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Background: Gut fungi play crucial roles in human health. The profiling of 
the human gut mycobiome continues to progress. However, adjustments 
in the selection of ribosomal DNA marker regions can substantially affect 
the taxonomic resolution of a population. In particular, the impact of using 
primers’ combinations is insufficiently defined. In this study, we investigated the 
performance of three targeted sequencing regions, ITS1, ITS2 and 18S rRNA, 
separately and in combination.
Methods: Eight fecal samples from healthy individuals (n = 4) and cancer 
patients (n = 4) were selected as proof of principle for amplicon-based 
sequencing conducted with the DNBSEQ™ sequencing system. Quality-filtered 
reads were grouped into operational taxonomic units (OTUs) via USEARCH 
and categorized using the SILVA (18S) and UNITE (ITS) databases. Downstream 
bioinformatics encompassed diversity analyses, principal component analysis 
(PCA), and biomarker detection via linear discriminant analysis effect size 
(LEfSe). To improve taxonomic coverage and compositional understanding, data 
were examined using ALDEx2 with centered log-ratio (CLR) transformation, 
facilitating reliable differential abundance and effect size assessment in small 
sample metagenomic contexts.
Results and Discussion: Among primers, ITS2 and ITS1 enhanced the coverage 
of identified taxa, with operational taxonomic unit quantities of 183 and 
158, respectively, compared to 58 OTUs of 18S. Accordingly, among primer 
combinations tested, the triple integration of ITS1–ITS2–18S produced the 
highest fungal richness, while the dual ITS1–ITS2 combined datasets enhanced 
group discrimination analysis, showing enrichment of Candida albicans 
and scarcity of Penicillium sp. in cancer patients. Our findings based on 
ITS sequencing and the combination of ITS1 and ITS2 provide instructive 
information on the composition and dynamics of gut fungi in our initial test 
subjects, enhancing our understanding of their roles in gut homeostasis and the 
microbial shifts associated with cancer. Despite our approach being conducted
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with a limited cohort to establish methodological feasibility, it brings attention to 
multi-marker strategies, demonstrating that integrated primer datasets surpass 
traditional single-marker methods in both taxonomic coverage and biomarker 
detection sensitivity in low-biomass fecal samples. Our research provides a 
reliable starting point for future studies on gut mycobiome in both healthy 
and diseased individuals, which could lead to better diagnostics and treatments 
based on microbiome profiles.
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1 Introduction

The human gut harbors a complex microbial ecosystem, 
which is vital for sustaining the host’s health. The interaction 
between gut microbiota and disease progression remains a focus 
for researchers. Despite advances in gut mycobiome research, the 
question of how fungal diversity in stool differs across populations 
or geographical regions remains poorly defined, with current 
studies frequently constrained by limited sample sizes, regional 
focus, or methodological inconsistencies (Nash et al., 2017; 
Kabwe et al., 2020). Several studies have presented contradictory 
results concerning the stability and fundamental composition of the 
gut mycobiome among different populations. Some attribute this 
variation to experimental conditions, particularly amplicon primer 
selection and bioinformatics analysis, while the relative impact 
of additional factors, such as diet, environment, urbanization, 
ethnicity, and host genetics, on fungal diversity remains 
controversial (Gupta et al., 2017; Mahnic and Rupnik, 2018).

Advancements in sequencing technologies and computational 
biology have uncovered the importance of the gut mycobiome, 
which was previously underappreciated in diversity and significance 
(Chin et al., 2020). Previous metagenomic sequencing analyses 
showed that mycobiota constitutes ∼0.03–0.1% of the gut microbiota 
in healthy populations, primarily consisting of Saccharomyces, 
Malassezia, and Candida species (Qin et al., 2010; Gao et al., 
2017). Emerging studies found that fungal dysbiosis might be 
concurrent with disease development and progression, highlighting 
the importance of precise mycobiome profiling in oncology 
(Aykut et al., 2019; Liu et al., 2015).

Techniques for fungal community analysis have progressed 
significantly over the past few decades. While traditional culture-
based methods (e.g., microscopy and biochemical assays) were 
once foundational (Pathan and Patel, 2013), genome sequencing 
has expanded fungal databases, although they still remain 
underdeveloped compared to bacterial counterparts (Strati et al., 
2016). Despite these advances, detecting fungi in fecal samples 
remains challenging due to their low biomass, high microbial 
diversity, and persistent technical limitations.

Using traditional culture-based fungal detection techniques 
in fecal samples enables rapid clinical diagnostics, but it limits 
the resolution for low-abundance species and restricts broader 
applicability due to the uncultivability of numerous fungi, rendering 
it inadequate for comprehensive mycobiome profiling (Hamad et al., 
2017; Sarrabayrouse et al., 2021; Wiesmann et al., 2022). Thereafter, 
molecular methods revolutionized fungal detection by addressing 

the limitations of traditional techniques. Primer-based approaches 
amplify fungal DNA with high sensitivity, enabling species-specific 
identification and quantification (Huffnagle and Noverr, 2013).

Despite their specificity, primer bias can distort detection 
accuracy, as evidenced by comparative analyses of commonly used 
primer pairs (Jana et al., 2013) and further validated in our study. 
Current methodologies for investigating gut fungal diversity utilize 
targeted sequencing of specific genetic markers, including the 18S 
rRNA gene and the ITS regions, each offering distinct advantages 
and drawbacks in elucidating fungal community composition of a 
given sample.

The primary focus on culture-independent analyses and 
database creation has targeted loci encompassing the 18S, 
5.8S, and 28S rRNA genes, along with the ITS1 and ITS2 
(Supplementary Figure S1). The analysis of fungal ITS regions along 
with rRNA genes has uncovered a remarkable variety of fungi within 
the microbiome (Hoggard et al., 2018a).

