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Sentieon Inc., San Jose, CA, United States

Background: Integrating short- and long-read sequencing technologies has
become a promising approach for achieving accurate and comprehensive
genomic analysis. Although short-read sequencing (Illumina, etc.) offers high
base accuracy and cost efficiency, it struggles with structural variant (SV)
detection and complex genomic regions. In contrast, long-read sequencing
(PacBio HiFi) excels in resolving large SVs and repetitive sequences but is limited
by throughput, higher insertion or deletion (indel) error rates, and sequencing
costs. Hybrid approaches may combine these technologies and leverage their
complementary strengths and different sources of error to provide higher
accuracy, more comprehensive results, and higher throughput by lowering the
coverage requirement for the long reads.

Methods: This study benchmarks the DNAscope Hybrid (DS-Hybrid) pipeline,
a novel integrated alignment and variant calling framework that combines
short- and long-read data sequenced from the same sample. The DNAscope
Hybrid pipeline is a bioinformatics pipeline that runs on generic x86 CPUs. We
evaluate its performance across multiple human genome reference datasets
(HG002-HGO004) using the draft Q100 and Genome in a Bottle v4.2.1
benchmarks. The pipeline’s ability to detect small variants [single-nucleotide
polymorphisms (SNPs)/indels)], SVs, and copy-number variations (CNVs) is
assessed using data from the Illumina and PacBio sequencing systems at
varying read depths (5x-30x). Benchmark results are compared to those of
DeepVariant.

Results: The DNAscope Hybrid pipeline significantly improves SNP and indel
calling accuracy, particularly in complex genomic regions. At lower long-read
depths (e.g., 5X-10x), the hybrid approach outperforms stand-alone short-
or long-read pipelines at full sequencing depths (30x-35x), reducing variant
calling errors by at least 50%. Additionally, the DNAscope Hybrid outperforms
leading open-source tools for SV and CNV detection and enhances variant
discovery in challenging genomic regions. The pipeline also demonstrates
clinical utility by identifying variants in disease-associated genes. Moreover,
DNAscope Hybrid is highly efficient, achieving less than 90 min runtimes at
single standard instance.

Conclusion: The DNAscope Hybrid pipeline is a computationally
efficient, highly accurate variant calling framework that leverages the
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advantages of both short- and long-read sequencing. By improving variant
detection in challenging genomic regions and offering a robust solution

for clinical

and

large-scale genomic applications,
promise for genetic disease diagnostics,

it holds significant
population-scale studies, and

personalized medicine.

KEYWORDS

NGS-next generation sequencing, secondary analysis, variant calling, hybrid analysis,
machine learning, accelerated analysis

Introduction

Over the past decade, next-generation sequencing (NGS) and
third-generation sequencing (TGS) have become a cornerstone in
genomics research and medical applications, driving significant
discoveries in disease mechanisms, population diversity, and
personalized medicine strategies (Goodwin et al., 2016; Satam et al.,
2023). These advancements were facilitated by improvements
in sequencing technologies, including reduced costs, enhanced
read lengths, higher base quality, and increased accessibility to
laboratories at various sizes.

Highly accurate methods for detecting single-nucleotide
polymorphisms (SNPs) and <50 bp insertions or deletions (indels)
have been central to genetic disease and tumor diagnostics.
Additionally, the adoption of long-read sequencing has enabled
better integration of structural variants (SVs; 250 bp insertions,
deletions, or other rearrangement) into analyses (De Coster et al.,
2021; Mahmoud et al,, 2019). Although SVs are less abundant than
small variants in the human genome, they collectively impact more
base pairs and play crucial roles in human evolution and disease
(Sudmant et al., 2015). Copy-number variations (CNVs), arising
from DNA segment deletions or duplications, represent another
form of genomic variation linked to various diseases (Zarrei et al.,
2015). Despite these advancements, detecting and interpreting
these variants together in an integrated analysis pipeline remain
challenging.

Although short-read sequencing technologies (e.g., Illumina,
Element Biosciences, MGI, etc.) effectively capture small variations
across most of the human genome, they face challenges in
difficult-to-map regions and in the detection of structural
variant. Studies have demonstrated the limitations of short reads
for identifying larger insertions, deletions, and other complex
genomic rearrangements (Zook et al., 2020). Long-read sequencing
technologies, such as PacBio HiFi, have been proposed to address
these limitations. These platforms enable improved detection of
complex SVs due to their ability to produce reads exceeding
15kb in length with current base accuracies ranging from

Abbreviations: AWS, Amazon Web Services; CLI, command line interface;
CNYV, copy-number variation; CMRG, challenging medically relevant genes;
DV, DeepVariant; FP, false positive; FN, false negative; GBM, gradient
boosting machine; GIAB, Genome in a Bottle; HLA, human leukocyte
antigen; ILMN, lllumina sequencing data; NICU, neonatal intensive care unit;
NGS, next-generation sequencing; ONT, Oxford Nanopore Technologies;
PB, PacBio HiFi sequencing data; SV, structural variant (>50 bp); T2T
consortium, Telomere-to-Telomere consortium; TRHP, tandem repeat and
homopolymer regions; WGS, whole-genome sequencing.
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99% to 99.9% (De Coster et al, 2021; Hoffmann et al.,, 2024;
Amarasinghe et al., 2020). Nevertheless, these technologies are not
without challenges. Errors in long-read sequencing often manifest
as context-specific insertions and deletions (e.g., homopolymers),
complicating the detection of indel variants even with high
read coverage (Wenger et al., 2019). Additionally, the high cost of
generating long reads, combined with their computational demands,
poses barriers to large-scale applications, including population-wide
studies and analysis of legacy samples. Many interesting samples
slated for long-read analysis already have full-coverage short-read
data. By using full-coverage short-read data with long-read data,
this new pipeline leverages the strengths of both technologies
and allows users to decrease long-read coverage by 2x-3x while
simultaneously increasing the accuracy and comprehensiveness of
results for each sample.

