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A novel and accelerated method 
for integrated alignment and 
variant calling from short and 
long reads

Jinnan Hu*, Donald Freed, Hanying Feng, Hong Chen, 
Zhipan Li �  and Haodong Chen

Sentieon Inc., San Jose, CA, United States

Background: Integrating short- and long-read sequencing technologies has 
become a promising approach for achieving accurate and comprehensive 
genomic analysis. Although short-read sequencing (Illumina, etc.) offers high 
base accuracy and cost efficiency, it struggles with structural variant (SV) 
detection and complex genomic regions. In contrast, long-read sequencing 
(PacBio HiFi) excels in resolving large SVs and repetitive sequences but is limited 
by throughput, higher insertion or deletion (indel) error rates, and sequencing 
costs. Hybrid approaches may combine these technologies and leverage their 
complementary strengths and different sources of error to provide higher 
accuracy, more comprehensive results, and higher throughput by lowering the 
coverage requirement for the long reads.
Methods: This study benchmarks the DNAscope Hybrid (DS-Hybrid) pipeline, 
a novel integrated alignment and variant calling framework that combines 
short- and long-read data sequenced from the same sample. The DNAscope 
Hybrid pipeline is a bioinformatics pipeline that runs on generic x86 CPUs. We 
evaluate its performance across multiple human genome reference datasets 
(HG002–HG004) using the draft Q100 and Genome in a Bottle v4.2.1 
benchmarks. The pipeline’s ability to detect small variants [single-nucleotide 
polymorphisms (SNPs)/indels)], SVs, and copy-number variations (CNVs) is 
assessed using data from the Illumina and PacBio sequencing systems at 
varying read depths (5×–30×). Benchmark results are compared to those of 
DeepVariant.
Results: The DNAscope Hybrid pipeline significantly improves SNP and indel 
calling accuracy, particularly in complex genomic regions. At lower long-read 
depths (e.g., 5×–10×), the hybrid approach outperforms stand-alone short- 
or long-read pipelines at full sequencing depths (30×–35×), reducing variant 
calling errors by at least 50%. Additionally, the DNAscope Hybrid outperforms 
leading open-source tools for SV and CNV detection and enhances variant 
discovery in challenging genomic regions. The pipeline also demonstrates 
clinical utility by identifying variants in disease-associated genes. Moreover, 
DNAscope Hybrid is highly efficient, achieving less than 90 min runtimes at 
single standard instance.
Conclusion: The DNAscope Hybrid pipeline is a computationally 
efficient, highly accurate variant calling framework that leverages the
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advantages of both short- and long-read sequencing. By improving variant 
detection in challenging genomic regions and offering a robust solution 
for clinical and large-scale genomic applications, it holds significant 
promise for genetic disease diagnostics, population-scale studies, and 
personalized medicine.

KEYWORDS

NGS-next generation sequencing, secondary analysis, variant calling, hybrid analysis, 
machine learning, accelerated analysis 

Introduction

Over the past decade, next-generation sequencing (NGS) and 
third-generation sequencing (TGS) have become a cornerstone in 
genomics research and medical applications, driving significant 
discoveries in disease mechanisms, population diversity, and 
personalized medicine strategies (Goodwin et al., 2016; Satam et al., 
2023). These advancements were facilitated by improvements 
in sequencing technologies, including reduced costs, enhanced 
read lengths, higher base quality, and increased accessibility to 
laboratories at various sizes.

Highly accurate methods for detecting single-nucleotide 
polymorphisms (SNPs) and <50 bp insertions or deletions (indels) 
have been central to genetic disease and tumor diagnostics. 
Additionally, the adoption of long-read sequencing has enabled 
better integration of structural variants (SVs; ≥50 bp insertions, 
deletions, or other rearrangement) into analyses (De Coster et al., 
2021; Mahmoud et al., 2019). Although SVs are less abundant than 
small variants in the human genome, they collectively impact more 
base pairs and play crucial roles in human evolution and disease 
(Sudmant et al., 2015). Copy-number variations (CNVs), arising 
from DNA segment deletions or duplications, represent another 
form of genomic variation linked to various diseases (Zarrei et al., 
2015). Despite these advancements, detecting and interpreting 
these variants together in an integrated analysis pipeline remain 
challenging.

Although short-read sequencing technologies (e.g., Illumina, 
Element Biosciences, MGI, etc.) effectively capture small variations 
across most of the human genome, they face challenges in 
difficult-to-map regions and in the detection of structural 
variant. Studies have demonstrated the limitations of short reads 
for identifying larger insertions, deletions, and other complex 
genomic rearrangements (Zook et al., 2020). Long-read sequencing 
technologies, such as PacBio HiFi, have been proposed to address 
these limitations. These platforms enable improved detection of 
complex SVs due to their ability to produce reads exceeding 
15 kb in length with current base accuracies ranging from 

Abbreviations: AWS, Amazon Web Services; CLI, command line interface; 
CNV, copy-number variation; CMRG, challenging medically relevant genes; 
DV, DeepVariant; FP, false positive; FN, false negative; GBM, gradient 
boosting machine; GIAB, Genome in a Bottle; HLA, human leukocyte 
antigen; ILMN, Illumina sequencing data; NICU, neonatal intensive care unit; 
NGS, next-generation sequencing; ONT, Oxford Nanopore Technologies; 
PB, PacBio HiFi sequencing data; SV, structural variant (≥50 bp); T2T 
consortium, Telomere-to-Telomere consortium; TRHP, tandem repeat and 
homopolymer regions; WGS, whole-genome sequencing.

99% to 99.9% (De Coster et al., 2021; Hoffmann et al., 2024; 
Amarasinghe et al., 2020). Nevertheless, these technologies are not 
without challenges. Errors in long-read sequencing often manifest 
as context-specific insertions and deletions (e.g., homopolymers), 
complicating the detection of indel variants even with high 
read coverage (Wenger et al., 2019). Additionally, the high cost of 
generating long reads, combined with their computational demands, 
poses barriers to large-scale applications, including population-wide 
studies and analysis of legacy samples. Many interesting samples 
slated for long-read analysis already have full-coverage short-read 
data. By using full-coverage short-read data with long-read data, 
this new pipeline leverages the strengths of both technologies 
and allows users to decrease long-read coverage by 2×–3× while 
simultaneously increasing the accuracy and comprehensiveness of 
results for each sample.

