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Accurate variant calling refinement is crucial for distinguishing true genetic
variants from technical artifacts in high-throughput sequencing data. While
heuristic filtering and manual review are common approaches for refining
variants, manual review is time-consuming, and heuristic filtering often lacks
optimal solutions, especially for low-coverage data. Traditional variant calling
methods often struggle with accuracy, especially in regions of low read
coverage, leading to false-positive or false-negative calls. Advances in artificial
intelligence, particularly deep learning, offer promising solutions for automating
this refinement process. Here, we present a Transformers-based framework for
genetic variant refinement that leverages self-attention to model dependencies
among variant features and directly processes VCF files, enabling seamless
integration with standard pipelines such as BCFTools and GATK4. Trained
on 2 million variants from the GIAB (v4.2.1) sample HGOO3, the framework
achieved 89.26% accuracy and a ROC AUC of 0.88. Across the tested
samples, VariantTransformer improved baseline filtering accuracy by 4%-10%,
demonstrating consistent gains over the default caller filters. When integrated
into conventional variant calling pipelines, VariantTransformer outperformed
traditional heuristic filters and, through refinement of existing caller outputs,
approached the accuracy achieved by state-of-the-art Al-based variant callers
such as DeepVariant, despite not operating as a standalone caller. By positioning
this work as a flexible and generalizable framework rather than a single-
use model, we highlight the underexplored potential of Transformers for
variant refinement in genomics. This study contributes a blueprint for adapting
Transformer architectures to a wide range of genomic quality control and
filtering tasks. Code is available at: https://github.com/Omar-Abd-Elwahab/
VariantTransformer.
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Introduction

Genetic variants are considered the backbone for identifying genomic diversity,
detecting disease-associated mutations, and enabling population-level genetic studies,
and are fundamental to genetic screening tools (Syvinen, 2001). Variant calling
is the process of identifying differences between an individual's genome and a
reference genome, encompassing single nucleotide polymorphisms (SNPs), small
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insertions and deletions (InDels), and structural variations
(Green et al, 2011). This study focuses specifically on the
refinement of small variants (SNPs and InDels). However, the
raw output of variant calling pipelines often contains technical
artifacts, false positives (FPs), and low-confidence calls, particularly
in regions of low coverage or high complexity. As a result,
variant refinement—a critical post-calling stage—is required
to distinguish true variants from noise and to ensure that
downstream analyses are based on reliable genetic information
(Van der Auwera et al., 2013; Hemstrom et al., 2024).

Typically, variant refinement involves heuristic filtering and/or
manual review. Heuristic filtering entails establishing project-
specific thresholds for key metrics such as read depth, variant
allele fraction (VAF), base quality, read quality, and mapping
quality scores (Carson et al., 2014). While fast, these thresholds
are context-dependent, often suboptimal, and can vary widely
across projects (Lefouili and Nam, 2022; Pfeifer, 2016; Li and
Durbin, 2009; Langmead and Salzberg, 2012). Overly strict
thresholds increase false negatives (FNs), while lenient thresholds
inflate FPs. Manual review, while time-intensive and not scalable
for large variant sets, enhances confidence in specific variants
by uncovering patterns typically overlooked by conventional
variant callers through direct visual inspections of the variants
using genomic viewers like Integrative Genomic Viewer (IGV)
(Robinson et al., 2011; Robinso et al., 2017). Despite its importance,
the refinement process in variant calling is often underdeveloped
and lacks comprehensive representation in genomic workflows.

With the emergence of artificial intelligence (AI), new
models have been introduced to enhance the process of variant
calling refinement (Spinella et al, 2016; Ding et al, 2012;
Ainscough et al., 2018). These early efforts have shown potential
in utilizing machine learning (ML) and deep learning (DL)
techniques to improve the precision of variant analysis and
refinement. However, many of these tools are tightly coupled to
specific pipelines, sequencing depths, or variant types, which can
limit their generalizability in some contexts. For example, while
DeepVariant has demonstrated strong cross-platform and cross-
coverage performance, it remains computationally intensive and
primarily optimized for high-coverage datasets. In particular,
low-coverage sequencing data (<15x)—common in population
genomics, crop genomics, or large-scale human studies—remains a
challenging setting where heuristic filters struggle and where many
existing AI models are not optimized (Strom, 2016).

