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Background: Gut fungi play crucial roles in human health. The profiling of
the human gut mycobiome continues to progress. However, adjustments
in the selection of ribosomal DNA marker regions can substantially affect
the taxonomic resolution of a population. In particular, the impact of using
primers’ combinations is insufficiently defined. In this study, we investigated the
performance of three targeted sequencing regions, ITS1, ITS2 and 18S rRNA,
separately and in combination.

Methods: Eight fecal samples from healthy individuals (n = 4) and cancer
patients (n = 4) were selected as proof of principle for amplicon-based
sequencing conducted with the DNBSEQ™ sequencing system. Quality-filtered
reads were grouped into operational taxonomic units (OTUs) via USEARCH
and categorized using the SILVA (18S) and UNITE (ITS) databases. Downstream
bioinformatics encompassed diversity analyses, principal component analysis
(PCA), and biomarker detection via linear discriminant analysis effect size
(LEfSe). To improve taxonomic coverage and compositional understanding, data
were examined using ALDEx2 with centered log-ratio (CLR) transformation,
facilitating reliable differential abundance and effect size assessment in small
sample metagenomic contexts.

Results and Discussion: Among primers, ITS2 and ITS1 enhanced the coverage
of identified taxa, with operational taxonomic unit quantities of 183 and
158, respectively, compared to 58 OTUs of 18S. Accordingly, among primer
combinations tested, the triple integration of ITS1-1TS2-18S produced the
highest fungal richness, while the dual ITS1-ITS2 combined datasets enhanced
group discrimination analysis, showing enrichment of Candida albicans
and scarcity of Penicillium sp. in cancer patients. Our findings based on
ITS sequencing and the combination of ITS1 and ITS2 provide instructive
information on the composition and dynamics of gut fungi in our initial test
subjects, enhancing our understanding of their roles in gut homeostasis and the
microbial shifts associated with cancer. Despite our approach being conducted
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with a limited cohort to establish methodological feasibility, it brings attention to
multi-marker strategies, demonstrating that integrated primer datasets surpass
traditional single-marker methods in both taxonomic coverage and biomarker
detection sensitivity in low-biomass fecal samples. Our research provides a
reliable starting point for future studies on gut mycobiome in both healthy
and diseased individuals, which could lead to better diagnostics and treatments
based on microbiome profiles.
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1 Introduction

The human gut harbors a complex microbial ecosystem,
which is vital for sustaining the host’s health. The interaction
between gut microbiota and disease progression remains a focus
for researchers. Despite advances in gut mycobiome research, the
question of how fungal diversity in stool differs across populations
or geographical regions remains poorly defined, with current
studies frequently constrained by limited sample sizes, regional
focus, or methodological inconsistencies (Nash et al., 2017;
Kabwe et al., 2020). Several studies have presented contradictory
results concerning the stability and fundamental composition of the
gut mycobiome among different populations. Some attribute this
variation to experimental conditions, particularly amplicon primer
selection and bioinformatics analysis, while the relative impact
of additional factors, such as diet, environment, urbanization,
ethnicity, and host genetics, on fungal diversity remains
controversial (Gupta et al., 2017; Mahnic and Rupnik, 2018).

Advancements in sequencing technologies and computational
biology have uncovered the importance of the gut mycobiome,
which was previously underappreciated in diversity and significance
(Chin et al., 2020). Previous metagenomic sequencing analyses
showed that mycobiota constitutes ~0.03-0.1% of the gut microbiota
in healthy populations, primarily consisting of Saccharomyces,
Malassezia, and Candida species (Qin et al, 2010; Gao et al,
2017). Emerging studies found that fungal dysbiosis might be
concurrent with disease development and progression, highlighting
the importance of precise mycobiome profiling in oncology
(Aykut et al., 2019; Liu et al,, 2015).

Techniques for fungal community analysis have progressed
significantly over the past few decades. While traditional culture-
based methods (e.g., microscopy and biochemical assays) were
once foundational (Pathan and Patel, 2013), genome sequencing
has expanded fungal databases, although they still remain
underdeveloped compared to bacterial counterparts (Strati et al.,
2016). Despite these advances, detecting fungi in fecal samples
remains challenging due to their low biomass, high microbial
diversity, and persistent technical limitations.

Using traditional culture-based fungal detection techniques
in fecal samples enables rapid clinical diagnostics, but it limits
the resolution for low-abundance species and restricts broader
applicability due to the uncultivability of numerous fungi, rendering
itinadequate for comprehensive mycobiome profiling (Hamad et al.,
2017; Sarrabayrouse et al., 2021; Wiesmann et al., 2022). Thereafter,
molecular methods revolutionized fungal detection by addressing
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the limitations of traditional techniques. Primer-based approaches
amplify fungal DNA with high sensitivity, enabling species-specific
identification and quantification (Huffnagle and Noverr, 2013).

Despite their specificity, primer bias can distort detection
accuracy, as evidenced by comparative analyses of commonly used
primer pairs (Jana et al., 2013) and further validated in our study.
Current methodologies for investigating gut fungal diversity utilize
targeted sequencing of specific genetic markers, including the 18S
rRNA gene and the ITS regions, each offering distinct advantages
and drawbacks in elucidating fungal community composition of a
given sample.

The primary focus on culture-independent analyses and
database creation has targeted loci encompassing the 188,
5.8S, and 28S rRNA genes, along with the ITSI and ITS2
(Supplementary Figure S1). The analysis of fungal ITS regions along
with rRNA genes has uncovered a remarkable variety of fungi within
the microbiome (Hoggard et al., 2018a).

The 18S rRNA gene, which encodes a small ribosome subunit,
is sequenced to identify eukaryotes, including fungi. Due to its
conserved and phylogenetically informative regions, it is valuable
for studying broad taxonomic clades among eukaryotes. Universal
primers for 185 rRNA gene amplification across numerous fungal
taxa have been developed based on its highly conserved sequences
(Wang et al.,, 2014). This conservation may not identify closely
related species, reducing species-level variation (Schoch et al,
2012a). The conserved 18S rRNA gene matches sequences across
taxa but lacks diversity to identify closely related species or strains,
limiting its use in fungal diversification (Pelley and Pelley, 2007). In
addition, the 18S *RNA gene has a higher PCR failure rate than other
rRNA markers. This limitation may require group-specific primers
to improve amplification of some fungal groups (Banos et al., 2018).

The ITS regions, including flanking subregions of ITS1
and ITS2, are situated between the 18S and 28S rRNA genes
(Supplementary Figure S1). These locations are more diverse,
rendering them suitable for distinguishing closely related fungus
species. Thus, the ITS region is proposed as the universal DNA
barcode for fungi due to its high variability, and it is beneficial for
species-level identification (Takada et al., 2016; Stewart et al., 2007).
Public repositories contain ITS region databases with complete
sequence data for taxonomic classifications and comparative
investigations (Stielow et al., 2015). Therefore, ITS databases are
often advantageous for providing valuable resources for fungal
identification, but improperly curated reference material might lead
to misidentification or overestimation (Nilsson et al., 2008; Gardes
and Bruns, 1993; White et al., 1990).
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Mycobiome profiling is highly affected by the choice of primers,
which can influence taxonomic coverage, detection sensitivity, and
community composition outcomes. ITS1, ITS2, and 18S rRNA
primers each provide distinct advantages; however, their combined
application in fungal profiling has been insufficiently evaluated,
particularly in complex, low-biomass samples such as human stool.

The primary objective of this study is to evaluate the
performance of ITS1, ITS2, and 18S rRNA primer sets, both
individually and in combination, in enhancing fungal community
detection and taxonomic resolution. We further aimed to assess
the advantages of multi-marker datasets in improving differential
abundance detection using appropriate statistical approaches,
such as the analysis of differential abundance taking advantage
of log-ratios (ALDEx2) R package. It is a compositional data
analysis package specifically designed for small-sample microbiome
datasets. It employs a centered log-ratio (CLR) transformation tool
to accurately estimate differential abundance despite the limited
cohort size.

This evaluation was conducted using methodological proof of
a limited number of fecal samples from a cohort of cancer patients
and cancer-free controls from the Middle East. To tackle controversy
over the appropriate gut mycobiome marker (Banos et al., 2018;
Takada et al., 2016; Stewart et al., 2007), we evaluated the taxonomic
resolution, detection sensitivity, and overall efficacy of each marker
utilizing standardized pipelines that incorporate the SILVA and
UNITE reference databases. This method was designed to overcome
the limitations commonly encountered in prior research, such
as reliance on BLAST-based annotations, offering only genus-
level identifications, and limited incorporation of comparative or
differential abundance analysis regarding the gut mycobiome.