The complementary error profiles of short- and long-read 
sequencing technologies have motivated the development of hybrid 
analysis pipelines that leverage both data types. Initially, such 
approaches were implemented for de novo genome assembly, 
in which short reads were used to correct errors in long-read 
assemblies (Zhang et al., 2020; Brown et al., 2021). Several hybrid 
re-sequencing pipelines have also emerged, including “HELLO,” 
which utilizes deep learning to perform variant calling using 
combined alignments of short and long reads (Ramachandran et al., 
2021). Another notable pipeline, “blend-seq,” focuses on combining 
ultralow-coverage long reads (approximately 4× coverage) with 
standard 30× short reads for cost-effective variant discovery 
(Magner et al., 2024). Clinically, Variantyx has integrated short- 
and long-read analyses into a single diagnostic workflow, generating 
a comprehensive clinical report. This pipeline, however, uses long 
reads primarily for orthogonal confirmation of variants detected 
by short reads, leaving opportunities for further integration and 
optimization (Kaplun et al., 2023).

These existing pipelines independently align short and long 
reads to reference genomes without exploiting the potential of 
realignment to add value for variant calling. Moreover, limited 
attention is given to computational efficiency and speed, making 
them less viable for clinical settings such as neonatal intensive care 
units (NICUs) or large-scale cohort analyses.

The Genome in a Bottle (GIAB) Consortium has progressively 
improved its reference sample variant benchmark. The v4.2.1 variant 
call set, released in 2022, incorporated linked-reads and long-
read sequencing data, expanding high-confidence regions in the 
GRCh38 assembly from 85% to 92% of the genome. This update 
introduced difficult-to-map regions and other challenging genomic 
loci not previously included in the v3.3.2 call set (Wagner et al., 
2022a). In addition to the genome-wide SNP/indel benchmark, the 
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FIGURE 1
Overview of the processing steps of the DNAscope Hybrid variant calling pipeline.

GIAB released an SV benchmark (v0.6) (Zook et al., 2020) and 
a benchmark for challenging medically relevant genes (CMRGs) 
(Wagner et al., 2022b). In a separate effort, the Telomere-to-
Telomere (T2T) consortium has published high-quality assemblies 
of the HG002 sample (Rhie et al., 2023). The initial assembly 
leveraged PacBio HiFi and ONT (Oxford Nanopore Technologies) 
data from the Human Pangenome Reference Consortium (HPRC) 
and GIAB. Following extensive polishing and validation, the v1.1 
diploid assembly achieved near-perfect haplotype phasing and 
an error rate below one per 10 billion bases (a Phred quality 
score of Q100) (Hansen et al., 2025). Through alignment of the 
Q100 assembly to GRCh38, the GIAB team has generated a 
draft assembly-based benchmark for HG002. This new benchmark 
provides significantly more small variants and nearly three times 
the number of confident SV events compared to the earlier GIAB 
v0.6 SV benchmark (29,167 vs. 9,646) (Saunders et al., 2025). These 
advancements underscore the importance of choosing technologies 
and datasets aligned with cutting-edge genomic knowledge for 
clinical and research applications.

Sentieon has won a variety of awards in the PrecisionFDA 
Challenges including an award in Truth Challenge V2 for multi-
platform analysis (Olson et al., 2022), in which short and long 
reads were used to improve accuracy. The DNAscope Hybrid (DS-
Hybrid) pipeline presented here is a substantial improvement from 
the PrecisionFDA winning pipeline. Different from the previously 
published DNAscope pipeline for short reads (Freed et al., 2022a) 
and the DNAscope LongRead pipeline for long reads (Freed et al., 

2022b) or any existing pipelines, this hybrid analysis tool integrates 
short- and long-read sequencing data from the same sample 
by realigning short reads using the sample-specific long-read 
information to deliver comprehensive and accurate variant calling.

In this work, we present the DNAscope Hybrid pipeline, 
which utilizes short- and long-read data from a single sample 
to achieve highly accurate variant calling. As shown in Figure 1, 
the DNAscope Hybrid accepts FASTQ or BAM files as input and 
generates VCF outputs containing SNP, indel, SV, and CNV data. 
By combining the strengths of both sequencing platforms, the 
pipeline achieves superior variant detection compared to using 
either short- or long-read technology in isolation. The DNAscope 
Hybrid can be used with whole-genome sequencing (WGS) long-
read data or with targeted sequencing approaches such as the 
Twist Alliance Dark Genes Panel (Deserranno et al., 2025). The 
pipeline’s performance and versatility make it a promising tool 
for clinical diagnostics, particularly in settings requiring highly 
accurate, comprehensive results.

Compared with the existing hybrid analysis methods 
(Ramachandran et al., 2021; Magner et al., 2024; Kaplun et al., 2023) 
mentioned above, DNAscope Hybrid introduces a novel long- and 
short-read realignment step designed to enhance performance in 
complex genomic regions. This approach leverages the read-length 
advantage of long reads together with the higher depth and indel 
calling accuracy of short reads, thereby improving overall variant 
calling accuracy and expanding confident variant calls into more 
challenging genomic areas. Existing pipelines do not perform a 
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FIGURE 2
Genome-wide accuracy—total errors of (A) SNP in GIAB v4.2.1; (B) indel in GIAB v4.2.1; (C) SNP in draft Q100; (D) indel in draft Q100. DS-Hybrid PB + 
ILMN and DS-LR PB only are shown with curves covering 5×–30× long-read depths. DV PB and DRAGEN are shown at full depth.

comprehensive realignment and therefore fail to fully realize the 
highest accuracy from short- and long-read data.

