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Structural similarity metrics such as the Tanimoto coefficient (TC) miss many
functionally related compounds—indeed, 60% of similarly bioactive ligand
pairs in the ChEMBL database show TC < 0.30, revealing a major blind spot
that constrains ligand-based discovery. Our motivation is to overcome this
blind spot and enable the recovery of structurally different yet functionally
equivalent chemotypes that structure-based similarity fails to detect. Here,
we introduce the bioactivity similarity index (BSI), a machine learning model
that estimates the probability that two molecules bind the same or related
protein receptors. Trained under leave-one-protein-out (LOPO) across Pfam-
defined protein groups on dissimilar pairs, BSI not only outperforms TC but also
surpasses modern molecular embedding baselines (ChemBERTa and contrastive
language-molecule pre-training (CLAMP), using cosine similarity) across protein
families. We further develop a cross-family model (BSI-Large) that, while
slightly below group-specific models, generalizes better and can be fine-tuned
with less data, consistently improving over models trained from scratch. In
retrospective validation on new ChEMBL v35 data, BSI achieves strong early-
retrieval performance (top 2% enrichment factor, EF,y), with group-specific
models delivering the best enrichment, and BSI-Large remaining competitive.
In a realistic virtual screening-like scenario against the target gene ADRA2B,
the mean rank of the next active, given a known active, improves from 45.2
(TC) to 3.9 (BSI), with 54.9 for ChemBERTa and 28.6 for CLAMP. Altogether, BSI
complements, rather than replaces, structure-based similarity and embedding-
based comparisons, extending hit finding to remote chemotypes that are
structurally dissimilar yet functionally equivalent. The code is available at https://
github.com/gschottlender/bioactivity-similarity-index.

KEYWORDS
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Introduction

Developing new therapeutic drug-like compounds remains a central challenge in
modern biomedicine, particularly in the face of increasing antimicrobial resistance and
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the high attrition rates in drug discovery pipelines. A critical
step in this process is identifying chemical compounds with
relevant and desired biological activities that can lead to novel
therapeutic drugs down the clinical research pipeline. These lead
compounds can be identified from purely experimental or virtual
screening (VS) campaigns combined with experimental validation.
A powerful strategy for selecting candidates is based on the
assumption that structurally similar molecules will bind to the
same protein and exhibit similar biological effects. This principle
underlies, for example, the well-known use of substrate analogs
as enzyme inhibitors. The chemical similarity strategy is further
bolstered by the decades-long observation that structural similarity
of compounds usually results in biological function similarity
(Nikolova and Jaworska, 2003; Maggiora et al., 2014). Central to the
strategy mentioned above is the following question: How can we
effectively compare small molecules?

Over the last few decades, the dominant strategy has been
to assess molecular resemblance using structural fingerprints,
computing the so-called chemical similarity indices such as the
Tanimoto coefficient (TC) (Bajusz et al., 2015). Although this type
of approach has proven highly effective for predicting bioactivities of
interest (Schuffenhauer et al., 2006; Chen et al., 2015), it inherently
focuses on chemical features rather than directly capturing
the underlying molecular mechanism resulting in its biological
effect (Safizadeh et al., 2021; Fernandez-Torras et al., 2022),
limiting its ability to detect compounds with similar bioactivities
but divergent structures (Martin et al, 2002). Moreover, a
substantial fraction of functionally related compounds remains
invisible to structure-based comparisons. In particular, many
similarly bioactive ligand pairs in large public resources (e.g.,
ChEMBL) fall below conventional similarity cutoffs (such
as TC < 0.30), creating a blind spot that constrains ligand-
based discovery and the exploration of structurally remote
chemotypes.

This issue is particularly pressing in the antimicrobial discovery
and development field, where the need for innovation has driven
the integration of genomics, structural biology, and computational
methods to improve target prioritization and lead discovery
(Sosa et al, 2018; Arcon et al, 2021; Serral et al, 2021;
Serral et al,, 2022; Marti et al., 2024). In this context, new
strategies that go beyond structural similarity strategies that
result in the generation of new drugs harboring the same
chemical scaffold (for example, beta-lactams) but instead focus
on the prediction of compound bioactivity represent a promising
research endeavor.

Most drugs exert their effect by binding tightly to a given protein
target and modulating its activity, and as already mentioned, similar
compounds usually bind to the same protein. Moreover, similar
proteins also usually bind the same compound, and the combination
of both observations results in similar compounds binding to similar
proteins. Leveraging on this “guilt-by-association” principle and
TC, in our previous study (Radusky et al., 2017), we demonstrated
that significant enrichment of true binders can be achieved in the
context of virtual screening. Moreover, this approach allows for
the identification of potential molecular targets for compounds
found to be active in phenotypic screens (Schottlender et al., 2022),
as implemented in the platform available at https://github.com/
gschottlender/ReverseLigQ.
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Both these applications are constrained by the method
used to compute chemical similarity. However, it is a well-
established fact that some ligands that bind with similar
strength to a given target can differ substantially in their
chemical structures (Ghosh et al, 2012; Wang et al, 2018).
In this scenario, we hypothesized that it could be possible to
predict whether two molecules bind similarly to the same (or
a related) target, without relying on conventional chemical
similarity metrics. Such an approach could substantially broaden
the scope of the aforementioned strategy in a VS context.
To this end, we leveraged the growing availability of public
protein-ligand-binding data and recent advances in deep
learning.

Recently, deep learning (DL) strategies have achieved
remarkable progress in the life sciences, offering powerful tools for
modeling complex patterns in biological and chemical data. These
algorithms have been successfully applied to predict molecular
properties (Feinberg et al., 2018; Walters and Barzilay, 2021;
Pangetal., 2023), uncover nonlinear relationships between structure
and biological activity (Jeon et al., 2021; Prajapati et al., 2025), and
model protein structures and their interactions with small molecules
(Abramson et al., 2024; Zhang et al., 2024). In the drug discovery
field, deep neural networks offer the potential to overcome some of
the limitations of structure-based similarity comparisons by more
accurately capturing the subtle correlations between chemistry
and bioactivity. Therefore, we decided to explore whether a DL
architecture could capture the underlying similarity of the binding
capacity of chemically diverse compounds.