Transformers, a revolutionary class of DL models originally
developed for natural language processing (NLP), have
demonstrated exceptional capabilities in identifying complex
patterns and dependencies in sequential data (Vaswani et al., 2017).
Their unique architecture, which includes “self-attention” and
“feed-forward neural network” layers, allows for dynamic
learning of correlations among features, thereby enhancing
classification tasks (Vaswani et al, 2017). Their self-attention
mechanism allows the model to weigh relationships between
features dynamically, making them highly adaptable to structured
yet noisy input data—such as variant feature tables extracted
from Variant Calling Format (VCF) files. Given their adaptability,
Transformers are ideally suited to address the challenges of variant
calling refinement, enabling the thorough analysis of extensive
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genomic datasets and facilitating the extraction of high-quality
genomic variations.

In this study, we introduce VariantTransformer, a general
Transformers-based framework for the refinement of genetic
variants. While we demonstrate its effectiveness on low-
coverage Illumina datasets from the Genome in a Bottle
(GIAB) project, the framework is designed to be dataset-
agnostic and model-agnostic: it can be trained or fine-tuned
on VCF outputs from any variant caller (such as BCFTools
(Danecek et al, 2021) and GATK (McKenna et al., 2010)),
sequencing platform, or coverage level. However, because different
variant callers encode partially distinct INFO field structures, cross-
caller adaptation may require adding new tokens—representing
additional INFO attributes or encoded words from the new feature
set—before retraining or fine-tuning the model. Each variant record
is treated as a tokenized “sentence,” enabling us to cast refinement
as a binary classification task (PASS/FAIL). The predicted labels are
then directly written to the FILTER column of the VCF, making
the approach immediately compatible with standard bioinformatics
pipelines. VariantTransformer updates only the final PASS/FAIL
decision in the FILTER field. Any pre-existing FILTER annotations
produced by the variant caller (e.g., depth filters, strand bias flags,
platform-specific tags) are preserved and appended to the model’s
output. This ensures compatibility with downstream tools that rely

on caller-defined FILTER metadata.

Methods
Sequencing data

The FASTQ files containing sequencing data, generated on
an Illumina HiSeq2500, for three samples (HG003, HGO006,
and HGO007) with sequence coverages of 10.5X, 13.6X, and
12.6X, respectively, were procured from the GIAB Consortium
(Zook et al., 2016), accessed via the NIST GIAB FTP site (https://
We used SAMtools
(Li et al., 2009) to determine the coverage of samples, utilizing

ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/).

the ‘-a option, to consider all positions within the reads. The
alignment of the raw FASTQ files to the human reference genome
GRCh38 (GCA_000001405.15_GRCh38_no_alt_analysis_set.fna)
was performed using Sentieon BWA-MEM (Freed et al., 2017). The
exact VCFs used for training and evaluation are publicly available in
Zenodo (DOI: https://doi.org/10.5281/zenodo.17794617).

Training and testing data

Variant calling on the aligned BAM files was performed with
GATK4 HaplotypeCaller (McKenna et al., 2010) and BCFTools
(Danecek et al., 2021). To ensure accurate variant classification, we
used the latest GIAB truth sets v4.2.1 (Wagner et al., 2022) to update
the “FILTER” column in the VCFs. We developed a custom Python
script for comparing VCEF files against truth sets. The script performs
position-based matching: if a variant’s genomic position (POS) is
present in both the test VCF and the reference VCF from the truth
set, its FILTER field is set to ‘PASS’; otherwise, it is labeled as ‘FAIL.
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This approach provides a consistent and transparent framework for
labeling variants for model training and evaluation.

For completeness, we note that tools such as hap.py
(Krusche et al., 2019) and rtg vcfeval (Cleary et al., 2015)
provide alternative comparison strategies that account for
representation differences between variant records. These tools can
be incorporated into the framework when representation-aware
benchmarking is needed.

We conducted preliminary trials to assess the effect of
incorporating locus-specific information (“CHROM,” “POS,” “REE’
and “ALT”) on the model’s refinement accuracy. These features were
initially considered to provide genomic context that might capture
region- or allele-specific biases. However, their inclusion yielded
negligible improvement in overall accuracy while substantially
increasing input dimensionality and training time.

We hypothesize that this outcome stems primarily from feature
engineering rather than architectural constraints. Because CHROM
and POS are numerical coordinates rather than contextual features,
their direct inclusion provides minimal information about local
genomic context unless coupled with external annotations (e.g.,
repetitive regions or GC content). Similarly, REF and ALT alone
are insufficient to capture sequence-level dependencies in the
absence of flanking sequence data. Therefore, the exclusion of
these features reflects a design choice aimed at maintaining a
generalizable, lightweight framework focused on quality- and
evidence-based attributes that are consistently available across
callers.

