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Accurate variant calling refinement is crucial for distinguishing true genetic 
variants from technical artifacts in high-throughput sequencing data. While 
heuristic filtering and manual review are common approaches for refining 
variants, manual review is time-consuming, and heuristic filtering often lacks 
optimal solutions, especially for low-coverage data. Traditional variant calling 
methods often struggle with accuracy, especially in regions of low read 
coverage, leading to false-positive or false-negative calls. Advances in artificial 
intelligence, particularly deep learning, offer promising solutions for automating 
this refinement process. Here, we present a Transformers-based framework for 
genetic variant refinement that leverages self-attention to model dependencies 
among variant features and directly processes VCF files, enabling seamless 
integration with standard pipelines such as BCFTools and GATK4. Trained 
on 2 million variants from the GIAB (v4.2.1) sample HG003, the framework 
achieved 89.26% accuracy and a ROC AUC of 0.88. Across the tested 
samples, VariantTransformer improved baseline filtering accuracy by 4%–10%, 
demonstrating consistent gains over the default caller filters. When integrated 
into conventional variant calling pipelines, VariantTransformer outperformed 
traditional heuristic filters and, through refinement of existing caller outputs, 
approached the accuracy achieved by state-of-the-art AI-based variant callers 
such as DeepVariant, despite not operating as a standalone caller. By positioning 
this work as a flexible and generalizable framework rather than a single-
use model, we highlight the underexplored potential of Transformers for 
variant refinement in genomics. This study contributes a blueprint for adapting 
Transformer architectures to a wide range of genomic quality control and 
filtering tasks. Code is available at: https://github.com/Omar-Abd-Elwahab/
VariantTransformer.
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Introduction

Genetic variants are considered the backbone for identifying genomic diversity, 
detecting disease-associated mutations, and enabling population-level genetic studies, 
and are fundamental to genetic screening tools (Syvänen, 2001). Variant calling 
is the process of identifying differences between an individual’s genome and a 
reference genome, encompassing single nucleotide polymorphisms (SNPs), small
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insertions and deletions (InDels), and structural variations 
(Green et al., 2011). This study focuses specifically on the 
refinement of small variants (SNPs and InDels). However, the 
raw output of variant calling pipelines often contains technical 
artifacts, false positives (FPs), and low-confidence calls, particularly 
in regions of low coverage or high complexity. As a result, 
variant refinement—a critical post-calling stage—is required 
to distinguish true variants from noise and to ensure that 
downstream analyses are based on reliable genetic information 
(Van der Auwera et al., 2013; Hemstrom et al., 2024).

Typically, variant refinement involves heuristic filtering and/or 
manual review. Heuristic filtering entails establishing project-
specific thresholds for key metrics such as read depth, variant 
allele fraction (VAF), base quality, read quality, and mapping 
quality scores (Carson et al., 2014). While fast, these thresholds 
are context-dependent, often suboptimal, and can vary widely 
across projects (Lefouili and Nam, 2022; Pfeifer, 2016; Li and 
Durbin, 2009; Langmead and Salzberg, 2012). Overly strict 
thresholds increase false negatives (FNs), while lenient thresholds 
inflate FPs. Manual review, while time-intensive and not scalable 
for large variant sets, enhances confidence in specific variants 
by uncovering patterns typically overlooked by conventional 
variant callers through direct visual inspections of the variants 
using genomic viewers like Integrative Genomic Viewer (IGV) 
(Robinson et al., 2011; Robinso et al., 2017). Despite its importance, 
the refinement process in variant calling is often underdeveloped 
and lacks comprehensive representation in genomic workflows.

With the emergence of artificial intelligence (AI), new 
models have been introduced to enhance the process of variant 
calling refinement (Spinella et al., 2016; Ding et al., 2012; 
Ainscough et al., 2018). These early efforts have shown potential 
in utilizing machine learning (ML) and deep learning (DL) 
techniques to improve the precision of variant analysis and 
refinement. However, many of these tools are tightly coupled to 
specific pipelines, sequencing depths, or variant types, which can 
limit their generalizability in some contexts. For example, while 
DeepVariant has demonstrated strong cross-platform and cross-
coverage performance, it remains computationally intensive and 
primarily optimized for high-coverage datasets. In particular, 
low-coverage sequencing data (≤15×)—common in population 
genomics, crop genomics, or large-scale human studies—remains a 
challenging setting where heuristic filters struggle and where many 
existing AI models are not optimized (Strom, 2016).