The 18S rRNA gene, which encodes a small ribosome subunit, 
is sequenced to identify eukaryotes, including fungi. Due to its 
conserved and phylogenetically informative regions, it is valuable 
for studying broad taxonomic clades among eukaryotes. Universal 
primers for 18S rRNA gene amplification across numerous fungal 
taxa have been developed based on its highly conserved sequences 
(Wang et al., 2014). This conservation may not identify closely 
related species, reducing species-level variation (Schoch et al., 
2012a). The conserved 18S rRNA gene matches sequences across 
taxa but lacks diversity to identify closely related species or strains, 
limiting its use in fungal diversification (Pelley and Pelley, 2007). In 
addition, the 18S rRNA gene has a higher PCR failure rate than other 
rRNA markers. This limitation may require group-specific primers 
to improve amplification of some fungal groups (Banos et al., 2018).

The ITS regions, including flanking subregions of ITS1 
and ITS2, are situated between the 18S and 28S rRNA genes 
(Supplementary Figure S1). These locations are more diverse, 
rendering them suitable for distinguishing closely related fungus 
species. Thus, the ITS region is proposed as the universal DNA 
barcode for fungi due to its high variability, and it is beneficial for 
species-level identification (Takada et al., 2016; Stewart et al., 2007). 
Public repositories contain ITS region databases with complete 
sequence data for taxonomic classifications and comparative 
investigations (Stielow et al., 2015). Therefore, ITS databases are 
often advantageous for providing valuable resources for fungal 
identification, but improperly curated reference material might lead 
to misidentification or overestimation (Nilsson et al., 2008; Gardes 
and Bruns, 1993; White et al., 1990).
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Mycobiome profiling is highly affected by the choice of primers, 
which can influence taxonomic coverage, detection sensitivity, and 
community composition outcomes. ITS1, ITS2, and 18S rRNA 
primers each provide distinct advantages; however, their combined 
application in fungal profiling has been insufficiently evaluated, 
particularly in complex, low-biomass samples such as human stool.

The primary objective of this study is to evaluate the 
performance of ITS1, ITS2, and 18S rRNA primer sets, both 
individually and in combination, in enhancing fungal community 
detection and taxonomic resolution. We further aimed to assess 
the advantages of multi-marker datasets in improving differential 
abundance detection using appropriate statistical approaches, 
such as the analysis of differential abundance taking advantage 
of log-ratios (ALDEx2) R package. It is a compositional data 
analysis package specifically designed for small-sample microbiome 
datasets. It employs a centered log-ratio (CLR) transformation tool 
to accurately estimate differential abundance despite the limited 
cohort size.

This evaluation was conducted using methodological proof of 
a limited number of fecal samples from a cohort of cancer patients 
and cancer-free controls from the Middle East. To tackle controversy 
over the appropriate gut mycobiome marker (Banos et al., 2018; 
Takada et al., 2016; Stewart et al., 2007), we evaluated the taxonomic 
resolution, detection sensitivity, and overall efficacy of each marker 
utilizing standardized pipelines that incorporate the SILVA and 
UNITE reference databases. This method was designed to overcome 
the limitations commonly encountered in prior research, such 
as reliance on BLAST-based annotations, offering only genus-
level identifications, and limited incorporation of comparative or 
differential abundance analysis regarding the gut mycobiome. 

2 Materials and methods

2.1 Sampling and sequencing

Eight fecal samples (n = 8) were obtained from cancer patients 
and cancer-free participants for microbiome analysis from a 
previous study. The samples were selected for a proof-of-concept 
design to evaluate primer efficacy across different clinical conditions. 
The cohort consisted of eight adults (ages 42–58), Eastern 
Mediterranean volunteers (https://www.emro.who.int/information-
resources/imemr-database/), including four individuals diagnosed 
with different malignancies (colorectal, breast, and endometrial) 
and four cancer-free individuals (Supplementary File S1). Cancer 
patients were selected for different malignancies, thus providing 
a range of host conditions for the analysis of gut mycobiome 
diversity. Individuals free of cancer were paired based on age 
to decrease confounding due to age-related microbial variability. 
The purpose of this small yet diverse cohort was to improve 
methodological understanding of primer efficiency and taxonomic 
resolution while reducing biological variability that might mask 
primer-related variations. The smallest sample size (n = 8) was 
selected since this pilot study aimed not at epidemiological 
inference but at the technical comparison of primer sets and 
sequencing efficacy. All samples were obtained under uniform 
conditions and processed consistently to ensure comparability 
among groups (Labania et al., 2023). The collected samples were 

subjected to DNA extraction using the QIAamp PowerFecal Pro 
DNA Kit (QIAGEN GmbH, Germany). A NanoDrop ND-1000 
UV-Vis Spectrophotometer (Thermo Fisher Scientific, Wilmington, 
DE, United States) was used for DNA purity and concentration 
inspection, and gel electrophoresis was used for DNA integrity 
verification. A measure of 30 ng of approved DNA templates was 
sent to Neo-Science (neoscience.ae) for sequencing; each sample 
went through three primer-based PCR reactions targeting the 18S 
rRNA gene: V4 (5′ to 3′) (F: CCAGCASCYGCGGTAATTCC, R: 
ACTTTCGTTCTTGAT), ITS1 (F: TCCGTAGGTGAACCTGCGG, 
R: GCTGCGTTCTTCATCGATGC), and ITS2 (F: GATGAAGAA
CGYAGYRAA, R: TCCTCCGCTTATTGATATGC) regions. PCR 
enrichment was performed in 50 μL reactions comprising 30 ng of 
template DNA using fusion PCR primers, adhering to the specified 
cycle conditions: 95 °C for 3 min, 30 cycles of 95 °C for 15 s, 56 °C 
for 15 s, and 72 °C for 45 s, followed by a final extension at 72 °C 
for 5 min. PCR products were purified utilizing DNA magnetic 
beads (BGI, LB00V60). Library preparation was conducted using 2× 
Phanta Max Master Mix (VAZYME, China). The resultant libraries 
were subjected to circularization and rolling circle amplification 
to produce DNA nanoballs (DNBs), which were subsequently 
deposited onto patterned nanoarrays. Sequencing was conducted 
on the DNBSEQ-G400 platform (BGI-Shenzhen, China) utilizing 
paired-end 300 bp reads. 