The complementary error profiles of short- and long-read
sequencing technologies have motivated the development of hybrid
analysis pipelines that leverage both data types. Initially, such
approaches were implemented for de novo genome assembly,
in which short reads were used to correct errors in long-read
assemblies (Zhang et al., 2020; Brown et al., 2021). Several hybrid
re-sequencing pipelines have also emerged, including “HELLO,”
which utilizes deep learning to perform variant calling using
combined alignments of short and long reads (Ramachandran et al.,
2021). Another notable pipeline, “blend-seq,” focuses on combining
ultralow-coverage long reads (approximately 4x coverage) with
standard 30x short reads for cost-effective variant discovery
(Magner et al., 2024). Clinically, Variantyx has integrated short-
and long-read analyses into a single diagnostic workflow, generating
a comprehensive clinical report. This pipeline, however, uses long
reads primarily for orthogonal confirmation of variants detected
by short reads, leaving opportunities for further integration and
optimization (Kaplun et al., 2023).

These existing pipelines independently align short and long
reads to reference genomes without exploiting the potential of
realignment to add value for variant calling. Moreover, limited
attention is given to computational efficiency and speed, making
them less viable for clinical settings such as neonatal intensive care
units (NICUs) or large-scale cohort analyses.

The Genome in a Bottle (GIAB) Consortium has progressively
improved its reference sample variant benchmark. The v4.2.1 variant
call set, released in 2022, incorporated linked-reads and long-
read sequencing data, expanding high-confidence regions in the
GRCh38 assembly from 85% to 92% of the genome. This update
introduced difficult-to-map regions and other challenging genomic
loci not previously included in the v3.3.2 call set (Wagner et al.,
2022a). In addition to the genome-wide SNP/indel benchmark, the
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FIGURE 1

Overview of the processing steps of the DNAscope Hybrid variant calling pipeline.

GIAB released an SV benchmark (v0.6) (Zook et al., 2020) and
a benchmark for challenging medically relevant genes (CMRGs)
(Wagner et al., 2022b). In a separate effort, the Telomere-to-
Telomere (T2T) consortium has published high-quality assemblies
of the HG002 sample (Rhie et al., 2023). The initial assembly
leveraged PacBio HiFi and ONT (Oxford Nanopore Technologies)
data from the Human Pangenome Reference Consortium (HPRC)
and GIAB. Following extensive polishing and validation, the v1.1
diploid assembly achieved near-perfect haplotype phasing and
an error rate below one per 10 billion bases (a Phred quality
score of Q100) (Hansen et al., 2025). Through alignment of the
Q100 assembly to GRCh38, the GIAB team has generated a
draft assembly-based benchmark for HG002. This new benchmark
provides significantly more small variants and nearly three times
the number of confident SV events compared to the earlier GIAB
v0.6 SV benchmark (29,167 vs. 9,646) (Saunders et al., 2025). These
advancements underscore the importance of choosing technologies
and datasets aligned with cutting-edge genomic knowledge for
clinical and research applications.

Sentieon has won a variety of awards in the PrecisionFDA
Challenges including an award in Truth Challenge V2 for multi-
platform analysis (Olson et al.,, 2022), in which short and long
reads were used to improve accuracy. The DNAscope Hybrid (DS-
Hybrid) pipeline presented here is a substantial improvement from
the PrecisionFDA winning pipeline. Different from the previously
published DNAscope pipeline for short reads (Freed et al., 2022a)
and the DNAscope LongRead pipeline for long reads (Freed et al.,
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2022b) or any existing pipelines, this hybrid analysis tool integrates
short- and long-read sequencing data from the same sample
by realigning short reads using the sample-specific long-read
information to deliver comprehensive and accurate variant calling.

In this work, we present the DNAscope Hybrid pipeline,
which utilizes short- and long-read data from a single sample
to achieve highly accurate variant calling. As shown in Figure 1,
the DNAscope Hybrid accepts FASTQ or BAM files as input and
generates VCF outputs containing SNP, indel, SV, and CNV data.
By combining the strengths of both sequencing platforms, the
pipeline achieves superior variant detection compared to using
either short- or long-read technology in isolation. The DNAscope
Hybrid can be used with whole-genome sequencing (WGS) long-
read data or with targeted sequencing approaches such as the
Twist Alliance Dark Genes Panel (Deserranno et al., 2025). The
pipeline’s performance and versatility make it a promising tool
for clinical diagnostics, particularly in settings requiring highly
accurate, comprehensive results.

Compared with the existing hybrid analysis methods
(Ramachandran et al., 2021; Magner et al., 2024; Kaplun et al., 2023)
mentioned above, DNAscope Hybrid introduces a novel long- and
short-read realignment step designed to enhance performance in
complex genomic regions. This approach leverages the read-length
advantage of long reads together with the higher depth and indel
calling accuracy of short reads, thereby improving overall variant
calling accuracy and expanding confident variant calls into more
challenging genomic areas. Existing pipelines do not perform a

frontiersin.org
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FIGURE 2
Genome-wide accuracy—total errors of (A) SNP in GIAB v4.2.1; (B) indel in GIAB v4.2.1; (C) SNP in draft Q100; (D) indel in draft Q100. DS-Hybrid PB +
ILMN and DS-LR PB only are shown with curves covering 5x-30x long-read depths. DV PB and DRAGEN are shown at full depth.

comprehensive realignment and therefore fail to fully realize the
highest accuracy from short- and long-read data.