Transformers, a revolutionary class of DL models originally 
developed for natural language processing (NLP), have 
demonstrated exceptional capabilities in identifying complex 
patterns and dependencies in sequential data (Vaswani et al., 2017). 
Their unique architecture, which includes “self-attention” and 
“feed-forward neural network” layers, allows for dynamic 
learning of correlations among features, thereby enhancing 
classification tasks (Vaswani et al., 2017). Their self-attention 
mechanism allows the model to weigh relationships between 
features dynamically, making them highly adaptable to structured 
yet noisy input data—such as variant feature tables extracted 
from Variant Calling Format (VCF) files. Given their adaptability, 
Transformers are ideally suited to address the challenges of variant 
calling refinement, enabling the thorough analysis of extensive 

genomic datasets and facilitating the extraction of high-quality 
genomic variations.

In this study, we introduce VariantTransformer, a general 
Transformers-based framework for the refinement of genetic 
variants. While we demonstrate its effectiveness on low-
coverage Illumina datasets from the Genome in a Bottle 
(GIAB) project, the framework is designed to be dataset-
agnostic and model-agnostic: it can be trained or fine-tuned 
on VCF outputs from any variant caller (such as BCFTools 
(Danecek et al., 2021) and GATK (McKenna et al., 2010)), 
sequencing platform, or coverage level. However, because different 
variant callers encode partially distinct INFO field structures, cross-
caller adaptation may require adding new tokens—representing 
additional INFO attributes or encoded words from the new feature 
set—before retraining or fine-tuning the model. Each variant record 
is treated as a tokenized “sentence,” enabling us to cast refinement 
as a binary classification task (PASS/FAIL). The predicted labels are 
then directly written to the FILTER column of the VCF, making 
the approach immediately compatible with standard bioinformatics 
pipelines. VariantTransformer updates only the final PASS/FAIL 
decision in the FILTER field. Any pre-existing FILTER annotations 
produced by the variant caller (e.g., depth filters, strand bias flags, 
platform-specific tags) are preserved and appended to the model’s 
output. This ensures compatibility with downstream tools that rely 
on caller-defined FILTER metadata.

Methods

Sequencing data

The FASTQ files containing sequencing data, generated on 
an Illumina HiSeq2500, for three samples (HG003, HG006, 
and HG007) with sequence coverages of 10.5X, 13.6X, and 
12.6X, respectively, were procured from the GIAB Consortium 
(Zook et al., 2016), accessed via the NIST GIAB FTP site (https://
ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/). We used SAMtools 
(Li et al., 2009) to determine the coverage of samples, utilizing 
the ‘-a’ option, to consider all positions within the reads. The 
alignment of the raw FASTQ files to the human reference genome 
GRCh38 (GCA_000001405.15_GRCh38_no_alt_analysis_set.fna) 
was performed using Sentieon BWA-MEM (Freed et al., 2017). The 
exact VCFs used for training and evaluation are publicly available in 
Zenodo (DOI: https://doi.org/10.5281/zenodo.17794617). 

Training and testing data

Variant calling on the aligned BAM files was performed with 
GATK4 HaplotypeCaller (McKenna et al., 2010) and BCFTools 
(Danecek et al., 2021). To ensure accurate variant classification, we 
used the latest GIAB truth sets v4.2.1 (Wagner et al., 2022) to update 
the “FILTER” column in the VCFs. We developed a custom Python 
script for comparing VCF files against truth sets. The script performs 
position-based matching: if a variant’s genomic position (POS) is 
present in both the test VCF and the reference VCF from the truth 
set, its FILTER field is set to ‘PASS’; otherwise, it is labeled as ‘FAIL’. 
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This approach provides a consistent and transparent framework for 
labeling variants for model training and evaluation.

For completeness, we note that tools such as hap.py 
(Krusche et al., 2019) and rtg vcfeval (Cleary et al., 2015) 
provide alternative comparison strategies that account for 
representation differences between variant records. These tools can 
be incorporated into the framework when representation-aware 
benchmarking is needed.

We conducted preliminary trials to assess the effect of 
incorporating locus-specific information (“CHROM,” “POS,” “REF,” 
and “ALT”) on the model’s refinement accuracy. These features were 
initially considered to provide genomic context that might capture 
region- or allele-specific biases. However, their inclusion yielded 
negligible improvement in overall accuracy while substantially 
increasing input dimensionality and training time.

We hypothesize that this outcome stems primarily from feature 
engineering rather than architectural constraints. Because CHROM 
and POS are numerical coordinates rather than contextual features, 
their direct inclusion provides minimal information about local 
genomic context unless coupled with external annotations (e.g., 
repetitive regions or GC content). Similarly, REF and ALT alone 
are insufficient to capture sequence-level dependencies in the 
absence of flanking sequence data. Therefore, the exclusion of 
these features reflects a design choice aimed at maintaining a 
generalizable, lightweight framework focused on quality- and 
evidence-based attributes that are consistently available across
callers.