2 Materials and methods
2.1 Sampling and sequencing

Eight fecal samples (n = 8) were obtained from cancer patients
and cancer-free participants for microbiome analysis from a
previous study. The samples were selected for a proof-of-concept
design to evaluate primer efficacy across different clinical conditions.
The cohort consisted of eight adults (ages 42-58), Eastern
Mediterranean volunteers (https://www.emro.who.int/information-
resources/imemr-database/), including four individuals diagnosed
with different malignancies (colorectal, breast, and endometrial)
and four cancer-free individuals (Supplementary File S1). Cancer
patients were selected for different malignancies, thus providing
a range of host conditions for the analysis of gut mycobiome
diversity. Individuals free of cancer were paired based on age
to decrease confounding due to age-related microbial variability.
The purpose of this small yet diverse cohort was to improve
methodological understanding of primer efficiency and taxonomic
resolution while reducing biological variability that might mask
primer-related variations. The smallest sample size (n = 8) was
selected since this pilot study aimed not at epidemiological
inference but at the technical comparison of primer sets and
sequencing efficacy. All samples were obtained under uniform
conditions and processed consistently to ensure comparability
among groups (Labania et al., 2023). The collected samples were
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subjected to DNA extraction using the QIAamp PowerFecal Pro
DNA Kit (QIAGEN GmbH, Germany). A NanoDrop ND-1000
UV-Vis Spectrophotometer (Thermo Fisher Scientific, Wilmington,
DE, United States) was used for DNA purity and concentration
inspection, and gel electrophoresis was used for DNA integrity
verification. A measure of 30 ng of approved DNA templates was
sent to Neo-Science (neoscience.ae) for sequencing; each sample
went through three primer-based PCR reactions targeting the 18S
rRNA gene: V4 (5’ to 3') (F: CCAGCASCYGCGGTAATTCC, R:
ACTTTCGTTCTTGAT), ITS1 (F: TCCGTAGGTGAACCTGCGG,
R: GCTGCGTTCTTCATCGATGC), and ITS2 (F: GATGAAGAA
CGYAGYRAA, R: TCCTCCGCTTATTGATATGC) regions. PCR
enrichment was performed in 50 pL reactions comprising 30 ng of
template DNA using fusion PCR primers, adhering to the specified
cycle conditions: 95 °C for 3 min, 30 cycles of 95 °C for 15s, 56 °C
for 15, and 72 °C for 45 s, followed by a final extension at 72 °C
for 5min. PCR products were purified utilizing DNA magnetic
beads (BGI, LBOOV60). Library preparation was conducted using 2x
Phanta Max Master Mix (VAZYME, China). The resultant libraries
were subjected to circularization and rolling circle amplification
to produce DNA nanoballs (DNBs), which were subsequently
deposited onto patterned nanoarrays. Sequencing was conducted
on the DNBSEQ-G400 platform (BGI-Shenzhen, China) utilizing
paired-end 300 bp reads.

2.2 Bioinformatics analysis workflow

Raw sequencing data underwent preliminary quality control
for contaminants to ensure clean data for analysis. The merging of
overlapping paired-end reads into contiguous tags was completed
using FLASH v1.2.11, which finalized the filtering process.
UCHIME (v4.2.40) was used for chimera detection, and USEARCH
(v7.0.1090) clustered high-quality reads into operational taxonomic
units (OTUs). Detailed information on DNA concentration and
quality assessment, sequencing quality control metrics, OTU
statistics, and software used for clustering and chimera detection
is provided in Supplementary File S1.

The 18S rRNA database, SILVA v.138 for 18S rDNA amplicon
sequencing OTUs, and UNITE v.8.2, a fungal-specialized database,
were utilized for taxonomic classification. Based on the OTU
profile table and taxonomic annotation results for each approach,
R (v4.4.1) libraries (detailed in Supplementary File S2 were used
to conduct species accumulation and prevalence rate analyses,
alpha diversity, beta diversity, and differential principal component
analysis (PCA), log2-fold differential abundance evaluations, and
linear discriminant analysis effect size (LEfSe) to identify biomarkers
and gain insights into microbial community composition and
structure (RStudio. bookdown, 2023; Microbiome Project, 2023;
Bioconductor, 2023; Abarenkov et al., 2025).

To improve taxonomic coverage, datasets were combined from
ITS1 and ITS2, ITS1 and 18S, ITS2 and 18S, and all primer
datasets collectively, and OTU tables along with their accompanying
taxonomy annotations were integrated into a singular dataset
for each combination of ITS1-ITS2, ITS1-18S, ITS2-18S, and
ITS1-ITS2-18S. Furthermore, the combined datasets and singular
datasets (ITS1, ITS2, and 18S) were subjected to ALDEx2, which
is appropriate for small metagenomic sample sizes. This method
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applied CLR-transformed abundance matrices that underwent PCA
using the ALDEx2 v. 1.36.0 package to investigate compositional
variation across groups. Subsequently, we evaluate differential
abundance and effect size estimation. A step-by-step protocol for
bioinformatics analysis is provided in Supplementary File S2. All
analytical reproducible code scripts are provided in a step-by-step
protocol (File S2) and accessible in our GitHub repository: GitHub
https://github.com/HibaOrsud/18S-Microbiome-.git and Zenodo
(DOLI: 10.5281/zenodo.17198284).

2.3 Ethics statement

This study was conducted on previously collected samples,
which received approval from the Tawam Human Research Ethics
Committee at Tawam Hospital, Al Ain, Abu Dhabi, United Arab
Emirates. Ethical approval was provided from 25 December 2019
to 31 March 2021 (approval no. THREC-678). Informed consent
was obtained from participants before enrollment. All procedures
adhered to the ethical standards given by the institutional research
committee, according to Good Clinical Practice (GCP) guidelines,
the Department of Health (DoH), Abu Dhabi, and the 1964
Declaration of Helsinki, together with its subsequent revisions or
equivalent ethical standards.

3 Results

The results provided an in-depth characterization of fungal
communities across limited samples and primer sets, highlighting
significant differences in richness, diversity, and taxonomic
composition. The study revealed substantial group-specific patterns
and emphasized the influence of primer selection, along with the
combination of their datasets, on community profiling.

3.1 OTU distribution across primer sets

The variation in OTU richness across the three primer
sets was observed by assessing the quantity of OTUs using
three primer sets—18S, ITS1, and ITS2—among eight samples.
A bar plot illustrating OTU counts demonstrated significant
heterogeneity in richness among the samples and primer
sets (Supplementary Figure S2a). Both ITS1 and ITS2 primers
consistently yielded a higher number of OTUs (n = 158 and n
= 183, respectively) than the 18S primer (n = 56). Accordingly,
the histogram enhanced comprehension of microbial detection,
illustrating the frequency distribution of OTUs across the primer
sets (Figure 2b). On the other hand, the triple-combined dataset
ITS1-ITS2-18S represented a greater number of OTUs (n = 397)
than the pairwise combined ITS1-ITS2 (n = 341), ITS2-18S (n
= 239), and ITS1-18S (n = 214). Moreover, but it also enabled
the detection of a wider array of fungal taxa, showing the
beneficial effect of primer set integration in enhancing taxonomic
resolution (Figure 1). Detailed OTU counts and distributions are
provided in Supplementary File S3.
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3.2 Sequencing depth evaluation via
rarefaction analysis

To evaluate read accumulation per sample, the created
rarefaction curves assessed sequencing depth that adequately
captured the microbial diversity within each sample. The ITS1
and ITS2 primers surpassed 18S in capturing OTU richness
across samples (Figure 2). ITS2 exhibited the highest diversity
and the slowest saturation, rendering it very effective for
evaluating varied fungal or eukaryotic microbial populations.
Conversely, the 18S primer, although beneficial for broader
taxonomic representation, may exhibit constraints in resolution
and sensitivity. This difference (Table 1) indicates varying ecological
complexities among samples and underscores the necessity of
tailored sequencing procedures based on community richness, such
as the multi-marker strategy.