To evaluate the performance of the DNAscope Hybrid pipeline,
we benchmark the pipeline output using a variety of benchmarks.
We benchmark the small-variant (SNV and indel) VCF using the
GIAB v4.2.1, CMRG, and Q100 benchmarks. SVs identified by
the pipeline are assessed using the CMRG and draft Q100 SV
benchmarks. CNVs are assessed using a benchmark constructed
from the Q100 SV benchmark. The runtime of the DNAscope
Hybrid pipeline is assessed by running the pipeline using a public
cloud server.

Results
Small variants (SNPs and indels)

To evaluate the accuracy of the DS-Hybrid pipeline at varying
depths, we used the HGO002 sample and a PacBio HiFi (PB)
dataset down-sampled to depths of 5%, 7.5x, 10x, 15%, 20x, and
30x, paired with 35x Illumina (ILMN) short-read data. To assess
the accuracy contribution of short reads, we also analyzed each
depth of PB datasets independently without short reads using the
DNAscope LongRead (DS-LR) pipeline. Additionally, we included
other datasets for comparison: Illumina (35x) data analyzed using

Frontiers in Bioinformatics

DRAGEN v4.2 and PacBio HiFi (30x) analyzed using DeepVariant
(DV) v1.8.0.

We initially investigated genome-wide accuracy using the NIST
v4.2.1 benchmark (Figures 2A,B; Supplementary Table S1). This
analysis demonstrated that higher depths of long-read sequencing
yield greater accuracy, with the highest accuracy observed in the
combined 30x PB + 35x ILMN datasets. Furthermore, hybrid
indel accuracy is higher than that of the other evaluated methods,
even when using only 7.5x coverage for long reads. Notably, the
DNAscope Hybrid pipeline improves SNP and indel accuracy
compared to any single-technology pipeline.

The current cost for DNA extraction and library preparation
is approximately $735 USD for PacBio HiFi and $135 USD
for Illumina [the service cost is from a single service provider
(UC San Diego Genomics Core, 2025) as it will differ elsewhere].
Sequencing costs are approximately $330 for 10x PacBio
HiFi coverage (Pacific Biosciences, 2024) and $200 for 30x
Mlumina coverage (Illumina, 2023). Therefore, generating a
combined dataset of 10x PacBio HiFi + 30x Illumina would result
in a total wet laboratory cost comparable to generating 20x PacBio
HiFi data alone.

Based on these data, 10x of PacBio and 35x of Illumina have
a good balance between the cost of reagents and results. At this
coverage level, the pipeline has 1,527 indel errors and 6,467 SNP
errors when evaluated on the GIAB v4.2.1 benchmark, for F1 values
0f 0.9985 and 0.9990, respectively.

frontiersin.org
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FIGURE 3
Stratified region accuracy—total errors of (A) SNP and (B) indel in tandem repeat and homopolymer (TRHP) regions in the Q100 benchmark. (C) SNP
and (D) indel in the challenging medically relevant genes (CMRG) benchmark. DS-Hybrid PB + ILMN and DS-LR PB only are shown with curves
covering 5x-30x long-read depths. DV PB and DRAGEN are shown at full depth.

Comparing the draft Q100 and the v4.2.1 benchmarks, total
errors are much higher with the draft Q100 benchmark as it contains
more challenging regions (Figures 2C,D; Supplementary Table S2),
making it more suitable for benchmarking new high accuracy
variant callers. In the draft Q100 benchmark, the hybrid pipeline
has fewer errors than single-technology pipelines for both SNPs and
indels. Comparing the hybrid pipeline with 10x long-read coverage
with the draft Q100, SNP errors are reduced by 30% relative to the
next best pipeline (DS-LR) and indel errors are reduced by 35%
relative to the next best pipeline (DRAGEN).

To better understand the variant calling accuracy improvement
in the hybrid pipeline, we performed a stratified analysis across
GA4GH stratification regions (Krusche et al, 2019). Variant
calling accuracy, as measured with the draft Q100 benchmark at
annotated tandem repeat and homopolymer (TRHP) regions, is
shown in Figures 3A,B. We additionally assessed variant calling
accuracy using the CMRG benchmark for HG002 (Figures 3C,D).
The DNAscope Hybrid pipeline has improved accuracy at TRHP
regions, and the DNAscope Hybrid pipeline with 5x long-read
coverage outperforms the other benchmarked pipelines. Short reads
frequently fail to map to tandem repeats correctly, and long reads
have less accurate resolution of homopolymers. By using the two
data types in a complimentary way, the hybrid method helps
resolve both sources of error. CMRG regions, which encompass 273
medically relevant genes, demonstrated substantial benefits from
hybrid short- and long-read data. Long reads alone cannot capture
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each variant correctly, whereas the hybrid pipeline still showed its
improved accuracy, especially for indels. The improved accuracy will
likely lead to an improved diagnostic rate and other clinical utility.

To better understand the differences between the evaluated
pipelines, we compared the intersection of the DNAscope Hybrid
VCE, VCFs from the stand-alone short- or long-read pipelines, and
the GIAB v4.2.1 benchmark VCF (Figure 4). Variants detected by
all pipelines that are also present in the benchmark VCF represent
the highest proportion but are not displayed. ILMN detected fewer
SNPs, with a higher number of false negatives, whereas PB had
a higher rate of false-positive SNPs. Variants missed by short-
read pipelines were mainly attributed to low mappability and
poor coverage, whereas those missed by long-read pipelines were
primarily due to inherent limitations in base calling accuracy,
particularly at homopolymer indels.