In this context, our motivation is to recover structurally
thereby
expanding the discovery space and reducing screening burden.

dissimilar yet functionally equivalent compounds,

We therefore present the bioactivity similarity index (BSI), a deep
learning-based method that compares pairs of molecules and
estimates a bioactivity-centered similarity—that is, the probability
that they bind to the same or related protein targets. BSI recovers
and enriches functional analogs at low levels of structural similarity
(e.g, TC < 0.30-0.40) across protein families and supports
transfer learning for underrepresented families through the fine-
tuning of models trained on multiple families. Its current scope
has limitations: performance is protein-group dependent with
limited generalization to unseen families; fingerprint tokenization,
while cost-efficient, may be suboptimal relative to more complex
molecular representations and should be systematically evaluated
in future work; and training relies on a finite labeled universe (e.g.,
ChEMBL), implying the need for fine-tuning or domain adaptation
in different real-world scenarios. Accordingly, we position BSI
as a complement—rather than a replacement—to conventional
structure-based metrics and embedding-based similarities.

Our results show that BSI outperforms similarity comparisons
between two modern state-of-the-art molecular representations
(ChemBERTa and contrastive language-molecule pre-training
(CLAMP)) in identifying compounds that share protein targets
when they are structurally dissimilar.

Finally, we propose that the described method can be applied
to clinically important protein groups, regardless of the specific
target evaluated, and serve as a starting point for the development of
more sophisticated tools for comparing compounds based on their
bioactivities.
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Materials and methods
Retrieval of compounds from ChEMBL

All compounds with reported bioactivity, either characterized
by a pChEMBL value (a standardized measure of bioactivity
across assay types) (Bento et al., 2014) or otherwise annotated
with a bioactivity comment, were retrieved through SQL queries
from the ChEMBL database (version 33) (Zdrazil et al., 2024).
For each compound, we retrieved its SMILES representations
(Wigh et al., 2022), the corresponding protein targets (represented
as UniProt IDs) (UniProt Consortium, 2025), and their associated
Pfam families (Paysan-Lafosse et al., 2025).

Active or binder compounds were defined as those with a
pChEMBL value above 6.5, roughly equivalent to a Ki of 300 nM,
according to previously established criteria (Lenselink et al., 2017;
Ye et al., 2022). Because experimentally confirmed non-binders are
scarce, we defined experimentally verified inactives as compounds
with pChEMBL <4.5 (= Ki 2 30 uM), in line with previous
work (Burggraaff et al, 2020). A similar criterion was also
adopted by the Directory of Useful Decoys, Enhanced (DUD-
E) (Mysinger et al, 2012), which defines them as compounds
with no measurable affinity up to 30 uM (corresponding to a
pChEMBL value, that is, the negative logarithm of a Ki of 4.52).
Additionally, compounds explicitly marked as inactive in ChEMBL
bioactivity comments were also included in this group. Because
ChEMBL is highly imbalanced toward active compounds, additional
inactive compounds (decoys) were built for each target using
the DUD-E methodology. Specifically, for every compound that
exhibited activity against any ChEMBL target, we generated a
set of corresponding decoys. Each decoy is required to have a
molecular weight within +25 Da of the active ligand, a logP within
+1 unit, the number of rotatable bonds within +2, hydrogen bond
acceptors and donors within +1, and an identical net charge. A
chemical similarity threshold (TC < 0.3) was therefore applied in
concert with the preceding physicochemical constraints—precisely
because compounds with similar bioactivities can also fall below
this cutoff, a point that is critical to our study—in order to yield
decoys whose bioactivity profiles are expected to diverge from those
of the corresponding actives. This literature-supported strategy is
clearly preferable to augmenting the dataset with random molecules
(Mysinger et al., 2012; Scantlebury et al., 2020).

We finally ensured that the
between compounds

similarity ~ distribution
resembled  that
observed between active and experimentally verified inactive
compounds (See Supplementary Figure S1). A two-sample
Kolmogorov-Smirnov test confirmed that the distributions of

active and decoys

TC values for N pairs (composed of one active ligand and one
inactive counterpart) built using the decoys and the distribution of
coeflicient values of those N pairs built using active and inactive
compounds that were both derived from ChEMBL were effectively
identical below TC = 0.40 (D = 0.019, p < 1 x 1073 n =51 x 10°
and 8.6 x 10° pairs, respectively). A Jensen-Shannon divergence of
0.02 further corroborated the negligible disparity between the two
curves. Note that a minority of active-decoy pairs exhibits TC > 0.30
because decoys were selected independently for each active ligand
of the same protein, so a decoy chosen for one active can display
marginally higher, yet still low, similarity to another active ligand.
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These results show that, within the relevant similarity range, the
decoy-based negatives faithfully replicate the statistical properties
of experimentally verified inactives.

General dataset assembly for model
training

The models were designed to classify compound pairs into two
categories based on their bioactivity: pairs with similar bioactivities
(S) and pairs with non-similar bioactivities (N). Therefore, S
pairs consist of two molecules that are both active against the
same protein target, while N pairs comprise one compound
that is active and one compound that is inactive against the
same protein.

To mitigate dataset bias due to proteins with a disproportionately
high number of active compounds, three clustering methods
were sequentially applied. First, Bemis—-Murcko scaffold clustering
(Bemis and Murcko, 1996) was performed to group compounds by
core structure, selecting one representative per cluster. Second, we
applied Butina clustering with a TC threshold of 0.4 (Butina, 1999).
Finally, if more than 100 compounds still remained for a given
protein, K-means clustering (MacCuish and MacCuish, 2014) was
used to reduce the number of actives to a maximum of 100 per
protein, ensuring a balanced and diverse set of actives for each
target. In contrast, inactive compounds for each target were selected
according to the DUD-E criteria, as previously described. Due
to the limited number of experimentally validated negatives, a
data augmentation strategy was applied using decoys, which were
individually selected for each active compound targeting the same
protein, using the previously explained methodology.

After selecting active and inactive compounds for each protein,
S pairs were generated by pairing all active compounds with each
other (all-vs-all), while N pairs were formed by pairing each active
compound with all inactive compounds. Only compound pairs (S
and N) with a Tanimoto coeflicient below 0.4 were retained to
develop the algorithm on structurally dissimilar pairs, emphasizing
bioactivity-centered signal over chemical structural likeness.

Finally, compound pairs were encoded by directly summing
their Morgan fingerprints (256 bits, radius 2) (Morgan, 1965; Rogers
and Hahn, 2010), as implemented in RDKit (https://www.rdkit.org).
We built two types of datasets, one slightly imbalanced (25:75
ratio of S to N pairs) and another heavily imbalanced (4:96
ratio of S to N), by tenfold decoy augmentation. Protein groups
with their corresponding targets and corresponding final S pairs
are shown in Supplementary Table S2.

Model training and evaluation metrics

All classification models were implemented as feedforward
neural networks using PyTorch (version 2.5.1). The input layer
received the combined fingerprint vector, and thus, the first layer
has 256 neurons. The final layer is a one-neuron classifier using
a sigmoid activation function that predicts the probability of
the input (i.e., the compound pair) as belonging to the S or
N category (Paszke et al, 2019). All hidden layers used the
ReLU activation function. Unless otherwise specified, training was
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performed using the Adam optimizer with a default learning rate of
0.001, and binary cross-entropy was used as the loss function.