2.2 Bioinformatics analysis workflow

Raw sequencing data underwent preliminary quality control 
for contaminants to ensure clean data for analysis. The merging of 
overlapping paired-end reads into contiguous tags was completed 
using FLASH v1.2.11, which finalized the filtering process. 
UCHIME (v4.2.40) was used for chimera detection, and USEARCH 
(v7.0.1090) clustered high-quality reads into operational taxonomic 
units (OTUs). Detailed information on DNA concentration and 
quality assessment, sequencing quality control metrics, OTU 
statistics, and software used for clustering and chimera detection 
is provided in Supplementary File S1.

The 18S rRNA database, SILVA v.138 for 18S rDNA amplicon 
sequencing OTUs, and UNITE v.8.2, a fungal-specialized database, 
were utilized for taxonomic classification. Based on the OTU 
profile table and taxonomic annotation results for each approach, 
R (v4.4.1) libraries (detailed in Supplementary File S2 were used 
to conduct species accumulation and prevalence rate analyses, 
alpha diversity, beta diversity, and differential principal component 
analysis (PCA), log2-fold differential abundance evaluations, and 
linear discriminant analysis effect size (LEfSe) to identify biomarkers 
and gain insights into microbial community composition and 
structure (RStudio. bookdown, 2023; Microbiome Project, 2023; 
Bioconductor, 2023; Abarenkov et al., 2025).

To improve taxonomic coverage, datasets were combined from 
ITS1 and ITS2, ITS1 and 18S, ITS2 and 18S, and all primer 
datasets collectively, and OTU tables along with their accompanying 
taxonomy annotations were integrated into a singular dataset 
for each combination of ITS1–ITS2, ITS1–18S, ITS2–18S, and 
ITS1–ITS2–18S. Furthermore, the combined datasets and singular 
datasets (ITS1, ITS2, and 18S) were subjected to ALDEx2, which 
is appropriate for small metagenomic sample sizes. This method 
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applied CLR-transformed abundance matrices that underwent PCA 
using the ALDEx2 v. 1.36.0 package to investigate compositional 
variation across groups. Subsequently, we evaluate differential 
abundance and effect size estimation. A step-by-step protocol for 
bioinformatics analysis is provided in Supplementary File S2. All 
analytical reproducible code scripts are provided in a step-by-step 
protocol (File S2) and accessible in our GitHub repository: GitHub 
https://github.com/HibaOrsud/18S-Microbiome-.git and Zenodo 
(DOI: 10.5281/zenodo.17198284). 

2.3 Ethics statement

This study was conducted on previously collected samples, 
which received approval from the Tawam Human Research Ethics 
Committee at Tawam Hospital, Al Ain, Abu Dhabi, United Arab 
Emirates. Ethical approval was provided from 25 December 2019 
to 31 March 2021 (approval no. THREC-678). Informed consent 
was obtained from participants before enrollment. All procedures 
adhered to the ethical standards given by the institutional research 
committee, according to Good Clinical Practice (GCP) guidelines, 
the Department of Health (DoH), Abu Dhabi, and the 1964 
Declaration of Helsinki, together with its subsequent revisions or 
equivalent ethical standards. 

3 Results

The results provided an in-depth characterization of fungal 
communities across limited samples and primer sets, highlighting 
significant differences in richness, diversity, and taxonomic 
composition. The study revealed substantial group-specific patterns 
and emphasized the influence of primer selection, along with the 
combination of their datasets, on community profiling. 

3.1 OTU distribution across primer sets

The variation in OTU richness across the three primer 
sets was observed by assessing the quantity of OTUs using 
three primer sets—18S, ITS1, and ITS2—among eight samples. 
A bar plot illustrating OTU counts demonstrated significant 
heterogeneity in richness among the samples and primer 
sets (Supplementary Figure S2a). Both ITS1 and ITS2 primers 
consistently yielded a higher number of OTUs (n = 158 and n 
= 183, respectively) than the 18S primer (n = 56). Accordingly, 
the histogram enhanced comprehension of microbial detection, 
illustrating the frequency distribution of OTUs across the primer 
sets (Figure 2b). On the other hand, the triple-combined dataset 
ITS1–ITS2–18S represented a greater number of OTUs (n = 397) 
than the pairwise combined ITS1–ITS2 (n = 341), ITS2–18S (n 
= 239), and ITS1–18S (n = 214). Moreover, but it also enabled 
the detection of a wider array of fungal taxa, showing the 
beneficial effect of primer set integration in enhancing taxonomic 
resolution (Figure 1). Detailed OTU counts and distributions are 
provided in Supplementary File S3.

3.2 Sequencing depth evaluation via 
rarefaction analysis

To evaluate read accumulation per sample, the created 
rarefaction curves assessed sequencing depth that adequately 
captured the microbial diversity within each sample. The ITS1 
and ITS2 primers surpassed 18S in capturing OTU richness 
across samples (Figure 2). ITS2 exhibited the highest diversity 
and the slowest saturation, rendering it very effective for 
evaluating varied fungal or eukaryotic microbial populations. 
Conversely, the 18S primer, although beneficial for broader 
taxonomic representation, may exhibit constraints in resolution 
and sensitivity. This difference (Table 1) indicates varying ecological 
complexities among samples and underscores the necessity of 
tailored sequencing procedures based on community richness, such 
as the multi-marker strategy.

3.3 Taxonomic prevalence patterns

To assess variation in microbial abundance across taxa, log-
transformed prevalence profiling revealed significant differences 
in microbial family-level abundance among the samples. Notable 
fungal families include Aspergillaceae, Saccharomycetaceae, 
and Pichiaceae, which exhibited consistently high abundance 
across many samples when using ITS1 and ITS2 individually, 
compared to the 18S primer, increasing the potential of ITS-based 
sequencing for detecting the dominance and opportunistic growth 
of relevant conditions (Supplementary Figure S3). Furthermore, 
species-level profiles of taxa prevalence and abundance offer 
deeper insights into the microbial composition of each sample 
(Supplementary Figure S4). These visualizations elucidated major 
differences in community distribution within samples and among 
primer sets, highlighting the heterogeneity of ITS primers in 
contrast to 18S. For instance, while many species were consistently 
present, others were markedly sample-specific, corroborating the 
identification of group-specific OTUs (Supplementary Figure S5). 
The uniformity of these trends in both family- and species-level 
analysis further reinforces the validity of our findings. 