This behavior is consistent with observations from prior
studies showing that sequence-context or coordinate-based features
tend to contribute minimally to model performance when other
quality-based features are already present (Spinella et al., 2016;
Ding et al., 2012; Ainscough et al., 2018). Given these findings,
and to preserve computational efficiency and general applicability
across diverse datasets, we excluded these fields from the final
framework configuration. Nonetheless, future work could explore
their potential role in more complex or repetitive genomic regions.

During preprocessing, we simplified the dataset by removing
non-essential columns (“Chrom,” “POS, “REE’ and “ALT”)
and consolidating the remaining data into a single column.
This restructuring facilitated the transformation of the dataset
into a sentence classification format, where the merged column
represented the ‘sentences’ and the “FILTER” column represented
the target labels.

For training purposes, we merged the updated VCFs (generated
from GATK4 and BCFTools) from the sample HG003. To reduce
computational cost in the training process, we randomly selected 2
million variants from the merged VCF for initial model training and
validation. Table 1 demonstrates the number of variants generated at
each step. The selected dataset was then split into 60% for training
and 40% for validation, with the remaining variants of the HG003
and the other VCFs from the other samples being used for further
testing. HG003 was selected as the training/validation sample as a
representative high-confidence GIAB genome. This choice provides
a straightforward and conventional setup for demonstrating the
VariantTransformer framework. However, the approach is not tied
to this specific sample: users may retrain or fine-tune the model on
any genome, population, or truth set according to their study design.

Frontiers in Bioinformatics

03

10.3389/fbinf.2025.1694924

TABLE 1 Breakdown of “PASS” and "FAIL" variants from sample HG0O03,
processed with GATK4 and BCFTools.

HGO003 sample ‘ PASS FAIL Total ‘
BCFTools 3,714,910 708,823 4,423,733
GATK4 3,668,708 964,363 4,633,071
Total_merged_file 7,383,618 1,673,186 9,056,804
Training and validation set 1,630,866 369,134 2,000,000

In the testing process, we used two other samples (HG006
and HGO007) (Table 2). We tested in batches of 10,000 to generate
probabilities for further model performance analyses.

While we excluded locus-specific columns (CHROM, POS,
REE, ALT) to reduce complexity for this initial implementation,
the framework is modular. Additional features such as read-
level statistics, platform-specific quality scores, or caller-specific
annotations can be incorporated as tokens without altering the core
Transformer structure. This design makes the framework adaptable
to diverse datasets and sequencing technologies.

Framework development and analysis
The framework is instantiated here with a BERT-based
Transformer architecture (Vaswani et al.,, 2017); however, it is
not tied to a specific implementation. Alternative Transformer
backbones (e.g., RoBERTa, ALBERT, or lightweight genomic
Transformers) can be substituted with minimal adjustments. This
flexibility underscores that our method is a generalizable blueprint
for variant refinement rather than a fixed architecture.

A DL framework was developed based on the Transformers
architecture (Vaswani et al., 2017) to automate the variant calling
refinement process. We used the BertForSequenceClassification
model from Hugging Face (Wolf et al., 2019) while tuning some
of the parameters in the configuration and tokenization steps to
achieve better performance. For parameter tuning, we initially
conducted a grid search to identify optimal hyperparameters. Key
parameters adjusted included the learning rate (0.00005-0.0001),
batch size (600-1,300), number of attention heads (6-12), and
number of hidden layers (6-12). We also integrated domain-specific
vocabulary into the BertTokenizer, which allowed the model to
better interpret genomic context. The final configuration was chosen
based on the highest ROC AUC score during validation. Further
details regarding the configuration parameters are available in
Supplementary Table S1. For the rest of the parameters, we used
the default values mentioned in the Hugging Face documentation
(Wolf et al., 2019). The model was trained over 21 epochs with a
batch size of 1,300 using the AdamW optimizer (Loshchilov and
Hutter, 2017), focusing on balancing performance and resource
utilization.

The framework can be scaled for integration into large-scale
genomic pipelines. In practice, VariantTransformer can be further
optimized by adopting lighter Transformer variants or adjusting
batch strategies, depending on the computational environment.
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TABLE 2 Variant counts obtained from samples HG006 and HG007 via GATK4 and BCFTools, detailing “PASS” and “FAIL" variants.