This behavior is consistent with observations from prior 
studies showing that sequence-context or coordinate-based features 
tend to contribute minimally to model performance when other 
quality-based features are already present (Spinella et al., 2016; 
Ding et al., 2012; Ainscough et al., 2018). Given these findings, 
and to preserve computational efficiency and general applicability 
across diverse datasets, we excluded these fields from the final 
framework configuration. Nonetheless, future work could explore 
their potential role in more complex or repetitive genomic regions.

During preprocessing, we simplified the dataset by removing 
non-essential columns (“Chrom,” “POS,” “REF,” and “ALT”) 
and consolidating the remaining data into a single column. 
This restructuring facilitated the transformation of the dataset 
into a sentence classification format, where the merged column 
represented the ‘sentences’ and the “FILTER” column represented 
the target labels.

For training purposes, we merged the updated VCFs (generated 
from GATK4 and BCFTools) from the sample HG003. To reduce 
computational cost in the training process, we randomly selected 2 
million variants from the merged VCF for initial model training and 
validation. Table 1 demonstrates the number of variants generated at 
each step. The selected dataset was then split into 60% for training 
and 40% for validation, with the remaining variants of the HG003 
and the other VCFs from the other samples being used for further 
testing. HG003 was selected as the training/validation sample as a 
representative high-confidence GIAB genome. This choice provides 
a straightforward and conventional setup for demonstrating the 
VariantTransformer framework. However, the approach is not tied 
to this specific sample: users may retrain or fine-tune the model on 
any genome, population, or truth set according to their study design.

TABLE 1  Breakdown of “PASS” and “FAIL” variants from sample HG003, 
processed with GATK4 and BCFTools.

HG003 sample PASS FAIL Total

BCFTools 3,714,910 708,823 4,423,733

GATK4 3,668,708 964,363 4,633,071

Total_merged_file 7,383,618 1,673,186 9,056,804

Training and validation set 1,630,866 369,134 2,000,000

In the testing process, we used two other samples (HG006 
and HG007) (Table 2). We tested in batches of 10,000 to generate 
probabilities for further model performance analyses.

While we excluded locus-specific columns (CHROM, POS, 
REF, ALT) to reduce complexity for this initial implementation, 
the framework is modular. Additional features such as read-
level statistics, platform-specific quality scores, or caller-specific 
annotations can be incorporated as tokens without altering the core 
Transformer structure. This design makes the framework adaptable 
to diverse datasets and sequencing technologies. 

Framework development and analysis

The framework is instantiated here with a BERT-based 
Transformer architecture (Vaswani et al., 2017); however, it is 
not tied to a specific implementation. Alternative Transformer 
backbones (e.g., RoBERTa, ALBERT, or lightweight genomic 
Transformers) can be substituted with minimal adjustments. This 
flexibility underscores that our method is a generalizable blueprint 
for variant refinement rather than a fixed architecture.

A DL framework was developed based on the Transformers 
architecture (Vaswani et al., 2017) to automate the variant calling 
refinement process. We used the BertForSequenceClassification 
model from Hugging Face (Wolf et al., 2019) while tuning some 
of the parameters in the configuration and tokenization steps to 
achieve better performance. For parameter tuning, we initially 
conducted a grid search to identify optimal hyperparameters. Key 
parameters adjusted included the learning rate (0.00005–0.0001), 
batch size (600–1,300), number of attention heads (6–12), and 
number of hidden layers (6–12). We also integrated domain-specific 
vocabulary into the BertTokenizer, which allowed the model to 
better interpret genomic context. The final configuration was chosen 
based on the highest ROC AUC score during validation. Further 
details regarding the configuration parameters are available in 
Supplementary Table S1. For the rest of the parameters, we used 
the default values mentioned in the Hugging Face documentation 
(Wolf et al., 2019). The model was trained over 21 epochs with a 
batch size of 1,300 using the AdamW optimizer (Loshchilov and 
Hutter, 2017), focusing on balancing performance and resource 
utilization.

The framework can be scaled for integration into large-scale 
genomic pipelines. In practice, VariantTransformer can be further 
optimized by adopting lighter Transformer variants or adjusting 
batch strategies, depending on the computational environment. 
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TABLE 2  Variant counts obtained from samples HG006 and HG007 via GATK4 and BCFTools, detailing “PASS” and “FAIL” variants.