To evaluate the performance of the DNAscope Hybrid pipeline, 
we benchmark the pipeline output using a variety of benchmarks. 
We benchmark the small-variant (SNV and indel) VCF using the 
GIAB v4.2.1, CMRG, and Q100 benchmarks. SVs identified by 
the pipeline are assessed using the CMRG and draft Q100 SV 
benchmarks. CNVs are assessed using a benchmark constructed 
from the Q100 SV benchmark. The runtime of the DNAscope 
Hybrid pipeline is assessed by running the pipeline using a public 
cloud server.

Results

Small variants (SNPs and indels)

To evaluate the accuracy of the DS-Hybrid pipeline at varying 
depths, we used the HG002 sample and a PacBio HiFi (PB) 
dataset down-sampled to depths of 5×, 7.5×, 10×, 15×, 20×, and 
30×, paired with 35× Illumina (ILMN) short-read data. To assess 
the accuracy contribution of short reads, we also analyzed each 
depth of PB datasets independently without short reads using the 
DNAscope LongRead (DS-LR) pipeline. Additionally, we included 
other datasets for comparison: Illumina (35×) data analyzed using 

DRAGEN v4.2 and PacBio HiFi (30×) analyzed using DeepVariant 
(DV) v1.8.0.

We initially investigated genome-wide accuracy using the NIST 
v4.2.1 benchmark (Figures 2A,B; Supplementary Table S1). This 
analysis demonstrated that higher depths of long-read sequencing 
yield greater accuracy, with the highest accuracy observed in the 
combined 30× PB + 35× ILMN datasets. Furthermore, hybrid 
indel accuracy is higher than that of the other evaluated methods, 
even when using only 7.5× coverage for long reads. Notably, the 
DNAscope Hybrid pipeline improves SNP and indel accuracy 
compared to any single-technology pipeline.

The current cost for DNA extraction and library preparation 
is approximately $735 USD for PacBio HiFi and $135 USD 
for Illumina [the service cost is from a single service provider 
(UC San Diego Genomics Core, 2025) as it will differ elsewhere]. 
Sequencing costs are approximately $330 for 10× PacBio 
HiFi coverage (Pacific Biosciences, 2024) and $200 for 30× 
Illumina coverage (Illumina, 2023). Therefore, generating a 
combined dataset of 10× PacBio HiFi + 30× Illumina would result 
in a total wet laboratory cost comparable to generating 20× PacBio 
HiFi data alone.

Based on these data, 10× of PacBio and 35× of Illumina have 
a good balance between the cost of reagents and results. At this 
coverage level, the pipeline has 1,527 indel errors and 6,467 SNP 
errors when evaluated on the GIAB v4.2.1 benchmark, for F1 values 
of 0.9985 and 0.9990, respectively.
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FIGURE 3
Stratified region accuracy—total errors of (A) SNP and (B) indel in tandem repeat and homopolymer (TRHP) regions in the Q100 benchmark. (C) SNP 
and (D) indel in the challenging medically relevant genes (CMRG) benchmark. DS-Hybrid PB + ILMN and DS-LR PB only are shown with curves 
covering 5×–30× long-read depths. DV PB and DRAGEN are shown at full depth.

Comparing the draft Q100 and the v4.2.1 benchmarks, total 
errors are much higher with the draft Q100 benchmark as it contains 
more challenging regions (Figures 2C,D; Supplementary Table S2), 
making it more suitable for benchmarking new high accuracy 
variant callers. In the draft Q100 benchmark, the hybrid pipeline 
has fewer errors than single-technology pipelines for both SNPs and 
indels. Comparing the hybrid pipeline with 10× long-read coverage 
with the draft Q100, SNP errors are reduced by 30% relative to the 
next best pipeline (DS-LR) and indel errors are reduced by 35% 
relative to the next best pipeline (DRAGEN).

To better understand the variant calling accuracy improvement 
in the hybrid pipeline, we performed a stratified analysis across 
GA4GH stratification regions (Krusche et al., 2019). Variant 
calling accuracy, as measured with the draft Q100 benchmark at 
annotated tandem repeat and homopolymer (TRHP) regions, is 
shown in Figures 3A,B. We additionally assessed variant calling 
accuracy using the CMRG benchmark for HG002 (Figures 3C,D). 
The DNAscope Hybrid pipeline has improved accuracy at TRHP 
regions, and the DNAscope Hybrid pipeline with 5× long-read 
coverage outperforms the other benchmarked pipelines. Short reads 
frequently fail to map to tandem repeats correctly, and long reads 
have less accurate resolution of homopolymers. By using the two 
data types in a complimentary way, the hybrid method helps 
resolve both sources of error. CMRG regions, which encompass 273 
medically relevant genes, demonstrated substantial benefits from 
hybrid short- and long-read data. Long reads alone cannot capture 

each variant correctly, whereas the hybrid pipeline still showed its 
improved accuracy, especially for indels. The improved accuracy will 
likely lead to an improved diagnostic rate and other clinical utility.

To better understand the differences between the evaluated 
pipelines, we compared the intersection of the DNAscope Hybrid 
VCF, VCFs from the stand-alone short- or long-read pipelines, and 
the GIAB v4.2.1 benchmark VCF (Figure 4). Variants detected by 
all pipelines that are also present in the benchmark VCF represent 
the highest proportion but are not displayed. ILMN detected fewer 
SNPs, with a higher number of false negatives, whereas PB had 
a higher rate of false-positive SNPs. Variants missed by short-
read pipelines were mainly attributed to low mappability and 
poor coverage, whereas those missed by long-read pipelines were 
primarily due to inherent limitations in base calling accuracy, 
particularly at homopolymer indels.