Sample Coverage (X) Variant caller PASS FAIL Total
BCFTools 3,694,662 826,173 4,520,835
HG006 13.6
GATK4 3,666,347 1,066,280 4,732,627
BCFTools 3,685,056 847,135 4,532,191
HG007 12.6
GATK4 3,650,142 1,042,385 4,692,527

Evaluation metrics

To thoroughly evaluate framework performance, we employed
several accuracy metrics, including the AUC (Area Under
the Curve), ROC (Receiver Operating Characteristics) curve
(Hand and Till, 2001), Matthews correlation coefficient (MCC)
(Gorodkin, 2004; Baldi et al., 2000; Chicco and Jurman, 2020;
Jurman et al., 2012), accuracy, precision, recall, and F1 score
(Godbole and Sarawagi, 2004). Accuracy is calculated as the
proportion of variant records for which the model’s predicted
PASS/FAIL label matches the reference PASS/FAIL label used
during evaluation. ROC and AUC were computed using the
model’s predicted PASS/FAIL probability as the continuous
decision score. For further framework evaluation, we reported
MCC, also known as the phi coeflicient, where a coefficient of
+1 indicates an ideal prediction, 0 signifies an average random
prediction, and —1 denotes a reverse prediction (Baldi et al., 2000;
Jurman et al., 2012). All accuracy metrics were generated using
scikit-learn (Varoquaux et al, 2015). Moreover, we compared
the framework performance to default filtering parameters of
conventional variant callers (BCFTools and GATK4), an Al-based
variant caller (DeepVariant (Poplin et al., 2018)), and an Al-
based tool for refinement of somatic variant calling (DeepSVR
(Ainscough et al., 2018)), considering both PASS and FAIL variants.
For BCFTools and GATK4, we integrated VariantTransformer into
each pipeline and compared the performance of the framework
against default filters. For GATK4, the default filters were QD <
2.0, FS > 60.0, MQ < 40.0, SOR > 4.0, MQRankSum < -12.5,
and ReadPosRankSum < —8.0. For BCFTools, we applied only
the QUAL > =20 filter. As for DeepVariant, we compared the
performance of each model-integrated conventional variant
caller against DeepVariant. DeepSVR was compared against
VariantTransformer in terms of data preparation, multiple accuracy
metrics, computational complexity, and user experience. All
plots were generated using the MatPlotlib library (Hunter, 2007)
or ggplot2 (Wickham, 2016).

Clarification on GIAB resources and
labeling strategy

In this study, we used the GIAB benchmark sets as a source
of high-quality labels for developing a machine-learning-based
filtering framework. While GIAB defines high-confidence BED
regions in which variants can be reliably interpreted as true positives

Frontiers in Bioinformatics

(TPs) or EPs, the objective of our study was not to perform GIAB-
certified benchmarking. Instead, GIAB served as a consistent and
well-curated reference from which VariantTransformer could learn
generalizable patterns of variant quality.

For methodological coherence, we adopted a single
unified labeling and comparison strategy based on positional
agreement and the FILTER field from the caller VCFs. This
approach ensures that the assumptions used during training
are identically applied during evaluation, avoiding discrepancies
that arise when training and testing use different correctness
definitions.

We emphasize that the reported metrics therefore represent
model filtering performance, not formal GIAB FP/FN rates.
The framework is intentionally flexible: users may substitute
alternative truth sets, high-confidence region definitions, or
GA4GH-compliant benchmarking tools (e.g., hap. py or rtg vcfeval)

without modifying the underlying methodology.

Results
Framework development results

VariantTransformer was developed using a dataset of 2 million
variants, including both SNPs and InDels, sourced from the
GIAB sample HG003. The variants were called using GATK4 and
BCFTools. Of the two million variants, 1,630,866 matched the latest
GIAB truth sets v4.2.1 and were classified as “PASS”, while the
remaining 369,134 were classified as “FAIL". To avoid overfitting, the
data was randomly split into 60% for training and 40% for validation.
The framework achieved an accuracy of 89.26% and an ROC AUC
score of 0.88 (Figure la), demonstrating that Transformers can
effectively learn feature dependencies within variant call data and
are well-suited for post-calling refinement tasks.

To better highlight the advantages of VariantTransformer,
we compared its performance to traditional heuristic filtering
approaches using default parameters from GATK and BCFTools.
As shown in Table 3, VariantTransformer outperformed traditional
methods in terms of precision, recall, and Fl-score, particularly
in low-coverage regions (10-15X), where traditional heuristics
tend to yield higher false-positive rates. Figure 1b provides a
visual representation of this comparative analysis, illustrating the
frameworK’s accuracy in refining variants compared to Deep Variant.
The average accuracy shown in Figure 1b represents the mean value
across both GIAB test samples (HG006 and HGO007) for outputs
from GATK4 and BCFTools.
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FIGURE 1
(a) ROC AUC curve for the trained model. (b) VariantTransformer's average accuracy performance, calculated as the mean accuracy across the two test
samples (HGO06 and HG0O07) and both variant calling pipelines (GATK4 and BCFTools). The results are benchmarked against default heuristic filters and
the Al-based caller DeepVariant.