3.3 Taxonomic prevalence patterns

To assess variation in microbial abundance across taxa, log-
transformed prevalence profiling revealed significant differences
in microbial family-level abundance among the samples. Notable
fungal families include Aspergillaceae, Saccharomycetaceae,
and Pichiaceae, which exhibited consistently high abundance
across many samples when using ITS1 and ITS2 individually,
compared to the 18S primer, increasing the potential of ITS-based
sequencing for detecting the dominance and opportunistic growth
of relevant conditions (Supplementary Figure S3). Furthermore,
species-level profiles of taxa prevalence and abundance offer
deeper insights into the microbial composition of each sample
(Supplementary Figure S4). These visualizations elucidated major
differences in community distribution within samples and among
primer sets, highlighting the heterogeneity of ITS primers in
contrast to 18S. For instance, while many species were consistently
present, others were markedly sample-specific, corroborating the
identification of group-specific OTUs (Supplementary Figure S5).
The uniformity of these trends in both family- and species-level

analysis further reinforces the validity of our findings.

3.4 Differential abundance profiles per
individual primer

A differential abundance heatmap was created to evaluate
primer-specific profile patterns across eight fecal samples using
three primer sets: 18S, ITS1, and ITS2 (Figure 3a). The heatmap
demonstrated considerable variations in taxonomic recognition
among primers, emphasizing both shared and distinct fungal
profiles. The ITS primer sets exhibited the highest taxonomic
coverage, identifying multiple taxa with mostly elevated relative
abundance, such as S. cerevisiae (45%), Aspergillus spp. (14%), C.
albicans (22%), and Candida sp. (8%), which were captured by ITS2.
Similarly, ITS1 detected C. albicans (34%), A. spp. (16%), uniquely
detected Malassezia spp. (18%) and Exophiala spp. (1.03%), and
exhibited differential detection relative to ITS2. Conversely, the 18S
primer set detected non-fungal eukaryotes (e.g., Blastocystis hominis
and Bysmatrum arenicola) and yeast (e.g., Kazachstania humilis)
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FIGURE 2
Rarefaction curve. This graph shows the rarefaction curve for microbial diversity using (A) 18S rRNA, (B) ITS1, and (C) ITS2 primers, demonstrating the
expected OTUs richness (y-axis) relative to the number of samples or sequencing depth (x-axis). A consistent curve indicates adequate sequencing
depth. The expected OTU richness increased with the sample size, which was typical of rarefaction curves. Some samples, such as G50, G41 and G438,
showed a lower increase in OTU richness. Conversely, some samples, such as A4, A25, and B20, quickly saturated. Overall, ITS1 and ITS2 represent the
higher OTUs richness. However, 18S sequencing produced remarkably low OTUs richness.
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TABLE 1 Cross-primer comparison of OTU richness and
rarefaction trends.

Primer set Maximum OTU Saturation trend
richness %

188 ~45 Early plateau

ITS1 ~75 Moderate

ITS2 ~85 Late plateau

OTU richness (%) reflects the highest number of OTUs captured per primer set across all
samples. The saturation trend indicates how quickly the rarefaction curve flattens, reflecting
whether the sequencing depth was sufficient to capture most of the diversity. The data were
derived from rarefaction analyses conducted in R4.0 (vegan2.6 and ggplots3.2.0 packages).
The results indicate that ITS2 performed better in detecting a wide range of fungal taxa,
while 18S reached saturation earlier and revealed lower diversity.

that were unique to 18S, indicating its broader eukaryotic detection
range. On the other hand, 18S detected C. albicans (13%) and S.
cerevisiae (57%) in all eight samples consistently. However, ITS
detected both species in selected samples. Furthermore, Candida
parapsilosis (48%) and Candida dubliniensis (20%) were distinctively
captured by ITS1, and Candida tropicalis (2%) was consistently
detected across both ITS primers.

3.5 Differential abundance in combined
primer sets

The differential abundance patterns of the top fungal
species identified in eight fecal samples, detected by four
primer set combinations: ITS1-18S, ITS1-ITS2, ITS1-1TS2-18S,
and ITS2-18S (Figure 3b). Considerable differences in detection
sensitivity and taxonomic range are apparent among the primer
sets. For example, ITS1-ITS2 exhibited elevated detection rates
for Candida spp. and A. spp., with increased relative abundances
in particular samples. The triple combination of ITS1-ITS2-18S
consistently identified core taxa such as S. cerevisiae and Rhodotorula
mucilaginosa in all subjects, demonstrating a comprehensive
profiling of both prevalent and infrequent fungi. Conversely,
ITS1-18S and ITS2-18S exhibited a slightly narrower taxonomic
profile while still identifying notable species such as Trichosporon
asahii and Talaromyces diversus.

3.5.1 Case studies

This protocol was conducted as a proof-of-principle trial
to examine gut fungi in stool samples from two groups: CG,
comprising cancer patients (n = 4), and CF, encompassing cancer-
free individuals (n = 4). The study highlights human gut mycobiome
profiling, facilitated by combined primer strategies for modifying
the workflow for evaluating the performance of ITS1, ITS2, and
18S datasets.

The distribution of OTUs was assessed through Venn diagrams
of the two piloted groups for each primer set to evaluate group-
specific microbiological trends. The results evidently illustrate
the enhanced discriminatory power of the ITS primer sets
in distinguishing between the groups, particularly ITS2, in
delineating group-specific microbial diversity. Among all tested
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primers, ITS2 detected the highest total number of OTUs
(n 183) including 31 OTUs specific to the cancer group
(Supplementary Figure S5; Supplementary File S3).

The differential abundance
primer (ITS1, ITS2,
profiles in the detection of fungal species and group-specific

the three
18S) demonstrated diverse

analysis  using

sets and
enrichment (Supplementary Figure S6). In our trial cohorts, ITS1
indicated that C. albicans and Aspergillus ruber were commonly
prevalent in the cancer group (CG), but Malassezia furfur and
C. dubliniensis were present at moderate levels, predominantly
in the cancer-free (CF) group. ITS2 further improved species-
level resolution, emphasizing the significant enrichment of C.
albicans in CG and S. cerevisiae in CE This primer additionally
identified taxa such as Penicillium sp. and Issatchenkia orientalis,
enhancing discriminating power among groups. Conversely,
18S exhibited a wider eukaryotic diversity, with S. cerevisiae
predominating in the CF group and C. albicans maintaining
prominence in the CG group. Nevertheless, 18S yielded a greater
quantity of unclassified taxa, indicating reduced selectivity for fungal
community characterization compared to ITS primers.

The integration of primer datasets improved the inferentiality of
abundantly variable fungal taxa between the CF and cancer (CG)
groups (Supplementary Figure S7). In the ITS1-ITS2 combination,
C. albicans and A. ruber were significantly more prevalent in the CG
group, corroborating a trend previously noted in the individual ITS1
dataset. In contrast, S. cerevisiae was consistently more prevalent in
CF samples, especially in the ITS1-ITS2 and ITS1-18S pairings. The
ITS1-18S and ITS2-18S combinations revealed a broader spectrum
of unclassified taxa, particularly in CG. This suggests that a greater
portion of the mycobiota might be hidden and potentially dysbiotic
in the cancer cohort. The triply integrated ITS1-ITS2-18S dataset
provides the most thorough perspective, preserving the detection
of significant fungal taxa such as C. albicans and S. cerevisiae and
expanding coverage of rare or unclassified species. Therefore, the
integration of datasets together provides the most comprehensive
view, integrating signals from all gene regions and reinforcing trends
observed in primer combinations (Table 2).

3.5.2 Linear discriminant analysis

We examined the combined potential of various ribosomal
markers because of the differential abundance approaches for the
individual and integrated datasets of 18S, ITS1, and ITS2. LEfSe
analysis quantified these differences, identifying taxa with significant
discriminatory power based on their linear discriminant analysis
(LDA) scores. Each primer set enabled the identification of group-
specific fungal species; however, ITS1 and ITS2 yielded a greater
number of informative indicators. For instance, Aspergillus sp. (LDA
= 3.7 and p = 0.031) and Penicillium sp. (LDA = 2.8 and p = 0.032)
were prominently detected with ITS2, while M. furfur (LDA = 3.9
and p = 0.025) and C. parapsilosis (LDA = 4.2 and p = 0.023) were
more evident with ITS1. Candida albicans demonstrated substantial
differential abundance across both ITS primer sets (ITS1: LDA =
4.7 and p = 0.026; ITS2: LDA = 4.5 and p = 0.04). In contrast,
the 18S rRNA dataset revealed fewer species with meaningful effect
sizes, such as K. humilis (LDA = 2.5 and p = 0.021), with many
of the dominant taxa remaining unclassified, reflecting its limited
taxonomic resolution at the specieslevel (Supplementary Figure S8).
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Differential abundance profiles per primer set. The heatmaps illustrate the relative abundance of fungal and eukaryotic species across eight fecal
samples with three primer sets (18S, ITS1, and ITS2) (A) and primer combinations (ITS1-18S, ITS2-18S, ITS1-1TS2, and ITS1-1TS2-18S) (B). Each tile
signifies the sample-specific abundance of a discovered taxon, with color intensity reflecting the abundance level (0%—1%). The color gradient signifies
abundance, emphasizing primer-dependent detection sensitivity and specificity within fungal and non-fungal gut populations.