Although the DNAscope Hybrid pipeline has excellent 
performance on HG002, we wanted to further assess the 
performance on additional datasets to ensure that the approach 
used by the pipeline extends to other samples. We then applied the 
DNAscope Hybrid pipeline to two additional GIAB samples. The 
results, measured as SNP and indel combined total errors (FP + FN), 
were compared to those of the platform-recommended pipelines 
for Illumina short reads and PacBio long reads (Figure 5). This 
figure shows that DNAscope Hybrid call sets are consistently more 
accurate than short- or long-read-only call sets in the tested sample, 
highlighting its robustness and adaptability. 
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FIGURE 4
UpSet plots of (A) SNPs and (B) indels, including three benchmarked pipelines and the GIAB v4.2.1 benchmark VCF. The intersection (bar) of variants 
identified by all three pipelines that are also in the GIAB VCF is removed, and the remaining intersection categories are sorted by size. Call set sizes for 
each pipeline are displayed on the lower left panels. The UpSet plots have slightly different results from those in Figure 2 and Supplementary Table S1, 
due to the different comparison approaches that were used.

FIGURE 5
SNP/indel accuracy over HG002–HG004 reference samples. False-positive and false-negative counts for SNPs and indels are listed separately.

Structural variants

To evaluate structural variant (SV) accuracy, we analyzed down-
sampled long- and short-read datasets and evaluated variant calling 
accuracy using the draft Q100 or CMRG SV benchmarks. For the 
hybrid SV pipeline, only long-read information was utilized. Other 
benchmarked pipelines include PacBio SV calls generated using 
Pbsv and 35× ILMN SV calls generated using DRAGEN v4.2.

The genome-wide draft Q100 SV benchmark complements 
the information in the SNP/indel accuracy curves (Figures 6A,B; 
Supplementary Table S6). Although short-read pipelines 
demonstrate high accuracy for SNP and indel detection, these 
pipelines have lower accuracy for SV calling, particularly 
for SV recall. In contrast, long-read pipelines have higher 
measured SV accuracy, even at lower depths, and achieved 
saturation in performance at a depth approximately 15×–20×. 
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FIGURE 6
Structural variant (SV) accuracy as measured by (A) precision on the draft Q100 benchmark; (B) recall on the draft Q100 benchmark; (C) precision on 
the CMRG SV benchmark; (D) recall on the CMRG SV benchmark. PB-Hybrid/LongRead and Pbsv PB are shown as curves covering 5×–30× long-read 
depths. DRAGEN ILMN is shown at full-depth accuracy.

The DNAscope Hybrid/LR pipeline outperformed Pbsv in 
this benchmark. To further validate pipeline performance, 
we assessed SV accuracy using the CMRG SV benchmark 
(Figures 6C,D; Supplementary Table S7). Performance on the 
CMRG SV benchmark was consistent with the performance 
observed in the larger draft Q100 SV benchmark, underscoring 
the advantage of long-read sequencing in SV detection.

We further analyzed the intersection of the SV call sets with the 
draft Q100 SV benchmark (Figure 7). This analysis highlights the 
substantial number of structural variants missed by the short-read 
pipeline. These omissions primarily stem from the inherent limitations 
of short reads, particularly their inability to span longer SVs. 

Copy-number variation

CNV refers to genetic differences between individuals involving 
the loss or gain of specific DNA regions. The current version of the 
DNAscope Hybrid pipeline utilizes the recently released Sentieon 
CNVscope tool, which relies solely on short-read data for CNV 
detection. To evaluate its performance, we benchmarked CNVscope 
accuracy using the HG002 Q100 benchmark (Figure 8; see methods). 
We also benchmarked CNVnator accuracy for comparison. 

The Sentieon pipeline consistently demonstrated higher 
accuracy across nearly all event sizes, including the technically 
challenging <10k events, where CNVnator and most other tools 

struggle to achieve high accuracy. This suggests that DNAscope 
Hybrid offers significant improvements in CNV detection. 

Overall variant counts in HG002

DNAscope Hybrid is a comprehensive variant calling pipeline 
capable of detecting SNVs, short indels (<50 bp), and longer 
indels. When compared with the short-read DRAGEN pipeline, 
the hybrid pipeline identified a notably higher number of variants, 
particularly large insertion events (Figure 9). This increase is 
primarily attributable to the additional information provided by 
long-read data integrated into the hybrid workflow. 

Validation using selected variants in 
clinically relevant genes and simulated 
pathogenic variants

To evaluate the clinical utility of the DNAscope Hybrid pipeline, 
we further analyzed HG002 variants in the CMRG benchmark. 
In particular, HG002 CMRG variants were annotated using VEP 
(McLaren et al., 2016), and those associated with exons were selected 
for comparison across three pipelines: 1) the DNAscope Hybrid 
with 10× PB and 35× ILMN; 2) DeepVariant 30× PB; and 3) 
DeepVariant 35× ILMN. Variants detected using only one or two 
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FIGURE 7
UpSet plot of SVs for the three benchmarked pipelines and the draft Q100 benchmark VCF. Intersection categories are sorted by size. Call set sizes for 
each pipeline are displayed in the lower left panel.

of these pipelines are shown in Figure 10. The DNAscope Hybrid 
pipeline identified all 64 variants, whereas DV PB and DV ILMN 
failed to capture some, with nine variants exclusively detected by the 
hybrid pipeline.

We also analyzed a previously published set of clinically 
relevant germline variants identified from 100 real patient samples 
(Höps et al., 2025). Some variants in these patients were initially 
identified by whole-exome sequencing, whereas other variants 
were identified using other molecular diagnostic approaches, 
including Sanger sequencing and molecular ligation-based probe 
amplification (MLPA), as these variants are difficult to detect from 
traditional short-read sequencing. From this dataset, we selected 
all 42 SNP/indel variants for further analysis. Of these, 36 were 
classified as “difficult to detect by short-read sequencing” due to their 
location within homologous regions or pseudogenes. The remaining 
six variants were included because of complexities such as structural 
rearrangements, homopolymer repeats, imprinting effects, phasing 
challenges, or location within pseudoautosomal regions. Notably, 
even long-read sequencing alone failed to identify three of these 
variants without manual inspection in IGV. Additional details for all 
42 variants are provided in the supplementary table of a previously 
published study (Höps et al., 2025).

We generated simulated Illumina short reads at 30× coverage 
and PacBio HiFi long reads at 10× coverage and processed 

the simulated data through the DNAscope Hybrid pipeline. The 
DNAscope Hybrid pipeline successfully detected all 42 SNPs/indels. 
Among the identified variants, we focused on those previously 
reported in clinical cases, as shown in Table 1.