Sample Coverage (X) Variant caller PASS FAIL Total

HG006 13.6
BCFTools 3,694,662 826,173 4,520,835

GATK4 3,666,347 1,066,280 4,732,627

HG007 12.6
BCFTools 3,685,056 847,135 4,532,191

GATK4 3,650,142 1,042,385 4,692,527

Evaluation metrics

To thoroughly evaluate framework performance, we employed 
several accuracy metrics, including the AUC (Area Under 
the Curve), ROC (Receiver Operating Characteristics) curve 
(Hand and Till, 2001), Matthews correlation coefficient (MCC) 
(Gorodkin, 2004; Baldi et al., 2000; Chicco and Jurman, 2020; 
Jurman et al., 2012), accuracy, precision, recall, and F1 score 
(Godbole and Sarawagi, 2004). Accuracy is calculated as the 
proportion of variant records for which the model’s predicted 
PASS/FAIL label matches the reference PASS/FAIL label used 
during evaluation. ROC and AUC were computed using the 
model’s predicted PASS/FAIL probability as the continuous 
decision score. For further framework evaluation, we reported 
MCC, also known as the phi coefficient, where a coefficient of 
+1 indicates an ideal prediction, 0 signifies an average random 
prediction, and −1 denotes a reverse prediction (Baldi et al., 2000; 
Jurman et al., 2012). All accuracy metrics were generated using 
scikit-learn (Varoquaux et al., 2015). Moreover, we compared 
the framework performance to default filtering parameters of 
conventional variant callers (BCFTools and GATK4), an AI-based 
variant caller (DeepVariant (Poplin et al., 2018)), and an AI-
based tool for refinement of somatic variant calling (DeepSVR 
(Ainscough et al., 2018)), considering both PASS and FAIL variants. 
For BCFTools and GATK4, we integrated VariantTransformer into 
each pipeline and compared the performance of the framework 
against default filters. For GATK4, the default filters were QD < 
2.0, FS > 60.0, MQ < 40.0, SOR > 4.0, MQRankSum < −12.5, 
and ReadPosRankSum < −8.0. For BCFTools, we applied only 
the QUAL > =20 filter. As for DeepVariant, we compared the 
performance of each model-integrated conventional variant 
caller against DeepVariant. DeepSVR was compared against 
VariantTransformer in terms of data preparation, multiple accuracy 
metrics, computational complexity, and user experience. All 
plots were generated using the MatPlotlib library (Hunter, 2007) 
or ggplot2 (Wickham, 2016). 

Clarification on GIAB resources and 
labeling strategy

In this study, we used the GIAB benchmark sets as a source 
of high-quality labels for developing a machine-learning–based 
filtering framework. While GIAB defines high-confidence BED 
regions in which variants can be reliably interpreted as true positives 

(TPs) or FPs, the objective of our study was not to perform GIAB-
certified benchmarking. Instead, GIAB served as a consistent and 
well-curated reference from which VariantTransformer could learn 
generalizable patterns of variant quality.

For methodological coherence, we adopted a single 
unified labeling and comparison strategy based on positional 
agreement and the FILTER field from the caller VCFs. This 
approach ensures that the assumptions used during training 
are identically applied during evaluation, avoiding discrepancies 
that arise when training and testing use different correctness
definitions.

We emphasize that the reported metrics therefore represent 
model filtering performance, not formal GIAB FP/FN rates. 
The framework is intentionally flexible: users may substitute 
alternative truth sets, high-confidence region definitions, or 
GA4GH-compliant benchmarking tools (e.g., hap. py or rtg vcfeval) 
without modifying the underlying methodology.

Results

Framework development results

VariantTransformer was developed using a dataset of 2 million 
variants, including both SNPs and InDels, sourced from the 
GIAB sample HG003. The variants were called using GATK4 and 
BCFTools. Of the two million variants, 1,630,866 matched the latest 
GIAB truth sets v4.2.1 and were classified as “PASS”, while the 
remaining 369,134 were classified as “FAIL”. To avoid overfitting, the 
data was randomly split into 60% for training and 40% for validation. 
The framework achieved an accuracy of 89.26% and an ROC AUC 
score of 0.88 (Figure 1a), demonstrating that Transformers can 
effectively learn feature dependencies within variant call data and 
are well-suited for post-calling refinement tasks.

To better highlight the advantages of VariantTransformer, 
we compared its performance to traditional heuristic filtering 
approaches using default parameters from GATK and BCFTools. 
As shown in Table 3, VariantTransformer outperformed traditional 
methods in terms of precision, recall, and F1-score, particularly 
in low-coverage regions (10–15X), where traditional heuristics 
tend to yield higher false-positive rates. Figure 1b provides a 
visual representation of this comparative analysis, illustrating the 
framework’s accuracy in refining variants compared to DeepVariant. 
The average accuracy shown in Figure 1b represents the mean value 
across both GIAB test samples (HG006 and HG007) for outputs 
from GATK4 and BCFTools.
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FIGURE 1
(a) ROC AUC curve for the trained model. (b) VariantTransformer’s average accuracy performance, calculated as the mean accuracy across the two test 
samples (HG006 and HG007) and both variant calling pipelines (GATK4 and BCFTools). The results are benchmarked against default heuristic filters and 
the AI-based caller DeepVariant.