Although the DNAscope Hybrid pipeline has excellent
performance on HGO002, we wanted to further assess the
performance on additional datasets to ensure that the approach
used by the pipeline extends to other samples. We then applied the
DNAscope Hybrid pipeline to two additional GIAB samples. The
results, measured as SNP and indel combined total errors (FP + FN),
were compared to those of the platform-recommended pipelines
for Illumina short reads and PacBio long reads (Figure 5). This
figure shows that DNAscope Hybrid call sets are consistently more
accurate than short- or long-read-only call sets in the tested sample,
highlighting its robustness and adaptability.
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FIGURE 4
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each pipeline are displayed on the lower left panels. The UpSet plots have slightly different results from those in Figure 2 and Supplementary Table S1,
due to the different comparison approaches that were used.
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Structural variants The genome-wide draft Q100 SV benchmark complements
the information in the SNP/indel accuracy curves (Figures 6A,B;
Although

demonstrate high accuracy for SNP and indel detection, these

To evaluate structural variant (SV) accuracy, we analyzed down-  Supplementary Table S6). short-read  pipelines

sampled long- and short-read datasets and evaluated variant calling

accuracy using the draft Q100 or CMRG SV benchmarks. For the
hybrid SV pipeline, only long-read information was utilized. Other
benchmarked pipelines include PacBio SV calls generated using
Pbsv and 35x ILMN SV calls generated using DRAGEN v4.2.

Frontiers in Bioinformatics

pipelines have lower accuracy for SV «calling, particularly
for SV recall. In contrast, long-read pipelines have higher
measured SV accuracy, even at lower depths, and achieved
saturation in performance at a depth approximately 15x-20x.
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The DNAscope Hybrid/LR pipeline outperformed Pbsv in
this benchmark. To further validate pipeline performance,
we assessed SV accuracy using the CMRG SV benchmark
(Figures 6C,D;  Supplementary Table S7). Performance on the
CMRG SV benchmark was consistent with the performance
observed in the larger draft Q100 SV benchmark, underscoring
the advantage of long-read sequencing in SV detection.

We further analyzed the intersection of the SV call sets with the
draft Q100 SV benchmark (Figure 7). This analysis highlights the
substantial number of structural variants missed by the short-read
pipeline. These omissions primarily stem from the inherent limitations
of short reads, particularly their inability to span longer SVs.

Copy-number variation

CNV refers to genetic differences between individuals involving
the loss or gain of specific DNA regions. The current version of the
DNAscope Hybrid pipeline utilizes the recently released Sentieon
CNVscope tool, which relies solely on short-read data for CNV
detection. To evaluate its performance, we benchmarked CNVscope
accuracy using the HG002 Q100 benchmark (Figure 8; see methods).
We also benchmarked CNVnator accuracy for comparison.

The Sentieon pipeline consistently demonstrated higher
accuracy across nearly all event sizes, including the technically
challenging <10k events, where CNVnator and most other tools
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struggle to achieve high accuracy. This suggests that DNAscope
Hybrid offers significant improvements in CNV detection.

Overall variant counts in HG00?2

DNAscope Hybrid is a comprehensive variant calling pipeline
capable of detecting SNVs, short indels (<50bp), and longer
indels. When compared with the short-read DRAGEN pipeline,
the hybrid pipeline identified a notably higher number of variants,
particularly large insertion events (Figure9). This increase is
primarily attributable to the additional information provided by
long-read data integrated into the hybrid workflow.

Validation using selected variants in
clinically relevant genes and simulated
pathogenic variants

To evaluate the clinical utility of the DNAscope Hybrid pipeline,
we further analyzed HG002 variants in the CMRG benchmark.
In particular, HG002 CMRG variants were annotated using VEP
(McLaren et al., 2016), and those associated with exons were selected
for comparison across three pipelines: 1) the DNAscope Hybrid
with 10x PB and 35x ILMN; 2) DeepVariant 30x PB; and 3)
DeepVariant 35x ILMN. Variants detected using only one or two
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UpSet plot of SVs for the three benchmarked pipelines and the draft Q100 benchmark VCF. Intersection categories are sorted by size. Call set sizes for

each pipeline are displayed in the lower left panel.

of these pipelines are shown in Figure 10. The DNAscope Hybrid
pipeline identified all 64 variants, whereas DV PB and DV ILMN
failed to capture some, with nine variants exclusively detected by the
hybrid pipeline.

We also analyzed a previously published set of clinically
relevant germline variants identified from 100 real patient samples
(Hops et al.,, 2025). Some variants in these patients were initially
identified by whole-exome sequencing, whereas other variants
were identified using other molecular diagnostic approaches,
including Sanger sequencing and molecular ligation-based probe
amplification (MLPA), as these variants are difficult to detect from
traditional short-read sequencing. From this dataset, we selected
all 42 SNP/indel variants for further analysis. Of these, 36 were
classified as “difficult to detect by short-read sequencing” due to their
location within homologous regions or pseudogenes. The remaining
six variants were included because of complexities such as structural
rearrangements, homopolymer repeats, imprinting effects, phasing
challenges, or location within pseudoautosomal regions. Notably,
even long-read sequencing alone failed to identify three of these
variants without manual inspection in IGV. Additional details for all
42 variants are provided in the supplementary table of a previously
published study (Hops et al., 2025).

We generated simulated Illumina short reads at 30x coverage
and PacBio HiFi long reads at 10x coverage and processed
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the simulated data through the DNAscope Hybrid pipeline. The
DNAscope Hybrid pipeline successfully detected all 42 SNPs/indels.
Among the identified variants, we focused on those previously
reported in clinical cases, as shown in Table 1.

A notable example is Patient P10-B4 (Figure 11A), who was
diagnosed with congenital adrenal hyperplasia (CAH) caused by
an SNP in intron 2 of the CYP2IA2 gene. This variant disrupts
normal splicing, leading to impaired 21-hydroxylase enzyme
function. The CYP21A2 gene has a highly similar pseudogene
(CYP21AIP), which creates challenges for short-read sequencing
alignment due to their high sequence homology. Traditionally,
Sanger sequencing was the only reliable method for detecting
such variants. However, in this case, long-read assembled
haplotype data were used to guide alignment, enabling accurate
mapping of short reads and providing strong support for variant
identification.