A notable example is Patient P10-B4 (Figure 11A), who was 
diagnosed with congenital adrenal hyperplasia (CAH) caused by 
an SNP in intron 2 of the CYP21A2 gene. This variant disrupts 
normal splicing, leading to impaired 21-hydroxylase enzyme 
function. The CYP21A2 gene has a highly similar pseudogene 
(CYP21A1P), which creates challenges for short-read sequencing 
alignment due to their high sequence homology. Traditionally, 
Sanger sequencing was the only reliable method for detecting 
such variants. However, in this case, long-read assembled 
haplotype data were used to guide alignment, enabling accurate 
mapping of short reads and providing strong support for variant
identification.

Figure 11B shows simulated read data from patient P11-F11, 
who carries the LVAVA combination, which affects five key amino 
acid positions in exon 3 of the OPN1LW gene. OPN1LW plays a 
crucial role in the spectral tuning of the red-sensitive photopigment, 
and mutations are associated with color vision impairment. The 
two critical DNA substitutions defining the LVAVA variant are 
highlighted by arrows, indicating their significance in modifying 
the opsin protein’s function. OPN1LW has a high degree of 
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FIGURE 8
CNV accuracy benchmark. CNVscope serves as the CNV caller in the DNAscope Hybrid and short-read pipelines. CNVnator results are shown for 
comparison.

FIGURE 9
Size distribution of small and structural variants identified by the DNAscope Hybrid pipeline on 10× PB + 35× ILMN and by DRAGEN on 35× ILMN.

sequence identity to the other opsin genes, OPN1MW and OPN1SW, 
which creates challenges for short-read alignment across the opsin 
genes. The hybrid pipeline overcomes the difficulty in short-
read alignment, providing sufficient coverage for accurate variant 
identification. 

Compute resource benchmark

A major challenge in whole-genome sequencing secondary 
analysis is the long runtime, high cost of compute, and requirements 
for specialized hardware for obtaining an adequate TAT. Sentieon 
software addresses these issues by running efficiently on commodity 
(x86 or ARM) CPU servers or workstations, offering accelerated 
runtimes, improved consistency, and high accuracy compared to 
other tools.

To assess the runtime of Sentieon software, we tested three 
Sentieon pipelines—the DNAscope Hybrid pipeline with 10× 
PacBio HiFi and 35× Illumina data, DNAscope LongRead (PB) 
with 30× PacBio HiFi data, and DNAscope with 30× Illumina data. 
The benchmark assessed the runtime performance of alignment, 
preprocessing, and SNP/indel/SV/CNV calling. A 120-thread Azure 
instance (Standard HB120rs v3) was used as the computation 
environment. The results for runtime, core-hours, and compute cost 
are shown in Table 2. The DNAscope LongRead and DNAscope 
pipeline runtimes were previously published (Microsoft Healthcare 
and Life Sciences Blog, 2024).

The DNAscope Hybrid pipeline is actively being developed, 
with future releases expected to show incremental improvements 
in computational efficiency and accuracy. Benchmarking results 
indicate that all three Sentieon pipelines completed the FASTQ-
to-VCF analysis in approximately 20 min to less than 90 min for a 
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FIGURE 10
Identification landscape of selected SNPs/indels missed by different pipelines. Variants were selected based on the intersection of HG002 CMRG 
exonic variants and those identified by one or two of the three pipelines. Many of the CMRG genes have well-documented disease associations, as 
shown in the right panel.
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FIGURE 11
IGV screenshot showing variants: (A) Chr6(GRCh38):g.32039081C>G, carried by Patient P10-B4, and (B) OPN1LW: LVAVA combination, carried by 
Patient P11-F11. The upper tracks display the mapped results of simulated long reads, and the lower tracks show realigned short reads. Target variants 
are indicated by black arrows.

TABLE 2  Compute resource benchmark for DNAscope pipelines. The benchmark environment is Azure Standard HB120rs v3 (120 vCPUs, 456 GiB 
memory, 512 GB premium SSD); runtime and on-demand compute cost are displayed. The DNAscope Hybrid pipeline outputs SNP/indel/SV/CNV, the 
DNAscope LongRead pipeline outputs SNP/indel/SV, and DNAscope short reads output SNP/indel/CNV.

Pipeline DNAscope Hybrid DNAscope LongRead DNAscope (short reads)

Dataset 10× PB + 35× ILMN 30× PB 30× ILMN

Alignment (min) 18.8 11.5 9.7

Preprocessing (min) 2 0 1.4

Variant calling (min) 65 29.8 7.8

Total runtime (min) 85.8 41.2 18.9

Core-hours 171.7 82.5 37.8

On-demand ($) 5.2 2.5 1.1

Spot ($) 0.52 0.25 0.11

cost of between $0.11 and $5.20 depending on data and spot or 
on-demand pricing.

Methods

Datasets used in this study

FASTQ files were downloaded from publicly available datasets:
PacBio: Human whole-genome sequencing datasets from 

the Revio system for the Genome in a Bottle trio HG002 
+ HG003 + HG004, with one Revio SMRT Cell per sample 
replicate (PacBio, 2022).

Illumina: pFDA Truth Challenge V2 (PrecisionFDA, 2025).

Benchmark VCFs: SNP/indel: NIST V4.2.1; draft Q100 V0.019; 
CMRG V1.00 and SV: Q100 V0.019; CMRG V1.00. An overview of 
the tools benchmarked in this study is provided in Table 3. 

Pipelines and tools benchmarked in this 
study

DNAscope Hybrid pipeline overview

The Sentieon DNAscope Hybrid pipeline is designed to process 
and integrate both short and long sequencing reads from the same 
sample, achieving the most comprehensive and accurate variant 
calling results. This integrated approach ensures that variant calling 
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TABLE 3  Sentieon tools and alternative tools in each 
benchmarking category.