TABLE 2 Comparative table of the generally observed trends (combined vs. individual dataset-derived heatmaps).

Species

Combined datasets (ITS1-1TS2, ITS1-18S,

ITS2-18S, and triple combined)

Individual datasets (ITS1, ITS2, and 18S)

Saccharomyces cerevisiae

Higher abundance in CF (especially in ITS1-ITS2 and ITS2-18S)

Higher abundance in CF in 18S; moderate in ITS2

Candida albicans

Higher in CG (especially ITS1-ITS2 and ITS2-18S)

Higher in CG across all datasets

Unclassified Basidiomycota

Higher in CG, particularly in ITS2-18S

Not observed

Pichia kudriavzevii

Not observed

Appears in CG in the 18S dataset

Candida parapsilosis

Present in CF (ITS1-ITS2, all combined)

Present in the CF of ITS1

Penicillium sp.

Slight increase in CG with ITS2-18S

Low abundance in the CG of ITS2

Unclassified species Higher in CG, especially in ITS2-18S

Evenly distributed in both CF and CG with more abundance in 18S

CE, cancer-free participants; CG, cancer group.

the the
ability increased notwithstanding the elevation of p-value
(Supplementary Figure S9). For instance, C. albicans (LDA = 4.5
and p = 0.08), C. parapsilosis (LDA = 4.1 and p = 0.8), and C.
dubliniensis (LDA = 3.8 and p = 0.4) were consistently enriched
in CG across the dataset combination, and CF was characterized by
Aspergillus rube (LDA = 4.5 and p = 0.1), Penicillium sp. (LDA = 2.0
and p = 0.08), and K. humilis (LDA = 2.2 and p = 0.02). Although
18S inclusion broadened the taxonomic coverage, it diminished

Upon dataset’s  integration, differentiation

fungal resolution and increased dataset complexity. Although
the combined dataset revealed a stronger differential abundance
capturing C. albicans as a biomarker (LDA = 4.58), the statistical
significance decreased to p = 0.08 compared to LEfSe analyses using
separate primers (p-adj <0.05). This indicates increased within-
group variance and expanded taxonomic coverage characteristic of
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multi-marker integration, emphasizing the necessity of capturing
both biological relevance and statistical robustness; nonetheless,
this requires further statistical evaluation due to increased
variation, including additional tuning or stratification of ALDEx2
LDA analysis (Table 3).

3.5.3 Integration of ALDEx2 LDA for improving
statistical confidence

ALDEx2s LDA was employed concurrently to harmonize
biological relevance (via LEfSe) with statistical significance (through
ALDEx2), facilitating a more refined interpretation of taxa
exhibiting substantial impacts yet varied certainty. As a result, the
pairwise combined primer sets ITS1-ITS2 had the most significant
effect size range and yielded the most distinct group differentiation,
particularly in detecting fungal dysbiosis between CG and CF. The
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TABLE 3 Comparative table of differentially abundant key taxa across primer approaches.

Taxon ITS1-ITS2 ’ ITS1-18S ‘ ITS2-18S Triple combined (ITS1-1TS2-18S)
Candida albicans CG (very strong) CG (strong) CG (moderate) CG (High effect, p-adj moderate)

Candida parapsilosis CG (strong) CG (weaker) CG (low) CG (strong)

Candida dubliniensis Not detected CG (strong) Not detected CG (present)

Saccharomyces cerevisiae CF (strong) CF (present) CF (moderate) CF (consistent)

Penicillium spp. CF (strong) CF (weaker) CF (weaker) CF (strong)

Kazachstania humilis Not detected CF (moderate) CF (moderate) CF (detected)

Blastocystis hominis Not detected CG (low) CG (low) CG (detected)

Eukaryotic Noise/Unclassified Minimal Present Moderate Moderate

CF, cancer-free participants; CG, cancer group.

analysis identified several statistically significant taxa, including
C. albicans (p < 0.03) and Penicillium sp. (p < 0.05), as illustrated
in Figure 4, albeit with elevated p-values resulting from variance.
A slight improvement in statistical confidence was observed with
the multiple ITSI-ITS2-18S dataset via ALDEx2 LDA analysis, in
which a balance was achieved between fungal resolution and broader
eukaryotic context, resulting in moderate effect size differentiation
and indicating heightened dataset complexity and within-group
variability. The ITS1-18S and ITS2-18S combination exhibited
a lesser array of species and reduced capacity for mycobiome
community analysis (Supplementary Figure S10, 11) (Table 4).
Overall, diversity patterns indicate that microbial community
richness and evenness are generally greater in cancer-free
individuals, especially when the 18S and ITS2 primers are
used (Supplementary Figure S12). In addition, beta diversity
was assessed using the principal coordinate analysis (PCoA)
(Supplementary Figure S13); exhibited
distinct separation between the CF and CG groups across all

the ordination values

three primer sets. These data affirm that microbial community
composition varies greatly among groups, possibly attributable to
underlying pathological features. However, there was no significant
variation regarding the three primer sets individually. With the
multiple combined datasets, the overall trend demonstrates the
strongest diversity signals with the triply combined datasets, as
shown in Supplementary Figure S14 and Supplementary Table S1.

of the
exhibited a greater variation

Principal component analysis feasibility ~test

in PCA plots
(Supplementary Figures S15-18), indicating heterogeneous fungal

CG group

dysbiosis. Compared to the corresponding CF group, tight clustering
indicates stable commensal communities. The combination effect
of ITS1-ITS2 enhanced the identification of infrequent species
while preserving substantial differentiation (e.g., PC1 = 18%).
Conversely, 18S primers introduced noise from non-fungal
eukaryotes, reducing specificity. ALDEx2’s compositional method
(CLR) surpassed DESeq2 (variance-stabilized transformation,
VST) in detecting dysbiosis caused by relative abundance shifts,
particularly for low-biomass taxa. The observed difference between
the elevated PCl variance in DESeq2 (29%-38%) and that
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in ALDEx2 (16%-22%) signifies fundamental methodological
differences: DESeq2’s variation is influenced by predominant
absolute abundances, including non-fungal eukaryotes in 18S-
containing combinations, whereas ALDEx2’s lower yet more
biologically meaningful percentages capture compositional
alterations within fungal communities. This emphasizes that
variance percentage alone is insufficient for evaluating separation
quality; ALDEx2’s 19% for ITS1-ITS2 yields more informative
biological insights than DESeq2’s 32% for the identical dataset

(Table 5).

4 Discussion

This study represents the first systematic comparative
assessment of multi-marker integration strategies for profiling
the human gut mycobiome. The freshness of our approach
stems from the thorough evaluation of 18S rRNA, ITSI, and
ITS2 primers, individually and in strategic combinations,
providing unprecedented insights into the synergistic impacts of
multi-marker datasets on taxonomic resolution and biomarker
detection sensitivity. Despite the limited sample size, our
framework  demonstrates

methodological greater

than for

efficacy

for integrated primer techniques single-marker

strategies.

4.1 Impact of primer selection on fungal
diversity

Our results indicate that primer selection markedly affects
the richness, evenness, and taxonomic resolution of microbial
communities. This finding supports previous research highlighting
the primer selection effect on amplicon-based sequencing for the
necessity of choosing suitable primers according to the study’s
objectives, geographical location, and the precise characterization of
complex fungal communities (Hoggard et al., 2018b).
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ALDEXx2 volcano plot of differential abundance across ITS1-ITS2 combined primer dataset. This volcano plot visualizes the differential abundance of
microbial taxa between cancer-free (CF, green) and cancer (CG, red) groups using ALDEx2. The x-axis represents the effect size, while the y-axis shows
the statistical significance (-log;q adjusted p-value). Taxa farther from the origin and higher on the plot are both highly differentially abundant and
statistically significant. The plot emphasizes taxa that are enriched in each group, aiding in the identification of biologically meaningful and robust

TABLE 4 Comparison of combined primer sets in ALDEx2 group discrimination.