For each training scenario, hyperparameter tuning was carried
out to identify the optimal architecture, including the number of
hidden layers, dropout probability, and the number of training
epochs (Gawehn et al., 2016; Rasamoelina et al., 2020).

Reference methods for comparison

To place our method in the context of recent advances in
molecular representation learning, we compared its performance
with two state-of-the-art embedding models using cosine similarity.

We first employed ChemBERTa (Chithrananda et al., 2020),
a Transformer-based architecture pretrained on molecular
representations encoded from SMILES strings. The ChemBERTa
models were implemented using the Hugging Face Transformers
framework (Wolf et al, 2019), and molecular embeddings
were generated with mean pooling. Three different pretrained
versions were evaluated—DeepChem/ChemBERTa-100M-MLM,
DeepChem/ChemBERTa-77M-MLM, and seyonec/ChemBERTa-
zinc-base-vl. Among them, DeepChem/ChemBERTa-77M-MLM
exhibited the highest mean AUC (0.61) across the evaluated
major protein groups (MPGs) and was therefore selected for
subsequent analyses.

As a second reference method, we evaluated CLAMP
(Seidl et al., 2023), a multimodal model trained with contrastive
learning to align molecular representations with free-text bioassay
descriptions. This makes it a natural baseline to probe bioactivity-
aware ligand encodings in our approach. Recent large-scale
benchmarks reported a solid performance of pretrained CLAMP
embeddings across diverse datasets, outperforming all other
recent deep learning-based representations (Praski et al., 2025).
We computed CLAMP molecular embeddings using the official
implementation (by running the script encode_compound.py)
provided in the GitHub repository.

Predicting bioactivity compound similarity
across major protein groups

Given the natural imbalance in the amount of ligand-target
information for different protein families, we built different models
for different protein groups. We first grouped targets according to
protein families as defined in Pfam (Paysan-Lafosse et al., 2025).
Families with the largest number of proteins (PF00001, PF00069,
and PF07714) were further subdivided into smaller groups based
on sequence identity (the corresponding targets belonging to each
subgroup are detailed in Supplementary Table S2). These resulting
clusters are referred to as MPGs.

We first built BSI models independently for each MPG, using a
leave-one-protein-out (LOPO) approach (Hoie et al., 2022). Thus,
the model was trained on data from all proteins within the group
except one, which was used for testing. This process was iterated over
all proteins in each group. Evaluation was performed using the ROC
and precision-recall (PR) AUCs, as described below.

To identify a reasonable parameter configuration that performed
consistently across different biological contexts, three distinct test
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sets were defined, each corresponding to a specific protein group:
PF00069 subgroup A, PF00026, and PF00089.

For each of these test sets, suitable parameter configurations
for the MPG models were evaluated using the LOPO approach,
by combining three hidden layer architectures ([256], [256, 128],
and [256, 128, 64]), three dropout probabilities (0.1, 0.25, and
0.5), and three training lengths (5 epochs, 10 epochs, and 15
epochs), yielding a total of 27 configurations. Additional epochs
were not considered as the loss function displayed progressively
slower improvement beyond 10 epochs, while further training
would substantially increase computational cost and the risk of
overfitting. Given that multiple models had to be evaluated under
different conditions, this trade-off was considered acceptable.
achieved the
performance across all three test sets was a relatively simple one:

The configuration that most  consistent
a single hidden layer with 256 neurons, a dropout rate of 0.5, and
10 training epochs. This combination was ranked 3rd by ROC-
AUC on the PF00069 subgroup A dataset, 5th on PF00026, and 7th
on PF00089.

In addition, because Morgan fingerprints were initially selected
as the reference molecular representation, comparative analyses
with the Molecular ACCess System (MACCS) (Joseph et al., 2002)
and RDKit fingerprints were conducted (using the predetermined
parameter configuration). These alternative representations showed
comparable predictive performance, with Morgan fingerprints
achieving slightly higher mean ROC-AUC values across the three
test sets (0.80 per protein group), compared to 0.78 for MACCS and
0.71 for RDKit fingerprints.

The metrics obtained with the BSI models were compared
to those from the reference methods, ChemBERTa and CLAMP
(using cosine similarity). Statistical significance was assessed using
Student's t-test to compare the performance of the BSI models
against the reference methods.

We also built a general MPG model, referred to as BSI-Large,
trained by merging the data of all MPG into a single training
set. In this case, the best model hyperparameters were a hidden
layer configuration of [512, 256, 128, 64], 10 training epochs, a
learning rate of 0.0001, and a dropout of 0.3. BSI-Large performance
was evaluated with ROC-AUC using the LOPO approach on four
different protein groups: PF00209, PF00413, PF00520, and PF00850.

The numbers of active compounds, experimentally verified
inactives, and decoys used in each dataset for model training are
detailed in Supplementary Table S3.

Model generalization assessments

To test the ability of the models to make predictions on
protein groups whose data were not included in the training sets,
we constructed additional datasets from families containing fewer
than 10 protein targets and with reported bioactive compounds in
ChEMBL. We refer to these as underrepresented protein groups
(UPGs). Each group dataset was generated as previously described,
comprising S pairs (containing two active compounds) and N pairs
(each consisting of one active compound and one decoy) with a 25:75
ratio for S and N pairs. Performance on the different UPG datasets
for models trained on each MPG, as well as for the BSI-Large model,
was evaluated using the ROC-AUC.
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Transfer learning assessments on protein
groups with limited data

For the transfer learning analysis, we selected the 15 protein
groups with the fewest bioactive compounds and at least two targets
reported in ChEMBL (a subset from the UPG, referred to as
less represented protein groups, LRPGs). For each group, random
samples of 99 active compounds were taken to standardize the
dataset size across families. Training datasets were then assembled
by progressively increasing the number of bioactive compounds in
increments of 10. S pairs were constructed using only these bioactive
compounds, while N pairs consisted of all active compounds paired
with all of the corresponding decoys. For N pairs, the number of
bioactive compounds and decoys used was kept equal. Evaluation
was performed on the remaining data, ensuring that no compounds
were shared between the training and evaluation sets.

The modeling approach consisted first of using the BSI-Large
model and performing a fine-tuning with the data from each
LRPG and, second, training a control model from scratch with the
same architecture. Training was performed using five epochs and
a learning rate of 0.0001, without layer freezing for the BSI-Large.
Evaluation was carried out using the ROC-AUC to distinguish
between S pairs and N pairs within each LRPG, for each number
of active compounds used (and a similar number of decoys).