Benchmarking 
category

Sentieon 
pipeline or 

module

Alternative 
tools for 

comparison

Small variants (SNPs 
and indels)

DNAscope Hybrid 
(DS-Hybrid)

DNAscope LongRead 
(DS-LR)

DeepVariant for PacBio 
(DV-PB)

DRAGEN

Structural variants 
(SVs)

DNAscope Hybrid 
(DS-Hybrid)

DNAscope LongRead 
(DS-LR)

pbsv
DRAGEN

Copy-number variation 
(CNV)

CNVscope CNVnator

Overall variant counts DNAscope Hybrid 
(DS-Hybrid)

DRAGEN

Variants in clinically 
relevant genes

DNAscope Hybrid 
(DS-Hybrid)

DeepVariant for PacBio 
(DV-PB)

DeepVariant for 
Illumina (DV-ILMN)

accuracy surpasses the results obtained by processing short or long 
reads separately. The pipeline takes FASTQ or BAM files as input 
and produces SNP, indel, SV, and CNV calls in VCF format as 
output. It can be applied to any human whole-genome sequencing 
assay and has potential for extension to other applications, such as 
whole-exome sequencing, CMRG sequencing, or HLA analysis.

As previously described (Freed et al., 2022a), Sentieon 
DNAscope is a germline variant caller that performs haplotype-
aware germline variant calling using an approach similar to the 
GATK HaplotypeCaller. In brief, the software identifies active 
regions or regions of the genome that are likely to contain germline 
genetic variation. Reads are trimmed to the active region, and 
read haplotypes are generated using a local assembly. Reads are 
then aligned to the generated haplotypes using a statistical model, 
generating a matrix of read likelihoods for each haplotype, which 
are then marginalized over the variant alleles to generate read 
likelihoods for each allele. The alleles are then output as a VCF of 
candidate variants, and the candidate variants are genotyped using 
a machine-learned model that incorporates variant annotations as 
model features.

As shown in Figure 1, the DNAscope Hybrid pipeline aligns 
short reads to the reference genome using Sentieon BWA and aligns 
long reads using Sentieon Minimap2. In the Sentieon DNAscope 
Hybrid pipeline, we have extended DNAscope’s variant calling 
approach using a multi-stage data processing pipeline. The pipeline 
performs an initial pass of variant calling using the combined 
short- and long-read data with DNAscope using sensitive variant 
calling parameters. After the initial pass of variant calling, specific 
regions are selected for additional investigation. One source of 
these regions is the “hybrid_select.py” script, which selects sites for 
further investigation if the long-read data have adequate coverage 
(at least two reads by default) and if there is a genotype discrepancy 
between the short- and long-read data using DNAscope’s Bayesian 
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statistical model. Regions containing short-read alignments 
with a MapQ of 0, unmapped reads, and large insertions 
in the long-read alignments are also selected for additional
investigation.

Once regions are selected for additional investigation, the 
pipeline uses a sophisticated procedure to correctly place short-
read alignments. Long-read alignments across the selected regions 
are split into smaller sequences and aligned back to the reference 
genome using Sentieon BWA. The split long-read alignments are 
then analyzed to determine the optimal placement of short reads, 
moving the short-read alignments to their most likely location given 
the long-read information. This procedure optimally utilizes the 
long reads and the human reference genome to place the short 
reads correctly. After this realignment procedure, a second pass of 
variant calling is performed across regions with updated short-read 
alignments using the realigned short reads.

VCF files from the first and second passes of variant calling 
are merged, annotated and genotyped, and filtered using a 
DNAscope machine learning model, similar to the Sentieon 
DNAscope pipeline (Freed et al., 2022a). The machine learning 
model used in the DNAscope Hybrid pipeline is trained with 
a specific combination of short- and long-read sequence data 
(Illumina and PacBio HiFi, for example), using the GIAB v4.2.1 
benchmark with chromosome 20 and the HG003 sample held out 
from model training. After genotyping and filtering, variants are 
normalized using “bcftools norm” to generate the final output VCF 
containing single-nucleotide variants and small indels (generally less 
than 50 bp).

Structural variants (indels larger than 50 bp) are detected using 
the DNAscope LongReadSV algorithm, and CNVs are called using 
short-read-only CNVscope algorithm. A detailed description of 
these two algorithms is provided below.

The DNAscope Hybrid pipeline is implemented in the Sentieon 
software package, a highly optimized, commercial suite of tools 
for biological data processing. The pipeline uses multiple tools 
within the Sentieon software package, and a command line interface 
(sentieon-cli) has been developed to allow users to easily run 
the full hybrid pipeline by specifying the input, output, and key 
parameters (Sentieon, 2025a). The sentieon-cli calls the sentieon 
software package and the open-source tools bcftools, bedtools, and 
samtools from the user’s PATH when running the DNAscope Hybrid 
pipeline.

 sentieon-cli dnascope-hybrid [-h] \
 -r REFERENCE \
 --sr-aln SR_ALN [SR_ALN …] \
 --lr_aln LR_ALN [LR_ALN …] \
 -m MODEL_BUNDLE
 [-d DBSNP]
 [-b DIPLOID_BED] \
 [-t NUMBER_THREADS] \
 sample.vcf.gz

In addition to the DNAscope Hybrid pipeline, the following 
Sentieon pipelines and modules were utilized in this benchmark: 
BWA/MM2 alignment (which supports machine learning models), 

DNAscope LongRead, DNAscope LongRead SV, CNVscope, 
and hap-eval. 

Sentieon alignment

Sentieon released an accelerated version of BWA-MEM (Li 
and Durbin, 2009; Li, 2013) in 2017 (Freed et al., 2017) and 
followed with an accelerated version of Minimap2 (Li, 2018) in 
the 202010.04 release. These tools provide results consistent with 
the open-source versions but deliver 2×–3× faster performance. In 
the 202308 release, a new version of these two alignment tools 
was introduced, improving whole-genome sequencing alignment 
runtimes by approximately 2× using a model file to optimize 
compute resources.