3.4 Differential abundance profiles per 
individual primer

A differential abundance heatmap was created to evaluate 
primer-specific profile patterns across eight fecal samples using 
three primer sets: 18S, ITS1, and ITS2 (Figure 3a). The heatmap 
demonstrated considerable variations in taxonomic recognition 
among primers, emphasizing both shared and distinct fungal 
profiles. The ITS primer sets exhibited the highest taxonomic 
coverage, identifying multiple taxa with mostly elevated relative 
abundance, such as S. cerevisiae (45%), Aspergillus spp. (14%), C. 
albicans (22%), and Candida sp. (8%), which were captured by ITS2. 
Similarly, ITS1 detected C. albicans (34%), A. spp. (16%), uniquely 
detected Malassezia spp. (18%) and Exophiala spp. (1.03%), and 
exhibited differential detection relative to ITS2. Conversely, the 18S 
primer set detected non-fungal eukaryotes (e.g., Blastocystis hominis
and Bysmatrum arenicola) and yeast (e.g., Kazachstania humilis) 
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FIGURE 1
Matrix of species and OTUs across individual and combined primer sets. The heatmaps show species detection across individual and combined primer 
sets. X-axis: individual primer sets (A) (ITS1, ITS2, and 18S) and combined primer sets (B). Y-axis: species, the hue color map represents the detection 
level, indicating increased or decreased species abundance. (C) The bar chart displays the number of OTUs generated from each single primer set 
(blue) and in combination (green).
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FIGURE 2
Rarefaction curve. This graph shows the rarefaction curve for microbial diversity using (A) 18S rRNA, (B) ITS1, and (C) ITS2 primers, demonstrating the 
expected OTUs richness (y-axis) relative to the number of samples or sequencing depth (x-axis). A consistent curve indicates adequate sequencing 
depth. The expected OTU richness increased with the sample size, which was typical of rarefaction curves. Some samples, such as G50, G41 and G48, 
showed a lower increase in OTU richness. Conversely, some samples, such as A4, A25, and B20, quickly saturated. Overall, ITS1 and ITS2 represent the 
higher OTUs richness. However, 18S sequencing produced remarkably low OTUs richness.
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TABLE 1  Cross-primer comparison of OTU richness and 
rarefaction trends.

Primer set Maximum OTU 
richness %

Saturation trend

18S ∼45 Early plateau

ITS1 ∼75 Moderate

ITS2 ∼85 Late plateau

OTU richness (%) reflects the highest number of OTUs captured per primer set across all 
samples. The saturation trend indicates how quickly the rarefaction curve flattens, reflecting 
whether the sequencing depth was sufficient to capture most of the diversity. The data were 
derived from rarefaction analyses conducted in R4.0 (vegan2.6 and ggplots3.2.0 packages). 
The results indicate that ITS2 performed better in detecting a wide range of fungal taxa, 
while 18S reached saturation earlier and revealed lower diversity.

that were unique to 18S, indicating its broader eukaryotic detection 
range. On the other hand, 18S detected C. albicans (13%) and S. 
cerevisiae (57%) in all eight samples consistently. However, ITS 
detected both species in selected samples. Furthermore, Candida 
parapsilosis (48%) and Candida dubliniensis (20%) were distinctively 
captured by ITS1, and Candida tropicalis (2%) was consistently 
detected across both ITS primers.

3.5 Differential abundance in combined 
primer sets

The differential abundance patterns of the top fungal 
species identified in eight fecal samples, detected by four 
primer set combinations: ITS1–18S, ITS1–ITS2, ITS1–ITS2–18S, 
and ITS2–18S (Figure 3b). Considerable differences in detection 
sensitivity and taxonomic range are apparent among the primer 
sets. For example, ITS1–ITS2 exhibited elevated detection rates 
for Candida spp. and A. spp., with increased relative abundances 
in particular samples. The triple combination of ITS1–ITS2–18S 
consistently identified core taxa such as S. cerevisiae and Rhodotorula 
mucilaginosa in all subjects, demonstrating a comprehensive 
profiling of both prevalent and infrequent fungi. Conversely, 
ITS1–18S and ITS2–18S exhibited a slightly narrower taxonomic 
profile while still identifying notable species such as Trichosporon 
asahii and Talaromyces diversus. 

3.5.1 Case studies
This protocol was conducted as a proof-of-principle trial 

to examine gut fungi in stool samples from two groups: CG, 
comprising cancer patients (n = 4), and CF, encompassing cancer-
free individuals (n = 4). The study highlights human gut mycobiome 
profiling, facilitated by combined primer strategies for modifying 
the workflow for evaluating the performance of ITS1, ITS2, and 
18S datasets.

The distribution of OTUs was assessed through Venn diagrams 
of the two piloted groups for each primer set to evaluate group-
specific microbiological trends. The results evidently illustrate 
the enhanced discriminatory power of the ITS primer sets 
in distinguishing between the groups, particularly ITS2, in 
delineating group-specific microbial diversity. Among all tested 

primers, ITS2 detected the highest total number of OTUs 
(n = 183) including 31 OTUs specific to the cancer group 
(Supplementary Figure S5; Supplementary File S3).

The differential abundance analysis using the three 
primer sets (ITS1, ITS2, and 18S) demonstrated diverse 
profiles in the detection of fungal species and group-specific 
enrichment (Supplementary Figure S6). In our trial cohorts, ITS1 
indicated that C. albicans and Aspergillus ruber were commonly 
prevalent in the cancer group (CG), but Malassezia furfur and 
C. dubliniensis were present at moderate levels, predominantly 
in the cancer-free (CF) group. ITS2 further improved species-
level resolution, emphasizing the significant enrichment of C. 
albicans in CG and S. cerevisiae in CF. This primer additionally 
identified taxa such as Penicillium sp. and Issatchenkia orientalis, 
enhancing discriminating power among groups. Conversely, 
18S exhibited a wider eukaryotic diversity, with S. cerevisiae
predominating in the CF group and C. albicans maintaining 
prominence in the CG group. Nevertheless, 18S yielded a greater 
quantity of unclassified taxa, indicating reduced selectivity for fungal 
community characterization compared to ITS primers.