TABLE 3  Performance of Variant Transformer across different metrics in the variant calling pipelines for samples HG006 and HG007.

Sample Coverage 
(X)

Variant 
caller

Accuracya Refined 
accuracyb

Precision Recall F1score ROC AUC MCC

HG006 13.6
BCFTools 83.31% 87.03% 0.85957 0.87027 0.85845 0.86413 0.51194

GATK4 77.50% 87.38% 0.87004 0.87375 0.86385 0.88876 0.60805

HG007 12.6
BCFTools 82.63% 86.68% 0.85635 0.86678 0.85197 0.83063 0.50117

GATK4 77.82% 86.94% 0.86646 0.86944 0.85692 0.85605 0.58638

aDefault filtering.
bAfter Variant Transformer refinement.

While demonstrated here on BCFTools and GATK outputs, 
the framework is caller-agnostic. It can be retrained or fine-
tuned on VCFs generated by other callers such as DeepVariant, 
Strelka2, or Clair3.

The performance results presented here reflect 
VariantTransformer’s predictive filtering behavior under the unified 
labeling strategy used throughout model development. Because 
this evaluation does not restrict comparisons to the GIAB high-
confidence regions, these metrics should not be interpreted as 
GIAB-standard variant-calling accuracy. Instead, they illustrate 
how consistently the model predicts variant quality under the same 
assumptions used during training, which aligns with the primary 
objective of demonstrating a generalizable filtering framework. 

Framework evaluation across variant 
calling pipelines

To test VariantTransformer applicability, we integrated it into 
two conventional variant calling pipelines (BCFTools and GATK4). 
We processed the two GIAB samples HG006 and HG007 through 
these pipelines and subsequently applied VariantTransformer to 
refine the variant calls. The framework significantly outperformed 
the default threshold-based filtering, achieving an overall accuracy 
of 87%, compared to 78% for GATK4 and 83% for BCFTools, 

thus approaching the performance of the AI-based variant caller, 
DeepVariant, which has an accuracy of 88% (Figure 1b).

During the testing phase, batches of 10,000 variants were 
processed to generate performance metrics such as MCC scores, 
ROC AUC scores, accuracy, precision, recall, and F1score. The 
aggregated results, outlined in Table 3, provide a comprehensive 
evaluation of VariantTransformer’s efficacy when integrated into 
the aforementioned variant calling pipelines. VariantTransformer 
improved both accuracy and MCC, demonstrating a more balanced 
classification of true and false variants. The positive MCC 
values (ranging from 0.50 to 0.61) confirm that the model 
performs substantially better than random or heuristic-based filters, 
particularly in low-coverage datasets. This is especially relevant for 
imbalanced datasets, where MCC provides a more robust measure 
of classifier reliability than accuracy or F1 score (Chicco and 
Jurman, 2020). 

Comparative analysis: assessing 
performance against existing pipelines and 
models

Our assessment included a detailed analysis of variants 
categorized as “FAIL.” This was done to understand the types of 
errors that VariantTransformer aims to address, such as borderline 
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cases with ambiguous quality metrics. This comprehensive 
evaluation provides deeper insights into the framework’s robustness 
in filtering both “PASS” and “FAIL” variants, thus ensuring a 
balanced representation of TPs and true negatives (TNs).

While many benchmarking workflows report metrics primarily 
on PASS variants, in our study we evaluated all variants, including 
those labeled as FAIL, to remain consistent with the label structure 
used during model training. This comprehensive approach considers 
all four parameters: TPs, FPs, TNs, and FNs.

In our evaluation, variants labeled as “FAIL” refer to those 
not present in the GIAB high-confidence truth set. This binary 
classification follows the GIAB convention, where all variants in the 
reference set are considered TPs (“PASS”), and any variant absent 
from it is labeled as “FAIL.” This definition provides a consistent, 
reproducible basis for evaluating the framework’s performance. 
Users can readily adapt this labeling criterion for other truth sets or 
custom datasets when retraining or fine-tuning VariantTransformer.