For this benchmark, Illumina NovaSeq 6000 reads from 
HG002 samples and other two GIAB samples (downloaded from 
the PrecisionFDA Truth V2 challenge) were mapped to the 
GRCh38 reference genome (GCA_000001405.15_GRCh38_no_
alt_analysis_set_maskedGRC_exclusions_v2.fasta). Reads from 
PacBio Revio were mapped to the GRCh38 reference genome using 
Sentieon Minimap2. 

Short variant calling

In addition to the DNAscope Hybrid pipeline, down-sampled 
long-read datasets were also analyzed using the DNAscope 
LongRead pipeline (Freed et al., 2022b). Originally published in 
collaboration with PacBio in 2022, DNAscope LongRead performs 
mapping and phasing and utilizes pre-trained machine learning 
models to correct sequencer-specific error patterns and accurately 
call short variants. Subsequent releases added support for ONT 
reads, further enhancing pipeline performance. The DNAscope 
LongRead pipeline can also be run via Sentieon-cli, with the 
following command line:

 sentieon-cli dnascope-longread [-h] \
 -r REFERENCE \
 --fastq INPUT_FASTQ …
 --readgroups READGROUP …\
 -m MODEL_BUNDLE \
 [-d DBSNP] \
 [-b DIPLOID_BED] \
 [-t NUMBER_THREADS] \
 [-g] \
 --tech HiFi|ONT
 [--haploid-bed HAPLOID_BED] \
 sample.vcf.gz

DeepVariant (v1.8.0) (Poplin et al., 2018) was used to generate 
variants from long-read-only data, using its default settings. 
DRAGEN accuracy metrics were generated from VCF files 
downloaded from a recently published work (Behera et al., 2024).

Benchmarking of SNV and Indels was conducted using hap.py 
with the GIAB V4.2.1, draft Q100, and CMRG benchmark VCFs 
and BED files. 
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Structural variant calling and 
benchmarking with hap-eval

The DNAscope LongRead SV caller is integrated into the 
DNAscope Hybrid pipeline. It performs haplotype-resolved SV 
calling and works well with both PacBio HiFi and ONT data, 
supporting various sequencing chemistry versions and base callers. 
Pbsv (v2.10.0) (Pacific Biosciences, n. d.) was also used to generate 
long-read-only SVs. DRAGEN v4.2 SVs were obtained from an 
earlier publication (Behera et al., 2024).

Benchmark of SVs was performed using “hap-eval” (Sentieon, 
2025b), an open-source structural variant benchmarking tool 
developed by the Sentieon team. Sentieon developed hap-eval to 
address some limitations of the popular tool “Truvari” (English et al., 
2022). Older versions of Truvari performed a pairwise comparison 
of variants, without accommodation for multiple nearby variants 
or multi-allelic sites. Hap-eval assembles multiple variants into 
haplotypes and conducts haplotype-based comparisons. This VCF 
comparison engine is assembly-based and compares SV haplotypes at 
a single-base resolution. Hap-eval works in four steps: 1) combine base 
and comparison calls in sorted order; 2) create comparison chunks; 
3) perform a 1-to-1 comparison within each chunk between base and 
comparison calls to create a match matrix; and 4) make calls based 
on the matching matrix. 

CNV calling

In DNAscope Hybrid, CNV identification is performed by 
CNVscope, a short-read WGS CNV caller first released in Sentieon 
version 202308.03. CNVscope is designed for germline CNV calling 
across diploid chromosomes, identifying events greater than 1 kb in 
length from full-coverage short-read data. The CNVscope algorithm 
uses read-depth profiling, normalization, feature collection, and 
segmentation to identify CNV events. Identified events are then 
filtered using a pre-trained machine learning model. The model was 
trained and tested using datasets developed from the HPRC and T2T 
assemblies, including the Q100 assembly. CNVscope uses a reference-
independent approach and can be used with hg38, b37, or other 
high-quality reference genome assemblies of diploid organisms.

 sentieon driver \
 -t NUMBER_THREADS \
 -r REFERENCE \
 -i DEDUPED_BAM \
 --algo CNVscope
 --model ML_MODEL/cnv.model \
 TMP_VARIANT_VCF
 sentieon driver \
 -t NUMBER_THREADS \
 -r REFERENCE \
 --algo CNVModelApply \
 --model ML_MODEL/cnv.model \
 -v TMP_VARIANT_VCF \
 VARIANT_VCF

We also generated CNV calls using CNVnator (v0.4.1)
(Abyzov et al., 2011). Benchmarking of CNVs was conducted 

using an in-house developed script. The evaluation between the 
call and truth considers a call to be a true positive (TP) if it has 
at least 30% overlap with a truth interval, and both the truth and 
call variant had a consistent direction (gain or loss). An expanded 
truth interval is considered if the CNV event occurs at a segmental 
duplication region.

A primary challenge in benchmarking CNV callers is the 
absence of a genome-scale, high-quality CNV truth set. To address 
this gap, we developed a novel benchmark by leveraging the GIAB 
Q100 SV truth set for HG002—the most complete diploid human 
genome benchmark currently available. Our approach is predicated 
on the principle that many large-scale indels are functionally CNV 
events, such as tandem repeat expansions or contractions. The 
systematic procedure for converting these long indels into a robust 
CNV benchmark is as follows:

1. Identify the operative sequence unit: For each long indel, the 
alternate sequence is first analyzed to identify its canonical 
repeating unit. This step is crucial because a significant fraction 
of functional CNVs arise from changes in large repeating units. 
If no repetitive pattern is detected, the entire indel sequence is 
treated as the single operative unit for the downstream analysis.

2. Event classification (gain or loss): The nature of the indel 
dictates its classification. A long deletion is straightforwardly 
interpreted as a CNV loss at its genomic locus. For a long 
insertion, we must determine the origin of the inserted 
sequence to classify it as a CNV gain. To achieve this, the 
inserted unit is aligned to the reference genome, first targeting 
the immediate flanking regions of the insertion site (local 
alignment). A match here indicates a tandem duplication. If 
no local match is found, a global alignment against the entire 
reference genome is performed to locate the source of an 
interspersed duplication. A successful match in either step 
confirms a CNV gain. If no match is found, this insertion is 
not considered a CNV gain event.