Criterion Triple ITS1-18S | ITS2-18S  ITS1-ITS2

combined
Taxa separation Moderate Narrow Broader Widest Very narrow Moderate Moderate
(effect size range)
High-confidence Moderate Few More Multiple with Very limited Moderate Not detected
hits (adj. p < 0.05) clarity
Distinct group Balanced Skewed Clear CG Well-separated Minimal, poorly Partial, less Weak
enrichment (CF defined distinct
vs. CG)
Highlighted Present Present Strong Very strong (CG) Inconsistent Detected, lower Minimal signal
markers (e.g., C. detection effect
albicans)
Undetected Yes Limited Moderate Yes, e.g., Rare signals Some rare taxa Poor detection
signals surfaced Penicillium surfaced surfaced

CE, cancer-free participants; CG, cancer group.

4.2 Performance of ITS primers in OTU
detection

The ITS1 and ITS2 primers consistently identified a greater
number of OTUs than the 18S rRNA primer set (Figure 2c). This
was particularly evident in their ability to capture higher richness
and detect a greater number of group-specific OTUs unique to
each cohort. These results align with prior studies demonstrating
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that the ITS region, particularly ITS2, offers enhanced taxonomic
resolution for fungal communities (Banchi et al., 2020; Schoch et al.,
2012b). The superior sensitivity and specificity of ITS primers render
them more appropriate for fungal diversity research, whereas the
more conserved 18S rRNA is less adept at differentiating closely
related fungal species, a finding that underscores the necessity
of sufficient sequencing depth in metagenomic investigations to
prevent underestimating microbial diversity (Lundberg et al., 2012).
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TABLE 5 Comparison of PCA results using ALDEx2 (CLR) vs. DESeq2 (VST) across primer set combinations.

Primer combination

ALDEXx2 (CLR transformation)

DESeq2 (VST transformation)

ITS1-1TS2 Distinct group separation observed (PC1: 19% Weaker group separation (PC1: 32.1%); primarily
variance); effectively captures rare taxa and driven by dominant taxa
compositional shifts

ITS1-18S Partial separation achieved (PC1: 22%); reveals Minimal separation (PC1: 29.3%); likely influenced by
potential interactions between fungal and non-fungal broad eukaryotic background noise
eukaryotes

ITS2-18S Enhanced compositional resolution (PC1: 16%) Moderate separation (PC1: 38.2%); clustering

despite 18S signal noise; better reflects fungal diversity

influenced predominantly by 18S-derived eukaryotic
taxa

ITS1-1TS2-18S

Improved detection of relative abundance differences
(PC1: 22%); compositional differences highlighted

Emphasizes absolute abundance differences (PCI:
29%); reduced sensitivity to compositional variation

PCA, principal component analysis. The CLR transformation of ALDEx2 illustrates the uniqueness of group differentiation and compositional insights derived from various primer

combinations. DESeq2’s VST captures absolute abundance trends while reducing sensitivity to low-abundance taxa. PC1 denotes the initial principal component that encapsulates the

maximum variation.

4.3 Fungal family patterns and ecological
relevance

The significant diversity at the fungal family level observed
with ITS primers across samples, such as Aspergillaceae,
Saccharomycetaceae, and Pichiaceae, was among the most
prevalent, indicating their ecological importance and opportunistic
the On the
other hand, other families, such as Herpotrichiellaceae and
Trichomonadaceae were found in low abundances, potentially

functions  within investigated environments.

indicating niche specialization or detection constraints attributable
to primer bias (Lindahl et al., 2013).

4.4 Group-specific diversity

The variability among the CF and CG groups, particularly
with ITS1 and ITS2, demonstrates higher microbial richness and
evenness among the groups. This may indicate environmental
variations in the health condition niche, affecting community
diversity (Lozupone et al, 2012). In addition to the disparity
in fungal composition between groups, as shown by PCoA and
PCA grouping patterns, studies align with the fact that the
integration of both ITS regions provides a holistic perspective on
fungal populations (Mbareche et al., 2020a; Monard et al., 2013).
Furthermore, fungal dysbiosis, marked by reduced richness and
altered community structure, has been increasingly recognized
as a hallmark of pathological conditions (Mukher et al, 2015)
(Paterson etal., 2017b), including cancer (Paterson et al., 2017a)
(Vallianou and Stratigou, 2021). The lower fungal diversity observed
in cancer patients in our foundational study groups aligns
with prior reports suggesting that the disruption of the normal
mycobiome may contribute to disease status. In our study, dysbiosis
was observed as an outcome of disease status; however, this
observation needs validation in a larger cohort through comparison
between cancer patients with confirmed illness (CG) and cancer-
free controls. In particular, in the non-GI subgroup, there was
a considerable increase of Candida albicans, an opportunistic
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fungus commonly observed in immunocompromised states. This
discovery indicates that microbial imbalances may not only reflect
the underlying disease context but could also actively facilitate
disease progression by inducing immune dysregulation or mucosal
susceptibility, thus facilitating worsening disease outcomes. These
findings underscore the mycobiome’s potential role as both an
indicator and a facilitator of disease status in cancer patients
(Lozupone et al., 2012; Vallianou et al., 2021). For instance, our dual
ITS1-ITS2 combination in the proof-of-concept cohort resulted in
the greatest effect size separation and detection of multiple high-
confidence fungal markers, particularly C. albicans, which increased
in the cancer group, and S. cerevisiae, which was elevated in the
cancer-free group.

This pattern is in line with multiple studies (Mukher et al., 2015;
Rizzatti et al., 2017; Neville et al., 2015; Nenciarini et al., 2024),
thus, our observation fits the expected trend that disease-associated
dysbiosis often favors opportunistic fungi, while probiotic species
dominate healthy microbiomes.

4.5 Discriminatory power of ITS in LDA
analysis

Our LDA results emphasized the importance of robust statistical
mycobiome frameworks, such as LEfSe, in identifying microbial
signatures relevant to group differentiation. Moreover, Mbareche
etal. (2020b) demonstrated in prior research that comparing ITS1
and ITS2 has yielded inconsistent results, suggesting that ITS1
may exceed ITS2 in delineating fungal diversity, particularly in
specialized contexts such as bioaerosols, a setting characterized
by mixed microbial populations (Lozupone et al., 2012). This
evidence potentially corroborates our results regarding differential
LDA, where ITS1 produced more differential taxa than ITS2. The
gut microbiome constitutes a complicated environment, and this
finding indicates the potential of ITS1 to better understand fungal
diversity within complex communities regarding LDA. In our study,
ITS1 similarly yielded a marginally broader set of differentially
abundant taxa, as reflected in the LDA results, suggesting its utility
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for distinguishing fungal profiles even in diverse host-associated
environments.

4.6 Broader eukaryotes or fungal specificity

The inclusion of 18S rRNA expanded eukaryotic detection,
revealing broader community structures, including species such as
K. humilis, Pichia spp., and other eukaryotes. This, however, resulted
in diminished fungal specificity and heightened dataset complexity,
aligning with established limits of 18S in mycobiome research
(Tonge et al., 2014). These trade-offs were evident in PCA and
differential abundance analysis, where 18S datasets included non-
fungal interference and reduced statistical clarity. Notwithstanding
these constraints, the fully integrated dataset (ITS1-ITS2-18S)
yielded the most comprehensive ecological profile, encompassing
both predominant fungal species (C. albicans, C. parapsilosis, and S.
cerevisiae) and broader unclassified eukaryotic signals. Nevertheless,
as noted in recent multi-marker investigations (Bokulich and
Mills, 2013; D’Andreano et al., 2021), augmented taxonomic
coverage resulted in intra-group heterogeneity, necessitating more
conservative statistical thresholds.

4.7 ALDEx2 vs. DESeq?2 for differential
abundance

As mentioned above, C. albicans exhibited a substantial LDA
score in CG using the aggregated dataset; nevertheless, its statistical
significance diminished (p-adj = 0.08) relative to studies utilizing
individual ITS primers. This illustrates the importance of analyzing
both biological impact sizes and adjusted p-values in multi-
marker research.

The ALDEX?2 analysis of pairwise integrated ITS1-ITS2 datasets
decreases primer-specific biases and, as previously mentioned,
improves the discovery of both dominant taxa (Candida sp.) and
low-abundant taxa (Penicillium sp.) that might be implicated in
cancer-associated dysbiosis. The concordance between ALDEx2
impact sizes and LDA results reinforces the credibility of the
identified microbial signatures, consistent with evidence that
ITS-based primers outperform 18S for species-level fungal
resolution (Tedersoo et al., 2015; Tonge et al.,, 2014; Zhao et al.,
2017). Furthermore, the CLR-based PCA from ALDEx2 results
outperformed DESeq2’s variance-stabilizing transformation
in distinguishing mycobiome communities across different
clinical groups by analyzing the compositional characteristics of
microbiome data and minimizing the effect of dominant taxa.
Conversely, DESeq2’s VST clustered samples by absolute abundance,
potentially masking relevant taxon composition shifts in community
structure.