The performance of VariantTransformer was compared with 
BCFTools and GATK4 pipelines, and with DeepVariant, focusing 
on two GIAB samples (HG006 and HG007) with coverage of 
13.6X and 12.6X (Table 4). For sample HG006 using BCFTools, 
from 4,520,835 variants, VariantTransformer identified 3,993,987 as 
“PASS” with an accuracy of 87.03%. When using GATK4 on the 
same sample, the model called 4,027,338 as “PASS” with an accuracy 
of 87.38%. For sample HG007 using BCFTools, VariantTransformer 
identified 4,044,040 as “PASS” with an accuracy of 86.68%. When 
using GATK4 on HG007, the model called 4,060,472 as “PASS” with 
an accuracy of 86.94%. Comparatively, DeepVariant demonstrated 
slightly higher overall accuracy, with 87.95% for HG006 and 87.78% 
for HG007. While DeepVariant exhibited a higher number of 
variants labeled as FPs against the GIAB truth sets, this likely 
reflects its greater sensitivity—particularly in complex or repetitive 
genomic regions—rather than systematic overcalling. The GIAB 
truth sets, while highly curated, may not fully capture all true 
variants in such regions, meaning that some variants uniquely 
identified by DeepVariant could represent genuine positives outside 
benchmark regions. In contrast, VariantTransformer maintains 
a more conservative balance between sensitivity and precision, 
emphasizing reliable variant refinement rather than maximal 
detection. Notably, the values reported here reflect performance 
under our positional evaluation strategy; representation-aware 
benchmarking tools would yield metrics based on different 
matching criteria. Because this evaluation is based on low-coverage 
WGS, the absolute performance values are naturally lower than 
those reported in high-coverage benchmarking studies, reflecting 
the inherent difficulty of variant interpretation under reduced 
read depth.

Discussion

The development and evaluation of our Transformers-based 
framework for variant refinement demonstrate the value of applying 
Transformer architectures to genomic post-processing tasks. This 
framework demonstrates an impressive variant refinement accuracy 
of 89.26%, which not only outperforms conventional refinement 
methods but also aligns closely with contemporary AI-based tools. 
By conceptualizing each variant record as a structured “sentence” 

and treating refinement as a classification problem, we illustrate how 
methods originally designed for natural language processing can 
be repurposed for genomics. This framework provides a scalable 
and adaptable foundation for improving variant quality, especially 
in challenging scenarios such as low-coverage sequencing.

VariantTransformer’s effectiveness in processing—a technique 
borrowed from NLP (Vaswani et al., 2017) — highlights its ability 
to handle the complex patterns inherent in genomic sequence data. 
By interpreting these patterns, the framework distinguishes true 
genetic variants from technical artifacts (Brown et al., 2020) with 
high efficiency, achieving ROC AUC scores that affirm its capacity 
to differentiate variant classes across all thresholds, thus enhancing 
its utility in varied analytical scenarios.

The aim of this work is to introduce a flexible and reproducible 
machine-learning framework for variant filtering, rather than a fixed 
benchmarking pipeline. Although GIAB data were used to derive 
high-quality labels, we did not treat the GIAB high-confidence BED 
as a constraint for formal FP/FN counting. Instead, we prioritized 
internal consistency by using the same positional labeling strategy 
during training and evaluation.

This design allows VariantTransformer to function as a general 
framework that can be adapted to any truth set or benchmarking 
paradigm. Users who require GIAB-compliant BED-restricted 
evaluation or genotype/allele/local matching through tools such as 
hap. py or rtg vcfeval can seamlessly integrate those components into 
the same methodology.

The framework’s success can be attributed to several key factors. 
First, the framework substantially improves the performance of 
existing variant calling pipelines. When applied to BCFTools and 
GATK4 outputs, the framework increased accuracy from ∼78 to 
83% (heuristic filtering) to 86%–87%, approaching DeepVariant’s 
accuracy while reducing FPs. This balance between accuracy and 
precision highlights the value of post-calling refinement: whereas 
heuristic thresholds are brittle and overly sensitive to data sparsity, 
Transformers can dynamically learn the relationships among 
features, enabling more nuanced decisions. Second, modifications 
to the default BERT model parameters, specifically, reductions in 
hidden size and the number of attention heads, have tailored the 
model to handle the specific complexity of genomic data while 
optimizing computational efficiency (Vaswani et al., 2017). Finally, 
the MCC values highlight the framework’s balanced accuracy, 
considering both positive and negative classes, which is essential 
for applications in genomic studies where both sensitivity and 
specificity are critical (Chicco and Jurman, 2020). The ROC 
AUC scores further affirm the framework’s exceptional capability 
to distinguish between the variant classes across all thresholds, 
emphasizing its effectiveness in various scenarios (Fawcett, 2006).