3. Copy number calculation: The absolute copy number is 
determined by quantifying the number of operative units 
within the indel sequence, integrated with the event’s genotype 
(e.g., homozygous or heterozygous).

4. Boundary refinement: Finally, the genomic interval of 
the newly defined CNV event may be expanded. This 
adjustment is based on the sequence context of the matched 
reference region, ensuring that the final benchmark interval 
accurately encompasses the entire repetitive element for 
robust evaluation. This also provides critical information for 
accurately assessing CNV calls, which may not exactly coincide 
with the CNV gain locus but fall within the general repeating 
environment.

This systematic conversion ensures that our CNV benchmark is 
biologically relevant and robustly derived from an assembly-based 
SV benchmark.

Discussion

Here, we present the DNAscope Hybrid pipeline, a robust, fast, 
and accurate pipeline for combined short- and long-read data. 
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The DNAscope Hybrid pipeline uses a novel approach, with long-
read haplotypes guiding short-read alignment. We demonstrate 
that this approach enables higher variant calling accuracy than 
single-technology pipelines. In addition to SNVs/indels, the hybrid 
pipeline incorporates specialized callers for structural and copy-
number variation to enable accurate detection of major types of 
genetic variation.

Hybrid secondary analysis pipelines have emerged to harness 
the complementary strengths of short- and long-read sequencing 
technologies. Recently developed hybrid pipelines include “HELLO 
(Ramachandran et al., 2021),” which utilizes deep learning 
for variant calling from combined alignments, and “blend-
seq (Magner et al., 2024),” which combines ultralow-coverage 
long reads with standard-depth short reads for cost-effective 
variant discovery. Clinically, Variantyx (Kaplun et al., 2023) 
has implemented a unified workflow that integrates both data 
types into diagnostic reporting, although long reads in this 
pipeline mainly serve as orthogonal confirmation of short-read 
variants. Despite these advances, most existing hybrid pipelines 
align short and long reads independently, failing to utilize the 
personalized information contained in the long-read alignments, 
which limits accuracy improvements. In contrast, the DNAscope 
Hybrid pipeline introduces a novel realignment step that improves 
performance in complex genomic regions by leveraging long-read 
length and short-read depth and indel accuracy. The pipeline 
achieves enhanced computational efficiency through multiple 
design optimizations, along with focusing processing on genomic 
regions that benefit most, and other systematic improvements 
that collectively make the pipeline more efficient than existing
alternatives.

Variant calls from the DNAscope Hybrid pipeline and other 
tools were benchmarked using multiple samples and multiple 
benchmark datasets. We utilized three samples (HG002, HG003, 
and HG004) from the GIAB v4.2.1 benchmark to confirm that 
our method works well across multiple samples and is not overfit 
to the samples used in model training (HG003 is held out 
during the training process). We also tested the performance 
of these tools using the CMRG benchmark and the draft Q100 
benchmark. The CMRG benchmark contains genomic regions 
that are difficult to resolve with short-read sequencing, whereas 
the draft Q100 benchmark uses an assembly-based approach to 
extend into regions that are difficult to resolve with traditional 
mapping-based approaches. Taken together, these benchmarks 
validate the performance of the DNAscope Hybrid pipeline 
as a robust pipeline for the analysis of combined short- and
long-read data.

Sequence coverage is a major consideration during project 
planning, for both clinical and research projects. The DNAscope 
Hybrid pipeline can be used with a range of coverages, including 
targeted long-read sequencing, and is designed to fully utilize the 
available read data. In this paper, we benchmark full-coverage 
short-read datasets (at ∼35× coverage), with a range of long- 

read coverages to assess pipeline performance. Given the robust 
performance of the hybrid pipeline at a range of coverages, we 
believe that full-coverage short-read sequencing combined with 
either targeted or low-coverage (7× to 15×) long-read sequencing 
will be applicable to a wide range of projects, enabling high-
accuracy SNVs and indels while also incorporating high-accuracy 
structural variants, which are not accessible from short-read
data alone.

Future directions

The DNAscope Hybrid pipeline is actively under 
development, with several planned improvements and
expansions.

Somatic variant calling is an area where the hybrid method 
could provide significant advantages. Clinically relevant somatic 
variants often occur at low allele frequencies and may introduce 
homopolymer sequence repeats due to deficiencies in DNA 
error repair mechanisms. Somatic structural variants, including 
gene fusions, are important drivers of tumorigenesis. Accurately 
detecting these variants requires both high sequencing depth and 
long reads to resolve complex genomic regions. Currently, no 
single sequencing technology meets both requirements effectively. 
Hybrid approaches present a promising solution by combining 
the strengths of short- and long-read sequencing technologies, 
especially when combined with targeted sequencing of clinically 
relevant regions that are difficult to resolve from short-read
data alone.

In addition to single-sample variant identification, DNAscope 
can process cohort samples through joint calling, utilizing pre-
trained sequencing platform-specific models for short- or long-
read data. This approach represents an alternative method of hybrid 
analysis across multiple sample types. In a recently published 
application note (Sentieon, 2025c), the DNAscope joint caller 
demonstrated its ability to harmonize different error patterns 
across multiple sequencing platforms, producing results that 
are fully interoperable with datasets generated from Illumina 
sequencers. Moving forward, we plan to collect additional short- 
and long-read datasets from the 1kGP (1000 Genome Project) 
and further benchmark the hybrid joint calling pipeline using 
these data.

Currently, this benchmark project includes datasets from 
only two sequencing platforms: Illumina and PacBio. However, 
several other commercially available platforms—particularly for 
short reads—are gaining traction. DNAscope already supports 
additional sequencing platforms, including Element Biosciences, 
Ultima Genomics, and Complete Genomics, among others. We 
anticipate that the hybrid pipeline will also be applicable to these 
and other emerging sequencing platforms. As part of our roadmap, 
we plan to develop and benchmark hybrid models for these 
additional sequencing platforms.
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ReferenceSamples/giab/release/AshkenazimTrio/. Draft Q100 
v0.019: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/
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