Validation on new experimentally verified
data from ChEMBL v35

Retrospective validation with ChEMBL 35 data was performed
as an additional evaluation on previously unseen bioactivity records.
Because all our models had been trained on ChEMBL version 33, we
first compared this release with ChEMBL version 35 and retained
only those records unique to the newer version. The resulting
validation set comprised 88 targets distributed across 19 MPGs and
21 targets belonging to 16 UPGs. For every target in this set, we
generated compound pairs exactly as previously described, with
a deliberately stronger class imbalance to emulate realistic virtual
screening conditions. All pairs were required to exhibit a Tanimoto
coefficient of less than 0.3.

The evaluation of MPG data employed the full suite of pretrained
models—namely, the group-specific BSI models and the global BSI-
Large. For UPG data, we created a modified version of BSI-Large
that was fine-tuned for five epochs on ChEMBL 33 data from
the same 16 UPGs (learning rate of 0.0001, no layer freezing).
Performance was quantified with the top 2% enrichment factor
(EF,y,), a metric that directly reflects hit-retrieval efficiency in
virtual screening (Ganser et al., 2018). EF,y, values obtained with
predictions by the models were compared with results based on
our reference methods, ChemBERTa and CLAMP, and statistical
significance was assessed using Student's t-test for each evaluated
protein group.

As a final case study, we performed a virtual screening (VS)-
like validation against a2B adrenergic receptor (ADRA2B; Pfam
PF00001 subgroup D), which the previous EF analysis had identified
as a favorable scenario. We built different sets containing 10 active
compounds and 1,500 decoys, all having TC < 0.3 against any actives.
We used the 10 active compounds as queries and recorded the
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ranking of the next (second) active for each case. Finally, the 10
rankings were averaged.

Molecular docking procedures

All docking experiments were conducted using AutoDock-GPU
(Santos-Martins et al., 2021). The binding site was defined by a
cubic grid of 50 A x 50 A x 50 A with a spacing of 0.375 A,
centered on the known ligand-binding pocket as identified from
available crystallographic structures, using the coordinates of the co-
crystallized natural substrate. The receptor structure was treated as
rigid throughout all simulations, while full torsional flexibility was
assigned to all rotatable bonds of the ligands. Ligands were prepared
using Open Babel (O'Boyle et al, 2011) and assigned Gasteiger
partial charges. Each docking run consisted of 100 independent
genetic algorithm (GA) searches to ensure exhaustive exploration
of the binding modes and conformational space. The maximum
number of energy evaluations per run was set to 2.5 x 10°, and other
GA parameters were kept at their default values.

For each ligand, docking poses were clustered using a root
mean square deviation (RMSD) cutoff of 2.0 A. The representative
binding mode was selected as the lowest energy conformation within
the most populated cluster. Docking scores were computed based
on the AutoDock4 scoring function (Morris et al., 2009), which
combines van der Waals, electrostatic, desolvation, and torsional
energy components.

Post-docking of
poses and identification of key interactions with active site

analysis  included visual inspection
residues using the software program VMD (Visual Molecular
Dynamics) (Humphrey et al., 1996) and in-house Python scripts

based on Biopython.

Code availability

The set of scripts, Jupyter notebooks, and documentation used
to generate, train, and evaluate the BSI models is publicly available
at:  https://github.com/gschottlender/bioactivity-similarity-index
(MIT License).

Results

The results are organized as follows. First, we explore the
limitations when comparing compounds through chemical
similarity to predict related bioactivities. Second, we design, train,
and evaluate a DL-based method to predict the similarity in
bioactivity (i.e., binding to the same protein, to a protein within
the protein group, or to both) of chemical dissimilar compounds.
Subsequently, we explore the DL method's generalization capacity by
evaluating its performance for an increasingly diverse set of proteins
that are not part of the training set. We subsequently extend the
methodology to little-known protein groups and assess the fine-
tuning of pretrained models on large and heterogeneous datasets
to enhance predictive performance in protein families with limited
data. Finally, we evaluated our strategy on new “unseen” ligands and
in a VS-like scheme.
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Bioactivity prediction based on structural
similarity: capabilities and limitations

We begin by comparing the distribution of chemical similarities,
computed using the Morgan fingerprint-based TC, for both
bioactive similar (S) and non-similar (N) compound pairs. Two
compounds are defined as being similarly bioactive if both
are defined as actives; thus, they exhibit a pChEMBL value
above 6.5 for the same target (i.e., they both bind strongly to
the same protein), while a pair of compounds is considered
non-similar when one compound is active against a given
target, and the other is not active against the same target (see
Methods for details on how active non-active compounds are
defined).

Figure 1 shows the corresponding TC histograms for the two
types of compound pairs, S and N, in the whole dataset. The results
show that with this “classical” methodology, using a threshold of TC
of 0.4 leads, as expected, to a significant enrichment of S pairs and
reflects the well-known observation that a similar chemical structure
leads to similar bioactivity. However, there are many S pairs that
display very low structural similarity. Indeed, 60% of S pairs have TC
below 0.3, and 25% of them have TC below 0.2. Clearly, it is evident
that protein binding depends on factors beyond chemical similarity.
This observation underscores the fact that chemical similarity
methods are robust for identifying compounds with a similar
bioactivity profile in a range that nevertheless represents a minority
of known compound pairs, leaving the effective comparison of
structurally divergent, yet similarly bioactive, compounds as a major
challenge. In the cases of our reference methods, ChemBERTa
and CLAMP (Supplementary Figure S4), similarity values between
compounds tend to be higher, although a substantial overlap
between most S and N pairs persists.

Evaluation of deep learning models for a
bioactivity similarity index on major protein
groups

To build a DL model capable of predicting bioactivity similarity
between compound pairs, particularly when they are structurally
different (with TC < 0.4), we used a feedforward neural network
architecture, using binary cross-entropy as the loss function, and
trained it to predict whether the pair of compounds belonged to the
S category or not. We first trained different models for each MPG,
defined as groups with more than 10 proteins harboring the same
domain with reported bioactivities for more than 25 compounds.
The model predictions, which correspond to the probability that the
model assigns the pair as being S, and thus lie in the 0 to 1 range, will
be referred to as the BSL

Evaluations were performed following a LOPO approach, in
which, for each protein in the group, the model is trained on
data from all other proteins, and the excluded protein is used
as the test set. Two different dataset types were evaluated, one
slightly imbalanced (25:75 ratio of S to N pairs) and another
heavily imbalanced (4:96 ratio of S to N). Results were compared
against cosine similarity between embeddings from two state-
of-the-art molecular representations, ChemBERTa and CLAMP
(details in Methods).
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Figure 2A shows the resulting ROC curves for two proteins
from the MPG as representative examples (Q13547 from group
PF00850 and P08253 from PF00413), evidencing superior
performance of BSI over ChemBERTa and CLAMP cosine
similarity, and a well-shaped ROC curve. Figure 2B shows the
corresponding AUC for all MPG in descending order for the
slightly imbalanced datasets. The findings indicate that BSI
achieves strong predictive performance for most MPG, with AUC
values above the mean value obtained using cosine similarity on
ChemBERTa and CLAMP molecular embeddings, represented
in the figure respectively by dashed blue and green lines. Similar
results were obtained by the analysis of the precision-recall
curve AUCs (See Supplementary Figure S5).