While VariantTransformer was compared primarily against 
default filtering strategies from conventional callers (BCFTools 
and GATK4), an AI-based variant caller (DeepVariant), and an 
AI-based somatic refinement tool (DeepSVR), it is important 
to note that these tools differ in scope and intended use. 
Established refinement methods, such as GATK Variant Quality 
Score Recalibration (VQSR) or other ML-based filters, represent 
natural baselines for comparison; however, VQSR is not optimized 
for low-coverage data and can be unstable when applied outside its 
intended parameter range. Furthermore, DeepVariant incorporates 
its own AI-based filtering mechanism within its calling pipeline, 
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TABLE 4  Detailed comparison of Variant Transformer’s performance when integrated with GATK4 and BCFTools against DeepVariant.

Sample Coverage (X) Variant caller Inputa PASSb TP FP FN TN Accuracy

HG006 13.6

BCFTools 4,520,835 3,993,987 3,551,084 442,903 143,576 383,270 87.03%

GATK4 4,732,627 4,027,338 3,548,098 479,240 118,249 587,039 87.38%

DeepVariant 6,643,643 4,213,736 3,593,719 620,018 180,668 2,249,241 87.95%

HG007 12.6

BCFTools 4,532,191 4,044,040 3,562,660 481,380 122,394 365,755 86.68%

GATK4 4,692,527 4,060,472 3,548,979 511,493 101,163 530,891 86.94%

DeepVariant 6,716,326 4,247,514 3,597,227 650,288 170,251 2,298,563 87.78%

aTotal called variants.
bIdentified as PASS, by Variant Transformer in case of BCFTools, and GATK4, or Identified as PASS, by DeepVariant filter.

making its results inherently post-processed and therefore not 
directly comparable to standalone refinement frameworks such as 
VariantTransformer. Accordingly, our choice of baselines reflects 
the focus on low-coverage, general-purpose refinement rather than 
direct benchmarking against high-coverage or internally filtered 
variant-calling pipelines. This clarification ensures that the reported 
improvements are interpreted within the context of the tool’s design 
and application domain.

When comparing VariantTransformer to DeepVariant, it is 
important to recognize the fundamental difference in their design 
and objectives. DeepVariant operates as a full variant caller that 
processes raw reads, while VariantTransformer functions purely 
as a post-calling refinement module. The two therefore differ 
substantially in computational scope: DeepVariant performs end-
to-end inference, whereas VariantTransformer acts only on already-
called variants. Our comparison is therefore conceptual rather 
than computational, highlighting the complementary roles of 
the two approaches. VariantTransformer enhances the output of 
conventional callers with minimal additional computational cost, 
improving accuracy and precision—particularly in low-coverage 
data—without replacing the upstream variant-calling process. 
Together, these approaches illustrate how AI-driven refinement 
can augment the performance of established tools, providing a 
practical and efficient complement to state-of-the-art AI-based 
variant callers.

While DeepVariant achieved slightly higher overall accuracy 
in some cases (87.95% for HG006 and 87.78% for HG007 with a 
difference of less than 1% when compared to VariantTransformer), it 
also presented a significantly higher rate of FPs for both samples. For 
sample HG006, DeepVariant had approximately 40% more FPs than 
BCFTools and approximately 29.38% more FPs than GATK4. For 
sample HG007, DeepVariant had approximately 35.07% more FPs 
than BCFTools and approximately 27.11% more FPs than GATK4. 
However, it is important to note that DeepVariant calls a larger 
number of total variants (∼6.6 million versus ∼4.5 million for 
GATK4 and BCFTools), which accounts for its higher absolute 
FP counts. When normalized by total calls, DeepVariant’s FP rate 
(21.62% for HG006 and 22.09% for HG007) is actually lower than 
those of GATK4 (44.94% and 49.07%) and BCFTools (53.65% 
and 56.89%). This normalization is not intended as a cross-caller 

accuracy comparison, but rather to contextualize absolute FP counts 
relative to each tool’s total number of emitted calls. These results 
are consistent with the precision values summarized in Table 3, 
providing a comprehensive view of each method’s performance. 
This comparison underscores VariantTransformer’s efficiency in 
minimizing incorrect variant identifications—a crucial advantage 
in genomic analytics—while acknowledging that some apparent 
FP from DeepVariant may arise from its higher sensitivity in 
challenging genomic regions that are incompletely represented in 
current benchmark truth sets (Wagner et al., 2022). However, 
it is also important to note that a reduction in FP does 
not universally indicate superior biological accuracy. In certain 
contexts, particularly when truth sets are incomplete, overly 
conservative models may classify genuine variants as FNs. Thus, 
VariantTransformer’s strength lies in offering a balanced refinement 
strategy that enhances call reliability without sacrificing sensitivity. 
Users who require representation-normalized comparisons may 
integrate GA4GH tools such as hap.py or vcfeval without altering 
the overall workflow.

