While such models 
successfully captured bioactivity relationships beyond Tanimoto-
based similarity, they were trained and evaluated on single-target 
datasets. Here, we extend this concept to a protein-group framework 
that learns generalizable bioactivity similarity patterns across one or 
multiple protein families.
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FIGURE 7
Representative docking poses highlighting key ligand–protein interactions captured by BSI-predicted pairs. (A) Docking shows a π–π interaction (PHE 
130) and a hydrogen bond (LEU 451) in CYP11B2 for both CHEMBL1765205 (left) and CHEMBL23731 (right). (B) Similarly, both CHEMBL126904 (left) and 
CHEMBL560358 (right) form aromatic interactions with residues PHE 398 and TRP 110 of the human H3 receptor.

In this study, we show that when using deep learning-based 
techniques with molecular fingerprint tokenization, it is possible to 
classify pairs of compounds that are highly different in structure (TC 
< 0.3) but exhibit similar bioactivities. In other words, they bind 
the same (or similar) proteins. Training using individual protein 
groups yields models that can reach very high accuracies (AUC 
>0.8–0.9), but the performance is quite system dependent, and low 
transferability is obtained. Training a general model with combined 
information significantly increases transferability and diminishes 
the predictive capacity variance between different protein groups. 
Moreover, fine-tuning using group-specific data boosts accuracy 
to very high levels. Transfer learning allows model fine-tuning in 
protein groups with a limited set of compounds, with 20 actives 
already providing moderate to high accuracies. Overall, across our 
evaluation datasets, BSI consistently improved early retrieval (top 
2% enrichment factor, EF2%), recovered low-TC functional analogs, 
and enabled transfer learning for underrepresented families, 
compared with structure-based similarity and modern embedding 
baselines (ChemBERTa, CLAMP; cosine similarity), resulting in a 
useful complement to conventional metrics.

Although it remains challenging to develop a trained similarity 
index that functions analogously to the TC across the entire universe 
of chemical compounds, the BSI-Large model constitutes a first step 
by integrating information from diverse protein families. There is 
considerable room for improvement through more advanced data 
engineering and the incorporation of sophisticated architectures and 
molecular descriptors. However, this approach proved particularly 
effective when applied using group-specific models—which 
outperformed the global model across our evaluations—in scenarios 
where the biological system is known. In practice, this is a common 
situation: researchers usually seek similar bioactive compounds for 
a defined target system, making the application of group-specific 
models (MPG or generated for UPG by fine-tuning BSI-Large) 
especially relevant (Wang et al., 2022). For example, this approach 
can identify additional bioactive compounds for an understudied 
protein belonging to an MPG or UPG, even when only one or two 
known bioactive compounds are known. The Tanimoto coefficient 
(or ChemBERTa, CLAMP, and other related methods) can be used 
to retrieve structurally similar actives, while BSI can serve as a 
complementary tool to detect potentially active but structurally 
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dissimilar compounds. Furthermore, this methodology can be 
extended to the study of differential activity, that is, to determine 
whether the bioactivity of compound pairs varies across different 
protein groups. As previously mentioned, these methods are 
intended to complement conventional metrics, particularly below 
their confidence threshold.

Although our primary aim was to search for similar bioactive 
compounds, our index could also be used as an alternative (or 
complement) to the TC in other applications that require comparing 
chemical compounds. Comparison of chemical compounds is 
usually used, for example, to build diverse chemical datasets for 
testing in experimental and/or virtual high-throughput screening 
campaigns. In this scenario, instead of using the TC, compounds 
could be selected to reflect a more diverse set in terms of our herein 
developed BSI, which could aim to have, for a given set size, a 
more diverse dataset in terms of their potential bioactivity. Another 
potential use of the BSI is to identify compounds with desired 
ADMET (absorption, distribution, metabolism, excretion, and 
toxicity) properties that are predicted to have similar bioactivities 
to a known active compound with a problematic ADMET profile. In 
this case, our approach offers additional potential to relying on the 
TC because high TC often tracks ADMET similarity, whereas our 
method can recover bioactivity relationships that TC misses. 

Future work

Possible alternative bioactivity-related applications 
correspond to the discovery of enzyme substrates in 
biotechnology, where interchangeable molecules for biocatalysis 
or metabolic engineering often escape 2D fingerprint searches 
(Kroll et al., 2023; Schottlender et al., 2024). As alternative 
approaches beyond bioactivity, BSI-like trained indices can 
assist in identifying replacement chemicals, such as solvents, 
plastics, or industrial additives, by detecting compounds 
that—despite low structural similarity—share key properties 
(Thouand et al., 2011; Damayanti et al., 2015; Bystrzanowska and 
Tobiszewski, 2020; Driver and Hunter, 2020). In this way, we propose 
our approach as a starting point for developing trained compound 
similarity indices tailored to specific objectives.

As future perspectives, the developed methods present a wide 
margin for improvement. First, it is possible to incorporate more 
advanced molecular representations, such as learned embeddings 
(for example, generated using models based on Transformers), 
graph architectures, or even fingerprints of greater length or 
different types (Sabando et al., 2022; Yi et al., 2022; Luong and 
Singh, 2024). Although this work opted for a simple and efficient 
256-bit representation, adopting more sophisticated alternatives 
(such as ChemBERTa or CLAMP, higher-dimensional embeddings 
that showed reasonable enrichment of active compound pairs when 
using cosine similarity as a compound comparison metric) could 
result in a performance boost, especially when combined with 
deeper and more complex neural network architectures, provided 
that sufficient computational resources are available. For example, 
attention-based multimodal fusion has shown improvements 
in Natural Products (NP) anticancer prediction and could be 
adapted to our bioactivity similarity setting (Norouzi et al., 2025). 
Additionally, capsule-inspired part–whole encoders provide a 

transferable architectural prior we could test to strengthen retrieval 
under low structural similarity (Abbasi and Razzaghi, 2020).

Second, dataset engineering and curation constitute a key aspect, 
especially for models such as BSI-Large, which are trained on 
data from numerous protein groups. As observed, this diversity 
can introduce noise and limit predictive capacity compared to 
models specific to each group. Further research focused on data 
selection, processing, and balancing could enable the development 
of more robust global models, applicable to broader contexts such as 
phenotypic screening (Zheng et al., 2013; Xia, 2017). Finally, one of 
the most relevant challenges in this type of approach is the scarcity of 
reliable negative data as these are typically not reported or published 
in the literature. Improving the availability of information on 
inactive compounds and advancing data augmentation techniques 
specifically for negative examples would help increase the robustness 
and applicability of the models developed (An et al., 2025).

Conclusion

We presented BSI, a learned, pairwise, bioactivity-centered 
similarity model defined across protein families and explicitly 
trained on structurally dissimilar pairs (e.g., TC < 0.30–0.40). A 
global, multi-family variant (BSI-Large) remains competitive across 
families and supports transfer learning for underrepresented protein 
groups. Relative to single-target pairwise approaches, our design 
is novel in both its low-TC focus and its evaluation protocol: a 
LOPO scheme, demonstrating applicability to proteins that were 
not encountered during training. BSI complements structure-based 
metrics and embedding baselines (ChemBERTa, CLAMP; cosine 
similarity) by recovering structurally dissimilar functional analogs 
and improving early retrieval (EF2%) on retrospective benchmarks. 
While current coverage is limited to a clinically relevant subset of 
targets, the approach offers a practical path toward broader adoption 
through richer representations, new training data, and fine-tuning 
or domain adaptation.
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