The integration of primer datasets improved the inferentiality of 
abundantly variable fungal taxa between the CF and cancer (CG) 
groups (Supplementary Figure S7). In the ITS1–ITS2 combination, 
C. albicans and A. ruber were significantly more prevalent in the CG 
group, corroborating a trend previously noted in the individual ITS1 
dataset. In contrast, S. cerevisiae was consistently more prevalent in 
CF samples, especially in the ITS1–ITS2 and ITS1–18S pairings. The 
ITS1–18S and ITS2–18S combinations revealed a broader spectrum 
of unclassified taxa, particularly in CG. This suggests that a greater 
portion of the mycobiota might be hidden and potentially dysbiotic 
in the cancer cohort. The triply integrated ITS1–ITS2–18S dataset 
provides the most thorough perspective, preserving the detection 
of significant fungal taxa such as C. albicans and S. cerevisiae and 
expanding coverage of rare or unclassified species. Therefore, the 
integration of datasets together provides the most comprehensive 
view, integrating signals from all gene regions and reinforcing trends 
observed in primer combinations (Table 2).

3.5.2 Linear discriminant analysis
We examined the combined potential of various ribosomal 

markers because of the differential abundance approaches for the 
individual and integrated datasets of 18S, ITS1, and ITS2. LEfSe 
analysis quantified these differences, identifying taxa with significant 
discriminatory power based on their linear discriminant analysis 
(LDA) scores. Each primer set enabled the identification of group-
specific fungal species; however, ITS1 and ITS2 yielded a greater 
number of informative indicators. For instance, Aspergillus sp. (LDA 
= 3.7 and p = 0.031) and Penicillium sp. (LDA = 2.8 and p = 0.032) 
were prominently detected with ITS2, while M. furfur (LDA = 3.9 
and p = 0.025) and C. parapsilosis (LDA = 4.2 and p = 0.023) were 
more evident with ITS1. Candida albicans demonstrated substantial 
differential abundance across both ITS primer sets (ITS1: LDA = 
4.7 and p = 0.026; ITS2: LDA = 4.5 and p = 0.04). In contrast, 
the 18S rRNA dataset revealed fewer species with meaningful effect 
sizes, such as K. humilis (LDA = 2.5 and p = 0.021), with many 
of the dominant taxa remaining unclassified, reflecting its limited 
taxonomic resolution at the species level (Supplementary Figure S8).
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FIGURE 3
Differential abundance profiles per primer set. The heatmaps illustrate the relative abundance of fungal and eukaryotic species across eight fecal 
samples with three primer sets (18S, ITS1, and ITS2) (A) and primer combinations (ITS1–18S, ITS2–18S, ITS1–ITS2, and ITS1–ITS2–18S) (B). Each tile 
signifies the sample-specific abundance of a discovered taxon, with color intensity reflecting the abundance level (0%–1%). The color gradient signifies 
abundance, emphasizing primer-dependent detection sensitivity and specificity within fungal and non-fungal gut populations.

TABLE 2  Comparative table of the generally observed trends (combined vs. individual dataset-derived heatmaps).

 Species  Combined datasets (ITS1–ITS2, ITS1–18S, 
ITS2–18S, and triple combined)

Individual datasets (ITS1, ITS2, and 18S)

Saccharomyces cerevisiae Higher abundance in CF (especially in ITS1–ITS2 and ITS2–18S) Higher abundance in CF in 18S; moderate in ITS2

Candida albicans Higher in CG (especially ITS1–ITS2 and ITS2–18S) Higher in CG across all datasets

Unclassified Basidiomycota Higher in CG, particularly in ITS2–18S Not observed

Pichia kudriavzevii Not observed Appears in CG in the 18S dataset

Candida parapsilosis Present in CF (ITS1–ITS2, all combined) Present in the CF of ITS1

Penicillium sp. Slight increase in CG with ITS2–18S Low abundance in the CG of ITS2

Unclassified species Higher in CG, especially in ITS2–18S Evenly distributed in both CF and CG with more abundance in 18S

CF, cancer-free participants; CG, cancer group.

Upon the dataset’s integration, the differentiation 
ability increased notwithstanding the elevation of p-value 
(Supplementary Figure S9). For instance, C. albicans (LDA = 4.5 
and p = 0.08), C. parapsilosis (LDA = 4.1 and p = 0.8), and C. 
dubliniensis (LDA = 3.8 and p = 0.4) were consistently enriched 
in CG across the dataset combination, and CF was characterized by 
Aspergillus rube (LDA = 4.5 and p = 0.1), Penicillium sp. (LDA = 2.0 
and p = 0.08), and K. humilis (LDA = 2.2 and p = 0.02). Although 
18S inclusion broadened the taxonomic coverage, it diminished 
fungal resolution and increased dataset complexity. Although 
the combined dataset revealed a stronger differential abundance 
capturing C. albicans as a biomarker (LDA = 4.58), the statistical 
significance decreased to p = 0.08 compared to LEfSe analyses using 
separate primers (p-adj <0.05). This indicates increased within-
group variance and expanded taxonomic coverage characteristic of 

multi-marker integration, emphasizing the necessity of capturing 
both biological relevance and statistical robustness; nonetheless, 
this requires further statistical evaluation due to increased 
variation, including additional tuning or stratification of ALDEx2 
LDA analysis (Table 3).

3.5.3 Integration of ALDEx2 LDA for improving 
statistical confidence

ALDEx2’s LDA was employed concurrently to harmonize 
biological relevance (via LEfSe) with statistical significance (through 
ALDEx2), facilitating a more refined interpretation of taxa 
exhibiting substantial impacts yet varied certainty. As a result, the 
pairwise combined primer sets ITS1–ITS2 had the most significant 
effect size range and yielded the most distinct group differentiation, 
particularly in detecting fungal dysbiosis between CG and CF. The 
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TABLE 3  Comparative table of differentially abundant key taxa across primer approaches.