TABLE 3 Performance of Variant Transformer across different metrics in the variant calling pipelines for samples HG0O06 and HGO007.

Sample Coverage Variant Accuracy? Refined Precision Recall Flscore ROCAUC
(X) caller accuracy®

BCFTools 83.31% 87.03% 0.85957 0.87027 0.85845 0.86413 0.51194
HGO006 13.6

GATK4 77.50% 87.38% 0.87004 0.87375 0.86385 0.88876 0.60805

BCFTools 82.63% 86.68% 0.85635 0.86678 0.85197 0.83063 0.50117
HG007 12.6

GATK4 77.82% 86.94% 0.86646 0.86944 0.85692 0.85605 0.58638

“Default filtering.

b After Variant Transformer refinement.

While demonstrated here on BCFTools and GATK outputs,  thus approaching the performance of the Al-based variant caller,

the framework is caller-agnostic. It can be retrained or fine-  DeepVariant, which has an accuracy of 88% (Figure 1b).
tuned on VCFs generated by other callers such as DeepVariant, During the testing phase, batches of 10,000 variants were
Strelka2, or Clair3. processed to generate performance metrics such as MCC scores,

The  performance  results presented here reflect ~ROC AUC scores, accuracy, precision, recall, and Flscore. The
VariantTransformer’s predictive filtering behavior under the unified ~ aggregated results, outlined in Table 3, provide a comprehensive
labeling strategy used throughout model development. Because  evaluation of VariantTransformer’s efficacy when integrated into
this evaluation does not restrict comparisons to the GIAB high-  the aforementioned variant calling pipelines. VariantTransformer
confidence regions, these metrics should not be interpreted as  improved both accuracy and MCC, demonstrating a more balanced
GIAB-standard variant-calling accuracy. Instead, they illustrate  classification of true and false variants. The positive MCC
how consistently the model predicts variant quality under the same  values (ranging from 0.50 to 0.61) confirm that the model
assumptions used during training, which aligns with the primary  performs substantially better than random or heuristic-based filters,
objective of demonstrating a generalizable filtering framework. particularly in low-coverage datasets. This is especially relevant for

imbalanced datasets, where MCC provides a more robust measure
of classifier reliability than accuracy or F1 score (Chicco and
Framework evaluation across variant Jurman, 2020).
calling pipelines

To test VariantTransformer applicability, we integrated it into Com Pa rative analysis: assessing
two conventional variant calling pipelines (BCFTools and GATK4). ~ performance against existing pipelines and
We processed the two GIAB samples HG006 and HG007 through models
these pipelines and subsequently applied VariantTransformer to
refine the variant calls. The framework significantly outperformed Our assessment included a detailed analysis of variants
the default threshold-based filtering, achieving an overall accuracy ~ categorized as “FAIL” This was done to understand the types of
of 87%, compared to 78% for GATK4 and 83% for BCFTools, errors that VariantTransformer aims to address, such as borderline
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cases with ambiguous quality metrics. This comprehensive
evaluation provides deeper insights into the framework’s robustness
in filtering both “PASS” and “FAIL” variants, thus ensuring a
balanced representation of TPs and true negatives (TNs).

While many benchmarking workflows report metrics primarily
on PASS variants, in our study we evaluated all variants, including
those labeled as FAIL, to remain consistent with the label structure
used during model training. This comprehensive approach considers
all four parameters: TPs, FPs, TNs, and FNs.

In our evaluation, variants labeled as “FAIL’ refer to those
not present in the GIAB high-confidence truth set. This binary
classification follows the GIAB convention, where all variants in the
reference set are considered TPs (“PASS”), and any variant absent
from it is labeled as “FAIL” This definition provides a consistent,
reproducible basis for evaluating the framework’s performance.
Users can readily adapt this labeling criterion for other truth sets or
custom datasets when retraining or fine-tuning VariantTransformer.