Our findings further highlight that ITS1 or ITS2 alone is only
partially informative for thorough gut mycobiome characterization.
Single-marker approaches exhibited insufficient resolution and
sensitivity to reliably identify disease-associated species such
as C. parapsilosis and Penicillium spp., corroborating previous
findings that primer biases constrain fungal community evaluations
(Abid et al., 2022; Bellemain et al., 2010).
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5 Strengths and limitations

This study was conducted through the thorough evaluation
of three commonly utilized fungal DNA regions—18S rRNA,
ITS1, and ITS2—across various analytical dimensions, including
OTU richness, taxonomic resolution, alpha and beta diversity,
and biomarker identification. The comprehensive analytical
framework, which integrates bioinformatics tools, including
USEARCH, SILVA, and UNITE databases, LEfSe, and PCA/PCoA,
ensures considerable reliability and reproducibility in community
profiling. Additionally, testing fecal samples incorporating from
both cancer group (CG) and cancer-free (CF) subjects facilitated
disease-specific microbiological analysis and the identification
of group-specific biomarkers. The limitation of this study is the
sample size; the utilization of only eight samples may constrain
statistical power and the generalizability of the findings to broader

populations.
Furthermore, despite the utilization of rarefaction curves,
certain samples (e.g., G41) exhibited inadequate richness

and non-saturation, indicating that the sequencing depth
might be insufficient to fully capture community complexity
in specific instances. This suggests that factors influencing
mycobiome profiling do not rely solely on primer selection;
other

sample quality, host condition, fungal load, or geographical

factors extend beyond primer selection, including

variations.

6 Conclusion

In conclusion, this proof-of-principle study establishes the
methodological basis for multi-marker mycobiome profiling,
revealing for the first time the synergistic advantages of mixing
18S rRNA, ITS1, and ITS2 primer datasets.

In our study, ITS1 and ITS2 demonstrated complementary
strengths. ITS1 tended to increase the differentially abundant taxa,
reflecting higher richness, whereas ITS2 captured a greater number
of OTUs; both facilitate a more thorough evaluation of fungal
diversity, encompassing a broader spectrum of taxa and ecological
variation. The pairwise integration of ITS-ITS2 datasets provided
more discriminatory power, uncovering dysbiosis predictors that
might be overlooked with single-primer methodologies. On the
other hand, the triple integration of ITS1-ITS2-18S offered greater
richness, demonstrating a comprehensive profiling of the fungal
community.

Studies employing amplicon sequencing should focus on
creating taxonomically balanced, multi-locus primer panels for
mycobiome assessment. This technique tackles existing limitations
in primer bias and facilitates comprehensive characterization of
fungal dysbiosis in health-disease transitions. ALDEx2 presented
an in-depth structure for differential abundance analysis by
enhancing the discovery of both prevalent and low-abundance taxa
likely associated with cancer-related dysbiosis, improving group
differentiation, and minimizing distortion from dominant taxa.
These findings highlight the importance of ALDEx2 in multi-marker
mycobiome research in small cohort contexts when statistical
power is constrained. In summary, multi-marker integration boosts
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the detection of both common and rare taxa, reduces primer-
specific biases, and improves the overall interpretability of gut
fungal communities. The heightened complexity of datasets requires
meticulous statistical analysis, especially in low-biomass settings
such as the human gut.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by the Tawam
Human Research Ethics Committee (THREC-678). The studies were
conducted in accordance with the local legislation and institutional
requirements. The participants provided their written informed
consent to participate in this study. The manuscript presents research
on animals that do not require ethical approval for their study.

Author contributions

HO: Data curation, Conceptualization, Methodology, Formal
analysis, Writing — review and editing, Investigation, Writing -
original draft, Visualization. SZ: Writing - review and editing,
Formal analysis, Investigation, Methodology, Conceptualization.
FA: Visualization, Conceptualization, Project administration,
Validation, Writing - review and editing, Data curation,
Supervision. KH: Supervision, Data curation, Writing - review and
editing, Validation, Visualization, Resources. MR: Methodology,
Writing - review and editing, Data curation. SA: Writing - review
and editing, Visualization. KA: Methodology, Conceptualization,
Writing - review and editing, Investigation. NM: Writing — review
and editing, Methodology, Investigation, Conceptualization. OA:
Conceptualization, Writing — review and editing, Methodology,
Investigation. ZA: Resources, Conceptualization, Visualization,
Funding acquisition, Project administration, Supervision, Data
curation, Writing - review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This manuscript describes
the molecular identification analysis of fungi, which is a part of
the Summer Undergraduate Research Experiences (SURE) program
2023, funded by the UAEU 2023-2024.

Acknowledgements

The authors extend their heartfelt appreciation to their principal
investigator, Zakeya Alrasbi, for her guidance and inspirational

Frontiers in Bioinformatics

13

10.3389/fbinf.2025.1690766

support. They recognize the combined contributions of skilled
scientists in the microbiology department that facilitated the
success of our work. They extend sincere appreciation to Tawam
Hospital, UAE, for enabling the procurement of human samples and
assisting with the clinical dimensions of our research. They express
their profound gratitude to the Department of Microbiology and
Immunology at the United Arab Emirates University (UAEU) for
their support in the research. The authors extend their gratitude to
Neoscience Company in UAE for their essential sequencing services
that contributed significantly to our research. They also express their
gratitude to Lena Labania, Marie Oland, and Sulaiman Shantour for
their support in participant recruiting and their involvement in the
laboratory trials.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that Generative Al was used in the
creation of this manuscript. During the preparation of this work, the
author(s) used Chatgpt 5.0 in order to assist with code correction,
troubleshooting, and language refinement. After using this tool, the
author reviewed and edited the content as needed and takes full
responsibility for the accuracy and integrity of the content of the
publication.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The this
found online at: https://www.frontiersin.org/articles/10.3389/
tbinf.2025.1690766/full#supplementary-material

Supplementary Material for article can be

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1690766
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1690766/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1690766/full#supplementary-material
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Orsud et al.

References

Abarenkov, K., Zirk, A., Piirmann, T., Pohonen, R., Ivanov, E, Nilsson, R. H., et al.
(2025). UNITE general FASTA release for fungi, version 19.02.2025. Estonia: UNITE
Community, University of Tartu.

Abid, R., Waseem, H., Ali, ]., Ghazanfar, S., Muhammad Ali, G., Elasbali, A. M., et al.
(2022). Probiotic yeast saccharomyces: back to nature to improve human health. J. Fungi
8, 444. doi:10.3390/jof8050444

Aykut, B., Pushalkar, S., Chen, R,, Li, Q., Abengozar, R., Kim, J. L, et al. (2019). The
fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 574
(7777), 264-267. doi:10.1038/s41586-019-1608-2

Banchi, E., Ametrano, C. G., Greco, S., Stankovi¢, D., Muggia, L., and Pallavicini, A.
(2020). ITS2 metabarcoding analysis complements lichen mycobiome diversity data.
Mycologia 112 (4), 677-693. doi:10.1016/j.scitotenv.2020.140249

Banos, S., Lentendu, G., Kopf, A., Wubet, T., Glockner, E. O., and Reich, M.
(2018). A comprehensive fungi-specific 185 rRNA gene sequence primer toolkit
suited for diverse research issues and sequencing platforms. BMC Microbiol. 18, 190.
doi:10.1186/512866-018-1331-4

Bellemain, E., Carlsen, T., Brochmann, C., Coissac, E., Taberlet, P, and Kauserud, H.
(2010). ITS as an environmental DNA barcode for fungi: an in silico approach reveals
potential PCR biases. BMC Microbiol. 10, 189. doi:10.1186/1471-2180-10-189

Bioconductor (2023). Bioconductor. BiocVersion: bioconductor version information.
Bioconductor. Available online at: https://www.bioconductor.org/packages/release/
bioc/html/BiocVersion.html.