Figure 11B shows simulated read data from patient P11-F11,
who carries the LVAVA combination, which affects five key amino
acid positions in exon 3 of the OPNILW gene. OPN1LW plays a
crucial role in the spectral tuning of the red-sensitive photopigment,
and mutations are associated with color vision impairment. The
two critical DNA substitutions defining the LVAVA variant are
highlighted by arrows, indicating their significance in modifying
the opsin proteins function. OPNILW has a high degree of
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Size distribution of small and structural variants identified by the DNAscope Hybrid pipeline on 10x PB + 35X ILMN and by DRAGEN on 35x ILMN.

sequence identity to the other opsin genes, OPNIMW and OPNISW,
which creates challenges for short-read alignment across the opsin
genes. The hybrid pipeline overcomes the difficulty in short-
read alignment, providing sufficient coverage for accurate variant
identification.

Compute resource benchmark

A major challenge in whole-genome sequencing secondary
analysis is the long runtime, high cost of compute, and requirements
for specialized hardware for obtaining an adequate TAT. Sentieon
software addresses these issues by running efficiently on commodity
(x86 or ARM) CPU servers or workstations, offering accelerated
runtimes, improved consistency, and high accuracy compared to
other tools.
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To assess the runtime of Sentieon software, we tested three
Sentieon pipelines—the DNAscope Hybrid pipeline with 10x
PacBio HiFi and 35x Illumina data, DNAscope LongRead (PB)
with 30x PacBio HiFi data, and DNAscope with 30x Illumina data.
The benchmark assessed the runtime performance of alignment,
preprocessing, and SNP/indel/SV/CNV calling. A 120-thread Azure
instance (Standard HB120rs v3) was used as the computation
environment. The results for runtime, core-hours, and compute cost
are shown in Table 2. The DNAscope LongRead and DNAscope
pipeline runtimes were previously published (Microsoft Healthcare
and Life Sciences Blog, 2024).

The DNAscope Hybrid pipeline is actively being developed,
with future releases expected to show incremental improvements
in computational efficiency and accuracy. Benchmarking results
indicate that all three Sentieon pipelines completed the FASTQ-
to-VCF analysis in approximately 20 min to less than 90 min for a
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FIGURE 10

Identification landscape of selected SNPs/indels missed by different pipelines. Variants were selected based on the intersection of HG0O02 CMRG
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shown in the right panel.
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TABLE 2 Compute resource benchmark for DNAscope pipelines. The benchmark environment is Azure Standard HB120rs v3 (120 vCPUs, 456 GiB
memory, 512 GB premium SSD); runtime and on-demand compute cost are displayed. The DNAscope Hybrid pipeline outputs SNP/indel/SV/CNV, the
DNAscope LongRead pipeline outputs SNP/indel/SV, and DNAscope short reads output SNP/indel/CNV.

Pipeline DNAscope Hybrid DNAscope LongRead ‘ DNAscope (short reads)
Dataset 10x PB + 35x ILMN 30x PB 30x ILMN

Alignment (min) 18.8 11.5 9.7
Preprocessing (min) 2 0 14
Variant calling (min) 65 29.8 7.8
Total runtime (min) 85.8 41.2 18.9
Core-hours 171.7 82,5 37.8
On-demand ($) 5.2 2.5 1.1
Spot ($) 0.52 025 0.11

cost of between $0.11 and $5.20 depending on data and spot or
on-demand pricing.

Methods
Datasets used in this study

FASTQ files were downloaded from publicly available datasets:

PacBio: Human whole-genome sequencing datasets from
the Revio system for the Genome in a Bottle trio HG002
+ HGO003 + HGO004, with one Revio SMRT Cell per sample
replicate (PacBio, 2022).

Mlumina: pFDA Truth Challenge V2 (PrecisionFDA, 2025).

-

Frontiers in Bioinformatics

Benchmark VCFs: SNP/indel: NIST V4.2.1; draft Q100 V0.019;
CMRG V1.00 and SV: Q100 V0.019; CMRG V1.00. An overview of
the tools benchmarked in this study is provided in Table 3.

Pipelines and tools benchmarked in this
study

DNAscope Hybrid pipeline overview
The Sentieon DNAscope Hybrid pipeline is designed to process
and integrate both short and long sequencing reads from the same