Taxon ITS1–ITS2 ITS1–18S ITS2–18S Triple combined (ITS1–ITS2–18S)

Candida albicans CG (very strong) CG (strong) CG (moderate) CG (High effect, p-adj moderate)

Candida parapsilosis CG (strong) CG (weaker) CG (low) CG (strong)

Candida dubliniensis Not detected CG (strong) Not detected CG (present)

Saccharomyces cerevisiae CF (strong) CF (present) CF (moderate) CF (consistent)

Penicillium spp. CF (strong) CF (weaker) CF (weaker) CF (strong)

Kazachstania humilis Not detected CF (moderate) CF (moderate) CF (detected)

Blastocystis hominis Not detected CG (low) CG (low) CG (detected)

Eukaryotic Noise/Unclassified Minimal Present Moderate Moderate

CF, cancer-free participants; CG, cancer group.

analysis identified several statistically significant taxa, including 
C. albicans (p < 0.03) and Penicillium sp. (p < 0.05), as illustrated 
in Figure 4, albeit with elevated p-values resulting from variance. 
A slight improvement in statistical confidence was observed with 
the multiple ITS1–ITS2–18S dataset via ALDEx2 LDA analysis, in 
which a balance was achieved between fungal resolution and broader 
eukaryotic context, resulting in moderate effect size differentiation 
and indicating heightened dataset complexity and within-group 
variability. The ITS1–18S and ITS2–18S combination exhibited 
a lesser array of species and reduced capacity for mycobiome 
community analysis (Supplementary Figure S10, 11) (Table 4).

Overall, diversity patterns indicate that microbial community 
richness and evenness are generally greater in cancer-free 
individuals, especially when the 18S and ITS2 primers are 
used (Supplementary Figure S12). In addition, beta diversity 
was assessed using the principal coordinate analysis (PCoA) 
(Supplementary Figure S13); the ordination values exhibited 
distinct separation between the CF and CG groups across all 
three primer sets. These data affirm that microbial community 
composition varies greatly among groups, possibly attributable to 
underlying pathological features. However, there was no significant 
variation regarding the three primer sets individually. With the 
multiple combined datasets, the overall trend demonstrates the 
strongest diversity signals with the triply combined datasets, as 
shown in Supplementary Figure S14 and Supplementary Table S1.

Principal component analysis of the feasibility test 
CG group exhibited a greater variation in PCA plots 
(Supplementary Figures S15–18), indicating heterogeneous fungal 
dysbiosis. Compared to the corresponding CF group, tight clustering 
indicates stable commensal communities. The combination effect 
of ITS1–ITS2 enhanced the identification of infrequent species 
while preserving substantial differentiation (e.g., PC1 = 18%). 
Conversely, 18S primers introduced noise from non-fungal 
eukaryotes, reducing specificity. ALDEx2’s compositional method 
(CLR) surpassed DESeq2 (variance-stabilized transformation, 
VST) in detecting dysbiosis caused by relative abundance shifts, 
particularly for low-biomass taxa. The observed difference between 
the elevated PC1 variance in DESeq2 (29%–38%) and that 

in ALDEx2 (16%–22%) signifies fundamental methodological 
differences: DESeq2’s variation is influenced by predominant 
absolute abundances, including non-fungal eukaryotes in 18S-
containing combinations, whereas ALDEx2’s lower yet more 
biologically meaningful percentages capture compositional 
alterations within fungal communities. This emphasizes that 
variance percentage alone is insufficient for evaluating separation 
quality; ALDEx2’s 19% for ITS1–ITS2 yields more informative 
biological insights than DESeq2’s 32% for the identical dataset
(Table 5).

4 Discussion

This study represents the first systematic comparative 
assessment of multi-marker integration strategies for profiling 
the human gut mycobiome. The freshness of our approach 
stems from the thorough evaluation of 18S rRNA, ITS1, and 
ITS2 primers, individually and in strategic combinations, 
providing unprecedented insights into the synergistic impacts of 
multi-marker datasets on taxonomic resolution and biomarker 
detection sensitivity. Despite the limited sample size, our 
methodological framework demonstrates greater efficacy 
for integrated primer techniques than for single-marker
strategies. 

4.1 Impact of primer selection on fungal 
diversity

Our results indicate that primer selection markedly affects 
the richness, evenness, and taxonomic resolution of microbial 
communities. This finding supports previous research highlighting 
the primer selection effect on amplicon-based sequencing for the 
necessity of choosing suitable primers according to the study’s 
objectives, geographical location, and the precise characterization of 
complex fungal communities (Hoggard et al., 2018b). 
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FIGURE 4
ALDEx2 volcano plot of differential abundance across ITS1–ITS2 combined primer dataset. This volcano plot visualizes the differential abundance of 
microbial taxa between cancer-free (CF, green) and cancer (CG, red) groups using ALDEx2. The x-axis represents the effect size, while the y-axis shows 
the statistical significance (−log10 adjusted p-value). Taxa farther from the origin and higher on the plot are both highly differentially abundant and 
statistically significant. The plot emphasizes taxa that are enriched in each group, aiding in the identification of biologically meaningful and robust 
microbial biomarkers.

TABLE 4  Comparison of combined primer sets in ALDEx2 group discrimination.

Criterion Triple 
combined

ITS1–18S ITS2–18S ITS1–ITS2 18S ITS1 ITS2

Taxa separation 
(effect size range)

Moderate Narrow Broader Widest Very narrow Moderate Moderate

High-confidence 
hits (adj. p < 0.05)

Moderate Few More Multiple with 
clarity

Very limited Moderate Not detected

Distinct group 
enrichment (CF 
vs. CG)

Balanced Skewed Clear CG Well-separated Minimal, poorly 
defined

Partial, less 
distinct

Weak

Highlighted 
markers (e.g., C. 
albicans)

Present Present Strong Very strong (CG) Inconsistent 
detection

Detected, lower 
effect

Minimal signal

Undetected 
signals surfaced

Yes Limited Moderate Yes, e.g., 
Penicillium

Rare signals 
surfaced

Some rare taxa 
surfaced

Poor detection

CF, cancer-free participants; CG, cancer group.