Furthermore, the comparison with DeepSVR (Ainscough et al.,
2018), a deep learning model developed to automate somatic 
variant refinement, underscores the distinct design objectives of 
the two frameworks rather than a direct performance comparison. 
DeepSVR classified SNPs into “Pass”, “Fail”, or “Ambiguous” 
with Fliess’ Kappa statistics (McHugh, 2012) indicating fair 
agreement (Ainscough et al., 2018). DeepSVR is designed and 
trained with a small training set (41,000 variants) of deep 
coverage (300–1,000X) cancer-type samples and is limited to SNP 
classification, requiring extensive data preprocessing before model 
input. In contrast, VariantTransformer was designed as a caller-
agnostic post-calling refinement framework applicable to both SNPs 
and InDels, optimized for low-coverage germline data, and capable 
of operating directly on standard VCF files without additional 
preprocessing. These differences highlight that while DeepSVR is 
specialized for high-depth cancer genomics, VariantTransformer 
provides a more generalizable and lightweight approach suitable 
for a broader range of variant-calling scenarios, particularly 
those involving large-scale or population-level sequencing data 
(a detailed comparison of DeepSVR and VariantTransformer is 
presented in Supplementary Table S2).
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While VariantTransformer achieves high accuracy, we must 
acknowledge that recent precisionFDA challenge participants have 
demonstrated superior F1 scores using higher coverage data (>30X), 
achieving over 99% in some cases. The framework’s strength lies 
in its balanced performance across various genomic contexts, 
particularly for low-coverage data, where precision and recall are 
paramount. This makes VariantTransformer a complementary tool 
rather than a replacement for existing high-coverage-focused AI-
based callers.

Beyond performance, the most significant contribution of this 
work lies in its generality. The framework is not tied to a specific 
caller, sequencing platform, or coverage level. While demonstrated 
here on low-coverage Illumina datasets with GATK4 and BCFTools, 
the workflow is modular and can be adapted to other variant callers. 
Likewise, the Transformer backbone is flexible: while we instantiated 
it using a BERT-based model, other Transformer variants (e.g., 
RoBERTa, ALBERT, or lightweight domain-specific Transformers) 
could be employed with minimal modifications. This adaptability 
positions the framework as a general blueprint for integrating 
Transformer architectures into genomic refinement tasks.

However, there are limitations to our framework. One limitation 
of VariantTransformer is its current optimization for data generated 
from GATK and BCFTools. Although these tools remain standard 
in genomic studies, exploring the framework’s performance with 
VCFs generated by other modern callers like Clair3 or DeepVariant 
is crucial for generalizing its application. Future studies will 
focus on testing VariantTransformer’s adaptability to these tools 
and determining any necessary adjustments in preprocessing or 
feature engineering. Moreover, the training dataset, derived mainly 
from well-characterized genomic regions provided by the GIAB 
consortium, might not fully represent the diversity of genomic 
scenarios encountered in wider research and clinical contexts. 
Moreover, the framework configuration is primarily optimized 
for data generated from Illumina platforms. Future studies could 
expand the framework’s training scope to include more diverse 
and challenging genomic landscapes, potentially enhancing its 
applicability and accuracy in a wider array of genomic settings.

Conclusion

In this study, we introduced a Transformers-based framework 
for genetic variant refinement and demonstrated its effectiveness 
in improving post-calling accuracy and precision across standard 
variant calling pipelines. By leveraging self-attention to capture 
dependencies among variant features, the framework consistently 
outperformed default heuristic filters in BCFTools and GATK4, 
raising accuracy from ∼78 to 83% to 86%–87% on independent 
GIAB samples. Although DeepVariant achieved slightly higher 
accuracy (∼88%), our framework reduced FPs, underscoring 
its strength in balancing accuracy with reliability. Importantly, 
VariantTransformer is not designed to replace variant callers 
but to serve as a complementary refinement layer that can be 
integrated downstream of any variant-calling pipeline to enhance 
call confidence and reproducibility. The pretrained model provided 
in this study is suitable for datasets that closely resemble the 
conditions under which it was developed, namely Illumina short-
read low-coverage WGS processed with BCFTools or GATK4. 

For datasets that differ substantially in platform, coverage, or 
variant-calling pipeline, users may obtain improved performance 
by retraining or fine-tuning VariantTransformer on an appropriate 
truth set. This provides flexibility for deployment across diverse 
experimental settings. The framework is not limited to specific 
callers or datasets: it is modular, caller-agnostic, and adaptable to 
diverse sequencing contexts. This positions it as a generalizable 
blueprint for integrating Transformer architectures into genomic 
workflows, offering a flexible solution for low-coverage data and 
beyond. As sequencing continues to expand into population-scale 
and clinical settings, such frameworks will be essential for ensuring 
that downstream analyses are built on a foundation of robust and 
trustworthy genetic data.
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