sample, achieving the most comprehensive and accurate variant
calling results. This integrated approach ensures that variant calling
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TABLE 3 Sentieon tools and alternative tools in each
5 benchmarking category.
(@]
o Benchmarking Sentieon Alternative
= category pipeline or tools for
[a) module comparison
o
£ E Bl E|E g g E
2 = = = = = = Small variants (SNPs DNAscope Hybrid Deep Variant for PacBio
S and indels) (DS-Hybrid) (DV-PB)
9 DNAscope LongRead DRAGEN
S (DS-LR)
g
o
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o g 2 5 g (DS-LR)
< 9 3] b7 k7
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z z
@ = =
S = =
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= o = § E = = % % accuracy surpasses the results obtained by processing short or long
= — . . .
E 8 bl z Z reads separately. The pipeline takes FASTQ or BAM files as input
=% =% . .
2 o o and produces SNP, indel, SV, and CNV calls in VCF format as
(%] . .
g output. It can be applied to any human whole-genome sequencing
% £ assay and has potential for extension to other applications, such as
s o z 8 g g % g whole-exome sequencing, CMRG sequencing, or HLA analysis.
z 3 g k3 > . . .
T U S b = % g 3 a As previously described (Freed et al, 2022a), Sentieon
= ‘s = (5 N . . .
‘é g i Z’ g g g = § é DNAscope is a germline variant caller that performs haplotype-
% [ 22 % % = § 2 0 aware germline variant calling using an approach similar to the
el — w = x . . . .
el S g g 2 Z g = 8 % GATK HaplotypeCaller. In brief, the software identifies active
v e~ S o = . . . . .
o c;; g é % % z Z & & regions or regions of the genome that are likely to contain germline
o 1 < < = o = = . .. . . .
2 = T g oz o E = genetic variation. Reads are trimmed to the active region, and
(&) = = < .
L © o © g © © read haplotypes are generated using a local assembly. Reads are
c o
-% - then aligned to the generated haplotypes using a statistical model,
& generating a matrix of read likelihoods for each haplotype, which
) . .
¥ o 2 g 3 5 5 are then marginalized over the variant alleles to generate read
2 . 3 1
£ % S S 5 % g E g likelihoods for each allele. The alleles are then output as a VCF of
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P 2 B g & % § S 5 - candidate variants, and the candidate variants are genotyped using
[7] © a) = = < T Q T Q . . . .
T § = W= 55 485 £ £Q 0 £9 a machine-learned model that incorporates variant annotations as
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g ° o % 5 E 7 g g 2 TE model features.
4 < B g B9 2 z2 & % E As shown in Figure 1, the DNAscope Hybrid pipeline aligns
= = 2 2 52 E5 £ £ 35 £ 3
i o5 B B2 OE° 5 SE | L% short reads to the reference genome using Sentieon BWA and aligns
c - = = [ [
H > K £ 2| % g £ £ long reads using Sentieon Minimap2. In the Sentieon DNAscope
[ L
g § T g 2 % © é.: E Hybrid pipeline, we have extended DNAscopes variant calling
(=2
& © 9z approach using a multi-stage data processing pipeline. The pipeline
g performs an initial pass of variant calling using the combined
(%]
@ a short- and long-read data with DNAscope using sensitive variant
z % calling parameters. After the initial pass of variant calling, specific
§ g = I 2z a 2 B2 regions are selected for additional investigation. One source of
° 42 @ SRS = z z z these regions is the “hybrid_select.py” script, which selects sites for
. o further investigation if the long-read data have adequate coverage
w e= . . .
E:nl & (at least two reads by default) and if there is a genotype discrepancy
= between the short- and long-read data using DNAscope’s Bayesian
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statistical model. Regions containing short-read alignments
with a MapQ of 0, unmapped reads, and large insertions
in the long-read alignments are also selected for additional
investigation.

Once regions are selected for additional investigation, the
pipeline uses a sophisticated procedure to correctly place short-
read alignments. Long-read alignments across the selected regions
are split into smaller sequences and aligned back to the reference
genome using Sentieon BWA. The split long-read alignments are
then analyzed to determine the optimal placement of short reads,
moving the short-read alignments to their most likely location given
the long-read information. This procedure optimally utilizes the
long reads and the human reference genome to place the short
reads correctly. After this realignment procedure, a second pass of
variant calling is performed across regions with updated short-read
alignments using the realigned short reads.

VCE files from the first and second passes of variant calling
are merged, annotated and genotyped, and filtered using a
DNAscope machine learning model, similar to the Sentieon
DNAscope pipeline (Freed et al, 2022a). The machine learning
model used in the DNAscope Hybrid pipeline is trained with
a specific combination of short- and long-read sequence data
(Illumina and PacBio HiFi, for example), using the GIAB v4.2.1
benchmark with chromosome 20 and the HG003 sample held out
from model training. After genotyping and filtering, variants are
normalized using “bcftools norm” to generate the final output VCF
containing single-nucleotide variants and small indels (generally less
than 50 bp).

Structural variants (indels larger than 50 bp) are detected using
the DNAscope LongReadSV algorithm, and CNVs are called using
short-read-only CNVscope algorithm. A detailed description of
these two algorithms is provided below.

The DNAscope Hybrid pipeline is implemented in the Sentieon
software package, a highly optimized, commercial suite of tools
for biological data processing. The pipeline uses multiple tools
within the Sentieon software package, and a command line interface
(sentieon-cli) has been developed to allow users to easily run
the full hybrid pipeline by specifying the input, output, and key
parameters (Sentieon, 2025a). The sentieon-cli calls the sentieon
software package and the open-source tools bcftools, bedtools, and
samtools from the user’s PATH when running the DNAscope Hybrid
pipeline.

sentieon-cli dnascope-hybrid [-h] \
-r REFERENCE \

--sr-aln SR_ALN [SR_ALN ...]\
--Ir_aln LR_ALN [LR_ALN ...]\
-m MODEL_BUNDLE

[-d DBSNP]

[-b DIPLOID_BED] \

[-t NUMBER_THREADS] \
sample.vcf.gz

In addition to the DNAscope Hybrid pipeline, the following
Sentieon pipelines and modules were utilized in this benchmark:
BWA/MM?2 alignment (which supports machine learning models),

Frontiers in Bioinformatics

13

10.3389/fbinf.2025.1691056

DNAscope LongRead, DNAscope LongRead SV, CNVscope,
and hap-eval.

Sentieon alignment

Sentieon released an accelerated version of BWA-MEM (Li
and Durbin, 2009; Li, 2013) in 2017 (Freed et al., 2017) and
followed with an accelerated version of Minimap2 (Li, 2018) in
the 202010.04 release. These tools provide results consistent with
the open-source versions but deliver 2x-3x faster performance. In
the 202308 release, a new version of these two alignment tools
was introduced, improving whole-genome sequencing alignment
runtimes by approximately 2x using a model file to optimize
compute resources.