Figure 2B also shows that performance is highly variable for
different MPGs. Interestingly, the following pattern is observed. For
about half of the MPGs, low variability in the AUC is observed
in the LOPO scheme, resulting in AUC values above 0.8, which
is a very good predictive capacity. For other MPGs, the observed
AUC variability is significantly higher, and the AUC values are more
variable and tend to be lower. Similar results were obtained for the
heavily imbalanced datasets, as shown in Supplementary Figure S6.

Overall, there appears to be some connection between data
availability per protein and how well the models perform. Poorly
performing protein groups—PF01094, PF00135, PF00067, PF00002,
PF00520, PF00233, and PF00001 B—share the common feature of
having relatively few bioactive compounds per protein (fewer than
750 bioactive compounds in total). Notable exceptions are PF00209
and PF00104, which, despite having a large amount of data per
protein, exhibited considerable variability.

Conversely, PF00194 stands out as the top-performing family
and also the one with the highest amount of bioactive compound
data per protein. Strong results were likewise observed for PF07714
B, PF00850, PF00001 D, PF00001 C, PF00413, PF00069 B, and
PF00001 F all of which have data counts above the median. Finally,
four encouraging outliers—PF07714 A, PF00069 C, PF00069 D, and
PF00112—achieved good model performance despite limited data
per protein. It is worth noting that PF07714 and PF00069 constitute
the two main kinase clades, which may partly explain their favorable
performance even under data-scarce conditions.

In the performance comparison with modern state-of-the-
art models, the BSI model significantly outperformed both
ChemBERTa and CLAMP (using cosine similarity) on average
across all protein groups, according to paired t-tests applied to
ROC-AUC and PR-AUC values. Specifically, for ROC-AUC, the
differences were highly significant versus ChemBERTa (t = 11.99, p
<1x 107"y and CLAMP (¢ = 10.23, p < 1 x 107'%), Similar results
were observed for PR-AUC (ChemBERTa: ¢ = 10.41, p < 1 x 107'%;
CLAMP: t =9.86,p <1 x 107).

Detailed results per test protein showed that among the 343
evaluated individual proteins (from all groups), BSI models achieved
higher ROC-AUC values in 298 cases. In the remaining 55 proteins,
30 showed the best performance with CLAMP, with three of these
belonging to groups PF00001 B, PF00067, and PF00233. The other
25 proteins performed better with ChemBERTa, including four cases
from groups PF00233 and PF01094. All ROC-AUC and PR-AUC
values obtained for each tested protein with each evaluated method
are detailed in Supplementary Table S7.
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Histograms of Tanimoto similarity for pairs of compounds with similar bioactivities (S pairs) and for pairs with non-similar bioactivities (N pairs). Two
different examples of S pairs for the protein P56817 are shown with their corresponding location in the distribution: a chemically similar one
(compounds CHEMBL3680857 and CHEMBL3680854, with a TC of 0.78) and a chemically dissimilar one (compounds CHEMBL3695732 and

Evaluation of a single BSI model for all
major protein groups (BSI-Large)

As a further assessment, we trained a single model on the
full MPG data to examine whether a unified bioactivity similarity
index (referred to as BSI-Large) could be established for all the
evaluated clinically relevant protein families. This global index is
more user-friendly, although it no longer captures group-specific
activity differences.

BSI-Large was evaluated on four representative protein
families chosen to cover contrasting baseline scenarios: PF00413
and PF00850, whose group-specific BSI models had performed
very well, and PF00209 and PF00520, where those models
had shown marked variability across proteins. Under leave-
one-protein-out cross-validation, BSI-Large delivered metrics
that were slightly lower (with the most substantial decrease
in performance in PF00520) than the group-specific models.
However, for most proteins, it still outperformed the N-versus-
S discrimination achieved with ChemBERTa, CLAMP, or the
Tanimoto coeficient (Supplementary Figure S8). These results
show that, alongside differential indices trained for specific protein
groups, a single BSI can also be developed to distinguish structurally
diverse compounds.

Frontiers in Bioinformatics

Assessing model generalization

Our next goal was to determine the BSI models' ability to
generalize, that is, to be able to predict similar bioactivity in proteins
that are different from those used in training. The first evaluation
focused on the MPG and involved using models trained for a
given group to predict data for the other groups. As expected
for such a challenging evaluation, overall performance was poor,
with only a few predictable exceptions. Models trained on specific
kinase subgroups (Pfam families PF00069 and PF07714) accurately
predicted activities for other kinase subgroups. This trend did not
hold for the Pfam family PF00001: models built from one subgroup
of this family failed to generalize to the remaining subgroups.

As a second evaluation of the models' generalization capacity,
we analyzed their performance in protein groups that do not have
enough bioactivity data to train them. We called these groups
underrepresented protein groups. Figure 3 shows the performance
of previously retained BSI models on 92 UPGs. The results show
that for the UPGs, the performance is quite poor except for some
particular cases. Interestingly, for several of the UPGs, at least one
of the BSI models trained on MPG data achieved moderate or even
good performance (AUC >0.6 or >0.7). For example, the model
trained on bioactivity data from the PF00002 family achieved an
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FIGURE 2
(A) ROC curves for BSI, ChemBERTa, and CLAMP distinguishing S from N compound pairs for proteins Q13547 and P08253 (within their respective
protein groups). (B) Boxplots of the ROC-AUC values obtained with the BSI method for each protein group under a leave-one-protein-out evaluation.
The dashed orange line indicates the mean ChemBERTa ROC-AUC across all protein groups, and the dashed green line corresponds to the mean
CLAMP ROC-AUC.

AUC between 0.6 and 0.7 when classifying compound pairs in
seven different families. Similarly, the model trained on PF00194
data reasonably predicted data from four families, with compound
pairs related to the PF00484 and PF00884 families achieving an
ROC-AUC greater than 0.7.