4.2 Performance of ITS primers in OTU 
detection

The ITS1 and ITS2 primers consistently identified a greater 
number of OTUs than the 18S rRNA primer set (Figure 2c). This 
was particularly evident in their ability to capture higher richness 
and detect a greater number of group-specific OTUs unique to 
each cohort. These results align with prior studies demonstrating 

that the ITS region, particularly ITS2, offers enhanced taxonomic 
resolution for fungal communities (Banchi et al., 2020; Schoch et al., 
2012b). The superior sensitivity and specificity of ITS primers render 
them more appropriate for fungal diversity research, whereas the 
more conserved 18S rRNA is less adept at differentiating closely 
related fungal species, a finding that underscores the necessity 
of sufficient sequencing depth in metagenomic investigations to 
prevent underestimating microbial diversity (Lundberg et al., 2012).
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TABLE 5  Comparison of PCA results using ALDEx2 (CLR) vs. DESeq2 (VST) across primer set combinations.

Primer combination ALDEx2 (CLR transformation) DESeq2 (VST transformation)

ITS1–ITS2 Distinct group separation observed (PC1: 19% 
variance); effectively captures rare taxa and 
compositional shifts

Weaker group separation (PC1: 32.1%); primarily 
driven by dominant taxa

ITS1–18S Partial separation achieved (PC1: 22%); reveals 
potential interactions between fungal and non-fungal 
eukaryotes

Minimal separation (PC1: 29.3%); likely influenced by 
broad eukaryotic background noise

ITS2–18S Enhanced compositional resolution (PC1: 16%) 
despite 18S signal noise; better reflects fungal diversity

Moderate separation (PC1: 38.2%); clustering 
influenced predominantly by 18S-derived eukaryotic 
taxa

ITS1–ITS2–18S Improved detection of relative abundance differences 
(PC1: 22%); compositional differences highlighted

Emphasizes absolute abundance differences (PC1: 
29%); reduced sensitivity to compositional variation

PCA, principal component analysis. The CLR transformation of ALDEx2 illustrates the uniqueness of group differentiation and compositional insights derived from various primer 
combinations. DESeq2’s VST captures absolute abundance trends while reducing sensitivity to low-abundance taxa. PC1 denotes the initial principal component that encapsulates the 
maximum variation.

4.3 Fungal family patterns and ecological 
relevance

The significant diversity at the fungal family level observed 
with ITS primers across samples, such as Aspergillaceae,
Saccharomycetaceae, and Pichiaceae, was among the most 
prevalent, indicating their ecological importance and opportunistic 
functions within the investigated environments. On the 
other hand, other families, such as Herpotrichiellaceae and 
Trichomonadaceae were found in low abundances, potentially 
indicating niche specialization or detection constraints attributable 
to primer bias (Lindahl et al., 2013). 

4.4 Group-specific diversity

The variability among the CF and CG groups, particularly 
with ITS1 and ITS2, demonstrates higher microbial richness and 
evenness among the groups. This may indicate environmental 
variations in the health condition niche, affecting community 
diversity (Lozupone et al., 2012). In addition to the disparity 
in fungal composition between groups, as shown by PCoA and 
PCA grouping patterns, studies align with the fact that the 
integration of both ITS regions provides a holistic perspective on 
fungal populations (Mbareche et al., 2020a; Monard et al., 2013). 
Furthermore, fungal dysbiosis, marked by reduced richness and 
altered community structure, has been increasingly recognized 
as a hallmark of pathological conditions (Mukher et al., 2015) 
(Paterson et al., 2017b), including cancer (Paterson et al., 2017a) 
(Vallianou and Stratigou, 2021). The lower fungal diversity observed 
in cancer patients in our foundational study groups aligns 
with prior reports suggesting that the disruption of the normal 
mycobiome may contribute to disease status. In our study, dysbiosis 
was observed as an outcome of disease status; however, this 
observation needs validation in a larger cohort through comparison 
between cancer patients with confirmed illness (CG) and cancer-
free controls. In particular, in the non-GI subgroup, there was 
a considerable increase of Candida albicans, an opportunistic 

fungus commonly observed in immunocompromised states. This 
discovery indicates that microbial imbalances may not only reflect 
the underlying disease context but could also actively facilitate 
disease progression by inducing immune dysregulation or mucosal 
susceptibility, thus facilitating worsening disease outcomes. These 
findings underscore the mycobiome’s potential role as both an 
indicator and a facilitator of disease status in cancer patients 
(Lozupone et al., 2012; Vallianou et al., 2021). For instance, our dual 
ITS1–ITS2 combination in the proof-of-concept cohort resulted in 
the greatest effect size separation and detection of multiple high-
confidence fungal markers, particularly C. albicans, which increased 
in the cancer group, and S. cerevisiae, which was elevated in the 
cancer-free group.

This pattern is in line with multiple studies (Mukher et al., 2015; 
Rizzatti et al., 2017; Neville et al., 2015; Nenciarini et al., 2024), 
thus, our observation fits the expected trend that disease-associated 
dysbiosis often favors opportunistic fungi, while probiotic species 
dominate healthy microbiomes. 

4.5 Discriminatory power of ITS in LDA 
analysis

Our LDA results emphasized the importance of robust statistical 
mycobiome frameworks, such as LEfSe, in identifying microbial 
signatures relevant to group differentiation. Moreover, Mbareche 
et al. (2020b) demonstrated in prior research that comparing ITS1 
and ITS2 has yielded inconsistent results, suggesting that ITS1 
may exceed ITS2 in delineating fungal diversity, particularly in 
specialized contexts such as bioaerosols, a setting characterized 
by mixed microbial populations (Lozupone et al., 2012). This 
evidence potentially corroborates our results regarding differential 
LDA, where ITS1 produced more differential taxa than ITS2. The 
gut microbiome constitutes a complicated environment, and this 
finding indicates the potential of ITS1 to better understand fungal 
diversity within complex communities regarding LDA. In our study, 
ITS1 similarly yielded a marginally broader set of differentially 
abundant taxa, as reflected in the LDA results, suggesting its utility 
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for distinguishing fungal profiles even in diverse host-associated 
environments. 