For this benchmark, Illumina NovaSeq 6000 reads from
HGO002 samples and other two GIAB samples (downloaded from
the PrecisionFDA Truth V2 challenge) were mapped to the
GRCh38 reference genome (GCA_000001405.15_GRCh38_no_
Reads
PacBio Revio were mapped to the GRCh38 reference genome using
Sentieon Minimap2.

alt_analysis_set_maskedGRC_exclusions_v2.fasta). from

Short variant calling

In addition to the DNAscope Hybrid pipeline, down-sampled
long-read datasets were also analyzed using the DNAscope
LongRead pipeline (Freed et al., 2022b). Originally published in
collaboration with PacBio in 2022, DNAscope LongRead performs
mapping and phasing and utilizes pre-trained machine learning
models to correct sequencer-specific error patterns and accurately
call short variants. Subsequent releases added support for ONT
reads, further enhancing pipeline performance. The DNAscope
LongRead pipeline can also be run via Sentieon-cli, with the
following command line:

sentieon-cli dnascope-longread [-h] \
-r REFERENCE \

--fastq INPUT_FASTQ ...
--readgroups READGROUP ...\
-m MODEL_BUNDLE \

[-d DBSNP] \

[-b DIPLOID_BED] \

[-t NUMBER_THREADS] \

[-gl\

--tech HiFi|ONT

[--haploid-bed HAPLOID_BED] \
sample.vcf.gz

DeepVariant (v1.8.0) (Poplin et al., 2018) was used to generate
variants from long-read-only data, using its default settings.
DRAGEN accuracy metrics were generated from VCF files
downloaded from a recently published work (Behera et al., 2024).

Benchmarking of SNV and Indels was conducted using hap.py
with the GIAB V4.2.1, draft Q100, and CMRG benchmark VCFs
and BED files.
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Structural variant calling and
benchmarking with hap-eval

The DNAscope LongRead SV caller is integrated into the
DNAscope Hybrid pipeline. It performs haplotype-resolved SV
calling and works well with both PacBio HiFi and ONT data,
supporting various sequencing chemistry versions and base callers.
Pbsv (v2.10.0) (Pacific Biosciences, n. d.) was also used to generate
long-read-only SVs. DRAGEN v4.2 SVs were obtained from an
earlier publication (Behera et al., 2024).

Benchmark of SVs was performed using “hap-eval” (Sentieon,
2025b), an open-source structural variant benchmarking tool
developed by the Sentieon team. Sentieon developed hap-eval to
address some limitations of the popular tool “Truvari” (English et al.,
2022). Older versions of Truvari performed a pairwise comparison
of variants, without accommodation for multiple nearby variants
or multi-allelic sites. Hap-eval assembles multiple variants into
haplotypes and conducts haplotype-based comparisons. This VCF
comparison engine is assembly-based and compares SV haplotypes at
asingle-base resolution. Hap-eval works in four steps: 1) combine base
and comparison calls in sorted order; 2) create comparison chunks;
3) perform a 1-to-1 comparison within each chunk between base and
comparison calls to create a match matrix; and 4) make calls based
on the matching matrix.

CNV calling

In DNAscope Hybrid, CNV identification is performed by
CNVscope, a short-read WGS CNV caller first released in Sentieon
version 202308.03. CNVscope is designed for germline CNV calling
across diploid chromosomes, identifying events greater than 1 kb in
length from full-coverage short-read data. The CNVscope algorithm
uses read-depth profiling, normalization, feature collection, and
segmentation to identify CNV events. Identified events are then
filtered using a pre-trained machine learning model. The model was
trained and tested using datasets developed from the HPRC and T2T
assemblies, including the Q100 assembly. CNVscope uses a reference-
independent approach and can be used with hg38, b37, or other
high-quality reference genome assemblies of diploid organisms.

sentieon driver \

-t NUMBER_THREADS \

-r REFERENCE \

-i DEDUPED_BAM \

--algo CNVscope

--model ML,_MODEL/cnv.model \
TMP_VARIANT_VCF

sentieon driver \

-t NUMBER_THREADS \

-r REFERENCE \

--algo CNVModelApply \

--model ML,_MODEL/cnv.model \
-v TMP_VARIANT_VCF\
VARIANT_VCF

We also generated CNV calls using CNVnator (v0.4.1)
(Abyzov et al, 2011). Benchmarking of CNVs was conducted
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using an in-house developed script. The evaluation between the
call and truth considers a call to be a true positive (TP) if it has
at least 30% overlap with a truth interval, and both the truth and
call variant had a consistent direction (gain or loss). An expanded
truth interval is considered if the CNV event occurs at a segmental
duplication region.

A primary challenge in benchmarking CNV callers is the
absence of a genome-scale, high-quality CNV truth set. To address
this gap, we developed a novel benchmark by leveraging the GIAB
Q100 SV truth set for HG002—the most complete diploid human
genome benchmark currently available. Our approach is predicated
on the principle that many large-scale indels are functionally CNV
events, such as tandem repeat expansions or contractions. The
systematic procedure for converting these long indels into a robust
CNV benchmark is as follows:

1. Identify the operative sequence unit: For each long indel, the
alternate sequence is first analyzed to identify its canonical
repeating unit. This step is crucial because a significant fraction
of functional CNVs arise from changes in large repeating units.
If no repetitive pattern is detected, the entire indel sequence is
treated as the single operative unit for the downstream analysis.

2. Event classification (gain or loss): The nature of the indel
dictates its classification. A long deletion is straightforwardly
interpreted as a CNV loss at its genomic locus. For a long
insertion, we must determine the origin of the inserted
sequence to classify it as a CNV gain. To achieve this, the
inserted unit is aligned to the reference genome, first targeting
the immediate flanking regions of the insertion site (local
alignment). A match here indicates a tandem duplication. If
no local match is found, a global alignment against the entire
reference genome is performed to locate the source of an
interspersed duplication. A successful match in either step
confirms a CNV gain. If no match is found, this insertion is
not considered a CNV gain event.