Because some of the MPG-trained models yield promising
results for particular UPG and to increase the generalizability of
the model, we decided to also evaluate the BSI-Large, which was
built by merging all MPG data in a single training set, as previously
explained. The model was evaluated on the UPG, and the results
are presented in the last column of Figure 3. The BSI-Large model,
as expected, shows a better overall performance and is in many
cases at least as good, or even better, than the best MPG-trained
model. However, for some particular UPG, the model still shows
poor performance.
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These results suggest that models trained with larger and
more diverse protein sets can partially generalize and understand
the underlying features that make two compounds display
similar bioactivities in a wide range of protein targets, without
compromising the higher predicting capacity achieved with a more
focused training.

Evaluations in protein groups with minimal
data availability and the applicability of
transfer learning to enhance predictive
performance

model

Another potential approach to BSI

transferability, that is, its capacity for accurately predicting similar

improve
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Heatmap showing the performance (mean ROC-AUC per protein) of BSI models trained for major protein groups and the general MPG model,
evaluated on datasets from the underrepresented protein groups. Assessments on UPGs with at least one model prediction on the corresponding

bioactivity in unseen protein groups, is based on the transfer
learning strategy (Sevakula et al., 2019; Cai et al.,, 2020). In this
case, the BSI-Large, the more general model, is fine-tuned on
protein groups with very limited data. Fine-tuning is carried out by
performing a second training of the BSI-Large model using new data
from each UPG for five additional epochs (detailed in Methods).
We evaluated the performance of the fine-tuned BSI-Large
model on several UPGs and compared it to the baseline BSI-
Large model. The results, presented in Figure 4, demonstrate
that fine-tuning (or transfer learning) substantially enhances the
model's predictive capacity. For example, with less than 20 active
compounds, the baseline model performs poorly, but the fine-
tuned model already achieves over 0.7 ROC-AUC. As expected,
as more “unseen” data are used to fine-tune the model, the
performance increases but tends to plateau. It is also interesting to
note that additional data increases the performance of the baseline
model. However, the fine-tuned general model still outperforms
it. Overall, these results highlight first, the possibility of training
models based on a small dataset that generate an effective BSI
capable of accurate predictions over a much larger universe.
Second, it underscores the contribution of transfer learning to
enhance predictive performance in scenarios with very limited
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training data, which is especially promising in cases of scarce
information.

Validation on compounds with
corresponding bioactivities recently
determined by experimental methods

For subsequent validation using experimentally verified results,
we selected pairs of compounds from ChEMBL version 35 that were
not present in the training dataset (version 33). We analyzed the
performance of different models on 109 proteins with new data,
88 of them belonging to 19 different MPG and 21 proteins from
16 distinct UPGs, selecting only those compound pairs with a TC
< 0.3. We complemented the S pairs with N pairs using decoys,
using a heavily imbalanced approach (2.25:97.75 ratio of S/N) to
better reflect a realistic scenario, where only a small fraction of active
compounds is typically found within a much larger database. The
mean enrichment factor at the top 2% (EF,,,) was evaluated and
compared with ChemBERTa and CLAMP for each protein group,
averaging across all proteins within the group.
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For proteins belonging to the MPG, we evaluated both the
group-specific BSI models and the BSI-Large model. The group-
specific models achieved a mean EF,,, greater than 5 in 10 protein
groups, while for the remaining groups, the mean EF,,, exceeded
2. In the case of the BSI-Large model, a mean EF,, above 5 was
observed in only six groups; in another nine groups, the mean
EF,,, ranged between 2 and 5, and in the remaining three groups,
it was below 2. As expected, the TC showed no enrichment in
S pairs (mean EF,, < 1.0) for most groups (except for PF00067,
which achieved an EF, of 1.96), reflecting its limited ability to
recover true S pairs among dissimilar compound pairs. ChemBERTa
similarity showed enrichment (EF,, > 1.0) in 17 groups, ranging
from 1.04 (PF00067) to 1.98 (PF00194), thus outperforming TC
overall. CLAMP similarity yielded enrichment in 14 groups, with
EF,q, values above 2 for six of them: PF00001 C (3.39), PF00001 D
(2.61), PF00001 E (2.63), PF00069 C (2.73), PF00089 (3.12), and
PF00209 (2.57), indicating a significant improvement, although still
considerably lower than the BSI models.

Overall, the best performance was achieved in fourteen protein
groups with the group-specific BSI models, while the remaining five
groups showed the highest enrichment with the general BSI-Large
model. None of the evaluated groups exhibited better performance
for ChemBERTa or CLAMP, although CLAMP outperformed the
BSI-Large (but not the group-specific BSI) in two cases (PF00069
C and PF00089). Statistical analysis further supported that both
the group-specific BSI and general BSI-Large models achieved
significantly higher enrichment than ChemBERTa and CLAMP. For
the group-specific BSI models, the differences in EF,,, were highly
significant versus ChemBERTa (¢ = 6.08, p < 1 107) and CLAMP
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(t =5.36, p < 5 x 107°). For the BSI-Large model, the improvement
remained significant (ChemBERTa: t = 3.58, p = 0.002; CLAMP: ¢ =
3.07, p = 0.007), supporting the overall robustness of the enrichment
performance across MPG. Representative examples of the most
promising BSI predictions in comparison with ChemBERTa and
CLAMP for the MPG are shown in Figure 5 (left panel).

For the proteins in the UPG, we evaluated a BSI-Large model
that was fine-tuned using all available data across the corresponding
protein groups. The fine-tuned BSI-Large model achieved a mean
EF,y, larger than 5 in eight groups, with two of these groups reaching
values above 10. In six additional groups, the mean EF,, ranged
between 2 and 5, and in the remaining two groups (PF00017 and
PF07690), the model showed poor performance, with mean EF,y
values close to 0. Similar to the evaluation performed for the
MPG, the TC lacked predictive power, exhibiting no enrichment.
ChemBERTa similarity showed enrichment in 11 groups, with
EF,,, values above 2 in four of them: 5.00 for PF00561, 4.96 for
PF04389, 4.25 for PF00248 (an interesting case where ChemBERTa
outperformed the fine-tuned BSI-Large, which showed an EF,y
of 2.64), and 2.18 for PF00102. CLAMP similarity also yielded
enrichment in 11 groups, but only two displayed EF,,, values greater
than 2—PF00248 (3.07) and PF04622 (2.10).

Taken together, in the UPG, the fine-tuned BSI-Large retrieved
the best performance in 13 groups. ChemBERTa performed
better on two groups (PF00017, where the fine-tuned BSI-
Large showed no enrichment, and PF00248), while none of the
methods achieved enrichment in the remaining group (PF07690).
Statistical analysis supported that higher EF,, values were
achieved using fine-tuned BSI-Large than both ChemBERTa
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(t =608 p <1 x 10°) and CLAMP (t = 536, p < 5 x
107°), confirming that the improvements remain statistically
robust even in data-scarce conditions. Representative results for
groups with mean EF,, values above 5 are shown in Figure 5
(right panel), compared with the results from the other
two methods.