Bokulich, N. A., and Mills, D. A. (2013). Improved selection of internal transcribed
spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal
communities. Appl. Environ. Microbiol. 79, 2519-2526. doi:10.1128/aem.03870-12

Chin, V.K,, Yong, V. C.,, Chong, P. P,, Amin, N. S, Basir, R., and Abdullah, M. (2020).
Mycobiome in the gut: a multiperspective review. Mediat. Inflamm. 2020 (1), 9560684.
doi:10.1155/2020/9560684

D’Andreano, S., D’Angelo, G., Galuppi, R., Bovo, G., Ricci, G., and Caffarra, A. (2021).
Integrating multi-marker metabarcoding to enhance detection of complex mycobiomes
in low-biomass samples. Front. Microbiol. 12,649529. doi:10.1093/biomethods/bpaa026

Gao, R, Kong, C., Li, H., Huang, L., Qu, X,, Qin, N,, et al. (2017). Dysbiosis signature
of mycobiota in Colon polyp and colorectal cancer. Eur. J. Clin. Microbiol. and Infect.
Dis. 36 (12), 2457-2468. d0i:10.1007/s10096-017-3085-6

Gardes, M., and Bruns, T. (1993). ITS primers with enhanced specificity for
basidiomycetes—application to the identification of mycorrhizae and rusts. Mol. 1993.
Ecol. 2,113-118. doi:10.1111/j.1365-294x.1993.tb00005.x

Gupta, V. K, Paul, S., and Dutta, C. (2017). Geography, ethnicity or subsistence-
specific variations in human microbiome composition and diversity. Front. Microbiol.
8, 1162. doi:10.3389/fmicb.2017.01162

Hamad, I, Ranque, S., Azhar, E. L, Yasir, M., Jiman-Fatani, A. A., Tissot-Dupont, H.,
etal. (2017). RETRACTED ARTICLE: culturomics and amplicon-based metagenomic
approaches for the Study of fungal population in Human Gut Microbiota. Sci. Rep. 7
(1), 16788. doi:10.1038/s41598-017-17132-4

Hoggard, M., Vesty, A., Wong, G., Montgomery, J. M., Fourie, C., Douglas, R. G.,
et al. (2018a). Characterizing the human mycobiota: a comparison of small subunit
rRNA, ITS1, ITS2, and large subunit rRNA genomic targets. Front. Microbiol. 9, 2208.
doi:10.3389/fmicb.2018.0208

Hoggard, M., Vesty, A., Wong, G., Montgomery, J. M., Fourie, C., Douglas, R. G.,
et al. (2018b). Characterizing the human mycobiota: a comparison of small subunit
rRNA, ITS1, ITS2, and large subunit rRNA genomic targets. Front. Microbiol. 9, 2208.
doi:10.3389/fmicb.2018.02208

Huffnagle, G. B., and Noverr, M. C. (2013). The emerging world of the fungal
microbiome. Trends Microbiol. 21 (7), 334-341. doi:10.1016/j.tim.2013.04.002

Jana, Z., Eloy, C. E, and Luigi, M. (2013). A revised its nucleotide sequence gives a
specifity for Smallanthus sonchifolius (Poepp. and Endl.) and its products identification.
Genetika 45 (1), 217-226. doi:10.2298/gensr1301217z

Kabwe, M. H., Vikram, S., Mulaudzi, K., Jansson, J. K., and Makhalanyane, T. P.
(2020). The gut mycobiota of rural and urban individuals is shaped by geography. BMC
Microbiol. 20 (1), 257. doi:10.1186/s12866-020-01907-3

Labania, L., Zoughbor, S., Ajab, S., Olanda, M., Shantour, S. N., and Al Rasbi, Z.
(2023). The associated risk of Blastocystis infection in cancer: a case control study. Front.
Oncol. 13, 1115835. doi:10.3389/fonc.2023.1115835

Lindahl, B. D., Nilsson, R. H., Tedersoo, L., Abarenkov, K., Carlsen, T., Kjoller, R.,
et al. (2013). Fungal community analysis by high-throughput sequencing of amplified
markers—a user’s guide. New Phytol. 199, 288-299. doi:10.1111/nph.12243

Liu, ], Yu, Y., Cai, Z., Bartlam, M., and Wang, Y. (2015). Comparison of ITS and 18S
rDNA for estimating fungal diversity using PCR-DGGE. World J. Microbiol. Biotechnol.
31, 1387-1395. d0i:10.1007/s11274-015-1890-6

Lozupone, C. A., Stombaugh, J. I, Gordon, J. I, Jansson, J. K., and Knight, R. (2012).
Diversity, stability and resilience of the human gut microbiota. Nature 489, 220-230.
doi:10.1038/nature11550

Frontiers in Bioinformatics

14

10.3389/fbinf.2025.1690766

Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti,
S., et al. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature 488,
86-90. doi:10.1038/naturel1237

Mahnic, A., and Rupnik, M. (2018). Different host factors are associated with patterns
in bacterial and fungal gut microbiota in Slovenian healthy cohort. PLoS One 13 (5),
€0209209. doi:10.1371/journal.pone.0209209

Mbareche, H., Veillette, M., Bilodeau, G., and Duchaine, C. (2020a). Comparison
of the performance of ITS1 and ITS2 as barcodes in amplicon-based sequencing of
bioaerosols. Peer] 8, e8523. doi:10.7717/peer;j.8523

Mbareche, H., Veillette, M., Bilodeau, G., and Duchaine, C. (2020b). Fungal
microbiome in the air of a hospital environment: Potential nosocomial exposure to
fungal pathogens. Microbiome 8 (1), 13. doi:10.1186/s40168-020-0781-0

Microbiome Project (2023). Microbiome R package. GitHub. Available online at:
https://github.com/microbiome.

Monard, C., Gantner, S., and Stenlid, J. (2013). Utilizing ITS1 and ITS2 to study
environmental fungal diversity using pyrosequencing. FEMS Microbiol. Ecol. 84,
165-175. doi:10.1111/1574-6941.12046

Mukherjee, P. K., Sendid, B., Hoarau, G., Colombel, J. E, Poulain, D., and Ghannoum,
M. A. (2015). Mycobiota in gastrointestinal diseases. Nat. Rev. Gastroenterol. Hepatol.
12,77-87. doi:lO.1038/nrgastro.2014.188

Nash, A. K., Auchtung, T. A., Wong, M. C,, Smith, D. P, Gesell, J. R., Ross, M. C,,
et al. (2017). The gut mycobiome of the Human Microbiome Project healthy cohort.
Microbiome 5, 153-3. doi:10.1186/s40168-017-0373-4

Nenciarini, S., Rivero, D., Ciccione, A., Amoriello, R., Cerasuolo, B., Pallecchi,
M., et al. (2024). Impact of cooperative or competitive dynamics between the yeast
Saccharomyces cerevisiae and lactobacilli on the immune response of the host. Front.
Immunol. 15, 1399842. doi:10.3389/fimmu.2024.1399842

Neville, B. A., d’Enfert, C., and Bougnoux, M. E. (2015). Candida albicans
commensalism in the gastrointestinal tract. FEMS Yeast Res. 15, fov081.
doi:10.1093/femsyr/fov081

Nilsson, R. H., Kristiansson, E., Ryberg, M., and Larsson, K. H. (2008). Intraspecific
ITS variability in the kingdom fungi as expressed in the international sequence
databases and its implications for molecular species identification. Evol. Bioinforma.
Online 4, 193-201. doi:10.4137/ebo.s653

Paterson, M. J, Oh, S, and Underhill D. M. (2017a). Host-microbe
interactions: commensal fungi in the gut. Curr. Opin. Microbiol. 40, 131-137.
doi:10.1016/j.mib.2017.11.012

Paterson, M. J., Oh, S., and Underhill, D. M. (2017b). Host-microbe
interactions: commensal fungi in the gut. Cell Host & Microbe 22 (6), 745-757.
doi:10.1016/j.chom.2017.11.008

Pathan, S. S., and Patel, M. H. (2013). A microbiological study of fungal etiology in
various clinical specimens of patients attending the tertiary care hospital.

Pelley, J. W. (2007). “RNA transcription and control of gene expression,” in Elseviers
integrated biochemistry. Editor J. W. Pelley (St. Louis: Mosby), 135-145.

Qin, J,, Li, R, Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C,, et al. (2010).
A human gut microbial gene catalogue established by metagenomic sequencing. Nature
464 (7285), 59-65. doi:10.1038/nature08821

Rizzatti, G., Lopetuso, L. R., Gibiino, G., Binda, C., and Gasbarrini, A. (2017).

Proteobacteria: a common factor in human diseases. Biomed. Res. Int. 2017, 1-7.
doi:10.1155/2017/9351507

RStudio. bookdown (2023). Authoring books and technical documents
with R markdown. GitHub. Available online at: https://github.com/
rstudio/bookdown.