3. Copy number calculation: The absolute copy number is
determined by quantifying the number of operative units
within the indel sequence, integrated with the event’s genotype
(e.g., homozygous or heterozygous).
Boundary refinement: Finally, the genomic interval of
the newly defined CNV event may be expanded. This
adjustment is based on the sequence context of the matched
reference region, ensuring that the final benchmark interval
accurately encompasses the entire repetitive element for
robust evaluation. This also provides critical information for
accurately assessing CNV calls, which may not exactly coincide
with the CNV gain locus but fall within the general repeating
environment.

This systematic conversion ensures that our CNV benchmark is
biologically relevant and robustly derived from an assembly-based
SV benchmark.

Discussion

Here, we present the DNAscope Hybrid pipeline, a robust, fast,
and accurate pipeline for combined short- and long-read data.
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The DNAscope Hybrid pipeline uses a novel approach, with long-
read haplotypes guiding short-read alignment. We demonstrate
that this approach enables higher variant calling accuracy than
single-technology pipelines. In addition to SN'Vs/indels, the hybrid
pipeline incorporates specialized callers for structural and copy-
number variation to enable accurate detection of major types of
genetic variation.

Hybrid secondary analysis pipelines have emerged to harness
the complementary strengths of short- and long-read sequencing
technologies. Recently developed hybrid pipelines include “HELLO
(Ramachandran et al, 2021)] which utilizes deep learning
for variant calling from combined alignments, and “blend-
seq (Magner et al, 2024) which combines ultralow-coverage
long reads with standard-depth short reads for cost-effective
variant discovery. Clinically, Variantyx (Kaplun et al, 2023)
has implemented a unified workflow that integrates both data
types into diagnostic reporting, although long reads in this
pipeline mainly serve as orthogonal confirmation of short-read
variants. Despite these advances, most existing hybrid pipelines
align short and long reads independently, failing to utilize the
personalized information contained in the long-read alignments,
which limits accuracy improvements. In contrast, the DNAscope
Hybrid pipeline introduces a novel realignment step that improves
performance in complex genomic regions by leveraging long-read
length and short-read depth and indel accuracy. The pipeline
achieves enhanced computational efficiency through multiple
design optimizations, along with focusing processing on genomic
regions that benefit most, and other systematic improvements
that collectively make the pipeline more efficient than existing
alternatives.

Variant calls from the DNAscope Hybrid pipeline and other
tools were benchmarked using multiple samples and multiple
benchmark datasets. We utilized three samples (HG002, HG003,
and HGO004) from the GIAB v4.2.1 benchmark to confirm that
our method works well across multiple samples and is not overfit
to the samples used in model training (HGO003 is held out
during the training process). We also tested the performance
of these tools using the CMRG benchmark and the draft Q100
benchmark. The CMRG benchmark contains genomic regions
that are difficult to resolve with short-read sequencing, whereas
the draft Q100 benchmark uses an assembly-based approach to
extend into regions that are difficult to resolve with traditional
mapping-based approaches. Taken together, these benchmarks
validate the performance of the DNAscope Hybrid pipeline
as a robust pipeline for the analysis of combined short- and
long-read data.

Sequence coverage is a major consideration during project
planning, for both clinical and research projects. The DNAscope
Hybrid pipeline can be used with a range of coverages, including
targeted long-read sequencing, and is designed to fully utilize the
available read data. In this paper, we benchmark full-coverage
short-read datasets (at ~35x coverage), with a range of long-
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read coverages to assess pipeline performance. Given the robust
performance of the hybrid pipeline at a range of coverages, we
believe that full-coverage short-read sequencing combined with
either targeted or low-coverage (7x to 15x) long-read sequencing
will be applicable to a wide range of projects, enabling high-
accuracy SNVs and indels while also incorporating high-accuracy
structural variants, which are not accessible from short-read
data alone.

Future directions

The DNAscope Hybrid pipeline is actively under
development, with several planned improvements and
expansions.

Somatic variant calling is an area where the hybrid method
could provide significant advantages. Clinically relevant somatic
variants often occur at low allele frequencies and may introduce
homopolymer sequence repeats due to deficiencies in DNA
error repair mechanisms. Somatic structural variants, including
gene fusions, are important drivers of tumorigenesis. Accurately
detecting these variants requires both high sequencing depth and
long reads to resolve complex genomic regions. Currently, no
single sequencing technology meets both requirements effectively.
Hybrid approaches present a promising solution by combining
the strengths of short- and long-read sequencing technologies,
especially when combined with targeted sequencing of clinically
relevant regions that are difficult to resolve from short-read
data alone.

In addition to single-sample variant identification, DNAscope
can process cohort samples through joint calling, utilizing pre-
trained sequencing platform-specific models for short- or long-
read data. This approach represents an alternative method of hybrid
analysis across multiple sample types. In a recently published
application note (Sentieon, 2025c), the DNAscope joint caller
demonstrated its ability to harmonize different error patterns
across multiple sequencing platforms, producing results that
are fully interoperable with datasets generated from Illumina
sequencers. Moving forward, we plan to collect additional short-
and long-read datasets from the 1kGP (1000 Genome Project)
and further benchmark the hybrid joint calling pipeline using
these data.

Currently, this benchmark project includes datasets from
only two sequencing platforms: Illumina and PacBio. However,
several other commercially available platforms—particularly for
short reads—are gaining traction. DNAscope already supports
additional sequencing platforms, including Element Biosciences,
Ultima Genomics, and Complete Genomics, among others. We
anticipate that the hybrid pipeline will also be applicable to these
and other emerging sequencing platforms. As part of our roadmap,
we plan to develop and benchmark hybrid models for these
additional sequencing platforms.
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