As an additional case study in a VS-like setting, we selected
the a2B adrenergic receptor (ADRA2B; UniProt P18089) that
belongs to Pfam family PF00001, subgroup D. In our global
evaluation, this subgroup consistently showed good EF,, values.
For the experiment, we built a library of 1,500 chemically diverse
compounds, of which only 10 were confirmed ADRA2B actives
(=0.7% prevalence), and all pairs have TC < 0.3. Using each of the
10 active ligands as the query ligand, we ranked the whole library
by similarity, recorded the rank of the next active, and averaged over
all ten queries. TC showed an average rank of 45.2 (range: 1-205).
Among the evaluated models, ChemBERTa retrieved an average
rank of 54.9 (range: 1-288), while CLAMP performed better, with
a mean rank of 28.6 (range: 1-107). In contrast, the BSI group-
specific model further reduced the rank to 3.9 (range: 1-17), and
the BSI-Large model to 10.5 (range: 1-88).

These results can be interpreted as follows. Given a known active
used as the query, a TC-based search would require testing ~45
compounds to find one new binder with a different chemotype,
ChemBERTa would require testing ~55 compounds, and CLAMP
would require testing ~29 compounds. In contrast, BSI requires
testing fewer than 15. It is interesting to note that the BSI models
also retrieved more remote chemotypes: the first active recovered by
the group-specific model had a mean TC of 0.21 to the query, and
BSI-Large had a TC of 0.18, whereas the TC similarity search itself
yielded aless-dissimilar first hit with a mean TC = 0.26. ChemBERTa
and CLAMP likewise yielded first active hits with alow TC (0.22 and
0.20, respectively), showing that these embedding-based methods
can provide low-similarity actives that remain undetected in a TC-
only search.
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[llustrative examples of the BSI model's
predictive capacity

To further illustrate the predictive capacity of BSI, we selected
four representative examples of compound pairs that are known
to bind the same protein target according to ChEMBL yet exhibit
very low structural similarity (TC < 0.2). Figure 6 shows that
in all these cases, BSI assigns high similarity values (BSI >0.75),
successfully capturing their shared bioactivity despite the lack of
obvious structural resemblance. The first target corresponds to the
human H; receptor (UniProt Q9Y5N1). For the human H; receptor
(UniProt Q9Y5N1), the pair CHEMBL126904 (diphenylalkylamine,
diaryl-ether-piperidine) and CHEMBL560358 (tropane derivative)
shows a very low structural similarity (TC = 0.18), yet BSI recognizes
their shared activity, assigning a high score of 0.81 (pChEMBL
8.05 and 7.0). For CYP11B2 (UniProt P19099), CHEMBL1765205
(quinolinone derivative) and CHEMBL23731 (imidazole ester,
etomidate-like) share a TC of 0.19 but achieve a BSI of 0.92
(pChEMBL 8.96 and 10.0). For MAPK1 (UniProt P28482), the pair
CHEMBL4650280 (indazole carboxamide) and CHEMBL4650284
(quinazolinone derivative) displays a TC of 0.16 while reaching
a BSI of 0.77 (pChEMBL 8.7 and 8.0). Finally, for TRPAL
(UniProt 075762), CHEMBL3787566 (diaryl-azole carboxamide)
and CHEMBL3982480 (diarylalkylamine, piperidine type) exhibit
a TC of only 0.14, yet BSI assigns a strong similarity score of 0.86
(pChEMBL 6.81 and 8.4).

For a better biological interpretation of the results obtained
using the BSI, we analyzed the molecular interactions from two
representative S pairs using molecular docking. In the first case,
involving CHEMBL1765205 and CHEMBL23731, both ligands
establish the key interaction with CYP11B2 through a pi-stacking
(aromatic) interaction with PHE 130 and a hydrogen bond
with LEU 451 in Figure 7A. Similarly, in the second example,
the S pair CHEMBL126904/CHEMBL560358 forms aromatic
interactions with residues PHE 398 and TRP 110 of the human
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FIGURE 6
Pairs of active compounds for the same test targets (with their respective Pfam families) that exhibit a very low TC, showing that the BSI predicted with
the model trained for the corresponding protein group achieved a high similarity value. The targets are named with their UniProt IDs.

H; receptor (Figure 7B). These findings suggest that, in these
examples, compounds with a low Tanimoto coefficient but a
high BSI can share a similar action mechanism against the same
protein, forming key interactions with certain identical amino
acid residues.

Discussion

Predicting similar chemical or biological activities between
chemical compounds represents an important challenge. It is a
highly valuable tool in a wide range of applications, including
drug discovery. Structural similarity, commonly computed using
the Tanimoto coefficient between molecular fingerprints, as well as
other structure-based metrics, is a useful tool providing confident
results, as shown in the first part of our work. However, its
applicability is limited to a certain similarity threshold, and it also
fails to capture the inherent complexities of molecular interactions.
This leaves a practical blind spot: many functionally related ligands
fall below similarity cutoffs of commonly used methods (e.g.,
TC < 0.30), narrowing ligand-based discovery and limiting the
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exploration of structurally remote chemotypes. Accordingly, new
approaches are needed to address the problem of discovering
novel bioactive compounds that cannot be identified through
the conventional structural compound similarity approach. Using
machine learning approaches for identifying compounds with
similar bioactivities for the inhibition of different specific targets
has become a common practice in recent years (Park et al., 2022;
Shin et al, 2022; Hadipour et al., 2025). Methods designed
to find structurally dissimilar compounds based on similar
bioactivity profiles have been developed (Petrone et al, 2012;
Yu et al, 2015), as well as those based on target similarity
(Periwal et al., 2022). However, a reference benchmark is still
missing. Recently, advanced deep learning architectures have been
introduced to learn molecular similarity directly from pairs of
compounds, providing an alternative to traditional structure-
based metrics (Ferndndez-Llaneza et al., 2021). While such models
successfully captured bioactivity relationships beyond Tanimoto-
based similarity, they were trained and evaluated on single-target
datasets. Here, we extend this concept to a protein-group framework
that learns generalizable bioactivity similarity patterns across one or
multiple protein families.
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FIGURE 7

Representative docking poses highlighting key ligand—protein interactions captured by BSI-predicted pairs. (A) Docking shows a n—m interaction (PHE
130) and a hydrogen bond (LEU 451) in CYP11B2 for both CHEMBL1765205 (left) and CHEMBL23731 (right). (B) Similarly, both CHEMBL126904 (left) and
CHEMBL560358 (right) form aromatic interactions with residues PHE 398 and TRP 110 of the human H3 receptor.