Sarrabayrouse, G., Elias, A., Yane, F, Mayorga, L. F, Varela, E., Bartoli, C., et al.
(2021). Fungal and bacterial loads: noninvasive inflammatory bowel disease biomarkers
for the clinical setting. Noninvasive Inflamm. Bowel Dis. Biomarkers Clin. Setting 6 (2),
€01277-20. doi:10.1128/msystems.01277-20

Schoch, C. L,, Seifert, K. A., Huhndorf, S., Robert, V,, Spouge, J. L., Levesque, C. A.,
etal. (2012a). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal
DNA barcode marker for fungi. Proc. Natl. Acad. Sci. U. S. A. 109 (16), 6241-6246.
doi:10.1073/pnas.111708109

Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque,
C., et al. (2012b). Nuclear ribosomal internal transcribed spacer (ITS) region as a
universal DNA barcode marker for fungi. Proc. Natl. Acad. Sci. 109 (16), 6241-6246.
doi:10.1073/pnas.1117018109

Stewart, F. J., and Cavanaugh, C. M. (2007). Intragenomic variation and evolution
of the internal transcribed spacer of the rRNA operon in bacteria. J. Mol. Evol. 65 (1),
44-67. doi:10.1007/s00239-006-0235-3

Stielow, J. B., Lévesque, C. A., Seifert, K. A., Meyer, W,, Iriny, L., Smits, D., et al.
(2015). Which genes are associated with a specific fungus? Creation and evaluation
of universal primers for prospective secondary fungal DNA barcodes. Persoonia 35,
242-263. doi:10.3767/003158515X689135

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1690766
https://doi.org/10.3390/jof8050444
https://doi.org/10.1038/s41586-019-1608-2
https://doi.org/10.1016/j.scitotenv.2020.140249
https://doi.org/10.1186/s12866-018-1331-4
https://doi.org/10.1186/1471-2180-10-189
https://www.bioconductor.org/packages/release/bioc/html/BiocVersion.html
https://www.bioconductor.org/packages/release/bioc/html/BiocVersion.html
https://doi.org/10.1128/aem.03870-12
https://doi.org/10.1155/2020/9560684
https://doi.org/10.1093/biomethods/bpaa026
https://doi.org/10.1007/s10096-017-3085-6
https://doi.org/10.1111/j.1365-294x.1993.tb00005.x
https://doi.org/10.3389/fmicb.2017.01162
https://doi.org/10.1038/s41598-017-17132-4
https://doi.org/10.3389/fmicb.2018.0208
https://doi.org/10.3389/fmicb.2018.02208
https://doi.org/10.1016/j.tim.2013.04.002
https://doi.org/10.2298/gensr1301217z
https://doi.org/10.1186/s12866-020-01907-3
https://doi.org/10.3389/fonc.2023.1115835
https://doi.org/10.1111/nph.12243
https://doi.org/10.1007/s11274-015-1890-6
https://doi.org/10.1038/nature11550
https://doi.org/10.1038/nature11237
https://doi.org/10.1371/journal.pone.0209209
https://doi.org/10.7717/peerj.8523
https://doi.org/10.1186/s40168-020-0781-0
https://github.com/microbiome
https://doi.org/10.1111/1574-6941.12046
https://doi.org/10.1038/nrgastro.2014.188
https://doi.org/10.1186/s40168-017-0373-4
https://doi.org/10.3389/fimmu.2024.1399842
https://doi.org/10.1093/femsyr/fov081
https://doi.org/10.4137/ebo.s653
https://doi.org/10.1016/j.mib.2017.11.012
https://doi.org/10.1016/j.chom.2017.11.008
https://doi.org/10.1038/nature08821
https://doi.org/10.1155/2017/9351507
https://github.com/rstudio/bookdown
https://github.com/rstudio/bookdown
https://doi.org/10.1128/msystems.01277-20
https://doi.org/10.1073/pnas.111708109
https://doi.org/10.1073/pnas.1117018109
https://doi.org/10.1007/s00239-006-0235-3
https://doi.org/10.3767/003158515X689135
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Orsud et al.

Strati, E, Di Paola, M., Stefanini, L., Albanese, D., Rizzetto, L., Lionetti, P, et al.
(2016). Age and gender affect the composition of fungal population of the human
gastrointestinal tract. Front. Microbiol. 7 (1227), 1227. doi:10.3389/fmicb.2016.01227

Takada, H., Shimada, T. Dey, D., Quyyum, M. Z., Nakano, M., Ishiguro,
A, et al. (2016). Differential regulation of rRNA and tRNA transcription from
the rRNA-tRNA composite operon in Escherichia coli. PLoS One 11, €0163057.
doi:10.1371/journal.pone.0163057

Tedersoo, L., Tooming-Klunderud, A., Anslan, S., Pdlme, S., Riit, T, Liiv, L, et al.
(2015). Shotgun metagenomes and multiple primer pair-barcode combinations of
amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10, 1-43.
doi:10.3897/mycokeys.10.4852

Tonge, D. P, Pashley, C. H., and Gant, T. W. (2014). Multi-marker parallel sequencing
reveals comprehensive fungal diversity in human samples. Sci. Rep. 4, 6742.

Vallianou, N., Kounatidis, D., Christodoulatos, G. S., Panagopoulos, E, Karampela,
L., and Dalamaga, M. (2021). Mycobiome and cancer: what is the evidence? Cancers 13,
3149. doi:10.3390/cancers13133149

Frontiers in Bioinformatics

15

10.3389/fbinf.2025.1690766

Vallianou, N. G., and Stratigou, T. (2021). Tsagarakis S. Microbiome and metabolic
diseases. Metabolites 11 (7), 1-18. doi:10.3390/metabo1107041

Wang, Y., Tian, R. M., Gao, Z. M., Bougoufta, S., and Qian, P. Y. (2014). Optimal
eukaryotic 18S and universal 165/18S ribosomal RNA primers and their application in
a study of symbiosis. PloS one 9 (3), €90053. doi:10.1371/journal.pone.0090053

White, T., Burns, T., Lee, S., and Taylor, J. (1990). “Amplification and direct
sequencing of fungal ribosomal RNA genes for phylogenetics, p 315-322,” in PCR
protocols: a guide to methods and applications. Editors M. A. Innis, D. H. Gelfand, J.
J. Sninsky, and T. J. White (San Diego, CA: Academic Press).

Wiesmann, C., Lehr, K., Kupcinskas, J., Vilchez-Vargas, R., and Link, A.
(2022). Primers matter: influence of the primer selection on human fungal
detection using high throughput sequencing. Gut Microbes 14 (1), 2110638.
doi:10.1080/19490976.2022.2110638

Zhao, G., Vatanen, T., Droit, L., Park, A., Kostic, A. D., Poon, T. W.,, et al.
(2017). Intestinal virome changes precede autoimmunity in type I diabetes-susceptible
children. Proc. Natl. Acad. Sci. U. S. A. 114, E6166-E6175. doi:10.1073/pnas.1706359114

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1690766
https://doi.org/10.3389/fmicb.2016.01227
https://doi.org/10.1371/journal.pone.0163057
https://doi.org/10.3897/mycokeys.10.4852
https://doi.org/10.3390/cancers13133149
https://doi.org/10.3390/metabo1107041
https://doi.org/10.1371/journal.pone.0090053
https://doi.org/10.1080/19490976.2022.2110638
https://doi.org/10.1073/pnas.1706359114
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 Sampling and sequencing
	2.2 Bioinformatics analysis workflow
	2.3 Ethics statement

	3 Results
	3.1 OTU distribution across primer sets
	3.2 Sequencing depth evaluation via rarefaction analysis
	3.3 Taxonomic prevalence patterns
	3.4 Differential abundance profiles per individual primer
	3.5 Differential abundance in combined primer sets
	3.5.1 Case studies
	3.5.2 Linear discriminant analysis
	3.5.3 Integration of ALDEx2 LDA for improving statistical confidence


	4 Discussion
	4.1 Impact of primer selection on fungal diversity
	4.2 Performance of ITS primers in OTU detection
	4.3 Fungal family patterns and ecological relevance
	4.4 Group-specific diversity
	4.5 Discriminatory power of ITS in LDA analysis
	4.6 Broader eukaryotes or fungal specificity
	4.7 ALDEx2 vs. DESeq2 for differential abundance

	5 Strengths and limitations
	6 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgements
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