The performance of VariantTransformer was compared with
BCFTools and GATK4 pipelines, and with DeepVariant, focusing
on two GIAB samples (HG006 and HGO007) with coverage of
13.6X and 12.6X (Table 4). For sample HG006 using BCFTools,
from 4,520,835 variants, VariantTransformer identified 3,993,987 as
“PASS” with an accuracy of 87.03%. When using GATK4 on the
same sample, the model called 4,027,338 as “PASS” with an accuracy
0f 87.38%. For sample HG007 using BCFTools, VariantTransformer
identified 4,044,040 as “PASS” with an accuracy of 86.68%. When
using GATK4 on HG007, the model called 4,060,472 as “PASS” with
an accuracy of 86.94%. Comparatively, DeepVariant demonstrated
slightly higher overall accuracy, with 87.95% for HG006 and 87.78%
for HG007. While DeepVariant exhibited a higher number of
variants labeled as FPs against the GIAB truth sets, this likely
reflects its greater sensitivity—particularly in complex or repetitive
genomic regions—rather than systematic overcalling. The GIAB
truth sets, while highly curated, may not fully capture all true
variants in such regions, meaning that some variants uniquely
identified by DeepVariant could represent genuine positives outside
benchmark regions. In contrast, VariantTransformer maintains
a more conservative balance between sensitivity and precision,
emphasizing reliable variant refinement rather than maximal
detection. Notably, the values reported here reflect performance
under our positional evaluation strategy; representation-aware
benchmarking tools would yield metrics based on different
matching criteria. Because this evaluation is based on low-coverage
WGS, the absolute performance values are naturally lower than
those reported in high-coverage benchmarking studies, reflecting
the inherent difficulty of variant interpretation under reduced
read depth.

Discussion

The development and evaluation of our Transformers-based
framework for variant refinement demonstrate the value of applying
Transformer architectures to genomic post-processing tasks. This
framework demonstrates an impressive variant refinement accuracy
of 89.26%, which not only outperforms conventional refinement
methods but also aligns closely with contemporary Al-based tools.
By conceptualizing each variant record as a structured “sentence”
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and treating refinement as a classification problem, we illustrate how
methods originally designed for natural language processing can
be repurposed for genomics. This framework provides a scalable
and adaptable foundation for improving variant quality, especially
in challenging scenarios such as low-coverage sequencing.

VariantTransformer’s effectiveness in processing—a technique
borrowed from NLP (Vaswani et al., 2017) — highlights its ability
to handle the complex patterns inherent in genomic sequence data.
By interpreting these patterns, the framework distinguishes true
genetic variants from technical artifacts (Brown et al., 2020) with
high efficiency, achieving ROC AUC scores that affirm its capacity
to differentiate variant classes across all thresholds, thus enhancing
its utility in varied analytical scenarios.

The aim of this work is to introduce a flexible and reproducible
machine-learning framework for variant filtering, rather than a fixed
benchmarking pipeline. Although GIAB data were used to derive
high-quality labels, we did not treat the GIAB high-confidence BED
as a constraint for formal FP/FN counting. Instead, we prioritized
internal consistency by using the same positional labeling strategy
during training and evaluation.

This design allows VariantTransformer to function as a general
framework that can be adapted to any truth set or benchmarking
paradigm. Users who require GIAB-compliant BED-restricted
evaluation or genotype/allele/local matching through tools such as
hap. py or rtg vcfeval can seamlessly integrate those components into
the same methodology.

The framework’s success can be attributed to several key factors.
First, the framework substantially improves the performance of
existing variant calling pipelines. When applied to BCFTools and
GATK4 outputs, the framework increased accuracy from ~78 to
83% (heuristic filtering) to 86%-87%, approaching DeepVariant’s
accuracy while reducing FPs. This balance between accuracy and
precision highlights the value of post-calling refinement: whereas
heuristic thresholds are brittle and overly sensitive to data sparsity,
Transformers can dynamically learn the relationships among
features, enabling more nuanced decisions. Second, modifications
to the default BERT model parameters, specifically, reductions in
hidden size and the number of attention heads, have tailored the
model to handle the specific complexity of genomic data while
optimizing computational efficiency (Vaswani et al., 2017). Finally,
the MCC values highlight the framework’s balanced accuracy,
considering both positive and negative classes, which is essential
for applications in genomic studies where both sensitivity and
specificity are critical (Chicco and Jurman, 2020). The ROC
AUC scores further affirm the framework’s exceptional capability
to distinguish between the variant classes across all thresholds,
emphasizing its effectiveness in various scenarios (Fawcett, 2006).