In this study, we show that when using deep learning-based
techniques with molecular fingerprint tokenization, it is possible to
classify pairs of compounds that are highly different in structure (TC
< 0.3) but exhibit similar bioactivities. In other words, they bind
the same (or similar) proteins. Training using individual protein
groups yields models that can reach very high accuracies (AUC
>0.8-0.9), but the performance is quite system dependent, and low
transferability is obtained. Training a general model with combined
information significantly increases transferability and diminishes
the predictive capacity variance between different protein groups.
Moreover, fine-tuning using group-specific data boosts accuracy
to very high levels. Transfer learning allows model fine-tuning in
protein groups with a limited set of compounds, with 20 actives
already providing moderate to high accuracies. Overall, across our
evaluation datasets, BSI consistently improved early retrieval (top
2% enrichment factor, EF,, ), recovered low-TC functional analogs,
and enabled transfer learning for underrepresented families,
compared with structure-based similarity and modern embedding
baselines (ChemBERTa, CLAMP; cosine similarity), resulting in a
useful complement to conventional metrics.
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Although it remains challenging to develop a trained similarity
index that functions analogously to the TC across the entire universe
of chemical compounds, the BSI-Large model constitutes a first step
by integrating information from diverse protein families. There is
considerable room for improvement through more advanced data
engineering and the incorporation of sophisticated architectures and
molecular descriptors. However, this approach proved particularly
effective when applied using group-specific models—which
outperformed the global model across our evaluations—in scenarios
where the biological system is known. In practice, this is a common
situation: researchers usually seek similar bioactive compounds for
a defined target system, making the application of group-specific
models (MPG or generated for UPG by fine-tuning BSI-Large)
especially relevant (Wang et al., 2022). For example, this approach
can identify additional bioactive compounds for an understudied
protein belonging to an MPG or UPG, even when only one or two
known bioactive compounds are known. The Tanimoto coeflicient
(or ChemBERTa, CLAMP, and other related methods) can be used
to retrieve structurally similar actives, while BSI can serve as a
complementary tool to detect potentially active but structurally
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dissimilar compounds. Furthermore, this methodology can be
extended to the study of differential activity, that is, to determine
whether the bioactivity of compound pairs varies across different
protein groups. As previously mentioned, these methods are
intended to complement conventional metrics, particularly below
their confidence threshold.

Although our primary aim was to search for similar bioactive
compounds, our index could also be used as an alternative (or
complement) to the TC in other applications that require comparing
chemical compounds. Comparison of chemical compounds is
usually used, for example, to build diverse chemical datasets for
testing in experimental and/or virtual high-throughput screening
campaigns. In this scenario, instead of using the TC, compounds
could be selected to reflect a more diverse set in terms of our herein
developed BSI, which could aim to have, for a given set size, a
more diverse dataset in terms of their potential bioactivity. Another
potential use of the BSI is to identify compounds with desired
ADMET (absorption, distribution, metabolism, excretion, and
toxicity) properties that are predicted to have similar bioactivities
to a known active compound with a problematic ADMET profile. In
this case, our approach offers additional potential to relying on the
TC because high TC often tracks ADMET similarity, whereas our
method can recover bioactivity relationships that TC misses.

Future work

alternative
the
biotechnology, where interchangeable molecules for biocatalysis

Possible
correspond

bioactivity-related applications

to discovery of enzyme substrates in
or metabolic engineering often escape 2D fingerprint searches
(Kroll et al., 2023; Schottlender et al, 2024). As alternative
approaches beyond bioactivity, BSI-like trained indices can
assist in identifying replacement chemicals, such as solvents,
plastics, or industrial additives, by detecting compounds
that—despite low structural similarity—share key properties
(Thouand et al,, 2011; Damayanti et al., 2015; Bystrzanowska and
Tobiszewski, 2020; Driver and Hunter, 2020). In this way, we propose
our approach as a starting point for developing trained compound
similarity indices tailored to specific objectives.

As future perspectives, the developed methods present a wide
margin for improvement. First, it is possible to incorporate more
advanced molecular representations, such as learned embeddings
(for example, generated using models based on Transformers),
graph architectures, or even fingerprints of greater length or
different types (Sabando et al., 2022; Yi et al., 2022; Luong and
Singh, 2024). Although this work opted for a simple and efficient
256-bit representation, adopting more sophisticated alternatives
(such as ChemBERTa or CLAMP, higher-dimensional embeddings
that showed reasonable enrichment of active compound pairs when
using cosine similarity as a compound comparison metric) could
result in a performance boost, especially when combined with
deeper and more complex neural network architectures, provided
that sufficient computational resources are available. For example,
attention-based multimodal fusion has shown improvements
in Natural Products (NP) anticancer prediction and could be
adapted to our bioactivity similarity setting (Norouzi et al., 2025).

Additionally, capsule-inspired part-whole encoders provide a
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transferable architectural prior we could test to strengthen retrieval
under low structural similarity (Abbasi and Razzaghi, 2020).

Second, dataset engineering and curation constitute a key aspect,
especially for models such as BSI-Large, which are trained on
data from numerous protein groups. As observed, this diversity
can introduce noise and limit predictive capacity compared to
models specific to each group. Further research focused on data
selection, processing, and balancing could enable the development
of more robust global models, applicable to broader contexts such as
phenotypic screening (Zheng et al., 2013; Xia, 2017). Finally, one of
the most relevant challenges in this type of approach is the scarcity of
reliable negative data as these are typically not reported or published
in the literature. Improving the availability of information on
inactive compounds and advancing data augmentation techniques
specifically for negative examples would help increase the robustness
and applicability of the models developed (An et al., 2025).

Conclusion

We presented BSI, a learned, pairwise, bioactivity-centered
similarity model defined across protein families and explicitly
trained on structurally dissimilar pairs (e.g., TC < 0.30-0.40). A
global, multi-family variant (BSI-Large) remains competitive across
families and supports transfer learning for underrepresented protein
groups. Relative to single-target pairwise approaches, our design
is novel in both its low-TC focus and its evaluation protocol: a
LOPO scheme, demonstrating applicability to proteins that were
not encountered during training. BSI complements structure-based
metrics and embedding baselines (ChemBERTa, CLAMP; cosine
similarity) by recovering structurally dissimilar functional analogs
and improving early retrieval (EF,,,) on retrospective benchmarks.
While current coverage is limited to a clinically relevant subset of
targets, the approach offers a practical path toward broader adoption
through richer representations, new training data, and fine-tuning
or domain adaptation.
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