4.6 Broader eukaryotes or fungal specificity

The inclusion of 18S rRNA expanded eukaryotic detection, 
revealing broader community structures, including species such as 
K. humilis, Pichia spp., and other eukaryotes. This, however, resulted 
in diminished fungal specificity and heightened dataset complexity, 
aligning with established limits of 18S in mycobiome research 
(Tonge et al., 2014). These trade-offs were evident in PCA and 
differential abundance analysis, where 18S datasets included non-
fungal interference and reduced statistical clarity. Notwithstanding 
these constraints, the fully integrated dataset (ITS1–ITS2–18S) 
yielded the most comprehensive ecological profile, encompassing 
both predominant fungal species (C. albicans, C. parapsilosis, and S. 
cerevisiae) and broader unclassified eukaryotic signals. Nevertheless, 
as noted in recent multi-marker investigations (Bokulich and 
Mills, 2013; D’Andreano et al., 2021), augmented taxonomic 
coverage resulted in intra-group heterogeneity, necessitating more 
conservative statistical thresholds. 

4.7 ALDEx2 vs. DESeq2 for differential 
abundance

As mentioned above, C. albicans exhibited a substantial LDA 
score in CG using the aggregated dataset; nevertheless, its statistical 
significance diminished (p-adj = 0.08) relative to studies utilizing 
individual ITS primers. This illustrates the importance of analyzing 
both biological impact sizes and adjusted p-values in multi-
marker research.

The ALDEx2 analysis of pairwise integrated ITS1–ITS2 datasets 
decreases primer-specific biases and, as previously mentioned, 
improves the discovery of both dominant taxa (Candida sp.) and 
low-abundant taxa (Penicillium sp.) that might be implicated in 
cancer-associated dysbiosis. The concordance between ALDEx2 
impact sizes and LDA results reinforces the credibility of the 
identified microbial signatures, consistent with evidence that 
ITS-based primers outperform 18S for species-level fungal 
resolution (Tedersoo et al., 2015; Tonge et al., 2014; Zhao et al., 
2017). Furthermore, the CLR-based PCA from ALDEx2 results 
outperformed DESeq2’s variance-stabilizing transformation 
in distinguishing mycobiome communities across different 
clinical groups by analyzing the compositional characteristics of 
microbiome data and minimizing the effect of dominant taxa. 
Conversely, DESeq2’s VST clustered samples by absolute abundance, 
potentially masking relevant taxon composition shifts in community 
structure.

Our findings further highlight that ITS1 or ITS2 alone is only 
partially informative for thorough gut mycobiome characterization. 
Single-marker approaches exhibited insufficient resolution and 
sensitivity to reliably identify disease-associated species such 
as C. parapsilosis and Penicillium spp., corroborating previous 
findings that primer biases constrain fungal community evaluations 
(Abid et al., 2022; Bellemain et al., 2010). 

5 Strengths and limitations

This study was conducted through the thorough evaluation 
of three commonly utilized fungal DNA regions—18S rRNA, 
ITS1, and ITS2—across various analytical dimensions, including 
OTU richness, taxonomic resolution, alpha and beta diversity, 
and biomarker identification. The comprehensive analytical 
framework, which integrates bioinformatics tools, including 
USEARCH, SILVA, and UNITE databases, LEfSe, and PCA/PCoA, 
ensures considerable reliability and reproducibility in community 
profiling. Additionally, testing fecal samples incorporating from 
both cancer group (CG) and cancer-free (CF) subjects facilitated 
disease-specific microbiological analysis and the identification 
of group-specific biomarkers. The limitation of this study is the 
sample size; the utilization of only eight samples may constrain 
statistical power and the generalizability of the findings to broader
populations.

Furthermore, despite the utilization of rarefaction curves, 
certain samples (e.g., G41) exhibited inadequate richness 
and non-saturation, indicating that the sequencing depth 
might be insufficient to fully capture community complexity 
in specific instances. This suggests that factors influencing 
mycobiome profiling do not rely solely on primer selection; 
other factors extend beyond primer selection, including 
sample quality, host condition, fungal load, or geographical
variations. 

6 Conclusion

In conclusion, this proof-of-principle study establishes the 
methodological basis for multi-marker mycobiome profiling, 
revealing for the first time the synergistic advantages of mixing 
18S rRNA, ITS1, and ITS2 primer datasets.

In our study, ITS1 and ITS2 demonstrated complementary 
strengths. ITS1 tended to increase the differentially abundant taxa, 
reflecting higher richness, whereas ITS2 captured a greater number 
of OTUs; both facilitate a more thorough evaluation of fungal 
diversity, encompassing a broader spectrum of taxa and ecological 
variation. The pairwise integration of ITS–ITS2 datasets provided 
more discriminatory power, uncovering dysbiosis predictors that 
might be overlooked with single-primer methodologies. On the 
other hand, the triple integration of ITS1–ITS2–18S offered greater 
richness, demonstrating a comprehensive profiling of the fungal 
community.

Studies employing amplicon sequencing should focus on 
creating taxonomically balanced, multi-locus primer panels for 
mycobiome assessment. This technique tackles existing limitations 
in primer bias and facilitates comprehensive characterization of 
fungal dysbiosis in health–disease transitions. ALDEx2 presented 
an in-depth structure for differential abundance analysis by 
enhancing the discovery of both prevalent and low-abundance taxa 
likely associated with cancer-related dysbiosis, improving group 
differentiation, and minimizing distortion from dominant taxa. 
These findings highlight the importance of ALDEx2 in multi-marker 
mycobiome research in small cohort contexts when statistical 
power is constrained. In summary, multi-marker integration boosts
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the detection of both common and rare taxa, reduces primer-
specific biases, and improves the overall interpretability of gut 
fungal communities. The heightened complexity of datasets requires 
meticulous statistical analysis, especially in low-biomass settings 
such as the human gut.
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