While VariantTransformer was compared primarily against
default filtering strategies from conventional callers (BCFTools
and GATK4), an Al-based variant caller (DeepVariant), and an
Al-based somatic refinement tool (DeepSVR), it is important
to note that these tools differ in scope and intended use.
Established refinement methods, such as GATK Variant Quality
Score Recalibration (VQSR) or other ML-based filters, represent
natural baselines for comparison; however, VQSR is not optimized
for low-coverage data and can be unstable when applied outside its
intended parameter range. Furthermore, DeepVariant incorporates
its own Al-based filtering mechanism within its calling pipeline,
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TABLE 4 Detailed comparison of Variant Transformer’s performance when integrated with GATK4 and BCFTools against DeepVariant.

Sample Coverage (X) Variant caller Input® PASSP Accuracy
BCFTools 4520835 | 3,993,987 | 3,551,084 | 442,903 | 143,576 | 383,270 87.03%

HG006 13.6 GATK4 4,732,627 | 4,027,338 | 3548098 | 479,240 | 118249 | 587,039 87.38%
DeepVariant 6,643,643 | 4213736 | 3593719 | 620018 | 180,668 | 2249241  87.95%
BCFTools 4532191 | 4,044,040 | 3,562,660 | 481,380 | 122,394 | 365755 86.68%

HG007 126 GATK4 4,692,527 | 4,060,472 | 3548979 | 511,493 | 101,163 530,891 86.94%
DeepVariant 6716326 4247514 | 3,597,227 | 650,288 | 170251 | 2298563  87.78%

“Total called variants.

Identified as PASS, by Variant Transformer in case of BCFTools, and GATK4, or Identified as PASS, by DeepVariant filter.

making its results inherently post-processed and therefore not
directly comparable to standalone refinement frameworks such as
VariantTransformer. Accordingly, our choice of baselines reflects
the focus on low-coverage, general-purpose refinement rather than
direct benchmarking against high-coverage or internally filtered
variant-calling pipelines. This clarification ensures that the reported
improvements are interpreted within the context of the tool’s design
and application domain.

When comparing VariantTransformer to DeepVariant, it is
important to recognize the fundamental difference in their design
and objectives. DeepVariant operates as a full variant caller that
processes raw reads, while VariantTransformer functions purely
as a post-calling refinement module. The two therefore differ
substantially in computational scope: DeepVariant performs end-
to-end inference, whereas VariantTransformer acts only on already-
called variants. Our comparison is therefore conceptual rather
than computational, highlighting the complementary roles of
the two approaches. VariantTransformer enhances the output of
conventional callers with minimal additional computational cost,
improving accuracy and precision—particularly in low-coverage
data—without replacing the upstream variant-calling process.
Together, these approaches illustrate how Al-driven refinement
can augment the performance of established tools, providing a
practical and efficient complement to state-of-the-art Al-based
variant callers.

While DeepVariant achieved slightly higher overall accuracy
in some cases (87.95% for HG006 and 87.78% for HG007 with a
difference of less than 1% when compared to VariantTransformer), it
also presented a significantly higher rate of FPs for both samples. For
sample HG006, DeepVariant had approximately 40% more FPs than
BCFTools and approximately 29.38% more FPs than GATK4. For
sample HG007, DeepVariant had approximately 35.07% more FPs
than BCFTools and approximately 27.11% more FPs than GATK4.
However, it is important to note that DeepVariant calls a larger
number of total variants (~6.6 million versus ~4.5 million for
GATK4 and BCFTools), which accounts for its higher absolute
FP counts. When normalized by total calls, DeepVariant’s FP rate
(21.62% for HG006 and 22.09% for HG007) is actually lower than
those of GATK4 (44.94% and 49.07%) and BCFTools (53.65%
and 56.89%). This normalization is not intended as a cross-caller
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accuracy comparison, but rather to contextualize absolute FP counts
relative to each tool’s total number of emitted calls. These results
are consistent with the precision values summarized in Table 3,
providing a comprehensive view of each method’s performance.
This comparison underscores VariantTransformer’s efficiency in
minimizing incorrect variant identifications—a crucial advantage
in genomic analytics—while acknowledging that some apparent
FP from DeepVariant may arise from its higher sensitivity in
challenging genomic regions that are incompletely represented in
current benchmark truth sets (Wagner et al, 2022). However,
it is also important to note that a reduction in FP does
not universally indicate superior biological accuracy. In certain
contexts, particularly when truth sets are incomplete, overly
conservative models may classify genuine variants as FNs. Thus,
VariantTransformer’s strength lies in offering a balanced refinement
strategy that enhances call reliability without sacrificing sensitivity.
Users who require representation-normalized comparisons may
integrate GA4GH tools such as hap.py or vcfeval without altering
the overall workflow.

Furthermore, the comparison with DeepSVR (Ainscough et al.,
2018), a deep learning model developed to automate somatic
variant refinement, underscores the distinct design objectives of
the two frameworks rather than a direct performance comparison.
DeepSVR classified SNPs into “Pass’, “Fail’, or “Ambiguous”
with Fliess Kappa statistics (McHugh, 2012) indicating fair
agreement (Ainscough et al., 2018). DeepSVR is designed and
trained with a small training set (41,000 variants) of deep
coverage (300-1,000X) cancer-type samples and is limited to SNP
classification, requiring extensive data preprocessing before model
input. In contrast, VariantTransformer was designed as a caller-
agnostic post-calling refinement framework applicable to both SNPs
and InDels, optimized for low-coverage germline data, and capable
of operating directly on standard VCF files without additional
preprocessing. These differences highlight that while DeepSVR is
specialized for high-depth cancer genomics, VariantTransformer
provides a more generalizable and lightweight approach suitable
for a broader range of variant-calling scenarios, particularly
those involving large-scale or population-level sequencing data
(a detailed comparison of DeepSVR and VariantTransformer is
presented in Supplementary Table S2).
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While VariantTransformer achieves high accuracy, we must
acknowledge that recent precisionFDA challenge participants have
demonstrated superior F1 scores using higher coverage data (>30X),
achieving over 99% in some cases. The framework’s strength lies
in its balanced performance across various genomic contexts,
particularly for low-coverage data, where precision and recall are
paramount. This makes VariantTransformer a complementary tool
rather than a replacement for existing high-coverage-focused Al-
based callers.

Beyond performance, the most significant contribution of this
work lies in its generality. The framework is not tied to a specific
caller, sequencing platform, or coverage level. While demonstrated
here on low-coverage Illumina datasets with GATK4 and BCFTools,
the workflow is modular and can be adapted to other variant callers.
Likewise, the Transformer backbone is flexible: while we instantiated
it using a BERT-based model, other Transformer variants (e.g.,
RoBERTa, ALBERT, or lightweight domain-specific Transformers)
could be employed with minimal modifications. This adaptability
positions the framework as a general blueprint for integrating
Transformer architectures into genomic refinement tasks.

However, there are limitations to our framework. One limitation
of VariantTransformer is its current optimization for data generated
from GATK and BCFTools. Although these tools remain standard
in genomic studies, exploring the framework’s performance with
VCFs generated by other modern callers like Clair3 or DeepVariant
is crucial for generalizing its application. Future studies will
focus on testing VariantTransformer’s adaptability to these tools
and determining any necessary adjustments in preprocessing or
feature engineering. Moreover, the training dataset, derived mainly
from well-characterized genomic regions provided by the GIAB
consortium, might not fully represent the diversity of genomic
scenarios encountered in wider research and clinical contexts.
Moreover, the framework configuration is primarily optimized
for data generated from Illumina platforms. Future studies could
expand the frameworK’s training scope to include more diverse
and challenging genomic landscapes, potentially enhancing its
applicability and accuracy in a wider array of genomic settings.

Conclusion

In this study, we introduced a Transformers-based framework
for genetic variant refinement and demonstrated its effectiveness
in improving post-calling accuracy and precision across standard
variant calling pipelines. By leveraging self-attention to capture
dependencies among variant features, the framework consistently
outperformed default heuristic filters in BCFTools and GATK4,
raising accuracy from ~78 to 83% to 86%-87% on independent
GIAB samples. Although DeepVariant achieved slightly higher
accuracy (~88%), our framework reduced FPs, underscoring
its strength in balancing accuracy with reliability. Importantly,
VariantTransformer is not designed to replace variant callers
but to serve as a complementary refinement layer that can be
integrated downstream of any variant-calling pipeline to enhance
call confidence and reproducibility. The pretrained model provided
in this study is suitable for datasets that closely resemble the
conditions under which it was developed, namely Illumina short-
read low-coverage WGS processed with BCFTools or GATK4.
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For datasets that differ substantially in platform, coverage, or
variant-calling pipeline, users may obtain improved performance
by retraining or fine-tuning VariantTransformer on an appropriate
truth set. This provides flexibility for deployment across diverse
experimental settings. The framework is not limited to specific
callers or datasets: it is modular, caller-agnostic, and adaptable to
diverse sequencing contexts. This positions it as a generalizable
blueprint for integrating Transformer architectures into genomic
workflows, offering a flexible solution for low-coverage data and
beyond. As sequencing continues to expand into population-scale
and clinical settings, such frameworks will be essential for ensuring
that downstream analyses are built on a foundation of robust and
trustworthy genetic data.
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